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ABSTRACT

This project is an equivalent of one course

in masters pnrogramme in Mathematics department.

In chapters I and II some theory on markov
chains is considered. Specifically, chapter I

is about definition and properties of markov chains.

In chapter II states of markov chains are
classified into different categories. Here
irreduciﬁle, ergodic and absorbing markov chains

are stﬁdied.

In chapter III examples of markov chains are
studied. 1In this chapter the following chains
are considered:

(1) Ranaom walk with absorbing barriers
(ii)Random walk with one reflecting barrier
(iii) Random walk with two reflecting barriers.
(iv) Cyclical random walk

(v) Two state random walk.

(vi) The Ehrenfest chain.
|

In the study of these examples of markov

chains the theory of chépters I and II is applied.



In the fourth chapter some problems relevant
to the topics covered in the other chapters are

solved.
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CHAPTER ONE

Lol Definition of Markov Chain

A markov chain,like a branching process is an
area of stochastic processes where conditional probabilit
is substantially used.

Let Ej and Ek be two events. Using conditional

probability, the joint probability is given by

P(Ej.Ek) % P(Ek|Ej) R(Ej)
= P(E.). P(E,|E.
( J) ( kl 3
= a.P. bl
asPyy (1.1)
where
. = P(E.
a; ( J),
and
ij = P(EkIEj)
For three events Ej’ Ek and Er’
P(Ej,Ek,Er) = P(Ek,ErlEj).P(Ej)
= P(ErlEk) P(EkIEj).P(Ej)
= P(E. E, |E. E
P( J) P( kIFJ) P(Erl Kj
= (1.2)

a5 Piy Py



Where

aj and pij are defined as above
and

Pys ™ P(EklEK)

Extending the idea to four events, we have

P(Ej,Ek,Er,Es) = P(Ek,Er,ESIEj) P(Ej)

P(Eslﬁr) P(ErlEk P(Eklbj) P(Ej)

P(Ej) P(Ek|Ej) P(ErIEk) P(ESIEr)

a; Pjx Pxr Prs (1.3)

etc.

Using this notation of conditional probability we
can now define a markov chain as follows.
Def:

A sequence of trials with possible outcomes

Ejo’ Ejl’ EjZ’ ..... X Ejn-l Ejn is called a markov
chain if
P(Ejo, Ejl""’Ejn-l’ Jn) = jo JOM. g



Where

ajo = P(Ejo),

is the probability at the initial or zeroth trial,
and ij is the fixed conditional probability of
Ek given that Ej has occurred at the preceding

trial.,

Terminology: The event Ej shall be called state
Ej or simply state j. The conditional probability
ij which is the probability of Ek given that Ej

has occurred will be called the transition probability

the transition probability from state E; to E -

Thus -/

P. = P(Ey | E.)

ik j

P(E; » Ey)

The transitional probabilities ij can be arranged

in a matrix form as follows:

B 1 g
EO poo pol poz oooooo .
p = E P P Piny sssccecsee
- 1 1 11 12
0 (1355)
EZ Pro p}Z Ppgeeecrss




Or
E, E, iy ey
Ey P11 P12 Pygesree
g = 1dp us| PorsideP2e v Posey v
?3 P33 P32 Fyge v
] . . ’
. - —

We should note that
(1) A $+mite transition probability matrix
can be finite or infinite
(2) ij 20

-

and

RORE: T (1.6)

is called a stochastic matrix. In case each column
also adds up to unity then we have a double stochastic

matrix.

So any stochastic matrix {ij} with initial

distribution {an} completely defines a markov chain.

1.2. HIGHER ORDER TRANSTION PROBABILITIES

The probability of a process passing from Ej

to E, in exactly n steps is called an n-step

(n)
jk

transition probability and is denoted by @



In matrix form we have

noL )

jk

I

(1.%7)

Let us consider a two-step transition proba-

T, o 2 b - :
bility p§k). This can occur via different paths

as shown in the diagram below:

Initial Second Third
State State
Ej
E. S
J 4 N

Ejm
The diagram shows that there are m mutually

exclusive paths, namely

By > Byy > By s By > BEsp =D Byyeen By > Eyp >

The corresponding conditional probabilities
are

P(Ej - EV g Ek) = PjV ka
for

LR PR A ) FRRE T

So the probability of moving from E. to E in



two steps is
()
jk

=

i pjﬂ ka

( 1.7a)

But by definition of a matrix multiplication the

sum given above is the (j-k)th element of P".

Thus

2

PP - bip) - BP

2

)(1.7b)

Arguing in the same way as for the case of the two

state transition we can generalize the n-step

transition to

b(n) = 3 b b(n-l)
jk jv Fvk
v
In matrix form,
n -
P i B,En i

More generally for integers m and

(m+n) -- _ (m)
bjk 0 L b. . b(n)
v jv -
In matrix form
pm +n - Pm pﬂ

n,

These equations are called chapman-kolmogorov

equations. In order to have the chapman-kolmogorov

true for all n positive we shall define |

plo)

ij

(n)
ik ™Y

]

(1.5)

-X1.8a)

) (1.8

(1.9

(1.



J 1'.
and i
b(O) _
jk-o , 1 #F Kk
3 il RECURRENT EVENTS
ol Definition of reachability

A transition from one state to another is not
‘always possible depending upon the type of states.
The state Ek is said to be reachable or accessible
from state Ei if there exists some positive integer

n such that p(n) >0

jk
For n = 0, we define,
i b(o)
ok . = 1
JJ
and
b(®) = o for kei.
jk
it B

K is reachable from Ej and Ei is reachable

from Ei, then there exist some positive integers m

and n such that b(T) o b(n)
ij ik >

Using the chapman-kolmogorov equation:

bfm+n) - b(m) Cp@® s ¥Fm). b(n) 5.8
i % if Lk ij jk
Thus E is reachable from E

k i



(n)

1.3.2. THE RELATIONSHIP BETWEEN b(n) AND £

We have defined b;i) to be the probability
that starting from Ej we enter Ek in n steps
regardless of the number of entrances into Ek prior
to n. Let us now define f;i) to be the probability
of entering Ek from Ej in n steps for the first
time. We wish to find the relationship between the

two types of probabilities, in particular between p(n)

33
and f;?) as follows:
Let the first return to state Ej occur at the
rth step. The probability of this first return to

E. in «r-steps is f$§). In the remaining (n-r)

J
steps, the state ~Ej will be reached once again with
probability b;?-r). Thus

p ™ =’§:1 g{r) pa=r) 5,
-33 33 733 = (1.11)

In terms of generating functions, let

F(s) .= 2 J(‘J’) il
W=o (1412)
and, P(s) = o (u) sV

JJ
=0
Multiplying the relation(1.12) by s® and summing

up the result over n, we have



® "n
s - 33 il s AN (1), 15
Since
b e,
J3J

as given inyj, jn) which is the probability of remaining

in state Ej in no steps at all, the L.Hs. of (1.13)
becomes ’
Lo
5 b(n) & s P(s) - p(o)
=l 33 b i
= P(s)- 1 (1.14)

For the RHs of (115 we recall the notion of convolution.

That is, if
> k
A(s) = I ap S
k=0
and (1.15)
> k
B(s) = E bk S
=0
then,
= = n
A(s) .B(s) ni ( i a. bn-;) S :
- . (1.16)
Therefore

L n
5 ( ST r)) s® = F(s) P(s)
n=o \r=o  jj 33 (1.17)
Alternatively

n —_
I B g% = A
=0 33 i3



- 5 5 f(r) b(n-r) gh
n=o r=o jj 33

= 3 5 f(r) b(n-r) gf gt T
n=0 r=o 33 33

o i par) mer) ) ) o
n=o\n=o 3

; p(n-—r) Sn-—r> f'(.r) gt

P(s) I gr) g

P(s) . F(s) ' (1.18)

So applying (1.14) and (1.18), (1.13) becomes

P(s) - 1 = F(s)Pgs)



which implies

AL (1.15)
p(s) = 1 ——F(9

1.3.3. PERSISTENT AND TRANSIENT STATES

Let

(n)

f = ) fjk

ik (1.20)

which is the probability of ever passing through

Ek from Ej.

[ 2

fﬁk =1,

then {féﬁ)} is a proper distribution called "the

first passage distribution". In particular if

then f;g) is called the distribution of recurrence

times. So the expectation E(n) is given by

n f(n)
n j3 (1.21)

.
I
™

called the mean recurrence time.

A state Ej is said to be persistent or recurrent



if
£.. =1
JJ

That is)there's eventual return. Further if

then Ej is null. And if

>

then Ej is non-null. A state Ej is said to be

transient or non-recurrent if

We can define persistent and transient states

(n)

in terms of b using the relationship (1.19%) .

i3
That is
Pl e e
P(s) 1-F(s)
Where b
P(s) = ¢ pB &
n=o0 3
and
e (n)
F(s) = I £'\0 s
n=o0 i3

Putting s = 1, we have



» 1
P() = 1Fm
Where
p1) = ¢ p™
n=o 33
and

n=o  3j 33
Thus if Ej is persistent then,

P(l) = =—— = &

Si £z. =1
nce 33

And if Ej is transient then

£.. © 1)
J]
In this case,
: 1
pll) = < o
1-£®)
33

~So a state Ej is persistent if

n=o j3

and Ej is transient if

(1.22)



Let us now look at the asymptotic behaviour if

(n)
t):'l:i p
From
P(s) = —i—_
1-F(s)
wWe have,
(1 -44p Blep) # 5L T8 (1.23)
1-F(s)
Expanding (l1-s) P(s) we get
(1-s) P(s) = (1-s) I p® P
n=o 3jj
n=o 33 n=o 33
5 p(°)+p(l)s+p(2) s2+”+p(n-—l)
33 i3 33 i3
sn-l + p(n) sn
33
- p.(c.>) p.(%) g2 P_(z_)
JJ JJ JJ
S3-....."p(n-l) sn“ooo-

b



putting
s =1

and noting that

b(O) =1,
we have
Lim (1-8) P(s) = Lim b '™
s=1 n=e i3
and
Lia l - s e &k ros (o)
s=1 1l - p(s) 1 -0 0
which is undefined.
Using L Hospital's rule, we have
Lim Rt -1 ik -1 -
s=1 l - F(s) - F'(s) -u
3]
Therefore
Lim (l1-s) P(s) = Lim {1-s)
s=1 s=1 1-F (s)
which implies that
Lim p(n) = .
T - u
JJ i

For null state,

=




In this case

Lim b(n) =
n=e i3]
In general
b(n) = 5 £V b(n-V)
= v i3 33
Therefore
(n) ( (n-r) .
Lim T f,. Lim p."
n=e  ij vi it ol Y
5 (n-v)
. SR (Lf“‘ P )
v n=o JJ
£.=
S—
s
J

We can now summarize some facts about the
persistent and transient states in the following

theorems.

