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CUAfTEB -1
INTRODUCTION

Power system operation and control requires, among
other things, an accurate knowledge of the total system
load demand. The main objective of effective power
control is to regulate the generated power so as to
follow the fluctuating load and then to maintain the
system frequency within an allowable range.

In the past resources were abundant, Tfuel supplies
were cheap and load forecasting did not receive the
attention it deserved. The daily economic operation
activities such as load flow studies, generation plant
load scheduling, unit commitment, system security and
contingency analysis and short term maintenance planning
all require short terra load forecasts for a period
ranging from about 1 hour to 24 hours.

In a mixed hydrothermal system like the Kenyan
case under study, the preparation of thermal and geother-
mal plants require much time before bringing them on
line and a load forecast several hours ahead is required
before committing such units. Kenya at the moment is
interconnected with the Ugandan power system and plans
are underway to interconnect with neighbouring Tanzania.
Short term load forecasts will be useful in the energy
trade with these utilities.

The subject of short term load forecasting has



received widespread attention” for more than a decade
now. This is due to the ever pressing need to use the
available scarce resources as economically as possible
and also due to the availability of cheap and powerful
computers for the analysis of power system load charac-
teristics .

The review paper by Abu-EI-Magd and N.K.Sihna [11
gives an overview of the work that has been done iIn the
area of 3hort term load forecasting. All these proce-
dures require modeling of the power system load demand
characteristics and thereafter evaluating the model
parameters to be used in the forecast algorithm for
producing the desired load prediction.

The forecasting techniques can broadly be classi-
fied Into two classes;

1) Methods involving past load data only;
2) Methods 1involving both past load data and weather
variables;

Amongst the most widely used forecasting

techniques are;
1. Regression based algorithms, where the relationship
between the residuals of the load and the weather varia-
bles 1is modeled using the mathematical techniques of
linear regression analysis [2].

Multiple regression models are based on

explanatory variables, and for a given time series, the



explanation variables are selected on the basis of the
correlation analysis of the load series. For example a

multiple regression model can be written as;

Z(t):a VA (t)+ aZz (t)+ _——— +a Z (t)
11 2 2 nn
where 2 .Z . -——-- ,Z are the explanatory variables for
12 n

the time series Z(t). Normally this model 1i1s wused to
relate weather variables to the weather sensitive load.
This approach requires a long off-line analysis, using

a lot of Iload data and the accuracy of the results
depends heavily on the model assumed at the beginning.
It has been used extensively in medium and long term
load forecasting.
2: State space models i1n which the load and weather
variables are represented using state space Tormulation
and the weather and load states are updated using Kalman
filtering techniques [3]-

The main reason for this approach 1is that the
powerful Kalman filtering theory is used to obtain
the optimum forecasts. This approach is well suited for
on-line analysis. The 1identification of the model
parameters is the main difficulty associated with this
approach because the Kalman Tfiltering theory assumes the
model 1is exactly known before hand.

Here the state variables are considered to be the

system load itself, the increment of the system load and



the short terra and long term ldad patterns, different
models being developed for different time frames.

For example, in daily load forecasting some periodical
load pattern is contained and the effects of the weather
conditions on the system load cannot be neglected. Thus
the model can be written as;

X(k+1) 1 O 0 “T(k) . vik)

k*1) U a(k) K) W HE) v2(k)

where X(k) is the daily peak load.”~(k) is the
fluctuation because of weather conditions, temperature
TOO and humidity H(k). a(k), P(k), *(k) can be estima-
ted using past observations.

The main difficulty in using Kalman Tfiltering
theory to obtain the best estimates of the states arises
from the fact that the noise covariances are unknown.

3: Time series approach formulated by Box and Jenkins in
which the load is modeled as a stochastic process and
the model parameters are estimated using the maximum
likelihood principle [4]-[6]- This stochastic approach
to the problem of filtering and forecasting was Tirst
presented by Wiener [4]- He 1imposed the Tfollowing
restriction on the fTiltering and prediction problems:

a) the process 1is stationary

b) the predictor index is the minimization of mean
square error, and

c) the predictor is linear.



With the above assumption”™ one only needs the

autocorrelation Tfunction of the process and the noise
input, and the cross-correlation function of the two.
This 1idea was extended by Box and Jenkins [4] for
handling a class of non-stationary processes by a finite
linear transformation.

The determination of the model order is done by
examining the pattern of the sample autocorrelation
function, as well as the partial autocorrelation
functions [4], Such correlation plots is for identifying
possible underlying behaviour.

4. Methods based on spectral decomposition [7]-[8]-

These methods divides the load demand iInto various
components. For example, Farmer et al [8], divides the
load into 3 components; a long term trend, a component
varying with the day of the week, and a random

th
component. If Z (t) denotes the load in the W week
wd o
of the year, on the d day of that week, and the time

of the day (t), then Z (t) is expressed in the form;
wd

Z (MOM=A )+ B @® + X (®©
wd w d e wd

where A () represents a trend terra which iIs updated
W

weekly, B (t) denotes a term dependent on the day of
d

the week, and X (t) denotes the residual component.
wd



The terms A (t) and B () are fdund by minimising the
mean squarg error ofdthe random component average over
several weeks of past data. This method requires a lot
of past load data for analysis and this means a lot of
computer memory is required for effective analysis,
which 1is 1ts main drawback.
5: Christiaanse, [9], for instance used the general method
exponential smoothing where the weekly variations iIn hou-
rly load are described as a cyclic function of time with
a period of one week. The model selected is of the form;
Z(t)= c+_m (ai sin wi(t) + bi cos wi(t) )
that is:_la constant c¢c and a fourier series with m
frequencies. Forecasts from the model for lead time L
are in the form;
Z(t+L)=a(t) T(+L)
where f(t)= sin wl(t)
cos wi(t)
3in wm(t)
cos wm(t)
and a(t) 1is a row vector containing the estimates of
the parameters. These parameters are estimated in such a
way as to minimise the square of the residuals, using a
weighted least squares criterion,using a smoothing
constant between zero and one.
The problem with the exponential smoothing method

is that the accuracy of the forecasts depends heavily on

the smoothing constant and to some extent on the general



form of the model chosen beforehand.

Observations from a naturally occurring phenomena
such as load demand which depends on a number of inter-
related variables such as economic factors, social beha-
viour of consumers, effects of weather and other unquan-
tifiable factors, posses an inherent probabilistic struc-
ture. Deterministic models cannot be obtained for such
systems and stochastic models have been employed widely
to model such series.

In this study, the time series analysis system
identification approach to stochastic model building has
been chosen to analyse the load using past data only.
The exclusion of weather variables is due to <the fact
that Kenya 1is basically a tropical country and the
amount of installed equipment that is sensitive to wea-
ther ( such as space heaters, air conditioners etc. ) is
minimal. The other factor is due to the non-uniformity
of weather conditions iIn various parts of the country
which would make it difficult to include them in a study
of this magnitude. Inclusion of such variables would
also involve a prediction of weather parameters as well
and this could possibly lead to more errors because of
the double forecasting process.

The main advantage of the time series approach to
short term load forecasting are it’s ease of underst-

anding, implementation and the accuracy of i1t’s results.
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There are many approaches to time series analysis
including the better known regression analysis. The
general mixed autoregressive integrated moving average
(ARIMA) modeling approach pioneered by Box, G.E and
Jenkins [4] for any stochastic process has many
advantages over the alternative modeling approaches.

The beauty of the ARIMA approach is that Box and
Jenkins have laid a firm and rigorous mathematical basis
for its analysis. In the case of seasonality or period-
icity in the data for instance, the alternative appro-
aches often require a seasonal adjustment of the time
series prior to analysis. The ARIMA approach in contrast
models the dependencies which define seasonality. Ano-
ther case is In the treatment of growth and trend eff-
ects 1In the series; while other techniques require sepa-
rate treatment of such terms, the ARIMA approach takes
care of such adjustments in the modeling process by a
linear transformation of the original series iInto a
stationary time series. These advantages are brought out
clearly in a study by Plosser [10].

This particular study is unique in the sense that
every power system is different from each other. Every
system has its" own load demand characteristics and
no load forecasting programme can be universally appl-
ied. A load forecasting programme can be developed for a

system only after its load demand characteristics are



modeled and understood.

In Kenya, at the moment there is no proper load
forecasting procedure. Much depends on the experience of
the System controller on duty who uses his own judgment
and past experience. While such forecasts are sometimes
accurate, most times they lead to gross errors and hence
uneconomic operation of the system.

