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SUMMARY

This dissertation discusses our economic method of optimising a 

telephone network with alternate routes by use of a computer. The 

method chosen uses a mathematical programming approach in 

terms of junction circuits and traffic carrying and overflowing 

properties of the chains involved in routing traffic between the 

exchanges. A mathematical formulation is given and the solution by 

means of a convex programming technique is also given. The use 

of this method has been illustrated by the three node trunk 

network presented for study.
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- sources

- devices

- intensity of increase

- intensity of decrease

- state system when j sources are busy

- probability that there are j simultaneous calls at time t

- number of simultaneous calls/momentary state of the system
- mean holding time

- ability of the system to accept a new call when state j 
prevails

- the probabilities of state
- time congestion

- call congestion

- call intensity of the source when the system is in state j.
- traffic carried

- traffic offered

- number of inlet groups

- availability (hunting capacity of a switch)
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CHAPTER 1

1.0 INTRODUCTION

The fundamental problem which besets people concerned with 

the design of communication networks is how to provide a network which 

collectively is:

1. Of sufficient routing capability to allow any two users, from 

a large number of subscribers connected to an exchange, to

be connected with a high probability of success.

2. Economical in its use of transmission facilities and switching 
centres.

3. Capable of surviving extensive network or man-made damage, 

such as LigU-t'rtior breaking of an overhead wire pole 

respectively.

4. Adaptable to changing traffic patterns and overload situations.

5. Capable of being engineered and implemented in small sections 

over a period of years by many different people.

These factors, in addition to the very large development 
programmes East African Posts and Telecommunications Corporation 

(E.A.P & T) has to implement motivated the preparation of this dis­

sertation. We consider here, the design of alternative routes in the 

East African communication network and a computer programme written 

for the economic optimisation of the alternative routing networks.

In the East African network, all traffic is routed through 

the final routes ,that is,via tandem exchanges, and hence direct routes 

between two exchanges will have to be determined as considered below. 

Then the existing routes will be used as the alternate routes, where 
this will be justified.

E.A.P & T will provide the basis on which the direct and 

alternate routes will be determined. In brief, the information will 
consist of:

(i) the minimum traffic that justifies provision of a direct 
and an alternate route.

(ii) the traffic between the two points to be considered.
(iii) the grade of service required.

(iv) the cost for providing and maintaining the route.

(v) the maximum capacity of the proposed routes.
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The constant cost per route and the cost for providing each 

circuit will vary each time the maximum capacity of a route is reached 

and an extension or a larger capacity route is required. There will be 

a discontinuity in the cost function at this point as it will be con­

sidered in Chapter 4.
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CHAPTER 2

2.0 GENERAL TRAFFIC THEORY

Traffic theory is applied to practical cases on the assumption 

of statistical equilibrium (see Appendix 2) which implies that the 

process is assumed to be stationary statistically. An assumption we make 

throughout in this dissertation. The general form of traffic theory is 

first presented and special cases are then derived from this general 

form.

The mathematical description of the traffic processes is based 

on the Theory of Stochastic Processes of the type known as the Birth and 

Death Process as applied to the study of practical problems of congestion 

in telephone systems (see Appendix 1).

For purposes of telephone traffic engineering this process, the 

"traffic process", describes the number of busy devices or single sources 

as a function of time. This leads to the general equations of state 

(see Appendix 1.1.2) from which, in the limit t one can derive the 

state probabilities for the system. It is found that from these equili­

brium equations, one can set up abbreviated expressions for the state 

probabilities which well cover the most general cases within traffic 

theory.

2.1 Assumptions

(i) The system changes only through transitions from states to their 

next neighbours (from Ê  to E..+-| or to Ej_-| if 0 <j< N, but for 

end cases from EQ to E-j, and from E^ to E ^  only).

(ii) The principle of statistical equilibrium holds the stationarity 

assumption.

(iii) Holding times of the individual occupations and time intervals 

between successive calls have an exponential distribution.

(iv) Duration of conversations, as well as, the individual traffic 

sources are mutually independent.

(v) There are probability distributions for unsuccessful calls.
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2.2 The Traffic Theory

By assuming an exponential distribution for time intervals or 

durations, it is implied that one has the frequency function (see 

Appendix 3).

f(t) =a exp(-at) Os^t-^00 (2.1)

The average time interval or duration is 

00

t = / t.f(t)dt 
t=0

= / ta exp(-at)dt 
t=0

00 00

= exp(-at) | - / - exp(-at)dt

t=0 t=0

00

= - 1  exp(-at) |
t=0

= - > - 1 ) 4  <2‘2)

This determines the birth or death coefficient (a = X or a =  y 

respectively) as the reciprocal of the average holding time t.
The probability that there is no change (no arrival or termination 

of call) during the time interval measured from the occurance of the 

last change is

P(0,t) = exp(-at) (2.3)

This is equivalent to the event that the interval between two 
consecutive changes is larger than t. In fact, the interval in which 

no change occurs must lie within the length of time between two 

changes.
If T is a random variable representing the length of the time 

interval (or duration) between two changes, then the probability
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P(T> t) = exp(-at) (2.4)

and the probability that T is at most equal to t is

P(T<t) = 1 -exp(-at) = F(t) (2.5)

which is the same as the probability of one or more changes in the time 

interval of length t. This is also the distribution function known as 

the negative exponential distribution. The probability that no change 

occurs in time interval t is the inverse distribution function.

$(t) = l-F(t) = exp(-at) (2.6)

The probability that t terminates in the interval (t, t + At) is

t + At
P(t, t +At) = f(x)dr = F(t + At)-F(t)

t

= <D(t) - *(t + At)

= exp(-at) - exp£-a(t + At)] (2.7)

The probability that the duration is at least t is

P(t) = $(t) = exp(-at) (2.8)

But P(t, t + At) = P(t) P(-^-^t) (2.9)

where P(- *■ —  ) is the conditional probability. (2.10)

Such that the conditional probability that a duration which still exists 

at t ceases in (t, t + At) is

P(it) = =. W -

- exp(-at) -exp[^(x(t + AtQ 
exp(-at)

= l-exp(-ctAt). (2.11)
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Now

Exp(-aA t) =]- aAtf^ly^ - - ^ r ^-3 + ... (2.12)

and to a first order approximation for At small,

exp(- aAt) -1 - aAt (2.13)

such that

P(At) =1 - (1-oAt) =oAt (2.14)

At -»• 0

Thus P(At) is proportional to the intensity of change and to the time 

interval.

The assumption of exponential distribution implies

(i) P(At) will be independent of t.

(ii) The process assumes that only one event can take place 

at a time.

This confirms that the assumptions made were reasonable. 
Equation (2.14) is also defined in Appendix 1. 3.

2.2.1 Stationary Conditions

The momentary state of a system is described by the number of 

simultaneously engaged sources, which is synonymous to the number of 

engaged devices. The momentary states of the system are denoted by j 

and the probabilities of state are denoted by P(j), (See Appendix 2).

By the principle of statistical equilibrium the system 

must change from j-1 to j as often as from j to j-1. Otherwise the 

system would not retain its equilibrium, but tend to either j=0 or 
j=maximum.

Let the intensity of increase be X. and the intensity of
J

decrease be u., when the system is in state j, and with the assumption
J

of exponential description of intervals between calls and of holding 

times. Then for statistical equilibrium

probability of increase = probability of decrease

such that

x0 = “j p(J) (2.15)
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and since

2 P(j) = 1 
j

(2.16)

X., P(j-l)
(2.17)

Consider the system in j-1 state. Then

V 2 P(j-2) ■ (2.18)

x, 2 P(J-2)
PU-lh-^-lT-----

"J-I
(2.19)

a"d Xi-lX1-2 P(j‘ 2) 
p0 )= ^ (2.20)

induct;!on  ̂ x , . * . * . ,  ... X,.., P<0>

^j-l ....^1
(2.21)

so that
j-1
n n x

P(j) = _fp---- e---- p(o) (2.22)

This is the general solution for a traffic process in statistical 

equilibrium with exponential distribution of changes.
2.3____ Special Cases

2.3.1 Call 'Intensity
Consider a single source whose call intervals have an 

exponential distribution

f(t) = aexp(-at). (2.23)

The conditional probability that the source makes a new call in the 
interval (t, t + At) w W e  ;s aJ.v'eo^
e isfi n

and for small At

5 ts
P(At) = 1 -exp(-aAt)

cxtry

(2.24)

P(At)=;a. At (2.25)

Now consider x independent, free sources with exponential distribution 

of call intervals, the probability that v of x sources make calls in
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(t, t + At) is then

PvU*) = (*) p-exp(aAt)] exp(-aAt(x-o)) (2.26)

The expected number of calls in the interval is

E(v) = x[l-exp(-oAt)] (2.27)

and for small At

E(v) = x.aAt. (2.28)

Consequently the call intensity with x free sources is

yx = x.a (2.29)

Then the following assumptions (See. 2.3.1.1) which result in 

traffic distributions of known types, are made for the call intensity

y ( j ) :

y(j) is the call intensity of the sources when the system is 

in state j, and it is related to the birth coefficients by the 
assumption

*j=y(j).W(j) (2.30)

where W(j) is the ability of the system to accept a new call when 
state j prevails.

W(j) = 1 denotes the conditions that a new call can always 
seize a devise in the systems.

W(j) = 0 denotes the condition the system cannot accept a
new call.

0< W(j)< 1 denotes the condition that only certain calls can 
be accepted by the system

2.3.1.1 Assumptions

(i) y(j) = (N-j).a (2.31)

Thus the call intensity decreasing with increased number of occupations, 

the resultant traffic distribution are the Bernouilli and Engset dis­
tributions.

( i i )  y ( j )  = y (2.32)
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Thus the call intensity being independent of the number of occupations, 

the resultant traffic distributions are the Erlang and Poisson 

distributions.

(iii) y(j) = a(y + j) (2.33)

Thus the call intensity increasing with the number of occupations,the 

resultant traffic distributions are Negative Binomial Distributions.

These different distributions are dealt with in Appendix 4. 

Only the loss systems will be considered since they will be used in 

alternate routing problems in later chapters.

2.3.2 Termination

By assuming an exponential distribution of holding times, the 

duration of the individual occupation is described by

f(t) =4-exp(-i ) (2.34)
1 t

where t = /°°t.f(t) dt = - (2.35)
o

and the probability of termination of an occupation in (t, t + At) is

P(At) = 1 - exp(- —  ) (2.36)
t

and that it does not terminate

Q(At) = l-P(At) = exp(- M  ) (2.37)
t

If there are j independent occupations with the same holding 

time distribution, the probability that exactly v of them terminate 
in (t, t + At) is

PJ&t) = (J).(l-exp(-i
v V t

At
)) • exp(- (j -v )) (2.38)

for v= 0

P (At) = exp(- &  . j) (2.39)
t

The probability that at least one oooupation terminates is then

Q0 (At) = 1~P0(At) = 1-exp( - j . ) (2.40)
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For small At

Q0(«) = j. “
° t
The expected number of terminations in (t, t + At) is

t(v) = E .<i).(l-exp(-4 )fexp(-(j->) 4  ,
v=o v t t >

5(v) = j.(l-exp(-M ))
t

(2.41)

(2.42)

(2.43)

and for small At can be written as

r* / \ * At5(v) -J. —
t

(2.44)

Hence the intensity of termination for j exponentially distributed and 
independent occupations is

J t
(2.45)

For statistical equilibrium equation (2.22) can then be written as

*-! x J
P(j) - P(0) O ^ j ^ n  (2.46)

J *

2.4______Some General Concepts and Definitions

2.4.1 Time Congestion (E)

Time congestion is the proportion of the time during which 

congestion prevails. It is also defined as the probability that all 
available devices are engaged.

E = E P(j) (2.47)
j>n

j >n denotes all states when congestion prevails.

2.4.2 Call Congestion (B)

Call congestion is the proportion of unsuccessful calls. It 

is also defined as the probability of an unsuccessful call.
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i >n P (j ) .y (j )R _ J>n ___
" j p (j ) y(j)

a H  j

(2.48)

It is the expected number of calls when congestion prevails divided 

by the total number of expected calls. Calculated per time unit.

2.^3 Traffic Carried (Ac)

Traffic carried is the mean number of simultaneous occupations, 

n

A = 2 j P(j) 
c j=i

where n is the maximum number of simultaneous occupations.
_ J

(2.49

The terminating rate is given by p. = ^  and from statistical
equilibrium (See 2.1.2.4)

Ujp(j) = Xj.-I P(j-l) (2.50)

jP(j) = t.Xj., P(j-l) (2.51)

from which n

A c = 2 "t.X P(J-l) 
c j«l 3 1

(2.52)

n-1

A = t E X- P(j) 
c j=o J

(2.53)

Thus the traffic carried is measurable,

2.4.4 Traffic Offered (A )

Traffic offered is the mean number of simultaneous occupations 
offered to the system (whether accepted or not).

A0 * Z  t.y(j).P(j) (2.54)
all j

Traffic offered cannot be measured, it is dependent exclusively on the 
theoretical model used.
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2.4.5 Difference Between Traffic Offered and Traffic Carried

Traffic Offered

A. ■ E l.y(j).P(J) (2.55)
0 J-0

and Traffic Carried

n-l
A = E t.y(j).W(j)P(j) (2.56)
c d=o

n < r and n is the maximum number of simultaneous occupations.

