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ABSTRACT

The problem of detecting defective members in a large population, consisting
of defective and non-defective members has been tackled in various ways. One
procedure used in this kind of investigation is the group testing procedure. In this
procedure, defective members of a population are weeded out with as few tests
(runs) as possible.

Designs which classify all members in the population as defcctive or non-
defective have been called screening designs. Work in this area was pioneered by
Dorfman[1] in 1943 and Sterret[14] in (1957).Watson[16] in 1961 and Patel[9] in
1962 have approached the problem from the point of view of designs of
experiment and called these designs "group screening  designs".Patel and
Manene[10] in 1987 worked along the line of Sterret and called their designs
"Stepwise group screening designs".In this project various group screening
procedures are compared.We restrict ourselves to Dorfman, Sterret and Hwang's
procedures and extensions of these procedures.

Chapter 1 reviews the basic concepts of group screening and work done in
this area.

In chapter II, various group screening procedures are defined. The work
done in this area and other related areas by several authors in the past is

described.
In chapter III, the procedures are compared using the expected number of

runs as a basis of comparison.



CHAPTER ONE

INTRODUCTION

1.1 Introduction

Suppose that we have a population of ‘I members of which ‘j" are
defective and the rest (f-j) are non-defective. Each member can be tested to ftind
out whether it 1s defective or not.

In a two-stage group screening design, the factors (members) arc divided
into groups in the first stage. These are the first order group-factors. The group-
factors are tested for their defects and classificd as defective or non-detective. In
the second stage, factors within group-factors found to be defective are tested
individually.

In a three-stage group screening design, the factors are divided into groups in
the first stage. These are known as the first order group-factors. The group-factors
are tested and identified as defective or non-defective. In the second stage of the
experiment, any first order group-factor found to be defective is divided further
into smaller group-factors called second order group-factors which are then tested
and classified as defective or non-defective. Finally, in the third stage all the
factors belonging to the second order group-factors found to be defective in the
second stage are tested individually and identified as defective or non-defective. The
three-stage group screening can be extended to m-stage group screening design.

In a one-type step-wise group screening design, factors are divided into group-
factors known as first order group-factors.The group-factors are then tested for
their defects and classified as either defective or non-defective. In the first of the
type one search steps, we start with any defective first order group-factor and test
the factors within it one by one till we find a defective factor. This defective

factor is kept separate. In the second of type one search steps, we test the



remaining factors in a pool. If the pooled test is negative, then the test procedure
is terminated. Otherwise the first and second of the type one search steps are
repeated successively till the analysis terminates with a test on a non-defective
group-factor or a group-factor of size one.The type one search steps are
performed for all the first order group-factors found to be defective in the initial
step.

In a two type step-wise group screening design, the factors arc divided into
group factors, known as the first order group-factors, which arc then tested for
their effects and classified as defective or non-defective in the initial step. Each
of the first order group-factors classified as defective in the initial step is further
divided into smaller group-factors called second order group-factors. In the first of
type one search steps, we start with any defective first order group-factor and test
the second order group-factors within it one by one till we find a defective
second order group factor. The defective second order group factor is kept
separate.In the second of the type one search steps we test the remaining second
order group-factors in a pool. If the pool test is negative, we terminate the test
procedure. Otherwise in the third of the type one search steps, we continue
testing the remaining second order group-factors one by one till we find another
defective second order group-factor. This is also kept separate. The second and the
third of type one search steps are repeated successively till all the defective
second order group factors are isolated.The type one search steps are performed
for all the first order group-factors found to be defective in the initial step.

Finally, in the first of the type two search steps, we start with any
second order group-factor found to be defective in the type one search steps.

We test the factors within it one by one till we find a defective factor. The

defective factor is kept separate. In the second of the type two search steps



we test the remaining factors in a pool. If the pooled test is negative, the test
procedure is terminated. Otherwise in the third of type two search steps. we
continue testing the factors individually till another defective factor is found. This is
again isolated. The second and third of the type two search steps are repeated
successively till the test procedure terminates with a test on a non-defective group
or a group-factor of size one. The type two search steps are performed for all the
second order group-factors found to be defective at thc end of type one search
steps. The two type step-wise group screening design can easily be extended to an
r-type (r >2 ) step-wise group screening design.

In the method proposed by Hwang [2] in (1972), the knowledge of an
upper bound m of j (number of defective members) is assumed. When the
probability distribution of j (not necessarily binomial) is known, then if any chosen
number m, is used as the "upper bound", we can compute the probability that
j<m; with at least this probability, all the defectives will be identified in not more
than a specified number of tests. Let m be the given upper bound and f the
population size. The corresponding problem of using group testing to detect all
members in the population is referred to as the (m,f) problem. If f<2m-2, test the

members individually. In the first step, if f 2> 2m-1, compute /= f-m=1. Also
compute a non-negative integer oc satisfying Zm-H >/ m>2% .In the second step,
take a group of size 2% to test. If the group is non-defective, we dispose of these
2% members as non-defective and go back to the first step for the remaining

problem (m,f-2%). If the group is non-defective, find one defective member in a

tests by binary search and dispose of all non-defective groups encountered during

that stage. After 1+« tests we go back to the first step for the remaining problem

(m-,f) where f<f-1.



1.2 Literature review

The idea of group testing was first proposed by Dorfman [1] in 1943, as

an economical method of testing blood samples of army inductees in order to
detect the presence of infection. He proposed that to trace the presence of
infection in blood. a sample of each member is taken and pooled together, then
the pooled blood sample is tested. If the testis negative, the pooled blood samples
free from infection and all the inductees in the sample could be passed with no
turther tests. Otherwise the blood sample of each of the individuals making up the
pool is tested individually to determine which of the inductees are infected. If the
prevalence rate of infection were low, the expected total number of tests and thus
the expected total cost of blood-testing would be reduced.

Dortmans method was improved by Sterrett {14] in (1957), who proposed
that individual testing of the members of a defective group should cease once a
detective member us found. Then the remaining members should be tested
simuitaneously in a pool. If the result was negative, then stop testing that sample.
Otherwise testing members individually continued till another defective item was
found. The remaining items were again tested in a pool. The procedure was
continued until all the defective members in the defective pooled sample were
isolated. This procedure reduced the number of runs obtained by dorfman’s by
cight-per cent lor a prevalence rate of five-per cent.

Watson [16] in (1961) applied Dorfmans method in group screening problems
where a large number of vaniables are screened by group testing to identify the
important ones. He studied two-stage group screening designs with and without
crrors in observation using equal sized groups. Assuming continuous variations in
group-sizes, he obtained the optimum group-sizes by minimising the total expected

number ot runs with respect to the group-sizes using ordinary calculus techniques.



Patel [9] in (1962) and Li [4] in (1962) extended the two-stage group
screening procedure with equal prior probabilities to a multi-stage group screening
procedure when responses are observed with negligible error. The work was
restricted to the case when all the factors were defective with equal a-priori
probability. By assuming continuous variation, Patel obtained the optimum group
sizes that minimise the expected number of runs with respect to the group-sizes.
He also discussed the choice of the number of stages to be used. He compared the
procedures at different stages with respect to the minimum expected number of
runs. He also compared two-stage procedure with higher stage procedures. Li [4]
also considered the group screening problems and proposed a method which is
essentially a multi-cycle version of Dorfman’ s method. The members of a
particular cycle are divided into groups for group testing. Those groups which are
defective (contain important variables in his language) are then pooled together to
become the members for the next cycle. However, he used the maximum number
of tests as a criterion of efficiency.

Hwang [2] in (1972) proposed a method which assumes the knowledge of an
upper bound of the defective items. This method is twin to a merging algoﬁthm
suggested by Hwang and Lin for merging two disjoint ordered sets by making
paired comparisons. The method is designed to reduce the maximum number of
tests. When the number of defectives is known (hence an upper bound is known),
the proposed method compares favourably with Li's method. When the probability
distribution of the defective items (not necessarily binomial) is known, then if any
chosen number is used as the “upper bound” in the proposed method, we can
compute the probability that the number of defectives is less than or equal to the
upper bound; with at least this probability, all the defectives will be identified in

not more than a specified number of tests.



Sobel and Groil [13] listed many industrial applications of group testing. They
set up recursion equations to determine the optimal size of the group to be tested
next-optimal under the restraint that if one group is found defective, the group to
be tested must be one of its subgroups. While closed-form solutions were not
obtained, numerical solutions for values of the population from one to twelve for
the probability of any member being non-defective (q) and values of the population
from thirteen to a hundred for q =0.90, 0.95 and 0.99. Hunter and Mezaki[17] in
(1964) used group screening method to select the best catalyst from a list of
possible catalysts for the oxidation of methane. This was done by arranging
possible catalysts for the reaction in logical groups and testing each group in a
single run, the less active catalyst can be isolated and the total number of runs
reduced.

Kleijnen [3]in (1975) compared group screening designs with other types
of factor screening designs. He investigated the assumptions made by Watson [16]
and derived some new results on two-stage group screening by allowing the
possibility of two-factor interactions.

Mauro and Smith [5]in (1982) discussed the performance of two-stage group
screening designs when the assumptions that the direction of possible effects are
known or are correctly assumed a-priori is relaxed. The case of zero error variance
is considered. They assumed that for all defective factors, the magnitude of the
effect is the same but the direction of the effects could be different. To gauge the
effect of cancellation, they defined the relative testing cost as another measure of
screening efficiency.