It can be seen that there 1is an urgent need for a
3hort term load forecasting algorithm for the Kenya
power utility. A prediction scheme which provides accu-
rate estimates of the load demand a few hours a head
satisfies the requirements of the control system for
which this study is based.

This study sets out to develop a load forecasting
programme for the Kenya power system based on a sound
mathematical and scientific load forecasting technique.

It makes use of the available and affordable personal
computer to develop the programme. The quantity to
be forecast is the total average hourly load demand in
megawatts. New forecasts are to be computed each hour,
immediately following the reading of the integrated load

demand of the previous hour.
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UHATIEB 2
MATHEMATICAL THEORY 01 THE MODELING PROCESS
2.0 INTRODUCTION
Time series analysis 1is essentially concerned
with evaluating the properties of the probability model
which generated the observed time series. In this
analysis the evolving load demand is assumed to be a
stochastic process which can be described by some of the
moments of the generating process such as the mean, var-
iance and autocovariance functions. At its Dbasis, a
time series process consists of a random shock or white
noise inputs and a realization or observation
outputs, which in this case are the hourLy megawatt totalL

system load demand.

2.1 THE AUTOCORRELATION FUNCTION (ACF).

A stationary stochastic process is fully
determined by its mean, variance and autocorrelation
function. If two processes have the same three
variables, then they are the same process.

Since each distinct process has a unique
autocorrelation function, the autocorrelation function
can be estimated from a realized time series and that
information used to determine the process structure
which generated the realization.

For a Z time series process, the autocorrelation
t
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function Ia - defined as

ACF(k) = covariance (< ,Z ) / variance (Z ).
t t+k t

Given a realization of the Z procesa, a fTinite time
t
series of N observations, the autocorrelation function

may be estimated from the formulae;

i=N
ACF(K)= ~.(Z -2 x @Z -2 x (N/N-K)
i=l i i+k

2.1.1

:éy (Z?— V4 where Z is the mean and
ACF(k) 1s thu;_; me;sure of the 1inherent relationship or
correlation between Z and Z observations [ref_4].

A plot of ¢ the -tthocorrelation function
coefficients ACF(k) as a function of k or lag Kk is
called the autocorrelation function of the stochastic
process. It is a dimensionless quantity and less than or
equal to one. As the value of k increases, confidence in
the estimates of ACF(k) diminishes.

Calculation of the standard error (SE) of the
estimates helps in giving confidence limits within which
the estimates can be accepted. The standard error is
estimated from the formulae;

\ *
SE [ACF(K)]= V I/N(1+2 £.ACF(i) ) 2.1.2
Estimated values of AéFE;) which lie within plus or
minus two standard deviation confidence limits are thus

not statistically different from zero with 95%

confidence [4].
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2.1.1 AUTOREGRESSIV%;(AR) MUDKUL
th
Ap order autoregressive process is written as;
Z-j"Z ol IR + faz <a 2.L.1.L
t 1t-1 2 t-2. p t-p t

In this model, the current value of the process is
expressed as a TfTinite, linear, aggregate of previous
values of the process and a shock a

Une of the most common autoregtressive processes is

that of order one, written as Z -"~Z > a _2.1.1.2
t 1t-t t

The ACF of this process 1Is expected to decay
exponentially from lag to lag.

Some operators used iIn simplifying the analysis ot
the models are;

1) The backward shift operator, B which is defined as

m
Bz =z , thus B z -Z
t t-1 t t-m
2) The inverse operation is performed by a forward shift
-1 m
operator F=B given by FZ -1 , hence F zZ =z
t t+l t ttm

3) The difference operator, V which can be written as
V2Z2=2-12

t t t-1
A general autoregressive operator of order p can

s p
be defined by P(B)=1-fiB-pB -....-<B 2.1.1.3
12 p

hence equation 2.1.1.1 of the general AR model can be
economically written as;

0(B)Z = a 2.1.1.4
t t
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Thus an AR process can be considered as the output Zt
trom a linear filter with a transfer function A B) when
the 1input is white noise, a .
t

2.1.2 MOVING AVERAGE LtfAlI MODELS

In practice, the time series analysis begins with

an autocorrelation function estimated from the original
or raw time series, L . If the AGF iIndicates that the

process 1is non—statignary,then the series must be
differenced. The second stage of the analysis 1is an
identification of a model for the stationary series
based on the serial correlation patterns shown in the
autocorrelation function. th

One class of serial dependency is the ¢ order

moving average process. Here Z is linearly dependent on

t
a finite number of g previous a’s. Thus
Z=a0a Oa -....0a 2.1.2.1
t t 1t-1 2t-2 g t-q

A general moving average operator of order q can be

defined by
2 q
o(B)=1-0 B-0 B -...... -0 B 2.1.2.2
1 2 q

hence the moving average model can be written as
Z = 0(B) a 2.1.2.3
t t
An MA process of order one is expected to have a non-
zero value of ACF(1) while all the successive lags of
the ACF(k) are expected to be zero.

th
In general, a q order MA process Iis expected to
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have non-zero values of ACF(1)_.._. ACF(q)- The values of
ACF(g+1) and beyond are all expected to be zero, thus an
MA  process model 1identification is based on a count of
the number of non-zero spikes in the first q lags of the
ACF.

2.2 HIE PARTIAL AUTOCORRELATION FUKCUFIM LEACE1l

This 1is a useful statistic for model
identification. It i1s a complementary tool to the
autocorrelation function in the identification of time
series models.

The lag k partial autocorrelation
function, PACF(k) 1is a measure of the correlation between
time series observations k units apart after correlation
between intermediate lags have been removed or
partialled’ out. Unlike the autocorrelation
function, the partial autocorrelation function cannot be
estimated from a simple straight forward formulae.

It 1is usually estimated from the autocorrelation
function since 1t 1is a Tfunction of the expected
autocorrelation function [4].

The below formulae 1s wused to estimate the
partial autocorrelation function. The PACF at lag k 1is
denoted byj2f(kk) and if the ACF at lag k is denoted by

r then;
k
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00ck) - r for k-1

and e i

<Xuo l—k—Ey..J *Vj
! for kaz3,. ...k

1-VO0 k-i-j* -j

wher. OkJ - Ok, j - O<d<e « V 1J rj for J-1,2,. ..kl

From the above formulae it can be seen that once the ACF
is obtained, the PACF can be derived by simpLe algebraic
substitution.

An AR model of order one is expected to have a non-
zero PACF(l), while PACF(2) and all successive lags are
expected to be zero, While a gth order MA process has a
decaying PACF, that 1is, all PACF(k) are expected to be
non-zero [4].

th
In general, the PACF of a q order MA process is
expected to decay to zero but at a rate determined by
..... >0d parameters. This means that moving average
processes have decaying partial autocorrelation
functions, while autoregressive processes have spiking

partial autocorrelations.

2.3 MIXED MODELS (ARMA).
To achieve a better fit for certain actual time
series, It is sometimes advantageous to include both AR

and MA terms i1n the model.
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The relationships iIn the autoregressive and moving
average processes so fTar discussed place some limits on
mixed models. Such relationships sometimes Jlead to
parameter redundancies, because at times comp lex models
are equivalent to simpler models with fewer parameters.
Both the ACF and PACF of amixed process are expected
to decay. Ageneral mixed ARMA model canbe written as;

VARES b | + ....+02z * a -8 a a 2.3.1
-t 1 t-1 P t-p t L t-1 q t-q

The general equation for amixed model can then take the

the form (B)2 8B a = - 2.3.2
t t
in practice it 1is frequently true that adequate

representation of actually occurring stationary series
or one that has been made stationary by transformation
can be obtained with AR, MA or mixed modelLs in which
the order 1is not greater than two.

2.4 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (AR1MA J ALGEBKA

An observed time series,in our case the hourly
load demand denoted as Z ,Z ... Z ,Z .can Dbe
12 t-1 t

described as a realization of a stochastic process.

At the heart of the generating process IS a seguence
of random shocks, a , which conveniently summarize the
multitude of factorstproducing the variation 1in the load
demand. For computational simplicity it is assumed that
the random shocks are normally and independently distributed.

Many actual series exhibit nonstationary behaviour and o

not vary about a fixed mean. In particular, although th
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general level about which fluctuations are occurring may be
different, the behaviour of the series, when differences in
level are allowed for, may be similar. Thus a general model

which can represent non-stationary behaviour is of the form

N (B)W = d(Bla 2 4.1
t t

where W =V Z ~A

t t
and W is the series that has been made stationary by

t

th
taking the d difference of the Z process to make it
t

stationary. The process defined by equations 2.4.1 and
2.4.2 is called an autoregressive integrated moving
average (AkIMAJ process. This process is defined by

w o ~& w * . +0 W +a -Ha a _2.4.3
t P t-p t 1 t-1 q t-q

An ARIMA model has three structural parameters
denoted as p,d,q which describe the relationship between
the random shocks and the observed load series. The
parameter p indicates an autoregressive relationship.

