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Abstract

Linear estimation of the scale parameter of the logistic population based
on the sum of consecutive order statistics, when the location parameter is
unknown, is discussed. A method based on a pair of single spacing and
'zero-one' weights rather than the optimum weights is presented. Limited
simulations indicate small bias and variance' ofthe estimator, and reasonably
high relative efficiencies with respect to the Cramer-Rae lower bound and
best linear unbiased estimators (BLUE's) for small sample sizes.
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1 Introduction

The logistic distribution arises frequently in statistical modelling. It has
been used in the analysis of survival data, graduation of mortality statistics
and is used in some applications as a substitute for the normal distribution
(Balakrishnan and Cohen, 1991).

Let Xl:n :S ... :S Xn:n denote the order statistics from a random sample
of size n from the logistic distribution whose cumulative distribution function
is

F(x; /-L, o) = [1 + exp { -7r(x - /-L)/uv'3}] -1; - 00 < x < 00,

- 00 < /-L < 00, U > O.

The distribution is absolutely continuous, symmetric about the location pa-
rameter /-L and has scale parameter a, There has been much work on the
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estimation of the location and scale parameters of a distribution through
linear functions of order statistics. Optimal weights for these linear combi-
nations can be calculated in the case of a given distribution (Balakrishnan
and Cohen, 1991). Dixon (1957) introduced the notion of using 'zero-one'
weights rather than the optimum weights and noted that high efficiencies
are achievable. This work has been extended by many authors, notably
for the logistic distribution (Raghunandanan and Srinivasan, 1970) and the
normal distribution (Wang, 1980). Raghunandanan and Srinivasan (1970)
constructed simplified estimators of the location and scale parameters for
complete and symmetrically censored samples for sample sizes 4 :S n :S 20.

The principal objective of this paper is to develop, based on the work of
Wang (1980), Weke et al. (2001) and Weke (2005), a simplified linear esti-
mator of the scale parameter of the population when its location parameter
is unknown. The proposed procedure is applicable to both censored and
uncensored samples and for large sample sizes. Bias and variance of this
estimator are examined through Monte Carlo simulations.

2 Deriving Expectation Formulae

Let U1, U2, ... , Un be a random sample of size n from the uniform U(O, 1)
distribution with pdf f(u) = 1, O:S u :S 1. Then, the density function of
the z-th order statistics Ui:n, 1:S i :S n, is given by

f.( . ) - f(n + 1) i-1( )n-i
,u,n -r(i)f(n-i+1)u l-u , O:Su:S1. (2.1)

In the sequel, we will work with some adjustments to the values of i and n,
and a corresponding adjustment to the beta distribution given in (2.1). If ex
and (3 are positive real numbers such that 1 + ex :S i :S n - (3, we consider
the modified pdf

f(n - ex - (3 + 1)fi-a(U; n - ex - (3) =. . ui-a-1(l_ ut-i-IJ 0 < u < 1.
r(t-ex)r(n-t-(3+1) , - -

(2.2)
Let i' = i-ex and n' = n - ex- (3.Let Ui, :n' denote a random variable having

. the pdf of (2.2). The mean of this pdf is

i'
7ri' = E(Uil:nl) = n' + 1'

and the central moment of order k is given by

_ E[(U )k' (k - l)7ril (1 - 7ril) [ k-2]
/-Lk - i':n' - 7ri' J = n' + 2 E (Ui+1:n+2 - 7ril) .

(2.3)

(2.4)



872 Patrick G. O. Weke

To see this, note that

t' k 1 I'(n' + 1) ;' 1 n' i'
I-'-k }o (u-7I';') - (U-7I'i')r(i')r(n'_i'+1)u - (1-u) - du

7I'd1 - 7I'i')
n'+2

t' r(n' + 3)
}o (u _7I';,)k-1 r(i' + 1)r(n' - i' + 2)

x [i'(1 - u) - (n' - i' + 1)uJui'-1(1 - ut'-i'du

(integrating by parts)

(k - 1)7I'd1 - 7I'i') r1
( _, )k-2 r(n' + 3)

n' + 2 }o U 7I't r(i' + 1)r(n' - i' + 2)

xui' (1 - ut'-;'+ldu.