Patel and Ottieno [11] in (1984) considered two-stage group screening designs
with equal prior probabilities of factors to be defective and with no errors in

observations. They used the method of finite differences to obtain the optimum



group-sizes and compared their results with Watson's results obtained by assuming
continuous variations in the group-sizes. In another paper, Patel and Ottieno [12]
discussed two-stage group screening designs with unequal prior probabilities of
factors to be defective and with no errors in observations. They obtained the
optimum group-sizes by assuming continuous variations. They have also shown that
two-stage group screening design with unequal probabilities of factors to be
defective has fewer runs than the corresponding designs in which all the factors are
assumed to have the same a-priori probability of being defective.

Patel and Odhiambo [8] in (1986) studied the multi-stage group screening
designs with unequal prior probabilities of to be defective and with no errors in
observations. They described a procedure for grouping the factors in the absence of
concrete priori information, so that the relative testing cost is minimal. They also
showed that under quite general conditions, the designs with unequal prior
probabilities to be defective require lewer runs than the equivalent designs in
which the group-factors contain the same number of factors.

Patei and Manene [10] in (1987) studied one-type step-wise group screening
designs with cqual prior probabilities of factors to be defective and with no errors
in obsecrvatton. Their approach is similar to Sterret's approach cxcept that in the
initial step, the group-factors are tested in a factorial experiment. They compared
the onc-tvpe step-wise group screening procedures with the m-stage group
screening procedures (m=2,3,4) and found that the one-type step-wise group
screening has fewer runs than the m-stage group screeming for 0.035 < p < 0.40.

QOdhiambo and Manene [7]in (1987) have considered the performance of one-
tvpe stepwise group screening in terms of the expected number of runs and the
expected number of incorrect dccisions. They presented a method for obtaining

optimai one-tvpe step-wise designs for the cases in which the direction of each



defective factor is assumed to be known a-priori and the observations are subject
to error.

Odhiambo [6] in (1986) discussed the performance of multistage group
screening designs when the assumption that the direction of possible effects are
known or are correctly assumed a-priori is relaxed. The case of zero error variance
is considered. He assumed that for all effective factors, the magnitude of the effect
is the same but the direction of the effects could be different. He obtained
expressions for the relative testing cost and that for the percentage measure of
cfficiency of detecting active factors for an m-stage design (m>2). He also defined
a linear cost function for the m-stage group screening design. He showed that,
whereas it is possible to reduce the relative testing cost by increasing the number
of stages, the efficiency for detecting active factors decreases as the number of
stages increases. for given p, and p» due to cancellation of effects. He also
showed that two-stage group screening definitely performed better than three-stage

aroup screening design for p>0.1 and three-stage performed better than four-stage

group screening design when p>0.03.

1.3 Objective and _significance of the study

The main objective of group screening experiments is to cut down the
number of runs or observations nceded. thus reducing the cost and time used tor
the experiment. We say that a design is more efficient than another if the expected
number of runs in the tormer design is less or cqual to that in the latter design
tor all p (O<p<l) with strict inequality holding true for at least one value of p

(the a prion probability of a factor to be defective).



This study aims at comparing different group screening procedures using the
expected number of runs as the basis of comparison. We restrict ourselves to
Dorfman’s procedure which was extended by Li[4] in (1962) and Patel [9] in
(1962), Sterret’ s procedure which Patel and Manene [10] in (1987) extended and
called it step-wise group screening procedure and Hwang's procedure.

Once the procedures are compared, we are in a position to tell which one
has the fewest expected number of runs for given upper limit of number of

defectives or upper limit of probability of a defective.
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CHAPTER TWO

DESCRIPTION OF PROCEDURES

2.1 DORFMAN_GROUP_ TESTING PROCEDURE

1. Introduction

The concept of group testing was first introduced by Dorfman as an
economical method of testing blood samples of army inductees in order to detect
the presence of infection. He applied this method to weeding out all syphilitic
cases among those called for induction into the Armed Forces. Instead of testing
each blood sample individually, Dorfman proposed to pool 4 samples in a single
analysis. Presence of syphilitic antigen in the pool led to a decision to make &
individual tests; absence of such antigen in the pool led to immediate clearance of
all & inductees without tfurther testing. Dorfman was mainly concerned with
savings expected to result from application of his procedure. This depended on the
group size, k, and the prevalence rate of the disease. If the latter was known, it
was possible to choose a group size that maximised the expected savings in
testing.

On the assumption that testing is error-free, for a prevalence rate of 5 % the
optimum size of the group is 5 and the per cent expected savings is 57 %; for a
prevalence rate of | % the optimum size is |1 and the expected saving increases

to 80 %. When the prevalence rate is 30 %, however, the optimum size decreases

to 3 and the expected savings is barely 1%.
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Assumptions
1. The prevalence rate, p, is sufficiently small.
2. It is easier, or at least as economical to obtain an observation on a group as
on an individual of the group tested separately.

3. The inspection is error-free.

2.Testing Procedure
Notation

Let

p be the prevalence rate, that is the probability that a random selection

will yield an infected individual.

Then,
the probability of selecting at random an individual free from infection is
1-p. ]
Further
(1- p)k is the probability of obtaining by random selection a group of £
individuals all of whom are free from infection.
and

k
p =1-(1-p) is the probability of obtaining by random selection a group

of k individuals with at least one infected member.
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Now

£ is the number of groups of size k in a population of size f.

Thus

p'% is the expected number of infected groups of k in a population of

f with a prevalent rate of p.

The expected number of tests required by the grouping procedure would be

B[R = + K(D)p

+fp 2.1.1)

that is the number of groups plus the number of individual in the groups which
require retesting. The ratio of the number of tests required by the group technique
to the number required by the individual technique is a measure of its expected

relative cost. This is given by

ER) 1
C:___ :__f-P'
f k
k
LS (2.1.2)
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3.__Optimum _ Group _Sizes
The extent of the saving attainable by use of the group method depends on

the group size and the prevalence rate. Dorfman showed that for a prevalence rate
of 0.01, only 20% of the individual tests would be required when group tests
with groups of 11 are used. The attainable savings decreased as the prevalence
rate increased. For a prevalence rate of 0.15, 72% of the tests required by
individual testing are required when groups of size 3 are used.

The group testing technique works well where the following two conditions

are satisfied

. The prevalence rate must be sufficiently small to make worth while economics

possible;
2. When it is easier or more economical to obtain an observation on a group

<

than on the individuals of the group separately.
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2.1.1 PATEL'S GROUP TESTING PROCEDURE

1. Introduction
In 1962 Patel [6]modified Dorfman’s procedure by extending the two-stage

group screening procedure to multi-stage group screening procedure with no errors
in observation. His work was restricted to the case when all the factors were
defective with equal a-priori probabilities; / was finite and large, and none of the
factors interacted. This guaranteed that the effects were additive and there was no

chance of cancellation of effects. A factor is defined to be defective if it produces

a non-zero change in the mean response.

2. Two-stage Procedure
Let there be ‘f” factors under investigation. The ‘f’ factors are initially divided

into g, group-factors, each containing k; factors. These are referred to as first
order group-factors. Further let cach of the g first order group-factors be divided
into g2 =k; second order group-factors, each containing k; = 1 factor.
Then =y, gy The cxperiment has two stages:;

In stage one we test the first order group-factors for their effects.
while in stage two we test the second order group-factors belonging to the first

order group-factors found to be defective tor their effects.

In the tirst stage, there are Ry, =g; +1 runs. Let n) be the number of first

order group-factors found to be defective in the first stage. Then the probability

distribution of njis
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finy =(§:]pfl a-pp& (2.1.3)

k
where p; =(1-q l) is the probability that a first order group-factor is defective.

The number of runs Rz) in the second stage is njgp.

E(R(2)) =E (nig2)

=g182P
=fpi (2.1.4)

Therefore, on the average, the total number of runs R; in a two-stage group

screening experiment is

E (R2)= Ry +E(R(2))
= ]+g| +fp| (215)

3.Three-stage Group Screening Procedure

Let the f factors initially be divided into g, group-factors, each consisting of

k| factors. These are referred to as the first order group-factors. Further let each
of the g; first order group-factors be divided into g> second order group-factors,
each consisting of k; factors, which for uniformity may also be referred to as
ky = g3 third order group-factors of k3 factor each. Then f = g;g,g3 The

experiment has three stages:-



16

In stage one we test first order group-factors for their effects. In stage two we
test the second order group-factars belonging to the first order group-factors
found to be defective for their effects. In the third stage, we test the factors

which belong to the second order group-factors found to be defective for their

effects.

In the first stage, there are R(y= gi+ 1 runs. Let n; be the number of first

order group-factors found to be defective. Then the probability distribution of n; is
fi(m) =( Igll] pii(1-p)sr™ (2.1.6)
1

k . .
where p; = (1-Q ) is the probability that a first order group-factor is defective.