For example a model where p=1, q=d=0 denoted as a (1,U,U)

model is written as Z =0Z + a . This 1s a model
t 1 t-I1 t
where the current observation Z is composed of a
portion of the preceding observatig;, Z , and a random
shock a . An ARIMA (2,0,0) model would E;Iwritten as Z 56
1 t 1

1 + * a showing that the parameter p denotes

Z *
t-1 2 t-2

the number of past observations used to predict the
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current observation. s
The structural parameter q denotes the number of
moving average structures in the model. An ARIMA (0,0,1)

model would thus be written as Z =a -0 a and a
t t 1 t-1

(0,0,2) model would be written as Z =a -0 a -0 a
t t 1 t-1 I t-2

An ARIMA (0,0,9) model 1is one where the current
observation, Z is composed of a current random shock a
and a portiontof the g-1 preceding random shocks, a ¢
through a =t
t-q

Finally the structural parameter d indicates that
the time series observations have been differenced.
Differencing amounts to subtracting the first
observation from the second, second from third and so on.
This 13 wusually performed on a non-stationary time

series to make It a stationary process. An  ARIMA

(0,1,0) model would be written as Z -Z = a . This
t t-1 t

means that the current observation, Z 1is equal to the
preceding observation, Z plus the gurrent shock a
Model identification :;%ers to the empirical proze—
dures by which the best set of parameters P.d.q are

selected for a given load series.

2.5 MODELS.
Seasonality is defined as any periodic or cyclic

behaviour in the time series. The ARIMA approach of
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analysis models dependencies which define seasonality.
There also exist seasonal ARINA structures denoted by
P.D.Q.

P denotes the number of seasonal autoregressive
parameters, Q the number of seasonal moving average
parameters and D the degree of seasonal differencing.

IT a series exhibits seasonal non-stationarity,to
make it stationary it must be differenced with respect
to the seasonal period. Seasonal autoregression is where
the current observation depends upon the corresponding
observation of the series for the preceding period or
season. Seasonal moving average is when the current
observation depends upon the random shock of the
preceding period.

Similar rules of regular ARIMA (p-d.g) models also
apply to seasonal time series analysis. Identification
of a seasonal ARIMA structure proceeds from an
examination of the ACF and PACF of the raw data. The
only difference between seasonal and regularmodels 13
that for the seasonal processes, patterns of spiking and
decay in the autocorrelations and partial
autocorrelations appear at the seasonal lags.

Seasonal non-stationarity is iIndicated by an ACF
that dies out slowly from seasonal lag to seasonal lag.
Seasonal autoregression is indicated by an ACF that dies
out exponentially fromseasonallag to seasonal lag

while the ACF of a seasonal moving process spikes at the
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seasonal lags.

Most time series with seasonal ARIMA behaviour
also exhibit regular behaviour as well. A powerful model
can be realized by incorporating regular and seasonal
structures multiplicatively, an example of such a model
of two moving average parameters can be written as;

s s
(1-B)(1-B )2 =(1-0 B)(l-e B ) a 2.5.1
t 1 2 t
Simplifying the equation and using the del (V) operator we
have
s
7 7 Z =(1-0 B)(1-0 B ) a . 2.5.2
1 st 1 2 t

The general ARIMA model which includes seasonality

is denoted as (p-d.-q) x (P,D,Q)s which makes it s

multiplicative nature explicit,where s iIs the seasonal

period length.
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CHAPTER 3
MOQKL DEVELOPMENT
3.0 INTRODUCTIQtL
Having developed the theory behind ARIMA models,
the problem of building a model for the load time
series 13 now addressed.

The model building strategy is based on three
procedures of identification, estimation and diagnosis.
The main aim IS to construct a model which is
statistically adequate 33 well as parsimonious (having
the minimum number of parameters).

The model building process is summarised by the

block diagram below:
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3.1 DATA SET DESCRIPTION.
3.1.0 XHE KENYA POWER SYSTEM EOAP~.

The Kenya power utility is a small power
system with a total peak load demand of 460 megawatts to
date. The total energy consumption per day is about
8,500 megawatt hours. The domestic consumers constitute
about 35* of this demand while the remaining 6b% is

mainly industrial and small scale commercial consumers.
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3.1.1 DATA
There is a manual recording of megawatt hour
readings from printographs located at each power genera-
ting station. Control attendants at these stations take
Load readings of the power generated from each machine
every half an hour, sum up the total readings for the
station, and then relays the information to another con-
trol assistant at the national control centre through
K.P&T public telephone, power line carrier or V_.H.F radio
These readings are then logged into a master log
sheet at the control centre as they arrive and are
thereafter used by the system controllers for system
operation. At the end of a 24 hour period the log sheet
is kept fTiled. It can thus be seen that data collection

and retrieval is a tedious and difficult process.

3.1.2 DATA ANALYSIS
Some readings of the half-hourly load readings
for 1987 and part of 1988 was collected at the Kenya
power and lighting utility national control centre. The
half hourly 1load readings are averaged to obtain the
hourly readings which are then entered into a load data
file for computer analysis.
Six weeks of data were used for model development.
Six weeks of data were analysed for fTour different
periods in the year for a comparison to see whether the

load model structure and parameters change significantly
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within the year.

Data for periods as long as twelve weeks were analysed
for some of the periods to observe the behaviour of the
model structure and parameters as the size of the data

base increased.

3.2 MODEL IDENTIFICATION AND STRUCTURE DETERMINATION.

The key to model identification is the human pat-
tern recognition of the autocorrelation and partial
autocorrelation functions of the various forms of the
load time series observations.

The estimated ACF and PACF will 1indicate whether the
series 1is stationary or not, the existence of any seaso-
nal patterns and whether the series iIs a moving ave-
rage, autoregressive, mixed ARMA or just white noise
process. The general ARIMA model can be denoted as;

(P.d.g) x (P,D,Q)s .

Where p denotes the number of regular autoregressive
parameters, d the degree of regular differencing, q the
number of regular moving average parameters, P the number
of seasonal autoregressive parameters, D the degree of
seasonal differencing, Q the number of seasonal moving
average parameters and s the seasonal period. The values
of the parameters p,d,q as well as P,D,Q and s can also
be obtained from these plots.

The analysis begins by looking at the plots of

these functions which are obtained from the programs
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which have been written specifically for evaluating the
autocorrelation and partial autocorrelation functions

whose block diagram is shown in figure 3.2.0 below.
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Figure 3.2.0.

The plots of these functions are obtained through
the use of the graphics option of the LOTUS 1-2-3
software.

Figure 3.2.1 shows the plot of the raw 1load time
series data over a time span of about two weeks. The
curve depicts a non-stationary process as it does not
seem to oscillate randomly about a constant mean.

The regular daily variation suggests a seasonal pe-
riod of 24 hours and the strong weekly variation also
shows that there exists a seasonal period of 168 hours.
These observations concur with our normal expectations
since, TfTor example a load on a particular day of the week

does not vary much from that of the previous or coming
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week on the same day, likewise ghe load at a particular

hour of the day will not be much different from that
of the same hour on the the next or previous day, for

similar days of the week, for example, a monday and a

tuesday load at 18.00 hours are expected to be quite

similar.

Figure 3.2.2 shows the plot of the autocorrelation
function of the raw data, the original load series before
any data transformation. The ACF starts with high posi-
tive values and dies out slowly from seasonal lag to
seasonal lag,the significant seasonal lags being 24 and
168 hours. This pattern suggests non-stationarity in the
series which means the series should be regularly diffe-
renced, (d=1I).

Figure 3.2.3 shows the ACF estimated from the regu-
larly differenced series, (d=1). Seasonal non-stationarity
is still persistent as evidenced by the slow decay of
the ACF from lag to lag. The key seasonal lags still
being 24 and 168 hours.

Figure 3.2.4.1 shows the ACF of the series diffe-
renced only with respect to a period of 24 hours, s=24
and D=I.

