THE NORMAL HILAR HEIGHT RATIO IN KENYAN AFRICANS;

 A STUDY AT KENYATTA NATIONAL HOSPITAL, NAIROBI.A dissertation submitted in part-fulfillment for the degree of; MASTER OF MEDICINE in
r
DIAGNOSTIC RADIOLOGY UNIVERSITY OF NAIROBI ${ }_{y}$ ' by
Dr. WANENE GICHANGA LIVINGSTONE, MB,chB. (NAIROBI) JULY 1995

DECLARATION

CANDIDATE:

This dissertation is my original work and has not been presented for a degree in any other university

Dr. Wanene Gichanga Livingstone, MB,Ch.B. (Nairobi)

SUPERVISOR:

This dissertation has been submitted for examination with my approval as university supervisor.

MB.,Ch.B., M.Sc, M.Med.
ASSOCIATE PROFESSOR,

DEPARTMENT OF DIAGNOSTIC RADIOLOGY,
UNIVERSITY OF NAIROBI.

TABLE OF CONTENTS

AIMS 1
SUMMARY 2
INTRODUCTION AND LITERATURE REVIEW 3
STATEMENT OF PROBLEM 6
METHODOLOGY 7
SAMPLE SIZE DETERMINATION 12
ANALYSIS OF DATA 13
RESULTS 17
DISCUSSION 28
REFERENCES 34
ACKNOWLEDGEMENTS 37
APPENDIX (Input \& Output from spss) 38

AIMS

1. To determine the normal left hilar height ratio.
2. To determine the normal right hilar height ratio.
3. To determine whether there is any statistical difference in the normal hilar height ratio between the sexes.
4. To determine whether there is any statistical difference in the normal hilar height ratio between the age groups 15-24 years, 25-34 years and 35-44 years.
5. To determine whether there is any statistical difference between the left and the right hilar height ratio.

SUMMARY

The Hilar Height ratio (HHR) is a numerical expression of the radiographic observation that in the normal state the right hilus is positioned in the lower half of the right hemithorax while the left hilus is situated in the upper half of its hemithorax. It is calculated by dividing the distance from the hilus to the lung apex by the distance from the hilus to the diaphragm.

This study was done to establish standard baseline values in the Kenyan African and to compare the figures obtained with studies done previously, mainly in the non-African Caucasian population.

Chest radiographs (Posterior anterior view) of Kenyan Africans which are taken for routine screening exams were analysed in this study. These radiographs were used to determine the hilar height ratio. The study was both retrospective and prospective.

The left hilar height ratio was found to be 0.857 while the right hilar height ratio was found to be 1.195. In no instance was the left hilar height ratio greater than one or the right hilar height ratio less than one. This compares favourably with a study done by Homer M.J. in 1978 (he found the left HHR to be 0.84 and the right HHR to be 1.31). I suggest therefore that this ratio be adopted in evaluating PA erect chest films to aid in diagnosis of chest and subpulmonic diseases.

The use of X-rays in the diagnosis of chest pathology dates back to the last century, one year after the discovery of X-rays by Conrad Roentgen in November 8, 1895. Dr. Williams F. H. in the Boston Medical and Surgical Journal (Now the New England Journal of Medicine) of April 30, 1896 was reported to have demonstrated the use of this new imaging modality in diagnosis of diseases of the chest. ${ }^{(2)}$

Today, even with the proliferation of different and more sophisticated imaging modalities (Ultrasound, Computerised tomography, Magnetic resonance imaging), the chest X -ray is still a widely used primary investigation for diseases of the chest and it is also used for routine medical examinations in some parts of the world. This is because the chest X-ray is easy to do, comparatively cheaper to perform and still provides valuable clues to diagnosis of chest pathology. Harrison's Principles of Internal Medicine puts it this way "The roentgenographic examination of the chest represents the cornerstone of the diagnostic workup of the patient with suspected pulmonary disease.."(6)

In a study done by Onditi E. in Nyeri provincial hospital in 1989 the commonest radiological investigation requested was the chest X -ray ${ }^{(9)}$ and this is generally true for most of the other hospitals in Kenya, Kenyatta National Hospital included (the area of this study). In this same study in Nyeri
provincial hospital the commonest cause of lung morbidity was found to be lung infections (Pneumonias 35\%, Tuberculosis $11 \%)^{(9)}$

In a study conducted in 1983 by Aluoch J.A. on passive case finding in pulmonary tuberculosis in Kenya he noted that 13% of patients were diagnosed within one month of reporting to a health unit, 62% were diagnosed after 6 months and 13% were diagnosed after 6 months. 50% were diagnosed by microscopy, 42% were diagnosed by both microscopy and radiology and 9% by radiology alone. He concluded therefore that there was need to improve diagnostic procedures for tuberculosis in Kenyan health services. ${ }^{(1)}$

Alterations of pulmonary volume accompanies many chest infections and recognition of these alterations is important in establishing pathological changes in the lung.

Hilar displacement is among the important signs of pulmonary volume change. The classic papers by Robbins and Hale ${ }^{(9)}$ and later investigations by Lumbert and Krause establish the usefulness of the recognition of the hilar positional change in the evaluation of lobar volume $\operatorname{loss}^{(10,1)}$. While these authors detailed the characteristic hilar changes in each type of lobar collapse, they did not attempt to quantify how much hilus must be displaced before it can be considered abnormally positioned.

In a study conducted by Felson he found the left hilus to be higher than the right in 97% of cases and at the same height in 3%. The right hilus was
never higher than the left. ${ }^{(3)}$ When volume changes exist without alterations of the relative hilar heights, then this observations are of little help in their detection.

Homer M.J. in October 1978 suggested a method of evaluating Hilar positional changes other than by comparison with the opposite side and proposed the Hilar Height ratio. ${ }^{(7)}$

The Hilar Height ratio is a numerical expression of the radiographic observation that in the normal state, the right hilus is positioned in the lower half of the right hemithorax while the left hilus is situated in the upper half of its hemithorax. Standard textbooks of chest radiology do not make reference to its relationship nor discuss its usefulness. ${ }^{(5,14)}$

Knowledge of the normal HHR allows evaluation of hilar positional changes even when the relative hilar positions are not altered. Lobar collapse or over-aeration can be confirmed by an abnormal HHR. Subpulmonic and subdiaphragmatic processes may alter the HHR and therefore this ratio is useful in their detection.

