RADIATION SKIN DOSES TO PATIENTS UNDERGOING ABDOMINAL COMPUTED TOMOGRAPHIC EXAMINATIONS

BY

DR. UMARA PETER MARENYA (M.B.CH.B)

MEDICAL LIRRARY

THIS DISSERTATION IS SUBMITTED IN PART FULFILMENT FOR THE DEGREE OF MEDICINE IN DIAGNOSTIC RADIOLOGY OF THE UNIVERSITY OF NAIROBI

DECLARATION

This dissertation is my original work and has not been presented at any other university for similar or any other degree award.

Signed:

DR. PETER UMARA MARENYA

This dissertation has been submitted for examination with our approval as university supervisors.

Signed:

PROF. N.M. TOLE BSc. (Hons). MSc, PhD (Nairobi)

Professor of Physics Department of Diagnostic Radiology College of Health Science University of Nairobi.

Signed Malin

DR JOHN A. DE SOUSA MBCHB (Dublin), M. Med (Nairobi) Consultant Radiologist Medical Imaging and Therapeutic Center Nairobi Kenya

DEDICATION

This work is dedicated to my son Andrew who was born just after I finished part one of my Master's degree course and to my sister Josephine and brother Protas who died almost at the same time in 1999.

ACKNOWLEDGMENTS

Special thanks go to my supervisors Prof. Tole and Dr. De Sousa for their input into this project in terms of guidance and enrichment of the literature content.

They were very tolerant and I gained a lot by working closely with them.

Thanks to the administration and entire staff of MITC for making my study possible.

Special thanks go to Senior Radiographer, Richard, without whom it would have been impossible to co-ordinate, the studies at MP Shah Hospital.

Thanks to Shem Juma of Sylicon Computer Services, his dedication saw me through the computer hassles.

I thank my sons, Andrew and Arnold and my daughter Audrey for the evening smiles they gave me whenever I returned home.

Finally I thank my wife, Mrs. Jane Umara for the love and moral support that she gave me during this particular period in my career.

TABLE OF CONTENTS

	Page No.
TITLE	I
DECLARATION	II
DEDICATION	III
ACKNOWLEDGMENTS	IV
TABLE OF CONTENTS	V
ABBREVIATIONS AND TERMINOLOGIES	VIII
ABSTRACT	1
OBJECTIVES OF THE STUDY	3
HYPOTHESIS	4
ETHICAL CONSIDERATION	4
INTRODUCTION AND LITERATURE REVIEW	5
MATERIALS AND METHODS	24
RESULTS:	29
DATA ANALYSIS	38
DISCUSSION.	39
RECOMMENDATIONS	42
REFERENCES	43
APPENDIX 1: Data Collection Sheet	47
APPENDIX 2: Informed Consent Form.	48
APPENDIX 3: Light Output Of Groups A & B Dosimeters	. 49
APPENDIX 4: Dose Calculations.	51
APPENDIX 5: Geometric Means	52

FIGURES

Page No.

FIG 1: Diagram Showing First To Fourth Generation Scanners	
FIG 2: The Spiral / Helical CT Principle.	9
FIG 3: Matrix Detectors (Isotropic Array with 16 Partitions)	11
FIG 4: Anisotropic Array with 8 Partitions	11
FIG 5: Lithium Floride Dosimeter Placement Sites	27

V

VI TABLES Page No. TABLE 1: CT Examinations Frequency (British Survey 1989)._____
 TABLE 2:
 Threshold Doses for Some Deterministic
 Effects in the More Radiosensitive Human **Tissues According To the ICRP 1991** Report. Skin Dose and Resolving Power with 66 Cm TABLE 3: Phantom. TABLE 4: Radiation Doses for Standard Protocols on a Typical Spiral CT System TABLE 5: Light Output of Dosimeter (DIGITS) and Calculated Skin Absorbed Doses for Liver-Multislice (MP Shah)

15

18

21

22

30

32

33

34

35

 TABLE 6:
 Light Output of Dosimeter and Calculated
 Skin Absorbed Doses for Liver-Multislice (MITC) 31

 TABLE 7:
 Light Output of Dosimeter and Calculated
 Skin Absorbed Doses for Breast-Multislice (MP Shah)

TABLE 8: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Breast-Multislice (MITC) ·····

TABLE 9: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Thyroid-Multislice (MP Shah)

TABLE 10: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Thyroid-Multislice (MITC)

TABLE 11: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Scrotum- Multislice (MP Shah)	36
TABLE 12: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Scrotum- Multislice (MITC)	36
TABLE 13: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Liver-Topogram (MP Shah).	37
TABLE 14: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Breast-Topogram (MP Shah).	37
TABLE 15: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Scrotum- Topogram (MP Shah).	37
TABLE 16: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Thyroid- Topogram (MP Shah).	38

ABBREVIATIONS AND TERMINOLOGIES

Radiation:

Emissions and diffusions of energy in the form of electromagnetic wave or particles charged or uncharged electrically

X-ray:

Invisible highly penetrating electromagnetic radiations of short wavelength in the range of 10^{-7} to 10^{-11} cm.

Exposure:

Measures quantity of electrical charges produced in unit mass of air by ionizing electromagnetic radiation. Units are coulomb per kilogram. Unit of roentgen IR = 2.58×10^{-4} C/KG.

Absorbed Dose:

(J/kg or Gray), is the energy imparted by ionizing radiation per unit mass of specified material.

Effective Dose (E):

Assesses the total stochastic health detriment by summing up equivalent doses in all the tissues and organs of the body weighted for organ sensitivity. Units are in Sievert (100 rem)

Stochastic Risk

Radiation effect for which the probability of occurrence but not the severity of effects depends on dose.

Deterministic Risk

Radiation effect for which the severity of biological effect depend upon dose.

KV (Kilo Voltage)

This is a unit of electrical potential difference between electrodes of an X-ray tube. It determines the quality (penetrating power) and also the intensity of the X-ray.

VIII

Milliampere

Is a thousandth of an ampere. A unit of an electrical current, which passes through the X-ray tube.

mAs (Milli-Ampere Seconds)

Is a product of current and duration of flow in seconds.

- **CT:** Computerized Tomography.
- MRI: Magnetic Resonance Imaging.
- TL: Thermo-luminescence. These materials when irradiated are capable of storing the radiation energy, which they release in the form of light when a thermal stimulus is applied.
- LiF: Lithium Fluoride, a thermoluminiscent material used in radiation dosimetry. Z Value = 8.2
- TLD: Thermoluminiscent Dosimeters.
- **PMT:** Photo-multiplier Tube.
- Pitch: Is the table movement divided by CT Slice thickness during one X-Ray tube rotation
- S.D: Standard Deviation
- ICRP: International Commission on Radiological Protection.
- NRPB: National Radiological Protection Board (U.K)
- KNH: Kenyatta National Hospital
- MITC: Medical Imaging and Therapeutic Centre

ABSTRACT

Background

Radiation is always a medical concern as it may induce cancer and hereditary defects. The use of CT has increased rapidly in the past decade due to the increased medical diagnostic applications of this imaging modality. This has resulted in an increasing medical radiation burden associated with CT. Doses should therefore be kept as low as reasonably achievable in line with the ALARA principle.

Objective: The main objective of the study was to generate baseline data in patients' radiation skin doses during abdominal CT scan examination and to assess the associated risks to certain critical organs.

Study Design: The study was comparative and cross sectional.

Study Setting: The study was conducted at MITC and involved eighty-one patients who presented for CT scan examinations of the abdomen between September 2002 and March 2003. **Subject/Patients:** Eighty-one patients presented for abdominal CT examinations. Thirty-five patients underwent conventional CT examination at MP Shah while thirty-six patients underwent spiral CT examination at MITC. Ten patients were assessed for radiation skin dose during topogram examination at MP Shah.

Method: Radiation doses were measured by use of Thermolumiscent Dosimeters (Lithium Fluoride), which were placed before the CT scan examination on the skin corresponding to the Thyroid gland, Liver, Breasts and Testis. The amount of radiation absorbed by the dosimeters was determined by reading their light output in the Thermoluminiscent Dosimeter Reader at the Department of Diagnostic radiology (U.O.N).

The dosimeters were earlier calibrated using cobalt-60 radiation to determine their response to a certain uniform amount of radiation.

Results: Dose calculations for each region e.g. liver, breast, thyroid, and testis were done for each patient. Data was entered into a microcomputer using SPSS/PC data entry programme. Geometric means for radiation dose to the various skin sites were calculated. The results showed that mean dose was highest for liver (sequential CT- 88.8mGy, spiral CT-92.8mGy), followed by Breast (sequential-9.89mGy, Spiral-10mGy), Thyroid (sequential-2.85mGy, Spiral-2.52mGy) and was lowest for the Testis (sequential-1.23mGy, Spiral-1.33mGy). Results also showed that there was no significant difference in skin doses delivered during conventional and spiral CT examination. The dose delivered by Topogram examination relative to the multi-slice examination were insignificant to the liver, breast, and thyroid while it was significant to the testis denoting that the topogram contributed to most of the testis skin dose.

Conclusion

There was no significant difference in skin doses at sequential or spiral CT examinations. The skin doses in this study were generally below radiation dose levels required to induce deterministic effects like causing temporary or permanent sterility of the testis. The choice of whether to use spiral or conventional CT should therefore rely on clinical considerations rather than on dose.

OBJECTIVES OF THE STUDY

Main objective

To generate baseline data on patients' radiation doses during abdominal CT scan examination and to assess the associated risks to certain critical organs, there being no other data on the same study in the East African region.

Specific Objectives

- i) To determine skin radiation doses at anatomical sites corresponding to the thyroid glands, breasts, liver and testis.
- ii) To determine the significance of scatter radiation to the thyroid gland and testis during multislice CT examination of the abdomen.
- iii) To assess the contribution of the topogram to the amount of radiation received by the thyroid and testis.

Benefits Expected from the Study

Results from the study are expected: -

- To help establish the magnitude of radiation doses during CT examinations of the abdomen, from the scanner at MITC and MP Shah Hospital.
- To give additional information on radiation doses during CT scans of the abdomen.
- To give recommendations for radiation protection in patients undergoing CT abdominal examinations.

Rationale of the Study

The need for the study is as follows:

- 1. To establish a data base in our set up
- 2. Give information on radiation doses to patients during CT examinations of the abdomen to the referring clinician, the radiologist and the radiographer performing the examinations. This may help in redesigning CT techniques and protocols to reduce patients' absorbed dose.
- 3. Submission to an institutional review board e.g. Radiation Protection Board – for radiation protection purposes and quality control.

HYPOTHESIS

There is no difference in skin doses to patients undergoing conventional and those undergoing spiral CT abdominal examinations.

Inclusion criteria: All patients who were referred for CT examination of the abdomen and gave consent.

Exclusion criteria

- i) Included all patients referred for CT examination other than the abdomen
- ii) Included those referred for CT abdomen but who refused to give a signed consent.

ETHICAL CONSIDERATION

Medical professional ethics were adhered to, in all patients. All patients referred for abdominal CT examinations were identified by their hospital numbers. The procedure was explained to patients and their consent sought before starting. The authority to conduct the study was secured from the administrator of Medical Imaging and Therapeutic Centre and MP Shah Hospital. A request to conduct this study was submitted together with a copy of study protocol to the Ethical and Research Committee of Kenyatta National and Referral Hospital and approval was granted.