A -A = E t.y(j)P(j)Q-W(j)]+ E t.y(j).P(j) (2.57)
j=0 j=n

or r
Aq-Ac = z t.y(j)P(j) if W(j) = 1 for j<n

j=n

This difference can also be defined as

A„-Ac = t E y(j) P(j)[l-WU)]
0 C j=0

such that Ao"Ac > 0 only if W(j) < 1 occurs in the system.

In which case A„ > A for a loss system, and A =A for a o c o c
delay system provided that all queuing calls wait until served.

These concepts and definitions are going to be used in the 

Chapters that will follow.

(2.58)

(2.59)
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CHAPTER 3

3.0 GRADING

3.1 General

Grading is a method of connecting level multiples of a number 

of selectors together, so that an inlet group of selections is given 

access to individual trunks on the early choices but on the later 

choices, shares access to trunks with other groups.

Due to the commoning of outlets, the total number of trunks to 

which the grading has access is less than the maximum possible number 

of trunks.

Usually, a grading is arranged in such a manner that a selector 

hunts for a free outlet in a sequential mariner. This is sequential 

hunting. Grading for random hunting will not be considered as this 

does not include cases which occur in alternate routing.

The main object of a grading is to increase the efficiency of 

the later devices by giving access to them from two or more inlet groups, 

However, a full availability group is more efficient than a correspond­

ing graded group, the limited access imposes limitations in trunking 

efficiency. A typical grading is illustrated in Fig. 3.1.

g is the number of inlet groups 

k is the availability (hunting capacity of a switch)

Fig. 3.1 A Typical Grading

3.2 Grading, for Sequential Hunting

Grading for sequential hunting are usually designed either with 

a degree of interconnection which rises along the direction of hunting,

k
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known as the B.P.O. or O'Dell type, or alternatively designed as

homogeneous gradings.

The O'Dell type of grading in its original and simplest form 

has only straight interconnections, i.e. outlets in the same hunting 

position are interconnected between the nearest inlet groups, (see 

Fig. 3.2).

A] 0 0

A2 -v 0 0

a 3 0 0

A4 -v 0 0

Fig. 3.2 Straight Multiple with an Increasing Interconnection Number.

An improvement is obtained if the interconnections are arranged 

for all combinations of switching groups, (see Fig. 3.3).

A-j -> 0 0 0

A2 + 0 0 0

A3 + 0 0 0

A4 + 0 0 0

Fig. 3.3 More Interconnection Combinations Between Inlet Groups.

1 M l 1 1 | |m  i I I I I

Gradings with diagonal interconnections give a more uniform 

loading within each part of the grading having the same interconnection 
number (see Fig. 3.4).

Fig. 3.4 Diagonal Interconnections

Examples of homogeneous gradings with either straight inter­

connections (Fig. 3.5) or diagonal interconnections (Fig. 3.6) are
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given below.

A1 -
a 2 -

0

0]

0

QJ

rO

k)

0

0,
0

0

ro

k)

ro
Oi

k)

o

rO

k)

Fig. 3.5 Straight Interconnections Homogeneous Grading .

A

A

A

A

1

2
3

4

-+■

-*

Fig. 3.6 Homogeneous Grading Diagonal Interconnections.

3.3 Gradings for Alternate Routes

An alternate routing arrangement implies that a call from 

exchange A to exchange B attempts first to seize a direct route AB 

(see Fig. 3.7). In the event of failure an attempt is made via an 

alternate route AT-jB and a tandem exchange . Possibly, a further 

attempt may be made via another tandem exchange and so forth.

Fig. 3.7 Alternate Routing Arrangement



The direct route AB carries only the traffic flow initiated in 

A and destined for B. The tandem route AT^ carries also the traffic 

which is to pass the tandem exchange T-j. Route T^B carries the traffic 

to B which normally or alternatively passes T-j. For the case of AB,

AT.j the grading pattern is as shown in Fig. 3.8. AT-j may be both first 

choice and overflow traffic.

aAB 0 0

ftT] *

0

0 0

0 

0

0 

6

Fig. 3.8 Routing AB and AT^

Alternate routings are thus a special type of grading with 

sequential hunting in which the inlet groups have different hunting 

capacities.

3.4 Methods of Computing Gradings with Sequential Hunting

Generally, gradings can be calculated by one of the following 

methods:

1. Equations of State

2. Weighting Methods

3. Equivalence Methods
The Equations of State method can be used for very small gradings, 

In practice there are a large number of unknowns which make the method 

unsuitable for normal gradings (see Syski, Chapter 7, Section 2).

O'DelV's method (Ref. No 11 Chaps) is the most used among Weighting Methods, 
but these methods will not be discussed since they will not be used in 

alternate routing problems.

There are three equivalence methods, (see Ref. No. 1, Chapter 5):

1. Berkeley's method

2. Wilkinson's method

3. Ekberg's method

These methods determine an equivalent full availability group from 

which the traffic rejected has certain characteristics similar to 
those of the traffic rejected from the different parts of the grading.

In this way, the properties of the sequentially limited grading are 

reduced to an equivalent full availability group. Wilkinson's method
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will be dealt with in detail (Ref. No. 2)

3.4.1 Wilkinson's Method

3.4.1.1 Wilkinson's Equivalent Random Theory

The overflow traffic from one or more first choice groups which 

are offered independent random traffic is described by two parameters, 

its mean and its variance. The mean of the total overflow traffic is 

calculated as the sum of the individual means, and the variance as the 

sum of the individual variances.

All the first choice groups are then replaced by an equivalent 
full availability group, from which the total overflow traffic has the 

same mean and the same variance as the total overflow traffic from the 

individual groups. From these two conditions the number of functions 

(trunks or circuits), and the (random) traffic offered to the equi­

valent group are determined. The complex overflow system is thus 

reduced to a full availability group consisting of the equivalent group 

and the common overflow group.

The equivalent group is determined in the following way:

1. The mean and the variances of the individual overflow 

traffics from first choice groups are calculated from (see ref. No. 2,

Appendix II).

V
v

< v

AV
7T7Tv

(3.1)

(3.2)

where E (A ) is the Erlang Loss Formula, n is the number of functions 

and A^ is the traffic offered to the *oth first choice group. For a 

"first routed traffic" i.e. a random traffic offered to the common 

group, we have (see Elldin and Lind Chapter 3, ref. No. 1).

M = V = A (3.3)

Since for random traffic input a Poissonian process is assumed when 

the number of subscribers initiating calls is large.

2. The mean M and variance V of the total overflow traffic is 
obtained from

M = EM 
^ v (3.4)
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V = z V (3.5)
V v

3. The number of junctions n in the equivalent group and the 

traffic A offered to the equivalent group are calculated from the 

system

M = AEn(A) (3.6)

V ' M p  + n T T T T r r ] (3.7)

From the equivalent scheme various congestion estimates may be 

formed to determine the number of junctions, m, in the common overflow 

group. The traffic rejected from the whole system is estimated as

A - W A> <3-8>

and this defines

1. the overall average congestion as

A - W A>—n r (3.9)

2. the average congestion for traffic offered to the overflow 

group as

Et =

A . E ( A )  E (A) n+m' ' n+mv '
I T w

(3.10)

3. It is assumed that the individual congestion is approximately 

proportional to the degree of degeneration, i.e.,

(3.11)

where k is a constant, determined by the condition

AE (A) = £ M E = z kV = kV n+nr ' v v vv v
giving

k = A En+m(A) M
Y  Lt

(3.12)

(3.13)
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and V
v

%T ̂En«,<A> (3.14)

giving

V, A E ^ J A )  c f v n+m' '
V  v

3.4.1.2 Example

Given a grading shown in Fig. 3.9 one first forms

M = A . E (A,) v v v 1

(3.15)

vV = M [T-M + ----— T— — P--A—
v v(^ V nv + I + V  flv

( v= 1, 2, 3 and 4)
'1

A1 h.'o 0s r
a 2 + 0 0

a 3 -> 0 0

a4 + 0 0

(3.16)

(3.17)

Fig. 3.9 Grading

The equivalent full availability group common to groups 1 and 

2 after n̂  devices is then determined from the conditions (see Fig. 
3.10).

M12 = M] + M2 (3.18)

V1 2 = V 1 + V2 . (3.19)

from which the equivalent traffic A^2 and the equivalent number of 
trunks n^2 are determined, (Fig. 3.11).

ni n2 n4

Fig. 3.10
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a2

12 'o  6 o ' r o o o o 'o  o o o '

Ml 2 3 *♦ Vl 2 3 ** V
A,. **■ 0 0 0 034 V_ _ _ _ _

'34

0 0 0 0

Fig. 3.11 Equivalent Full Availability Group Common to Groups 1 and 

2 and Groups 3 and 4 after n-j devices.

The equivalent

‘ nl devilces is

M34 = H3 + m4

V34 = V3 + V4

A34 and in34

(3.20)

(3.21)

as shown in Fig. 3.10 and 3.11.

Further reduction of the grading to a full availability group 

offers the n^ common trunks in Fig. 3.11, the rejected traffics

M12-2 = A12 E (A12> (3.22)
' n12+n2

M34-2 = A34 l (A34>
n34 + n2

whose variances are

V12-2 = M12-2

V34-2 = M34-2

E -

0 -

^12-2 + n",0+n0+l+M
12

-=1£

M34-2 + n34+n2+l+H

12T,,2 ' " 12-2 12

A34

-]

34-2 “ A34 ]

(3.23)

(3.24)

(3.25)

and the equivalent group properties are
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V1234 = V12-2 + V34-2 (3.27)

from which the equivalent traffic A.j234 and equivalent number of trunks 

n1234 can be determ1’necl (see Fig* 3.12).

n1234 n4
A1 234 r 0 0 0 0 "5  0 0 (P  r 0 0 0 tP

<

Fig. 3.12 The Equivalent Full Availability Group

The grading has now been reduced to the full availability group. 

The total traffic rejected from this group is now

1234
"1234 + n. (A1234) (3.28)

and the resulting congestion for all traffic to the grading (overall 

average congestion) is

E
A1234En1234+n4(A1234) 

A1 + A2 + A3 + A4
(3.29)

while the congestion for the individual inlet groups of traffic are 
determined as shown below.

V1 1234 ni234+n4(A1234)
V1234 

V2

M1

1234 ni234+n4 (A1234)

V1234 h 2

V3
A1234 n-|234+n4(A1234)

V4

H3

A1234En1234+n4 (A1234)

^1234 K4

(3.30)

(3.31)

(3.32)

(3.33)
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CHAPTER 4

4.0 ALTERNATE ROUTING

4.1 General Principles of Alternate Routing

Generally, alternate routing of telephone traffic is a pro­

cedure whereby a parcel of traffic is provided a second, third or 

more choice route to its destination, see Fig. 4.0. A parcel of 

traffic originating at A and terminating at B is provided with a 

second choice route via C. The second choice route can also be used 

by one or more other parcels of traffic, for instance, traffic 

originating at A and destined to D can also be provided with a second 

choice route via C. As a result the route AC serves as a second 

choice route to the two parcels of traffic:
(i) originating at A and destined to B

(ii) originating at A and destined to D

c

Fig. 4.0 Network Illustrating Alternate Routing

The use in common of the second choice route by the several 

parcels of traffic results in an overall requirement of trunk routes 

to the particular destination which is less than would be the case 

if each parcel of traffic had sole access to its own group of routes. 

This is easily realized in graded multiple arrangements, see Fig. 4.1. 

If parcels of traffic, p, q and r had each access to its own group 

of trunk routes, the total number of trunks would have been more than 

those specified in Fig. 4.1. While the efficiency per trunk would 

not very much be less than that required for the single trunk group. 

Hence, alternate routing is introduced in order to reduce the total 

cost of a telephone network, including cables and switches.
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Common

Individuals

f Outputs 

20 Trunks

inputs

Fig. 4.1 Graded Multiple Arrangement * (i)

To develop a network with a given number of exchanges placed at 

given points, alternate choices can be provided on routes for which 

calculations show minimum investment costs. The calculations involve:

(i) determination of the number of direct circuits 

and the additional number of tandem circuits on 

alternate routes

(ii) the cost for providing the number of circuits 
determined above.

When the comparison in costs between providing direct routing and 

alternate routing shows that the alternate routing will provide the 

optimal investment cost, then alternate routing should be introduced.

4.2 Optimization of the Number of Circuits

Determination of the exact number of direct circuits and 

additional circuits required on tandem routes is in principle a 

problem of arriving at the most economical system.
, i

The numbers can be estimated separately for each routing case. 

When all cases have been considered, they provide an estimate of the 

total cost of the network. Since the different routing cases inter­

fere in the alternate routes, certain recalculations may be necessary. 