Theorem 1.1.

5 p(n)
=0 33



But

Lim p(n) = o0

n=c 33

for null state

Theorem 1.2.

A state Ej is absorbing iff

2.8 I 5 -
£ =13 fjj =1

and

=
]
-

Theorem 1.3.

Ej is transient iff

1.3.4. PERIODICITY OF STATES

A state E is said to be of period t, if t

k
is the greatest common divisor of n for which
(n)

P > 0 -
kk

Alternatively E. is said to be of period t if



(n)

PR o ®

unless n = vt
j.e. n is a multiple of t.

If t =1, then Ek is said to be aperiodic, otherwise

it is periodic.

3¢3.5. ERGODIC STATE

This is a state with the following characteristics:

(1) the state must be aperiodic
(ii) the state must be persistent

(iii) the state must be non-null.

In other words the state must have a finite mean

recurrébe time. Such a state is called Ergodic.
n



CHAPTER TWO

CLASSIFICATION OF CHAINS

2.1. CLOSED SETS

A set c¢ of states is closed if no state
outside ¢ can be reached from any state in c.
Alternatively a set c¢ of states is closed if
each state in ¢ communicates only with others in
e.

So if,

E; € c and E_ ¢ e,

then,
ij=0

and in general

for n2>l.

If B ok e C,

then

(n) _
bop 0 2

and generally



So the importance of closed sets is that a
markov chain can be split into sub-markov chains

which can be studied independently of other states.

A closed set of communicating states is a class.

So if ¢ 1is a class, then every pair Ej and Ek

in c¢ , there exists a positive integer n for which

(n)
pjk > 0.
Remark

We should note from the above definitions that:

(i) the totality of all states that can be reached

from a given state Ej form a closed set.

(ii) A closed set may contain states which may not

communicate.

An absorbing state

A single state E forming a closed set is

k
called an absorbing state. It is a state once
reached cannot be left. Further, an absorbing state

is considered a class.



Examples of closed sets.

Let,
By Be Sy g . Fe ¥y
E g i (= o o
E, B A g * 0
P = E, 5 0 +0 .0 o ©
NG S e e o o
A | By By) dpeny * 0
Eg "Rk e s N o o
E.’ (o) * 0 0 0 *
Eg glepaglents of i o o
e TS B o - u

Where entries with * signs show that

Ey Ny
0 o}
0 (o}
o *
o o
o o
o) 0
* 0 ‘
o o}
o) o}
pjk > 0.




Therefore {El, Eyr Eg} is a closed set.

(ii) E. + E

5 .

This implies that {ES} is a closed set.
Since this set contains a single set, it is called

an absorbing state.

(iii) E g * Ej3

Thys {E3, EB} does form a closed set.

f

(iv) {E,, E;, E,} does not form a closed set.
2 8 7

They are not independent of the other six states,

although the six are independent of them.
For example,

+ E but E_ »> E

Having found some closed subsets, we can

re-arrange the given markov chain by considering



the closed sets

Let,

is:i’ E}
A o ay,
g |0 o
E} |o *
E; [0 o
e *1yerd
& jo o
E"] * *
E; |o o
T

as follows:

" ER
= E4' .
= E‘; ’

22

E} E! By
g el
g
o0 .0
IR SRR
Y APy
o * o
g @t s
DB
grreeiiy

-

’



22 Irreducible Markov chain

A markov chain is irreducible if
there exists no closed subsets other than the set

of all states.
Two states are of the same type if
(i) Both have the same period
(ii) Both are transient or else both are persistent.
(iii) Edih are persistent, then further both have

finite mean recurrence times or both have infinite

mean recurrence times.

Theorem 2.1.

All states of an irreducible chain are of the same

type.

Proof:

For any irreducible chain, all the states



Let
p(N+n+m) o A i
ii
Then
K > ab p(N)
i3
from the first part of relationship (2.1).
This implies that
3 p ™ < -§5 < ®
33 .

Therefore if state i 1is trancient then state j

is also transient.

(b) Suppose i 1is persistent.

This means that,

(N)  _
ii

Then the second part of relationship (2.1) becomes:

p(n+N+m)
i3

> ab x » = =,




This implies that state j is also persistent.

(c) Suppose state 1 1is persistent-null. This

means that,

Lim p(N)
n=eo ii

0;

Then substituting this relationin(2.l) we get

Lim p(N) =0

n=o j j

So j 1is also null.

(d) Suppose that i 1is persistent non-null.

(N)

Let its period be t. Then p > 0 whenever

ii
N 1is a multiple of t. Now
p(nﬂn) > pn) L) = Liah > 0
ii ij ji

So that (n+m) is a multiple of t. Substituting

in relationship (2.1) above we get,

p;?+n+m) > ab pig) > 0.




Thus (n+m+N) is a multiple of t and so t
is the period of the state j. So i and j have the

same period.

Theorem 2.2.

For a persistent state Ej’ there exists a
unique irreducible set ¢ containing Ej' such

that for every pair Ei’ Ek in ¢,

Proof:

Let ay be the probability that starting from

state Ej' the state E is reached without previously

k
returning to Ej' The probability of never returning

to “Ej from Ek is 1 - fjk'

The probability of reaching state Ek from

E. and nev i -
3 ever returning to state EJ is a, (1 fjk).
Since state Ej is persistent the probability of no

return to Ej is zero.




Therefore,

This implies that

fjk g 1’

for every Ek that can be reached from Ej‘ The

three states are accessible from one another since
the set ¢ 1is irreducible. In an irreducible chain
all states are of the same type. It follows from the

foregoing statement that states Ei and Ek are

persistent because Ej is .

Let the probability of reaching the state

Ek from state Ei for the first time be bk‘ The
probability of never returning to ?Ei once Ek is
reached l - fik . The probability of the system

reaching state Ek from state Ei without having
returned to state Ei and never returning to Ei is

bk (1L - fik)' Since Ei is persistent the probability




of no return to ‘Ei is zero.

Therefore,

ik

for every Ek that can be reached from Ei'

.
i

The same result can be obtained if the process

now starts in state Ek and ends up in Ei’ That

is

Corollary

In a finite chain there exists no null states

and it is impossible that all states are transient.



Proof :

Let P be a stochastic transition matrix chain
with a finite number of states. In a finite chain,
a state Ea is transient iff there exists another
state Ek such that Ek is reachable from Ej after
any number of steps but Ej cannot be reached from

E That is

k'
(n)
Pix 3

but

(n) _

ij °

When n is the number of transitions, 9P;£)

for all jﬂand k are the entrants of the matrix
g? . thch is a st9chastic métrix.

Since the state Ej cannot be reached from
the other sfate Ek then Ep is transient. This
implies that some states in a finite Markov Chain
are not transient. The other states that are not
transient form an irreducible set of states which
are of the same type. Within the irreducible set

all states are reachable from one another. That

is,




3 o R R

(n)
p
gy it
and n) .
p{i) 70
Hence there's at least one non-null state. The
presence of a non-null state in the irreducible

set implies that all the states in the irreducible

set have a finite mean of recurrence time.

Theorem 2. 3.

The states of a markov chain can be divided
in a unique manner into non-overlapping sets T, Cl,

CZ’.looo..

Such that:
(i) - T consists of all transient states
$34)  _ If Ej in C/ then

f

fjk =1,

for all Ek in Cv, while

fjk = 0,

for all Ek outside Cv.




2.3 IRREDUCIBLE AND ERGODIC MARKOV CHAIN

Definition of invariant or stationary distribution

A probability distribution {vi} is called

stationary or invariant for a given chain if,

. ¥ ) vj pjk

4

such that,

and (2.2)

This implies that

Vk = ;‘: (i Vi pij)pjk

v, (T Py 5 pjk)

(2)
L vy Pyx




In generaly

) (n) |
Vi i Vi Py (2.3)

In the matrix notation relationship (2.3) can put as

follows:

—

Pyj; P12 Pyzec--
[v1 vz V3...]= LVI v2 v3 ...Q..] pzl p22 p23...0

For  Pop Mg

B

.
‘

We now study the behaviour of a markov process
when it is repeated several times. In otherwords

under what conditions if any does

(n)
pjk

n <+ o©

+Vk
¢ independent of j ?
If such a limit exists, the system settles down and

becomes stable.




Theorem:

For an irreducible and ergodic chain, the
limits

& (n)
v, - Lim pjk

_.n=o

exist and are independent of j.

The limits v, are such that

and (2.4)

That is, the limits v define a distribution.

k
Furthermore the limiting distribution {vk} is
identical with the stationary distribution for the

given chain so that

and




Conversely suppose that the chain is irreducible

and aperiodic and there exists

vy > o0
Such that
I v, =1
X k
and

Proof:

Since the states are ergodic then

Lim p;§)= —%5—
=00 k

so the limits exist. But,




Since Ek can be reached from a persistent state

E (from theorem 2.2).

3

Lim (;) L > o0
n-e ”J ﬁ
which is independent of j.
Next consider
(n+m) (n) _ (m)
Pak T Pas Pax
This implies that
“(n+m) (n) _(m)
Lim p. =Lim I p P
v jk h.... “ji ik
> I (Lim p(n) (m) ’
n_

by Fatu's lemma. That is,

: (n (m) _
2 2[1‘1“‘ ij.] Pag = 74 Pix

i \n»ew




Therefore,

., (m)
" i Vi Piy for all m.

Suppose,
(m)
Vg > f vy Pyx
then
i vy > L% pig) vy
-k k i

=T vy (T Pgy)

i k
=3I Vv ’
i i
Since I piﬁ)= 1.
Therefore,
I v >Iv
% k i T




This is impossible. This implies that

Yk

~ ™

This is,

L vy Pyy

From

(m)
Lim ¥ iy

=00 mﬂ

(m)
ik )

p) vi(Lim P

I
™




This implies that

by cancellation of vy - So {vk} is a probability

distribution since,

2.4. THE ABSORBING MARKOV CHAIN

f

Definition 1:

A markov chain is absorbing if

&) - 1t hés at least one absorbing state

(ii) from every state, it is possible to go to

an absorbing state (not necessarily in one step).