INTRODUCTION AND LITERATURE REVIEW

Computerized axial tomography (CT) is a technique of diagnostic roentgenology developed by Godfrey N. Hounsfield of EMI limited of England in 1973 (1). CT is able to provide axial tomographic images of sections of the head and other parts of the body. CT images represent the spatial distribution of the attenuation of X-rays in the tissues examined. It yields transverse sections that provide a third dimension display of the distribution of x-ray attenuation within the body without superimposition of body structures. CT has the ability to detect minute differences in tissue x-ray attenuation and provides highly accurate quantitative information about the x-ray attenuation properties of tissues imaged and is therefore important for diagnostic purposes. CT has therefore become a primary imaging technique and is used today for the evaluation of organs and musculo-skeletal system. It also finds specialized use in CT angiography, pulmonary embolism detection and interventional procedures. In the USA there has been an increase in CT examinations from (2.8million) in 1981 to (28 million) in 1995.

CT Scan Equipment Principle of operation

CT utilizes a series of projections taken at different angles and gives cross-sectional images. The x-ray is produced in the x-ray tube and is then collimated. The beam passes through the patient and is again collimated (pre-detector collimation). The radiation energy causes fluorescence in scintillation or xenon gas detector. A photo-multiplier tube that is connected to an electronic circuit picks up the light from the detectors. This information is then sent to a cathode ray oscilloscope monitor. It is from these attenuations that the tomographic section is reconstructed by computer-applied algorithm. There is optimization of CT data acquisition such that the profiles obtained are capable of eliciting differences in x-ray attenuations of a half percent. In conventional radiography the contrast perceptibility is limited to about two percent due to scattered radiation and film screen combination noise. Spatial resolution for CT (1-2mm) is however poor compared to conventional radiography (0.1-0.3mm)

Image reconstruction

Profiles are recorded in a digital form by a computer system. From the data acquired the CT system reconstructs the image of the section through application of a suitable algorithm. The commonly used method is known as filtered back projection reconstruction method. It represents the projection of the image into a two dimensional image. Computerized Tomography is able to remove the artefactual contribution of the object to the image and yield a quantitative representation of the object. The negative values of the filtered profiles are subtracted from the positive values so as to remove the unwanted contribution, thus restoring the true appearance of the object. The technique is based on mathematical considerations (2).

Developments in CT Technology

Computerized tomography has undergone technological development from first generation to fourth generation spiral scanners with improved efficiency in terms of scan time, radiation dose and image quality. Reduction of scan time (tube rotation time) has been achieved from five minutes in first generation scanners to less than one second in spiral CT systems (2&4). The generational evolution of CT scanners is depicted in Fig 1.

First generation scanners

This technology has x-ray tube and detector opposite each other with the subject between them. Two narrow beams of x-ray, each detected by a scintillation detector, simultaneously provide two sections of the subject. The xray tube and detector performed translatory and rotary movement. It involved 240 exposures while performing translatory movements, followed by one-degree angular tilt. Overall, 240x180 exposures were made. Scan time for one section took about 5 minutes (2).

Second-generation scanners

In this design the beam of x-ray is fan shaped with an angle of ten degrees. The beam is detected by a series of scintillation detectors, typically about thirty and the source of radiation and detectors scan across the patient in approximately a second. The gantry is then rotated about ten degrees and the operation is repeated. Total scan time is approximately 20 seconds making it 15 times faster than first generation scanners.

Third generation scanners

This technology had wider fan beam systems (30 degrees) with no translatory but continuous rotary movement of the tube and detector. With this technology the scan time was reduced to about 5 seconds per section (2).

Fourth generation scanners

This technology has fan shaped beam with annular array detectors that remain stationary. The x-ray tube performs rotational motion inside the detector ring. Scan time for one section was about one second

FIG 1: Diagrams showing First To Fourth Generation Scanners (Clinical radiology: 2001; 56:302-309) (5).

a-first generation scanner b-second generation scanner c-third generation scanner d-fourth generation scanner

Volume (Spiral, Helical) CT technology.

Spiral CT technology involves continuous movement of the patient through a rotating continuous fan beam exposures, allowing compilation of continuous data that has an uninterrupted anatomic detail unlike in conventional CT.

A volume of data set in the form of corkscrew or helix is obtained. As shown by Horocks J. A. (3), the slice thickness is not always exact across the whole cross-section and often a small gap is left within what is supposedly a volumetric data. Many Radiologists use a small overlap when data is to be used for 3D reconstruction. Continuous data acquisition was made possible due to advances in CT technology that introduced slip – ring technology, precise patient table transport, improved software reconstructing algorithms, improved detector efficiency and introduction of higher heat capacity x-ray tubes and sub-second x-ray tube rotation time. Kalender *et al* (4) were the first to introduce these technologies in a working CT scanner.

FIG 2: The Spiral / Helical CT Principle.

Spiral CT with advanced detector designs (multi-slice technology)

Major advances have occurred in detector technology with the introduction of ceramic detectors, which have higher x-ray photon detection efficiency (5). This has enabled high quality imaging with reduced radiation burden. By using a beam, which is fanned in the patient's z-direction (patient's axis) to include two contiguous detectors, the scan time is halved if the other parameters remain the same (acquiring two slices per tube rotation). Currently available systems enable acquisition of 4 up to 16 slices at a time. This has led to faster data acquisition and consequently the liver can be scanned with 5mm collimators in less than 6 seconds.

Hu et al (6) have shown in studies in commercial CT scanners that a two to three times increase in volume acquisition rate as compared with a single slice system is fully compatible with comparable image quality. Any further increase in acquisition speed leads to loss in image detail. The real speed advantage of these systems lies in their ability to obtain more volume studies at high resolution during a single breath hold. Multi-slice CT today is comparable to magnetic resonance imaging in many areas of clinical studies e.g. detection of aneurysms (11).

Detector Designs

Two designs of detectors systems are currently employed

- (a) Those that use evenly spaced partitions in the Z-axis (isotropic arrays). Slice widths are multiples of the row detector width, usually (1-1.25mm)
- (b) Adaptive arrays: These have anisotropic partitions. They are built with fewer Z-axis partitions (currently 8) and have higher geometric efficiency compared to matrix/isotropic arrays. This design utilizes more of the x-ray photons that pass through the patient hence increasing the efficiency of the multiple detector system.

The detector geometry (5)

FIG 3: Matrix Detectors (Isotropic Array with 16 Partitions)

FIG 4: Anisotropic Array with 8 Partitions

Pre-patient collimators and the electronic combination of signals from partitioned detectors allow multi slice acquisition.

Clinical applications of Spiral CT

Spiral CT has the advantage of speed and therefore reduced scan time. However to get good images it requires a co-operative patient who is able to keep still during the whole CT exposure. Images reconstructed from spiral geometric data have artefacts like those encountered in clinical studies due to patients' motion. As shown by Polacin A. *et al* (7) the artefacts do not affect the image quality when reconstructions are done in planar geometry.

In pediatric studies the challenges in the imaging of children; include a rapid respiratory rate, voluntary movements, small size and little fat to provide intrinsic contrast. This may affect the image quality and repeat scanning is often required especially when conventional CT is used. Spiral CT is the method of choice to reduce motional blurr, radiation dose and the risk associated with prolonged sedation to children.

Studies by Geoffre D. *et al* (8) have demonstrated the role of spiral CT in vascular studies. Spiral CT reliably demonstrated second to fourth order aortic branch anatomy in good comparison with arteriography. Major aortic branches (renal, splenic and hepatic arteries) were clearly demonstrated to the hilum of the organ in all patients, with the exception of those vessels with high-grade stenoses.

The diagnosis of pulmonary embolism is often made with the use of radio- nuclide ventilation perfusion scans and pulmonary angiograms. However CT angiography has gained ground in pulmonary emboli detection and is now the imaging procedure of choice. While the ultimate patients' outcome is uncertain, the CT diagnosis of pulmonary emboli appears accurate and affects patients' care (9).

Avian R. *et al* (10) conducted a hospital-based study to analyse the cost effectiveness of various diagnostic strategies (Spiral CT An giography, Conventional Pulmonary Angiography, Perfusion and Ventilation Scintigraphy, Ultra-Sound and D-dimer assay) in the diagnosis of suspected pulmonary embolism.

A single diagnostic test or combinations of up to five sequential diagnostic tests were implemented followed by anti-coagulant treatment when indicated. Three outcome parameters were assessed e.g., the mortality and morbidity at three months and the average realistic costs of diagnosis and therapy for pulmonary embolism. The marginal cost-effectiveness was determined by comparing the outcome of strategy with a no treatment strategy of zero cost. Results showed that with mortality as the primary outcome parameter the best strategies all made use of Spiral CT angiography. When preference was determined on the basis of cost per life saved, the best strategies again all contained Spiral CT angiography.

Helical CT, both, with and without the use of multi-planar reconstructions as demonstrated by Leslie E. Quint *et al* (11), enabled highly accurate differentiation among diseases of the thoracic aorta e.g. aneurysms, dissections and ruptured aneurysm and predicted surgical planning for patients.

Limited spiral CT with colonic contrast material was able to demonstrate 64 true positive, two false negative, 128 true-negative, one false-positive and four indeterminate in a study to evaluate suspected appendicitis in children (12). Spiral multi-detector CT has facilitated donor selection and surgical planning in potential donors being evaluated for living adult right lobe liver transplantation in studies by Mary T. *et al* (13). Of the 40 potential donors, 15 patients (37.5%) were excluded on the basis of CT findings with most exclusion due to portal vein anomalies.

CT fluoroscopy with a slip-ring helical CT scanner modified by adding a high speed array processor to increase the speed of the image reconstruction has become important in biopsy and drainage procedures. It has been used to guide intra-cranial, chest, and abdominal and pelvic biopsy procedures. Radiation exposure is however high and remains a concern (mean patients dose 74cGy) (14).

Surveys of CT use

Computed Tomography (CT) has been shown to have wide applications. It has made an enormous contribution to the diagnosis and treatment of disease. The use of CT has therefore increased rapidly in the past two decades, fuelled in part by the development of helical CT. This has resulted in an increasing medical radiation burden associated with CT examinations. By their nature CT examinations contribute disproportionately to the collective diagnostic radiation dose to the population.

In the United Kingdom for example studies estimated CT examination to account for about 2.4% of all radiological examinations but account for 20% of the annual collective doses from medical X-Rays (15 & 16).

Later studies performed by Shrimptom and *et al* in Britain have estimated that approximately 4% of diagnostic radiology procedures are CT examinations, but their contribution to the collective dose is approximately 40 % (17).

Table 1 shows a breakdown of the number of CT examinations by age at examination based on the results of a 1989 British survey (15). In this survey a million CT examinations were performed on children under the age of 15 years (4% of CT examinations).

In the United States the estimated annual number of CT examinations rose approximately ten fold from 2.8 million in 1981 (18) to 28 million in 1995 (19).

Radiation Dosimetry

Quantities used to evaluate patients' radiation dose include skin dose, effective dose, and energy imparted among others.

Most methods use Thermoluminiscent Dosimeters to get absorbed radiation doses. They have an advantage over ionization chambers since they are small and un-obstructive. They are independent of leads, are easily attached to the patient and can also be reused after dose erasure. The commonly used phosphor, LiF, is nearly of tissue equivalent, with an effective atomic number of 8.2, compared to 7.4 for soft tissue. The energy response of LiF at diagnostic energies is linear with dose over a wide range.

There is less work and automation is well developed in TLD as compared to photographic dosimetry. They are relatively less expensive in the long run because they can be re-used. The primary response calibration of dosimeters is usually carried using a cobalt-60 source (Mean gamma energy 1.25Mev) and the response at all other energies and for all other radiation is expressed as a multiple or fraction of this. Sensitivity of dosimeters is determined so that their responses are uniform when used in different patients.

