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Abstract 

Studies of fertilizer use in sub-Saharan Africa have been dominated by analyses of 

economic and market factors having to do with infrastructure, institutions, and 

incentives that prevent or foster increased fertilizer demand, largely ignoring how soil 

fertility status conditions farmer demand for fertilizer. We apply a switching 

regression model to data from 260 farm households in western Kenya in order to allow 

for the possibility of discontinuities in fertilizer demand based on a soil carbon content 

(SCC) threshold. We find that the usual factors reflecting liquidity and quasi-fixed 

inputs are important on high-SCC plots but not on those with poorer soils. External 

inputs become less effective on soils with low SCC, hence the discernible shift in 

behaviors across soil quality regimes. For many farmers, improved fertilizer market 

conditions alone may be insufficient to stimulate increased fertilizer use without 

complementary improvements in the biophysical conditions that affect conditional 

factor demand. 

JEL classification: Q12, Q18, Q24 

Keywords: Fertilizer demand; Fertilizer policy; Soil carbon; Soil organic matter; 

Switching regression 

Introduction 

The limited use of fertilizer in sub-Sahara Africa (SSA) amidst low agricultural 

productivity and poverty has sustained debate on what policies are needed to realize 

fertilizer’s potential benefits in Africa given that average fertilizer use is reported to be 

9 kg per hectare (ha) in SSA, compared to 73 in Latin America and 100–135 in Asia 

(IFDC 2006).  
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Many studies of fertilizer market development in SSA have focused on economic and 

market factors (infrastructure, institutions and incentives) that impede or foster 

increased fertilizer demand (Kherallah et al. 2000; Poulton, Kydd and Doward 2006). 

The persistent low fertilizer use in SSA suggests that more is involved in fertilizer 

demand than just market level factors. In particular, do economic factors– such as cash 

liquidity – cease to be relevant once soil quality degrades sufficiently? Yet, few 

studies by social scientists have dwelt on how soil biophysical conditions affect farmer 

fertilizer demand. 

 

A body of literature on smallholder market participation has emphasized the role of 

transaction costs in smallholder behavior (de Janvry, Fafchamps and Sadoulet 1991; 

Vakis, Sadoulet and de Janvry 2003; Bellemare and Barrett 2006). The core point of 

this literature is that household-specific transaction costs give rise to idiosyncratically 

missing markets among households in ways that may have consequences for peasant 

household response to price incentives.  Barrett (2008) shows that in addition to 

transaction costs, contract enforcement mechanisms, and information availability, 

households’ productive assets2 have an important bearing on their ability and 

incentives to participate in agricultural markets. Private asset endowments not only 

enable self-insurance and liquidity which help  encourage market participation or 

technology adoption, they can also provide crucial complementary inputs to 

production, increasing the returns of other inputs, such as fertilizer.  Improving poor 

households’ productive assets may be central to stimulating market participation and 

escape from semi-subsistence poverty traps. This point may be critical to 

                                                 
2  Italics ours 
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understanding fertilizer market participation and application rates since natural capital 

in the form of native soil nutrients is typically non-tradable but complementary to 

purchased fertilizer inputs in determining crop production.  If a farm household’s ex 

ante endowment of soil capital affects the productivity of fertilizer it might purchase, 

we would expect fertilizer purchasing and application behavior to vary markedly with 

farmers’ soil quality. 

 

 The core contribution of this paper is to determine how complementarities between 

fertilizer and soil carbon content (SCC) that have been reported in the literature on 

SSA agriculture (Zingore et al. 2007) affect smallholder fertilizer demand. We 

investigate the possibility of discontinuities in fertilizer demand patterns, and in the 

factors determining fertilizer application rates, conditional on soil quality status. We 

thus introduce a novel approach to the study of smallholder fertilizer adoption and 

application rates by developing a simple behavioral model that explains why one 

might see threshold effects in farmer fertilizer application.  By endogenously splitting 

our sample into two soil quality regimes (low-SCC and high-SCC) to allow for the 

possibility that different soil condition regimes may have distinct fertilizer demand 

behavior, we show how plot-level biophysical measures of soil quality influence the 

salience of more conventional transaction costs and liquidity constraints variables in 

determining fertilizer application rates among smallholders.    