STATEMENT OF PROBLEM

Alteration of the pulmonary volume can be diagnosed on a chest radiograph when there is reversal of the normal relative positions of the hili. However bilateral volume changes or early unilateral changes may be present without affecting the relative hilar heights. It is advantageous therefore to establish a way of evaluating hilar positional changes other than by comparison with the contralateral side.

Knowledge of the normal HHR allows evaluation of hilar positional changes even when the relative hilar positions are not altered. Lobar collapse or over-aeration can be confirmed by an abnormal HHR. Subpulmonary and subdiaphragmatic processes may alter the HHR and therefore this ratio is useful in their detection.

METHODOLOGY

Chest radiographs (Posterior anterior view) of patients who came for routine screening exams were used in this study. To be classified as normal, the clinical history had to state that the radiograph was obtained as a routine screening exam and the films had to be reported as normal by a consultant radiologist. The inspiratory effort was judged to be adequate if the cupola of the right diaphragm was positioned between the $5^{\text {th }}-6^{\text {th }}$ ribs anteriouly. The films that were used had to have good tissue penetration so that the anatomical landmarks could be clearly visualised.

The hilar landmarks on the right side was the angle formed by the main right upper lobe pulmonary vein coursing inferiorly, and the right basal pulmonary artery coursing inferiorly. This lateral angle is a convenient landmark of the midpoint of the right hilus.

The midpoint of the left hilus was that point which is equidistance from the superior edge of the hyparterial left bronchus and the uppermost vessel contributing to the density of the hilus.

The hilar height ratio was evaluated on the right and left side for each patient. A line parallel to the thoracic spine was drawn from the highest point of the pulmonary apex to the diaphragm. An intersecting line was then drawn from the midpoint of the hilus perpendicular to the vertical line. The ratio of
the distances from the pulmonary apex to the hilus, and the hilus to the diaphragm was obtained. Measurements were determined to the nearest 5 mm (this is a practical measure of accuracy for the Hilar Height ratio since the accuracy of the landmarks are not more precise than this). This information was then recorded along with the patients age and sex in a questionnaire. A sample of the questionnaire used is shown on the next page.

HILAR HEIGHT RATIO QUESTIONNAIRE

Case number
Age; X-ray Number
$\operatorname{Sex}(\mathrm{M} / \mathrm{F})$

Hilar Height measurements

Left \qquad b

Right
a \qquad b \qquad

Comments (if Any)

DIAGRAMMATIC ILLUSTRATION OF THE HILAR HEIGHT RATIO

(HHR) CALCULATION.

Diagrantmatic illustration of the hilar height ratio (HHR) calculation. Right HIHR $=a / b ;$ Left HHR $=c / d$. The lateral angle, designating the midpoint of the right hilus, is formed by the right upper lobe pulmonary vein (PV) crossing the right basal pulmonary artery (PA). The left hyparterial bronchus (II) must be identified in order to determine the midpoint of the left hilus(*). ${ }^{(7)}$

Routine chest X-ray of a healthy 24 year old male. Both hilar height ratios were normal.

SAMPLE SIZE DETERMINATION

The ideal sample size for this study would have ideally been estimated using the formulae given below

$$
\mathrm{n}=\frac{[\mathrm{z}(1-\mathrm{a} / 2)]^{2} \mathrm{p}(1-\mathrm{p})}{\mathrm{d}^{2}}
$$

Where

$\mathrm{n}=$ approximate sample size
$\mathrm{p}=$ estimated Kenyan African population over 15 years of age
$d=$ Required precision of confidence interval (10\%)
$z(1-\mathrm{a} / 2)=$ Standard deviation (1.96)

To carry out a study of the above magnitude would however have required a lot of resources as it would have had to be done country wide and have involved active recruitment of clients. This study was a pilot study whereby no active recruitment of clients took place. In future, with more resources a country wide study can be done to get a more statistically accurate HHR ratio. In the study by Homer he analysed 90 films ${ }^{7}$. In my study I analysed 189 chest films.

ANALYSIS OF DATA

The data collected was analysed by computer. The computer used was an IBM compatible and the package used was SPSS (statistical package for the social sciences).

The data was entered into the computer using SPSS/DE a data entry module of SPSS. This data was cleaned and verified using this same package. The analysis was than done using SPSSPC the analysis module of SPSS. The final write was done using WORD PERFECT a word processing package.

The statistics that were used in the study are

1. Mean ${ }^{(13)}$

$$
-\underset{i=1}{N} X_{i} / N
$$

Where

$$
\begin{aligned}
& \bar{X}=\text { Mean } \\
& \mathcal{B}=\text { Sigma (i.e. Total) }
\end{aligned}
$$

$\mathrm{N}=$ Number of cases
$X_{i}=$ Value of Variable (Here HHR) for the $\mathrm{i}^{\text {th }}$ case
(i.e. the sum of all values for HHR divided by the total number of cases)
2. Variance ${ }^{(13)}$

$$
S^{2}=\bigotimes_{i=1}^{N}\left(X_{i}-X\right)^{2} / N-1
$$

Where
$\Theta=$ Sigma (i.e. Total)
$\mathrm{N}=$ number of cases
$\mathrm{X}_{\mathrm{i}}=$ Value of Variable(HHR) for the i th case
$\overline{\mathrm{X}}=$ Mean
(i.e. Variance is calculated by summing the squared differences from the mean for all observations and dividing by one less the number of observations)

3. Standard deviation ${ }^{(13)}$

This is the square root of the variance and is therefore the value denoted by S above.
4. Standard error ${ }^{(13)}$

This is the standard deviation of the sampling distribution of the mean and is given by

$$
S_{x}=S / N^{0.5}
$$

Where S is the sample standard deviation
N is the sample size (Raised to power 0.5 i.e. square root)

4. $\mathrm{T}^{-T e s t}{ }^{(13)}$

In analysing the data a statistical test was used to check whether the observed differences in the mean HHR were statistically significant. To do this the T-Test was used to test the null hypothesis that there is no statistical difference in the observed differences for the various subpopulations that were compared (i.e. Different age groups, Different sexes, Difference between left and right HHR). The formula that was used to calculate the t value is shown below.
$t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\left(\mathrm{~S}_{1}^{2} / \mathrm{N}_{1}+\mathrm{S}_{2}^{2} / \mathrm{N}_{2}\right)^{0.5}}$
Where
$\mathrm{X}_{1}=$ Sample Mean of group 1 and $\mathrm{X}_{2}=$ Sample mean of group 2
$S_{1}{ }^{2}=$ Variance of Group 1 and $S_{2}{ }^{2}=$ Variance of group 2
$N_{1}=$ Sample size of group 1 and $N_{2}=$ Sample size of group 2

The t value and the degrees of freedom (a function of the sample size in the two groups) is used in establishing the observed significance level. If this is less then $5 \%(0.05)$ then the above null hypothesis is rejected.