However, this method of optimization which may be referred to

as the Constant Background Traffic model assumes that traffic other
k kthan that originated at point 0 and going to point D is background
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traffic which is constant. Thus when optimising procedures are used,

any variation in the number of circuits on a route shared by several
k k

traffic parcels is solely due to variation in the 0 to D traffic 

overflowing from the direct route. In this model the number of junctions 

on a link is taken to be a continuous variable, and the minimization of 

the cost function is performed with respect to the number of junctions 

on each high usage route (see references Nos. 10 and 11). But, there 

is no mention in the references that the minimization is subject to the 

non-negativity requirements for numbers of junctions, and when this 

requirement is included in the mathematical analysis, the optimality 

conditions are incomplete, (see reference No. 12).
The method of optimization that will be used in this dissertation 

is based on Berry's model, (see reference No. 8 and Chapter 5). This 

method assumes that traffic is characterised by its mean and its 

variance. Berry showed that a general formula for the number of 

junctions on a given link i can be expressed as

ni
A  .

xi + A i
( W * 1 - V,__________

(M1-x1 - (M,-*,) + v, - M, + V,

M? + Vi
r

where

x.. is the total flow on link i

A., the equivalent random traffic producing M. and V.. 

(mean and variance) on link i, is given by the 

Rapp formula (reference No. 4):

Ai ■ V.1
3vi

1
1)

and the variance of the overflow traffic from link i is given by

v, - «H1-*1) (3-(H1-*1) + ((Mr Sr 3)2 +

For a direct link it is assumed that the offered traffic is

Poissonian and hence the equivalent random traffic is equal to the

offered traffic. The aim of Berry's model is to obtain a System
12

Optimised Chain Flow Pattern . Berry's model is discussed in detail 

in Chapter 5.
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Fig. 4.2 shows the various routing patterns which may arise 

between two exchanges, the figures indicate the order of selection.

O End Office 

©  Group Switching Centre 

A  Area Switching Centre 
□  District Switching Centre 

National Switching Centre

Fig. 4.2 Various Routing Patterns Between Two Exchanges
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4.3 The East African Routing Network

The routing network shown in Fig. 4.3 is the trunk routing 

network in East Africa, This network is developing very rapidly, and 

as a result more direct routes are going to be required between the 

various centres, with the existing routes being used as the final 

routes.

For the determination of providing the alternate routes 

economically (i.e. with minimum investment costs) a three node net­

work will be adequate for most of the cases in question, for instance, 

provision of direct routes between Mbeya and Iringa, see-Fig. 4.3, 

with a final route via Dodoma tandem exchange, or Jinja and Mbale, 

with a final route via Kampala tandem exchange, or Malindi and Nairobi 

with a final route via Mombasa.

However, the main development is concentrated on the Kampala, 

Nairobi, Dar-es-Salaam, Kampala triangle, in which a microwave link is 

being installed, except for the Dodoma to Kampala link which is a 

troposcatter system. These cities have 4-wire switched national 

switching exchanges (Trunk Switching Units). Such that the trans­

mission losses between the centres are very low. This then 

conveniently forms a three-node mesh network which is going to form the 
study case in this paper, see Fig. 4.4. The links connecting the cities 
are numbered one to three.

Fig. 4.4. The Three-Node Network
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E.A.P.& T. Corporation which is interested in this study has 

provided the figures that form the basis of our cost calculations.

For the radio routes, graphs are given in Fig. 4.6 to Fig. 4.21 which 

provide equipment and installation costs per circuit for specified 

number of radio circuits. The operation costs are calculated from 

the percentages of investment costs as given in Table 4.1 below. 

However, the equipment, installation and operation costs for multi­

plexing and switching equipment has been given by E.A.P. & T (Kenya 

shillings) as Kshs.12,000 per circuit.

4.3,1 The Costing of the Network

Project
Operation Costs as a 

Percentage of Investment

Exchanges 3%

Multiplex Equipment 0.8%

Other Transmission

Equipment 3.3%

U.H.F. 5%

Junction Cable 0.9%

Coaxial Cable 0.8%

Housi ng 2.5%

Table 4.1 Operation Costs

The graphs clearly indicate that for a particular channel 

capacity:
(i) The more circuits installed, the cheaper is 

the cost per circuit.

(ii) The further apart the terminal stations are 

the higher the cost per circuit. Note that 

there are increased number of repeater 

stations.

If for a particular channel capacity all circuits are 

installed to start with, then the cost per circuit will be very low. 

But this cost includes the constant and variable costs. Thus,

(4.1)
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where
- the cost per circuit

c - the constant cost per circuit c
cy - the variable cost per circuit

For 300- and 960- channel systems considered, it is assumed that 

to provide 50 circuits or less, the cost per circuit will be constant, 

based on the cost per circuit when 50 circuits are provided. As a 

result an average cost per circuit is calculated based on the cost per 

circuit when 50 circuits are provided, and when all the circuits are 

provided. The relevant graphs to the distances between the cities are 

interpolated to provide this information (see Fig. 4.10A, 4.12, 4.13, 

4.17, 4.19, 4.20, 4.21).
The total cost, C, is then a function of the cost per circuit, 

and the number of circuits provided on both the direct arid alternate 

or overflow routes. This is represented mathematically in equation 

(4.2) below

N N
C = E c.n. + Z c.n. (4.2)

k=l k k i=l 1 1

where

C - the total cost of the network

- the cost per circuit on the direct route

- the number of circuits on the direct route

- the cost per circuit on the overflow route
n.j - the number of circuits on the overflow route 

N - the maximum number of direct routes

H - the maximum number of overflow routes

k - the link number on the direct route

i - the link number on the overflow route

A graph of the total cost, C, as a function of the number of 

circuits installed would be of the form shown in Fig. 4.5.

The points of discontinuity in cost represent the maximum 

capacity in number of circuits that a particular route may have been 

planned to accommodate. When this maximum number of circuits is 

being approached, an extension is normally planned, in advance, for 

a further, say, ten year period. As the costing process for a



Fig. 4.5 Total Cost as a Function of Number of Circuits

system with a higher maximum capacity to cater for the period in 

question is being considered, a new constant cost is consequently 

determined. This follows, as a result of the constant costs involved 

in the investment.

The costs per circuit calculated from the graphs, Table 4.1 and 

considering the multiplexing and switching costs are given in Table 

4.2.

Di rect Routes A1ternate Routes

Link No. Cost Per Circuit 
Kshs.

Link No. Cost Per Circuit 
Kshs.

1 37570 1 37570

2 54470 2 54470

3 78730 3 78730

Table 4.2 Costs Per Circuit
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The traffic distribution between the three exchanges, Kampala, 

Nairobi and Dar-es-Salaam was also given by East African Posts and 

Telecommunications Corporation as shown in Table 4.3. This data is 

broken down and fed into the computer in the form presented in Chapter 

6 .

4.3.2 The Traffic  D istribution

Table 4.3 The Traffic Distribution
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CHAPTER 5

5.0 OPTIMISATION OF ALTERNATE ROUTING NETWORKS

As mentioned in Chapter 4, the method that will be used for 

the economic optimisation of alternate routing networks, will be based 

on Berry's Mathematical Model (Reference No. 8).

5.1 _____ Berry's Mathematical Model

5.1.1 Symbols and Definitions

Consider an undirected graph with nodes representing exchanges 

and links the junctions between them. Links used specifically for 

carrying direct traffic are direct links and are labelled 1, 2..k..N, 

where N is the total number of links. Links used specifically for
A

carrying overflow traffic are labelled 1,2 i N, where N is the

total number of overflow links. A pair of exchanges, one originating

traffic and the other terminating traffic is referred to as an origin-

destination pair (0-D pair). It is convenient to label 0-D pairs

1, 2..k..N to coincide with the labelling of the direct links between

them. If the traffic,dispersion between a.pair of exchanges is very
small, direct junctions are frequently not provided and the traffic is

offered initially to a route via a tandem exchange. In this case the

traffic is regarded as overflowing from a direct link with zero junctions.
A chain is a sequence of links, all of the same type, forming

a route between an 0-D pair, such that no node is visited more than

once. Not all of the possible chains between a given 0-D pair are

necessarily used to carry traffic. The permissible chains between the
k k kkth 0-D pair are ordered and labelled by the symbols R-j, R£ ^j(k)’ 

where R^ is the direct link k and j(k) is the total number of chains
+-h

that may carry traffic between the ktr 0-D pair.

The actual traffic carried between the kth 0-D pair on chain
k kR. called a chain flow is denoted h.. If the total traffic offered
 ̂ k J k k k

to the kxr 0-D pair is t it follows that 0< h^ <tK, The traffic t
k J k

erlangs is initially offered to R̂  which carries h-j erlangs, the remainder 

of the traffic being offered in succession to, and partly carried by,
i/

subsequent ordered permissible chains. A fraction B of the total
k ktraffic t overflows from the last chain; this fraction B ,

k th0<B <1, is the traffic congestion for the k 0-D pair.
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If we let

r \ if link i is on chain R.
J

ij 0 otherwise
(5.1)

then the total flow on link i , resulting from the various chain flows
k

h. can be obtained as follows:
J

xi “ l ailh1 ■ = a]lh] = h\ (5.2)

and

E . h^ 
j 1J J

where E denotes summation from k = 1 to 
kand E 

j
denotes summation from j = 2 to j(k).

The mean and variance of the overflow traffic offered to
k thchain R., by the originating exchange for the k 0-D pair are denoted

k ^kM. and V. respectively. The mean and variance of the overflow
1 J
traffic offered to overflow link i, from all 0-D pairs using the link, 

are denoted and V. respectively. The equivalent random traffic 

that would produce the overflow M.. and when offered to N.. equivalent

junctions is denoted A..

In addition to the above notation, the following symbols will

be used for direct link k:

c^ cost per junction

iij. number of junctions
Lf

x̂, traffic carried ( = h-j)

ej, circuit efficiency (the average number of erlangs carried 

per junction)

The value of e^ is obtained from

ek = ■pp provided h^  ̂0 (5.4)

0 otherwise 

Corresponding symbols C p  ftp and refer to the overflow link i.
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5 . 1.2 Assumptions

The main assumptions of the model are:

1. Traffic throughout the network is routed under full availability 

conditions.
2. The traffic initiated at an origin is considered to be 

Poissonian. This assumption of randomness is generally 

accepted as being valid when the number of subscribers 

initiating the calls is large.
3. In addition to assuming independence of traffic initiated at 

the various origins throughout the network, it is assumed that 

the chain flows from different 0-D pairs are statistically 

independent.
4. Traffic is completely described by its mean and variance.

k k5. If (R: ....R. |j,<...<j ) is the set of all ordered chains,
J] Jp 1 P

A. L
between the kLr 0-D pair, which share a common link i, then

1 L

the traffic offered to link i by the kxn 0-D pair is considered
k kto have a mean M. and a variance V..
J J

6. For each 0-D pair the total traffic may be split into 

arbitrarily assigned chain flows such that the overall traffic 

congestions are equal to the specified values, and that when 

this has been done it is possible to dimension the network so 

that these overall traffic congestions are in fact achieved. 

Assumptions (3) and (5) permit the neglect of certain

correlation effects and allow the mean and variance of the total traffic 

offered to a particular link to be obtained from the respective 

additions of the means and variances of the individual traffic streams 

offered to the link.

5.1.3 The DimensioningMethod

Consider an alternate routing network in which each originating

exchanges has access to each of its destination exchanges by means of a
1/

number of routes. Suppose the traffic dispersions, t , and the chain
k thflows, h. are known. It is then apparent that for the k 0-D pair the
J k

mean traffic overflowing from Rj is given by

M-i = tk - i hj j = l, 2....j(k) (5.5)
J + l 11=1 *
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From assumption (2),

Vl\ = vf = tk (5.6)

i/
In order to obtain values for V., j >  1, each 0-D pair is

J
considered independently using Wilkinson's Equivalence method (see

1/
3.1.4.1). For each chain Rj imagine an equivalent single link which

overflows traffic with mean M^,, and variance Vkjn when offered
. k J+l k J + ‘ k

traffic with mean M. and variance V^. Now suppose that A. is the
,  ̂ t J 1/ J

equivalent random traffic which overflows M. erlangs with a variance
k J _ k

V. from a certain number of equivalent junctions n. The values of A.
J J
and n could be calculated from equations 3.6 and 3.7. As the equations

involve excessive computation, the simpler approximate formula due to
Rapp (see reference No. 4) is used to obtain Ak.

k k V.i vi
flj * Vj + 3 7J fet" J ■ 1. 2....j(k) (5.7)

J j|y
Now consider the A. erlangs to be offered to the equivalent single link 

which overflows traffic with mean Mk+  ̂ and a variance Vj+-j • Then

Vk vk

Aj = vj+i + 3 T r f r (T i ~ ” j=1 (5-8)J+l J+l

As
Ak = tk

the occurance of A^ in both equations 5.7 and 5.8 reveals that
J

Ak = Ak= - Ak
1 2 j (k) for all k (5.S)

Thus it is now possible to obtain the value of the chain overflow 
kvariances, V^, as positive roots of the quadratic equations:

3<V0-+1 >2 + 0 Hj+1 )2 - < 0  Vjk+1 - ) -  0 (5.10)

j = 1, 2....j(k)

k
Mj*(k) +1 is the traf^ic ',ost from the system.