Definition 2:

An absorking markov chain is one whose
state space consists only of transient states

and absorbing states.



2.4.1. Canonical Form

In developing the theory of absorbing markov
chain it is always convenient to use transition

matrices in what is known as canonical form.

We renumber the states such that the absorbing
states come first i.e. the rows and columns are
rearranged so that all the absorbing states are dealt
with first. Their transition probabilities appear
together at the left hand corner of the matrix with
the element 1 in the leading diagonal. Then the rows
and coiumns for the transient states are placed in any

order in the remaining positions of the matrix.

Example 2.4.1.1

Let
Eo El
B~E Y ¥
E



In canonical form the matrix becomes:

Example 2.442.

Let,
p= E|

e (o]

5

E,

In canonical form the matrix becomes:

e

o

P




Example 2.413.

Let,
Ey
p= P2
By
Ey

1

Wi =

lo

42

=

- W

L L

Wi

N

(o}

D= Wi

>

°1

| =

w

A

(o}

NI W
L



Usually the states in the canonical form are
renumbered e.g. in example 2.4.3 so that the first
state becomes El and the second one becomes E2 etc.

In general if there are s absorbing states

and t transient states, then the canonical form

o)
———— (2.5)
0|} t

(Vv
t

of the transition matrix will be

s { I

|0
]
® ool oo

Where

I is an (sxs) unit matrix
0 is an (sxt) 2zero matrix
R is a (txs) matrix concerned

with transformations from transient states to

absorbing states

Q is a(txt) matrix concerned with

transitions from transient to transient states.




From example 2.4.3.

1o
1
o )
= O
\ .off

10

1}

Yo o
oy
b y

o |

|0

; .

o w“_‘l
-

_ \
0
o
N
N W

2.4.2. HIGHER TRANSITION MATRICES

Let,

|9
Il
o
Lo]




= T 0
2 2
R(I+Q) O
I (o]
3 2

R+ @2

g2 I
© = | r(z+0+ed)

I
g‘ = 33.3_. | r(1+0+Q%)

1
I
.
|

i

In general

I
R(I+0+0%+0°)



Where,
_‘ 2 n-lI
M . I + Q + Q +00000+Q _R_ (206)

2.4.3. ASYMPTOTIC BEHAVIOUR OF P"

Theorem 2.5.

Proof:
By definition of absorbing markov chain, every

state wil{ have to go to an absorbing state.

Theorem 2.6.

If Qn tends to zero matrix as n tends to
infinity, then
(I - Q)

has got an inverse and,

= - Q)'l = I +Q+ Qz+......z Qk B
k=0

Proof:

Consider the following identity:

(I -Q)(I +Q+Q2 +eo..t Qn'l) = (I -Q‘) -




The result can be verified by multiplication.
By hypothesis,
(I - Q") »1I
Therefore
| T - Q" =1.
This implies that,
| 1 -q"|# o,
fo; sufficiently large n.
We know that,

"t < g @ +a* @ +... 40"

= [(I - Q) (I +0Q+...+0"|
Since right handside equals to one, then,
poly) =

[(x - |(1 +0Q+ Q2+...+Q

This implies that determinants on the left hand

side are non-zero.

Thus

| (x -qQ | # o.

So

(L~




has an inverse.

0§
Multiplying both sidesAthe identiy, by the inverse

of (I-Q):
(1-0) ! (z-0) (I+Q+Qz+-.;.-+Qn-l) = ax-071 @M.
This implies that
(1+0+0%+....+0" ™) = (1-0) T(z-0M
1

But R.Hs of this identiy approaches (I-Q)
for large n.

Therefore,

n-1 1

(I+0+0%+....+0"YH=(@1-0"

Thus

Lim P

n=ew (I-0) "R o)




Defination of fundamental matrix

For an absorbing markov chain we define the

fundamental matrix to be:

N = (1-q¢7t (2.7)

2.4.4. Some interpretations and applications of

the fundamental matrix

Let n be the total number of times a

ij
process starting from state E; 1is in state Ej'

Let xij be the event that the process is

in state Ej from state Ei'

Therefore,

xig) =1,

if the process is in state Ej after k steps from
i.

)

i =0 otherwise.
J




Therefore,

L (K)

oo
= I .
Fage sfpoeFiy

E(nij)= I E(x

-
—o 13

(k)y _
0) + 1.P(x;5") = 1ﬂ

I
S ™8
1l
o
( o]
e
b
e~
o
A
il

In matrix form,

((E(n

|
o
~—~
Cand
'
[N

1) M=

I
—~
H
[}
e}
-
1

=N (2.8)




Thus E(nij) is the average number of times
a process takes in state Ej before absorption
given that it starts from state Ei‘ This means
that the entries of the fundamental matrix give the
expected number of times the process will be in each

transient state.

Theorem 2.7.

VarEuij] = (2Ng - DN - N

Where,
N is the.fundamental.matrix,

NS%V is the fundamental matrix with all

the entries squared.
is the Fundamentn| Matdx With al entnes
being Zere except the ™ajer diagune eatyies .
I is an identity matrix

is the total number of times
that a process is in a state Ej from

state Ei‘



Probability that a markov process starting from

a-non-absorbing will terminate in an absorbing state

Let Eij be an event if Ei moves to Ej in

one step. 2And Aik be an event if Ei moves to

Ek in one step. The states Ei and Ej are

transient and Ek is absorbking.
The event Aik can occur in two exclusive ways:

(i) direct transition from Ei to E

(ii) Transition from E; to Ek via Ej'

Here,
ik = Tik j
Therefore,

p(a;,) = p(E;) + § P(Ej5 N Ayy)




Let,

p(Aik) = bikl

then

Bok T Pix ¥ g Pyy Pyk

In matrix form

((bik)) = ((Pik)) + ((z pij ij))

B = ((by,))

and note that,

So that we have,

From where

(L]
Il
&
I ]
)
%0




= NR (2.9)
The elements of B 1i.e. bik are probabilities

of moving from a transient state Ei to an absorbing

state Ek‘

The expected number of steps that the process is'~ﬁ

a non-absorbing state before absorption

Let us denote by I E(nij)
J

the expécted number of steps the process is in a
transient state before absorption. To obtain

2 E(nij) we have to post - multiply the fundamental

matrix by a column matrix of ones. Let us denote

this column matrix by,

8

o]
i
-




Then,

R o 817 il

1 - T e
-l >
g 7 oM - S Rl Rl I

Clearly this is the sum of the row elements of the

fundamental matrix.

Let t be the number of times an absorbing
chain moves among the transient States (including
the original position) before passing to one of the

absorbing states.

Then,

E(t

]
~
[
]
A
1
i

|
Q

I
Z
ol




(2.10)
and

It
(t) = (2N -
Var




CHAPTER III

EXAMPLES OF MARKOV CHAINS

In this chapter we intend to give some illustrative
examples of Markov Chains. For some of these examples
we shall try to classify the states of the Markov
Chains and study the asymptotic behaviour of their
transitional probabilities by applying the theories

developed in the previous chapters.

3.1. Random walk with absorbing barriers

Let us consider a boy moving on a straight line
X - axis, 'say. The boy moves on the points 1, 2,...,m
on the x -, axis. If he arrives at points 1 and m he
remaing there permanently i.e. he is absorbed - thus
the term absorbing‘barriers. Let us denote the points
on the x - axis by El'Ez'EB""""Em and refer to
these pointé as states of the system. States E1 and

Em are called absorbing states.

Consider a situation when the boy is in state
Ey different from the absorbing states. The boy
can move to state Ei+l with a probability p or he can

move to states Ei—l with probability q.



The transition probabilities of this system are:

3 Py = Pyy =2
p, for j = i+1, i= ,2,3..
pij = g ot = =y, =203, .. s

o otherwise

In matrix form,

El Ez E3 E4.....'...Em
E1 1l o o) TR W SN
Ez q o p o....o.....o
-P- = E3 o q o p o‘.....o
E (o) o o o O oie sisoicd
m

In studying the properties of this chain let

us take a four - state chain. That is

1 2 3 4

= {1 e A
P= E,|gq o P o
E3 o q o) P

- (W - I |




Classification of states

States E1 and E4 are absorbing. Since this is
an absorbing Markov Chain then the rest of the states

are transient.

Application of the theory absorbing Markov Chain

In canonical form,

2 11 oot & e ]

t
>
10
=
10
|10

Where

1 o

St




¢ o]
= R
o p
I
. ¢ |
19 9

The importance of the canonical Feean absorbing
markov chain is the applicability of its sub-chain,

the fundamental matrix. The fundamental matrix is

= x-97t

s
“Tpq |1 P
- q 1

What is the expected number of times that the boy

1=

will be in each non-absorbing state before reaching

an absorbing state ?

Here states E2 and E3 are non-abscrking.

This question can be answered with the help of N.

~ S 1 p
N = —T5q
q
E E



(i) Assume the boy starts his movement from

state E2’ then

By = 15
This is the average number of times that the boy

will be in state E2 before reaching absorption

(ii) Assuming the boy starts in E2 how
he :
many times will, be in Eq before reaching

absorption ? That is,

= ——-E-——
= (n23) 1-pg
(1ii) If the boy starts from state E3 how
he .

many times will be in E2 before reaching
absorption ?

Emas) T-pg

(iv) If he starts in E3 how many times

will be there on average before reaching absorption ?

1

Blhay) = T




What is Var(nij) ?

We know that

Var (nij) = N [? ng - é] - qu ~

From the matrix in question,

Therefore,

= 2 i 1 0
—dg I-pg 3 7

. 2

N (1,2 |1 P
sg 1-pq '

_ q2 1

and

Substituting these, we get,

r
Var(n, .) = ——l—— 1 P 2
ij l1-pq e I-pq
. q




= )2 1 + pq p(14+pq)
l-pg
q(1+pq) “1+4pq
- 1 , |1 pz ,
(1-pa) -
q2 1l
= L 2 jode| p+pz(q-—1)
1-pq)

q+q2 (p-1) Pq

Specifically,

(1) . var(n,,) =

(1-pq)
2 3
(ii) Var(n23) ov ptprlg-i) stepe- B
(1-pq) 2 (1-pa) 2
+q° (p-1) o
(iii) Var(n32) = = _S___S_f
(1-pq) (1-pq)
pg

(iv) Var(n33) =




what is the expected number of times that the

boy is in a non-absorbing state before reaching

an absorbing state ?