All the above calculations were done using the above mentioned
SPSS package.

RESULTS

A total of 189 cases were collected and analysed in this study. Out of these cases 135 were males and 54 cases were female (Figure 1).

Figure 1

The age distribution for the whole group studied is illustrated in the table below (Table 1)

Table 1; Age distribution of the whole study group

Age Groups	Frequency	Percent	Valid Percent
$15-24$ Years	30	22.2	34.5
$25-34$ Years	33	24.4	37.9
$35-44$ Years	21	15.6	24.1
$>=45$	3	2.2	3.4
No age Given	48	35.6	------
	Total	100	100

The mean age distribution of all the cases studied was 27.625 years, with a minimum of 15 years and a maximum of 47 years (standard deviation 7.965 years). 128 cases had the age given while 61 cases did not have their age given. The age distribution is illustrated graphically in figure 2 below

Figure 2

Hilar height ratios were calculated for all the 189 cases collected. It was necessary therefore to carry out statistical tests between the various age groups for the cases where the age was known and between the sexes to find out whether there was a statistical difference in the observed HHR means.

The mean male age was 29.517 years with a minimum of 15 years and a maximum of 47 years. Cases where the age was given were 87 while 48 did not have there ages listed. The mean female age was 23.610 years with a
minimum of 15 years and a maximum of 41 years. 41 cases had there ages listed while 13 cases did not have there ages listed.

The t-test was performed on the various age groups each sex individually for both the left and the right Hilar Height ratio. A breakdown of the age distribution by sex is illustrated in figure 3 .

Figure 3

The t-test results for the male population is tabulated below

T-TEST RESULTS FOR TIIE MALE POPULATION.
Tahle 2a: MALE: Comparison of the mean Left HHR for age groups 15-24 and 25-34

Age Groups	Number of Cases	Mean (cm)	Standard Deviation	Standard Error
$15-24$	30	0.8536	0.084	0.015
$25-34$	33	0.8527	0.075	0.013

	2-tail prob.	Pooled Variance Estimate			Separate Variance Estimate		
F-Value		t-value	Degrees of	2-tail proh.	t value	Degrees of	2-tail Prob.
			freedom			freedom	,
1.24	0.599	0.04	61	0.965	0.04	58.62	0.965

The F-value is used to test whether the two population variances are equal. If the probability of the F-value is small ($<5 \%$) then the two population variances are deemed to be different and the separate variance estimate for the t-value is used. In this case the F-value probability is $59.9 \%(>5 \%)$ and therefore the pooled variance estimate is used. The pooled variance estimate t-test probability is 96.5% and the null hypothesis that the 2 populations are the same is accepted.

Table 2b: MALE: Comparison of the mean Right HHR for age groups 15-24 and 25-34

Age Groups	Number of Cases	Mean	Standard Deviation	Standard Error
$15-24$	30	1.2060	0.119	0.022
$25-34$	33	1.1702	0.128	0.022

		Pooled Variance Estimate			Separate Variance Estimate		
F-Value	2-tail prob.	t-value	Degrees of freedom	2-tail prob.	t value	Degrees of freedom	2-tail Prob.
1.17	0.669	1.15	61	0.256	1.15	60.98	0.255

The F-value probability is 66.9%. The pooled variance estimate is used and the t-test prohability is 25.6% (Null hypothesis accepted, there is no statistical difference between the 2 means).

Table 3a: MALE: Comparison of the mean Left HHR for age groups 15-24 and 35-44

is 14.7% (null hypothesis accepted).

Table 3b: MALE: Comparison of the mean Right HHR for age groups 15-24 and 35-44

Age Groups		Number of Cases	Mean		Standard Deviation		Standard Error
15-24		30	1.2060		0.119		0.022
35-44		21	1.1963		0.118		0.026
		Pooled Variance Estimate			Separate Variance Estimate		
F-Value	2-tail prob.	. t -value	Degrees of freedom	2-tail prob.	t value	Degrees of freedom	2-tail Prob.
1.01	0.995	0.29	49	0.773	0.29	43.38	0.773

The F-value probability is 99.5%. The pooled variance estimate is used and the t-test probability is $\mathbf{7 7 . 3 \%}$ (Null hypothesis accepted, there is no statistical difference between the 2 means).

Table 4a: MALE: Comparison of the mean Left HHR for age groups 25-34 and 35-44

| Age Groups | Number of Cases | | Mean | Standard Deviation | Standard Error |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $25-34$ | 33 | 0.8527 | 0.075 | 0.013 | |
| $35-44$ | 21 | 0.8895 | 0.088 | 0.019 | |
| | | | Porled Variance Estimate | Depres of | |

The F-value probahility is 40.4% therefore the pooled variance estimate is used. The pooled variance estimate prohability is 10.8 (null hypothesis accepted).

Tahle 4h: MALE: Comparison of the mean Right HHR for age groups 15-24 and 35-44

Age Groups	Numher of Cases	Meall	Standard Deviation	Standard Error		
$15-24$	33	1.1702	0.128	0.022		
$25-34$	21	1.1963		0.118	0.026	
F-Value	2-tail prob.	t-value	Degrees of freedom	2-tail prob.	t value	Degrees of

The F-value probability is 69.8%. The pooled variance estimate is used and the probability is 45.7% (Null hypothesis accepted, there is no statistical difference between the 2 means)

The t-test was also carried out on the different female age groups as tabulated helow;

Table 15a: FEMALE: Comparison of the mean Left HHR for age groups 15-24 and 25-34

Age Groups	Number of Cases		Mean	Standard Deviation	Standard Error	
$15-24$	29	0.8399	0.087	0.016		
$25-34$	9	0.8357	0.082	0.027		
		Pooled Variance Estimate	Separate Variance Estimate			
F-Value	2-tail prob.	t-value	Degres of freedom	2-tail proh.	t value	Degrees of
freedom	2-tail Proh.					
1.10	0.948		0.13	36	0.899	0.13

The F-value probability is 94.8% therefore the pooled variance estimate is used. The pooled variance estimate t-test probability
is 89.9% (null hypothesis accepted).