The response of LiF Dosimeter chips to diagnostic x-rays relative to its response to cobalt-60 gamma rays has been found to be about 1.3(20).

Harmful Aspect of Ionizing Radiation

Mechanism of radiation damage.

Immediate changes occur in 10^{-17} to 10^{-15} seconds. Damage occurs as a result of ionization and excitation of atoms and molecules. Two theories have been advanced to explain these mechanisms: -

Direct action of radiation

There is a sensitive volume in a cell or macromolecule (the target) which if inactivated leads to cell death, mutation or other biological effect. Energy of ionization is taken directly by target. Site of anatomical lesion e.g. chromosome break is also site of primary ionization responsible for damage.

Indirect action

Microscopic deposition of radiation energy leads to ionization and excitation of atoms and molecules. Radio-chemical reactions produce highly reactive chemical species (free radicals in tissue water). The free radical attacks DNA resulting in molecular damage/mutation and cell death. Radicals commonly produced are electrons, hydroxyl group, hydrogen and hydrogen peroxide. Radicals attack DNA and RNA. Radio- sensitivity in cells depends on type of cell, radiation dose, dose rate, position in a cell cycle, oxygen tension and cellular repair (21).

Harmful aspects of radiation were recognized shortly after the discovery of X-Ray in 1895. Evidence for harmful effects of radiation has been obtained from the study of Japanese atomic bomb survivors. The study findings provided the most reliable data on radiation effects e.g. somatic effects such as cancer induction, developmental abnormalities and hereditary effects, which are expressed in the descendants of the exposed person. Radiation effects were classified into either deterministic or stochastic effects. *Deterministic Effects*: Have a threshold dose above which the severity of the effects is related to dose. Examples are: -

- I. Development of cataracts in the eye
- II. Erythema of the skin
- III. Skin burns and loss of hair
- IV. Impaired fertility

TABLE 2: Threshold Doses for Some Deterministic Effects in theMore Radiosensitive Human Tissues According To the ICRP1991 Report. (22)

Human tissues and effects	Threshold total Equivalent dose for Acute exposure (S	Annual dose rate or Sv/year v)
TESTES		
Temporary sterility	0.15	0.4
Permanent sterility	3.5-6.0	>0.4
OVARIES		
Sterility	2.5-2.0	>0.2
LENS		
Detectable Opacities	0.5-2.0	>0.15
Visual Impairment	. 5.0	>0.15

1 Sievert = 100rems

Since threshold doses for deterministic effects are quite low in some organs, low dose limits are therefore needed to protect these particular organs.

Stochastic Effects: There is no threshold dose below which radiation induced effects will not occur. The probability of the occurrence of stochastic effects is a function of the radiation dose but the severity of these conditions is not dose related. Examples of stochastic effects are cancer induction and most of hereditary effects. Stochastic effects cannot be completely prevented however much you lower the radiation dose. No amount of radiation is therefore considered absolutely safe and the ALARA principle of keeping doses as low as reasonably achievable was recommended.

Risk co-efficient has been derived for: -

- a) Somatic effects i.e. risk of inducing fatal and non-fatal cancer.
- b) Hereditary effects
- c) In Utero exposure i.e. risks of fetal death, growth abnormalities, mental retardation and childhood cancers.

In 1977 the ICRP in its publication article 26 gave for radiation protection purposes, risk of fatal Leukaemia at 0.2×10^{-2} /Sv based on a ratio of about one leukaemia, relative to five cases of non-leukaemia cancer (23).

The risk of death due to radiation induced stomach cancer from a 1-Gy dose is about two excess cases per year per10000 exposed individuals and is second only to leukaemia as a cause of death by specific radiation induced cancers among the Japanese atomic bomb survivors (24).

A study of about 1600 children exposed in utero at Hiroshima and Nagasaki to various doses at various developmental stages confirmed about 30 of them to develop clinical severe mental retardation. The mental retardation was not observed before 8 weeks from conception but was maximum between 8 and 15 weeks. The incident of mental retardation as function of dose was reported to be linear without a thresh hold at 8 to 15 weeks, with a risk co-efficient of 0.4 per gray. The incident is a bout 4 times lower at 16-25 week (25).

The UNSCEAR committee attempted to derive quantitative risk estimates for a number of radiation induced effects in utero (Mortality, Induction of Malformations, Mental Retardation, Tumours and Leukaemia) and to attribute risk to the periods of pregnancy. They concluded that for the small doses likely to be encountered in practice, the overall risk is relatively small (no more than 0.002 for the live born at 0.01 gray) in relation to the natural incidence of malformations in non-irradiated individuals, which is in the order of 0.06 in the human species (25).

The predominant risk to patients undergoing abdominal CT is the induction of cancer. The best estimate currently in use for general population is five percent risk per Sievert (22). An effective dose of 6mSv for abdominal CT examination thus corresponds to a nominal cancer fatality risk of approximately 3 in 10000 patients.

Radiation Dose during CT Examinations

With the advent of spiral/helical systems various arguments were advanced that the improvement in technology could be associated with reduced radiation dose to patients, but CT both in the old and new forms still undoubtedly represented a significant radiation burden.

McCrohan JL, etal (26) and Mini RL, etal (27) have respectively estimated the typical surface radiation dose to adults from multiple adjacent CT slices as 30 - 70 mGy (3.0 - 7.0 rad) per head scan series and 20 - 50 mGy (2.0 - 5.0 rad) for each abdominal series. For standard measurements with phantoms, the head radiation dose is nearly uniform; the body radiation dose is essentially uniform over the surface and decreases to about half at the centre (26 - 27). The radiation received by a patient undergoing any type of diagnostic radiology examination is best quantified by the effective dose (28).

In a study by Ware DE. etal (29) to determine the radiation effective dose to adult and pediatric patients undergoing abdominal computed tomographic (CT) examinations at 120kvp and approximately 7mm slice thickness for all size of patients, results showed mean values $(\pm SD)$ of energy imparted were 72.1 mJ ± 24.4 for children, 183.5mJ \pm 44.8 for young adults and 234.7mJ \pm 89.4 for adults. The corresponding mean values of patient effective dose were 6.1 mSv \pm 1.4 for children, 4.4 mSy ± 1.0 for young adults and 3.9mSy ± 1.1 for adults. Findings revealed that doses (energy imparted) were a factor of three higher in adults than children, but corresponding patient effective doses were 50% higher in child than adult. Findings also demonstrated that effective radiation doses to patients from abdominal CT to be at the upper end of patient doses encountered in diagnostic radiology. Doses to patients from abdominal CT examinations are comparable to those in nuclear medicine (2 -10mSv), barium examination (3-7mSv), and excretory urography (2.5-5.0mSy) and are markedly higher than those associated with chest radiography (0.02-0.05mSv), skull examinations (0.1-0.2mSv), or abdominal radiographic examinations (0.5-1.5mSv) (28).

Van Unnik JG *et al* (30) did a survey of CT techniques and absorbed doses in various Dutch hospitals to make an inventory of the radiation dose from CT in the Netherlands and to relate the dose to the way CT was performed. Details were obtained from approximately 3000 CT examinations carried out in 22 hospitals (22 CT scanners). The mean effective doses from brain CT were 0.8-5mSv, from lumbar spine CT 2-12 mSv, from chest CT 6-18mSv, and from abdominal CT 6-24 mSv.

In a study done to compare radiation dose and resolving power of commercial CT scanner (31), findings demonstrated a uniform improvement in image quality with newer CT machines at generally lower radiation doses than observed in 1977. High contrast resolving power improved by 31% from an average of 2.0 to 1.3mm with reduction of average skin dose from 2.2 rad (0.022Gy) to 1.5 rad (0.015Gy)

The findings are summarized in Table 3.

CT Model (Year)	Average Qua	drant Skin Dose	High contrast 12%)
	Rad	Gy	Resolving power (mm)
General electric 8800 (1980)	0.5	0.005	1.25
EMI 7070 (1979)	1.0	0.01	1.00
Pfizer 0450 (1979)	4.6	0.046	1.50
Technicare Delta 2020 1980	2.2	0.022	1.25
Elscint Excel 905 (1980)	0.8	0.008	1.50-1.75
Picker Synerview 600 (1980)	1.0	0.01	1.25
Siemens Somatom 2 (1980)	0.6	0.006	1.50
Mean:	1.5	0.015	1.38
General Electric CT/T7800 (1977)	0.5	0.005	2.25
EMI, CT 500 (1977)	3.1	0.031	2.25
Pfizer 200 FS (1977)	2.3	0.023	2.00
Ohio Nuclear Delta 50 FS (1977)	1.0	0.01	2.00
Ohio Nuclear Delta 50 (1977)	1.8	0.018	2.00
Varian CT ((1977)	4.3	0.043	1.75
Mean:	2.3	0.022	2.00

TABLE 3: Skin Dose and Resolving Power with 66 Cm Phantom(31).

Golin U. et al (32) by using Somaton plus S. Spiral CT systems was able to demonstrate doses to various organ systems with different standard protocols. The dose from abdominal CT was 24mSv to liver, 19.4mSv to ovary, 15.3mSv to lungs, and 6.4mSv to testis and 26.6mSv to skin. The doses are illustrated in table 4.

TABLE 4:	Radiation	Doses	for Standa	rd Protocols	on a	Typical
Spiral CT	System					
	Cranial	CI	hast	Abdominal	Lumi	oor

	Cranial	Chest	Abdominal	Lumbar
	СТ	СТ	СТ	СТ
Orbit	4.8	-	-	-
Parotid	28.8	-	-	
Thyroid	1.4	3.5	-	-
Lung	-	22.1	15.3	-
Liver	-	4.3	24.1	4.4
Ovary	-	•	19.4	10.7
Testis	÷.	-	6.4	1.9
Skin	-	19.0	26.6	-
Typical	2.3	8.0	10.0	10.0
Effective dose				

All Values in mSv.

Becker CR, *et al* (33) did a study to compare radiation exposure applied by different types of CT scanners for the investigation of the chest and the abdomen. Estimation of the dose in air in the system axis of the scanner, the CT dose index (CTDI) and the effective dose was done for electron beam Tomography (EBT) and two Conventional CT scanners (sequence, SEQ; spiral, SCT). For EBT, dose in system axis for investigation of the abdomen was above 50 mGy. Effective dose for investigation of the chest and abdomen was higher with EBT (11 and 26 mSv, respectively) than with conventional CT (SEQ, 4 and 20mSv; SCT, 2 and 7mSv). The effective dose for a biphasic investigation (liver 5 mSv, kidney 4mSv) was below, for a triphasic investigation (liver 7 mSv) and above the effective dose of the investigation of the abdomen (6 mSv). With spiral CT, effective dose is lower than with EBT and conventional CT. Dr. Changale H.B in his study of skin doses during CT scan of the Para nasal sinuses also found skin doses to be lower during spiral CT (34). Evaluation of the ability of thin overlying bisthmuth in radioprotective shielding to reduce x-ray dose to radiosensitive superficial organs during diagnostic computed Tomography (CT) has been done by KD Hopper et al (35). A prototype and then a final manufactured radio protective brassiere was constructed and tested during diagnostic chest CT. Preliminary studies were also performed to evaluate shielding of the thyroid, orbit and testis. Result showed that the use of bisthmuth radio protective latex reduced by 55% the radiation dose to the breast from an average 2.2rad (0.022Gy) to 1.0rad (0.010Gy) (P < 0.001). Preliminary tests of shielding other superficial radiosensitive organs frequently included at diagnostic CT (Eyes, thyroid gland, and testis) were performed with same thickness of overlying bisthmuth with similar results. Radiation to the thyroid gland was reduced by 60% (from 0.0573 to 0.0229Gy) and radiation to the eye and testes was reduced by 40% (from 0.0256 to 0.0154Gy) and 51% (from 0.0463 to 0.0229Gy), respectively. The diagnostic quality of the CT image was however not affected.