The number of runs Rz in the second stage is nigz with its mean value given
by

E(R¢2)) = E(mg2) =g182p1 (2.1.7)
Next, let n; be the number of second order group-factors that are found to be

defective in the second stage. Then. given n,, the distribution of n; is

{'(ngjny) = (nxllngpIle]l(l - pzll)n,gz—nz (2.1.8)
. 112

where pyj is the probability that a second order group-factor is defective, given

that it is within a first group-tactor which is defective. The probability p 2 1s

given by

P2y p2p (2.1.9)
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where p; =1- q]‘2 :

The mean value of the number of runs Re3) in the third stageis given by

ER3)=EE (m [n) g

nin2
= E (m)g2g3p2i1
n1

=g18283P1P2)1
= fpy (2.1.10)

Hence, on the average, the total number of runs, R3 in a three stage group

screening experiment is

E(R3) =Rm+ E(R(2)) + E(R3))
=g+t gig%p + i, (2.1.11)-

4.Four - Stage group-screening procedure

The experiment plan for the three-stage group screening may be extended to

four-stage group screening. Let each second order group-factor be further divided

into g; third order group-factors, each containing k3 factors or k3 = g4 fourth
order group-factors of ks=1 factor each Then, k»=k3g;. The expected number of

runs in this stage may be found as follows;



18

Let p3lz be the probability that a third order group-factor is defective, given

that it is within a second order group-factor which is defective. Also let p3|; be
the probability that a third group-factor is defective given that it is within a first

order which is defective.

Then

P3)2. p2|1 =p3]1 (2.1.12)
le.

pil2.p2/pi=p3/p
where

P3 =1—qk3 so that

’

p3l2=p3/p2 (2.1.13)
Let ni be the number of third order group-factors which are defective in the third

stage. Then given ny, the distribution of n3 is

. ! J/112 g13-nj
T Jpéié(l—psgz)“z ¥ (2.1.14)

Fhe mean value of the number of runs Ry in the fourth stage is given by
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E(Ray)=FE E (n3In2) g
nmm

=F  (n2) 83 84p3)2
m

=E E (nalngs gspsl2
n n

= 21828384P1P2]1P3]2
=fp3 (2.1.15)

Hence. on the average, the total number of runs R4 in a four stage group

screening experiment 1is

E(R4) = g1 + I+ g182p1 +g18283p2 + fp3 (2.1.16)

S5.Extension to (n+1) Stages

In the general case there are n+l stages of experimentation. The f factors are

divided into g; first order group-factors of k) factors each; each of the g first
order group-tactors is divided into g» second order group-factors of kj factors
cach.. . and each of the g aj (n—1)st order group-factors are divided into g, of
k, lactors each. Letting the kn factors be called gn+)(nt+1)st order group-factors of

ky+i- | tactor cach, it follows that.

F=g182. . o+l (2.1.17)
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The first stage consists of testing the g, first order group-factors in g;+1 runs.

The (r+1)st stage is an experiment with the (r+l)st order group-factors which

belong to the n, defective r-th order group-factors tested in nrg r+ rums, (r

1,2,...,n).
The expected number of runs for all stages is

n+l 1
ERpr1 ) =1+g1 + 3 I1 gpj-

1=2 =1

n+l
=i+ k+f Z pi-1/ki (2.1.18)
1=2

qkm

where p;i.j = I-

Assuming continuous variation. the values of k; .ki,...kn that minimise E(Rp+;) are

given by the equations

k
(‘;E(Rﬂ+l) - _L?_ _f_q_l.[ogq =0
ki ki ko

- ! k
ERgw) (P a2 g
ks k% ks

kn—
OE(Rpe1) __f_P_n_—_Z_ _fg__i_ilogq=0
————. - 7
('kn—l k'-l"l kn
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JE{R, s-l) f On-1 £ k“l
=== - 0gq =0
dkq R

Equations (2.1.14) may be approximated by using

p;=1-gi=1-(1-p)ki ~k;p
and

q¥ilogq = (1-p)*i log(1-p) ~-p.

for small p.

Equations (2.1.14 ) becomes

-{ fp _

—+—==0,

ki ko

‘fk1P+fB=o
k, k

(2.1.19)

(2.1.20)
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which readily give

1 1 1
ky ~ o7 ko e rokn T
(2.1.21)
From (2.1.16) and k| = ke g, ko =1, it follows that
g~ g~ ., g~ 1. (2.1.22)
pl/n+l pl/a+t

The values of k, and g (r=1,23,...1n) in (2.1.16) and (2.1.17) give

approximately the values that minimise E(Rn+| ). Substituting in (2.1.13) gives

Min E(Rpe; ) ~ (n+DEP™™ + 1 (2.1.23).

6.Choice of number_of stages
the expected number of runs in group-screening

w be compared with the help

The minimised value of

experiments with different number of stages can no
of formula (2.1.23). For instance

min E (Ry ) < E(Ry) = f*]
if

zfpll2 +1 < t+l

which implies that
p <025 (2.124)



Also
min E (R3) < minE (Ry)

If
32> + 1< 26p" +1

which implies that
p< (2/3)° ~0.088 (2.1.25)

Further,
minE(R4)<minE(R3 )

If
afp™® +1 < 3?7 +1

which implies that

p<(3/4)? ~ 0.032 (2.1.26)
In general

min E( Ry ) < min E (Rp-1)
It

p<(-1m™ =(1-1/m )"

~e b for n large (2.1.27)

These results indicate that a one-stage procedure is best for p <0.25, a two-stage
is best for 0088 < p < 025 and a three-stage procedure is best for

0.032 <p < 0.088.
compared with higher stage procedures. For

A one stage procedure may be

a three stage procedure
min E( R3) <t+1

If
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3623 +1 < f+l

which implies

p<(113)” ~0.19 (2.1.28)
For any n.
min E (Ry) < f+1
If
p<(1m)v ™!
~ I/n for n large (2.1.29)

A two-stage procedure may be compared with higher stage procedures. For a four-

stage procedure,

min E (R4 ) < min E (R;)
If

4fp3/4 + < prllz +l

which implies that

p < 1/16 ~ 0.0625 (2.1.30)

For an n stage procedure
MinE ( Ry ) <min E (Rz)

It
nt-pn—l/n F <2t‘p"2+l

which implies that

p< (2/n)2nln-2

~4/n* for n large (2.1.31)
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2.12 LI’S GROUP TESTING PROCEDURE
1. Introduction

Li described a statistical method for group testing designs in which a
relatively small number of critical variables or interactions must be quickly selected

from a large group. These critical variables or interactions are assumed to have

effects too large to be masked by the experimental error, or the combined effects

of the important variables.
The group of independent variables is divided into subgroups of suitable

sizes. cach of which is treated as a single combined variable. One cycle of tests
eliminates the subgroups which contain only unimportant variables. The remaining
subgroups are then redivided and tested to eliminate all except those containing

the critical variables . This process grouping and group-testing may be repeated as

often as desired . The optimum number of regroupings or test cycles for up to

1000.000 independent variables, and the best subgroup sizes for the test cycles,

have been calculated.

For certain applications, this method can reduce the number of tests

required to as mall fraction of that required with conventional or non-sequential

efficiency of this screening method partly results

( or one-cycle ) procedures. The
h cycle, to set up to the best

from the collection and use of information after eac

plans for succeeding test cycles. The conventional or one-cycle Method lacks this

‘information feedback’ feature, requires the experimenter to make a test on each

variable or interaction and does not permit him to make corrections or change

strategies as the testing proceeds.

IExamples of such application
| ldentifications of the variables responsible for an epidemic of failures in a

product which can be assembled by many different methods and processing



3.Determination by means ©

drugs or procedures is most likely to

steps, from many different combinations of components and materials

Improvement of an extremely complex product, such as an electronic system, a

missile, or a jet plane, involving thousands of dimensions i.e. lengths, widths

thickness, depths, diameters angles, curvatures tolerances, and their ratios , by

a means of say 100 tests in which 5,000 of these dimensions or ratios are

screened for the few which are highly critical.

f say, 200 tests on samples as to which of 10,000

provide a cure for specific disease.

Notations

Assumpuions

1

9

f=the number of independent variables in the group included in the
experiment,
the number of defective variables;

=
cles of tests in the experiment,;

¢ = the number of cy

= the number of subgroups in the i-th cycle of tests:

size, or the number of variables combined into each

(1§
ol

k, = the subgroup

subgroup, in the i-th cycle of tests;

umber of tests in the i-th cycle

r, = the n of tests, generally as gi's;

R. = the total number of tests in @ c-cycle experiment.

ry large number f of variables, only a small number p are

f variables has only two level
s have much greater effects than all of the defective

Qut of a ve
defective.Each of the

The j defective variable

s of conditions of testing.

variables combined.
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3. The tests are fairly reproducible, i.e. the error of experiment is small.

4. There no interactions among variables, ie. the change in response caused by a

variable going from one flevel' to another does not depend on the 'levels’ of

the other variables.

2. One-cycle Experiment

[n this type of experiment, the group of f variables is studied in a single test

cycle, one test being used for each variable, i.e.

c=1 (2.1.32)
k=1 (2.1.33)

and
Ry =ji =g =1 (2.1.34)

This design is inefficient because like the classical one-factor approach, only one

variable is varied at a time.