Table 5b: FEMALE: Comparison of the mean Right HHR for age groups 15-24 and 25-34

The F-value probability is 100%. The pooled variance estimate is used and the probability is 23.1% (Null hypothesis accepted, there is no statistical difference between the 2 means).

T-TEST RESULTS FOR TIIE FEMALE POPULATION

Table 6a: FEMALE: Comparison of the mean Left HHR for age groups 15-24 and 35-44

The F-value probability is 49.3% therefore the pooled variance estimate is used. The pooled variance estimate t-test prohability
is 93.4% (null hypothesis accepted).

Table 6b: FEMALE: Comparison of the mean Right HHR for age groups 15-24 and 35-44

Age Groups	Number of Cases		Mean	Standard Deviation	Standard Error		
$15-24$	29	1.1966	0.114	0.021			
$35-44$	3	1.1553	0.084	0.048			
		Pooled Variance Estimate	Separate Variance Estimate				
F-Value	2-tail proh.	t-value	Degrees of freedom	2-tail prob.	t value	Degrees of freedom	2-tail Proh.
1.85	0.822	0.61	30	0.549	0.78	2.83	0.494

The F-value prohability is 82.2%. The pooled variance estimate is used and the probability is 54.9% (Null hypothesis accepted,
there is no statistical difference between the 2 means).
Table 7a: FEMALE: Comparison of the mean Left HHR for age groups 25-34 and 35-44

Age Groups	Number of Cases	Mean	Standard Deviation	Standard Error
$25-34$	9	0.8357	0.082	0.027
$35-44$	3	0.8443	0.105	0.061

		Pooled Variance Estimate			Separate Variance Estimate		
F-Value	2-tail prob.	t-value	Degrees of freedom	2-tail prob.	t value	Degrees of freedom	2-tail Prob.
1.63	0.510	-0.15	10	0.885	-0.13	2.87	0.905

The F-value probability is 51% therefore the pooled variance estimate is used. The pooled variance estimate t-test probability is 88.5% (null hypothesis accepted).

Table 7b: FEMALE: Comparison of the mean Right HHR for age groups 25-34 and 35-44

The F-value probability is 81.4%. The pooled variance estimate is used and the probability is 21.6% (Null hypothesis accepted,
there is no statistical difference between the 2 means).

Because no statistical difference in the mean hilar height ratio was established hetween the age groups for the 2 sexes, it was considered appropriate to include the cases where no ages had been recorded. The t-test was then carried out on all the 189 cases to find out whether there was any difference in the mean hilar height ratio between the sexes. The results are tabulated below;

Table 8a: Comparison of the mean Left HHR for male and female

The F-value probability is 84.8% therefore the pooled variance estimate is used. The pooled variance estimate t-test prohability is 17.5% (null hypothesis accepted).

Table 8b: Comparison of the mean Right HHR for Male and female

Age Groups	Number of Cases	Mean	Standard Deviation	Standard Error
Male	135	1.1869	0.113	0.010
Female	54	1.2161	0.119	0.016

		Pooled Variance Estimate			Separate Variance Estimate		
F-Value	2-tail proh.	t-value	Degrees of freedom	2-tail prob.	t value	Degrees of freedom	2-tail Prob.
1.10	0.643	-1.58	187	0.116	-1.55	93.53	0.125

The F-value probability is 64.3%. The pooled variance estimate is used and the probability is 11.6% (Null hypothesis accepted,
there is no statistical difference between the 2 means).
Therefore the mean HHR for both the left and right side of the chest show no statistical difference between the sexes.

COMPARISON BETWEEN TIIE LEFT IIIIR AND TIIE RIGIIT IIIIR

The data for the hilar height ratio for both the left and the right side was pooled together and the t-test carried out to find out if their was a difference in the two ratios. The results are tabulated below.

Table 8b: Comparison of the Right HHR and the left HHR

| Age Groups | Number of Cases | | Mean | Standard Deviation | Standard Error |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Left | 189 | 0.8574 | 0.082 | 0.006 | |
| Right | 189 | 1.1952 | 0.115 | 0.008 | |

The F-value probability is 0.0%. The separate variance estimate is used and the probability is 0.0% (Null hypothesis rejected,
there is a statistical difference between the 2 means).
There is therefore a statistical difference between the left and the right HHR.

THE LEFT HILAR HEIGHT RATIO

The measures of dispersion for the left hilar height ratio are tabulated below;

Mean	Median	mode	std. dev.	Range	Min	Max
0.857	0.857	0.958	0.082	0.346	0.654	1.000

A histogram of the distribution of the left HHR is illustrated in figure 4.

Figure 4

The 95% confidence limit is 2 standard deviation away from the mean.
The mean left hilar height ratio is therefor 0.857 plus or minus 0.164 . The left hilar height ratio was never larger then one.

THE RIGHT HILAR HEIGHT RATIO

The measures of dispersion for the right hilar height ratio are tabulated below;

Mean	Median	mode	std. dev.	Range	Min	Max
1.195	1.176	1.190	0.115	0.471	1.000	1.471

A histogram of the distribution of the right HHR is illustrated in figure
5.

Figure 5

The 95% confidence limit is 2 standard deviation away from the mean. The mean right hilar height ratio is therefore $\mathbf{1 . 1 9 5}$ plus or minus 0.23 . The right hilar height ratio was never less than one.

DISCUSSION

Hilar displacement is among the most important signs of pulmonary volume change. Robbins and Hale and later Lubert and Krause ${ }^{(9,10,11)}$ established the usefulness of hilar positional change in evaluation of lobar pulmonary changes. While these authors detailed the characteristic hilar changes in each type of lobar collapse they did not attempt to quantify how much a hilus must be displaced before it is considered abnormal.

Felson in a survey of 500 radiographs found the left hilus to be higher than the right in 97% and at the same height in 3%. The right hilus was never higher then the left ${ }^{(3)}$. However when volume changes occur without change in relative hila heights these observations are of little help.

The HHR allows independent evaluation of each hemithorax without comparison with the contralateral side. It is easily derived and is useful in the detection of diverse pathologic processes.