Let t be number of times that the boy is

in a non-absbrbing state (E2 or E3).

E(t) = =N . ,g
Where,
1 1 1 P
C = 1 N = s———
- " = 1-pq
. q 1
Therefore,
l+p
1
E(t) = T = T_——
- Pq 1+q
(i) If the boy starts on state EZ' on

average the~boy will either be in E2 or E3
(liB-) times before reaching an absorbing state.
l-pg

(ii) Starting from state E, the boy will

either be in E3 or E2

(——l:g—) times before reaching an absorbing state.
1-pq



wWhat is Var(t) ?

We know that,

Var(t) = (2N - I)

3

l - pg

3
3pq + 9,- g

The variance of the number of times that the boy
is in a non-absorbing state if he starts in state

E is

2

- 3
3pg + p - P

1 - p?

Similarly if he starts from state E3 the
variance of the number of states that he will be
in an absorbing state is

3
3pg + g - g

L Pq)2

Wwhat is the probability that the boy will end

up in an absorbing state if he starts from a

transient state ?

This question is answered by using the




matrix,

B = N.R
because it was stated in chapter two that R
is a matrix concerned with transition from

transient states to absorbing states.

: = 1 1 P q o
s P q 1 oo p
1 E, 72
i s 3 B
. qz .);'-p E3
(1) p(E,—»E) = (—I—)
. 1l - pq
4 2
(ii) p(E,—>E,) = ( )
. s 1l - pq
2
(1i1) Pp(E;~>E)) =( ! )
1 - pgq
(iv) p(E;—>E,) =(—F )




.2, Random Walk with two reflecting barriers

Consider a boy moving on a straight line.
The boy may be at one of the points 1,2,3,...,m-1,m
on the straight line. At the ends of the line
segment the boy bounces back once he reaches there.
When the boy is at point i, he moves to
point i+l with probability p. He remains at
point 1 once he reaches there with probability q.
His probability of moving to point i-1 from point
i is g. Thus
P j=i+l for 1i=1,2,...
“pij =/q, for i=2,3,...j=i-1
o otherwise.

The transition matrix is

El E2 E3 E‘.....{’,\l%
El q p o o........o
Ez q o p o......‘.o
Ey |0 q o P OuseesD
E, |© o q & Biians®
. ° © ° e -4 obp
E. [© o o O.sse+Q P

The points 1,2,....m are represented by

El' E2'oo-oooo.’Emo



Classification of states

El-—>E2—-)El

—% » & ¢ -
B3 2B s
It is clear that the states of this chain

are reachable from one another. Therefore the

chain is irreducible.

Periodicity

Consider state El‘

We find all n such that

(n)
‘.'11 >o
fﬁ) = p(E,—>E)) =q 7 o0
£2) - pE,-—3E,—>E) =pa >0
11 1792 1
f(3) = p(E,—>E,—>E,—>E,) = 0
11 1 2 2 1

(4) _ = 2
£, = PE;™E;>Ey—>E;—DE)) = (pq)

etc.



Therefore,

t
|

g H-CQF Of 1, 2' 4, 6,....

= ],

The chain is aperiodic.

The stationary distribution of random walk with

two reflecting barriers

Ve find a matrix V such that

vV =V.P.
Es Ay 2 o M "
E° ﬁ;- P o o o o
El' q o P o o o
E, |o q o p o o
R o q o p.. o o
E |0 o o o o0..q 0 P
E. ;|0 o o o 0..0q o
E
m |o o o o 0..00 q




becomes

Q ﬂ\

[¢)

(V, V)...V3)= VoV1°“;J

(o}

which implies

o
Therefore
=2
, i (q)vo
Vl = 1:»‘]0-0-qv2
Therefore,
= (By2
v, (q) p71
V2 - le +qV3 .
Therefore,
qQV, = V,-pV.

o

o

(o P @ o (o]

O.e..0 o (o}

5..0 P O
0..0q ©O P
0:.»00 q P



V3 = sz + qV4

which implies

V29 Vi L PV,
=1l&3 - (72
- @

<
>
|
o
vw
Q-
=
1
)

. e
gy R

| CL @gymil
V-1 (q) Yo

= (&3

Vm (q) V°

But,

vyt vyt v2+....v3 = 1.

This implies that,



Therefore,

1

P +(By2 +(By2 Rﬂ
vo‘:é s s +(qh + "’+GL)

o
1= B
q

which implies,

Therefore,
’ v, o= 1 -p/g
B _(E,mi-l
q
Since,
= i E i
vi \(g) V°
then,

v =(§)1 (0B

_ (pym+l
1 (q)




- 1293~

3.3. Random Walk with one reflecting barrier

Consider a boy moving on a straight line

e.g. the x - axis between points 1 and n.

e 5 SO
24 1P - et 204 n

Let the points 1,2,...n denote the states
of the "oy -. 1In this type of walk one of
the end points must be an absorbing state. Let

E be the absorbing state and the other one be

1
a reflecting barrier. Wwhen the boy comes to state
E he walks back to E__,; with probability g
or hé can stay at E ~with probability p.

’ The boy moves from one state to another
without skipping ény of the states. The transition

probabilities of the movement are:

P L4 i = 1,2'-.., j i+1

=q ’ i=2'3'ooo,j=i"l

o otherwise



The transition probability matrix is

El E2 E3I LN 1 .‘.......En‘-l En
El 1 O o. ® 9 % o " e 0 00 0o o o
E2 q o p o. ® & o 0o 0 0 o o
E3 o q o Dsocessns O o
» = E4 o o q o Peso O o
. L] - o - - - .
En-l o o (o) (o PRl o P
E 6 o o o. e .o q p
R L - F

Classification of states

It is possible to enter into any state of
this chain starting from any state except state
El. Therefore this chain is absorbing.

This implies that all states are transient
except state state E1 which is absorbing.
Since this chain is absorbing it can be written

in canonical form.



-]

-
E, 1
E2 q
E; |o
e o
. |o

0 po.....

g L0 P Qe

O oo.....q

o o.....

’O o-....... o

From the canonical form of P we get

and

0 |+

|

O+ « Q

lo

1

(1)

Lo
rq1

o

QO ¢ o

o

O+ « O W

o....o. (o]

000000 o

‘_:'p Oessee O
o.....o q

]

E3'...QQ..En-1

)

TWe « 0

ke




From these subchains it is possible to get
N from

N = (1-97¢

The stationary distribution of random Walk with

one reflecting barrier.

Here we find V, such that,

Yo sroQie O. O.... 00

© PO.s 00O

Ell 5 3....v 1¢ vll =\v, v, v3..vn_lv; ©g o0 p.:.00
00 O0O0...GqPp

Expanding the right hand side we get,

V, = Y +qV, =B v, = o
vV, = qV, —_é vV, = o

Vs 1P V¢4V 2D V. "= o
v‘3 = pv3-c»qv5'$v5 = o

‘:’n-l ~p V. .3 %N vn=)vn = o.




This means that stationary distribution for
a random walk with one absorbing state does not

exist.

3.4. Cyclical Random Walk.

Let us now consider a situation where a boy
moves on a circle.

We suppose that the boy moves one step clockwise
with probability p and counter - clockwise with
probability q..

See diagram below.

Let us represent these points on the circle

with E1 ’ Ez,.....,En. Their transition probabilities

are:
P(E; —>E ) = P
p(E;,—>E, ;) = «q
p(E —>E,) P

p(El~—>'En) = o



The corresponding transitional probability matrix

is

El Ez E3 E4........En-l En
E, |o p o P R L q|
Ez q o p o'...... o °
E, |o q o e o
E, |o o q © Pe... © o
E _,|° o o N P
E ﬂi o o @esoin @l G ol

7

Properties of a cyclical random walk

(i) Classification of states

E) €Y E, <> E3€——->E4...... e—éEn

7

E
n

All the states of this chain are reachable.

Therefore the chain is irreducible. This means that

all the states have the same properties.
Let us consider state E1 for the properties

of the chain.




(ii) Periodicity
find,
f{?)'j7-o , Bog  n X1,

(1) i =

f(z) = (E,—~>E.,—>E.) =

11 P&, 2 1 Pq

(3) _

fll = o)

e - (E,~>E,—>E.—> E,.—>E.,) = ( 4%
11 P82 Be 3 2 1 Pq
(5) _ *

£11 —‘ p(EL—>E2—> E;—> E4-%El) = 0

£ - p(E,>E>E,—>E,~>E.—>E —>E.) = (pq)°
11 visy 2 3 4 3 - M Pq
etc.

t = H.C.Fo Of 2' 4' 6,..0.0 = 2

Therefore the chain is periodic.

Let us consider periods of specific examples
of the cyclical random walk. We consider a case
where the total number of steps of the walk, n is

even anéd a case where n 1is odd.

(i) Let n i




Then, E1 E2 E3
E1 (o) P q
P = E, q o P
E3 P q o
(1) _ _
f11 = p(El—4>E1) = 0
gi2) (E, —>E £y 8
11 P& 27> "1
3 - (E,—>E,—>E,—> E,) o
11 S | 2 3 1
£ = pE—>E -—SE~SE—=E) o
11 = 1 2 3 2 1
f(s)-’ = P(E,—> E,—>E E,— E,.—E,)
11 1 3 PR 3 1
etc.
péﬁ) # 1 for n# 1
Therefore,
t = H.C.F of {2, 3, 4, 6,.....} =1

Therefore a three - state cyclical random walk is

aperiodic.

(ii) Further let us consider a five - state

cyclical random walk.