3. Two-cycle Experiment
group of f variables is first divided into and

In this type of experiment the
tested in g; subgroups, of size k) each. The j defective variables will show up in j
or less of the g subgroups. The second cycle of tests, therefore, has to deal with

only jk; or less variables. 1.€.

c=2 (2.1.35)
(2.1.37)



ki >ky = 1 (2.1.38)

Ri= 3 = Yg = 818 Skiﬂk, (2.1.39)
1=1 <

II'MN

1=1

To minimise Ry for the likely case where the j defective variables show up in

exactly j subgroups (since f>>kj>> j), set

dRa -f (2140)

= = —=1)

dky  k{

which implies

:
k) = (7)“2 (2.1.41)
and
d*Ra _ 26 (2.1.42)
dki kT

Theretore.
" =gz=(f])”2 (2.1.43)

and
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Ro=gi=g = ()2 +(H)"” =2(" (2.1.44)
4. c-cycle Experiment
In this general experiment
c=c (2.1.45)
f= gl_k; (2.1.46)
jki2 g2 ke (2.1.47)
jka 2 g3ks (2.1.48)
JKe-2 2 Be-1 Ke-1 (2.1.49)
Koot 2 8 (2.1.50)
kl>k2>k3...>ki>...>kc-l>kc=l (2.1.51)
R 00 LY - .= 2 (2.1.52)
RC_ZJi_ZgISE"-kZ—Fk} kc-—l
When the j defective variables show up in exactly j subgroups at every cycle, Re
has a true minimum which occurs at the following values of ki
PR Lol (2.1.53)
)

c-2Yc

kz=(§)‘
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Ke- —(i)‘“ (2.1.54)
1 = (=
)
and
1 ye-l
Rc 3 c J _ i g <(fjc-l )I/c+(fjo-l )llc +. ..+ (ﬁo- )o-
= ; <
i=1 i=1
=c( fJC'l )"° (2.1.55)
5. Best Number_of Test Cvcles
The best c for given ffj or j/f occurs when Re.1 > Re <Rewp or
RC+1 - _C;j__l-(j/f)"“‘”” > | for best € (2.1.56)
b+l = c
¢
where .
Ry -R, _ R ( ctl )(—]—)”"("*') -1
"R R, < [/
That is
(2.1.57)
f c+1 .,(c+l) for best €
c

The vaiues

calculated.

of fj or jit at which a

change 10 the best ¢ occurs, can this be
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2.2 STERRET'S GROUP_TESTING PROCEDURE AND ITS EXTENTIONS

LIntroduction
Instead of analysing each sample of a defective group, Sterret[11]in (1957)

proposed to continue making individual tests only until a defective was found. If
the proportion of defective items in the population was small it was regarded as
likely that a new subgroup, consisting of the remaining untested units, will prove

on testing, to be free of defective items. If this does happen, the work was

finished. Otherwise, individual testing was resumed until another defective item was
found where upon the remaining items were tested as a group, and so on until a

decision was reached in regard to each item. The reversion to a group test was

repeated as many times as needed.

Sterret calculated his procedure, when applied continuously ( without a

stopping rule), increased Dorfman's efficiencies on the average by ‘about 6% ' if
optimum group sizes (which were different from those in Dorfman's procedure

were used in each case).

2.Notation

The probability that a pool
the expected value of the number of analysis required

containing k samples has exactly j defective

members is given by pk ();

to isolate the j defectives is Ex (§)-
{ elements with p per cent defective, E (f, k, p) is the

Given a universe of
e number of analyses required to investigate the universe

total expected value of th

by pooling k samples at a time.



32

3.procedure
Using the definition of expectation of a random variable

f ok
E f = . .
(Ekp)= ,—Zo {Px () Ex ()} (2.2.1)
Before E (fk,p) can be evaluated it must be shown that
(2.2.2)

Ek ()= ——-k+ +1+ -’-——2
j j+1 "

When there are no defective elements in a pool one laboratory analysis will

suffice, i.e.

Ex(0)=1 from equation 222

Now

Ek (n)=1+ i’.{ 1+Ex -1 (=D} +

hn i +n-1 n .
Z [(ﬂ E~(L-£1-’2) .{(l+l)+Ek-[i+||(n—l)}]
i=1 =1 J"l) k-1
(2.2.3)
The first term on the ng,ht-haﬂd side of equation (2.2.3) represents the
the next term is the probability that the first

initial group test. The factor n/k if
~1)} is the sum of the number

( 1+ Eg-1(n
the first trial and the average number of

he remaining pool of k

sample tested is defective; the factor

of tests required to find a defective on

1) deftectives in t
t defective is

-1 members. The

tests needed to find (n-

Probability that the first i samples are no
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1
Hl [ k-G+n-H)}/[ k-G-1)]
,:
while the probability that the (i+1)st element tested is defective is n(k-i). The

number of tests required to find the first defective is (i+1) and Ekqi+1j(n-1) is

t . .
he expected number of tests required among k- [i+1 ] members.

Equation (2.2.3) reduces to the form given by equation (2.2.2) when values

of Ey(i+1j(n -1) obtained from equation (2.2.2) are properly substituted. The poof,

then, of the formula for Ek(j) follows by induction.

4.__Approximation to E(Lk
but the first few terms of E(fk,p) are

The probability connected with all

re an approximation to E (f k, p) is defined as

insignificant for small p. Thereto

B (f, k.p) = ( £ ) S (o) Ex )
=0

Where m is the smallest integer such that

m
2 px(j)>099
=0
to calculate E' (fk,p) is m+1. This is also the

The number of terms required
into which an clement must be divided by a

Minimum pumber of subdivisions
¢+ 99% per cent confident that he will know the

]
aboratory technician to be at leas
ing any element.

history of the group before exhaust
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221 STFP-WISE GROUT 2rREFNPmr METHOD

1* Introduction

In 1987 Patel and Manene [10] studied one-type stepwise group screening
designs with equal poor probability of factors to be defective and with no errors

in observation. Their approach was along Sterret’s line except that in the initial
step, the group-factors were tested in a factorial experime

. i PrS oten is to divide the factors into
In a stepwise group screening, the first step
TheSe group-factors are then tested for their

groups referred to as ‘group-fécto ) _
, mIV. are St aside. In the second step, we start

streets. Those found to be nondefective o _
. G, ,he factors within it one by one until we

with anv defective group-factor and .
Imu found to be nondefective are set

find a defective factor. The factors which are found
The remaining factors are then grouped

aside keening the defective factor sepa

P - : (09] done for all group-factors found to be
,nt0 a group-factor. This proces out jn (he first in the
defective in the first step. The steps successively until the analysis
second steps is repeated m * factor Or with a group-factor of

terminates with a test on a nonde

size one.

Expected Number

factors into ‘g’ group-factors, each

_ * we partition N
In the first step, . *is thc probability that a group-factor.

c°nsisting of ‘k’ factors (f=kg)- * P

in the first step is defective, then
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_ 4 .k
=1-q (2.2.9)
In the first step, all the ‘g’ group-factors are tested for their effects. Thus the

number of tests required in the step is given by

Ry=g+l 2.2.5)

Where the one extra run is the control run. The density function of n, the number

of defective group-factors in the initial step is,

f(ny=p(n=n)

=[§JP*“(1-p)g'“ , n1=0,1,..8

= QOtherwise
(2.2.6)
Thus
E(n)=gp*
= Tfi (1-q%) (2.2.7)

the analysis of the n group-factors found to be

In the subsequent Ssteps,
t step IS continued. Let pk ()

defective factors if it is known to

denote the probability that a

defective in the firs
group-tactor of size k contains exactly )

contain at least one defective factor Then.
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pk(j) = ( i-q) P)(1-P)k J =1 2 (22.8)

Let EMNR)? (j= 1, 2, k), be the expected number of runs required to classify

as defective or nondefctive all the factors within a group-factor of size k which is

known to be defective if it contains exactly i defective factors.

I hen
EK( Rj) = iil_i+j + i_+|_i (2.2.9)
Let Rs() denote the number of runs required to analyse a defective group-
factor. i.e. classify as defective or nondefective all the factors within a group-
factor of size k that is known to be defective. Then

E(Rs® )=y EK(Rj) PkO)
ri

. kl 1
:(1-Hl-.£y ,+ +J-I|<}(PjiquH

2.2.10)

=(]-qf)-" f(k+1)+kp-2p  {l-<lk+}]
Let Rs denote the numBgF 8rf tests required to analyse n group-factors found

to be defective in the first step. Then
(22.11)

Rs nE(Rs)
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Let R denote the total number of runs required to screen out the defective factors

from the ‘f* factors under investigation in a step-wise group screening experiment.
Then

E(R)=R; +E[R]
=R+ ERER,")]

= 2 4 f- L{1-g* 2.2.12
+fp+ == +f kp{ q} ( )

3.0Optimum Size of _the Group-factor in_the First Step

Assuming ‘p’ to be small, let

2t} t k+1
YRzE(R)=l+fp+'k_p+f—f;;“—q h (2.2.13)
Then
AVE = Vel — Yk
_H2pU =Pl gkt ”\Lf,i,:'.;] (2.2.14)

k(k + )p

The forward difference Avi changes sign just before a minimum of y , thus,

the minimum is just after the formal solution of the equation

Ay =0 (2.2.15)
Ayg =
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which implies

(2.2.16)
1 = ____kp.ﬂ.z——
(1-p)*" 1-2p+2p

2
in the above equation up to order p~ we

Expanding the L.H.S. and the R.H.S.

get

2
|+ (k+1)p + (k+1)(k*2) _,pr = (kp+1)(1+2p) +2P

. (2.2.17)
pk? - pk-2-2p=0

which implies
? (_Z )2 up to order p (2.2.18)
2

factor in the first step which minimises the
p-

S , u
which is the size of the & step-wise £rOUP screening design.
a -

- 'n
expected total number of runs 1

Rewriting E (R) in the form

.19
P,k _ k) +p° 20 2.2.19)
qu f—- I exP [
E(R)=l+fp+——l-{-+ kp kp
e obtain.
And substituting the valué of k. W (2.2.20).
+ .5_ p upto order P

MinE(R) = I+ t2p)'"?
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222 TWO-TYPE STEPWISE GROUP SCREENING DESIGN

LIntroduction

In a two-type step-wise group screening design, th
first order group-factors. The first order group-factors are
effects and classified as either defective or nondefective. Each first order group-

factor found to be defective in the initial step is further divided Into smaller

e factors are partitioned into

then tested for their

group-factors. Type one search steps aré then used to classify all the second order

group-factors as either defective or nondefective. Finally factors within the second

order within the second order group-factors found to be defective in type one
search steps are classified as defective or nondefective using type two search

steps.