An attempt has also been made to demonstrate the effects of scan parameters on the image quality and radiation dose of CT scanners. Scan parameters were recorded and associated measurements of noise, spatial resolution and the total absorbed dose obtained by using head and body phantoms. The data has demonstrated how recent advances in detector efficiency have significantly reduced the total absorbed dose and how decreasing slice width from 2mm to 1mm increased the absorbed dose value by up to 100% (36). Another study showed that a two-fold reduction in mAs from 400 to 140 (leaving the kilo voltage constant) led to reduction in radiation dose but did not cause a significant change in the subject image quality to affect diagnosis of mediastinal and lung abnormalities e.g. mediastinal adenopathy, lung parenchymal nodes and emphysema (37). Radiation dose is linearly related to amperage at a fixed kilo voltage. Reduction in amperage leads to reduction in radiation dose. Thus optimal CT tube current is an appropriate balance between image quality and radiation dose. Further reduction in mAs however leads to degradation of image quality due to quantum noise (38 & 39).

MATERIALS AND METHODS

Study Design

This study was comparative and cross sectional.

Study Area: This study was carried out at MP Shah Hospital and Medical Imaging and Therapeutic Centre (MITC) all situated in Nairobi, Kenya. MITC is a privately owned institution and owns both the CT scan units.

Sample Size

The study involved 81 patients who presented for CT scan examination of the abdomen between September 2002 and March 2003 in these centres. Patient selection was random. 35 patients underwent conventional CT examination at MP Shah, 36 patients underwent spiral CT examination at MITC, and 10 patients were assessed during topogram examination at MP Shah.

The CT Equipment (MITC)

The scanner is a Siemens Somatom AR-SP scanner (Siemens, Erlangen, Germany). It has both spiral and sequential capabilities. At this centre, the abdominal CT scans were done in spiral mode. The CT parameters used for all the patients were: 130Kvp, 83mA, 10mm slice thickness and pitch of 1.

CT Equipment (MP Shah)

The unit is a Siemens Somatom ART /Sequential (Siemens Erlangen, Germany). It has sequential mode capabilities only. All the CT scans of abdomen were done in sequential mode. The CT parameters used were 130 kV, 70mA, 10mm slice thickness and pitch of 1.

Preparation of TLD (Thermo-Luminescent Dosimeters)

Lithium Fluoride Thermoluminiscent dosimeters (Harshaw Co) in the form of extruded ribbons and chips were used to measure absorbed radiation doses. Preparation for use involved annealing them completely by placing them in the oven at 400°C for 1 hour followed by rapid cooling, then 100°C for 2 hours. After annealing, the dosimeters were grouped into different sizes and physical forms.

Extruded ribbon dosimeters of same length and width but of different thickness (Harshaw Company) were used.

(i) Thicker ones were labelled A $(0.125" \times 0.125" \times 0.015")$.

(ii) Thinner ones were labelled B $(0.063" \times 0.125" \times 0.015")$. Two dosimeters from group A and from group B were separated from the rest and their light output measured in the TLD reader. They were to act as controls for determining the amount of background radiation in the environment.

Calibration of Dosimeters

All dosimeters were irradiated with 60Co radiation in a Perspex phantom to an absorbed dose of 2800 mrad, and the read out was determined on the Toledo 654 TLD Reader (Vinten Co., U.K.) to obtain a calibration. Details of the calculations are presented in Appendix 4.

The TLD Reader Heating System

The TLD Reader was programmed to measure the signal from LiF glow peaks 4&5. Pre-read anneal was achieved by heating at 135°C for 16 seconds, followed by the read at 240°c for 16 seconds, and a post- read anneal at 300°C for 16 seconds. The purpose of the pre-heat is to empty the low temperature traps, which tend to fade rather rapidly, and thus to eliminate any dependence of read out on time after exposure.

Dose measurements during CT scan of abdomen.

Group A and B dosimeters were used.

Radiation doses to the patient skin and nearby organs were measured by placing Lithium Fluoride dosimeters on the surface of the skin at anatomical sites corresponding to

- (a) Thyroid Glands: Either sides of the midline just below the laryngeal prominence in the neck for left and right thyroid lobe.
- (b) Left Lobe of Liver: Center of the epigastrium.
- (c) Right lobe of the liver:
 - (i) In the mid-clavicular line just above the right lower costal margin.
 - (ii) Mid-axillary line in line with the one placed in the midclavicular line.
- (d) Breasts:
 - (i) Females: In the middle of the lower quadrant on either breast.
 - (ii) Males: placed in the areolar region.
- (e) Testis: anterior scrotal skin.

Dosimeter placement sites on the patients' skin are illustrated in Figure 5.

FIG 5: Lithium Floride Dosimeter Placement Sites

X - Dosimeter placement site

The CT scan examination involved the topogram and the multi-slice study. The multi-slice study was taken from the dome of the hemidiaphragms to the iliac crest during pre-contrast study only. The dosimeters were removed after the pre contrast study and taken for dose read out after exposure. In another group of ten patients the dosimeters were placed in the patients' skin and removed after the topogram examination before the multi-slice phase of the study. The dose read out was carried using the Toledo 654 TLD Reader at the Department of Diagnostic Radiology University of Nairobi.

RESULTS:

Light output of dosimeters placed at various skin sites (Liver, Breast, Thyroid and Scrotum) and the corresponding calculated skin doses during spiral and conventional CT examination of the abdomen are shown in tables 5 to 16.

The mean skin doses at the sites corresponding to the liver, breast, thyroid and testis during abdominal CT examination are tabulated below.

Mean Skin Doses

Multi-Slice CT

ORGAN/TISSUE	SEQUENTIAL CT DOSE	SPIRAL CT DOSE
	(mean value in mGy)	(Mean value in mGy)
LIVER	88.8	92.8
BREAST	9.89	10
THYROID	2.85.	2.52
TESTIS	1.23	1.33

Mean Skin Doses (Topogram/MP Shah Hospital)

ORGAN/TISSUE	DOSE DELIVERED
LIVER	109.5mrad (1.1mGy)
BREAST	115.5mrad (1.2mGy)
TESTIS	122mrad (1.22mGy)
THYROID	12.7mrad (0.127mGy)

The study revealed no significant differences in skin doses during sequential or spiral abdominal CT scanning. The mean skin doses during abdominal CT scanning (Topogram and Multislice study) were highest to the liver followed by the breast, thyroid and lowest for testis. The mean skin doses during topogram examination were lower as compared to the multislice examination.

The multislice study contributed 96.4% of the mean skin dose to the thyroid as compared to 3.6% from the topogram study. The dose to thyroid was therefore as a result of scatter radiation during multislice study.

The topogram study contributed 95.3% of the testicular skin dose as compared to 4.7% from the multislice. The scatter radiation to the testicular skin dose during multislice study was minimal.

TA	BL	Absorb	ed Do	Ses for	of Dos Liver-	imeter Multis	(Digits lice (M) and (P Shal	Calculat h)	ted
NO	SEX	L1 (DIGITS)	GROUP OF DOSIMETER USED	L2 (DIGITS)	GROUP OF DOSIMETER USED	L3 (DIGITS)	GROUP OF DOSIMETER USED	AVERAGE TLD OUTPUT DIGITS	AVERAGE MINUS BACKGROUND	SKIN DOSE CALC
-	T	26159	>	30088	A	18190	A	24812	24712	18.4
N	T	22257	A	26874	>	31360	A	26830	26730	19.9
3	T	17225	B	9628	B	6888	В	11914	11850	14.8
4	M	20805	Ν	8883	>	8426	λ	12704	12604	9.4
S	T	22483	A	17884	A	15257	A	18541	18441	13.7
6	Т	17550	>	11242	>	9875	>	12889	12789	9.5
7	M	8234	в	9509	в	8592	в	8798	8678	6.4
×	д	17659	A	17548	A	18907	Α	18038	17938	13.3
9	X	11657	B	10153	B	22958	A	14922	14822	11.0
10	TT	14000	>	14724	.Y.	14477	A	14400	14300	10.6
5 =	ב, ני	\$0C/1	RΛ	17888	RA	19/0/	RA	17704	17640	14.8
3		14516		21718		18421	A	18217	18117	13.5
14	T	13608	Λ	18978	Λ	22068	Λ	18218	18118	13.5
15	٦.	6940	A	5202	A	9608	A	6746	6646	4.9
16	T	17257	Α	23898	A	23327	Λ	21494	21394	15.9
17	M	11694	Λ	21921	Α	26981	V	20198	20098	14.9
18	Σ	19706	V	18885	A	8707	Λ	15766	15333	11.6
19	1	18676	V	13762	Λ	19966	A	17468	17368	12.9
20	M	14038	A	16437	>	18323	Λ	16266	16166	12.0
21	T	13437	Λ	23091	A	15344	Λ	17290	17190	12.8
22	Z	4763	в	7053	В	10286	В	7367	7303	9.1
23	-73	21055	A		Α	24210	Λ	22627	22527	16.7
24	T	21013	>	21013	A	14377	Α	18801	18701	13.9
25	Z	18948	Λ	12269	A	26342	Α	19186	19066	14.8
26	-	17638	A	12938	Λ	19097	A	16588	16488	12.2
27	Т	11339	A	11890	A	15047	A	12758	12658	9.4
28	N	7926	В	8531	В	11307	В	9254	0606	11.4
29		17678	Α	11749	Λ	16828	Λ	15418	15318	11.4
30	T	20461	Α	21140	Λ	17961	A	19859	19754	14.7
31	1	18285	Α	17684	>	12759	A	16242	16142	12
32	Σ	9754	A	17648	A	23198	A	16866	16767	12.5
5	-13	18244	A	14027	A	21855	A	18042	17942	13.3
14		18787	A	9568	A	18082	A	15479	15379	11.4
5	M	9451	Λ	7527	Λ	8021	Λ	8332	8232	6.1