The mean f'K and the variance of the traffic offered to each 

overflow link i is obtained as in equations (3.4) and (3.5) modified by
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the condition in equation (5.1), thus

M. = EE ak Mk 
kj ij j

V. = EE ak .Vk 
1 kj ^ (5.11)

The equivalent random traffic, , is obtained from Rapp's formula 

(reference No. 4)

Vi Vi
Ai = vi + 3 k t (m) - ’> (5.12)

and the number of equivalent junctions is given by

V Mi + r f )

Ni *  —  T.-L  -  Mi -  1
m i+«7 - 1

(5.13)

Considering A.. erlangs to be offered to + n̂  junctions with an
overflow mean , where

A k i k
(5.14)

then from equation (5.12) the link overflow variance v̂  can be written
as

(3-(M. - x,)+ Q(M, - X1-3)2+-l2Al5)
V - 0", - «i) ----- 5---- L— ---- 1---------- (5.15)

and the required number of functions for the overflow link: if finally 
given by (reference No. 4)

«i ■ * i + \
fa , - x,r v, (Hp + V1

(M1 - x, - 1)(Hj - xi)+Vi (H1 - 1)M1 + V,

The required number of junction for direct link k is calculated 
from (Reference No. 4).

„ _ tk .,k . tk/<H2>2 + V 2
nk ~ t m2 + 1 — r r x ~ T , r

tk + i

(Mg - l)Mg + Vg
(5.17)
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4- '

5.1._____ Formulation of the Model as a Mathematical Programme

The total junction cost, C, for the network can be expressed 

in terms of the number of direct functions n^ and the number of over­

flow junctions n.:

N N
C ■ Z c. n. + £ c.n. 

k=l K K i=i. 1 1
(5.18)

In contrast to this a non-linear expression will be established for

the total cost C in terms of the chain flows h..
J

As the average cost per erlang on direct link k is —  , the
el<

total cost for all direct junctions is

N
Z
k=l

r hk 
ckhi (5.19)

Considering the overflow links, the average cost per erlang on over- 
c •

flow link i is _ 1  , giving 

*1

n
z, . A
1=1 ei

a1̂ . c. 
ij i (5.20)

as the average cost per erlang for chain R.. It follows that the cost
k Jfor chain flow h. is
J

ak ^ hk a., c.h

1  ;
. - i ei

and the cost for all routes between 0-D pair k is 
k -5 ukV V  a., c.h. 

L i  TJ 1 J
J i

ei

(5.21)

(5.22)

where Z . denotes summation from j=2 to j(k).
J

Finally, the total network cost is given by

c p !
k k j i ^i

ak ^  a. .n.c■
(5.23)
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where the traffic efficiencies e, and e. are uniquely determined
kK 'functions of the chain flows, h..
J

Conservation considerations for the chain flows give the

constraint equations

£ hk = bk, for all k 
j J

(5.24)

where

bk = tk(l - Bk) (5.25)

and hk> 0  for all j and k. 
J

(5.26)

Minimising the total cost C given by equation (5.23) subject 

to the constraints of equations (5.24) and (5.26) constitutes a non­

linear mathematical programme whose solution is considered in 5.1.5.

The solution to the mathematical programme is a set of optimal chain 

flows. These chain flows are used to calculate the optimal numbers of 

junctions on each link, by applying the method in 5.1.5.

Case Study
Example: Formulation of the Model on a Routing Pattern in East Africa.

The routing pattern on which this model is going to be applied 

in East Africa is shown in Fig. 5.1.

2

Fig. 5.1. Routing Pattern
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1 2Let the traffic dispersion values be t , t

per circuit be cn, c0. c0 for direct links and c.,, c
T  2' 3 k

Chains Fc and the values of aj/.
J ' J

chain matrix.

links.

t and the trunk costs
A A

r  c2*
can be obtained from the link-

c^ for overflow

LINK-CHAIN MATRIX 

C H A I N

L 1 1 0 0 1 0 1
I
N 2 0 1 1 0 0 1

K 3 0 1 0 1 1 0

R! R1R2 R2R2
R3R2

The chains are ordered r| , r],, R^, R^> ^he

numbers refer to direct links for r|, R2. R3, otherwise they refer to 

overflow links. There are two possible chains between each exchange 

pair and these chains are all permitted, that is j(k) = 2 for all k.

The total junction cost, C, expressed in terms of the number 

of direct junctions n^, and the number of overflow junctions n̂  is :

A A A A A A A A A A A A

c.j n-j +C2n2+c3n3+C2n2+Ci n-|+c3n3+c 3n3+c] n-j+C2n2 (5.27)

Expressing this £Ost in terms of the chajn flow h^, and in terms of 

cost per erlang on direct link k and on overflow link; that is 

equation (5.23) wl get: 1

clh1 ^ 2h2

'1

^ 2 C2hl . eih2 . e3h2
........-  T ----------------T ------------—

1 e.

.3 .3 .3
+ f3^_ + fl^2 + ̂ 2

ei

(5.28)

The constraint equations are:
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h] + h^ = t1(1-B1)

+ h| = t2(l-B2) V 

h? + hi = t3(1-B3)

h] > 0  ^  

h2 > 0

h2 > 0

> 0
V

h2 > 0

h2 > 0
J

(5.29)

(5.30)

5,1.5 Solution of the Mathematical Programme

The mathematical programme is solved for the routing pattern 

(Fig. 5.1), using a gradient projection method based on Rosen's 

technique (see reference No. 5), Chapter 12). The determination of the 

gradient is discussed in detail in Appendix 5.
As the total network cost, C, is to be minimized, the 

projection of the gradient,-VC, onto the constraint set defined by 

equations (5.29) and (5.30) provides the direction of best improvement 

from a given feasible point. But the approach taken here is to project 

-VC onto the set S, defined as the intersection of only the three 

equality constraints given by equation (5.29). As the constraint equations 

are independent, S has dimension three.

If the chain flows:

J  J J i,2 v,2 h2 h3 h3 h3n i y " i» "2* 3 *

where hi, h2 and hi represent the traffic lost from the system, are
0 0

denoted by:
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|y
respectively, and the traffic congestions B are specified the same for 

all k, = 0.002, denoted B. Then the constraint equations become:

Xi + x2 = t1(1-B)

x4 + x5 = t2(l-B) (5.31)

x? + Xg = t3(l-B)

such that

X1 = ~x2 + * 0"B)

x4 = “ x5 + t? (1-8) (5.32)

x7 = - x8 + t3 (1-B)

giving a basis of three independent vectors. The basic vectors are

-1 ' ' O ' -  0 “

1 0 0
0 0 0
0 -1 0
0 »  q2 = 1 ^3 =

0
0 0 0
0 0 -1
0 0 1
0

’

0
-m _

0

(5.33)

and the vectors which form a basis for the three dimensional orthogonal 
complement of S are

1 * 0 0
1 0 0
0 0 0
0 1 0
0 • P2 = 1 * p3 “ 0
0 0 0
0 0 1
0 0 1
0 0 _0 _

(5.34)
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If *x = (x.|, x2, x3, x^, x5> Xg, x^, Xg, Xg) is a point belonging to S,

and a = (a^, a2, ..............

*t - x is in the direction of -yC, thus

ag ) is such that the vector

then

-V? -  t  -

a = (x, - 9C y _ 9C _ 9C
3x1 * x2 3x2 ’ x3 9x^

9C y _ 3C y _ 9C \
x8 ’ 9 19Xy '

• • • •

then the point

y = + ^2^2 + X3P3 + *

(5.35)

(5.36)

(5.37)

satisfying the constraints is the orthogonal projection of a onto S 

giving (reference No. 8)

2X.J + a-j + a2 = t^(l-B)

2X

2X

2 + ■*" ^5 = t ( 1-B)

2 + + ag = t (1~B)

(5.38)

such that

xi -

X2 =

t̂  (1-B)- a-j- a2
------2------

t 2( l-B )-a4-a 5 

---------2--------- (5.39)

X, _ 1 (1“B)"a7*a83 = ------z------

Substituting values of a and tK(1-B) from equations (5.31) 
and (5.36) into equation (5.39) we obtain:
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X, =

y I y _ / y _ ̂  \ _ / 3C v 3C 3C 
Xl+X2 (X1 (X2 "Sx^

T T

V X5
/ y _ 3C v / _ 3C . 3C 3C 
'x4 "5x7̂  *x5 ^  '5x7 + 337

T
(5.40)

x7+x8"(x7 ~ ^ H x8“ ^
2 = 2

3C 3C
3x̂  ITx̂

X1P1+X2P2+X3P3

3C 3C
^x4 ^x5
----2----

3C 3C 
3x7 3Xg

1
1
0

3C 3C 
3x-| + 3X2 
--- -2----

3C 3C
3Xi + 3X2 

2 
0

3C 3C
^  3x5

T
0

3C 3C 
3x7 + ~3Xg

3C
3x-

3C
3x8

3C . 3C

V  X5
--- 2----

(5.41)

0

o
 o

 o
 o

 o
 o
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X1P1+X2P2+X3P3+ ® is

y

9C_ 8C 
3x, 3x?
----2---“ + x1

3C
3x

ac ac
3x^ + 3x2
----2---- + x0 - 3C_

ax.

ac
0 + *3 - W

ac ac_
ax4 'ax5

+ X- - ac
ax.

ac ac
ax4 ax5

+ xr - ac_
ax.

ac0 + Xc -6 ax

ac ac
9x7 9x8 , .. ac

7 + x7 'a?:

ac _ac_
ax7 9x8 . .. ac --- 2----+ xg - ^

8

0 + x -x9 ax,

(5.42)

which reduces to equation (5.43)



<<
+

Xo -

x~ -

Xr "

X7~

Xo -

ac
axr

ac

1

ac ac
ax2 ax-|

T ~

ac
'a'xj

ac sc
ax4 9x5

T

ac sc
Sx5 'S'x4

ac
s*6

ac ac
ax? 9Xg

~T~

ac SC
3X8 ax7

(5.43)

Xn "
aC_
3xr

-¥ -*■
V = y -and the projection vector x
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ac x
Tbcj’ “ 9x2

2

9C _ 
8X2

9C
9x-j

2

9C
9x3

9C 9C
9x4 Sx5

2

9C 3C
8x 5 9X4.

3C
9x6

3C 3C
9Xy 9x8

9C 9C
3X8 9 x7

7

9C_
3Xg

The search procedure used is slightly different from that 

described in Berry's mathematical model, (reference No. 8). Berry 

first determines the maximum step length, and then searches for a 

minimum point within the step length. On the other hand we pick a
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very small arbitrary step length and try to determine whether this is 

a minimum point. The procedure used is described below.

At a non-optima1 point, x, where

x =

the projection vector is non-zero, v£0, it may be positive or negative.

It is important at this stage to note that the point, x, and the 

projection vector, v, are two different points.

If the projection vector, v, is positive, then the point, 

is negative with respect to v, and x is increased in the direction 

of the projection vector, v. If the projection vector, v, is negative, 

then the point, x, is positive with respect to v, and ~x has to be 
decreased in the direction of the projection vector, v.

The increase or decrease to the point, x, is a function of the 

projection vector, v, and an arbitrary step, t, chosen thus

z = t v (5.46)
where

z is an increase or decrease depending on v. Then a new point 

is established in equation (5.47) satisfying the non-negativity constraints 

of equation (5.30)

x-| = x + z (5.47)

With the initial given values of traffic, x, the total cost is 

calculated as described in section 5.1.5. and stored. After a new 

point, x-j, has been established as in equation (5.47),

(5.45)
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the total cost is recalculated and compared with the initial cost. If 

the new cost is less than the initial cost, then the initial cost is

disregarded and the new cost is now stored. A new point x2 has to be 

established and a corresponding total cost calculated accordingly.

When the new total cost is more than the stored total cost, 

then the minimum cost is between the two costs. It is therefore 

necessary to reduce the incremental/decremental step length, t, to 

determine the exact minimum cost. If none is found then obviously the 

stored cost is the minimum cost.

The number of circuits are calculated as described in 5.1.3. 

However, these number of circuits do not take into account the 

direction of traffic. They represent the optimised number of circuits 

required on a particular link. To determine the number of circuits to 

be provided in either direction between two points linked directly, 

the following procedure is adopted.

Consider traffic originating at point A and terminating at 

point B and vice-versa. Offered traffic T, on the direct link from 

point A to point B is calculated as a ratio of the optimised traffic 

on the direct route between point A and point B as calculated above, 

to the optimised traffic on the direct route between A and point B and 

the optimised traffic on the overflow route between points A and B, 

mulitplied by the actual traffic offered. Thus if x-j represents 

optimised traffic on the direct link and x2 represents optimised traffic 

on the overflow link, A ^  is traffic originating at point A and 

terminating at point B, then of the originating traffic, the traffic 

that is offered on the direct link is

x,
-)Aab (5.48)Tl = (

kl
x-j + x^

and T^, the traffic offered as the overflow link is 

T2 = + x2)AAB (5.49)

As the grade of service between the two points A and B will remain 

constant, it is now possible to apply Erlang's Loss Formula (reference 

No. 1), and calculate the number of circuits in direction A to B on the 
direct and overflow routes. This procedure is repeated on the whole network. 