Emphysema that predominantly involves the upper lobes leads to depression of both hila inferiorly. This increase both the left and the right HHR. This is a useful sign for the radiologist and calls for closer scrutiny of the radiograph ${ }^{(7)}$.

Lobar volume collapse can be very subtle and in a setting where the radiologist is busy can sometimes be overlooked. Measurement of the HHR in every chest film can be very useful in alerting the radiologist to a pathologic
process going on in the lung. Examples of patients with lobar collapse are given in the next pages.

Patient with collapse of the left lower lobe, The HHR is markedly altered on the left side. Left $\mathrm{HHR}=1.47$ (the mean Left $\mathrm{HHR}=0.857$ plus or minus 0.164 , this value is greater than 2 standard deviation from the mean and is obviously abnormal)

Patient with collapse of the right lower zone. The HHR is markedly altered on the right side. Right $H H R=2.31$ (the mean right $\mathrm{HHR}=1.195$ plus or minus 0.23 , this value is greater than 2 standard deviation from the mean and is therefore abnormal).

An abnormal HHR may be caused by processes other than pulmonary volume change. Any disease that elevates the diaphragm alters the HHR. It can therefore be useful in the detection of a subphrenic abscess. A subpulmonic effusion can also alter the HHR.

There are some situations where the HHR cannot be applied. This ratio has been arrived at using erect films of adequate inspiratory effort. Supine and decubitus films can alter diaphragmatic heights due to positional effect alone. In many portable films the patients may not be totally upright and the inspiratory effort may not be adequate. Rib cage deformities can alter this ratio and reduce its usefulness. Patients with past history of diseases like tuberculosis may have altered HHR due to healing with fibrosis of lung tissue..

While an abnormal HHR should not be construed as absolute evidence of pathology, its recognition should prompt closer scrutiny for an underlying explanation.

CONCLUSION

In normal patients the right hilus is situated in the lower half of its hemithorax while the left hilus is situated in the upper half of its hemithorax. The left hilar height ratio was found to be 0.857 plus or minus 0.164 (95% confidence limits). It was never greater than one. The right hilar height ratio
was found to be 1.195 plus ar minus 0.23 (95% confidence limits) and it was never less than one.

An abnormal HHR is not always an absolute sign of disease but it should cause the radiologist to carefully scrutinise a chest radiograph for underlying pathology.

REFERENCES

1. Aluoch J.A.; A survey to assess passive case finding in pulmonary T.B. in Kenya. East African Medical journal 60; June 1983.
2. Brecher R.,Brecher E.; The rays. A history of radiology in the United States and Canada 1969.Pages 71 and 78.
3. Felson B: Chest Roentgenology. 1973 pages 185-200.
4. Fraser R.G.,Pare J.A.P.: Diagnosis of diseases of the chest 1970 pages 220.
5. Grainger R.G.,Allison D.J. Diagnostic Radiology
6. Harrisons Principles of Internal Medicine. 11th edition page 1048.
7. Homer M.J.: The Hilar Height ratio. Radiology 129:11-16, October 1978.
8. Lubert M, Krause G.R.; Patterns of Lobar Collapse as observed radiographically. Radiology 56:165-185, Feb 1951.
9. Onditi Elias G.D.; Radiological pattern of chest diseases in a provincial hospital. East African medical journal 66; page 216.
10. Robbins L.L, Hale C.H.; The roentgen appearance of lobar and segmental collapse of the lung: a preliminary report. Radiology 44: pages 107-114, Feb 1945.
11. Robbins L.L., Hale C.H.,Merrill O.E.; The roentgen appearance of lobar and segmental collapse of the lung.
a. Part I. Technic of examination. Radiology 44:471-476, May 1945.
b. Part II. The normal chest as it pertains to collapse. Radiology 44:543-547, June 1945.
c. Part III. Collapse of an entire lung or the major part thereof. Radiology 45:23-26, July 1945.
d. Part IV. Collapse of the lower lobes. Radiology 45:120-127, Aug 1945.
e. Part V. Collapse of the right middle lobe. Radiology 45:260-266, Sept. 1945.
f. Part VI. Collapse of the upper lobes. Radiology $45: 347-355$, Oct 1945.
12. Ruiru J.M.; A study of radiological features as seen on a chest radiograph of a patient with both H.I.V. infection and Tuberculosis. Masters Dissertation submitted 1991.
13. SPSS base manual, Chapter $8,9,10$ and 11 .
14. David Sutton; Textbook of Radiology and imaging, Fourth Edition.

ACKNOWLEDGEMENTS

I am greatly indebted to many people for the help I received in preparing this dissertation, prime among them Prof Kitonyi, my supervisor, for his constant guidance, patience, advise and understanding throughout the study period.

I am also grateful to all the teaching and non-teaching staff of the department of Radiology, university of Nairobi, for their co-operation and understanding. I am particularly grateful to Mr. Nyarenchi, Dr. Wambugu (the current chairperson of the department) and Dr. Wachira (the immediate past chairman) for allowing me use of the departmental computer where the data entry and analysis for this study was carried out. Mr. Nyabola a statician in the deparment of community health, University of Nairobi assisted me in understanding the principles of the statistics used in this study for which I am most greatful. I am also indebted to all staff of the department of radiology K.N.H. for their valuable support in collection of data.

Finally I would like to thank members of my family and friends who extended valuable support, moral or otherwise, during the duration of this study.

APPENDIX (Input \& Output from spss)

The appendices contain a listing of the raw data from spss and the various frequencies and t-tests done in the analysis of data.

GET /FILE 'PWANF2.sYs'.
report /FORMAT AUTOMATIC LIST /VARIABLES CASE AGE XNUM SEX LHHRA LHHRB RHHRA RHHRB LHHR RHHR RAGE (label).
REPORT problem requires 4088 bytes of memory to store specifications for this task.