 

Conceptual and empirical model 

We conceptualize smallholder farmer demand for fertilizer using a simple, stylized 

model of household behavior. Assume a representative household maximizes utility 

defined over consumption of a vector of agricultural commodities, aq , and other goods 

bought from the market, mq . The household earns income I from production, sale of 
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agricultural crops, from off-farm earnings and unearned income. Crop output oq is 

generated using a production technology, ( )o oq q V A,S,G,Z=  that transforms 

purchased fertilizer inputs, V, and quasi-fixed inputs (land area, labor, livestock, 

machinery) represented by A, soil quality, S, public goods and services such as roads, 

grades and extension services, G,  and household characteristics that act as 

productivity shifters such as education, farming experience, age, etc. ( Z ), into crop 

output oq , part of which is consumed in the household as aq . The household utility 

function is represented by: 

( )a mU U q ,q=          (1) 

subject to two conditions: the household’s cash budget constraint and the production 

technology:  

( )v v m m a a a op q p q p q p q V A,S,G,Z I+ + = +      (2) 

( )o oq q V A,S,G,Z=         (3) 

 

where ap , mp  and vp are the market prices for agricultural goods, manufactured goods 

and variable inputs, respectively. Assuming an interior solution to the household’s 

optimization problem, we can in theory solve for the variable input demand as a 

function of all exogenous or quasi-fixed variables:  

 

( )mv v a vq q p , p , p ,Z ,S ,G , A,I=        (4) 

 

Note that while public goods will be common to all, A, I, S and Z will vary across 

households as well, making the marginal returns to inputs vary depending on 

household-specific capabilities as expressed in A, S and Z. Thus each household has its 

own conditional factor demand for fertilizer. In this paper we pay particular attention 

to how soil quality, S, affects fertilizer demand due to the complementarily between 
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soil organic matter (SOM) reflected in SCC and nutrients introduced through 

inorganic fertilizer application. As we discuss later, these SCC-determined regimes, 

may have distinct policy implications for the two groups of farmers.  

 

Empirical model  

Differences in fertilizer use rates on either side of an apparent SCC threshold may 

arise under either of two different situations. First, if there is no behavioral difference 

across SCC levels, but SCC levels are associated with different farmer characteristics. 

Alternatively, fertilizer use rate differences may result from otherwise-identical 

farmers responding differently based on their SCC status. In this case, SCC regime 

matters fundamentally to fertilizer demand patterns.  We therefore hypothesize that 

controlling for household- and farm-specific factors-farmers’ fertilizer application 

behavior will be structurally different between the two regimes defined by a SCC 

threshold.  We can estimate that threshold and then, conditional on the estimated 

threshold, test whether fertilizer demand patterns vary on either side of it.  

 

We apply a switching regression framework, splitting the data into two segments using 

grid search techniques as in Hotchkiss (1991) and Hansen (2000).  Let 1iv and 2iv , 

i 1,...,N= , denote the dependent variable fertilizer use rates (kg/ha) to be explained in 

each of the two regimes. Let 1iX and 2iX be 11 k× and 21 k× vectors of all the 

variables ( )ma vp , p , p ,Z ,S ,G, A,I  that explain fertilizer use rates in each regime. Let 

1β and 2β  be 1k 1× and 2k 1× parameter vectors, respectively. In the manner of a von 

Liebig understanding of limiting factors in crop production (Paris 1992), we think of 

SCC as the variable that determines the threshold that separates the two regimes. 