Ab	SOF	bed D	oses fo	r Livei	r-Multi	slice (I	MITC)			
NO	SEX	L1 (DIGITS)	GROUP OF DOSIMETER USED	L2 (DIGITS)	GROUP OF DOSIMETER USED	L3 (DIGITS)	GROUP OF DOSIMETER USED	AVERAGE READ OUT IN DIGITS	AVERAGE MINUS BACKGROUND RADIATION	CALCULATED DOSE mrads
	Ζ	16210	λ	22552	A	15035	A	17932	17832	13248
2	1	12682	>	13423	A	13873	A	13326	13226	9826
ω	Χ	19317	λ	20890	A	19127	Λ	19778	19678	14619
4	Σ	6909	>	8289	A	9129	Α	7632	7532	5595
S	-	20185	Λ	22720	V	20368	Λ	21091	20991	15595
6		6011	A	10542	Λ	6264	>	7606	7506	5576
7	M	9029	B	10448	B	11883	B	10450	10386	12982
œ	T	10384	Α	7449	A	8037	Ν	8623	8523	6332
9	F	5020	в	5313	В	4518	В	4950	4886	6107
10	1	23857	Λ	1116	A	19254	Α	17407	17307	12858
11	M	10040	Λ	11469	A	25019	A	15509	15409	11447
12	M	8068	A	6949-	A	6945	A	7322	7222	5363
13	Ŧ	10415	A	23116	A	10523	A	14685	14585	10836
14	E.	25566	A	15477	A	19341	A	20120	20020	14874
15	M	8854	λ	6589	A	18698	A	11380	11280	8380
16	T	17901	A	18263	A	10601	A	15588	15488	11506
17	11	26902	A	34036	A	25133	A	28690	28590	21241
18	1	16747	Λ	21017	A	15682	A	17715	17715	13161
19	Z	13184	Λ	10580	A	24827	Α	16194	16094	11957
20	T	22490	Α	15224	A	17195	Α	18303	18203	13524
21	T	10876	Λ	6806	A	10671	A	10212	10112	7513
22	T	9678	Λ	11800	A	18553	A	13344	13244	9839
23	F	13851	Λ	9933	A	13346	Λ	12276	12276	9120
24	Т	19371	Α	24016	A	25400	A	22947	22897	16974
25	M	11829	Λ	19010	V	12870	Λ	14570	14470	10750
26	Z	28350	A	25314	Α	18420	A	24028	23928	17777
27	M	15883	Α	11511	A	12300	A	13231	13131	9755
28	T	15553	A	17625	A	19144	Λ	17440	17340	12883
29	T	32217	Α	30862	Α	30787	Λ	31288	31188	23171
30	M	13700	Λ	13298	Α	30723	A	19240	19140	14220
31	M	17730	A	21493	A	13280	A	17501	17401	12928
32	M	25157	A	28099	Α	19207	Α	24154	24054	17871
33	T	22257	Λ	26874	A	31360	A	26830	26730	19857
34	1-29	19578	Λ	15550	A	15262	A	16797	16697	12405
35	1	15912	A	11383	λ	17252	A	14849	14749	10958
36	F	10493	A	15944	Λ	17127	A	14521	14421	10713

NO SEX AGGE 1 F 31.5 SEX AGGE 2 F 81/1 43.90 A AGGE 3 F 80 1550 B 1372 B 1461 1427 3 F 80 1550 B 1372 B 1372 B 1461 1427 1783 4 M 69 1919 B 2245 B 1372 B 1461 1427 1783 9 M 40 1829 A 1658 A 1263 1163 0864 110 F 40 1829 A 1835 A 1263 1163 0864 111 F 30 3654 A 1263 1163 0864 1340 0995 116 F 52 2061 A 1265 1440 1340 0995 127 F 54	Ab	SOI	rbed	Ligh	for Bi	ut of reast-	Dosim	eter and lice (M	d Calcu P Shah	lated
NO NO 2 F 8/12 SEX 3 F 8/12 L22 AGGE 3 F 8/0 L1550 B L22 AGGE L22 L23 AGGE L22 L23 AGGE L22 L23 L23 L23 L23 L23 L23 L23 L23 L23 L42 L42 L42 L42 L42 L43 L23 L42 L42 L42 L42 L42 L44 L23 L44 L23 L44)	R		2	TLD GITS	ND	
	NO	SEX	AGE YRS	BR (DIGITS)	GROUP OF DOSIMETER USED	BL (DIGITS)	GROUP OF DOSIMETER USED	AVERAGE T	AVERAGE MINUS BACKGROUI	SKIN DOSE
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1	T	35	1222	>	1536	Α	1379	1279	095
3 F 80 1550 B 1372 B 1461 1427 178 4 M 69 1919 B 2245 B 2082 1982 1461 1427 178 5 F 66 1332 Λ 2368 Λ 1685 1750 130 7 M 19 1432 Λ 1658 Λ 1685 1585 177 9 M 40 1829 Λ 1633 Λ 1263 1163 086 11 F 69 2182 Λ 1835 Λ 1512 1412 1040 12 F 52 934 B 770 A 1380 A 1864 1764 131 14 F 32 1990 Λ 1828 Λ 1864 1764 131 15 F 54 930 3654 Λ <th1< td=""><td>2</td><td>-11</td><td>8/12</td><td>4390</td><td>></td><td>5052</td><td>λ</td><td>4721</td><td>4621</td><td>343</td></th1<>	2	-11	8/12	4390	>	5052	λ	4721	4621	343
4 M 69 1919 B 2245 B 2082 1982 1472 5 F 66 1332 A 2368 A 1850 1750 1300 6 F 50 1721 A 1658 A 1685 1585 1770 1300 9 M 40 1829 A 1051 A 1440 1340 099 11 F 69 2182 A 2298 A 1512 1412 1049 11 F 69 2182 A 2887 A 1512 1040 099 114 F 32 1900 A 1884 2760 070 158 115 F 41 2724 A 2805 A 1865 3765 279 116 F 30 3654 A 1697 A 1865 1773 102	S		80	1550	B	1372	в	1461	1427	178
	4	Σ	69	6161	В	2245	в	2082	1982	147
6 F 50 17.21 Λ 16.58 Λ 16.85 1.855 1.785 7 M 19 14.32 Λ 10.93 Λ 12.63 11.63 0.85 1.76 0.95 9 M 40 18.29 Λ 10.51 Λ 12.63 11.63 0.86 11 F 69 21.82 Λ 22.98 Λ 15.12 14.12 10.40 12 F 52 9.34 B 7.75 B 8.44 7.80 0.77 14 F 32 19.00 Λ 18.28 Λ 18.64 17.64 131 15 F 65 9.35 Λ 605 Λ 1.864 16.45 2.786 16 M 17 1.296 Λ 16.49 Λ 1.447 13.33 0.99 17 M M 7.51 1.67 2.75	S	-TI	66	1332	>	2368	Α	1850	1750	130
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	6	-	50	1721	>	1658	Λ	1685	1585	177
8 F 76 962 B 700 B 831 767 095 10 F 40 1829 A 1051 A 1440 1340 099 11 F 69 2182 A 2298 A 2240 2140 1512 1412 1041 12 F 52 934 B 735 B 8844 780 077 14 F 32 1900 A 2847 A 2786 2686 199 14 F 32 1900 A 1828 A 1864 1764 131 15 F 65 935 A 4075 A 3865 3765 279 16 F 30 1699 A 1447 1373 102 17 M 17 1296 A 1847 1433 1333 099 18 M	7	Σ	19	1432	>	1093	A	1263	1163	980
9 M 40 1829 A 1051 A 1440 1340 099 10 F 40 1188 A 1835 A 1512 1412 1412 1440 11 F 69 2182 A 2298 A 2240 2140 158 12 F 52 934 B 735 B 844 780 077 13 F 41 2724 A 2847 A 2786 2686 199 14 F 32 1900 A 1828 A 1864 1764 131 15 F 65 935 A 4075 A 3865 3765 279 16 F 30 1699 A 1447 1373 102 17 M 17 1296 A 1847 1477 129 18 M 72 754	8	ы	76	962	В	700	В	831	767	095
	9	X	40	1829	Λ	1051	A	1440	1340	660
II F 69 2182 A 2298 A 2240 2140 158 I3 F 41 2724 A 2847 A 2786 2844 780 077 I4 F 32 1900 A 1828 A 1864 1764 131 I5 F 655 935 A 605 A 1864 1764 131 I6 F 30 3654 A 4075 A 3865 3765 279 I7 M 17 1296 A 1649 A 1447 1373 102 I8 M 400 1699 A 1847 1333 099 I9 F 54 490 A 1890 A 1242 035 20 M 32 1804 A 2028 82 1947	10	т	40	1188	λ	1835	Α	1512	1412	104
	11	н	69	2182	>	2298	Λ	2240	2140	158
	12	ы	52	934	В	735	В	844	780	077
	13	T	41	2724	>	2847	Λ	2786	2686	199
	14	H	32	1900	Λ	1828	A	1864	1764	131
	15	Ŧ	65	935	Α	605	A	770	670	049
	16	Ŧ	30	3654	V	4075	A	3865	3765	279
18M401699A1166A1433133309919F54490A 673 A58248203520M72754A757A757A65704821F281804A1890A1847174712922M352061B2028B2045198114723F542100A2659A23802280169724F522224A2211A2218211815725M211438A2500A2805270520026F683110A2500A2805270520027F622838B2700B2769266933328M501162B706B93483410430M802603A1205A1846174612931F521984A1205A1594449911132M502632A2705A1594149911133F521984A1205A1594149911133F521973A2676A2603250318534M46 <td>17</td> <td>M</td> <td>17</td> <td>1296</td> <td>Α</td> <td>1649</td> <td>A</td> <td>1447</td> <td>1373</td> <td>102</td>	17	M	17	1296	Α	1649	A	1447	1373	102
19F54490A673A58248203520M72754A757A757A75765704821F281804A1890A1847174712922M352061B2028B2045198114723F542100A2659A2380228016924F522224A2116A211815725M211438A2156A1797169712626F683110A2500A2805270520027F622838B2700B2769266933328M501162B706B93483410429F451755A1205A1594149911132M502632A1205A1594149911133F522529A2676A2603250318534M461473A1631A15521452107	18	Z	40	1699	Λ	1166	A	1433	1333	660
	61	L.	54	490	Λ	673	A	582	482	035
21F 28 1804 A 1890 A 1847 1747 129 22 M 35 2061 B 2028 B 2045 1981 147 23 F 54 2100 A 2659 A 2380 2280 1697 24 F 52 2224 A 2211 A 2218 2118 157 25 M 21 1438 A 2156 A 1797 1697 126 26 F 68 3110 A 2500 A 2805 2705 200 27 F 62 2838 B 2700 B 2769 2669 333 28 M 50 1162 B 2706 B 934 834 104 29 F 45 1755 A 1936 A 1846 1746 129 31 F 52 1984 A 1205 A 2644 2544 196 31 F 52 2529 A 2676 A 3212 3112 231 33 F 52 2529 A 2676 A 2603 2503 185 34 M 46 1473 A 1631 A 1552 1452 107	20	M	72	754	Λ	757	A	757	657	048
22M 35 2061 B 2028 B 2045 1981 147 23 F 54 2100 A 2659 A 2380 2280 169 24 F 52 2224 A 2211 A 2218 2118 157 25 M 21 1438 A 2156 A 1797 1697 126 26 F 68 3110 A 2500 A 2805 2705 200 27 F 62 2838 B 2700 B 2769 2669 333 28 M 50 1162 B 2706 B 2769 2669 333 28 M 50 1162 B 706 B 934 834 104 29 F 45 1755 A 1936 A 1846 1746 129 30 M 80 2603 A 2744 A 2644 2544 196 31 F 52 1984 A 1205 A 1594 1499 111 32 M 50 2632 A 2676 A 2603 2503 185 34 M 46 1473 A 1631 A 1552 1452 107	21	T	28	1804	Λ	1890	A	1847	1747	129
	22	M	35	2061	B	2028	В	2045	1981	147
	23	T	54	2100	V	2659	A	2380	2280	169
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	T	52	2224	V	2211	A	2218	2118	157
26 F 68 3110 A 2500 A 2805 2705 200 27 F 62 2838 B 2700 B 2769 2669 333 28 M 50 1162 B 706 B 934 834 104. 29 F 45 1755 A 1936 A 1846 1746 129 30 M 80 2603 A 2744 A 2644 2544 196 31 F 52 1984 A 1205 A 1594 1499 111 32 M 50 2632 A 3793 A 3212 3112 2312 33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 1079	25	M	21	1438	>	2156	Λ	1797	1697	1260
27 F 62 2838 B 2700 B 2769 2669 333 28 M 50 1162 B 706 B 934 834 1043 29 F 45 1755 A 1936 A 1846 1746 1293 30 M 80 2603 A 2744 A 2644 2544 1964 31 F 52 1984 A 1205 A 1594 1499 1110 32 M 50 2632 A 3793 A 3212 3112 2312 33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 1079	26	H	89	3110	Λ	2500	A	2805	2705	2009
28 M 50 1162 B 706 B 934 834 104. 29 F 45 1755 A 1936 A 1846 1746 129 30 M 80 2603 A 2744 A 2644 2544 196 31 F 52 1984 A 1205 A 1594 1499 111 32 M 50 2632 A 3793 A 3212 3112 2312 33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 107	27	Ŧ	62	2838	B	2700	В	2769	2669	333
29 F 45 1755 A 1936 A 1846 1746 129 30 M 80 2603 A 2744 A 2644 2544 196 31 F 52 1984 A 1205 A 1594 1499 111 32 M 50 2632 A 3793 A 3212 3112 231 33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 107	28	Z	50	1162	В	706	в	934	834	104
30 M 80 2603 A 2744 A 2644 2544 196 31 F 52 1984 A 1205 A 1594 1499 110 32 M 50 2632 A 3793 A 3212 3112 2312 33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 107	29	T	45	1755	>	1936	A	1846	1746	129
31 F 52 1984 A 1205 A 1594 1499 1110 32 M 50 2632 A 3793 A 3212 3112 2312 33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 1079	30	Σ	80	2603	A	2744	Α	2644	2544	1964
32 M 50 2632 A 3793 A 3212 3112 2312 33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 1079	31	Ъ	52	1984	>	1205	A	1594	1499	1110
33 F 52 2529 A 2676 A 2603 2503 1859 34 M 46 1473 A 1631 A 1552 1452 1079	32	M	50	2632	Ν	3793	λ	3212	3112	2312
34 M 46 1473 A 1631 A 1552 1452 1079	33	T	52	2529	A	2676	A	2603	2503	1859
	34	Σ	46	1473		1631	A	1552	1452	1079