There are significant spikes at lags 168 and 336 hours
as well as a slow decay in the ACF which indicates that
there should be regular as well as seasonal differen-

cing.
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Figure 3.2.4.2(a) shows the ACF of the series diff-
erenced regularly (d=1) as well as seasonally (D=1), with
a period of 24 hours. Significant spikes at
ACF(1), ACF(24), ACF(25) indicate the presence of a regu-
lar moving average (g=I1) and a seasonal moving average
process (Q=1). There also appears to be a significant
3pike at lag 163 hours and 336 hours, the value at 336
being less than that at 168 hours. These additional
spikes indicate the possibility of a seasonal autoregre-
ssive parameter of order one, (P=1 and s=168). The
remaining lags can be said to be nearly zero with 95%
confidence and the series does not therefore require any
further differencing.

Figure 3.2.4_2(b) shows the partial autocorrela-
tion Tfunction from the same data set that generated
figure 3.2.4.2(a)- There are significant spikes at seaso-
nal lags which are multiples of 24 hours which progres-
sively decrease exponentially from lag 24, confirming
the existence of a seasonal moving average operator of
order one. The PACF pattern confirms the assertion that
the process is a seasonal moving average of order one
and a tentative model for further consideration can be
identified at this stage. This model is of the form;

V7 Z= (1-0 B)(1-9 524) a 3.2

24 t 1 2 t

Figure 3.2.5.1 shows the ACF of the series differe-

nced only with respect to a period of 168 hours, (D=1 and
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s=168 ). There is only a significant spike at lag 168
hours, otherwise the ACF also dies out slowly to zero
indicating the necessity of regular differencing as
well.

The load series is differenced regularly as well
as seasonally with a period of one week, (d=I,D=1 and
s=168 ).

Figure 3.2.5.2(a) shows the ACF of this series.

Significant spikes appear only at lags 1 and 168
suggesting the presence of a regular moving average
operator of order one (g-1) as well as a seasonal moving
average parameter of order one (Q=1 and s=168).

Figure 3.2.5.2(b) shows the PACF plot corresponding
to figure 3.2.5.2(a)-. This figure confirms the deductions
made from the ACF plots. A seasonal MA process of order
one Is indicated by the PACF pattern. The exponential
decay of the PACF from lag one indicates the presence of
a regular moving average process of order one. The rest
of the lags of the PACF and the ACF plots can be
considered to be zero with 95% confidence. Another
possible tentative model 1is thus entertained of the
below structure;

168
VV Z=(@-9B) (@-0B )a 3.2.2
168 t 1 2 t
The parameters of the two identified models then

have to be estimated from the data and diagnostic checks
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performed on them to see if th™y could be adequate for

load forecasting.

3-3 ESTIMATION QE MODEL EARANETEJiSM
3.3.0 ESTIMATION THEORYm
Once the model structure has been tentatively
identified, the actual values of the model parameters are
then estimated from the data by searching those values
that minimise the variance of the residuals (a ).
t

The estimation process involves looking for least

squares estimates which minimise the sum of squares of

the noises a . In order to calculate the a’s, the general

mixed ARIMA :quation is written as: ¢

a =W -%w o —<£EW ¢ 0 a S S f0O a

t t 1t-1 p t-p 1t q t-q
3.0.1

where W is the stationary load series, or appropriately
t
differenced load series.

Since the a’s are assumed to be normally distri-

t
buted, the probability density function of the a’s can be
t
written as;
-n n 2 2
P(al.... .anl™a"a exp{ (~ a / 2"™a ) } 3.0.2

t=1 t
It has been shown by Box and Jenkins [4] that the uncon-
ditional log-likelihood function 1is needed for parameter
estimation and is given by;
L(E,O,da )= ) - n Lnfl*a - S(A>,6)/23fa_____3.0.3

where f(*,9) is a function of <and 9. The unconditional
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sura of squares function is given by;
n 2 X
S<N.6)= [a J 3.0.4
t=1 t

where [a ]-E[a ;7,9.w] denotes the expectation of a
t t = t

conditional on <£,0 and w.

NormaLly rl< ,uj 13 or importance only when the
number of terms iIn the series (n) is small. When n is
large S(0,9) dominates the log-likelihood function and
it follows that the parameter estimates which minimise
the sum of squares will be a close approximation to the
maximum likelihood estimates.

In order to calculate the wunconditional sum of
squares it IS necessary to estimate the values of

w oW ... W of the series which occurred before
o] | -Q

the first observation of the series was made.
This enables the starting off of the difference
equation 3.0.1

To facilitate this backward estimation ,the forward

form of the general model equation is introduced where

-1
all B’s are replaced by F’s, (F=B ).
0O =9 e or
t
W - W - eaa- - W =e 0e - e 9qge 3.0.5
t t+l t+p t t+l t+q

where {e } is a sequence of independently distributed
t

normal random variables. This process is a stationary
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representation where W ig expressed iIn terms oi W"s and
e’s and this model ang the backward model of equation
3.0.1 have identical probability structures.

With the forward shift operator.it is possible to
use equation 3.0.5 to estimate W’s which occurred prior
to the fTirst observation. To calculate the unconditional
Siam of squares jJ2f.0) for any given set of parameters &
and 9. equation 3.0.5 is fir3t used to estimate the W’s
prior to the start of the series.then these initial
values are used with equation 3.0.1 to estimate the [a
‘sj and finally the [a ’s] are summed to obtain S(*, 9i.

t
3.3.1 ESTIMATION MEIHQP,

Model estimation 1is an optimisation process
that requires a suitable software package. The general
ARIMA model 1is non-linear in it’s parameters, so standard
software regression packages such as SPSS cannot be
used. There are several mathematical optimization methods
which can be used for non-linear least squares estimation.

The method to be used In any optimization problem
will depend on the nature of the problem. If the problem
is formulated mathematically in an analytical form. the
method chosen will depend on whé}her;

1) it is a static or dynamic optimization process

2) the performance function is constrained or not

3) the objective function is linear or non-linear
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4) the function 1is single variable or multi-variable.
In this work static optimization will be used. In
principle, static systems are those whose parameters do
not change with time, however,systems whose parameters
vary slightly within a reasonable range of time will
also be considered static. It is also a non-linear
formulated problem, with more than one parameter to be
estimated.

The methods which have been successfully used
include the Marquardt algorithm, conjugate gradient
method of Fletcher and Reeves, Hookes and Jeeves
optimization method, Descent method of Fletcher and
PoweLl among others [1J. All these methods and their
algorithms are Tfully discussed in any standard
optimization mathematics text [11].

In this work, the method of Hookes and Jeeves [12]
has been chosen because it is easier to understand and
program and its computer memory requirements are less, a
factor that 1is of considerable iImportance since this
work 1is being developed for use on a personal computer.
It also meets the conditions stipulated above for
solving a non-linear, multivariable, least squares
formulated optimization problem.

The model estimation program using Hookes and
Jeeves optimization algorithm was developed in standard

Fortran 77 language and is flexible enough to estimate



-43-

for any number of modeL parameters, although as the
number of parameters increase naturally the computation
time also goes up.

This estimation program also generates the residual
series {a } corresponding to the optimum parameter
values. Tﬁe generated residual series (a } is used as
the input to another program wﬁich performs
diagnostic checks to test for model adequacy, by
calculating the autocorrelation function of the model
residuals as well as evaluating the X2 statistic for

the fTitted models.
3.3. 1. 1 HOOKES AtU2 JEEVES ALQ.QB1THKL

This algorithm finds the minimum of a
multivariable, unconstrained function. The procedure L3
based on the direct search method proposed by Hookes and
Jeeves [12]. The algorithm proceeds as fTollows;

1) A base point is picked using the autocorrelation
function coefficients as estimates and the objective
function evaluated.

2) Local searches are made in each direction of
steps Xi, for each parameter value and then evaluating
the objective function to see if a lower fTunction value
is obtained.

3) If there is no function decrease, the step size is

reduced and searches are made from the previous best

point.
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4 IT the value of the ~"objective TfTunction has
k+1
decreased, a "temporary head 7, Xi,o0 , 13 Located using
k*=-1 k
the two previous base points Xi and Xi ;
k*1 k+1 k+1) 9]
X1,0 =Xi + a(Xi -X1i )
where 1 is the variable index - 1,2,3,....N

0 denotes the temporary head

k Is a stage index ( a stage is the end of N searches)

a is the acceleration factor, a> 1.

5) IT the temporary head results iIn a Jlower function
value, a new local search is performed about the
temporary head, a new head is Located and the value of
the function, F i3 checked. This process continues soO
long as F decreases.

6) If the temporary head does not result in a lower
function value, a search is made from the previous best
point.

1)) The procedure terminates when a convergence
criterion is satisfied (e.g when change in F 1is less
than a convergence fTactor).

For example 1in the evaluation of the optimum model par-
ameters of equation 3.2.2 (pp36) using 1008 hours of load
data, initial parameter estimates of 0.2 and 0.4
obtained f#om the ACF were used as the base point.