Finally, 1iu and 2iu  are error terms. The switching regression can be defined by the 

following: 
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1i 1i 1 1iv X uβ= +          (5) 

2i 2i 1 2iv X uβ= +          (6) 

Note, that 1iX and 2iX are observed only partially, since 1iX is only observed for that 

part of the sample belonging to regime 1 and 2iX is only observed for the sub-sample 

belonging to regime 2. What is actually observed is a single variable iv defined by: 

 
*

i *

 i f f  
=  

 i f f  
1 i i

2 i i

v S
v

v S

λ

λ

⎧ >⎪
⎨

≤⎪⎩
         (7) 

 

Where λ is the characteristic of the observations used to classify observations into the 

two regimes and *λ is the cutoff value that determines the initial classification.  In our 

case, S is the relevant variable for λ. So if Si exceeds the cutoff value S*, observation i 

falls into regime 1, and into regime 2 otherwise. The switch point, S*, is unknown and 

is estimated as well. We now define the indicator variable R  to classify observations 

into either regime as 
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Rewriting (5) - (7) we have: 

 ( )i i 1i 1 i 2i 2 iv R X 1 R X gβ β= + − +        (9) 

 

Here  ( )i i 1i i 2ig Ru 1 R u= + − is the error term. Following Hansen (2000), we select the 

parameter vector {β1, β2, λ*} that minimizes the sum of squared errors, 

 ( ), , *  
n

2
n 1 2 i

i 1

gΕ β β λ
=

= ∑          (10) 

 

By estimating equation 9 over a range of values of λ* -- i.e., estimating β1 and β2 

conditional on λ* -- and then doing a grid search to choose the optimal λ*, we jointly 
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determine the optimal sample splitting threshold and the regime-specific behavioral 

parameters.  

 

Study area and data description  

Data for this study were collected from sites in seven different villages in Vihiga and 

South Nandi Districts in western Kenya, with one site per village. The region is 

characterized as a moist transitional agro-ecozone with a cropping system dominated 

by maize, often with bean intercrops, grown on small plots averaging 0.5 to 1.0 ha. 

(Place et al. 2002). Recent estimates show that 49.9 and 58.1 percent of the population 

in Nandi and Vihiga Districts, live below the national rural poverty line of Kshs 

1239/month (US$0.57/day) per person (Kenya 2000).  

 

We randomly sampled a total of 260 households for this study. Household- and plot-

level data were then collected in June-July 2005 using a structured questionnaire to 

elicit recall responses on farm production and other data such as family labor and 

hired labor used, disaggregated for each major activity, fertilizer, manure and other 

inputs used), the age of the plot (i.e., the specific year in which it was converted from 

forest) and details on the plot manager (gender, age, educational attainment). We also 

collected soil samples from each of the households’ 445 maize and maize-bean plots at 

10 cm depth (i.e., the ploughing layer) at five different positions within each plot. The 

samples were analysed at the World Agroforestry Centre (ICRAF) soil laboratory 

using wet chemistry and near-infrared spectroscopy (NIRS) methods to establish the 

SCC content of these plot-specific soil samples, following protocols developed by 

Shepherd and Walsh (2002).  
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Table 1 presents definitions and descriptive statistics for the variables used in the 

paper.  Households averaged 1.7 plots sown in maize; we focus on those plots 

exclusively.  We separate the sample based on the estimated optimal SCC threshold of 

2.7%.  There is considerable dispersion within and between the two SCC regimes.  

Fertilizer application rates are 55 percent higher, on average, on the high-SCC plots 

than on the low-SCC plots.  The former households also have higher incomes and 

better credit access; enjoy more frequent extension agent visits and somewhat larger 

farms than do those on poorer soils.  It is therefore not possible to sort out the effect of 

soil conditions on fertilizer use patterns on the basis of these descriptive statistics 

alone.  