Hence, the following results may easily be obtained.

(i) E(Ui':n') = 7I'i',

(ii) 1-'-2 = _,_1_7I'i,(1-7I'i').
n +2

(iii) 1-'-3 = (' ~( )7I'i'(1 - 7I'i') (1 - 271'i')'n +2 n' + 3

. 371'i'(1 - 7I'i') {7I'i' ,1(1 - 7I'i',1) (1 - 271';') 2}
(IV) 1-'-4= n'+2 n'+4 + n'+3 '

i' + 1where 71" -i ,1 - n+3'

(2.5)

(2.6)

(2.7)

(2.8)

(v) For any non-negative integer r , it is possible to find a quantity M,
which does not depend on n' and i', such that IT, the absolute central
moment of order r of U;':n', satisfies

M if r is evenIT < nT/2'

and
M if r is odd.IT < n(T+l)/2'

(2.9)

The inequalities in (2.9) can be proved by induction from (2.4).

Let X1:n, ... , Xn:n be order statistics from a continuous and strictly in-
creasing distribution function F.

i
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DEFINITION 1. For any fixed c E [0,1], a sequence of order statistics
{Xin:n}, n = 1,2, ... , is called a c-sequence, if in/n -4 C as n -4 00.

DEFINITION 2. For e > 0, an s-nelghbourhood of the convergent
sequence C, r = 1,2, ... , is defined as the set of all points ( satisfying the
inequalities I(- (~I~ e, for all r.

Let G denote the inverse of the distribution function F. Let H denote
the function

o ~ u ~ 1, (2.10)

where a and (3 are positive constants. We use the notations

. G(T+1)(U)
LT(u) = u(1- u) G(r)(u)' r = 1,2,3, (2.11)

and
T rH(r)(u)

Kr(u) = u (1 - u) H(u) , r = 1,2,3, (2.12)

where G(T)(U) and H(r)(u) denote the r-th order derivatives of G(u) and
H (u), respectively. FUrther , let

1
K1(7I'i')+2L1(7I'i') and (2.13)

-~K2(7I';') (2K1(7I'i') + 1)
2 L1(7I';')

+~(1- 271'i') [3~:~;;:? + 3K1(7I'i') + L2(7fi')]

+~ [7I'i,1(1-7I'b) + (n' + 3)-1(1- 27fi,)2]

4 7I'i'(1 - 7fi')

x4 [~:~;;:j+6K2(7fi' ) + 4L2(7I'i')K1 (7fi')+L2(7f;' )L3(7I'i')]

(2,14)

THEOREM 2.1. Let Xi:n, ... Xn:n be order statistics from the distribution
F, such that the following conditions hold.

(a) For some positive real numbers a and {3, the inverse G of the distribu-
tion function F is such that G(u)uO(l- u)f3 is bounded in the closed
interval [O,~li
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(b) G(u) and its first four derivatives are continuous and bounded in the
closed interval [0,1], and G(r) is bounded in the open interval (0,1),
possibly with the exception of a finite number of points;

(c) {Xin:n} is a c-sequence, where c E (0,1),. and

(d) 0 ::; a < in and 0::; {3< n - in + l.

Then, with the simplified notations: i for the index in, i' for i-a and n' for
n - a - {3, the following holds.

(2.15)

for all 1::;i ::;n.

PROOF.

. n! . 100

x[F(x)]i-1[1- F(x)r-if(x)dx (2.16)
(t - 1)!(n - t)! -00

n! r1
G(U)ui-1(1 _ ut-idu .

(i - 1)I(n- i)l Jo
nl r1

G(u)H(U)u<-cr-l(1- ut-i-{Jdu
(i - 1)I(n- i)! Jo
J;G(u)H(u)fduin')du _ E(GH) (2.17)

J01H(u)fduin')du - E(H) .

The expectations in the last expression in (2.17) are calculated by using the
pdf in (2.2).

From condition (a), G(u)H(u) in (2:17) is bounded. From (d), /i/(Uin')
may be considered as a pdf, and therefore the integral in the numerator
exists and is bounded. For similar reasons, the integral in the denominator
of (2.17) exists and bounded, and its value is greater than zero. Hence, the
ratio in (2.17) is well defined.