He made the following assumptions; suppose that there are ‘f* factors under

investigation then: . .
ently the same prior probability, p, of being

(1) All factors have independ
defective (q=!-p)-

iti t.
(i) Defective factors have the same positive effec

(iif)  None of the factors interact.
(iv) The directions of possible effects are known.

2. The Procedure N ‘ |
Wh ing with two of search steps, we first divide the ‘f factors into
en screenin

ch of size ki (f=ky g1 ). In the initial step the first
s ca

0 sroup-factor
8) first order group Those that are found to be

d for their effects.
te. Each defective first

order group-factors are (este
e g the detective ones separa

nondefective are set aside. keepin

. d order group-factors each containing
. L to £2 secon
or is divided 1

order group-fact
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k, fetors (k,-k, Mo tl» fit. 1 tta W» o " ¥

dafactiv. firs, order group-facW. »a tha sa.o.d orda, gr.up-facr.
e e 0 ti, we dand a defective second order group-factor. The
within " it one by one till we nnu

i [ ic kpnt separate. In the second of the type one
defective second order group-facto P

. c"nn% order roug—factors in a pooled group,
search steps, we test the remaining second order

_Jo] tnp test procedure is terminated. Otherwise in

If the pooled group test is negative, the test pro
_ rh steDS we continue testing the remaining second
the third ot the type one sear P

hv one till another defective second order group-factor is
order group-tactors ono by one _
Thp second and the third of the type one search

found. This is also kept separate. . ] ] ]
i till the analysis terminates with a test on a

steps are repeated successivey A a single second order group-factor.
nondefective pooled group-factor or ) factors found to

P grotp ” , , r all the n, first order group-factors found to
This test procedure is performe

be defective in the initial step. be defective at the end
. ,»rHer group-factors are

Suppose n2 second teps the defective factors

In the type two searci, v
of the type one search steps. isolate defective second order

: . . | nmredure as was use
are isolated in a similar p

group-factors in the type one search steps.

i expected n"»nbef gL-ffl - p js defective. Suppose pi* is
‘P” be the a-pnori Proba 11y defective and p2* is the probability

ability thet a firsi

;cond order group-factor E g{ggtive.
(2.2.21)
i_qki
(2.2.22)
k2
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In the initial step we test all the g first order group-factors for their effects in

an experiment. The number of runs required is
Ri=gi+l (2.2.23)
Let n; be the number of first order group-factors found to defective in the initial

step. Then the probability function of nj is

f(n; ) = prob (N =ni )

- | B p'"‘(l—p"l)grn1 n =0.1,...81 (2.2.24)
nl t
Thus
E(n)=gip*
2.2.25)
=2 (1-q"1)
kl( q

at a second order group-factor is defective

Denote by p*:|i1 the probability th

ive fi -factor. Then
given that it is within a defective first order group

! (2.2.26)
P*.,Il = !L—g-
b pi'l |
f second order group-factor found to be defective at the
of s

If ny is the number | o
. en the probability function of n for given nj

end of tvpe one search steps. th
IS
5 np = 0, L,...m&2 (2.2.27)

[(ny n) = prob(M2=Mm lm=m)

i (2.2.28)

[z (ny lnu)=nugzp*2|l



Therefore

E(m)=EE (m[n)

nin2

I

g p2hi*E(m)

=gaph*;?*

- (149 (2.2.29)
ks

Let p,, (ji ) be the probability that a defective first order group-factor
g2

contains exactly j; defective second order group-factors and py,( J2) the

probability that a defective second order group-factor contains exactly j» defective

ﬁlClOI'S. Thcn.
2 ; g - 1 = ;
1~:‘ J 1;4:!1(] p.kz)‘sZ 1 N 0,1,..£

(2.2.30)
and
k2 k2 =0, 1.k
N 1~ ) = _t]\':_’, -1 plz(l-—(]) - J2 s 1o >
Pk, (J2)=11-4 ) [i-’J
(2.2.31)

D | (R, ) the expected qumber of runs require to classify as
cnote hv 1, (Ry '

order group-factors within a defective first

ecti ecti second
detective or nondetective all the se

f it contains exactly )i
the expected number of run

defective second order group-factors.

order :roup-tactor 1

Further let 1, (Rj, ) denote

s required to classify as
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defective or nondefective all the factors within a defective second order group-

factor i€ it containe exactly jp defective factors. Then,

2j1
E.. (R ngz +i,+ A (2.2.32)
and
kp 4y + 2 21 (2.2.33)

Ey, (R. )= 252 2.
2( ]2) ]2+1 2 )2+1 kz

if R® genotes the number of runs required to classify as defective or
t
ithin a first order group-factor

nondefective all the g2 second order group-factors Wi

which is known to be defective, then

E(RY 1 )= zEgl(RmPg,z(n)

n=l1
= kl)" gvz 111(g2+1) ‘f‘jl(l-——');( ) nn(l p* )gz i
i= o i+l g2 \J!
& +1) .
Ky - ¥ -_(,g_gff—-i" l—-—-)lx
—*(l-q')']f; (gD 77 ji (- 2

[gZJpz*l (1- p2 #)8,7,

H
*8, o

8, yr(g2—2)P2 *{1-q2

]k' )"[(gz +D(1-42

(ngrI)PZ”‘“zw:}l (1 (el
(l-q"‘>"[(gz+l>+gzP2*‘2‘” el

(2.2.34)
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where q;* = 1- p2*
sify as defective or nondefective

Let Rt1be the number of runs required to clas
defective first order group-

all the n; g, second order group-factors within the m

factors. Then,
Ry, = n E®R’t1)
+1
(1-*% )] (2239

1
= st -2mt - T
— [(g+DteP2 o

Denote by R°  the qumber of runs required to classify as defective or
t2

within a defective second order group-factor. Then,

nondefective all the k2 factors

k .
E(R?Z ) = Y rky (Riz )PaJ2)

j2=l
] ky -2
g2y T AT +H2 (10 P (
J2
Ll (2.2.36)

Ky - _2p-
= (1q" ) [ +1HR2P P

where q=1-P- i i
q g defective or nondefective

mber of runs required to classify 2

Let Ry, be the nu
group-factors found to be defective

rder
all the nykj, factors within the m second O
at the end of type one search steps: Then.
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Rt, = n2E(R® t2)

(2.2.37)
= "2 [(k2+1) +Kk2p-2p - 2(l-q )]
I- gKi
: , nins required to screen out all the
If R d«,0««S the « .| - . A . . WeE

defective factors from among the

stepwise group-screening design then.

R~Ri+ + Rt2

. K, -1, . ck' +k2)
=1+f+ ip+9a - d-fFa (1
Ki k! k + k
k2 -J1-<1g (2.2.38)

t r -ig_ - H
k2 k2 k2 feP



1- Screenine Procedure _ , o :
ro.in-factors are tested for their effects and

In the initial step, first order g P
. ,h( tvDe one search steps, all second

classified as defective or nondefect,ve. A group. factors are tested using
order group-factors within the de ect.ve® AN nondefective. The type two
the step-wise technique and class, « * A defective or nondefect,ve all the
search steps are used to sort out an A m way so that in type
thud order group-factors. The process A A defectjve (r-i)-th order
r~ 1 search steps, all r-th order group a detectjve or nondefective using the
group-factors are sorted out and classified 7 N search stepS all factors
step-wise group screening technique. Final y QX and classified as
w'thin the defective r-th order group screening technique.

i, Sten-wise group
defective or nondefective also using

expected nuinber_o£Jg™ defective and ps* be the

) ~hilitv that a factor
p be the prior probability
n factor is defective. Then
that an s-th order group-tacto

(2.2.39)
Ps* =1 - (S22 group-factors for their effects in
 initial step we tgsst all the gi tirst °r 6
Timent in
R, -* fo»»d h’

f first order “r°up,

is the number ot Js

:ep, then the probability lunct
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f(ni) = p (n\= n)

Wl tip , *xgl-nl (ni =0, 1, eeeqi

(2.2.40)

Thus

E(ni) =gipi
(2.2.41)

1400

, , f- 1) be ~ probabililies
“et P*s+l/s (S - |, 2, s> Hofective s-th order group-factor.
is within a detecuv

5Mup-tactor is defective given t

Then
* p*s + 1
P st- j/s = -—-—-- -
P's (2.2.42)
ks (s 1,2,3,-’r-D
ks
- q order group-factors found to be
of <s+l
Oppose nstl is the number ) )
given ns 1S
ot O0s+l b
Jell-'‘ctive, then the probability tun
./ ns = ns)

n.s+
f(ns+,/ns) = P<Ss+l
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TR | * Hs+ls 3+ nsSs+I~As+|
ai| P SHls (1-P s+l/s )
(s=12 r-l) (2.2.43)

NUIS
Os-H) = EE (ns+i/ns)

=gstIP*s+l/s E "s)

I ks+l (2.2.44)
(1-q**'f
AV

be the probability that an s-th order
(j) (s=12,...r-D and /j,(s1

. . . TrouD-factors and a
rouP-iactor contatns exactly js defective (*+m>e* order group

) ~exactly jr defective factors respectively.
tive r-th order group-factor contains

fhen
gs+1-Js
ks.J& +1jp*s+I38(1-pV 1>
PSs+1(Js> = ( 1-q"V | P
o= 12— Ss#!