 

Regression results 

We focus on the main nutrient of fertilizers used in the region, nitrogen (N).  In order 

to estimate the marginal physical product of N fertilizer application, we apply a  

switching regression model to determine the response of yield to applied nitrogen 

under two different regimes reflecting whether SOM as represented by SCC or N 

impose a greater constraint on yields. Let Niy be the yield on plot i in the regime 

where N is limiting crop yield as denoted by subscript N, and let Ciy represent the yield 

in the regime where SCC is limiting as denoted by subscript C. In the first regime, 

represented by Nf  in eq. 11 below, we estimate yield response to N when N is limiting 

conditional on labor inputs as well as farmer and farm-specific characteristics denoted 

by Z. In the second regime, represented in eq. 11 by Cf , we estimate yield response 

when N is non-limiting, conditional on Z. Using a minimum operator, we mimic a von 

Liebig specification, following Paris (1992):  
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Table 1: Means (standard deviations) by SCC Regime of Variables used in 
Production Function and Fertilizer Use Regressions 
Variable Definition Whole sample Sample 

below SCC 
2.7% 

Sample above 
SCC 2.7% 

Fertilizer application rate Kilograms of nitrogen from fertilizers 
applied during 2004. The three fertilizer 
types identified in the sample were 
diammonium phosphate (DAP), 
calcium ammonium nitrate (CAN) and 
urea, with 18% and 17% and 46% 
nitrogen, respectively. The total 
nitrogen applied per plot was computed 
from the sum of the N volume of each 
type of fertilizer applied. 

5.67 
(3.23) 

3.38 
(3.53) 

7.95 
(4.27) 

Average plot carbon content Laboratory determined percent soil 
carbon content.  

3.36(1.27) 2.07(0.40) 4.44(0.55) 

Plot size (ha) Individual plot size as measured by 
GPS units 

0.36 (0.36) 0.37 (0,17) 0.38 (0.24) 

Maize-bean inter-crop Dummy variable. Presence of maize-
bean intercrop=1,  pure stand maize=0 

0.80 (0.40) 0.80(0.40) 0.82 (0.40) 

Total area under maize In ha, total of all maize plots/household 0.57(0.47) 0.51(0.43) 0.63(0.49) 
Age of household head In years 49.79(11.64) 50.98(13.88) 50.98(13.52) 
Formal education of household 
head 

Years of formal schooling 4.20(2.70) 4.27(2.24) 4.00(2.39) 

Male household head Dummy, =0 if household decision 
maker is female =1 if male 

0.60 0.55 0.53 

Per capita income3 Mean partial annual income per capita  
(in Kenya shillings) 

15070.24(5676) 13107(9576) 14161(7676) 

Extension visit frequency Dummy, = 1 if farmer had any 
extension contact during 2005, =0 
otherwise 

0.40 0.39 0.41 

Institutional credit access Dummy, =1 if farmer had received any 
credit in previous 2 years, 0 if otherwise 

0.18 0.13 0.21 

Credit obtained from stockists Dummy, = 1 if stockist allowed credit 
purchase and =0 if full payment is 
required at the time of purchase 

0.20 0.15 0.20 

Use of Machinery Dummy, =1 if farmer use draught 
implements or tractor in land 
preparation, sowing or weeding 

0.59 0.58 0.60 

Use of Maize Hybrid Seed  Dummy, =1 if farmer planted hybrid, 
=0 otherwise 

0.73 0.67 0.78 

Total time taken to reach dealer Time in hours for a round trip to the 
fertilizer stockiest 

1.31(1.46) 1.29(1.23) 1.32(1.65) 

Plot age Number of years since plot was 
converted from forest 

28.9(22.6) 31.02(23.16) 26.81(7.72) 

Whether farmers encountered 
quality problems with fertilizer 

Yes =1, 0 otherwise 0.23 0.24 0.23 

Ownership of bicycle or ox-cart Yes=1, 0 otherwise 0.62 0.62 0.61 
Number of plot-specific  observations 445   
Percent of plots with no nitrogen fertilizer application 21   
Percent of plot s applying nitrogen at ≥ 20 kg/ha (recommended rate) 3   
Plot size (ha) 0.31   