When all the circuits have been calculated, it is now possible to compile a 

total number of unidirectional circuits required from point A to point B.
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CHAPTER 6

6.0 THE COMPUTER PROGRAMME

The computer programme is based on the optimization method 

discussed in Chapter 5. A Flow Chart describing the various operations 

is presented below:

6.1 The Flow Chart

6.1.1____The Method of Dimensioning
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.2 Gradient
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6.1.3 Gradient Projection

6.1.4 Chain Flow Variation







T





1
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6.2 Data

6.2.1 Link Chain Matrix (SA)

1 0 0 0 1 0 0 1 0

0 1 0 1 0 0 0 1 0

0 1 0 0 l 0 1 0 0

R! R1R2 4 Ri R2R2 R2R3 R? R3R2 R

In Chapter 5, 5.4.1, Link-Chain Matrix, the second overflow

route is not shown, this is represented by zeros in SA above, the
1 2  3chains concerned are R^, Rg and Rg. The traffic that would overflow 

to these chains would therefore be lost and there is no link between 

origin and destination. For computation purposes it is important 

that this lost traffic is calculated and as such a dummy route is shown.

6.2.2 Costs

As the method used in determining the costs gives an average 

cost per route, the costs for a direct link or the same link used as an 

overflow link have been kept the same and constant. All the costs are in 

Kenya shillings.

Direct Routes

C(l) = 37570, C(2) = 54470, C(3) = 78730 

Overflow Routes

PC(1) = 37570 , PC(2) = 54470, PC(3) = 78730 

Total Cost (C)

A large arbitrary figure is given initially to enable 

starting of the computation.

C = 1.245 x 109

6.2.3 Traffic in Erlangs 

1975

ABT(l) = 0025.42, ABT(2) = 0027.14, ABT(3) = 0003.78



73

1980

BAT(1) = 0032.85, BAT(2) = 0018.61, BAT(3) = 0003.70

T(1) = 0058.27, T(2) = 0045.75, T(3) = 0007.48

40% Traffic Flow on Direct Route

H(l,l) = 0023.26, H(2,1) = 0034.89, H(3.1 ) = 0000.12

H(1 ,2) = 0018.26, H(2,2) = 0027.40, H(3.2) = 0000.09

H(1 ,3) = 0002.99, H(2,3) = 0004.48, H(3,3) = 0000.01

60% Traffic Flow on Direct Route 

H(1 ,1) = 0034.89, H(2,l) = 0023.26, H(3,l) = 0000.12

H(1,2) = 0027.40, H(2,2) = 0018.26, H(3.2) = 0000.09

H(1,3) = 0004.48, H(2,3) = 0002.99, H(3,3) = 0000.01

80% Traffic Flow on Direct Route

H(1,1) = 0046.52, H(2,l) = 0011.63, H(3,l) =  0000.12

H(1,2) = 0036.52, H(2,2) = 0009.14, H(3,2) = 0000.09

H(1,3) = 0005.9$, H(2,3) = 0001.49, H(3,3) = 0000.01

ABT(l) = 0064.22, ABT(2) = 0067.52, ABT(3) = 0006.08

BAT(1) = 0081.73, BAT(2) = 0046.32, BAT(3) = 0005.96

T(1) = 0145.95, T(^) = 0113.84, T(3) = 0012.04

40% Traffic Flow on Direct Route

H (1 .1) = 0058.26, H (2,1) = 0087..40, H (3,1) = 0000..29

H (1 .2) = 0045.44, H (2,2) = 0068..17, H(3,2) = 0000..23

H(1 .3) = 0004.80, H(2,3) = 0007..22, H(3,3) = 0000..02

60% Traffic Flow on Direct Route

H (1 .1) = 0087.40, H(2,1) = 0058.,26, H (3.1) = 0000..29

H(1 *2) = 0068.17, H(2,2) = 0045..44, H (3,2) = 0000.,23

H (1 .3) = 0007.22, H(2,3) = 0004.,80, H (3,3) = 0000.,02



74

80% T ra ffic  Flow on Direct Route

H(l,l) = 0116.52, H(2,1) = 0029.14, H (3,1)

H(1 ,2) = 0090.88, H(2,2) = 0022.73, H (3.2)

H(1 ,3) = 0009.60, H(2,3) = 0002.42, H (3,3)

ABT(l) = 0159.77, ABT(2) = 0168.00, ABT(3)

BAT(1) = 0203.34, BAT(2) = 0115.26, BAT(3)

T(l) = 0363.11, T(2) = 0283.26, T (3)

40% Traffic Flow on Direct Route

H (1 ,1 ) = 0144.95, H(2,1) = 0217.43, H (3.1)

H(1,2) = 0113.08, H(2,2) = 0169.61, H (3,2)

H(1 ,3) = 0007.82, H(2,3) = 0011.74, H (3,3)

60% Traffic Flow on Direct Route

H(1 ,1) = 0217.43, H (2,1) = 0144.,95, H (3,1)

H (1 .2) = 0169.61, H (2,2) = 0113..08, H(3,2)

H (1 ,3) = 0011.74, H(2,3) = 0007,.82, H (3,3)

80% Traffit: Flow on Direct Route

H (1 .1) = 0289.90, H (2,1) = 0072,.48, H(3,l)

H (1 ,2) = 0226.16, H (2,2) = 0056,.53, H(3,2)

H (1 ,3) = 0015.64, H(2,3) = 0003 .92, H (3,3)

1990

ABT(l) = 0397.50, ABT(2) = 0417.99, ABT(3)

BAT(1) = 0505.93, BAT(2) = 0286.76, BAT(3)

T(1) = 0903.43, T(2) = 0704.75, T(3)

0000.29

0000.23

0000.20

0 0 1 0 .0 0

0009.60

0019.60

0000.73

0000.57

0000.04

0000.73

0000.57

0000.04

0000.73 

0000.57 

= 0000.04

= 0015-78 

= 0015.48 

= 0031.26
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40% Traffic Flow on Direct Route

H(l,l) = 0360.65, H(2,l) = 0540.97, H(3,l)

H(1 ,2) = 0281.34, H(2,2) = 0422.00, H(3,2)

H(1 ,3) = 0012.48, H(2,3) = 0018.72, H(3,3)

60% Traffic Flow on Direct Route 

H(1 ,1 ) = 0540.97, H(2,1 ) = 0360.65, H(3,l)

H(1,2) = 0422.00, H(2,2) = 0281.34, H(3.2)

H(l,3) = 0018.72, H(2,3) = 0012.48, H(3,3)

80% Traffic Flow on Direct Route

H(1 ,1 ) = 0721.30, 

H(1 ,2) = 0562.68, 

H(1 ,3) = 0024.96,

1990 HYPOTHETICAL

ABT(l) = 0397.50, 

BAT(1) = 0505.93, 

T(1) = 0903.43,

H(2,1) = 0180.32, H(3,1) 

H(2,2) = 0140.66, H(3,2) 

H(2,3) = 0006.24, H(3,3)

ABT(2) = 0417.99, ABT(3) 

BAT(2) = 0286.76, BAT(3) 

T(2) = 0704.75, T(3)

60% Traffic 

H(1 ,1 ) = 0540.97. 

H(1.2) = 0422.00,

H(1 ,3) = 0447.13,

1995

ABT(l) = 0988.98, 

BAT(1) = 1258.74, 

T(1) = 2247.72,

Flow on Direct Route

H (2,1 ) = 0360.65, H (3,1)

H(2,2) = 0281.34, H (3,2)

H(2,3) = 0301.42, H (3,3)

ABT(2) = 1039.94, ABT(3)

BAT(2) = 0713.45, BAT(3)

T(2) = 1753.39, T(3)

0001.81

0001.41 

0000.06

0001.81

0001.41 

0000.06

0001.81

0001.41 

0000.06

0400.00

0350.05

0750.05

0001.81

0001.41 

0001.50

0025.43

0024.94

0050.37



40% Traffic  Flow on Direct Route

H(1 ,1 ) = 0897.29, H(2,l) = 1345.93, H(3,l) = 0004.50

H(1 ,2) = 0699.95, H(2,2) = 1049.93, H(3,2) = 0003.51

H(1 ,3) = 0020.11 , H(2,3) = 0030.16, H(3,3) = 0000.10

60% Traffic Flow on Direct Route 

H(1 ,1 ) = 1345.93, H(2,1) = 0897.29, H(3,l) = 0004.50

H(1 ,2) = 1049.93, H(2,2) = 0699.95, H(3,2) = 0003.51

H(1 ,3) = 0030.16, H(2,3) = 0020.18, H(3,3) = 0000.10

80% Traffic Flow on Direct Route

H(l,l) = 1794.58, H(2,1) = 0448.64, H(3,l) = 0004.50 

H(1 ,2) = 1399.90, H(2,2) = 0349.98, H(3,2) = 0003.51

H(1 ,3) = 0040.32, H(2,3) = 0010.05, H(3,3) = 0000.10

2000

ABT(l) = 2460.59, 

BAT(1) = 3131.75, 

T(1) = 5592.34,

ABT(2) = 2587.39, 

BAT(2) = 1775.06, 

T(2) = 4362.45,

ABT(3) = 0040.97 

BAT(3) = 0040.18 

T(3) = 0081.15

40% Traffic Flow on Direct Route

H (1 .1) = 2232.46, H (2,1) = 3348. 70, H (3,1) = 0011. 18

H(1 .2) = 1741.49, H(2,2) - 2612. 24, H (3,2) = 0008. 72

H(1 ,3) = 0032.40, H(2,3) = 0048.,59, H (3,3) = 0000. 16

60% Traffic: Flow on Direct Route

H (1 ,1) = 3348.70, Hi2,l) = 2232.,46, H (3,1) = 0011. 18

H(1 .2) = 2612.24, H(2,2) = 1741.■ 49, H(3,2) = 0008. 72

H(1 >3) = 0048.59, H(2,3) = 0032.,40, H(3,3) = 0000. 16
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H(1 ,1 ) = 4464.92, H(2,l) = 1116.24, H(3,l)

H(1,2) = 3482.98, H(2,2) = 870.75, H(3,2)

H(1,3) = 0064.80, H(2,3) = 0016.19, H(3,3)

6.3 The Programme

The programme is attached at the end of the appendices.

80% Traffic  Flow on Direct Route

= 0011.18 

= 0008.72 

= 0000.16

6.4 Results

1980
40% Traffic Flow on Direct Route 

Step Length: STPT = 0.000000001

Total Cost: C = shs.26,714,892.12

Optimal Traffic in Erlangs:
Direct Route Alternate Route

Nairobi-Kampala 24.35 39.87 

Nairobi-Dar-es-Salaam 25.21 42.31 
Dar-es-Salaam-Kampala 0.90 5.18 

Kampala-Nairobi 30.99 50.74 

Dar-es-Salaam-Nairobi 17.29 29.03 

Kampala-Dar-es-Salaam 0.88 5.08

60% Traffic Flow on Direct Route 

Step Length: STPT = 0.000000001 

Total Cost: C = shs.22,698,114.53

Optimal Traffic in Erlangs:

Direct Route Alternate Route

Nairobi-Kampala 36.40 27.82

Nairobi-Dar-es-Sal aam 37.64 29.88

Dar-es-Salaam-KampalaN 1.21 4.87

Kampala-Nairobi 46.33 35.40

Dar-es-Salaam-Nairobi 25.82 20.50

Kampala-Dar-es-Sal aam 1.18 4.78
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80% Traffic Flow on Direct Route

Step Length STPT = 0.000000001

Total Cost: C = shs.18,670 ,984.19

Optimal Traffic in Erlangs:

Direct Route Alternate Route

Nairobi-Kampala 48.96 15.26

Nai robi-Dar-es-Sal aam 50.76 16.76

Dar-es-Salaam-Kampala 2.09 3.99

Kampala-Nairobi 62.31 19.42

Dar-es-Salaam-Nai robi 34.82 11.50

Kampala-Dar-es-Salaam 2.05 3.91

1985
40% Traffic Flow on Direct Route

Step Length: STPT = 0.000000001

Total Cost: C = shs.64,117 ,112.61

Optimal Traffic in Erlangs:

Direct Route Alternate Route

Nairobi-Kampala 53.74 106.03

Nairobi-Dar-es-Sal aam 53.49 114.51

Dar-es-Salaam-Kampal a 0.27 9.73

Kampala-Nairobi 68.39 134.95

Dar-es-Salaam-Nairobi 36.70 78.56

Kampala-Dar-es-Sal aam 0.26 9.34

80% Traffic Flow on Direct Route

Step Length: STPT = 0.000000001

Total Cost: C = shs43,818,,374.44
Optimal Traffic in Erlangs

Direct Route Alternate Route

Nairobi-Kampal a 113.81 45.96

Nairobi-Dar-es-Sal aam 115.53 52.47

Dar-es-Salaam-Kampal a 1.14 8.86

Kampala-Nairobi 144.84 58.50

Dar-es-Salaam-Nai robi 79.26 36.00

Kampala-Dar-es-Salaam 1.10 8.50
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1990

40% Traffic Flow on Direct Route

Step Length: STPT = 0.000000001 

Total Cost: C = shs.155,897,624.08

Optimal Traffic in Erlangs

Direct Route Alternate Route

Nairobi-Kampala 79.93 317.57

Nairobi-Dar-es-Salaam 60.61 357.38

Dar-es-Salaam-Kampala 1.20 14.58

Kampala-Nairobi 101.73 404.20

Dar-es-Salaam-Nai robi 41.58 245.18

Kampala-Dar-es-Sal aam 1.18 14.30

60% Traffic Flow on Direct Route
Step Length: STPT = 0.000000001 

Total Cost: C = shs.130,349,682.66

Optimal Traffic in Erlangs:

Nairobi-Kampala 

Nairobi-Dar-es-Sal aam 

Dar-es-Salaam-Kampala 
Kampala-Nairobi 

Dar-es-Salaam-Nai robi 

Kampala-Dar-es-Sal aam

80% Traffic Flow on Direct

Direct Route 

130.74 

105.53 
0.19 

166.40 

72.40 

0.18

Route

Alternate Route 

266.76 

312.46 

15.59 

339.53 
214.36 

15.30

Step Length: STPT = 0.000000001 

Total Cost: C = shs.104,882,464.68 

Optimal Traffic in Erlangs
Direct Route A1ternate Route

Nairobi-Kampala 234.83 162.67

Nairobi-Dar-es-Sal aam 222.28 195.71

Dar-es-Salaam-Kampala 3.07*” 12.71
Kampala-Nairobi 298.88 207.05

Dar-es-Salaam-Nai robi 152.49 134.27

Kampala-Dar-es-Sal aam 3.01 12,47
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80% Traffic Flow on Direct Route

Step Length: STPT = 0.0000000005

1980

Total Cost: C = shs.18,670 

Optimal Traffic in Erlangs

,984.19

Direct Route Alternate Route

Nairobi-Kampala 50.17 14.05

Nai robi-Dar-es-Salaam 52.39 15.13

Dar-es-Salaam-Kampala 3.47 2.61

Kampala-Nairobi 63.85 17.88

Dar-es-Salaam-Nai robi 35.94 10.38

Kampala-Dar-es-Salaam 3.40 2.56

1985

Total Cost: C = shs.43,818, 

Optimal Traffic in Erlangs
374.44

Direct Route Alternate Route

Mai robi-Kampala 120.81 38.96
Nairobi-Dar-es-Salaam 124.97 43.03
Dar-es-Salaam-Kampala 1.91 8.09
Kampala-Nairobi 153.76 49.58
Dar-es-Salaam-Nai robi 85.74 29.52
Kampala-Dar-es-Salaam 1.83 7.77

1990

Total Cost: C = shs.104,882 

Optimal Traffic in Erlangs:
,464.68

Direct Route Alternate Route
Nairobi-Kampala 276.42 121.08
Nai robi-Dar-es-Salaam 278.34 139.65
Dar-es-Salaam-Kampala 1.30 14.48
Kampala-Nairobi 351.82 154.11
Dar-es-Salaam-Nai robi 190.95 95.81
Kampala-Dar-es-Salaam 1.28 14.20

*



81

1995
Total Cost: C = shs.254,494.830.37

Optimal Traffic in Erlangs
Direct Route Alternate Route

Nairobi-Kampala 564.79 424.19

Nairobi-Dar-es-Salaam 20.23 19.71

Dar-es-Salaam-Kampala 0.84 24.59

Kampala-Nai robi 147.76 110.98

Dar-es-Salaam-Nairobi 361.39 352.06

Kampala-Dar-es-Salaam 0.83 24.11

2000
Total Cost: C = shs.623,114 ,947.98

Optimal Traffic in Erlangs
Direct Route Alternate Route

Nairobi-Kampal a 160.53 300.07

Nairobi-Dar-es-Salaam 129.95 457.44

Dar-es-Salaam-Kampala 2.50 38.47

Kampala-Nairobi 45.92 85.83

Dar-es-Salaam-Nai robi 171.47 603.59

Kampala-Dar-es-Salaam 2.45 37.73

1990 Hypothetical

Step Length: STPT = 0.0001

Total Cost: C = shs.170,575,972.20

Opticals traffic in Erlangs

Direct Route Alternate Route

Nairobi-Kampala 49.49 348.01

Nai robi-Dar-es-Salaam 74.02 343.97

Dar-es-Salaam-Kampala 7.43 392.57

Kampala-Nai robi 62.99 442.94

Dar-es-Salaam-Nai robi 50.78 235.98

Kampala-Dar-es-Salaam 6.50 343.55



82

CHAPTER 7

7.0 COMMENTS AND SUMMARY OF CONCLUSIONS

The object of this dissertation was to determine a method of 

economically optimising a telephone network which has direct and alternate 

routes, with emphasis on trunk networks by use of a computer. This has 

been done as explained in the preceding chapters, by deciding to use a 

suitable telephone traffic mathematical model from which a search pro­

cedure and hence a computer programme were developed. It should be 

noted that this is the first attempt in East Africa to provide a method 

of economic optimisation of a telephone network. To date there are no 

alternate routes provided in the network, and there has been no way to 

examine the economic viability of the routes being provided. The method 

used here may not be the only one available, but its suitability was 

based on its non-negativity constraints, flexibility of the grade of 

service, system optimising chain flow pattern, and that the traffic is 

completely described in its mean and variance. It should also be noted 

that political parameters have not been considered in the otpimisation 

method.
The computer programme results show that the traffic flow on 

the Dar-es-Salaam-Kampala direct route was the first variable to break 

the non-negativity constraints, and the step-length had to be reduced 

to maintain the non-negativity constraints (a typical example is under 

the Chain Flow Variation in the computer programme attached). This is 

an important point in the search procedure because once the first 

variable to break the non-negativity constraints is found, the traffic 

flow on the chain corresponding to the variable is transferred to 

another chain between the same exchange pair, while maintaining the 

conservation requirements.
Having transferred the traffic flow to another chain between 

the same exchange pair, the chain which was considered as a direct route 

between Kampala and Dar-es-Salaam can now only serve as an alternate 

route to traffic flow on other chains. Therefore in the chain matrix, 

the direct route which was initially represented by digit one (1), is 

now represented by digit zero (o). In practice this means that a 

direct link between Kampala and Dar-es-Salaam is uneconomic. If a direct 

route is not economically justifiable, then it should not be provided.
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It should be eliminated in which case it can not be used as an alternate 

route either. It is therefore concluded that an economic route between 

Kampala and Dar-es-Salaam would be to use the chain or alternate route 

through Nairobi. The traffic flow between Nairobi and Kampala, and 

Nairobi and Dar-es-Salaam would be routed on the direct routes respectively. 

Examination of the input data would also lead to the same conclusion 

that a direct link between Kampala and Dar-es-Salaam is uneconomic, since 

the traffic flow is very small indeed in comparison to the traffic flow 

on the other routes, and yet if it was transferred to the other routes 

it would not make any appreciable difference in the percentage increase 

in circuit provision.
There are other observations made on the study case results 

generally. The percentage of traffic flow on the direct route was 

chosen arbitrarily, and from the results, the higher percentage of traffic 

flow on the direct route, the less the total cost. From the cost function 

it can be concluded that an alternate route is not economically viable, 

this however has been confirmed by the non-negativity constraints which 

determined the exact chain flow to be considered. Examination of the 

projection vector shows that no optimal point was obtained, not even 

within the limits acceptable for practical purposes. This was expected 

since the network could not maintain the conservation requirements.

However, on eliminating the direct route between Kampala and Dar-es-Salaam 

it was not necessary to re-compute traffic to obtain an optimal point, 

since the number of circuits could be calculated easily using the avail­

able Erlang's Loss Traffic Tables, and the remaining network was too 

simple to require the use of a computer.

In the example considered, the grade of service was taken to be 

the same on all routes for simplicity, but in practice, this is not 

always so, and provision for different grade of service for various 

routes can be made easily (see equations 5.29). In the search procedure, 

if the arbitrary step length is too large, this is reflected in the 

results by the traffic and number of circuits calculated not having any 

direct relationship with the input data. As the step length is reduced 

the output data begins to be more sensible. But as the step length is 

further reduced, there is some little change in the number of circuits 

on a particular link, but not in the total cost of the network.

Just to compare and realize the validity of this method,
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hypothetical input data has been used for 1990, and here an economical 

viable route has been established.

To illustrate the method the input data was fed into the computer 

and an estimated time of ten minutes made for running the programme. The 

results were examined and from the gradient projection and step length, it 

was possible to determine in which direction to move the step length. In 

the example it was possible to minimize the total cost only up to a 

certain point and then the increase in the traffic parameters became too 

large and in turn gave very large total cost. It was possible to see 

that the input data was far too distant from the optimal point. There­

fore data which corresponded to a minimum total cost was chosen as the 

next starting input data and the step length reduced accordingly. This 

procedure was repeated several times until the final results were 

obtained (the attached programme). In this results the projection vector 

could not be reduced to zero, but it had reduced to a minimum, which 

was accepted as close to zero as possible particularly when comparing 

the initial and final results. It should be noted here that it is not 

always possible to reduce the projection vector, down to zero, and 

minimum values are accepted to be as close to zero as practicable.

If an estimated computing time is not given, and the arbitrary 

step length was too small, it could take a very long time to ever come 

down to reasonable figures,and this is very extravagant to the machine 

both economically and time consumption. It is therefore essential that 

an estimated computing time is given so that the programme is stopped 

and examined. Then a realistic step length can be determined which will 

speed the search for a minimum. It was also noted that the projection 

vector had a direct proportional relation with the total cost. The 

higher the total cost the higher the projection vector and the lower the 

total cost the lower the projection vector.

Examining the attached programme, which illustrates the 

hypothetical case, it is clear how the search for the minimum total cost 

is arrived at; by a number of loops through the main programme. Every 

time a total cost has been calculated and it is less than a previous 

total cost, the input data has to be varied and a new total cost be re­

calculated. This is repeated until a new total cost is higher than the 

previous total cost. Then the minimum cost can be searched around the 

previous total cost.
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It is also possible that there may be more than one minimum 

point. In this case you would not stop the programme once you determine 

one minimum point, but you would examine on either side whether it is 

possible for you to rise to a maximum and begin coming down to another 

minimum. If this is lower, then you have to disregard the first one and 

follow this until you can determine that it is the minimum. However, 

the examination of other minimum points was not done in the hypothetical 

case.

It is important to note that for the hypothetical data, sixty 

per cent (60%) of traffic flow on the direct route was chosen arbitrarily 

as the input data. The search procedure then determined the minimum 

total cost, determining the economic viability of the direct route between 

Kampala and Dar-es-Salaam.

In theory, at the optimal point, when the projection vector is 

zero or as near zero as practicable, for each exchange pair, the 

marginal cost per erlang is the same for the direct circuit and each of 

its alternate overflow chains.
The last set of output data is the unidirectional traffic offered 

on each route, (direct and alternate). It is from these data and 

knowledge of the grade of service, that one used the Erlang Loss Traffic 

Tables to determine the number of circuits to be provided in a particular 

direction on a particular route.
As mentioned before, the provision of circuits between exchanges, 

to meet the present and future traffic demands, is an important economic 

consideration. This has been an approach to give an economic optimisation 

of alternate routing networks, in a telephone network, in terms of the 

circuit costs. The method optimises the network as a whole, and allows 

specification at will, of grades of service between each exchange pair.

The practicability of the method has been illustrated by the case study 

and the hypothetical data. This method of optimisation, when restricted 

or limited availability has been considered, is proposed to be applied 

to the East African Posts and Telecommunications trunk and local multi­

exchange networks.
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APPENDIX I

1.0 THE BIRTH AND DEATH PROCESS

1.1 Transition Probabilities

Consider a system consisting of N sources and R devices. The

system is in state E. when j sources are busy. The number of possible
J

states is N+l (including 0), where N may be °°.
Let P(j t) be the probability that the system is in state Ê  at 

time t.
When a new call arrives or a call in progress terminates, the 

system changes its state. In order to find the distribution P(j,t) it 

is necessary to have advance knowledge concerning the incoming traffic 

and properties of the terminating calls.
The changes of the state of the system are studied using the 

Theory of Markov Processes as a general mathematical model of the 

actual situation. The Markov Process is a stochastic process in which 

the future development depends on the present state, but not on the 

past history of the system.
A Markov Process is characterised by its transition probabilities:

P(Y(t) = j |Y(t ) = i) = P(i, t , j, t) (Al.l)

which give conditional probability of finding the system at time t

in state E., given that at a previous time (instant) t , the state was 
J

E.j, where t <t.
These transition probabilities have to be consistent and 

satisfy the Chapman-Kolmogorov equation

P(i, t ;j , t+h) = zP(i,T ;v, t)P(v,t;j, t+h) (A1.2)
v

which is based on the following reasoning. Consider three moments 

(see sketch below t < t < t + h)

Ei Ev Ej
------------------------------------------------------- time

x t h t+h
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Suppose that at time t the system is in state E^, at t, Ey, then the 

Chapman-Kolmogorov equation reads:

the probability that there are j busy sources at 

time t+th given that there were i busy sources at 

time t , equals the sum of the probability of 

transition from i busy sources into j busy sources 

occuring through intermediary situations of v busy 

sources at a certain moment t.
For a general stochastic process the probability of transition 

from state Ev at time t to state Ej at time t+h would depend on state 

Ei at time t , i.e. P(i, x; v,t; j, t+h). E^, Ey, Ê  being past, present 

and future states respectively, the past then has an influence on the 

future.
The transition probabilities in a Markov process relates the 

present state with the future state, i.e. P(v,t; j, t+h).