From (c), 'Il'i' is located in an e-neighbourhood of c, which ensures that
(d) is satisfied for large n. Denote an e-neighbourhood of {'Il'd by 01 and
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the remainder of the interval [0,1] by n2. Separation of the numerator of
(2.17) into two parts leads to

11G(u)H(u)/i/(Uin')du

= r G(u)H(u)Jdujn')du+ r G(u)H(u)Jdujn')duJn1 Jn2

= J1+ Jz (say).

By first considering h, and using the fact that GH is bounded, we have, by
Chebyschev's inequality,

(2.18)
where the quantity M is a positive number and k: can be any positive' integer,
Now, using condition (b), the integral J1 can be expanded in Taylor series as

4 1I: rl [G(u)H(u)](r) /"=7r1(u - 'Il'i't
r=O I

+~ [G(u)H(u)](5) /"=,,/(U - 'Il'il)5,

G(u)H(u) =

where u' is some number in 01.

Since

we have

where

For the same reasoning as for J2 in (2.18), we have

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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for all positive integer k, where M is a positive number. Since H(·) is positive
definite and (GH)(5)lu=ul is bounded due to condition (b), we also have

IH21 < Mi5, (2.24)

where M is a positive number.

Let k = 5 in (2.18) and (2.23). By considering (2.17), (2.18), (2.20),
(2.23), (2.24) and (2.9), we obtain

4 1 IE(GH) = L ;:!(G(u)H(u))(r) U=7fi' . I-£k+ 0 [tn' + 1)-3]. (2.25)
r=O

Similarly, the denominator in (2.17) simplifies to

4

E(H) = ?; ~(H)(r)lu=7fil . I-£k+ 0 [tn' + 1)-3]. (2.26)

Since 1-£1= 0, formula (2.17), together with (2.25) and (2.26), yields

E(Xi:n)
GH +~1-£2(GH)(2)+~1-£3(GH)(3)+irI-£4(GH)(4) + O[(n' + 1)-3] (2.27)

H +~1-£2H(2)~1-£3H(3)+irI-£4H(4) + O[(n' + 1) 3]

[
1 (GH)(2) 1 (GH)(3) ~ (GH)(4)]

= G 1+ 211-£2 GH + 3[1-£3 GH + 411-£4 GH

[ 1 H(2) (1 H(2)) 2 1 H(3) 1 H(4)] '-3
X 1--1-£2-+ -1-£2- --1-£3---1-£4-H +O[(n +1) ]

21 H 21 H 3! H 41

_ [ ~ ((GHP) H(2)) _ (~ )2 ((GH)(2)H(2) _ (H(2))2)
- G 1+ 211-£2 GH H 21-£2 GH.H H

~ ((GH)(3) _ H(3)) ~ ((GH)(4) _ H(4))] +0[(n'+1)-3]
+311-£3 GH H + 411-£4 . GH H

_ [ 1 (G(l) H(l) G(2)) _ (~ \2 (2G(l) H(l) H(2) + G(2) H(2))
- G 1+211-£2 2 GH + G 21-£2) GH2 GH

1 (G(l) H(2) G(2) H(I) G(3))
+3[1-£3 3 GH + 3 GH + G

1 (G(l)H(3) G(2)H(2) G(3)H(1) G~\l 0[( '+1)-3] (228)
+411-£4 4 GH +6 GH +4 GH +~Jt- n ,.

I
:.~

\

I
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where all the functions are evaluated at 7ri" Multiplying the terms within
the bracket in the above equation by G, and by taking out G(2) from the
third, the fourth and the fifth terms, we obtain

Use of Equations (2.6)-(2.8) and (2.11)-(2.14) gives

G(7r,/) + n' ~2G(l)(7ri/)Q1(7ril;(x,.B)

+ 2(n' ~ 1)2G(I) (7ril)Q2(7ri'; (X,.B) + 0 [tn' + 1)-3], (2.29)

which completes the proof. o

Note that Weke et al. (2001) used the above approach but expanded
G(u)H(u) only up to the second term.