AD	150	rbeu L	poses	IOF Bre	ast-iv	TUITISH	ce (IVII	10)	
No	SEX	AGE YRS	BR (DIGITS)	GROUP OF DOSIMETER USED	BL (DIGITS)	GROUP OF DOSIMETER USED	AVERAGE TLD OUTPUT DIGITS	AVERAGE MINUS BACKGROUND	SKIN DOSE CALC mrads
1	M	67	1069	A	974	A	1021	921	0684
2	F	50	2716	A	3247	A	2981	2881	2140
3	Μ	50	2567	Λ	1567	A	2064	1964	1459
4	Μ	31	2486	Α	684	Α	722	672	0499
5	F	32	1355	Α	988	Α	1170	1070	0795
6	F	32	954	Α	911	Α	933	868	1085
7	Μ	55	2011	Λ	1956	Α	1984	1844	1400
8	F	12	1837	Α	2082	Α	1960	1860	1382
9	F	49	920	Α	837	A	879	779	0579
10	F	47	1845	Α	1141	Α	1493	1393	1035
11	Μ	33	1688	Α	1450	Α	1569	1469	1091
12	Μ	46	1261	A ·	1052	Α	1156	1056	0784
13	F	44	1925	Α	1543	Α	1734	1634	1214
14	F	44	1470	Α	1754	A	1612	1512	1123
15	M	59	1816	A	1493	Α	1655	1555	1150
16	F	81	3255	Λ	2699	Α	2974	2874	2135
17	F	24/12	6092	A	6230	Α.	6161	6061	4502
18	F	62	2073	A	2965	A	2519	2419	1797
19	M	74	1443	A	1274	A	1358	1258	0935
20	F	55	923	Α	1326	Α	1129	1029	764
21	F	7/12	2563	A	2045	Α	2304	2204	1637
22	F	46	1530	Α	1620	A	1575	1475	1170
23	F	49	659	Λ	648	Α	1307	1243	1554
24	F	47	3684	A	3340	Α	3512	3412	2535
25	Μ	39	2464	Λ	948	Α	1706	1606	1193
26	Μ	64	1654	Α	1800	Α	1727	1627	1209
27	M	42	2489	Α	3206	Α	2847	2747	2041
28	F	37	1057	В	2298	A			1414
29	F	24	1173	В	1828	A			1334
30	Μ	45	2116	Α	1807	Α	1962	1862	1383
31	Μ	45	815	Α	738	Α	776	712	0890
32	M	42	1789	Λ	1014	В			1102
33	F	8/12	4390	Α	5052	Α	4721	4621	3433
34	F	52	1905	A	1725	A	1815	1715	1274

F

A

A

TABLE 8: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Breast-Multislice (MITC)

31 30 535 32 52 621 33 34 452	31 30 33 32 52 621	KCC DC TC	121 50 220	30 52 456	29 80 524	28 45 660	27 50 319	26 62 389	25 21 443	24 52 434	23 54 639	22 35 419	21 28 594	20 72 661	19 54 294	18 40 442	17 48 354	16 30 486	15 65 301	14 32 639	13 41 770	12 52 305	11 69 591	10 40 472	9 40 468	8 76 426	7 19 326	6 50 463	5 66 846	4 69 426	3 80 804	2 8M 1337	1 35 545	NO AGE TR	Absorbed Dose	TARLE 9: Ligh
u		Λ	B	A	A	A	В	В	>	Λ	Λ	В	A	Α	A	Λ	Λ	A	A	Λ	Λ	B .	>	Α	Λ	в	Α	N	Λ	A	в	Α	A	GROUP OF DOSIMETER USED	for Thy	f Output
	235	537	292	359	458	1023	250	677	384	345	675	419	623	479	295	468	312	524	489	705	903	318	485	567	865	358	331	550	810	509	863	2069	809	TL	roid-N	of Do
	В	Α	в	כס	A	A	В	B	A	A	A	в	A	A	A	A	Α.	Α	A	A	A	B	Α	Λ	A	В	A	>	A	A	в	A	Α	GROUP OF DOSIMETER USED	Multislic	simeter :
201	344	579	316		491	984	285	533	414	390	657	419	569	402	295	445	333	505	395	672	837	312	538	520	533	392	329	507	828	468	833	1703	577	AVERAGE TLD OUTPUT DIGITS	e (MP	and Ca
	280	479	216	259	391	884	221	433	314	290	557	353	469	302	195	345	233	405	295	572	737	248	438	420	433	328	229	407	728	368	769	1603	477	AVERAGE MINUS BACKGROUND	Shah)	Iculated S
0152	0350	0356	0270	0293	0290	0657	0276	0541	0233	0215	0414	0443	0348	0224	0142	0256	0173	0300	0219	0425	0547	0310	0325	0312	0322	0410	0170	0302	0540	0273	0961	1190	0354	SKIN DOSE CALC mrads		kin

ADS	orb	ed Dos	es for	Inyrol	Id-IVIU	itistice (I	mic)		
No	SEX	AGE YRS	TR (DIGITS)	GROUP OF DOSIMETER USED	TL (DIGITS)	GROUP OF DOSIMETER USED	AVERAGE TLD LIGHT OUTPUT DGITS	AVERAGE MINUS BACKGROUND	SKIN DOSE CALC mrads
1	M	67	336	A	396	Α	360	260	0193
2	F	50	687	A	767	A	724	624	0463
3	M	50	887	Δ	821	Α	854	754	0560
4	M	31	342	A	528	A	435	355	0249
5	F	32	345	Α	351	A	340	240	0178
6	F	32	381	В	423	В	402	338	0422
7	M	55	648	Α	644	A	640	240	0401
8	F	12	857	Α	779	A	810	338	0527
9	F	49	386	Α	376	Α	381	540	0208
10	F	47	647	Α	489	Α	560	710	0342
11	M	33	551	Α	560	A	555	281	0338
12	M	46	674	Α ·	255	A	465	460	0271
13	F	44	1032	Α	737	A	885	455	0583
14	F	44	559	Α	468	Α	513	365	0309
15	M	59	611	Α	639	A	625	785	0390
16	F	81	526	Α	484	Α	505	413	0301
17	F	24/12	2207	Α	1698	A.	953	525	0377
18	F	62	493	Λ	497	Α	495	405	0286
19	M	74	553	Α	485	Α	519	419	0311
20	F	55	532	A	531	Α	530	430	0319
21	F	7/12	941	A	923	Α	932	832	0618
22	F	46	850	Α	691	Α	770	670	0497
23	F	49	296	В	325	В	310	246	0307
24	F	47	991	Α	889	Α	940	840	0624
25	Μ	39	471	Α	480	A	475	375	0279
26	M	64	559	Α	640	A	599	499	0371
27	M	42	613	Α	608	Α	610	510	0379
28	F	3	684	В	1258	Α			0817
29	F	24	621	В	604	Α			0535
30	M	45	524	Α	416	Α	370	370	0274
31	M	45	255	В	510	Α			0272
32	Μ	42	250	В	311	В	217	217	0271
33	F	8/12	1337	Α	2069	А	1603	1603	1190
34	F	52	426	Α	426	А	326	326	0242
35	F	52	314	В	320	В	253	253	0316
36	F	6	892	A	997	Α	944	844	0627

TABLE 10: Light Output of Dosimeter and Calculated SkinAbsorbed Doses for Thyroid-Multislice (MITC)

MEDICAL LIBRART

ON	SEX	AGE	TLD LIGHT OUTPUT.	GROUP OF DOSIMETER USED	LIGHT OUTPUT MINUS BACKGROUND	SKIN DOSE CALC mrads
1	M	69	308	A	208	0154
2	M	19	309	Α	209	0155
3	M	40	117	Α	17	0012
4	M	48	447	A	347	0258
5	M	40	294	A	194	0144
6	M	72	324	A	224	0166
7	M	35	448	В	384	0480
8	M	21	231	Α	131	0097
9	M	50	244	A	144	107
10	M	50	195	В	131	0164
11	M	58	565	A	465	0345
12	М		400	Α	300	0223

TABLE 11: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Scrotum-Multislice (MP Shah)

TABLE 12: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Scrotum-Multislice (MITC)

NO	SEX	AGE YEARS	TLD output DIGITS	TLD OUTPUT MINUS BACKGROUND	SKIN DOSE CALC mrads
1	M	67	149	49	036
2	M	50	233	133	098
3	M	31	430	330	245
4	Μ	55	440	376	470
5	Μ	33	226	126	093
6	M	46	262	162	189
7	M	59	152	52	038
8	M	74	321	321	193
9	M	39	216	116	2 29
10	М	64	693	593	440
11	М	42	227	127	094
12	M	45	212	148	185
13	M	45	237	183	216
14	M	42	396	332	415

201 000	1 10000							
C1-DIGITS	GROUP OF DOSIMETER USED	L2-DIGITS	GROUP OF DOSIMETER USED	L3-DIGITS	GROUP OF DOSIMETER USED	AVERAGE TLD output DIGITS	AVERAGE MINUS BACKGROUN D	SKIN DOSE CALC mrads
		220	Δ	490	A	284	184	140
138	A	237		168	A	258	158	117
438	A	1/0	A	100	A	365	265	197
171	A	282	A	044	A	210	210	156
104	A	224	A	602	A	310	210	72
1/0	Δ	111	A	336	A	199	99	13
147	A	227	Δ	530	A	306	206	153
152	A	100	A	378	A	203	103	77
35	A	198	A	104	A	120	329	244
552	A	552	A	184	A	427	210	230
295	A	438	A	498	A	410	510	177
0 136	B	541	A			338	238	1//
	SLIDIQ 	State Notice State Notice State Notice Indext Notice In	SUIDE Weile Suide 101 102 101 11 102 101 11 102 101 111 102 101 111 111 111 1152 A 237 35 A 198 552 A 552 295 A 438 0 136 B 541	State Rest State Rest Rest	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	StateStateStateStateStateStateStateState 138 A239A490A 138 A239A490A 438 A176A168A 171 A282A644A 104 A224A602A 149 A111A336A 152 A237A530A 35 A198A378A 552 A552A184A 295 A438A498A 0 136B541A $$	State State <th< td=""><td>SUID NOTIFICATION NOTIFICATION NOTIFICATION NOTIFICATION NOTIFICATION SUID JO <t< td=""></t<></td></th<>	SUID NOTIFICATION NOTIFICATION NOTIFICATION NOTIFICATION NOTIFICATION SUID JO JO <t< td=""></t<>

TABLE 13: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Liver-Topogram (MP Shah).