Restricting to a temporarily homogenous Markov process 

P(i> t ; j, t) depends only on the difference (t -t ) and is independent 

of t .
The transition probabilities P(i; j, t) are now the same for 

all intervals of length (t - t ). Putting x = 0, t becomes a length 

of an interval arbitrarily placed.

Then for a time-homogenous process, the Chapman-Kolmogorov 

equation becomes

P(i; J, t+h) = E P(i; v, t) P(v; j, h) (A1.3)
v

P(i; j, t+h) is the transition probability that the system is at time 

t+h in state E^, given that at time zero it was in state E^.

P(i; v, t) represents the transition probability from a stateE^ at 

time zero to state Ey at time t,

P(v; j, h) is the conditional probability that if the system is in state

E at t, it will change into state E. during h.
* J <

Suppose initial state is known E^. Then P(i; j, t) may be

regarded as the absolute probability P(j, t) i.e. E. at t. Then the
J

Chapman-Kolmogorov equation becomes

P(j. t+h) = E P(v, t) P(v; j, h) (A1.4)
v

where
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P(v, t) - absolute probability of Ey at t 

P(v; j, h)- conditional probability of transition.

By this equation the probability of the system being in state E.
J

at time t+h is obtained, if the transition probabilities from other 

states Ey to state E^ are known.

To determine the transition probability P(v; j, h) i.e. the 

probability that the system changes during interval h from state Ey 

to state E.; it is assumed that the time-dependent Markov Process-
J

the Birth and Death Process-will describe the physical situation 

satisfactorily.

1.2 The Birth and Death Process 

Assumptions

1. The system changes only through transitions from states to their 

next neighbours

(from Ej to E^+  ̂ or Ej_^ if 0 < j< N 

but from Eq to E-j and E[n) to E ^  only)

2. If at any time t the system is in state E., then the conditional
*1

probability that during (t, t+h) the transition from Ej to ej+i 
(if j < N) occurs is

P(Y(t+h) = j+l|Y(t) = j) = Xjh + Oh (A1.5)

where is a non-negative constant depending on j. (See
J

Appendix 1.1.3).

3. If at any time t the system is in state j, then the conditional 

probability that during (t, t+h) the transition from E. to E. ,
" J J * *

(if j > 0) occurs is

P(Y(t+h) = j-1 | Y(t) = j) = y.h + Oh (A1.6)
J

where is a non-negative constant depending on j.
v;

4. The probability of more than one transition during (t, t+h) is Oh.

The change from Ej to Ej+1 is interpreted as an arrival of a
new call to the system, whereas the change of E . to E._. represents

J J •
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the termination of a particular call already in progress. Coefficients 

X. and yj represent incoming calls (birth) and terminating calls 

(cleath) respectively. Xj could be called the average rate of growth 

at the time when the population size is j, and the average rate of 

decay. See below for a graphical representation.

Illustration of the Birth and Death Process

States are junction points on the graph, and the probabilities 

are written beside the corresponding times.
The assumptions imply that in a small interval h only one event 

takes place, and the probability of this is proportional to the 
length h of the interval, and depends only on state of the system at 

the beginning of the interval h. Consequently, for transition pro­

babilities P(v; j, h) it is enough to state only the length h of the 

time interval, instead of noting both end points.

The only values permitted for v are now j-1, j and j+1, then

P(j, t+h) = P(j'l,t) P(j-1; j,h) + P(j,t) P(j;j,h)

+ P(j+1, t) P(j+T, j, h) (A1.7)

The equation expresses the sum of the probabilities of three mutually 

exclusive events by which the system can arrive to state E • at time
J

t+h namely:
(i) The first term is the probability that at time t the system 

was in state with the probability P(j-1, t), and a
transition to Ê  occurred. The transition probability 

P(j-1; j. h) = X i h . (A1.8)
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(ii) The second term is the probability that at time t, the system 

was in state E. and during h no change occurred. The
J

probability that there has been no change is

P(JJ J. h) - 1- Xjh - wjh (Al-9)

(iii ) The last term is the probability that at time t the system 

was in state Ej+i» ancl transition to Ê  occurred. The 

probability of transition is P(j+1; j, h) = yj+-|h (A1.10) 

Hence

P(j. t+h) = Xj_-|h P(j-1. t) + (1- Xjh-yjh) P(j,t)

+ yj+1h P(j+1, t) (Al.ll)

Rewriting the relation in the form:

= Xj_nP<o-i. t)-(Xj + yj) P(j,t)

+ yj+1 P(j+1, t) (AT.12)

As h tends to zero (h *> 0)

P(j, t+h)h
P(j.t)

Then

(A1.13)

d P(j.t) _ X , P(j-1,t) 
3t ' °

( yj) P(j»t)

+ yj+1 P(J+1. t) 1 < j < N (A1.14)

If at a time t = 0 the system is in state E^, the initial conditions 

are:
P(i,0) = 1 P(j.O) - 0 j t i (A1.15)

For boundary conditions i.e. j = 0 and j = N

- X0P(0,t) + y, P(l.t) (A1.16)
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4^%^=*,!., P(N-l). t) - y N P(K.t) (A1.17)

The Birth and Death equation, also known as the Equation of 

State is the equation (A1.14) rewritten

-Aj., P(j-1 ,t) - _(Xj +Vj) P(j. t) + y j+i P(J+l.t)

{AT.18)

The equation is derived from the Chapman-Kolmogorov equation under 

suitable restrictions and for an arbitrary initial state .

When the number of states is finite

N

J=0 P(j.t) = 1 (AT.19)

For the infinite number of states, the Birth and Death process may 

become a quasi-process, so the transition probability do not add to 

unity

N
S=0 P(j.t)< 1 N = oo (A1.20)

This case presents only theoretical interest and has no traffic 

applications.

1.3 Definition of the Non-Negative Constants Xj,yj

It is assumed that for each state i in the Birth and Death 

Process, there is a non-negative continuous function q^(s) defined 

by the limit (uniform in (s)).

(A1.21)
lim

h-0

and such that

q<(s) = l q ^ s )
1 J7i 1J

Equivalent definitions are

3P(i>;i,t)
8t

. . 0 ( ,\ aP(i,s,j,t)
t=s 3t I t-s

« q,,(s)

(A1.22)

(A1.23)
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These functions admit the probabilistic interpretation that 

the probability of transition from state i to state j during the time 

interval (t, t + At) is

P(i »t; j, t + At) = q,-(t)At + OAt i  ̂j (A1.24)
* J

whereas the probability of transition from i to some other state 

during the time interval (t, t + At) is

1 - P(i» t; i, t + At) = -q.j (t)At + OAt (A1.25)

Hence the probability of transitions within At are asymptotically 

proportional to the length At (in the time homogenous process, the 

proportionality factor is constant).
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2.0 STATISTICAL EQUILIBRIUM

2.1 Definitions

A simple Markov chain is a time-homogeneous (stationary) Markov

process for which the variable j takes values in a discrete space I

with a finite or infinite number of elements.
A set Z of states E. is closed if no transition is possible from

J
any state in Z to any state not belonging to Z.

A chain is irreducible if the only closed set in the chain is a 

set of all states. The absorbing state is a closed set composed of a 

single state.
The state E. is persistent if the return to E. is certain. Ifj 1 J

this return is uncertain, the state E. is transient.
J

A persistent state to which the first return occurs after 

infinitely long time is a null state.

Another classification divides all states into periodic and 

aperiodic states. The state E, is periodic with period k, where k is
J

an integer larger than unity, if the return to E^ occurs only in k,
2k.... steps.

A persistent state which is neither null nor periodic is 

ergodic.

For irreducible chains, the classification of states can be 
represented as shown below:

APPENDIX 2

Persistent Transient
Non-nul1 Null

Aperiodic Ergodic

Periodic

Table A2.1 Classification of States

In an irreducible Markov chain every state can be reached from 

every other state and this implies that every state of the system is of 

the same character: either transient or persistent null or persistent 
non-null.



Furthermore, in every chain the persistent states can be 

divided into closed sets so that it is impossible to reach from any 

state in a given set the states belonging to other sets.

In addition to closed sets, the chain may contain transient states 

from which states of the closed sets can be reached.

Also a finite chain can contain no null states, and it is 

impossible that all its states are transient.

These properties are related to the structure of graphs in Fig.

A2.1.

The chain is irreducible if the graph does not consist of 

isolated parts which make it impossible to go from junction points in 

any part to junction points in other parts along lines of the graph, in 

the direction of arrows.
A state is aperiodic if the number of lines joining tv/o consecutive 

junctions, in any possible closed serties of lines with arrows of the 

same orientation, have unity as the greatest common diviser.

A junction corresponds to the transient state if the graph 

consists of parts connected so that it is possible to pass from one 

junction in a certain part to junctions in the isolated part, but not 

vice versa.

The ergodic chain is represented by a graph on which it is always 

possible to pass from any junction to any other junction.

2.2 Statistical Equilibrium

If the state E. is either transient or a persistent-null state
J

then:

lim P(i, j, t) = 0 (A2.1)
t -*■ 00

If the state E. and E. are ergodic then for every pair i, j:
• J  •

lim P(i, j, t) = P(j) (A2.2)
t -> 00

The limiting function is independent of the initial conditions and 

time, and it is also a distribution function, since the relation

N

2 P(j) = 1
j=0

(A2.3)
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holds.
The distribution function (P(j) satisfies the difference 

differential equation of the Birth and Death process by putting

1 4 1 ^  = 0 .

Hence

Xj_1P(j-l) - ( Xj+ Pj) P(j) + yj+1 P(j+1) = o (A2.4)

- X0P(0) + u-,P(l) = 0 (A2.5)

XN_! P(N-l) - yNP(N) = 0 (A2.6)

P(j) is the stationary distribution, and the process enters into 

statistical equilibrium when the limiting function equation (A2.2) 

is independent of the initial conditions and time, and the distribution 

function equation (A2.3), are satisfied.

It follows that if all states of an aperiodic irreducible chain 

are transient or null states, there exists no stationary distribution. 

Only states which are ergodic can enter into statistical equilibrium, 

and they possess a unique stationary distribution P(j) to which the 

distribution P(j, t) tends. Always so for finite chain.

The limit

E P(i; j. t) = P(j) (A2.7)
t -*■ 00

indicated that eventually the influence of the initial state disappears 

and steady state conditions are reached. Thus the probability of the 

system being in any state E. is the same at the end of any time interval,
J

in other words, the probability of the system is independent of the 

time at which the system is examined.



APPENDIX 3

3.0' EXPONENTIAL HOLDING TIME

Consider a single telephone line, if at an arbitrary moment t 

the line is busy, the probability of a change in state during At 

depends on how long the conversation has been going on. In fact the 

longer the conversation is in progress, the more likely is its 

termination. Thus, the past has an influence on the future and the 

process is not a Markov process. It becomes a hereditary process.

Consider a single source, which can be either busy or idle, so 

N=1 and j can take values 0 and 1 only. Suppose that the system is 

initially in state Ê  and only the transition from E-j to EQ is 

possible. This means that initially the source is busy and after a 

certain time the conversation ends. The duration of state Ê  is there 
interpreted as holding time.

A process of this sort in which only deaths occur is a Death 

process. So that referring to the Equation of State

where P(1, t) is the probability that a holding time is at least t. 
Note that

(A3.1)

exp(x) (A3.2)

and

(A3.3)

Hence for

(A3.4)

the solution is

P(l, t) = exp(-y t) (A3.5)

The differential coefficient "d ^  is the probability 
that the holding time -t t  4- A -h
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where exp(-yt) is the distribution of holding times known as an 

exponential distribution of holding times.



APPENDIX 4

4.0 TRAFFIC DISTRIBUTIONS FOR FULL AVAILABILITY GROUP, LOSS SYSTEM

Consider a full availability group with N sources and n devices 

in a loss system

0- o- 0- 0 - 0 - 0 —  0- 0 0 0 0

N Sources n devices

where N and n may be finite or infinite. Also N^n.

The system can have j simultaneous occupations (j), where

0 ^  j^-min(n, N) = r (A4.1)

Such that in the expression (see 2.3.1)

Xj = y(j).w(j)

we have
W(j) = 1 for 0 fij £-r 

W(j) = 0 for j a r

If N^n, no calls are rejected since the sources cannot produce 

more than N simultaneous occupations.
In all distributions it is assumed that the termination of 

occupations is expressed as below:

P. = 1  (A4.5)
3 t

yj is the terminating rate, 
j is the number of simultaneous calls.

t is the mean holding time.
The assumptions regarding call intensity are considered separately 

for each distribution.

4.1 Bernouilli Distribution

(A4.2)

(A4.3)

4.1.1 Assumptions
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1. N^n

3. X- =y(j).W(j)
J

y(j) = (N-j)a , K (j ) = 1 for O ^ j ^ N

where a is the call intensity per source when it is free. 

y(j) is proportional to the number of free sources, (N-j).