These converged to optimum values of 0.06 and 0.85

respectively after 165 iterations in 1.5 minutes, with a
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change in value of the function being 1les3 than
0 .000001.

Figure 3.3.1.1 Below is the block diagram for Hookes algorithi

pi 3.3 lel.
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3.3.2 PARAMETER ESTIMATES Tri\D DIAGNOSTIC CHECKS
Once a model has been satisfactorily identified
and its optimal parameters obtained, the adequacy of fTit
must then be assessed. If the model parameters are
exactly known, then the random sequence can be computed
directly from the observations, but when the calculation
is made with estimates substituted for true parameter
values as iIn this case, then the resulting sequence is
referred to as the ’residuals”’, a which can be regarded
as estimates of the errors. '
3.3.2. 1 TESTS Of GOODNESS QE FIT.
IT a proper model has been chosen,then the
model residuals will not be different from white noise.
Model diagnosis involves estimating the autocorre-
lation function of the residual series a . A good model
is one where all lags of the residual AC; will be expec-
ted to be zero. For any kind of fitting of time series
models, it is obviously important to scrutinize the
residuals, i1.e the differences between the observed and
the fitted values. With a computer it is no longer an
arithmetic nuisance to work out all observed residuals,
as well as their sums of squares. Notwithstanding that
the observed residuals differ from the real residuals,
important effects which may impair the fitting may show

up 1n the observed time series. For example, if there

are exceptional outlying observations, their existance
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will be revealed by a large residual term.

One of the tests of goodness of fit is the Port-
manteau lack of fit test. This uses the Q statistic to
test whether the entire residual ACF is different from
that expected of a white noise process [4).

IT a fitted model 1is correct, then

Q=n _#(CI[ACF(i)] ’ 3.3.2. 1
i=
is approximately distributed as X (Chi squared] distri-
bution with (k-P-Q-p-gq) degrees of freedom, where n is
the number of observations used to fit the model and
ACF(1) is the autocorrelation function of the model
residuals at lag 1.

Another test for goodness of fit is the evaluation
of the autocorrelation function of the residual series
and their 95% confidence limits. The sequence a is
if ¢
k T~
[ACF(k)] < 2¥ /NG~ [ACF(i)] ) 3.3.2.2

i=1
Estimates of the residual ACF which lie within plus or

white noise with 85% confidarice

minus two standard error of confidence are thus not

statistically different from zero at a 0.95 level of

confidence.
3.3.2.2 FITTED MODELS.
168
The models 7 7 Z =(1-0.06B) (1-0.85B ) a 3.3.2.2.1
168 t t
24

and 77 Z =(1-0.2B)(1-0.9B ) a 3.3.2.2.2
24 t t
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were tested for goodness of fit after having been tenta-
tively 1i1dentified and their parameters estimated using
Hookes and Jeeves method.

Figure 3.3.2. 1 shows the ACF of the residuals from
the model of equation 3.3.2.2.1 and figure 3.3.2.2 shows
the ACF of the residuals of the model of equation
3.3.2.2.2. The chi-squared statistic (Q) was also eva-
luated for each model as well as the residual variance.

Residual variance is obtained by dividing the minimum

sum of squares function by the number of observations,n.

The below table shows some typical values of these

parameters.
1 Model Type Q statistic Percentage Residual Degrees of
For n=840 points on Variance Freedom
distribution
2.5% 1 5%
5> 1
! 77 Z-= %
! 168 t
! 168 23.7 31.5 128.9 143. 1 18
(1-e B)(1-e B )a
; i 2 t
1
77 z-= 1
24t
24 27.2 31.5 128.9 179.5 18

;
(1-0 B)(1-e B )a
o1 2 Tt

Table 3.3.2.1

Both these two models passed the diagnostic checks
using the Q statistic criterion. A careful scrutiny of
the autocorrelation function of the model residuals and

observation of the 95% confidence lines over a time span
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of about 200 lags reveals that the model of equation
3.3.2.2.1 is a better fit than that of equation
3.3.2.2.2 since it has a lower residual variance and
it’s residual ACF graph has fewer and less significant
spikes at the 9b% confidence interval.166

The model vV Z =(1-0 B )(1-e B ) a is thus the

166 t 1 2 t

better model chosen for further development and analysis.

Analysis of figure 3.3.2.1 shows that there are sig-
nificant spikes at lags 2, 24, 48 and 72. These spikes are
multiples of 24 and the residual autocorrelations
decrease from lag 24 to 48 ,a similar decrease from lag
48 to lag 72 also being registered. These evolving
patterns in the residual ACFS shows that, there exists a
seasonal autoregressive term of degree 24 which was
overlooked at the identification stage and must now be
included in the model. The significant spike at lag two
also reveals the presence of a regular moving average
term of order two which should be taken care of at this
stage.

Use is made of the notion of the iterative model
building strategy earlier mentioned of
identification, estimation and diagnhostic checks, to
obtain an improved model. After diagnosis the below
model 1is entertained;

24 2 168

(i-"B v <z =(i-e B-e b )(-eb )a 3.3.2.2.
3 168 t 1 4 2 t
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The parameters of this new mg del were then evaluated
using the parameter estimation program.

Figure 3.3.2.3 shows the autocorrelation Tfunction
estimated from the model residuals of the model of
equation 3.3.2.2.3 .There are no significant spikes at
the early or seasonal lags. The Q statistic Tfor this
model is ( 20.4 ), which is not significant at the 0.05
level ,as can be seen from table F in appendix. Scrutiny
of the residual ACFs graph also shows that there is no
significant departure from zero.

The final model chosen is thus;

24 2 168
(1-~B )7 Z =(1-0 B-e B )(I-e B Jda . 3.3.2.2.4

3 168 t 1 4 2 t

The model of equation 3.3.2.2.4 is the selected
objective function for the Hookes and Jeeves
optimization program. This model 1is then incorporated in
the subroutine LEAST which is used by the main program
for evaluating the optimum model parameters.

Five weeks of load data (840 hours) for different
periods of the year was used in the evaluation of the
model parameters as summarized in table 3.3".2.2.

It can be seen from the table that the model
parameters vary within expected limits as the year Iis
spanned indicating the fact that the model chosen and
its parameters is quite a good representation of the

load process. The average values for the optimum model
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parameters over the considered periods are:

9 =0.1,
1 2

0 =

3

0.85, p - 0.1 and 6 =0.1

1

These are the values to be used for the load forecasting

process

as the power

specified at this stage.

load model

been completely

ThLa table shows ths optimun panamatar values Evaluated®,

ILOAD DATA
:SET PERIOD
1 (N=840)

I L-1-87
- to
: 1b-2-87

25-11-87
TO
10-1-88

1 24-2-88
TO
22-3-88

[ERN—

6-4-88
TO
10-5-88

- =

J 18-5-88
! TO
I 28-6-88

I AVERAGE
IPARAMETER
IVALUES OVER
I PERIODS

OPTIMUM PARAMETER VALUES

0
1

0.1

0.03

0.11

0.27

0.05

0.11

0
2 *3

0.85 0.00
0.85 0.23
0.83 0.05
0.89 0.01
0.87 0.18
0.85 0.09

Table 3.3.2.2

0
4

0.01

0.05

0.06

0.07

0.08

0.06

RESIDUAL CHI-SQUARED
VARIANCE 2

(Sum of X statistic
Squares /N) ( k=2G0)

202.9 225.8
110.1 195.4
124.48 208.9
168.3 176.6
141 .9 163.9
149.5 194.1

It has been pointed out [4] that a small variation in

the value

accuracy of the

of the model

parameters does not affect the

load forecasting process as long as the



right form of the model, has been 1identified. For example
a ten percent variation in the value of the parameters
does not affect the forecasts appreciably, as shown 1n

table 3.3.2.3 below.

ESTIMATED MEAN ABSOLUTE PERCENTAGE ERROR (24 HR)
MODEL LEAD TIME FOR

PARAMETERS

FOR FORE- OPTIMUM 10% INCREASE IN 106 DECREASE IN
CASTING. VALUE OPTIMUM PARAMETER OPTIMUM PARAMETER

VALUE VALUE
Hi 3.6 3. b9 3.62
02 3.6 3.84 3.4b
03 3.6 3.60 3.61"°
64 3.6 3.60 3.61

Table 3.3.2.3»

The parameters could also be updated on-line if
there becomes available faster algorithms for parameter
estimation and on-line data acquisition methods. The
parameters can be updated off-line periodically, to see

whether they change appreciably as time goes on.
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CUAPTSB 4 ~

FORECASTING.