33	24	4371.93	1	11.012 .0	12.5	9.0	. 92	1.39 15-24 years
34	27	4349.93	1	11.014 .5	13.0	10.5	. 76	1.24 25-34 Years
35	23	4343.93	2	11.514 .5	14.0	11.0	. 79	1.27 15-24 years
36	23	4342.93	2	9.510 .0	10.5	8.5	. 95	1.24 15-24 years
37	18	4138.93	1	11.011 .5	12.0	10.5	. 96	1.14 15-24 years
38	-1	3352.93	1	12.013 .0	12.0	10.0	. 72	1.20
39	37	3957.94	2	11.512 .5	12.5	10.0	. 92	1.25 35-44 years
40	15	9661.93	1	9.510 .5	10.5	9.0	. 90	1.17 15-24 years
41	26	10643.93	2	10.012 .5	11.0	9.0	. 80	1.22 25-34 Years
42	24	10195.93	1	11.012 .0	12.5	11.5	. 92	1.09 15-24 years
43	27	9788.93	1	10.513 .0	12.5	10.5	. 81	1.19 25-34 Year5
44	-1	5898.94	1	9.010 .5	10.0	9.0	. 86	1.11
45	-1	4693.94	1	11.512 .0	12.0	11.0	. 96	1.09
46	-1	4638.94	2	10.012 .0	11.5	8.0	. 83	1.44
47	28	6538.94	1	9.514 .0	12.0	10.0	. 68	1.20 25-34 Years
48	-1	6537.94	2	10.011 .5	10.5	10.0	. 87	1.05
49	-1	4075.94	1	12.013 .0	12.5	10.0	. 92	1.25
50	26	4044.94	2	10.010 .5	10.0	9.0	. 95	1.11 25-34 Years
51	-1	65482.93	1	12.014 .5	14.0	12.0	. 83	1.17
52	-1	2742.94	1	10.012 .5	11.5	10.0	. 80	1.15
53	15	3959.94	2	10.011 .0	11.0	9.0	. 91	1.22 15-24 years
54	20	3997.94	1	11.514 .5	12.5	10.5	.79	1.19 15-24 years
55	-1	3965.94	1	12.013 .5	12.5	11.5	. 89	1.09
56	24	3879.94	1	12.513 .5	13.5	11.5	.93	1.17 15-24 years
57	-1	2746.94	1	10.013 .5	12.0	10.0	. 74	1.20
58	23	2615.94	1	11.512 .0	13.0	10.0	. 96	1.30 15-24 years
59	-1	2741.94	1	10.512 .0	12.5	10.5	. 88	1.19
60	-1	4773.94	1	10.012 .5	12.0	10.0	. 80	1.20
61	-1	8062.94	2	10.010 .5	11.0	8.0	. 95	1.38
62	-1	4716.93	2	9.012 .0	11.0	9.5	. 75	1.16
63	41	14163.95	1	11.012 .0	12.5	8.5	. 92	1.47 35-44 years
64	38	14136.95	1	12.012 .5	13.0	11.0	. 96	1.18 35-44 years
65	34	14138.95	1	$9.0 \quad 9.5$	9.5	9.0	. 95	1.06 25-34 Years
66	33	14146.95	1	11.013 .0	12.0	11.5	. 85	1.04 25-34 Years
67	29	14149.95	1	11.014 .5	12.5	12.0	.76	1.04 25-34 Years
68	28	14142.95	1	13.014 .5	13.0	12.0	. 90	1.08 25-34 Years
69	40	14144.95	1	12.013 .0	12.5	10.0	.92	1.25 35-44 years
70	38	14143.95	1	12.012 .5	12.5	10.0	. 96	1.25 35-44 years
71	42	14141.95	1	13.015 .5	14.5	13.0	. 84	1.12 35-44 years
72	33	14137.95	1	11.512 .0	12.0	9.5	. 96	1.26 25-34 Years
73	33	14137.95	1	12.014 .0	13.0	12.0	. 86	1.08 25-34 Years
74	38	13477.95	1	11.011 .0	12.0	9.0	1.00	1.33 35-44 years
75	28	14140.95	1	11.011 .5	10.5	10.5	. 96	1.00 25-34 Years
76	45	14160.95	1	11.512 .0	11.5	9.5	. 96	1.2145 .00
77	47	13471.95	1	10.514 .5	12.0	12.0	. 72	1.0047 .00
78	-1	13476.95	1	11.012 .0	12.0	9.5	. 92	1.26
79	40	14088.95	1	12.014 .0	13.5	11.5	. 86	1.17 35-44 years
80	-1	13478.95	1	11.513 .0	12.0	11.0	. 88	1.09
81	-1	14091.95	1	12.013 .0	13.0	12.0	. 92	1.08 .
82	34	14094.95	1	11.512 .5	12.5	11.5	. 92	1.09 25-34 Years

SEX DISTRIBUTION OF THE SAMFLE STUDIED
FREQUENCIES /VARIABLES SEX /BARCHART.

AGE DISTRIBUTION OF THE STUDY GROUP
GET /FILE "PWANF2.SYS".
set /more off /listing "freqage.lis".
FREQUENCIES /VARIABLES rage /BARCHART.
RAGE

			Valid	Cum	
Value Label	Value Frequency	Fercent Fercent Percent			
$5-24$ years	1.00	59	31.2	46.1	46.1
$25-34$ Years	2.00	42	22.2	32.8	78.9
$5-44$ years	3.00	24	12.7	18.8	97.7
	45.00	1	.5	.8	98.4
	47.00	2	1.1	1.6	100.0
	.	61	32.3	MISSING	
		-189	100.0	100.0	

RAGE

Valid Cases 120 Missing Cases 6i
Page 13
$5 \mathrm{FSS} / \mathrm{FC}+$
6/22/95
This procedure was completed at 23:01:44
set /more off /listing "spss.lis".

GET /FILE "PWANF2.SYS'.
select if (sex=1).
FREQUENCIES /VARIABLES rage /BARCHART,
RAGE

| Value Label | Value | Frequency | Percent | Valid |
| :---: | ---: | :---: | ---: | ---: | ---: | ---: |
| Percent | Cum | | | |
| Percent | | | | |

Rage
$\begin{array}{llll}\text { Valid Cases } & 87 & M i s s i n g ~ C a s e s ~ & 48\end{array}$
Page 25
SFSS/PC+
6/22/95
This procedure was completed at 23:09:00 set /more off /listing 'spss.lis'.

MALE AGE DISTRIBUTION OF THE SAMPLE
GET /FILE 'PWANF2.SYS'.
select if (sex=1).
FREQUENCIES /VARIABLES age /FORMAT /STATISTICS /HISTOGRAM.

This procedure was completed at 23:32:41
set /more off /listing "spss.lis".