" E, = Eg Ey
El o P o o q
E, q o P o o
E, o q o P o
E, o o q o o
Eg |P o o q o |
(1) « -
f11 = p(E1~7> El) = o
£2) - pE,—>E—>E) o
11 Pi¥y 5 1
f(‘” = (E, > E E,—>E E,) o
L T TPy e T 277"
£B3) - pE —>E E E,—> E,—> E.)
11 Pi% § =70 4> B3 2 1
(6) =
i ~ WEHESPNISE SR E—oR ] i
£ = P S E—SE S ESE-_SE-~>E~SE)
11 1 5 o 2 P W
etc.
Then,
t = H.C.F. of 2, 4, 5, 6, Trdx Fga i sr

Therefore this chain is aperiodic.




(iii) Seven - state cyclical random walk.
%3 % "3 Eg Bs  Bg %y
E, o p o o o o q
E, q o P o o o o
E3 o q o P o o o)
E, o o q o o) o o
E5 o o o q o o) o
E¢ o o o o q o )
E, o) o o o o q o
(1) _ ; <
fl1 = p(El-—€>El),— o
£2) - pE.SE E.) > o
11 P8,y ;i |
1(4) = “plE —?E-'—>E.—>E-%E)7o
11 1l 2 3 2 1l
(6) _ =
f11 = p(El—> E,—> E;—> E,— E3ﬁE2-9E1)>o
(7)  _
£, = P(E~>E;> Eg—>E;—> E,~>E;—>E,~>E;) > o
etc.
ty o= BB of 42, 4)4b 7,......}=1.

Therefore the chain is aperiodic.




(iv) Four - state cyclical Random Walk

E, & By E,
E, B p o q |
P= E, |q o P o
E, o q o P
Eg Lp o q o
f(z) = (E E E,) > o
33 A R
el - (E, —> E E E E,) > o
33 Py == By "X My T Ty iy Wy
(6) .
etc.
t = H.C.F. of {é, 4,6,..@..:¥= 2.

Therefore the chain is periodic .

(v) Six - state cyclical random walk
eicefon. & "Ry B B
E, |o P o o o q
E, |g o P o o o
E3 (o) q o P o o
!g== E4 o o q o P [e]
ES o) o o q o p
E6 P o (o) o q o




23 _
f11 = p(El-—> E6-9 El) > o

{3 _
fll = 0

£l _ S(E.>E—>E,—DE~SE.)> o

11 P& 2 3 2 1

(6) _

f11 = p(El——) E69E59 E4—9E3—>E2-ex-:l)7o

etc. s
t = H.C.P. of 92, & Gyoeesv ]

= 2

Therefore the chain is periodic.

Conclusion.

The specific examples (i) to (v) considered
above contradict the property that a general cyclical
random walk is periodic. We can now see that cyclical

random walks with odd number of states are aperiodié.

Cyclical random walks with an even number of states

are periodic.

This is a contradiction.

Note:
From the examples of cyclical walks considered
above one can conclude that cyclical random walks

with an odd number of states e.g. 3 - state, 5 - state,



e

7 - state etc. are all aperiodic.

4 - state, 6 - state etc. cyclical random walks

are periodic.




3B Two state Markov Chains

Consider a sequence of Bernoulli trials
which can be represented as a two state chain.
The two states are El and E2 representing
head and tail of a coin respectively.

First let us assume that a coin is tossed
and a head is obtained. We suppose that the
probability of the next toss resulting into
a head is p and that of resulting into a tail
is q.

Secondly let us assume that the coin is
tossed and the result is a tail, We suppose
that the probability of the next trial resulting

into a tail is g and that of resulting into

a head is p. Thus

6 1 TR 4
Py, = 4
Poy = P

= 2



The corresponding matrix is

E, E,
E, |P q

P = O ;
E, |p q

Classification of states

El-eEle—a Ez—ﬁ E,.

Since all states are reachable from one another

then the chain is said to be irreducible.

; Periodicity
1) = ; .
£,1 < p(El—-%El) =p
£(2) - PRE, D E,~~» E,) = pq
11 1 2 1
£ = p(E,>E,>E,~>E) = pg’
11 PiBy 2 2 1 P q
f(” = (E,—»E,—> E E.—>E,) = g3
11 P&y 2 2> E; 1 P q

etc.
= H.C.Fof {1, 2, 3, 4,.0c0..]
- 1

Therefore the chain is aperiodic.




Persistent/transient

atigdl) (2) (3)
£, £+ £,77 0+ £17 Feeeeennnn

From the foregoing section we get,

Hh
Il

- 3
11 p+pq+pq +pq +oo-.o ooooo oo o0 e

p(l + q “* qz + q3+00-.0.!-00000.00')

Therefore the chain is persistent.

Mean of recurrence time

B{n) = £ n£'?)
n-1 B

if
E (n) £L X

then the chain is said to be non-null otherwise

it is null.

E (n)=p + 2 pg + 3 pq2 + 4 pq3 + 5 pq4+......

= p(l + 2g + 3q2 + 4q3 + 5q4 a0 wisi 5 Sl



Let
_%é_ = 1 % 2¢ 4 3¢+ 4> + 59 +.....
Integrating,
g Yang ® qz + 3q2 * q4 + q5 Firus duibs
V. (i)
Sl
dy _ 1 2 1 1
dg 15 g q ) N p2
Substituting this differential in E(n)
we get,
- P 1
E = =
(n) ——;7~ =

This implies that the chain is non-null. An
aperiodic - persistent - non-null chain is

said to be ergodic.

Invariant distribution of two state Markov Chain

we find Vk' such that

where



and

%l - [ v B ::l

Therefore

V1= (v

V2 = (V1 + V2)q

and

V1 = p
Vz = q
Therefore,

p q]
¥ - x
P q

Limiting distribution

The limiting distribution of this chain
exists because the chain is ergodic and has an

invariant distribution.



Il

P q
pt =
] P q
Therefore
P q
P? =
p q

Let us consider a two state chain whose

transitional probability matrix is:

|9
I

All states of this chain are all aperiodic and



persistent. Let us find its invariant

distribution.
p q
vy V] = [Vl sz
q p
Vl = le + qu.
V2 = qu + pV2

From these we obtain

Therefore,

Special cases of the two state Markov Chain

B, B
E, D 1-p P q
- p # o,q #o




E1—9 El-9 E2 —?Ez

Since the two states are reachable from

one another,

the chain is irreducible. Since

the chain is irreducible, the states have the

same properties. Let us take one of the states

and study its properties. Let us consider state

El.

p(1)

11

(2)
#1311

(3)
P11

(4)
P11

L L

(n)
11

Periodicity

p(E1~—> El) =p
2

p(El—_> Ezﬁ Ez'eEl) = Pg

iy 3
p(Elﬁ Ez——>E2%E2—>El) = pq

pPq

The period of the chain is the H.C.F. of all

n for p

Bleb



Therefore,

t H.C.F. Of l' 2' 3' 4,roooo'n
= I

The chain is aperiodic.

Persistent/transient

We need to find,

(-]
- p(n)
£11 3z, *13
I,
£11 b
then El‘ is persistent otherwise it
is transient .
o 2 3
$13 N BB+ pa® ¢ periieea.
w 20T
l-q
p

the chain is persistent.




Mean recurrence time

E(n) = gy " p(n)
n
£,
E(n) < <0
the chain is said to be non-null otherwise it
is null.

E(n) = p + 2pq + 3pq2 + 4pq3+........

=p(l+2p+3q2+4q3+oooo.otocg)

Let us denote the bracket by —%é—

Thereforé,

—g§_=1+2q+3q2+4q3+.....'...

Integrating we get,
2 3 4
y = g+qg +qg +qg+..... oletere

RN S
1'- ¢

Differentiating with respect to q, we get,



d - (l1-q) + g B 1
dq

(1-q) (1-q) 2

Going back to our orginal equation, we get,

(1-q) CANN
. -
P

therefore, the mean recurrence time is finite.
The chain is non-null.

We have found that the chain is irreducible,
aperiodic and persistent-null. Such a chain is

said io be ergodic

Invariant distribution of a two - state Markov Chain

Let,
v, = z P..
k el jk
where
V. o il
J —
and

2
P = P q
W



P g
{vl va - [vl V?]
P q

= (Ylp + Vzp qu + VZ%]
2 \ivl +V,)p (v, + vz);_‘
This implies,
V2“= q(V1 + v, (ii)
and
V1 + V2 =1 (iii)

Therefore the stable distribution of P is,



E, E,
F) . E1 1l o
= E2 o 1l
E;—>E,
E;~2 E,

Each of the two states is an absorbing state.

THE INVARIANT DISTRIBUTION OF P

1l o
g:
(o} 1l
We find (
V. = ‘Z-pi
k . k
o5 3
Vhere,
v. z O
]
and
e

]
<
'—l
5
]



The invariant distribution does not exist

because this chain is a trivial absorbing chain.

o | E,
E1 o) 1
/ P 3
(3) - E2 1 o
E, -5 E,—>E,;

The states of this chain are reachable from
one another therefore the chain is irreducible.
It is enough to study the properties of only one

of the states.

Periodicity of state E1

p(D ‘
11 = PETE)) =o

P13 = (B >E,>E) =1

p(3) - B >E>E~>E) = o
11 12 Eg—2>E;—>E,

p{4) = L(E.—> E,—>E,—>E,) = o
11 1> Eg>Ey—E,

P(n) = 0.

11



Therefore
t = H,C.F., of 1
= 1

This chain is therefore aperiodic

Persistent/transient

Let us find

11

)
[}

S~ 8
£l

I
o
+
-
+
o
+

------

Therefore the chain is persistent.

Mean of recurrence time.

E(n)

- (n)
Z_ n p11
n=1

o+2X1l+o0o+o0+........

Since the mean is finite then, the chain is non-null.

A persistent-non-null, aperiodic chain is called

ergodic.
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3.6, THE EHRENFEST MODEL

The Ehrenfest model is basically an urn model
which can be described as follows:

Consider a container with K balls some of which
are black and others white. A ball is picked
from the container at random. Each time a ball
is picked up it has to be replaced by another ball
of the opposite colour so that the number of balls
in the container remains to be K.

The state of system is determined by the number
of black balls in the container. If there are j
black balls in the container, then the system is

in state 'Ej' Thus

P, .= p(E.ESE.} =
ij PR 843 20
- 3 i
Py, j-1 = PEMIE, ) ='§
= i
Py gal T BB =P E, q) K

In particular,

and
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In the matrix form,

=

= o o o o — |
7
] o —
/= o) o o) o i
. . ~
2 ; : ’ __k o
. . . o M
. . . __k . .
. o) v . .
2] . . 1 {4 . .
= o (o] Y o o o
i
N [
~ e} ~ o | (o] e}
~—
= ~ o (N o e} o
(@]
= _M ~ |2 (o] C o e} _
3)
i
O — N m 4 4
= €3] = = = (€3]
]
Al

The physical situation of the Ehrenfest model

is as follows:

There are two containers

and B which

A

In these

are separated by a permeable membrane.