TABLE 14: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Breast-Topogram (MP Shah).

NO	BR-	GROUP OF	BL-	GROUP OF	AVERAGE	SKIN DOSE
	DIGITS	DOSIMETER	DIGITS	DOSIMETER	TLD output	CALC mrads
		USED		USED	DIGITS	
1	415	Λ	219 •	В		238
2	373	٨	253	В		198
3	249	Λ	284	Α	267	198
4	170	Α	170	Α	170	126
5	224	Λ	227	Α	225	167
6	199	В	256	Α		129
7	319	Α	223	В		168
8	293	٨	134	В		103
9	825	Α	564	Α	694	515
10	117	Λ	115	В		25

TABLE 15: Light Output of Dosimeter and Calculated SkinAbsorbed Doses for Scrotum-Topogram (MP Shah).

NO	GROUP OF DOSIMETER USED	TLD OUTPUT DIGITS	OUTPUTMINUS BACKGROUND	SKIN DOSE CALC Mrads
1	Α	187	87	64
2	Α	590	490	364
3	Α	209	109	81
4	А	116	16	72
5	A	587	487	361
6	A	511	411	305

1.10	1 (1) (1)	GROUP OR	1 111			LANDRAGE	01/111
NO	TR-	GROUP OF	IL-	GROUP OF	AVERAGE	AVERAGE	SKIN
	digits	DOSIMETER	digits	DOSIMETER	TLD	MINUS	DOSE
		USED		USED	OUTPUT	BACKGROUND	CALC
					DIGITS		mrads
1	107	В	124	В	115	31	38.8
2	64	В	106	В	85	1	1.25
3	112	В	170	В	141	54	675
4	96	В	79	В	875	3.5	4.4
5	92	В	85	В	88.5	4.5	5.6
6	110	В	134	Α			25.3
7	154	Α	271	В			136.8
8	71	В	119	В	95	11	13.8
9	135	Α	177	Α	150	50	37.2
10	94	В	112	Α			10.7

TABLE 16: Light Output of Dosimeter and Calculated Skin Absorbed Doses for Thyroid-Topogram (MP Shah).

DATA ANALYSIS

Mean doses for the two types of CT procedure were compared. Geometrical mean was used for comparison due to varied doses between subjects resulting into skew-ness of distribution. Test of significance was calculated using one-way analysis of variance and independent student t-test statistics (F, t-statistics with a 95% confidence interval and 5% level of significance).

Data was entered and managed using SPSS for windows version10.0 on IBM compatible computer system.

DISCUSSION.

There were no significant differences in skin doses during sequential or spiral abdominal CT scanning in this study. For example doses to the skin overlying the liver, breasts, thyroid and testis were as follows; Liver (Conventional – 88.8 mGy, Spiral – 92.8 mGy), Breast (Conventional – 9.89 mGy, Spiral – 10 mGy), Thyroid (Conventional – 2.85 mGy, Spiral – 2.52 mGy) and Testis (Conventional – 1.23 mGy, Spiral – 1.33mGy).

Skin doses during multislice CT was highest to Liver, followed by the Breast, Thyroid and lowest for Testis. The liver being an abdominal organ receives direct CT beam during abdominal scanning, and hence got the greatest dose. Dose to skin overlying the breast was lower than liver skin dose but greater than thyroid and testicular skin dose. The breast is anatomically closer and sometimes overlies the upper quadrant of the abdomen and would therefore get higher dose than the thyroid and the testis, which are out of the scan field during abdominal scanning.

Doses during multislice scanning were generally higher than doses during the topogram phase of the study except for the testis where they were almost equal. For example skin doses for liver (Conventional - 88.8 mGy, Spiral - 92.8 mGy and Topogram 1.1 mGy), Breast (Conventional - 9.89 mGy, Spiral - 10 mGy and Topogram 1.2 mGy), Thyroid (Conventional - 2.85 mGy, Spiral -2.52 mGy and Topogram - 0.127 mGy), Testis (Conventional - 1.23 mGy, Spiral - 1.33 mGy and Topogram - 1.22 mGy). Testicular skin dose was low in both the Topogram and Multislice studies but the topogram examinations contributed 95.3% while 4.7% of the dose was from the Multislice examination. The skin dose to the testis during CT abdominal examination is therefore mainly as a result of the topogram and not scatter radiation from the Multislice scans. The testis normally receives direct CT beam during topogram study; however, during Multislice scanning the most inferior slice is taken at the level of the iliac crest well above the normal anatomical location of the testis

The thyroid gland is not scanned directly during either the multislice or the topogram phase of the study. The dose to the skin overlying the thyroid gland was mainly due to scatter radiation (96.4%) during multislice scanning as the topogram contributed only 3.6% of the skin dose.

The skin doses during abdominal CT scanning in this study were generally well below the threshold dose required to induce deterministic effects like causing temporary sterility, skin erythema and Lens cataracts (22).

The skin doses in this study were assessed during the pre intravenous contrast media phase. In most diagnostic studies contrast media is given to opacify blood vessels to improve on delineation of vascular lesions.

This study was limited to the pre-contrast media phase because of the differences in protocols between the two centres regarding post intravenous contrast media study. The skin doses in this study were therefore lower than the actual skin doses in instances where post intravenous scanning was done.

There were variations in skin doses between different subjects. This was attributed to the differences in subject sizes leading to the differences in the number of CT slices required to scan the whole abdomen. Attenuation of X-rays and scatter also depend on tissue thickness and this may lead to dose variations between subjects of different sizes.

In this study there was no significant difference between the skin doses during spiral and during conventional abdominal CT scanning. This was different from studies by other investigators like Becker CR, *etal* (33) who found spiral abdominal CT to deliver effective dose of 7 mSv compared to conventional abdominal CT (20 mSv).

Dr. Changale in his Mmed Dissertation (34) on doses during CT of paranasal sinuses using the same equipment as the ones used in this study found spiral CT to deliver lower dose compared to

conventional CT. The differences in my study and these studies could have been due to differences in selected parameters e.g. slice thickness, kV, mAs and pitch. Despite no significant difference in skin doses during conventional and Spiral abdominal CT, the spiral CT still had superior clinical advantages. It was more suitable for use in paediatric patients where it had the advantage of reducing the motional blur associated with voluntary movements and hence reduced the need for repeat scanning to get better quality images. The use was therefore accompanied with overall reduction in radiation dose.

Skin doses in this study were almost comparable with findings of McCrohan JL, *etal* (26) and Mini RL, *etal* (27) who found skin doses to adults from multiple adjacent CT slices as 30 - 70 mGy (3.0 - 7.0 rad) per head scan series and 20 - 50 mGy (2.0 - 5.0 rad) for each abdominal series.

In other studies by Ware DE, *etal* (29), Becker CR *etal* (33) and Van Unnik JG, *etal* (30) who used computerized tomographic dose index (CTDI) and effective dose as a method of estimating dose to various parts during abdominal scanning, the effective dose and effective dose equivalent were found to range between 4 - 24 mSv for CT abdomen. These results differed from the ones in this study due to the differences in radiation quantity assessed. In CT examinations the assessment of equivalent dose to an organ or effective dose to the whole body, presents a better picture of the associated health hazards in comparison to the assessment of skin dose (28).

RECOMMENDATIONS

1. Shielding for patients.

Previous studies have shown the usefulness of shielding the radiosensitive organs during CT examinations. During abdominal CT examinations the thyroid, testis and breast can be shielded to reduce the dose. For the thyroid and testis, lead cloth can be used as they are out of the scan field during abdominal CT and would not affect the image. With the breast, radio-transparent materials e.g. bisthmuth can be used as shown in studies by Hopper KD *et al* (32). The study showed that the image quality was not degraded. The breast can also be suspended up in the chest to avoid direct CT beam.

2. Paediatric protocols.

Paediatric protocols should be designed, since radiation dose to children is a special concern. Scanning should be done to the lowest possible mAs that would not affect image quality and will give minimum dose. These protocols can usually be worked between the manufacturers and the radiologists.

3. Awareness of the need for dose management.

There is need to enhance dose information to the clinicians. There was an instance when a CT scan was requested for a neonate as a follow up on abdominal mass previously seen during antenatal obstetric scanning. Ultrasound would have been the first modality of choice in this case. Clinicians should therefore be advised on the use of other imaging modalities like ultrasound, which delivers no radiation when there is no appropriate justification for CT scan as the first modality of choice.

4. Dose efficiency regarding CT machines.

The CT machines should be regularly monitored for radiation doses delivered to patients to ensure that the doses remain low.

REFERENCES

- Hounsfield G.N. Computerized transverse axial scanning (Tomography). 1 Description of a system, British Journal of Radiology 1973; 46: 1021 – 1022.
- 2. Seminars in Roentgenology, Vol. X11, NO.1 (January) 1977.
- 3. Horocks J A, Speller RD. 1994 Helical Computed Tomography: Where is the cut? Br J Radiol 67:107-111.
- 4. Kalender W.A Seissler W *et al.* Spiral volumetric CT with single breath hold technique, continuous table transport and continuous scanner rotation. Radiology 1990; 176: 181-183.
- Peter Danson, William R. Lees on Multislice Technology in Computed Tomography. Clinical Radiology 2001; 56: 302 – 309.
- 6. Hu H, He HD, Foley WD, Fox SH. Four multi- detector-row helical CT: Image quality and volume coverage speed. Radiology 2000; 215:55-62.
- Polacin A, Kalendar WA, Marchal G. Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology 185: 29-35.
- 8. Geoffre D, Rubin MB, Michael D. Dake, Sandy A. Napel, PLD. Charles H. McDonnell, R. Brooike, Jeffrey, Jr. Threedimensional spiral CT Angiography of the abdomen. Initial clinical experience. Radiology 1993; 186: 147-152.
- Corinne B. Winston, Richard J. Wechsler, Ana M. Salazar, Alfred B. Kurtz, Paul. Spirn. Incidental pulmonary emboli detected at helical CT: effect on patient care. Radiology 1996; 201: 23-27
- Avian R. Van Erkel, Astrid B. Van Rossum, Johan L Bloem, Job Kievit, Peter M.T. Pattynama. Spiral CT Angiography for suspected pulmonary embolism: A Cost-effective analysis. Radiology 1996; 201: 29-36.