( 2.2.45)
o .r-1
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and

. o (2.2.46)
[y i(I\/Ir ndF(i-p)krtr' =, 2 ,kr.
\V(j) =(C"-d > tjP (

d number Of tests required to classify as

Let ESsHI(RIs) den°te the eXPeCt6d m-oup-factors within a defective s-th

defective or nondefective all (*+1Hh “ " £ (R ) denote the expected
2 r_i).Further let krv J

order group-factors (s - defective all the kr factors

, fi, as defective or non
number of tests required to c assi

. . ,JouD-l'actors r*
within a defective r-th order =

9 (2.2.47)
. , 5 _ 0s=12’- "Ss+1)
~®+1 ., 3 [
+1 s =
q (2.2.48)
an 1.2,...kr A
-T kK itV fecti
r Pd o c&cﬁf}Y as defective or
. fPcts  require0
n : n°® the number ot order grOup-tactor
Denote by Rt/ he factors ~ Ithin
nri order *
ndefective al the g2 secO
active. Then
ich is known to be
J1eey
& p (1-P2%)

) * | -cki
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*82+1
. ,-L(l-q2 )|
= (I-qk'rI[(g2+)+g2p2*-2P2*" , *

(2.2.49)
where g2*“ 1 P2

classify as defective or nondefective
Let r be the number of tests rccjuir

factors Within the D, first order group-factors
all the n]g2 second order group

found to be defective. Then

V (gv N

x gn*-t(m2*2 ¥
M D+g2P2 "zp2 p2 *

(2.2.50)

I-qkl
ired to classify as defective or
In general if is the number of — A
v within an s-th order group-
factors
. ,,W h order group
n°ndefective all the gs+I*s
sactor which is known to be detective.
tfvH i
E(7°) = X Egs+I(Ris)pss+ (Js)
>i=i rg* +|N
A %
9"} iiP +is(mgs”y p

gs+1 -Js
<Ps+IMfis+I
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1 * ogstl+1l

= (1-gks)™ [(gst1) +gs+IP*stl-2prssl- x4, (17O7S* )

(2.2.51)
where g*s+l ~ P

required to classify as defective or

Let be the number of tests
: s-th order
_ _(s+|)th order group factors with the ns
nondefective all the nsgs+i
&roup-factors found to be defective.
Rts = ns E(K° )
gs+i + D]
(1-g*s+i
—— f(gs+i +1) + Bs+p*s+l '2PVI> * ' +'
1-
(2.2.52)

classify as defective or

numbsf of tests required 10

Lastly let R° be the -factor found to be

r-th order group

within @
n°ndefective all the kr factors

defliactive.Then

ER® )= £ Ekr(Kj/ti)0")

/r=\
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. Hal jr kr-jr
kr  jrkr . Jr qr Y
I ! r+Jr+ TT+r  kr 1-gkr V)
ir=l )r+l r
1 kr+1

=@ -qkrr" [(kr+]) +krP '2p" P M

(2.2.52)
where ¢ 1 P

) classify as defective or
required to fy

the number of tests
Let RE be
r r.th order group-factors found to

within the nr

n°ndefecnve all the nrkr tactorS
then
r subsequent steps,

defective at the end ot the tyPe

Ktr =nr E(R‘r )

2.2.53
1 kr +1 ( )

(I-d
[(kr+ D+kP 2p p

1-Ukr factors in an r-type

aU the defective

isolate
kc total number of tests requir
. . . IS given
eP~wise group screening design, (2.2.54)
+ Rtr e

R=Ri + 2
=1
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T. : - tests required in a r-type stepwise group
Therefore the expected total number o

screening design is

. (2.2.55)
r'_
e(R)=(R,)+ X E(Rt )+ E(Rtr)
s-1
Now
1 * Ksti + 17}
* . _i—(i-q s+i n
i *c-4-]—2p S+1 p~S+1

E(Rs )= r-Kgs+i + i) + bs+i p*st+'

(2.2.56)
And

(2.2.57)

I (icgkr+ 1Y
R -L(i-q
r-|/(krH) mkrp- 2p -
") Kr r
rilereibre kr +1
EK) -, SR VA
fp+r -k ; +
: , ks+ks+K,
r-1 i ke N e kf
. I ks+l

(2.2.58)
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TESTING. £BQEEDIfFIE
HWANFi’'S GRO U LT 5 NCEBQEEDIH

. _ j .re which assumed the
Introduction screening procedure

,n ,972 Hwang number of

«*
owiedge of an upper houn~n A suggest” A proposed
us procedure ts twm A by making paired when . js known
' ; two disjoint or ere A maximUm number o A u>s
was designed to re uc A method compare ~ known,

the upper bound is n A of j (not necessa AN method, we

ad. When the probability d.stn » AN fupper boun” all the

if any chosen number m, with at least Qf tests.

compute the probability 1a ”~ ~  a specified num

stives will identities in n

P We call the

f <kHxKke A

t m be the given Up, & uroup testing t0

bonding problem ot uSl

spulation, the (m,Q Prot) *

lenwui
i’ del«**. [1¥1]

. ‘mh
group ot size ad -, @

1/ tests-
zroup by at most w

0 [ 2
a is trivially true lor a " inductton-

n thr otiCt
)ve the lemma
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Theorem

@ R(m,f)=f for f<2m- 2
m +2 n+0, and n,

) R(mf=(a+2)m+n-1for f 22m- U where
n<m, 0<2a (! and

9 are uniquely determined nonnegative integers satisfying

°t are defined in step !)e

<N o (P
Because of the first statemeanm "B necessarily F—fr’nnﬂ and

) in this case o is
for 2m - 1 <f<3m - 2 since

k(m,f) =2m + n- 1=f which checks. _f We prove

on f For f= > *e need °ne

d)=(a+2) -1=a+ 1=[log2fl+* .

o r < xby induction , =i Is an upper
‘re|x]denotes the largest integer - s defective (m

. P member f> 1. Take a

t0 ascertain whether *  * + ., f) ,oh» «e *

then tl» “« ue

H. Hence R( I.l) - | I°S "I*
if not, we are

... this -roup IS de
ot 2U members to test. 10 the ¢ .
re tests according and {,0020] <a

er will be found by a more log20]+1by ,nd
*fh the (1,0) problem. But m(
ice

RH,f)= max[l+a,l+«10)]" I+<X
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,M bv induction of m+n. For the
For m>2 and f>3m-Il. we prove n where
e Nr A

general (m,n) case, assume {Hat (b) 1S tru

f. according to step 1 of tne n.gorit = ,
a)l+a +R(m-U-n]-
R(m,n) = max[I+R(nU-2

?a
For m"=m and t - f"~

A=f'-m+1l =n-2 -rn+1
L-2a for n21,9<2
ram+2W(n-1) +0 forn=0,0<2*"
2a-.m+2w-"(m-2) +0 al
for n=0, 02 2
m+2a'(ni'll+(0
llence by induction. 0<2~6l
for U
a-1
-1) n=0 0<2
(a +2 )m + (n for '
02 2271
-2 n”~o,
Rik, f-2a) ={(a+0m+"m ) for
-1
Na+l )m+/~m
Ind 0 <o%!
for n=0’
otherW'se
m, f- 2a ) =f( & f 2)M+n
+n
+
i(a T
‘or =
1~m-1 and t -1 1°
Am
for
t-f.m | = f-m+l
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for n=m- 2
:Za+‘(m- 1)+9

for n=m- 1

=Z2a+‘(m- 1)+ (2a+6)

Hence by induction

for n<m- 3
R(m-1,f- i) =¢a+2)(m- 1)+(n+ 1 for m-2<n<m-|

(a+3)(m-1-1

And
7 forn-m 1
1+a R(m- I, f- 1 :f(aTZ)m a otherwise
(a +2m £n
twallv exclusive.