DEFINITION 3. If, for arbitrarily small £ > 0, the function G(·) satisfies

or

for some positive constants Co and k, then G(·) is called asymptotic logarithm
transform (abbreviated as ALT) at u = ° and u = 1, and a random variable
having distribution G-I is called an AL-variable.
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Furthermore, if the error terms in formulae (2.30) and (2.31) satisfy

for r = 1,2,3,4, (2.32)

and

for r = 1,2,3,4, (2.33)

then from the relations (2.30) and (2.31), it can be deduced that the r-th
derivatives of G(u) satisfy

and

G(r)(u) = Co [ (In I~Urr)[1+°{(In l~url+<}], for r= 1, 2, 3,4.

(2.35 )
Let Lr(O) = lim Lr(u), and Lr(1) = lim Lr(u), r = 1,2,3. Then, it canu-.o+ u-.l-
be obtained from the relations (2.34) and (2.35) that

Lr(O) = -r, r = 1,2,3 (2.36)

and
Lr(l) = r, r = 1,2,3. (2.37)

Let Kr(O) = lim Kr(u) and Kr(1) = lim Kr(u), r = 1,2,3. Then, it can
u--+o+ u-+ 1-

be obtained by using the relation (2.12) that

Kl (0) = a, K2(0) = a(a - 1) and K3(0) = a(a - 1)(a - 2) (2.38)

and

K, (1) = -(3, K2(1) = (3((3-1) and K3(1) =~fJ((3-1)((3 - 2). t2~9)
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Thus, it can be derived from relations (2.36)-(2.39) and (2.13) that

a -1/2 + o(c)
-(3 - 1/2 + 0(1- c).

(2.40)

(2.41)

By choosing a = (3 = 1/2, we have

Ql(Cj 1/2, 1/2) = O[c(l - c)]. (2.42)

Similarly, by considering equations (2.36)-(2.39) and (2.14), the following
equation is obtained

~ (1 - ~) - ~ [( 1- ~) + ~t (1 - ~) ]

+0 [c(l- c)] + 0(n-1), (2.43)

where 6t = min[i - 1/2, n - i + 1/2].

Based on the preceding work, the theorem below is stated and proved.

THEOREM 2.2. Suppose that conditions (a), (b) and (d) in Theorem 2.1
are satisfied, and

(a) G(u) is ALT at both u = 0 and u = 1,

(b) equations (2.36) and (2.37) hold, and

(c) i, the integer part of nc + 0.5, satisfies 0 < i < n.

Then"

E(X;:n + Xi+l:n)

2 [G(C) +G(l)(C) { (~-c) + o[:~~c)]}
G(2) (c) {I 2 1(1 1) '}]+2T 6"+ (i-nc) - '4 6; + 6i+l + [1+2(i:-nc)]0[c(l-c)]

+0(n-3
). (2.44)

PROOF. From condition (c), {X;:n} and {Xi+l:n} are c-sequences. Sup-
pose that conditions (a), (b) and (d) in Theorem 2~ are satisfied. Using
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Equation (2.29), the following equation is obtained.

Suppose that Q = (3= 1/2. By using conditions (a) and (b) of the theorem
and substituting equations (2.42) and (2.43) into relation (2.45), we obtain

Expanding G(7rk) , G(1)(7rk) and G(2)(7rk) at 7rk = C up to the second, the
first and the constant terms, respectively, and putting together terms with
higher order in O(n-3), we obtain

E(Xi:n + Xi+1:n)

= 2G(c) +G(1)(C)(7ril +71";1+1- 2c) +~c(2)(c) [(71";1- c)2 + (71";/+1- C)2]
2

O[c(l - c)] ( ) O[c(l - c)]
+2G'(c) + G 2 (C)(7I";1+ 7I"i/+!- 2c) 1

n+l n+

+2_1_G(2)(c) {_~ _ ~ (~+ _1_) +O[c(l- C)]} +O(n-3)
2n2 12 4 6.; 6.i+1

= 2 [G(C) + G(l) (c) {(~ _ c) + O[~~~ c)]}

1 {1 1( 1 1). }]+-G(2)(c) -+(i-nc)2_- -+- + [1 +2(t-nc)]O[c(1-c)]
2n 2 6 4 6.; 6.'H