PR L

& & < »

© » ° 9 o

® o w0 ©
e o 0 4 o

e o, °o°
e o » O -

o o % o

Cot!'..l\.
o 2 tecv.-bo
OQ.&O'.&

-
ook [o -y o ¥

@ e @ B PV e W eow O

s e s A g o0 P e N o e
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two containers there are distributed k molcules,
which move freely across the membrane, It is assumed
that the number of molcules in the containers remains
constant.

The state of the systém is determined by the
number of molecules in A. When there are i molecules

in container A then the state of the system is Ei'

Properties of the Ehrenfest Model

(i) Classification of states.
Eoe E1<—>E2<—9 E34—>----<—+Ek_«|<—> Ek .
This shows that the chain is irreducible
because all the states are reachable from one

another.

(ii) Periodicity

Since the chain is irreducible we can take
one of the states and study its properties. Let

us study state E1 on behalf of the rest.

(1) _ _

P11 = p(E1—> El) = 0 (

(2) _ - E-1 2
Pjp" = p(E)—>Ey,—> E;) E * Tk
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(3) = ; . =
CTERRETE e W T g T
(4) 2 _ k-1 k-2
P D B Bera By kv TR
p{%) = p(E,5E,—>E,—>E,~>E,—>E.) = o
11 ) 2 7> %3 47 %3 1
p{6) . p(E,>E.>E.>E,~E—>E —>E,)
11 17> Eg2 B> B> Eg—> E, > Ey

_ k-1 k-2 k-3 4 3 2

K K E "E-EX°k

etc.

We want togetn such that,

(n) :
Py’ 7O

H.C.F. of {2,4,6, ..... [

ct
[l

= 2

Therefore the chain is periodic.

STATIONARY DISTRIBUTION OF THE EHRENFEST CHAIN

We are looking for Vj such that

and

W

=N
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In the matrix form, we are looking for V such that

where P is given in (1) above.

Multiplying out these two matrices we get,

Vo = % V1

Y, s BV YRV,

vy = Xivy +d V3

s ~ Eﬁg Yy * ok Vs (2)
¥y = E:(‘k-Ll) Cat »® J;*lvjﬂ

Ve = = Vool WP,

Ve = E Vo
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This implies

kV, =V,
kV, = kV_  + 2KV,
5y; = (k-1)V, + 3V, (3)
géj = k- (k=2 V,_, +(3+1) Vg
;vk_l = k-(k-2) .Vk-2 + kV,
kVe.1 = Vg1

Next get the probability generating function

of the sequence Vj . Thus
= .
G(s) = I vys (4)
J=o
Therefore,
SIS A (5)

In the set (3) of equations, multiply the first

by so, the second by sl and the third by s2 etc.
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Thus we get

k vV s° = v,s®
o 1
SRR 1
kVist = (kV_ +2V,)s
2 N ok
kvs? = (k V, -V, + 3 V3) s
3 3
k Vgs® = (x V, -2V, + 4 v4) s (6)
i & pua . j+1
k Vjs = {% VJ._1 (j-1) VJ._1 + (,]4_-1)VJ.+1 S

PR ess s s s

k-1 _ k-1
Viae o= [% Veg -(k-2) V _, Kk Vé]s

This can be re-written as follows

szo = (o-o—l.VI)so
kKV.a = (k V -o0.Vv_ +2v,.) st
1 "o 2
2 2
k Vs = (k V1 - 1.V1 + 3 Vs) S



3 | 3 3
k V3 s = k Vz 2 V2 + 4 V4 s
3 . - : J
k VJ s k Vj—l (j l)Vj_l + (j+1) Vj+1 s
s e g k-1
KV, 15 = (kV,_, - (k2)V,_, +kV s
K
k . e \'+\)Vv\ﬂ5
kv, s = kv, - kDy,_ +(A&
kil
k+1
V'.g*|5 = k Vk -k Vk+0 S

In the summation form we have

© k 5ok 1 k
k I V.s) = kst v. s) - s° 3 j Vv s T4z

j=o J j=o J j=o j=o
That iS,

k G(s) = k s G(s) - s> G'(s) + G'(s)

: (l-sz) G'(s) = k(1-s) C(s)

This implies that,

G'(s) = I§§-G(s)
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This also implies that

G'(s) k ds

- 5 1
Therefore,
In G(s) = k In(l+s) + c
But,

G(l) =1

which implies that

In'l] = kIn2 + c

That is

0 = kIn2 + c¢

which implies,

c = = kIn2

Therefore,

In G(s) k In(l+s) - k In2

k In (l%§)
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Therefore,

els)  '=y (‘% + xm)F
k k j k-7
= z (¥s)7 (%"
j=o\3J
., k
= z k ¥ 12
o (%)- s
"°(n‘)
Therefore,
Vj = Coefficient of sj

(5)(%)j , §=0,1, ... k.
J



CHAPTER IV

Problems and Solutions

In this chapter we shall try to solve some

problems using the theory of chapters I and II.

Problem 1:

In a sequence of Bernoulli trials we say that
at time n the state E1 is observed if the trials
number n-1 and n resulted in SS. Similarly
E

Ez, E stand for SF, SF, FF. Find the matrix

37 74

P and all its powers. Generalize the scheme.

Solution
E1 E2 E3 E4
El r; q (o] o |
P= E, o o D q
E3 P q o o
E, L? o P q_
= 1T -
P q o o p q o o
22 = P.P = o o P al.|o o P q
P q o o p q ° o
o o p %J o o p g
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— —
2 2
p Pq qp q
2 ; 2
p pd qp q
2 2
p Pq ap q
2 2
p Pq ap q__
r—--2 2 —
P pd gp q p-gqg:®
2 2
) pga gp q o o bp
2 2
) pa gp q P g o
2 2 N
p pa ap g o o p
| 2 2
p P ap  q

F"'z 2 e~
p~ (p+q) pqg(p+q) gp(p+q) g (p+q)

pz(p+q) pq (p+q) gp(p+q) q2(p+q)

pz(p+q) pq (p+q ap (p+q) q2(p+q)

p2 (p+q) pg(p+qg) qgo(p+q) qz (p+q)—J




Since

[}
=
-

p +q

then,

)

In general,

111

v ]

Pq
pq
pq

pPq

Pq

pPq

ap

qp

ap

pPa

pPq

Pq

pd

ap

qp

ap
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Problem 2:
Classify the states for the four chains whose
matrices P have the rows given below. Find in

each case gz and the asymptotic behaviour of

(n)
Pyk*

(a) (o,%,%), (%, o, %), (%, %, o)

(b) (0,0,0,1) (o0, o0, o, 1) (%, %, o,0), (o, o, 1, o)

(c) (%¥,0,0,0,), (%, %. %, 0,0,),(%, o, %, o, 0,),
(0,0,0,%,%),(0,0,0,%,%).

3’13
3 )

1l
(d) (Of%:%'ololo)r (0101003' 3

()

), (o0,0,0, %r%;

;,/1,6,0,0,0,0), (1,0,0,0,0,0,), (2,0,0,0,0,0).

Solution:
R oV LR
(a) o8, e ]
Po = . K, |'% o %
oy T g o

Classification of states

(1) E09E19E2<—> E_.
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All the states are reachable from one another, so

the chain is irreducible.

Since the chain is

irreducible, all states have the same properties.

We shall therefore consider only one state to be

representative of the others.

(ii)

(2)

Periodicity

p(E; > E_*> E;) = X x %=

p(El+ E,* E;) Yy x % =

¥ 3
p(E,;* E* E, E;)= (%)

op(El+ Eo* E2+ Eo+ El = (g

H.C.F. of {2, 8, 4, ...}
1

The states are all aperiodic.

(iii)

(2)
P

(3)
P11

Persistent/transient

p(E1+ Es El) + p(Ei* E,> E

p(Ei» EO+ E,+ El) + p(El+ E

3 Ty

2

(%)
(%)

)

1)

.

2

(o)

(52 &t

(%)
-+ El)
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(4) = - - -+ -+
P11 = P(E)T E> E)* E Ey) + p(E;* E;* E* E,)* E,)
4
= mt+
= (3
etc.
Therefore
(n)
zp - 2 + 3+.oo--oo
11 Y o+ (%) (%)
AT TV
1 -%
Therefore the states are all persistent
(iv) Mean of recurrence times
= (n)
o n
E(n) = & n Py
n=1
= 2 x%¥ x3x% + 4 x % + 5 x —%g +—§§+

= 1 ny?l
n=2

[§ this sum converges then the mean is finite
otherwise it is infinite.
Let us use the ratio test to check whether the

sum is convergent or not.
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u
Lim ' —T—n+l I = p
n-+o n

u
or - J ol [+

Ua

If Q0 <1 then the series converges
If P> 1 then the series diverges

If P=1 the test gives no information

U, = n ("L
Upey = (#1) ()7
Yn+1 n
Lim | —=——|_ Lim | (n#+l) (%)
n->o u n->e« n-1
n n (%)

_ Lim n+l

= ae | mo W]
_ Lim % 1

T noo l 1+ ﬁ"
= %

Therefore the sum converges. This implies that

the mean of recurrent times is finite or non-null.
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A chain with all these properties is called ergodic.

=l% % %
¥ % %
¥ ¥ %
'
Asymptotic behaviour of P
o % ]
g =
¥ o %
¥ % o
B 'Sk
B
- ¥ 5 %
LRSI §
¥ 0% % % o K
¥ % % % ¥ o
% 3/8 3/8
3/8_ % 3/8
3/8 3/8 % _J




:-‘f'\

)
I

(o)
>

OV =
o)

3/8

22
21

21

21
23

& o

3/8 | [o
3/8 | |3
I
s] [o
5 1
o b
b |
16 30
11 10 |
49l © 19
10 11
11, 1o_|
21 21
22 21
21 o
21 21
22 21
21 i 22

¥
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(42 43
T
128 43 42
43 43
Generally,
1/3 1/3
" = 1/3  ,1/3
1/3 1/3
2 (b) o =
E (8 o
P = E [o o
E, | % X
|
E3 __9_ O

Classification of states

Irreducible/reducible

EO* E3~> Ez* El-> E3

’

E
(o]

1/3
1/3

1<_J
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All the states of this chain are reachakle

from one another. The chain is therefore irreducible.