4.0 INTRODUCTION.

One of the iImportant aspects of a modeling process
is to put the identified model to use. In this case,the
identified power load model is to be used for load
prediction. A good model is one that provides accurate
forecasts of the load and the forecasting abilities of
these models can be investigated by comparing actual

load values with the forecasted values.

41 IHE EQRECASTING ALGORITHM.
The estimation stage of the model identification yields
24 2 168
the model (1-0.1B )7 7 Z =(1-0.1B-0.1B )(1-0.85B ) a
1168 t t

4.1.1

as the best amongst the ones considered and since it
passed diagnostic checks, it is the final model to be
used for forecasting.

Expanding the polynomial equation for the model and

solving for Z , the load value at time t, we have

t
24 * 168 2 168
(1-0. 1B )(1-B) (1-B )Z =(1-0.1B-0. IB H1-0.85B ) a
t t
; } ) 4.1.2
and further expansion gives
Z =Z +Z -Z +0.1(Z -Z +Z -Z )+a
t t-1 t-168 t-169 t-24 t-25 t-193 t-192 t
-0.1la -0.1a -0.85a +0.085a +0.085a 4.1.3

t-1 t-2 t-168 t-169 t-170



Starting at a time t, the Load forecast L hours
ahead 1is given by

z{L)-Z +1 4 +0.1(Z -z +Z
t+l-1 t+L-168 t*-L-169 t*L-24 t+L-25 t+-L-193

+Z )*a -0.1a -0.1a -0.85a
t+L-192 t*L t+-L-1 t+L-2 t<-L-168

>0.085a +m0.085a 4.1.-
t+L-169 t<-L-170.

where a is the one step ahead forecast error.thus
t

a =Z -£ Q.
t+L t+L tt-L-1

For example the forecast for a lead time of one
hour would be given by

£ (1)=z * -Z ~0.1(Z -Z -Z *Z )-
t t t-167 t-168 t-23 t-24 t-192 t-191

0.1(Z -£ (1))-0.1(Z -£ (1))-0.85(Z 4 )
t 1 t 2 t-167 t-168

+0.085 (Z -Z (1))+0.085 (Z -7 (1)).__4.1.5
t-168 t-169 t-169 t-170

Forecast equations for other lead times can be similarly

obtained by substituting the appropriate value of Ilead

time L and time origin t into equation 4.1.4.

It can be seen from the forecast algorithm that at
least 169 observations are required to start up the
forecasting process because of the regular and seasonal
differencing operations performed on the series (d=D=I
and s=168).

The seasonal moving operator also means that at

least 170 one step ahead forecasting errors are required
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before an accurate forecast can be obtained. This iIn
essence means that a load forecasting data base of at
least 339 hours of load observations are required to
obtain any meaningful load forecast. It was found that
the load forecasting process stabilizes with about three
weeks of hourly load data. Three weeks of Load data (504
hours) was chosen as the size of the 1load forecasting
data bank, since it is also important to 3tore only the
minimum amount of historical data at any time to
minimize the computation time of the forecasts.
4.2 FORECASTING ERROR MEASUREMENT CRITERIA,

The forecasting error is the difference between
the actual load and the predicted value.
Denoting the error by e, various measures can be defined;
1) Average error (¢) - 1/n (el ®We2 +——+en ) _  4.2.1
where n is the number of forecasts made.

2) Mean absolute error MAE)=1/n(lel !+le21+-—+lenl) 4.2.2
2 2

2
3) Mean square error (MSE)=1/n(el <&2+— *a ) 4.2.3
4) Root mean square error(RMSE)=SQRT(MSE) 4.2.4
5) Percentage error=(error (e)/actual load)xI100 ___4.2.5

A good forecasting system should give small errors
and a good error measurement criterion should be
chosen. Some of these measures of the error are not
quite suitable for this particular case, for instance the
average of the errors (e) can give misleading results

since large positive and negative errors can possibly
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cancel each other out.

One of the best measures of the forecasting error
is the mean absolute error (MAE). Root mean square error
is also an acceptable criterion. In this study mean
absolute error measurement criterion 1is used for

analysis of the forecasting results.

4.3 TREATMENT Of ANOMALOUS LOAD PATTERNS,

During some days of the year,the load model Tails
to describe the normal load. Such anomalous load
patterns occur during public holidays such as
Christmas, easter, labour day, independence day and others
that may be declared from time to time. These abnormal
loads could also occur due to unforeseen circumstances
like industrial strikes, power blackouts and other
emergencies.

The 1large errors in a normal forecast of the
holiday loads tends to distort the model temporarily
causing further errors in the following normal days.
Holiday loads are considerably lower than normal weekday
loads but are mostly like neighbouring Sunday loads.

Figure 4.3.1 shows a plot of typical Sunday loads
compared with typical holiday loads. The graphs clearly
show that Sunday loads do not differ appreciably from
holiday loads.

An analysis of the load patterns has shown that

loads of holidays are not necessarily the same,for exam-



C° IN MEGAWATTS

TYPICAL SUNDAY & HOLIDAY LOAD CURVES



-Sm-

ple a Christmas holiday tends to be similar to a pre-

vious Christmas holiday, but could be quite different
from a labour day holiday. It has also been found that

the neighbouring Sunday load to a particular holiday is

more similar to that holidays Qload than, say the load

of the last holiday observed.

In order to avoid overestimating holiday loads.the
load forecasts for holidays are taken as the Latest
Sunday load readings recorded and for that particular
holiday, the system load readings are not entered iIn the
load forecasting data base, instead these values are
replaced by forecasts.

Actual load readings are also replaced by forecasts
in the Jload data base iIn case it is not possible to
obtain the load readings for one reason or another for

example when there 1is a failure iIn the metering system.

4.4 LOAD FORECASTING RESULTS
The recursive nature of the load forecasting algo-
rithm enables the latest load reading to be wused for
obtaining forecasts and this makes the forecasting pro-
cess adaptive in that as new load readings are obt-
ained, forecasts can be updated.
The output of the program gives the load prediction
for the next twenty Tfour hours and the errors in the

previous hour’s forecasts.
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One of the advantages of ,this model is that its
inherent structure allows the forecasting of weekend
loads with the same degree of accuracy as for weekdays.

For purposes of testing the adequacy of the models
for forecasting, forecasts were evaluated for the year
1988 with the data being provided by the Kenya power
utility. Forecasts for 1 hour, 2 hours, 4 hours, 12 hours
and 24 hours lead times were evaluated over a number of
three week periods, and the average mean abso-
lute “MAEjJ error evaluated tor each interval. Results of
such forecast are shown in table 4.4.1.

Figure 4.4.1 (a) shows a typical forecasting result
for 24 hour lead time forecasts over a period of six
days, starting from a Wednesday through to the next
monday. Each forecast was evaluated at midnight.

Figure 4.4_.1(b) shows the 24 hour lead time percentage
forecasting errors over a two week period, the fore-
casting origin being midnight of each day.

Figure 4.4.2 (@) shows the forecasting results of
one hour 1lead time forecasts over a six day period
running from a Wednesday through to monday, while figure
4.4.2 (b) shows the one hour 1lead time percentage
forecasting errors over a two week period.

Figures 4.4.3, 4.4.4 and 4.4.5 show typical 24 hour
lead time load forecasts for a typical weekday, Saturday

and Sunday loads respectively.
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AVERAGE MEAM ABSOLUTE PERCENTAGE FORECASTING

PERIOD DURING LEAD TIME OF THE FORECASTS
WHICH FORECASTS

- -

[ e em E— — )| —

WERE MADE 1HR 2HRS 4HRS 12HRS 24HRS

(MAE)  (MAE) (MAE)  (MAE) (MAE)

29th June to

2nd August 1988 2.87 3.18 3.50 3.52 3.60
18th May to
28th June 1988 2.84 3. 10 3.53 3.52 3.71
24th Feb.to
29th March 88 2.82 2.97 3.30 3.94 4_.36

THE AVERAGE

MEAN  ABSOLUTE 2.84 3.08 3.44 3.66 3.89
ERROR FOR ALL

THE PERIODS.
AVERAGE LOAD OVER THE WHOLE PERIOD = 328.8 MW

Table 4.4.1

From the above table i1t can be seen that alL the
mean absolute forecasting errors are well below Tfive
percent and it can also be observed that the errors
slightly increase with an increase iIn lead time.