 

{ }min ( , , , ), ( , , , )i N N z N C C z Cy f N Z f C Zβ β ε β β ε=      (11) 

                                                 
3 Income estimates are only partial because not all household autonomous consumption of home-production and labor incomes 
were recorded in the survey, thus these figures understate total per capita income. This measure is computed from the two most 
important sources of income declared by the household, gross inflows of transfers and the value of maize and bean output in 
2004, taking care to avoid prospective double counting in those (few) cases where maize/bean sales was one of the two most 
important sources of income. 
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where the β’s represent parameter vectors and the ε’s are regime-specific errors.   

 

We used these first stage regression results4 to compute the estimated marginal value 

product (MVP) of nitrogen fertilizer on each plot.  The resulting estimates are 

consistent with previous findings in the literature. Expected output is increasing in 

both soil carbon and nitrogen fertilizer. The mean estimated MPP for nitrogen of 17.64 

is within the range reported by other studies for East and Central Africa (Mbata 1997 

and FAO 2001).  

 

Figure 1 below shows a juxtaposition of returns plotted against SCC and fertilizer use 

rates plotted against plot level marginal product of fertilizer. The solid curve is a plot 

of fitted values of MVP.  The dashed curve is a plot of estimated plot-level nitrogen 

                                                 
4  Due to space limitations, the regression results for this section are not presented. These are available 
from the authors upon request. 
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application on fitted MVP. We observe that the estimated MVP of fertilizer 

application (reflected in the upper, solid curve, measured against the lefthand Y-axis) 

are low at low SCC levels, picking up after about 2.5% carbon, i.e., near the estimated 

threshold. Fertilizer application rates (reflected in the lower, dashed curve, plotted 

against the righthand Y-axis) are also low at low levels of estimated returns (MVP), 

picking up sharply at MVP Kshs 400.  This shows that fertilizer application rates 

(uptake) rise steeply at MVP well above fertilizer costs (about Kshs 200), indicating 

that there are other, unobserved (transactions, borrowing, etc.) costs to fertilizer use, 

which are quite possibly the result of asset and liquidity endowments.  

 

From table 2, we see that the determinants of fertilizer application rates on low-SCC 

plots appear quite different, however. We begin by discussing the selection equation 

describing the choice whether or not to apply fertilizer. This equation is identified by 

the time taken to reach the agro-input dealer, a fixed cost that should not affect the 

fertilizer application rate conditional on using any fertilizer.  Within the low-SCC 

regime, the likelihood of fertilizer use is negatively and statistically significantly 

related to travel time to reach the nearest fertilizer dealer. It is positively and 

statistically significantly associated with the frequency of extension visits, plot size, 

farmer’s use of hybrid seed, and with the household head being male. By contrast, in 

the high-SCC regime, better educated, male farmers and those operating larger maize 

plots are more likely to use fertilizer. Older farmers are statistically significantly less 

likely to use fertilizer in this regime.  Visits by extension agents have a significant 

positive effect on fertilizer use.  The market access variable (time to dealer) has no 

significant effect on the discrete choice to use fertilizer on more fertile soils in the 

high-SCC regime. The use of machinery and hybrid seed were was also positive 

predictors of the decision to use fertilizer in this regime.  
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There are some common patterns to fertilizer uptake across the two regimes, in 

particular based on farmer gender, extension access and the use of hybrid seed. This 

may show that female farmers still face unequal access to resources as compared to 

their male counterparts (De Groote and Coulibaly 1998). And extension agents may 

have a positive impact on farmers’ managerial capabilities and productivity (Hussain, 

Byerlee and Heisey 1994), or they may merely create social pressure for farmers to 

use inputs and methods the agents advocate (Moser and Barrett 2006), manifest in the 

use of both inorganic fertilizer and hybrid seed.  But there are important differences 

across SCC regimes as well.  In the high-SCC regime where fertilizer use should be 

profitable, plot SCC is statistically and significantly associated with the decision to use 

fertilizer. Older and less educated farmers are less likely to use inorganic fertilizers, 

reflecting a tendency towards traditional cultivation methods without modern inputs.  