GET /FILE 'PWANF2.5YS'.
select if (sex=2).
FREQUENCIES /VARIABLES rage /BARCHAFT.
RAGE

Value Label	Value	Frequency	Percent	Valid	Cum
$15-24$ years	1.00	29	53.7	70.7	70.7
$25-34$ Years	2.00	9	16.7	22.0	92.7
$35-44$ years	3.00	3	5.6	7.3	100.0
	.	13	24.1	MISSING	
	TOTAL	-10	-100.0	100.0	

Valid Cases 41 Missing Cases 13
Fage 30
SFES/PC+
6/22/95
This procedure was completed at 23:13:47
set /more off /listing'spss.lis'.

GET /FILE "PWANF2.SYS".
select if (sex=2),
FREQUENCIES /VARIABLES age /FORMAT /STATISTICS /HISTOGRAM.

AGE Age

Mean Maximum	$\begin{aligned} & 23.610 \\ & 41.000 \end{aligned}$	Std Dev	5.807	Minimum	15.000
Valid Cases	41	Missing Cases	13		

```
get /file "pwanf2.5ys".
select if (sex=1). (i.e male cases only)
t-test /groups rage (1,2) /variables lhhr rhhr.
The raw data or transformation pass is proceeding
    135 cases are written to the uncompressed active file.
```

Page 12
SPSS/FC+
$6 / 23 / 95$
Independent samples of RAGE (Rage1=15-24,rage2=25-34,rage3=35-44)
Group 1: RAGE EQ 1.00 Group 2: RAGE EQ 2.00
t-test for: LHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	30	.8536	.084	.015
Group 2	33	.8527	.075	.013

Independent samples of RAGE
Group 1: FAGE EQ 1.00 Group 2: RAGE EQ 2.00
t--test for: RHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	30	1.2060	.119	.022
Group 2	33	1.1702	.128	.022

Page 14
SPSS/PC+
6/23/95

```
get /file "pwanf2.Eys".
select if (sex=1).
t-test /groups rage (1,3) /variables lhhr mhhr.
The raw data or transformation pass is proceeding
    135 cases are written to the uncompressed active file.
```

Page 18
SPSS/FC+
6/23/95

Independent samples of RAGE

Group 1: RAGE EQ 1.00
Group 2: RAGE EQ 3.00
t-test for: LHHF

Number of Cases	Mean	Standard Deviation	Standard Error
30	.8536	.084	.015
21	.8895	.088	.019

		Fooled Variance Estimate			Separate Variance Estimate		
F	2-Tail	t	Degrees	2-Tail	t	Degrees of	2-Tail
Value	Frob.	Value	Freed	Prob.	Value	Freedom	Prob.
1.12	. 767	-1.48	49	.147	-1.46	41.62	. 152
ge 19 SPSS/PC+							

Independent samples of RAGE
Group 1: RAGE EQ 1.00 Group 2: RAGE EQ 3.00
t-test for: RHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	30	1.2060	.119	.022
Group 2	21	1.1963	.118	.026

Fage 20
SPSS/FCt
6/23/95
get /file "pwanf2.sys'.
select if (sex=1).
t-test /groups rage (1,3) /variables lhhr rhhr.
The raw data or transformation pass is proceeding
135 cases are written to the uncompressed active file.
Page 18

SPSS/PC+
6/23/95
Independent samples of RAGE
Group 1: RAGE EQ 1.00 Group 2: RAGE EQ 3.00
t-test for: LHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	30	.8536	.084	.015
Group 2	21	.8895	.088	.019

Page 19
SPSS/PC+
6/23/95

Independent samples of RAGE
Group 1: RAGE EQ 1.00 Group 2: RAGE EQ 3.00
t-"test fom: RHHR

Number		
of Cases Mean Deviation	Standard	Error

Group 1	30	1.2060	.119	.022
Group 2	21	1.1963	.118	.026

		Pooled Variance Estimate			Separate Variance Estimate		
F	2-Tail	t	Degrees	2-Tail	t	Degrees of	2-Tail
Value	Frob.	Value	Freed	Prob.	Value	Freedom	Prob.
1.01	. 995	. 29	49	. 773	.29	43.38	. 773

Fage 20
SPSS/FCt
6/23/95

```
get /file 'pwanf2.sys'.
select if (sex=1).
t-test /groups rage (1,3) /variables lhhr rhhr.
The raw data or transformation pass is proceeding
    135 cases are written to the uncompressed active file.
```

Fage 18
SPGS/FC+
6/23/95
Independent samples of RAGE
Group 1: RAGE EQ 1.00
Group 2: RAGE EQ 3.00
t-test for: LHHR

	Number of Cases	Mean	Standard Deviation	Standard Error		
Group 1	30	. 8536	. 084	. 015		
Group 2	21	. 8895	.088	9.019		
	Fooled Variance Estimate			Separate Variance Estimate		
F 2-Tail	t	Degrees of	2-Tail	t	Degrees of	2-Tail
Value Frob.	Value	Freedom	Prob.	Value	Freedom	Prob.
1.12 .767	-1.48	47	.147	-1.46	41.62	.152

Page 19
SPSS/PC+
6/23/95

Independent samples of RAGE
Group 1: RAGE EQ 1.00
Eroup 2: RAGE EQ 3.00
t-test for: RHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	30	1.2060	.117	.022
Group 2	21	1.1963	.118	.026

F Value	$2 \text {-Tail }$ Frob.	Fooled Variance Estimate t Degrees of 2-Tail Value Freedom Prob.			Separate Variance Estimate		
					t	Degrees of	2-Tai]
					Value	Freedom	Prob
1.01	.995	.29	49	.773	.29	43.38	. 77

Page 20
6/23/95

```
get /file "pwanf2.sys".
select if (sex=1).
t-test /groups rage (2,3) /variables lhhr rhhr.
The raw data or transformation pass is proceeding
    1 3 5 \text { cases are written to the uncompressed active file.}
```

Page 24
SPSS/PC+
6/23/75

Independent samples of RAGE
Group 1: RAGE EQ 2.00 Group 2: RAGE EQ 3.00
t-test for: LHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	33	.8527	.075	.013
Group 2	21	.8895	.088	.019

$\begin{gathered} F \\ \text { Value } \end{gathered}$	$\begin{gathered} 2 \text {-Tail } \\ \text { Frob. } \end{gathered}$	Fooled Variance Estimate t Degrees of 2-Tail Value Freedom Frob.			Separate Variance Estimate		
					$\begin{gathered} \text { t } \\ \text { Value } \end{gathered}$	Degrees of Freedom	2-Tail Prob.
1.38	. 404	-1.64	52	.108	-1.58	37.67	. 123
$\frac{25}{23 / 95}$	$5 \mathrm{SPSS} / \mathrm{PC}+$						