But lor m~2, p«<0 and n-m 1arem
fAnce
|,f- DL

Rfml—rﬁrmax[i»R(m, g0\ | i-aW i

- («+2m+n’

AenOc the proof
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3.When the Probability Distribution of | j§

Let F(j) be the probablllty distnbution o¥ H
..... a  We can flnd a number m@3 such that
the population. Given a probablllty level [3 we

8 number of defective members in

F(mp)>p can be chosen as close to one as

When use ,hi. »PP« "»«> N “ hed ”
in Hetectins all defectives in the population by
see that the probability of success

R(mp,f) tests is bounded below by PyHgsWever, if the number of defectives
,» then we know with full confidence that all the
actually detected is less than m ~ A may apply the method again with a

defectives have been detecte . A an N undetected defective members

suitable choice of m' as the upper number of defective members
¢ some stage
and repeat the same unt <

identified is less than the specihed uppe
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CHAPTER 3

3J Introduction more efficie,,t than another if the expected

We shall say that a des.g of equal t0 that in the latter
number of tests in the former des.g «  for at least one
« P (P<P<1): T 1 1 1 to be defective,
value of ‘p’ (the a-pnori probabi it?/ . Dans which minimize the
) ) _ or oroup screeni y
*n this section, numerical va ues

r ¢ etc are given. The values )
expected total number of tests - NN classes of design. We shall use

A ancg min E(R)

Have been obtained using comput' _ comparison.
, tpsts as the basis u
the minimum expected num er AN namely
We shall have two types of comparisons A not assume a binomial

(") Comparison of group screen,ng P ese include Hwang s group

distribution for the number oi deteCtlVC d In this type of compar.son,
) ., -roup testing met
testing procedure and > ° n
the number of defective factors « *,v* ' which assume a binomial
r? . , ccreening Proce -nrlude Dorfman’s procedure,
2) (omparison ot group - ) These inC ) i
. of defectives- greening designs and

distribution for the num ctep-wise £roUp
VIuUi-»age yrouo screening *»**“ defeeiiee ® * -

Stetrett's "procedure. When « *e Fyn oA

Hwang 's procedure could
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12 COMPARISON OF HWANG’S GROUP SCREENING PROCEDURE WITH

BPRFMAN’S GROUP SCREENING DESIGN AND ITS EXTENSIONS

In this section, we give comparisons of Hwang’s group testing procedure

with Dorfman’s group screening design and its extensions by Patel (1962). For this
type of comparison, we assume that the probability distnbution of j, the number

of defectives, is binomial with parameters (f, p), where p is the probability ot

any one factor being defective.
For Dorfman’s method, let k be the fixed group size. then the number  of

tests needed is
(3.2.1)
R= T + Pf
probability of obtaining by random
(assuming k- divides 1), where p defective member. The number of
Section a group of k with at least one
with parameters (f/ k, 1- ( 1- p)*

defective groups has a binomial distribution

Henee the mm,mum expected number of tests
(3.2.2)
mnER) =1 + f[1-(1-p) 1
is easily seen that the
ER). X y
Fhe optimal Kk, is determined by minm
°Ptimai k depends on p only, but not t " equation

por the Hwang’s method, we

below for the expected

Uriber of runs
- N (3.2.3)
E(R) =p\ for f - 2j"" for £2 2j-1-
[( a+2)j+n-1
of various orders and their

ber of group'faCtors °*

atel’s method, the num . S below,
thp equations

n be worked out from
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L T T N 529
" (3.2.5)
-t g ey T 7+
These two equations gige approximately .1« * e ERR" )
Substituting in the equation
(3.2.6)

n+l

, . 0 ( n_th order group-factor is
- K- s the probability that 0
where pj_j=(-q )

defective,

get (3.2.7)

n/ntl +

MIinEOVi) = (n+,) tp
have
Watson (1961). we

Us'n« the formula for E(R) Siven by

(3.2.8)
K,
=1+ i-+f(i-9 >
ER) for E(R) Siven by Patel
Kl *n ind the formula

,0r two-s,age group screening <&'»

AMG2) as Ki (3.2.9)
k) +f(l-qg >
E(R) = |+i_ A
i :
design and i (3.2.10)
r a three-stage group screenm_ k2 )+ f(I-tl
(1-4

e<R)= i+ 2_+ i-( 1-<l§|> * K}
Ki Ki
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for a four-stage group screening design where kjis the size of the group-factors

in the i-th stage (i= 1,2,3).
For the Li’s group testing method, if in group of experiment the proportion

of defective factors is estimated as j/f, the total number of tests to screen out j

defective factors out of f variables in ¢ cycles is constant: regardless of the
n%o which the f factors are divided and also
number of groups or experlments IN0 wmcén me
o thtk efective factors among the different groups
regardless of the distribution o{‘ thej getectlve g group
mh/.r of tests required to screen out j defective
or experiments. The total number

factors out of f factors in c test cycles, is given by

c-l.l/c (32.11)
Be=c(fit )
I the best value of c.
1 thls comparison we ~ performance of Hwang’s group testing
Table | demonstrates the rea Patei’s  group screening

screening  meinuu
* nroCedure has fewer number

Hwang’s group testing P

ocedure, Dorfman’s. groulp
i “Ivhle ) .
A Hwang’s procedure is also superior

signs. As shown in the tao

tests than Dorfman’s procedure or p same value of p. This is because
design, for tne
as (he twO0 stage group

m two-stage group screening -
dure is virtually

Oman’s group screening PIOC A three-stage group screening design has
eenmg design . The table also shows” ~ design for p<0.11 but has

ver number of tests than two jesting procedure for p <0.11. Four-

re number of tests than Hwang s - rOUp ,han the jhree-stage group
fpwer numnel
ge group screening design has number of ,ests than Hwang’s group

) ) s n 035 but has 1110
-ening design for p- e
mg procedure. testing procedure requtres fewer number

It follows then, that Hwang’s ffo multjstage grOup screening designs,
tests than Dorfman’s procedure

small values of p
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n of Hwang’s procedure with Li’s
Table 11l shows the relattve performance
Ic ceen that Hwang’s group testing

method for f= 1000. From the tabie
,  nf fests Hss group testing method for any number of

procedure has (ewer number of te
superrority of Hwang’s Procedure over Li
defective factors.This shows the supen vy

meth°d" . e that three- cycle de5|gn has fewer number
From table IV we have that ~ ~ A fou, cycle design has

than two-cycle design forp< A A N p<a35.THs s

fewer number ot tests than tnr y _ lower cycies of Li’s method.
~preening design ove
superiority of four-cycle group m urn expected number of tests in s-stage

From table I and IV , c-cycle designs (¢ =2,3,4).

(.-2.3.4, -d
From the table we have the follow ¢ screening design and two-cycle

0] For 0.001 2P* 0006 W - " TwoO-stage design has fewer number of
design have equal number of tests. *w * design has more

tests than two-cycle design lor P 07 The two-stage design
design ioi f
number of tests than thrce-c Q3

lir stage design for P
has more tests than four- -stag

design has fewer number of tests than

") Ihe three-stage group screen g fr p<0.3.

two-cycle, three-cycle and *
 .Iso has fewer number ot tests t an
j design ab
iI'f  The four-stage group scree designs for P - °'3'

two-cycle, three-cycle and f° ,
reer number of tests than c cycle

.a,,e design requires N~ The three-stage and tour-

In conclusion, two- qol M P

. /css 2.3.4) lor
‘rouD screening method A teSts than ¢ »

screeni.ng mg{ngg

tage designs have fewer nurTl

2,3,4) for p”0.3.
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COMPARISON OF HWANG'S GROUP TESTING PROCEDURE wtth
SIERRETTS GRoOUP SCREENING DESIGN AND ITS EXTENSIONS
*n this section, we compare Hwang's group testing procedure with Sterrett's

kroup screening design and its extensions by Patel and Manene(1987) in one-type
step-wise group Sscreening design and Manene (1987).

For Sterrett’s group screening procedure, the expected number of tests is
&lven by

ER)=r Z (Pk(j)Ek(j)}, (3-3-)
Kk j=0

where Ek (j) is defined by equation (2.2.2). Pfc(  is the probability that a pool

of k samples has exactly j defective factors which is given by

k-J i =
PUT)=( 1-qV " (K SRR 52

. I design the expected total number of runs is
fa)r (he one-type group screening
Klven by

?fn f k+lj (3.3.3)
bYR) = 1+fp + rz£a+f-k—IO Q-q

f. . number of tests is given by
r°r small values of ‘p’. the expected tota

? k k 3

e minimum expected total num er o

EfR) - ,+ 3fp f f _ 2fp + ftp uptofrder p

tl tpQts is given by

VnER) =,ft'(2p)u~ = JjI'P LP10 °rder P
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design, Rotich (1988) obtained the
For the two-type step-wise group screening

expression for the expected number of runs as

ER)= 1+f+ fo+2fgc m 97910 -0 ¥

kKl i k' ki k2+i, (3.3.6)

k2 k2 k2 k2P

. gesign he obtained the expected
screening des

For the three-type step-wise group

number ot' runs as k>+k2)

k2 7
2fgk2 j (1-g ") (14
ER) i+f+fp+~7T~" K

k k2+~ |
2fgkj JL (I-q 3> (1
fI fgk? . OKJ_ _ ” (1-q (1'q
M k? k' (3.3.7)
f k+11
£ 2fq fgk3 . J_(I-q
k% k3 TT k3P cted number of runs as

e obtained the expe
In general, lor the r-type

f kr+U

f 2fq _ _L< i--(
FR) /m/ . Po— - kr  krP

F o\ o ks+ks+i,,
, ksti )

+fSi[m A M
(3.3.8)
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.. Hwane’s group EB?HHS F._lrocedure has tewer