The errors for one step ahead load forecasts ave-
rage to 2.8 percent showing the usefulness of updating
the forecasts every hour to obtain a better forecast for

the next hour.
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Graph of Feasts Vs actual Loads

(Lead Time 1-24 Hours)

Figure

Time Origins for Lead-times 1-—24 Hours
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Load in Megawatts

A plot of “orecasts Vs actual Loads

(Lead tfme 1 hour)

Time origins for lead time 1 hour

Figure
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Figure 4.4.2 (b)
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Load Forecasts Vs Actual Loads
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Figure 4.3
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The average 24 hour Lead-time forecast error in
terms of megawatts of actual load is 12.8 MW, whilLe that
of one hour lead time is 9.3 MN. These errors are (quite
acceptable when compared with other works done elsewhere
on short term load forecasting as cited in acme of the
literature in the reference 12],[5] ,[9]1.[13]-[151. lhe
table 3.3.2.3 (pp5b) shows the effect of a 1U% variation
in the values of the individual model parameters on the
accuracy of the load forecast, as tested on the data
between june 3nd august 1988, for 24 hour lead time

forecast..

4.5 SOURCES QE ERROR W FORECASTED LOAD VALUED

The model for load forecasting is developed
assuming a normally distributed process. There are certain
errors that distort the model due to human intervention
and unforeseen emergencies which cannot be taken care of
at the modeling time.

One of such errors is the 1naccuracies 1iIn load
readings. It is always good to detect bad data before
entering 1t into the load forecasting data base. This
can be achieved by redundancy in load measurement, which
is sometimes not possible.

Manual Load shedding also causes errors because this
means the power system cannot meet the load demand and

it Is then difficult to gauge the actual load demand.
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System frequency management can be another source of
error. Sometimes the system frequency deviates from the
required normal value and this could lead to errors in
knowing the actual load demand, for example in the Kenyan
power system every 0.1 hertz change in system frequency
is equivalent to about 5 megawatts change in electricity
demand.

The frequency deviation occurs mostly where utilities
are interconnected and there 1is no proper co-ordination
between the various control centers.

The load management program of ripple control of
domestic hot water heating systems,irrigation pumps in
farms and street lighting control also create errors in
forecasting because some of these installations are
manually operated by the power system controllers who
normally put them on at their discretion. An automatic
switch on and off system which responds to the system

load demand levels would alleviate this problem.

AREAS QZ POSSIBLE IMPROVEMENTm

One of the iImprovements that could be made to
this forecasting process is to model individual major
load buses and then using optimal control techniques to
combine the models for forecasting. These can only be
done subject to the availability of hourly load readings
for these nodes. This will be possible for the Kenya

system once the SCADA system of control which 1is



currently under Installation Is Implemented.

Another area that needs serious and thorough study
is the treatment of holidays and special day3 load
forecasts. This study ignores the loads for holidays and
instead replaces them in the load data base by their
forecasts. A comparative analysis found that the Iloads
on a particular holiday are quite similar to the [loads
on a neighbouring Sunday. It was also discovered that
particular holidays are similar from year to vyear if
they occur on corresponding days such as the easter
holiday, for example. With good data management
techniques, a solution to such holiday problems can be
sought.

Erroneous load vreadings is one of the greatest
sources of forecasting errors and if many could also
lead to a poor model choice. A lot of work is currently
going on, on ways and means of bad data detection and
correction for power system state estimation. Some of
these techniques could be put to use in the load fTore-
casting problem. At the rudimentary level,there should
be a redundant load measurement system that checks the
loads before they are used for forecasting. The effect
of the use of statistical tests to detect outliers 1iIn
load readings before forecasting as an iImprovement to

load measurements can also be a subject of further

investigation.
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5.0 CONCLUSIONSH™

This study set out to develop a mathematical
model that describes the daily pattern of electricity
consumption in Kenya. The model was then to be used for
forecasting the load demand for a period vranging from
one hour to twenty four hours ahead.

Using time series analysis techniques, an auto-
regressive integrated moving average model of four para-
meters has been developed. The model parameters were
estimated using Hookes and Jeeves optimisation
techniques. Six weeks of system hourly load data was
found adequate fTor model development.

Several tests were done at different times of the
year to verify that the model predicts accurately and
consistently. A continuous three week load forecast was
done for each of the testing periods for different lead
times and forecasting origins.

It has also been pointed out that the model develo-
pment is based on the stochastic nature of the load
process and no weather variables have been included
because weather inputs could lead to double Tforecasting
errors if there are no adequate weather records. In any
case, in Kenya there is very little weather sensitive
equipments installed because of the country’s location

within the tropics.



The Load forecasting process 1is hourLy adaptive with
Low computer memory requirements since the program onLy
needs to store three weeks of hourLy Load data to be
able to make a forecast. The hourly updating of the load
forecasts minimizes the effects of uncon3idered weather
variables.

This studys forecasts gives mean absolute perc-
entage errors of less than five percent for 24 hour Lead
time forecasts and less than three percent error for one
hour Lead time. These results are quite accurate
compared with other results obtained elsewhere for short
term Load forecasts. These results should go along way
in enhancing the efficient monitoring, operation and con-

trol of the Kenyan power system.
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The load modeling and forecasting procedure has been
implemented as five computer programs,all written in
standard Fortran 77 Language and developed on an IBM
personal computer.

The programs TEST is for model identification and it
evaluates the autocorrelation functions of various
transformations of the series such as differrencing
-natural logarithmic transformation as well as
calculating the 95% confidence intervals.

The programme PCF is also a model identification
programme which takes the autocorrelations as it’s input
and evaluates the partial autocorrelations up to the
desired lags.

Programmes SHADD and DIAGN are for parameter estima-
tion and diagnostic checks. These give the values of the
optimum model parameters,their residual variance, the
autocorrelation function of the model residuals as well
as the Chi-squared statistic (Q)-

The final programme FCAS5T 1is the load forecasting
programme that allows load prediction for a lead time of
one to 24 hours,as well as giving the values of the mean
absolute percentage errors of the forecasts and the
average load values over the forecast period.

The next couple of pages contain a user manual and a

print out of the program listings.
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LOAD FORECASTING PROGRAMS LLSEB MANGAIN

The complete short term load forecasting algorithm
is iImplemented as five computer programs which are tor
model identification, parameter estimation. diagnostic
checks and load forecasting.

These program”™ aro coded in standard Fortran 77
language and are compiled using the RMFORT compiler that
requires a maths co-processor 8087 to run. A necessary
editor that i1s used is the Turbo Pascal editor which is
used for fortran file creation 33 well as the creation
of data files. Other editors such as the Wordstar can
also be used for data Tfile creation

All the programs are contained in a single 3.5 or
three 5.25* diskettes and they can all run on an IBM
compatible machine which has an 8087 maths co-processor.
Once the diskette 1is inserted, all that one needs to
type i1s the command README and a summary of each of the
programs and the directories where they are available
will be given. One is then able to chose the particular
program of interest.

PROGRAM TEST,.

The compiled version 1is TEST.EXE. It calculates
the autocorrelation functions to the desired lag, and
for this particular case the lag is limited to 500 but
this could be increased by dimensioning the ACOR(J)

array. The input data required for the program 1is the



past hourly Jload series observations which has to be
entered through the keyboard into a data file named
LDATA. This program handles upto 2200 hours of load
data, which can also be increased by proper dimensioning
of the X array.
The screen inputs required for this program are;

1) The number of load series observations

2) The maximum lag of autocorrelation required

3) The seasonal period

4) The degree of regular differencing

All the above inputs are through appropriate screen
prompts. The results are obtained from a file ALPS which
lists the autocorrelation function coefficients versus
their Jlags in a tabular form as well as their 95t
confidence intervals.

PBggBAEI EffL

The compiled version is PCF.EXE. Execution of PCF
always fTollows that of TEST programs since it obtains
it’s input from the output of TEST. The only 1input
required here is the maximum @lag of the partial
autocorrelation desired. In this program it is limited
to 75, but i1t’s value could be increased by dimensioning
the array P accordingly if there is sufficient memory.

The output of the partial autocorrelation
coefficients versus the lags 1in tabular form are

obtained from the file PCFOUT.



PROGRAM SAPD, ™

The compiled version is SHADD.EXE. 1It"s execution
requires the use of past hourly load data, to be entered
in a ’LDATA” file before execution of the program. The
array size for this particular program allows upto 2200
hours of load data for model parameter estimation.

Other 1inputs for the program which are entered on
the screen through prompts are;

1) Number of model parameters to be evaluated

2) Initial parameter estimates

3) Initial step sizes for changing parameter estimates
4) Number of hours of load series observations

5) Maximum lag of autocorrelation required for
diagnostic checks.