- Leslie E. Quint, Isaac R. Francis, and *et al.* Evaluation of Thoracic Aortic disease with the use of Helical CT and multiplanar reconstruction: Comparison with surgical findings. Radiology 1996; 201: 37-41
- Mark E. Mulins, Moritz F. Kircher, and *et al.* Evaluation of suspected Appendicitis in children using limited helical CT and colonic contrast material. American Journal of Roentgenology, 176, January 2001; 37-41.
- 13. Jonathan B. Krustal, Kamel R. Ihab, Mary T. Keogan and *et al* on multi detector CT of potential right lobe liver donors. America Journal of Roentgenology 2001; 176; 1: 193-199.
- 14. Silverman SG, Tuncali K, Adams DF and *et al.* CT Fluoroscopyguided abdominal intervention techniques, results and exposure. Radiology 1999; 212: 673-681.
- 15. Shrimpton PC *et al*: Survey of CT practices in the UK1. Aspects of examination frequency and quality assurance. National Radiological Protection Board Publication NO. NRPB-R248.
- 16. Shrimpton PC, Jones DG *et al.* Survey of CT practice in the UK 11. Dosimetric effects. NRPB. Publication NO. NRPB-R249.
- 17. Shrimptom PC, Edyvean S. CT scanner dosimetry. British Journal Radiol 1998; 71:1-3
- Evens RG, Mettler FA. NATIONAL CT use and radiation exposure: United States 1983. America Journal of Roentgenology 1985; 144:1077-1081
- Bahador B. Trends in diagnostic imaging to 2000. London: Financial Times Pharmaceuticals and Health Care Publishing, 1996
- 20. Mckinlay, AF. Thermo-luminescence Dosimetry- medical Physics Handbook. Published by Adam Hilger Ltd. 1981:56-7
- UNSCEAR, Source, Effects and Risks of Ionising Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 1988. Report to the General Assembly with Annexes. United Nations, NEW YORK, 1988, PG 425 – 440.

- 22. International Commission on Radiological Protection. 1990 Recommendations of the ICRP. In: Annals of the ICRP, Vol. 21, No 1 – 3. ICRP publication 60. Oxford, England: Pergamon, 1991.
- Recommendations of the International Commission on Radiological Protection: Adopted January 17th, 1977. International Commission on Radiological Protection Publication 26 Oxford, England: Pergamon, 1977.
- 24. National Research Council. Health effects of exposure to low levels of ionizing radiation (BEIR V). Washington, DC: National Academy press, 1990; 278-279.
- 25. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1986, Report to the General Assembly Pg. 17 and 18.
- McCrohan JL, Patterson JF, Gagne RM, Goldstein HA. Average radiation doses in a standard head examination for 250 CT systems. *Radiology* 1987; 163: 263 – 268.
- Mini RL, Vock P, Mury R, Schneebeger TA. Radiation exposure of the patients who undergo CT of the trunk. *Radiology* 1995; 195: 557 562.
- 28. Huda W. Radiation dosimetry in diagnostic radiology. American Journal of Roentgenology 1997; 169: 1487-1488.
- 29. Dan E. Ware, MDMD, Walter Huda PhD Patricia J. Mergo, MD and Antony L. Radiation effective doses to patients undergoing abdominal CT Examinations. Radiology 1999, 210-645-650.
- 30. Van Unnik JG, Broerse JJ, Geleijns J, Jansen JT, Zoetelief J, Zweers D. Survey of CT techniques and absorbed dose in various Dutch hospitals. Br J Radiol 1997 Apr; 70(832): 367-71.
- Brash BC, Cann Ce. Computed Tomographic scanning in children. An updated comparison of radiation dose and resolving power of commercial CT scanners. American Journal of Roentgenology 1982; 138: 127-133.

- 32. Golin U, Orchard D, Heuser L 1994. Radiation Exposure in CT using Somatom plus S. In: Pokierser H, Lechner G (eds). Advances in CT using 111: Springer-Verlag Berlin P 118.
- 33. Becker CR, Schatzl M, Feist H, Bauml A, Bruning R, Schopf UJ, Reiser MF. Radiation exposure during CT examination of thorax and abdomen. Comparison of sequential, spiral and electron beam computed Tomography. Radiology 1998 Sep; 38(9): 726-9
- 34. Dr. Changale H B. Radiation to patients during CT scans of the Para nasal Sinuses. 2002 M. med dissertation.
- 35. KD Hopper, SH King, ME Lobell, TR TenHave and JS Weaver. Department of Radiology, Penn State University, Hershey, PA 17033, USA. The breast: in – plane x-ray protection during diagnostic thoracic CT – shielding with bismuth radio protective garments. Radiology, Vol. 205, 853-858, copyright 1997 by Radiological Society of North America.
- 36. Proceedings of the British Institute of Radiology (British Journal of Radiology 1991; 64: 1167-1168).
- Mayo JR, Hartman TE, Primiach SL, Vedals Muller NL, CT of chest. Minimal tube current required for good image quality with least radiation dose. American journal of Roentgenology 1995; 164:603-607.
- Naidich DP, Gribbone, Arams RS, M Couley. Low dose CT of lungs. Preliminary observation. Radiology 1991; 138: 449-484.
- Mayo JR. Whittal KP. Leung Ann *et al.* Simulated dose reduction in conventional chest CT. Validity study. Radiology 1997; 202: 453-457

APPENDIX 1: Data Collection Sheet

RADIATION SKIN DOSES TO PATIENTS UNDERGOING ABDOMINAL COMPUTED TOMOGRAPHIC EXAMINATION.

DATA COLLECTION SHEET

CENTRE

SCANNER SIEMENS SOMATON AR/SPIRAL/SEQUENTIAL.

DATE.....

Patients hospital NoAddress.....

Age.....Sex....

CT EXAMINATION REQUESTED: ABDOMEN

INDICATION FOR SCAN

CT PARAMETERS *

KVP..... mAs..... SCAN TIME

SLICE THICKNESS...... NO. OF SLICE.....

GT.....

Dosimeter light output Measurements (digits).

Liver.....

Breast.....

Scrotum.....

Thyroid.....

APPENDIX 2: Informed Consent Form.

INFORMED CONSENT FORM

CENTRE: -

IOF (ADDRESS)

Patient Hospital No.....

I have agreed to take part in the research in which radiation doses will be monitored on me by placing radiation measurements gadgets (dosimeters) on parts of my body namely the neck, breast, abdomen and scrotum (male) as I undergo CT scan examination, and I have been assured that they will not affect the examination.

Patients Signature.....

Witness.....

APPENDIX 3: Light Output Of Groups A & B Dosimeters.

TABLE 17: GROUP A DOSIMETERS

Response	Frequency	Percent	Valid	Cum
Value				D
			Percent	Percent
3493	1	2.8	2.8	2.8
3593	1	2.8	2.8	5.6
3598	1	2.8	2.8	8.3
3620	1	2.8	2.8	11.1
3629	1	2.8	2.8	13.9
3640	1	2.8	2.8	16.7
3643	1	2.8	2.8	19.4
3647	1	2.8	2.8	22.2
3660	1	2.8	2.8	25.0
3661	1	2.8	2.8	27.8
3666	1	2.8	2.8	30.6
3681	1	2.8	2.8	33.3
3687	1	2.8	2.8	36.1
3736	1	2.8	2.8	38.9
2748	1	2.8	2.8	41.7
2752	1	2.8	2.8	44.4
2762	t	2.0	2.8	47.2
3766	1	2.8	2.8	50.0
3700	1	5.6	5.6	55.6
3709	2	2.0	2.8	58 3
3///	1	2.0	2.0	61.1
3778	1	2.0	5.6	66.7
3799	2	3.0	2.0	69.4
3806	1	2.0	2.0	72.2
3810	1	2.8	2.0	72.2
3821		2.8	2.0	75.0
3877	1	2.8	2.0	90.6
3886	1	2.8	2.8	80.0
3887	1	2.8	2.8	03.3
3888	1	2.8	2.8	80.1
3899	1	2.8	2.8	88.1
3900	1	2.8	2.8	91.7
3940	1	2.8	2.8	94.4
3955	1	2.8	2.8	97.2
4394	1	2.8	2.8	100.0
TOTAL	36	100.0	100.0	

Mean Mode Kurtosis S E Skew Maximum X Multiple	3770.472 3769.000 6.746 .393 4394.000 modes exist.	StderrStddev1S EKurtRange9Sum1357The smallest val	25.598 53.590 .768 901.000 37.000 ue is shown.	Median variance Skewness Minimum	3767.500 23589.799 1.791 3493.000	
Valid cases	36	Missing cases	0			
Set 2	Grou	p B Dosimeters	TABLE 6			
	Respo	onse			Valid	Cum
Value label	Value	Frequency	Percent	Percent	Percent	
	2006	1	2.8	5.9	5.9	
	2074	1	2.8	5.9	11.8	
	2094	1	2.8	5.9	17.6	
	2133	1	2.8	5.9	23.5	
	2190	1	2.8	5.9	29.4	
	2198	- 1	2.8	5.9	35.3	
	2222	1	2.8	5.9	41.2	
	2246	1	2.8	5.9	47.1	
	2258	1	2.8	5.9	52.9	
	2267	1	2.8	5.9	58.9	
	2279	1	2.8	5.9	64.7	
	2310	1	* 2.8	5.9	70.6	
	2329	1	2.8	5.9	76.5	
	2353	1	2.8	5.9	82.4	
	2387	1	2.8	5.9	88.2	
	2393	1	2.8	5.9	94.1	
	2477	1	2.8	5.9	100.0	
		19	52.8	Missing		
	Total	36	100.0	100.0		
Mean Mode	2248.000 2006.000	Std err Std dev	30.193 124.490	Median Variance	2258.000 15497.750	
Kurtosis	.302	S E Kurt	1.063	Skewness	.192	
S E Skew Maximum	.550 2477.000	Range Sum	471.000 38216.000	Minimum	006.000	

X Multiple modes exist. The smallest Value is shown,

Valid cases 17 Missing cases 19

APPENDIX 4: Dose Calculations.

GROUP A: the mean light response was 3770.472. Standard deviation: 153.590.

Variation: = <u>153.6 x 100</u> = 4% 3770.5

Group B: Mean response was 2248. Standard deviation was 124.490. Variation was 5.5%.

Response Per mRad For group A: 3770.4digits/2800mrad = 1.346digits/mrad

For Group B dosimeters: 2248 digits/2800mrad 0.8digits/mrad.

The light outputs of the dosimeters from group A and B were divided by 1.346 and 0.8 respectively in order to get the skin doses.

To get the final doses the mean doses were further divided by 1.3 to take care of the difference in response of the dosimeters to CT and cobolt-60 radiation.

APPENDIX 5: Geometric Means

LIVER

TYPE1: SEQUENTIAL CT (MP SHAH) TYPE 2: SPIRAL CT (MITC)

Report

DOSE 1 Rad

ТҮРЕ	Mean	N	Std. Deviation	Geometric	F	p
1 2 Total	12.3028 12.5286 12.4141	36 35 71	4.3358 3.2068 3.7957	11.5377 12.0637	0.62	0.804

BREAST

MEDICAL LIBRARY

Type 1: Sequential Scan Type 2: Spiral CT

Report

DOSE (mrad)

ТҮРЕ	Mean	N	Std. Deviation	Geometric Mean	F	p
1	1436.37	35	788.31	1286.76	0.000	
2	1462.00	34	718.18	1302.27	0.020	0.888
Total	1449.00	69	749.12	1294.38		
				di seconda di		

THYROID

Type 1: Sequential Scan Type 2: spiral Scans

Report

DOSE (mrad)

ТҮРЕ	Mean	N	Std. Deviation	Geometric Mean	F	p-value
1	406.86	36	198.58	371.78	0.607	0.438
2	368.74	35	213.46	328.28		
Total	388.07	71	205.47	349.66		

TESTIS

Type 1: Conventional/ Sequential Scans Type 2: Spiral CT Scans

Report

DOSE (mrad)

Туре				G	F	p-value
	M	N	Std. Deviation	Mean		1
1	210.07	14	142.79	161.52	0.62	0.804
2	192.08	12	123.18	148.07		
Total	201.77	26	131.76	155.17		