Table Il and table Il show tha procedure,one-type step-wise
_ Oft’s iiroup screening r

number of tests than the terr 008 p<0.09 ~ P<008 respectively,

and two-type step-wise procedures P tEsting procedure has tewer tests

From the table Il we see that, Hwang s p <0.05 and p<0.01

rrmno screening aesig*
than three-type and four-type b

respectively. . 0 much difference between
As shown in the tables, there « AN expected number of tests
procedure one-type step-wise design m has fewer tests than one-type
required for al p. The two-type step- J4 and p< 0.11 respectively.
) ) , C.errett’s procedure ) ) have equal number
step-wise design and S step-wise desig
np type and two-t the one-type,
For 0.14 < p < 0.3 the ong-tyge P number ot tests tnan yp
me design has r n<0.05 For 0.05<p "
of tests. Three-type step tt> procedure ° P
iwo-.ype "
» B < — ~ -~ ro: “ - » - rr z — -
wise design but equal num step-se deSb than One-type.
0.3, one-type, two-type requ)res fewer number
tests. Four-type ~ s e dcSlgns for P procedure require fev
two-type and three-type A Hwang.s group”™ A~ A p. Four-type
In conclusion, it ° and jts extensions one.type step-wise group

tests than Sterrett’s ProCC thrce-tyPc' tWO type
step-wise design incorpo

screening designs.
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PROCEPURE-

The minimum expected num er o , nu

with the minimum expeciey
could also be compared w.tn P designs

stage, three-stage and four-stage group screen

ANP-1IS extensions

Of step-wise designs
mber of tests in a two-

and in general In an s.

stage group screening design (s A inferences:
From table I, 1l a"d IIff W® Dorfman’s but not much tor all p.
(i Sterrett’s results are a little bett requires fewer number ot tejsts
) One-type stepwise group — "»* for p, 03.For 0.035, p, 0.3,
than the corresponding two-stag than the three-stage and the

wise design requires fewer
one-type step-w

four-stage group °»
i) The two-type step-wise desig for p <0.3.
mrd for,,-»e*« «»» * """ ! IW» - «  — *

, n wise design also has
) rhrce-typc step

,I 0<0.3. £ .0 than two-stage, three-
and four-stage }c r 8 number of te&% W g
ripsiizn has
" rOUr-IVPe StCPTage designs lor fcwer tcsts than the s-stage
~ NN ype - - dCSgn G : te as two-type, three-type
m conclusion, oncw A 003 <pP*Fr A A group screening
up screening desig 1c fewer te
* « hesighS IC
| four-type step-wis
ns (s=2,3,4) for P-" ,h, follPwinB
gns ( ) v we RVE
m tables II, Tl and
mbe, ,, f...» M
method 1,aS A

Li’s group testing

for ps 002.
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(1) The one-typeStep-wise design requires fewer tests than two-cycie des
P S 0.3. For P < 0.5 one-type step-wise design has more tests than three-

cycle design. For p < 0.2 one-type stepwise design requires more number
of tests than four-cycle design.

(J) The two-type step-wise design has fewer Number of tests than the two-
cycle,

three-cycle and four cycle group screening methods for p < 0.3

fv) The three-type step-wise design also has fewer number of tests than two-

cyclcthree-cycle and four-cycie group screening methods for p < 0.3.

(v) The four-type step-wise design requires fewer tests than the two-cycle,
three-cycle and four cycle designs for p <0.3.

In conclusion therefore, We note that the one-type Step-wise design requires

lewer tests than the c-cycle group screening method (c =2,3,4) for 0.2 < p < 0.3.

The two-type, three-type and four-type step-wise designs require fewer tests than

c~cycle group screening method (c -2,3,4) for p - 0.3).
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Relative perform

ance of Hwang’s Pr
for £=1000 and spec

—
Hwang's | Onetype Two-lype
Design Step-wise Step-wise
Design Design
L R e P R
0.001 1 1 10 S Ta |1 | B
0.603 | 3 30 e |81 |8 |°®
0.005 | 5 46 21 | 106 {56 |7
0007 | 7 65 7 |27 [ |7
00 |0 | w4 s (s |37 | ¢
002 }20 | 148 nola |24 |3
003 |30 | 224 o |27a |17 |
004 |40 | 259 g |320 [15 |4
0.05 50 298 7 361 12 3
006 | on | 341 o | 398 |10 |3
007 |70 | 398 6 |43 (2 3
g:)(a g0 | ass s | 465 |9 3
o l“ 90 517 5 495 |8 ;
o 60 | 574 < |s24 |7
o1 ] 1o | oos 3 ss2 |7 ;
U~24 140 | 671 4 625 |4
0'35 250 | 919 3 840
. 304) 1139 2 906 A
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Table II

ocedure with Step-wise procedure

ified values of p and j.

Threetype
Step-wise
Design
__,-1_—-7

k1 k2
299 | 45
131 | 26
92 18
69 17
58 15
31 9
23 8
18 7
12 5

uuuu&&“u\.\r \
w

Four-type

Step-wise

Design
ER |k |k |k [k [E®
17 237 |96 |21 |5 16
40 182 [49 |13 | 4 38
59 121 36 |11 |3 57
76 92 30 |10 |3 74
100 | 69 24 | 8 3 98
167
225
277
325
JE—
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Table III

Relative performance of Hwang’s, Dorfinan’s, Sterrett’s and Li’sprocedure for
£=1000 and specified values of p and

Hwang’s Dorfman’s Sterrett’s Li’s

Procedure | procedure procedure Method
J P E(R) k E(R)

k E(R) ER) (for_best C)
i 0.001 10 32 63 47 40 19
3 0.003 | 30 19 89 30 80 47
5 0.005 | 46 15 125 22 100 72
7 0.007 | 65 14 165 20 120 94
10 0.01 84 I 196 16 140 125
20 0.02 148 8 274 11 220 212
30 0.03 224 6 334 9 270 288
40 0.04 259 6 384 8 320 351
50 0.05 298 5 4206 7 350 307
60 0.06 341 5 4606 7 390 460
70 0.07 398 4 502 6 420 510
g0 | 008 | 455 4 534 6 450 557
90 |o009 [ 517 4 564 5 480 600
100 |01 574 4 594 5 510 632
(o |oar | 603 4 623 4 540 663
40 o014 | 671 3 097 |4 610 | 748
250 (025 Y 19 3 912 3 840 1000
s00 | 030 | 1139 L_z______l_‘)_"ﬂ 2 900
___,____—4\____,_————“



73

Table IV

Relative performance of the C-c cle grou i _
specified values of j. ycle group screening method for £=1000 and

J Two-cycle Three-cycle | Four-cycle
t 63 30 23
2 89 48 38
3 110 62 51
4 127 76 64
5 141 88 75
6 155 99 86
7 167 110 97
8 179 120 107
10 200 139 127
20 283 221 213
30 346 290 288
35 374 321 324
10 400 351

50 147 407

60 490 460

70 529 510

80 566 557

90 600 602

100 | 633

10 | 663

140 | 748

250 M_,_,—_._-—’——/“J
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CONCLUDING REMARKS
In this project, various group screening designs have been described. We have
restricted ourselves to Dorfman’s procedure and its extensions, Sterrett’s procedure

and its extensions and Hwang’s procedure. The group screening designs then have

been compared. We have shown that Hwang’s method is more superior than

procedure for p <0.25. It is also superior than two-stage, three-stane
p<025, p<01ll and p<0.04

group screening  desiun

Dorfman’s
and four-stage group screening designs
respectively. We have also shown that four-stage
incorporates three-stage and two-stage group screening designs. From table, (II) it

is shown that Hwang’s procedure requires fewer tests than Li’s group testing
rates. From table (I) and table (IV) we have

lor

method for all the prevalence
concluded that two-stage design requires fewer number of tests than the c-cycle

design (c - 2,3,4) for 0.07 <pL 0.3. The three-stage and four-stage designs have

fewer number of tests than the e-cvcle design (c -2,3,4) for pi 03
Prom table (1), we have deduced (hat, Hwang’s group testing method requires

fewer tests than Sterrett’s procedure, one-type, two-type, three-type and four-type
stepwise group screening designs lor p<0.08. p- 0.09. p<0.08. p<0.05 and
0 o 2espectively lour-tvpe step-wise design incorporates three-type, two-type
and one-tvpe step-wise group screening designs

110111 table (1) and (able I1I), we have shown that one-tvpe step-wise group
screen,im design requires fewer tests than the corresponding two-stage group
sereeniim design, for all the prevalence rates of defective members Similarly two-

type. three-tvpe and four-type step-wise group screening designs require fewer

tests than their corresponding three-stage and four-stage group screening designs

lor all prevalence rates of defective members.
: le till) and table (IV) we have that Li’s group testin
From table (Uk taE)E ) V) group g

. - .« k than Stcrrett s procedure for p- 002. Also we have shown
method lias lower tests
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That the one-type step-wise design requires fewer tests than the C-cycle design
(c=2,3,4) for 0.2 <p<03. Two-type, three-type, four-type step-wise group

screening designs have fewer tests than the c-cycle design (c=2,3,4) for

P<0.3.
Group screening designs can be used in industries in sorting out defective

items from non-defective ones with substantial savings in costs of inspection and

time. For example in a chemical industry, the designs have been used to select

the best catalyst for a chemical reaction from a large number of compounds

which are possible candidates.
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