6) Seasonal period

7) order of AR and MA parameters

8) Choice of whether series iIs to be Log transformed or
not.

9) Convergence criteria.

The results obtained from a file PESTIM gives the
optimum parameter values, the minimum sura of squares
function, the residual variance, the number of
iterations as well as generating the residual series, a

t

corresponding to the optimum parameter values. The a
t

series are used as the input to the program DIAGN for

evaluating the ACF of the residuals for checking for



goodness of fit. The objective function for this model
parameter evaluation program 1is developed 1in the
subroutine LEASTI1.

PROGRAM DIAGN.

The compiled version is DIAGN.EXE. It is run only
after executing the program SHADD which generates the
residual series a , which it writes into a file RESID
which is then usedtby the DIAGN program to evaluate the
autocorrelation functions of the residuals. It also the
Xzstatistics as well as the 95% limits of the ACFS. All
these results are obtained from a file ACFS.

PROGRAM FCAST-

This 1is the program that generates the required
hourly load forecasts. To start off the forecasting
process, a load data base of the most recent 504 hours (
3 weeks of hourly load data ) is entered into a data
file, ’LDATA”. This data file can be created by the
turbo editor. Once this has been done, a decision can
then be made of how often the forecasts are required.

A policy of generating a forecast either once a
day (every 24 hours) or every one hour is recommended to
avoid a lot of confusion. If possible load forecasts
should be done every one hour, since the hourly updating
makes the forecasting process more accurate.

Before one performs a forecast, there will be a

screen LOGO of 1invitation to a forecasting session



asking for the following information to be entered on
the screen;

1) The last time a forecast was made (hour,day,year)

2) The present hour and date

3) The number of hours that have elapsed since the last

forecast was made.

4) If the forecast is done hourly, then the Iload
reading of the previous hour 1is required, otherwise if
the forecast is done once a day., then the latest J4
hours of hourly load values will be required before a
forecast iIs made since this is a time series process.

The forecasts are then generated and the results
obtained from the fTile FCOUT which lists the lead times
versus the Forecasted Jload values. The error in
forecasting the previous hours load is also generated.
Once the forecasting process 1iIs started, the load data
file 1i1s updated automatically, through a recursive

process as the forecasting process continues.

GRAPHS.

All the outputs of the above programs are in a tabular
form which makes it quite easy for graph plotting. The
LOTUS 123 utility is used for generating and plotting
the graphs.

The 123_.EXE option is used to iInvoke the worksheet menu.

The ™"import " option on the menu is used to transfer the



results file, { whose data is-to be plotted ) into the
worksheet. The graph can then be easily generated and
viewed on the screen using the graph commands of the
lotus software. The graphs can be plotted on paper using

the "printgraph”™ option of the software, through either

a text printer or a graphic plotter.
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64
73

96

0'62S
0404
165
429
752

134
564
032
532
059

609
176
765
366
963
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913
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293
9uU2
697

409
125
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574
306

630
664
699
693
213

634
142
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13
14
15
16
If

24
32
40
46
57

63
74

975

07962

0306

216

464

*31 1
237 1
690 2
160 2
700/’ 3
247 3
616 4
404 3
009 5
629 0
262 7
908 7
564 6
231 9
907 10
591 10
263 1
982 12
666 13
401 13
120 14
644 15
573 16
306 16
047 17
791 10
433 20
357 34
402 43
750 31
153 60
646 69
222 7
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93

00393
103
352
711
145

635
167

733 o

325
940

573
226
892
571
261

962
672
390
117
631

591
336
091
646
611

379
151
928
708
493.

509
704
166
739
391

126
929

16
19
70

79
37
46
55
64

73
67

90

0156

211

564 1
064 1
610 7
204 3
033 3
490 4
166 3
665 6
570 6
304 7
042 6
790 9
547 10
312 n
065 12
665 12
651 13
443 14
240 15
041 16
040 17
659 10
473 I
292 19
114 20
939 21
700 22
509 23
051 32
609 41
439 50
379 39
270 60
291 70
330 67

80

0647

440

003 1
640 1
343 2
070 3
622 4
594 5
380 5
170 6
999 7
007 0
634 9
467 10
307 n

152 ii

002 12
857 13
716 14
VA9 15
443 16
314 17
107 10
062 19
940 19
820 20
703 21
368 22
475 23
364 24
343 33
449 42
641 32
896 61
207 71
330 00
043 00
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102
375
213
923
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433
235
071
699
737

584
430
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16

70

148
713
424
195
000

620
07
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267
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034
9?0
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719
6*7
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677
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346
013
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«h*r* 2 la tht normal dtvUtt cuttinf off tht corrvapondtnc talla of a normal dlatrlbution

50
*55
366 2
386 3
357 4
351 0
340 7
346 0
344 9
343 10
342 1
341 12
340 14
340 15
339 16
339 17

.336 IB
338 19
338 20
338 21
337 22
337 23
337 24
337 20
337 27
337 26
336 29
336 30
336 31
330 32
338 33
335 44
333 54
333 65
334 75
334 <6
334 06
334 106

30
07* i
406 2
865 4
878 5
064
331 7
gt
10
636 11
781 12
699 13
oil 14
119 15
222 17
322 19
*18 19
511 20
001 21
689 22
775 23
030 2+
939 26
018 27
096 26
172 29
246 30
319 31
391 32
401 s3
530 34
105 45
723 56
227 66
669 77
120 66
524 98
900 109

25

323 1
773 3
108 4
385 5
626 7
641 0
037 9
219 11
309 12
549 13
701 14
845 15
904 16
117 18
2*5 19
369 20
469 21
605 22
719 23
826 25
935 20
039 27
141 20
241 29
339 30
*3* 51
528 32
620 34
711 35
600 30
610 47
334 50
901 66
577 79
130 90
«30 101
141 111

20

642 2
219 4
642 .
989 7
269 9
550 10
803 12
030 13
242 14
442 1S
631 17
812 18
905 19
151 21
311 22
485 23
615 24
700 25
900 27
036 26
171 29
301 30
429 32
553 33
675 34
793 35
912 36
027 37
139 39
250 40
269 51
164 03
972 7*
715 85
405 96
054 107
667 110

10

706
605
251
779
236

645
017
362
084
967

275
549
012
064
307

542
769
969
204
412

615
613
007
196
382

563
7*1
916
007
256

005
167
397
527
578

565
490

113

vor

8*1 5
991 7
815 9
460 n

070/ 12
592 14
067 16
507 17
919 19
307 20
675 21
026 23
762 24
685 26
996 27
296 28
587 30
669 31
144 32
410 34
671 35
924 36
172 3f
415 39
652 40
685 41
113 *3
337 44
557 45
773 46
759 39
305 7T
002 03
531 95
MO 106
145 110
342 129

075-

024 3
378 7
3*6 .
143 1.
032 13
449 s
013 16
535 18
07L** 19
483 21
920 22
337 24
736 25
119 26
400 16
9*3 29
191 30
526 32
052 33
170 35
470 36
781 37
070 30
364 40
640 41
923 62
19* 44
461 *5
722 46
«79 47
342 00
420 72
296 64
023 96
679 100
136 119
561 131

02

412
024
637
060
368

033
622
168
679
161

610
054
472
073
259

833
995
346
687
020

343
659
960
270
568

156
1*0
419
693
962

436
613
500
308
069

640
1*2

6

-9

I
13
15

16
16
20
21
23

24
26
27
29
SO

32
37
34
36
37

38
40
2
42
a4

45
*6
46
49
50

63
70
08
100
112

124
133

01 005
*35 7 079
'210 10 5*7
3*5 12 838
277 14 840
066 16 750
612  18* 540
475 20 2TB
090 21 935
866 23 589
209 25 188
725 28 757
217 20 300
680 29 819
141 31 319
371 32 601
000 34 267
409 35 710
005 37 156
191 30 582
566 39 987
932 41 401
269 42 796
636 44 181
960 45 530
314 40 <26
6*2 48 290
963 *9 6*5
270 50 993
508 52 336
692 53 072
691 60 760
154 70 460
379 91 932
425 104 215
729 lie 321
116 126 299
807 140 170

10
13
10
10
20

22
24
26
27
29

31
32
34
36
37

39
40
42

43

46
40
49
51
32
5x
s3
56

50
59

73
86
99
112
124

137
149

001

027
615
260
465
317

457
322
125
077
500

264
909
520
123
697

252
790
712
820
313

797
260
720
179
620

052
*76
693
302
703

402
661
607
317
039

200
449
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11
12
13
14
1S

10
17
IS

19
20

21
22
23

33

26
27
70
79
30

40
50
60
70
BO

90
100