This implies that all the states have the same
properties. It is therefore enough to study the

properties of only one state.

(i) Periodicity Consider state E

1
(2)
p _
i TR
NEY
1% - EN AT S T U S =8
(4)
p &
11 e
(5)
p -
11 a
(6) _
- (3)2
S 2
11
(8)
p -
11 -
(9) _
pll = p(El* E3+ Ez+ Eo+ E3+ Ez* Eo* E3* E2+ El

(33

etc.
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t = BC.F. oF-1%33:.6,:9,:::}

= 3.

This means that the chain is periodic.

(ii) Persistent/transient

(3)

Pl1 = P(EDESE,SE) =

p(G) 2
11 = PE>ESESESESESE)) = (%)

p(9) 1 3
11 = p(‘El—ij—?EzéEo—?EﬁEz—éEo—‘?E3—>E2—>E1) = (%)
(12) J

P = (5 ?

(n)
z p11 TR S T Y R e
'3 5
1 - %

= 1

Therefore the chain is persistent.

(iii) Mean of recurrence times

E(n) = I n p(n)
n=1 11
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- AN+ 6(K)° + 0k} + 12(%YY +..in.

= 3 1 nHm°
n=1

Let us use the ratio test to check for the convergence

of this series

u = 3n (57
ur n+l
Un+1 = 3(n+l) (%)
u ; n+l s
Lim \ n+l | _ Lim | 3(n+l) (%) | _ Lim %I 1+ ' |
n-e U\"l n-+o " T nowo n
i 3n (%)
= X
Therefore the series converges. This implies that
the mean is finite i.e. non-null.
> o o 1] rb A N
_g?= P.P = o o o 1 o -0 o 1
¥ ¥ o o ¥ ¥ o o
o /1.~ of o o 1 fﬂ
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Asymptotic behaviour of p(n)

jk

F—o o o 1

P = o lo} o 1l
% X o o

o o 1 ‘c_>_J
’7) o o l[

__9_2= o o o 1
5 5 o o

@ ° "1 g

_ o o 1 o.-N
Pj=° o 1l o
o o o 1l

¥ % o o |

% o ol [o o
p_4= 2% o o o o

o N ?

=)

o
1)

0

N od

[o

(o)

(o)

=

Q
i

(O

weooae |

0

=)

{0

°)

-

o

o

d



|9

I'o

e

)

lav)

v}

e

= rlp=p.p=p?
= lp=plp=p’

general,

% o o » For n a multiple of

o o 1 o) <%

FB (o} 1l o |

= o o 1 of, For n=2,5,8,11,14,...

\"—' (o] O (o] l ’ For n = 1'4'7'10’13.000
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1 2 3 4 5
El ¥ o) % o o)
200,
E, % 5 % o o
2 = E3 Y o X (o] o
E, o o o 5 b
E5 ;9 o o) X i_

The states of this chain are not reachable from one
another. Therefore the chain is reducible.

{El' E:}g and €E4’ E5§ are closed sets.

State, Ez‘ is not a closed set.

Re-arranging these states we get,

R
L}

E2 = E3
1

B = B,

BT "%
]

E = E
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Now, By By B O R s

[ G ——

E1 ! X o o o)
L}

Ez 5 X o o o)

P =

]

E3 o o x X o
L}

E4 o o ¥ 3 o
1]

E5 _E % o o %J

Incidentally this chain has two identical closed
Censide r ot
sets. Let us nowAthe properties of one hese sets.

El E2

i sl Tty
Pl

e, % %

Classification of states

(i) Periodicity.

p(l) ' '
31 e p(El* El) Xy %
(2) ' ' '

) o = -> > = 2
11 = p(El E2 El) (%)
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p(3) (] 1 ] 1 3
11 - p(El'* Ez" Ez* El) = (%)
etc.
tom e ¥. ofF LY, 3570550050 |

l.

Therefore the states of the two closed sets are

N\

aperiodic.

(ii) Persistent/transient.

¢ (n)
I p £ 2 3
n=1 ll - (%) % (%) + (%) o i S R Bk
. -
l_g
= h B

This means that all states of the two closed sets are

persistent.

Mean of recurrence times

(n)

E(n) Inp),

= (%) + 2(15)2 +3(!5)3+.. .......

z n(y".
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Using the ratio test, it can be seen that the series
coverges. This means that the states are all non-null.

The two closed sets are ergodic chains.

Asymptotic behaviour of the closed sets

|+
N G
1
il
’ (¥ o ..le W [N o
[N o ¥ o
N o (¥ od

X o
N o

]

It can be seen that all powers of P are all equal

to P.

Therefore,



24. w N TR . TR
Ey [ o % X o o o |

E, o o o % % %

P= B le e e f- 3§

E, ' | o o o o o

E5 1 o o o o o

E6 _} o o o o fl_

E6<_E3 ES-* El

y

E]_(--E4

211 the states of this chain are reachable

from one another. Therefore the chain is irreducible.

(1) Periodicity

p(1)

i R L e L
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(2)

P =

115 P

D(3) 1

11 = PEDESDEMSE) = F

u

91(1) By @

p(5)

‘11 = p(El-y Ez-—>Eu9 E4——>El) = O
etc.
t= H.C.F. of 3

= 3

Therefore all the states of the chain are

periodic.

(ii) Persistent/transient

p(3)

p(El_>E2—>/'E6—>E1) + p(EI% E3'—>E49El) +

+ p(E;>Ey3> Ec>E;) + p(E;PE;> ES>E))

Q| =
+
o

1 R R Y
= F & FghpAtzt
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This means that the chain is persistent.

(iii) Mean of recurrence times

E (n)

n
g9 ™ 8
=)
(o)

Since the mean is finite it means that the states

of this chain are non-null.

The Asymptotic behaviour of p(n)
Jjk
R IR alc
1 1 1
(o] (o] o] § -3" '§ (o]
o o o) 1 1 1 o
2 3 3 3
P =
1 (o) o o o o 1l
1 o o) o o) o 1
1 o o o o QJ 1

o

wj=~ 0

(Wi

wi~ O

W)

10

W=



ol

\1
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o

W=

Wi

Wi

W=

W) =

(S

(¥ o

(N

(V]

Wl

Wi+

(I

(1

Wl

W)=

Wi+

Wi

(N1
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O] ~ ™ ™M O O 0)
(o] M M (o) o 0
0 i3] ~ M o o (o)
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Generally,
B~ P, =4, 1,10, 13,
" =p? ,n=5,8, 11, 14,......
a9 3aas;. e, i
Problem 3

A chain with states 1, 2,....n has a

matrix whose first and last rows are

(g: DPr ' OuioeerO)
and
8Os Do eerssBs “Gs P)s

\

In all other rows

Pr,x+1 = P

and

Pr3 =dq

Find the stationary distribution can the

chain be periodic ,
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Solution:
El E2 E3 E4""""°En
E1 ra- P o O ceeecccs 6—_
E, q o P o o
P = Eq o q o P o
E, o o a o o
. . . (e} o} .
. a . . o .
ﬁn—l « . . . Ougq. O Pp
E, o o o o o .q E!

Stationary distribution

Here we find a vector V such that

=
<

Il
o
|9
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-

q p

a o

= 9 9
V3...... Vl V2 V3

o o

B (o}

Working out the multiplication

- U TR . oT
p o o
o p o
o o o
. LI 3
. . p
o o g p

= =(R
Vl qV1+qV2 V2 (q) Vl
V,=pV, +qV a, = (BY v
2 1 3 3 q 1
2
_ C oo tlbela  p
V3—le+qV4 V4_q (q) qjvl
2 2
quZ q 1



Since

then

Dividing all through by Vl' we get

A2 3
—‘_]}-=1+_E.+(q) +(q) +¢.oon
2 q

Therefore

<
S
]
——
Qg
S—”
w
>
|
Qlo
Ne—"
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Therefore, .

f;;p/q %(1—p/q) (p/q)z(l—p/q)...(p/q)n'l(l—p/

1-p/q g(l—p/q) (p/qik(l-p/q)...(p/q)n'l(l-p/

vV = l-p{q = (1-p/q) (0/a) % (1-p/a) . . . (/@) * "L (1-p/

_i:p/q ;(q(l—p/q) ;p/q)z;l-p/q)...(;/q)n-l;l-pi
Periodicity

The matrix is irreducible. We can therefore find

the period of ones of the states.

S
= > =
11 PLE,™> E)) q
p(Z)
11- = PE)T B> E) ='pg
(4)
p s 33
11 = P(E} E;> E,> E,>E)) = p'g

etc.

t F H.C.F0f {1,2,4,...)

= l'

Therefore the chain is aperiodic .