Independent samples of RAGE
Group 1: RAGE EQ 2.00 Group 2: RAGE EQ 3.00
t-test for" RHHR
Number
of Cases Meandard Deviation Standard
Error

Group 1	33	1.1702	.128	.022
Group 2	21	1.1963	.118	.026

SPSS/PC+

```
get /file "pwanf2.sys".
select if (sex=2). (i,e fremale)
t-test /groups rage (1,2) /variables lhtr rhhm"
The raw data or transformation pass is proceeding
    5 4 ~ c a s e s ~ a r e ~ w r i t t e n ~ t o ~ t h e ~ u n c o m p r e s s e d ~ a c t i v e ~ f i l e . ,
```

Page 30
SPSS/PC+
6/23/95

Independent samples of RAGE
Group 1: RAGE EQ 1.00 Group 2: RAGE EQ 2.00
t-test for: LHHR

	Number of Cases	Mean	Standard Deviation	Standar-d Error
Group 1	29	.8397	.087	.016
Group 2	9	.8357	.082	.027

		Fooled Variance Estimate \|			Separate Variance Estimete		
F	2-Tail	t	Degrees	2-Tail	t	Degrees of	2-Tail
Value	Frob.	Value	Freed	Prob.	Value	Freedom	Prob.
1.10	.948	.13	36	.897	.13	13.96	.897

Page 31
SPSS/PC+
6/23/95
Independent samples of RAGE
Group 1: RAGE EQ 1.00 Eroup 2: RAGE EQ 2.00
t-test for: RHHR
Number

of Cases Mean Deviation | Standard Eradard |
| :---: |
| Error |

Group 1	29	1.1966	.114	.021
Group 2	9	1.2494	.112	.037

Page 32
SPSS/PC+
6/23/75

```
get /file "pwanf2.5ys".
select if (sex=2).
t-test /groups rage (1,3) /variables lhhr rhhr.
The raw data or transformation pass is proceeding
    5 4 \text { cases are written to the uncompressed active file.}
```

Page 36
SFSS/PC+
6/23/95

Independent samples of RAGE
Group 1: RAGE EQ 1.00 Group 2: RAGE EQ 3.00
t-test for: LHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	29	.8399	.087	.016
Group 2	3	.8443	.105	.061

Page 37
SPSS/FC+
6/23/95
Independent samples of RAGE
Group 1: RAGE EQ 1.00 Eroup 2: RAGE EQ 3.00
t-test for: RHHR

| Number | Standard Standard |
| :---: | :---: | :---: |
| of Cases Mean Deviation | Error |

Group 1	29	1.1966	.114	.021
Group 2	3	1.1553	.084	.048

$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	$\begin{gathered} \text { 2-Tail } \\ \text { Prob. } \end{gathered}$	Pooled Variance Estimate t Degrees of 2-Tail Value Freedom Frob.			Separate Variance Estimate		
					t Value	Degrees of Freedom	$\begin{gathered} 2 \text {-Tail } \\ \text { Prob. } \end{gathered}$
1.85	.822	.61	30	.549	. 78	2.83	. 494
$\begin{aligned} & \text { age } 38 \\ & 23 / 95 \end{aligned}$	SPSS/PC+						

```
get /file "pwanf2.sys".
select if (sex=2).
t-test /groups rage (2,3) /variables lhhr rhhr.
The raw data or transformation pass is proceeding
    5 4 ~ c a s e s ~ a r e ~ w r i t t e n ~ t o ~ t h e ~ u n c o m p r e s s e d ~ a c t i v e ~ f i l e . ~
```

Page 42
SPSS/FC+
6/23/95

Independent samples of RAGE
Group 1: RAGE EQ 2.00 Group 2: RAGE EQ 3.00
t-test for: LHHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	9	.8357	.082	.027
Group 2	3	.8443	.105	.061

Page 43
SPSS/FC+
6/23/95
Independent samples of RAGE
Group 1: RAGE EQ 2.00 Group 2: RAGE EQ 3.00
t-west for: RHHR
Number
of Cases Mean Deviandard Standard

Group 1	9	1.2494	.112	.037
Group 2	3	1.1553	.084	.048

t-test /GROUPS side (1,2) /variables hhr.

Page 69
6/23/95
Independent samples of SIDE Side
Group 1: SIDE EQ 1 (left) Group 2: SIDE EQ 2 (Right)
t-test for: HHR

	Number of Cases	Mean	Standard Deviation	Standard Error
Group 1	189	.8574	.082	.006
Group 2	189	1.1952	.115	.008

	Fooled Variance Estimate t Degrees of 2-Tail Value Freedom Prob.			Separate Variance Estimate		
F 2 -Tail				t	Degrees of	2-Tail
Value Frob.				Value	Freedom	Prob.
1.98 .000	-32.90	376	.000	-32.90	339.47	.000

Page $70 \quad$ SPSS/PC+
6/23/95
This procedure was completed at 1:36:59
set /more on /listing 'spss.lis".

GET /FILE 'PWANF2.SYS'.
FREQUENCIES /VARIABLES LHHR /FORMAT NOTAELE /HISTOGRAM /STATISTICS MEAN median mode stddev range minimum maximum.
***** Memory allows a total of 10734 Values, accumulated across all Variables.

There also may be up to 1342 Value Labels for each Variable.

HISTOGRAM OF RIGHT HHR
GET /FILE 'FWANF2.SYS'.
FREQUENCIES /VARIAELES rHHR /FORMAT NOTABLE /HISTOGRAM /STATISTICS MEAN MEDIAN
mode stddev range minimum maximum .
***** Memory allows a total of 10734 Values, accumulated across all Variables.

There also may be up to 1342 Value Labels for each Variable.

Fage 19
$5 \mathrm{SSS} / \mathrm{FC}+$
6/23/95

FHHF

Mean	1.195	Median	1.176	Mode	1.190
Std Dev	. 115	Range	. 471	Minimum	1.000
Maximum	1.471				
Valid Cases	189	Missing Cases	0		
$\begin{aligned} & \text { Page } 20 \\ & 6 / 23 / 95 \end{aligned}$		SPSS	$\mathrm{C}+$		

This procedure was completed at 2:35:38
set /more on /listing "spss.lis".

60