+O(n-3). (2.47)

Hence the proof. o
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Finally, it can easily be seen that for the standard logistic distribution,

G(u) =

(2.48)

for Co = k = 1. Hence, G(u).is asymptotic logarithm transform at both
u = 0 and u = 1. Hence, it follows that the function GH is bounded.
Consequently, it is concluded that a random variable having the logistic
distribution is an AL-variable. The inverse function, G(u), of the logistic
distribution also satisfies condition (b) in Theorem 2.2. Thus if i is the
integer part of nc + 0.5, then equation (2.44) can be applied.

3 Estimator of Standard Deviation

The method discussed here is based on a single spacing and the expec-
tation of the sum of consecutive order statistics in a sample of size n. Let a
spacing c be defined in relation to the rank i of the order statistic X;:n and
sample size n, so that i is the integer part of nc+0.5. Since liffin_co i/n = c,
it can therefore be easily shown that U1, the desired estimator of IJ, is asymp-
totically unbiased. Using the fact that the inverse function is

-1 ( U )G(u) = F (UjO,1) = TIn -- ,
1-u

Y3
T= -, O<u< 1,

7r
(3.1)

and by noting that ;-~.5 ::; c ::; i+~.5, the value c* =. i/n is chosen as
the expansion point for the expectation in (2.44). Thus, equation (2.44)
simplifies to

= 2 [G(C*) + G(2)(c*) {~ _ ~ (~ + _1 »
2n 2 6 4 6.i 6.;+l"

+ O(n-3). (3.2)

An approximate expression for -E(X;:n + Xi+1:n) is

e. = 2T [In (n - i) + n(n - 2i) {~_ ~ (~+ _1 )}].
, i 2i2(n - i)2 6 4 £:'i 6.i+l

(3.3)
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Then, E; = -En-i due to symmetry.

Let R; denote the i-th sample quasi-range:

n-1
R;= Xn-i:n - Xi+I:n, 1::; i < -2-' (3.4)

It follows that if X1:n, ... ,Xn:n are order statistics from F(x; /-" (J), then the
expression given in (3.3) is an approximation of E(R; + R;_1)/(2(J). Based
on the above discussion, the statistic

(3.5)

is proposed as an estimator of the scale parameter (J. The index i depends
on the constant c through the relation that i is the integer part of nc + 0.5.
The spacing value c should be chosen from the interval (0,1/2) such that
the variance of al in (3.5) is small.

4 Discussion

The estimator al given in (3.5) is similar to the estimator proposed by
Ogawa (1951) in the case of known /-" which is based on Xn-i:n - Xi:n, i.e.,
difference between two order statistics. Gupta and Gnanadesikan (1966)
showed that this estimator has the smallest variance when * = 0.10293.
Monte Carlo simulations indicate' that the choice of i as the integer part of
nc + 0.5 with c = 0.10293, generally minimizes the variance of al given in
(3.5). This value of c is used in (3.5) for a comparative study.

The estimator al is compared with the estimator a of Chan et al. (1971),
which is also based on four order statistics and, together with a corresponding
estimator of /-" has the largest joint efficacy among all linear estimators based
on four order statistics. We denote by V(al) and V(a) the variances of al
and a, respectively.

Table 1 gives the bias and the variance of the estimator ai, the variance
of a and the efficiencies relative to Cramer-Rao lower bound, the best linear
unbiased estimator (BLUE) and the 'zero-one' linear estimators of the scale
parameter for various values of i and n, computed from a simulation study
with 200 runs. Note that the Cramer-Rao lower bound on the variance of an
unbiased estimator of (J is 9/ {n(3 + 7l'2)} (Gupta and Gnanadesikan, 1966),
the variance of the BLUE is given in Gupta et al. (1967) and the variance
of the 'zero-one' linear estimator is given in Balakrishnan and Cohen (1991,
p.255) for 2 ::; n ::;20.