 

We overwhelmingly reject the null hypothesis of independence of the dichotomous 

fertilizer use and continuous fertilizer application rate equations in both high- and low-

SCC regimes, as indicated by the likelihood ratio test of the null hypothesis that the 

estimated correlation coefficient between the errors in the two equations equals zero.  

The χ2(1) test statistics are 61.2 and 54.37 for the low- and high-SCC regimes, 

respectively, both with a p-value of zero.  Discrete fertilizer use decisions are clearly 

not statistically independent of the application rate decision.  We therefore include the 

inverse Mills ratio (IMR) as a regressor in the second stage equation to control for the 
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predicted probability of fertilizer use in order to correct for possible selection effects 

associated with unobserved factors that might simultaneously affect the discrete 

decision to use fertilizer at all and the continuous decision as to how much to apply.  

The coefficient estimate on the IMR regressor in the second stage regression is 

statistically significant in both regimes. Moreover the LR tests for the equality of 

parameters in the low and high-SCC regime also reject the null hypothesis (p = 0.00), 

reinforcing the appropriateness of splitting the sample into these two regimes. 

 

The second stage fertilizer application rate equations reveal striking behavioral 

response differences conditional on soil quality regime, as hypothesized earlier.  

Farmers’ fertilizer application behaviors, conditional on expected use, appear to vary 

markedly with plot soil quality (high-SCC regime), and not just in direct response to 

soil quality, but also in their response to other variables conditional on soil quality.  

 

On high-SCC plots, fertilizer application rate decisions follow patterns familiar from 

other adoption studies. Fertilizer application rates are increasing in plot size, the 

educational attainment of the household head, per capita household income, 

institutional credit access, and possession of quasi-fixed inputs such as agricultural 

machinery. Households with greater assets and greater borrowing or self-financing 

capacity (through cash income, usually from off-farm sources) use more fertilizer.  

Further, in the high-SCC regime, fertilizer use rates are also are strongly and 

positively associated with SCC, and at an increasing rate, as reflected in the positive 

estimates of the coefficients on the higher-order polynomials of SCC.  Farmer 
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behavior seems to follow standard textbook models of behavior reasonably well at the 

intensive margin, within this soil fertility regime.  Familiar policy prescriptions thus 

seem quite relevant: increase extension coverage and the availability of seasonal 

credit, improve marketing systems so as to increase crop prices and bring down 

fertilizer prices, enhance access to quasi-fixed inputs, etc.  

 

The determinants of fertilizer application rates on low-SCC plots appear quite 

different, however.  Fertilizer application rates are sharply lower on older plots and 

among older farmers and higher for among male farmers and those farmers who had 

better extension contact, but little else matters significantly.   The result with respect to 

plot age is especially interesting since older plots grow less fertile due to continuous 

cultivation.  The significant coefficient estimate on plot age may signal that farmers 

gradually abandon fertilizing older plots with low SCC.  They have become, in 

practical effect, irreversibly degraded.  By contrast, plot age has no effect on fertilizer 

application rates within the high-SCC regime, indicating that so long as soil organic 

matter can be conserved on the plot, farmers will continue to fertilize it regardless of 

plot since conversion uncultivated from forest.   