4.1.2 The Bernoulli Distribution

By assuming statistical equilibrium conditions (see

Xj., P(J-l)«WjP(J)

(N-j+l)a P(j-l) = i  P(j)
t

P(j) )gt. P(j-l)
J

P(j) - ( w-J+Da P(J-i)
v

where 3 = at is the traffic per source when free.
By recursion from P(j) to P(0)

P(J) .  S !k L *l I f i f f f i ) . ; ; ; ; ;  6j P(0)

which is precisely expressed as

P(d) = "(TFjyhT eJP(0)

or P(j) = ^ J bj P(0) 

from

N
z P(j) = 1 (see 2. 2.1)

j=0

(A4.6)

(A4.7)

Clearly

2. 2.1)

(A4.8)

(A4.9)

(A4.10) 

(A4.ll)

(A4.12)
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N
E
j=0

/V

\ \

. 3j P(0) = 1

Re-writing the expression as 

(1+ )N.P(0) = 1

P(0) =
(1 + 3)

TT

p(J') i . ) ___ N
(1+B )N

can be written as

and this is the Bernouilli Distribution. 

Or can be written as

P(j, = Q  a

“here a = ^

4.2 Engset Distribution

4.2o1 Assumptions 

1. N > n

3. Xj=y(j).W(j)

(A4.13)

(A4.14)

(A4.15)

(A4.16)

(A4.17)

(A4.18)

(A4.19)

where

y( j )  = (N-j)a (see 4.1.1 )

W(j) = 1 for 0 4 j < n
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4.2.2 The Engset Distribution

Assuming statistical equilibrium

By recursion from P(j) to P(0)

and this is the Engset Distribution.

4.3 Erlang Distribution

4.3.1 Assumptions

1. N = oo

2. n finite

Xj-1 P(J-l) = Vj P(J)

P(j) = N̂~ ^ 1?ct 1  P(j-l)J
(A4.20)

P(j) =
J

P(j-l) for 0 ̂  j £  n (A4.21)

(A4.22)

for 0 ^  j ̂  n

n
and since E P(j) = 1 

j=0
(A4.23)

P(0) = (A4.24)

0 j n (A4.25)

_ j3. (A4.26)
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4. xj = y ( j ) *w(j)

y(j) = y (a constant)

W(j) = 1 for 0 6  j < n

4.3.2 The Erlang Distribution

Assuming statistical equilibrium

= yj P ( j )

P(j) = ^ p (o -1)

By recursion from P(j) to P(0)

P(J)
A.A.A......

= j U-'IHTZT _ 4 4  p(°)

(A4.27)

(A4.28

AJ
P(j) = P(0) for 0 +  n

where A = y.t 

and since

I P(J) = l
j=0

P(0) = ----—

; Aj
j - o " ^

and hence
A^

P(j) = n J;—  f0r o j n 
S AV 
v=0 VT

and this is the Erlang Distribution. 

4.4 Poisson Distribution

(A4.29)

(A4.30) 

(A4.31)

(A4.32)
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T

4.4.1 Assumptions

1. N = “

2 n = 00

3. Wj * 4
J t

(A4.33)

4. Xj =y(j).w(j)

y(j)= y ( i
w (j) = 1 for all j.O ^  j ̂ 00

4.4.2 The Poisson Distribution

Assuming statistical equilibrium

Xj_l P(J “ 1) = TJj P(j) (A4.34)

■1
(A4.35)p(j) = jP(j-i)

where A = y, t.

By recursion from P(j) to P(0)

p(j) . ............. ...A.A. p(Q)

P(j) - i -  P(O) 
j!

(A4.36)

and since
•

E P(J) = 1
P=0

(A4.37)

p< ° > \  4» _J3

j=0 J'1

(A4.38)

thus P(0)=exp(-A) (A4.39)

A J
and P(j) = —  exp(-A) (n = N = ») (A4.40)

jl



106

and this is the Poisson Distribution. Erlang distribution can be 

regarded as a Poisson distribution truncated at n.

4.5______ Negative Binomial Distribution

4.5.1 Assumptions

1. N = °°

2. n = 00 (A4.41)

4. = y(j).W(j)

y(j) = a(y + j)

W(j) = 1 for all j 0 j ~

4.5.2 The Negative Bionomial Distribution 

Assuming statistical equilibrium

Xj-1 P(j_1) = yj P(j)  (A4,42)

P(j) P(j -1 )  = a t ^  t  j.~ D-P(j-l) (A4.43)

By recurs ion from P(j)  to P (0).

P(j )  = at(y  + j -1 )  at(y  + j - 2 ) ......  at (y  + l ) a t Y

j -----( M )  ....  2 1

(A4.44)

and le t t ing  b = at

P(j)  .  b-* lU J — 11:—  P(0) (A4.45)

(y -d :
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P(j) - bj | J 1 1 P(0)

P(j) - bJ (-l)j( ^ P { 0 )

P(j) = (-bp P(0)

and since

(A4.46)

(A4.47)

(A4.48)

00

E P(j) = 1 (A4.49)
j=0

j=° ('b)J (  j ) p (O) = 1 (A4.50)

P(0) = 1 , . 

j=0 v J J

(A4.51)

P(0) = — = ( 1 - b p  
(1-b) f

(A4.52)

P(o) - (“b p  ( J )  ( 1 - b p 0 ^  j ̂  00 (A4.53)

and this is the Negative Binomial Distribution.

4.6______ Truncated Negative Binomial Distribution

4.6.1_____Assumptions

1. N =o°

2. n = finite (A4.54)

3.
J t

4. Xj = y(j).W(j)
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y(j )  = a(y + j)

W(j) = 1 for o ^ j  < n

4.6.2 The Truncated Negative Binomial Distribution 

Assuming statistical equilibrium

V l  P ( M )  = ^ pU)

P(j) = a(Y + j ~ ]).*. p(j-i)
j

By recursion from P(j) to P(0).

P(j)

let b = at

(at)-* * J ' ^ —  P(0)
(Y - 1)1 j!

P(J) * bJl Y +J ' \ P(0)

P(j) = (-b)J P(0)

and since

l P(j) 
j=0

= 1

hence

0 j < n

and this is the Truncated Negative Binomial Distribution.

(A4.55)

(A4.56)

(A4.57)

(A4.58)

(A4.59)

(A4.60) 

(A4.61)

(A4.62)
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APPENDIX 5

5.0. DETERMINATION OF THE GRADIENT

The gradient VC of the cost function equation (5.28) is the

vector

, 9C 9C 9C 9C 9C 9C 9C 9C 9C ,
( — r> — — 7» ?> r» 7* t I
9h-j 9h^ 9ĥj 9h‘ 9h^ 8h| 9h^ 9h‘ 9h^

(A5.1)

The first three components which relate specifically to chain flows on 

the direct junctions are obtained by direct differentiation giving (see 

reference No. 8)

where

S  = ckC + 7 ^ >9h

f = 5 +

(g)

(tk - hk - 3)

j n r:r - hl 12tkJF T I

(A5.2)

(A5.3)

= 5(tk - hk)-3 + [jtk - hk -3)2 + 12tk"ji (A5.4)

For the components which relate to the chain flows on over­
ly

flow junctions h. for j> 1, we refer to equation (5.18) and obtain the
J

components

9C 3
— R- = 2

i=l

/s. 9n- 

ci for j > 1 (A5.5)

From equations (5.11), (5.12), (5.14), (5.15) (5.16)
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where

'n’-j = x-j +
(Mi-xi)' + v. (M.)‘ + V.

(M1-x1-1)(M1-x1) + v. (M.-l)(Mi) + V.

vi vi
Ai = vi + 3 TT7(MT " 1> (A5.6)

vi
(Mi-xi) JV(M1-x1) + Q M i-xi-3) + 12A.J

A

Xj ak hk 
l l diihi 
k j 1J J

v v k Mk
k j 1J J

V , - ! !  a* V*
1 k j  1J J

Further examination of functional dependence gives

8ni 
— r

3n.j ’ 3Ai 3n.j 3M̂  3n. 3x^ 3 ^  3vi Sn..
• Z J * Z J3A. 3h!: 3M. 3h, 3x, 3h, 3v, 3h. 3v. 3h.Z J  + Z ~  ' Z J  + Z J

(A5.7)

3Ai 3Ai 3Vi 3Ai 3Mi
— F = --- * — F + --- * — FZhK. 3V. ‘3h^ 3M. 3h.

J J J

(A5.8)

3vi 3vi 3M. 3vi 3x. 3vi 3Ai

— V. ~ --- * — F + ~  * — F + --- • — F
d h K. 3M. 3h ̂ 3x. Z h K. 3A. 3h.
J * J ' J * J

(A5.9)
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substituting equation (A5.8) into equation (A5.9) gives

3v. 3v. 3M. 3v. 3x. 3v. 3A. 3V. 3A. 3M.
- 4 * - i . - 4  + -71 . - r  + — ! • ( — .■ - T  + - .  - 7) (A5.10)
3h^ 3M. 3h^ 3x. 3h< 3A. 3v. Sh1: 3V, 3h.J 1 J 1 J * * J • J

such that further substitutions of equations (A5.8) and (A5.10) into 

equation (A5.7) yields

3n.j 3 n. 3Ai 3 V. 3A. 3M. 3ni 3xi 3ni 3xi

3h^J 3A. 9vi 3h  ̂ 3M. 3h  ̂ 3M. Sh1:J 1 J 1 J 8xi 8hJ

A

♦  I2i
8vi

(—3M.
3M. 3V. 3x. 3V. 3A. __1 + __I  __I  + __1 1 __I
dK  3x . Sh1: 3A. 3V.J • J 1 1

3Vi
‘

3A. 3M.
+ -----* — pr))3M. Sh1:* JJ

A

+ !!i

3Vi
3 V,1• --- 17 (A 5 . l l )

where
3n.

37T
i __ (Mi - x.) + Vi (M.r + v .

i (Mi - x. - 1)(M. - x.) + v. (Mi - 1)(M.) + V i
- (A5.12)

3Ai 6V. 3

w : = 1 + H“  “ TT (A5.13)

3A. 3V. 6 (V.)‘
"ITTi { M . r  (Mi)

(A5.14)

f {[m , - ;t -1 k m , - x. ) + v j 2

2 Q v d "i +V3IK1 - 0 Mi>2+vi U - l {.:
{(H, - 1) (M,) ~  V [ p

15)
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3n^

"3x7 = 1+A.(
-2 Î r ^ - l ) ( H i-x,)+V7](Hr x1J 1-

1
2

9fii

^ 7 ■ M

[ ( M i - X . - l  ) ( M . r  x.)+v.J
! -IQ " r Ji > S ]

1[(H1^xi-l)(Hi-
A ,
■Xi'»+viJ

I 2 )

3n, = , g H i-l)(Hi) W 1'] -

^  1 [(Ki-l)(Mj)+V j  2
)

(A5.16)

(A5.17)

(A5.18)

Rewriting equation (5.15) as
3(H.-xi)-(Hi-xi)2t )2 (Hi-;i )2tl2A1(M.-i^)2] *

Vi ‘

Vi =

3(M1-x1)-(Hr xi)2

( L(M1 )2-2x1M 1-6M.+6xi + (xi)2+9j[(M.)

2x1M 1+(x1)2J + l 2 A 1 (Mr x1)2)}
(A5.19)

gives
3 v .

TJflT •(3-2(Mi-xi)+i(C(Mi) -2x1Mi-6M1.+6J1+(if1)2 + 0

^(Mi )2-2(J1)M1+(xj)23 +l2A.(Hi- x,)2 )J(4(Mj )3 

-6x1 (Mj)2+2(x1)2Mj-6x1(M1 )2+8xjM j-2(x1 )3-l8(Mi)2

+24xiM j-6(x1)2+1251H.-12(xi)2+2(J1)2H 1-2(xi )3

+ 18Mi - 1 8 x . + 2 4 A . ( M . - x .  ) ) ) / 6 (A5 . 20 )
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- I I  = (-3+2(H-- x  ̂) + J ( £ ( H i )2 - 2 « 1M i- 6 M 1+ 6 « 1 + C«i )Z + 9 j f ( M 1 )2
8 X..

-2xlM1+(*1 >2J+l2At(Hj-*1)2)“ *(-2(M1 )3+2(M1)281

-2(Mi)3+8(M1 )2S1-6(M1)($ti)2+ l2(M1)2-l2MiS1+6(Mi)2-24M1S

+ 18{Si )2+(Hi )2S i-6M1 (Ji )2+4<51 )3-18M1 + 18xi-24A. (K^-S,)))/

(A5.21)

SVi . ( J ^ f M , - * , ) 2]  ( £(M1 )2-2x«r6H1+6x1 + (xi )2+ri[(Mi)2
^ 7

-2x1M 1 + (51)2J + l 2 A 1(Hi-x1)2)"5 )/6 (A5.22)

The rest of the partial derivatives at point h^ 

are approximated by using a very small finite valueAh^ in the 

definition of the derivatives (see reference No. 6 Chapter 
9.3). Thus

f k . w X )  - / ( ^ 1 )

j n r
j

Such that for every value of h^ we determine 
k k 

h - Ah ,

(A5.23)

h^+Ah^ and 
J J

For each of these new values we calculate M.
and x .. Then the p,

defined as:

8Hi . m ;-h :

"“ I
2Ah*

J

8vi »i-»i
— IT =
“ j 24hj

V.

(A5.24)
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