j
Ii,
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TABLE 1. BIAS, VARIANCEANDEFFICIENCIESFOR VARIOUSi ANDn

n Bias2 ja2 V(fJJ)ja2 V(fI)ja2 efft efh ef fO-l
5 1 0.000:;: 0.1720 0.1704 0.813 0.991 1.000
6 1 0.0001 0.1377 0.1429 0.847 0.995 0.999
7 1 0.0000 0.1160 0.1232 0.861 0.987 0.999
8 1 0.0000 0.1011 0.1052 0.865 0.973 0.999
9 1 0.0000 0.0903 0.0918 0.861 0.956 0.978

10 1 0.0000 0.0820 0.0850 0.853 0.937 0.958
11 1 0.0000 0.0754 0.0788 0.843 0.917 0.943
12 1 0.0000 0.0701 0.0711 0.831 0.898 0.920
13 1 0.0000 0.0658 0.0648 0.818 0.878 0.900
14 1 0.0000 0.0621 0.0634 0.805 0.860 0.881
15 2 0.0000 0.0600 0.0584 0.777 0.826 0.862
16 2 0.0000 0.0559 0.0541 0.782 0.828 0.843
17 2 0.0000 0.0525 0.0527 0.784 0.827 0.830
18 2 0.0000 0.0495 0.0491 0.784 0.825 0.827
19 2 0.0000 0.0470 0.0460 0.783 0.822 0.826
20 2 0.0000 0.0448 0.0439 0.781 0.818 0.818
25 3 0.0000 0.0372 0.0352 0.751 0.779
30 3 0.0000 0.0310 0.752 0.775
35 4 0.0000 0.0271 0.736 0.755
40 4 0.0000 0.0238 0.736 0.752
45 5 0.0000 0.0214 0.726 0.741
50 5 0.0000 0.0193 0.726 0.737
55 6 0.0000 0.Dl76 0.720 0.730
60 6 0.0000 0.0162 0.720 0.718
65 7 0.0000 0.0150 0.715 0.714
00 0.0000 1.0227 jn 0.684

It is seen from Table 1 that for large n, the efficiency of al with respect
to the Cramer Rao lower bound is 0.684. This value coincides with the small
sample efficiency of the estimator of Ogawa (1951) with optimal i. Thus,
there is a gain for small samples. The variance of al is comparable to that of
a, while the three efficiencies are not too small. Given that the BLUE, the
zero-one estimator, and even the estimator of Chen et al. (1971) are based
on complex computations and/or look-up tables for ranks/coefficients, the
estimator al appears to be an attractive alternative.
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Book Reviews

Modeling Financial Time Series with S-PLUS (2nd Edition)
ERIC ZIVOT AND JIAHUI WANG
(2006) Springer, (xxii)+998 pp.
Price € 59.95, $ 69.95, £ 46.00, ISBN 10-387-27965-2

Financial time series is a rapidly growing subject, Zivot and Wang deliver
an impressive book covering many relevant topics on theoretical and empiri-
cal financial econometrics, statistics and time series. This book is the second
edition of the previous version (Zivot and Wang, 2003), A few chapters,
viz., chapters 18 through 23 are new and cover nonlinear time series models,
copulas, continuous-time models for financial time series, semi-parametric
and non-parametric conditional density models, and efficient method of mo-
ments,

The target audience comprises practitioners, researchers and students in
empirical finance and financial econometrics, The book is of great help to
practitioners looking for examples andtools to analyse their own time series.
The book covers a vast area of ongoing research in financial econometrics and
provides material on classical and modern, univariate and multivariate time
series modeling and estimation methods. It covers an extensive and exhaus-
tive area on unit root tests, co-integration tests, ARCH/GARCH (univariate
as well as multivariate), extreme value theory, long memory, GMM etc. It
provides a comprehensive list of references.

As it is based on S-PLUS, it is necessary to buy S-PLUS license with the
S+FinMetrics module; which may require a significant investment. Basic
familiarity with S-PLUS is also required. The related discussion in the book
suffers somewhat from lack of uniformity and integrity as the libraries are
taken from various sources.

In summary, the book should be useful for practitioners in financial
econometrics, and also very useful as an easy source of references.