 



 

16 

 

Table 2: Probit Marginal Effects for the Probability of Fertilizer Use and Application Rates  
Variables Probit of fertilizer use (=1 if yes, 0 if no) Fertilizer application rate (Kg/ha N per plot) 

Subsample below 2.70% Subsample at/above 2.70% Subsample below 2.70% Subsample at/above 2.70% 

Marginal 
Effect 

Standard 
Error 

Marginal 
Effect 

Standard 
Error 

Marginal 
Effect 

Standard  
Error 

Marginal 
Effect 

Standard 
Error 

Constant 2.17 7.19 2.10 1.40 4.80 24.87 2.80 2.80 
Age of household head -0.01 0.02 -0.03* 0.02 -0.07*** 0.02 -0.0004 0.001 
Plot size 0.0002** 0.0001 0.0004*** 0.0001 0.24 0.87 0.06** 0.03 
Education of household head 0.05 0.05 0.09*** 0.03 0.13 0.12 0.03** 0.01 
Gender of household head 0.001** 0.0005 0.21*** 0.05 0.45*** 0.14 0.22 0.27 
Partial income per capita 0.56 0.39 0.20 0.40 0.00001 0.00001 0.00004*** 0.00001 
Extension frequency 0.07** 0.03 0.25*** 0.11 1.60* 0.99 0.78 1.56 
Institutional credit access 0.03 0.31 0.32 0.25 0.34 0.80 0.64*** 0.18 
Credit obtained from dealer 0.01 0.33 0.07 0.26 0.46 0.54 1.29 1.79 
Total time taken to dealer -0.81*** 0.31 -0.07 0.13 n.a. n.a. n.a. n.a. 

Use of Hybrid 0.16*** 0.03 0.21** 0.09 0.23 0.62 0.11 1.99 
Use of machinery 0.30 0.26 0.60*** 0.25 0.19 0.59 0.64*** 0.14 
Plot age   -0.23 0.22 -0.04 0.05 -0.03** 0.01 -0.04 0.06 
Problem with quality -0.15 0.27 -0.67 0.55 -0.64 0.67 -0.30 2.07 
Bicycle/ox-cart ownership 0.56 0.63 0.17 0.23 0.56 0.63 1.93 1.55 
SCC 0.27 0.26 1.60* 0.94 1.25 4.07 0.64** 0.29 
SCC2 -3.82 6.61 -2.13 1.49 -1.96 21.68 -3.97** 1.71 
SCC3 0.64 1.17 1.62 1.09 0.54 3.74 0.31** 0.15 
Inverse Mills Ratio     2.25** 1.06 1.01** 0.49 
Correlation coefficient between probit and 
application rate equations (rho) 

     
0.87 

 
0.56 

 
0.69 

 
0.22 

LR χ2 (1) test of independence of equations/rho=0  (p-
value) 

     
      61.20 (0.00) 

 
54.37 (0.00) 

LR test (χ2 (18)) of  high  lowSCC SCCβ β= (p-value in parentheses)   96.54 (0.00)          na 

LR 2 (3)χ test of SCC=SCC2=SCC3=0  (p-value)            57.34(0.00) 51.91(0.00) 

Observations  (N)     202 243 

Note: Standard errors appear in parentheses. *, **, *** Statistically significant at the 10%, 5% and 1% levels, respectively.  
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Conclusions 

Our results suggest that farmers’ fertilizer application behaviors differ markedly 

across plots of different soil quality. Higher fertilizer application rates on soils with 

greater SCC do not appear to be due merely to a correlation between SCC and farmer 

characteristics. There were statistically significant differences in fertilizer use rates in 

the high-SCC and low-SCC regimes.  This appears to result from the fact that farmers 

with otherwise-identical plots exhibiting different fertilizer application behavior based 

on an SCC threshold.  This raises important policy implications. For the group whose 

SCC falls below the some threshold, market reforms that marginally improve prices or 

initiatives to relax farmer liquidity constraints may not markedly improve incentives to 

increase fertilizer use. For such farmers fertilizer use will only increase if such 

standard economic incentives are accompanied by SOM recapitalization. Conversely, 

farmers whose plots have reasonably high levels of SCC (and therefore high expected 

MVP) of fertilizer can benefit from policy improvements that lead to credit 

availability, reduced marketing costs, and better output prices.   
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