\
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This chain can be periodic if,
Pjp =°

and

12

Problem 4:

Given the transitional probability matrix

. - 1
it SR
where
@0
P(s) = £ p°s®
n=o0 jj
and
0
F(s) = I £, M,
n=o0 3jj
Solution:
n - ni .,
P is the coefficient of s in P(s).
Now,
f(o) & o

(o]0
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foo o p(Eo-’ El+ Eo)
(1) _ Pt
f oo W PLE» Bad. =, 8
g3 o0 D(E_* E;* B> E
foYe)
{ § RS
fee © — PIESE i bl i ?
(S) v
T, T WS iIESE i Ak
e(n) _
foo = p(Eo+ Ej> .....
Therefore,
Foo(s) = X fég) s
n=o
= f(o) f(1)
foe) 00
0
= £9 4, £ g4+ 3
0o oo
n=2
= q s + I o o
e n=2 01 11

= a < O
01l 1

(o]e]

= a

)
o 01

l+ Eo) A

l-> Eo) =

(o)

.0 .0
11

3
a e Q

10
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©0
3 2 n-2 n-2
= OGS YO 06T I e S
n=2
o0
n-2 n-=2
= o _S.+ a o sz a
00 (o)} 10 n=2 11
@
) n-2
= aoos+ aOl alo )% (alls)
n=2
e 2 1
T %S t %) 2345 57 N 'g)
11
= (1 - s) + s2
= %0 & 11 %1 * %0
1l - alls
= S- a 52 + 0 s
. %00%%" %o ¢ %3 ol * %o
2
1l - all s

In the stochastic matrix we have

+

o0 * %01

which:implies,

a = 1 -a«

00
and

+ o

%10 11

1,

0ol

1,



which also implies,
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833 = 1 =954
Therefore,
3 <wal )6 < 1 = 50 a0yt ot
Foo(s) = 0l 0l 10 (o] ] 10
1 - (1 - alo)s
= (1 -.a.,)s - (1 -\a - o )s2
"0l 01 10
1 - (1 - alo)s
Therefore,
o o a 2
1 -F_(s) = 1 - 1 01's - 1 - " 10’8
1 - (1 - alo)s
ot S ¢ B alo)s - (1 - aOl)s +(1 -aol—ulo)s
l1 - (1 - alo)s
1~ = a., a0 +(1--a.. - a, )8
= 0l 10 ol 10

1 - {34

%108
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Substituting this expression in Poo(s), we get

B Tk 1 - (1 - alo)s
oo 5
1 - (2 - aol - alo)s + (1 -aol-alo)s
o A=) - alo)s
l -s - (1 - a01 - alo)s + (1 - aol—alo)
Y l1 - (1 - alo)s

1'5"(1'“01'“10)5[.1'53

- - (1 - %5

(1~ s)[_l -V Za - ag)a]

Writing this expression in partial fractions,

)s

00 l-s : l1 - (1 -» - a

0l 10

Therefore,

.A[: - (1 - 051 ~ alo)éj + B - Bs = 1-(1- alo)s

Let ,

then we get,

I
-

A+ B

Let,
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then we get,

AE =1 -ay '“10] =1-1-a,,

A (agy) +ay4) =04

Therefore,

a = %10
%10 * %01
Since,
A+B = 1
then
N R A, Y
1o T %5y
= %01
"si"™10

Substituting the values of A and B in Poo(s)

we get,

o o
Poo(S) “a 1a -0 “ ol
Ol "10] 1 - s 1 - (1 - A5y ~ ©

10'S

We know that Pég) is the coefficient of sn in the
expression Poo(s).

Therefore,

n) _ya a _a =
Foo T alo a B a Oia & e 10
0l+ "10 10 "10
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1 n
= —] + o (1 —-a .,(1 - a - a,.)
, a01+alo [10 0l 01l 0l 10
We know that,
(n)
poo ¥ p(n) = 1
ol
Therefore,
(n) Y
p = _ ~(n} .
ol 1 poo
1 a a o a n
= 1- = + 1 - - )
ay1+% 10 0ol 0ol lo-d
n
(Hgyitinye = G357 Gp1 51 T Gg; T g
%1 + %10
_%1 -%1 a - %1 - %10)"
%1 + %10
_ %1 1 -@a - %1 -%0"
%01+%10

(n)
11 °

We can show from the transition probability matrix

Next we find P

above that,,
f(n) = qa o
11 10,711

n-2
o
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(n)

f(n)
[e]e]

If we compare 11 and f we can see that

0l and 10 and %00 and %11 are replaceble .

Therefore

(n)
P, = “El“‘a"\g?l + %0 (1 - %01 - “10){]
o+ %10

!
and
(n) alo o o "
plO %o 1 ={l" = .10 -. 0}
01 %10
r e
Now, ‘ p(n) p(n)
11 01
Eh =
p(n) (n)
10 p
e 11J
_ o
%10 + 1 @ - %1 - *10)" Y11 -1~ %10 < Yo"
1
o o
o1 +*10
®10(1 -¢ 1- %ol -%10)" %01 + %1001 %01 -%10%"

Problem 5:

A student takes a 3-year diploma course. Each year
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he sits an examination to decide whether he

has passed the year's course or not. TIf he
passes he moves up and leaves the college at

the end of the third stage. If he fails he
repeats the year's course. The probabilities

of his passing the various examinations are

(i) 0.8 in the first one (ii) 0.7 in the second

one and (iii) 0.5 in the third one.

Let E E 37 E4 represent the states

: b i
1st year, 2nd year, 3rd year and left college

respectively.

(a) Write down the transition matrix for the

year - year movement of the student.

(b) Determine the probability that the student
is in state E2 after his second examination.
(c) Determine the mean and variance of the number
of years that a student with these transition

probabilities spends at the college.

(d) Find the matrix

B = N.R

and interpret the result.
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Solution;:

(a)

(b)

(c)

The transition-matrix is

=y E, =3 B,
E 0.2 0.8 0 0
E, |o 0.3 0.7 0
E; |0 0 0.5 0.5
E4 _:z 0 (0] l_J

From the transition matrix the probability

_after

that the student is in state E2

his second examination is

To be able to determine the variance and
mean number of years that this students
spends in college we need to put the

transitional matrix in the canonical

form:
E, By = =
E r— Fv. @ 0 0
n S S S e e
|
P = E |O : 0.2 0.8 0
E,JO 1 © 0.3 0.7
|
E, 0.51 O o 0.
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The matrix

r Sp—
0.2 0.8 o)
g = 0 O.3 O.7
0) O OiEJ

denotes transitions from one transient state to

another. Now,

0.8 -0.8 © "_[
(L -9 =] o0 0.7 -0.7
0 0 o.iJ

The fundamental matrix,

1

I‘Z
I

(r - Q"

= (Emg) ),

gives the average number of times the student is

in state E_., starting state E..

=
Adj - (I-Q)
det (I-Q)

An adjoint of a square matrix is the

BT

transposed matrix of its co factors.

Cofactors of (I - Q)

0.7 -0.7

- 3t5 190
All = (-1) 0 0.5



j &

13

21

P

23

31

Il

I

(=1)

(_1)l+3

(—l)1+2

(_1)2+3

(_l)3+1

0.56

1+2

-149
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0.40

0.40

0.56 |

0.56

o.5§_j

0.8(0.35) + 0.8(0)+ O.

0.280

ol

lo

«35

0.40

0.40

0.56

0.56

0.56
-

number of years spend by the student,

R -
Ay, = (-1)

= 0.56

PR T
Ajsq (=1)

= 0.56
Adj (I-Q) &=
Det (I-Q) =
Now,

-1 i 1
(I-Q) . 0.28
The mean

1
E(n,.) o= 0.28

0.40

0.40

0.56

0.56

0.26_1_




= 10 , 56
28 28
56
2 23

This means:

(i), the student spends an average of 131 years
28

in the college once he is in lst year.

(ii) Once the student is 2nd year he spends

28

(iii) Once the student is in 3rd year he spends

96 in college before going out.

2 years in college before leaving.

I -
Var(t) = (2 g - I)E - qu
&here, FEE 40
ik 1
N = - ] 0 40
(0] (0]
. g
28
26
28
S

50

56




and,

Variance

(a)

84 x

|td

56

=1
sq 282
p—
g 70
0
0
80 112
52 112
o) 84

x 139 + 80 x 96

52 x 96 + 112 x 56

2048
56 x 28

+ 112 x 56 - 139 x 139

- 96 x 96

- 56 x 56

962
562
80 112 ET 0
80 112 oo 1
(o} 112__j 0 o}
1 1392
5
28 :
2
—— b v
[ 139 1392
96 |- 962
56 562J

e

J
i)

96/28
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) —_ 1
35 40 56 [ {_O r
" ,

sl 1 o 0 40 56 0

0o 0] %EJ __O.EJ

This means that the student will eventually

leave college .

Problem 6:

El' Fz, E3, E4 are four points in a circle
and a boy steps from one to the other according

to the following transition matrix.

e}
(o]

& 2 3 4

“nl cEE R e

P = E2 P 0] q (0)
E3 o) X P 0 a

E4 o 0] o) 1

(a) Describe his movements assuming he starts
in Ez.

(b) Determine N, N,, T, ¥, and B
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(c) If the ﬁtarting point is E2, what are:

(i) the mean and variance of the number of times
the boy is at point E3.

(ii) the mean and variance of the number of steps

the boy takes before arriving in El or E4.

(iii) the probability that the boy is absorbed in
E4 ? (iv) Prob. of boy being absorbed in E, 2
Solution:
(a) From state E2 the boy can go to El where
he stops or he can go to state E3. From state E3
he can go to state E2 w?ere he repeats the movement

as described above or he can go to E4 where he

stops.

(b) We express the matrix in canonical form

as follows:

By 'Egq Ey5 0 By

E, 1 0 0 o |

= E, |o 1 0 0
E2 P 0] 0 q

e e AR USR8

From the matrix we get

i



-g) ™
E2 E,
1 q E2
1
af 1 ) l g 2 ol |1 (0]
pa 'l A\ Pl 6 1o " 1
il 1 ) 1 a i*‘Eg 0 - 1
l-pq p. 3 Pq (1-pa)
o) l+pg -
1-pq
RPRrs RN L
SRR l+pq  q(l+pg)- —
1=pq (l—pq)
p(1l+pg) 1l+pg
E, E3-—-
pq qg(l-q) E2
1 )2 5
1 - pq p(1-p7) pa E,
N.C
1 q 1l
ke A g
1-pq p 1 1

X 1
(1-pq) 2
P
1l q2
92 1
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l +qg

12 = (Zg - I)t - qu
1 a
2
1-pq P
e 1 )2 l+pg
v l-pg
2
L-P

{lse]
1

p + 3pg - p

|
e,

3
q+ 3pq - g

&
{

+

3
_

(c) If the boy starts at state

p

1+q el 7+ ?1+q)2

L}+p (1-pq) (1+p2

( 1 )2 1+qg) 2

~Pq l+p)2

E2,

(i) mean number of times the boy will be in Eq is
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Bingsk o iy

This is found the entries of N.
The variance of the number of times that the
boy is at E3 starting from E-2 is given by the

entries of N,.

2
var (n,.) = gticg )
22 2
1-pa)
(ii) the mean number of steps that the boy takes
before arriving in El or E4 is given by entries
of 1.

Therefore the boy takes

/

l+a
E(n21) _ (lqu) steps before entering E,-
The boy takes
E(n,,) = (1B
24
l-p

before entering E4

The variances are given by entries of Ty

The variance of the number of steps before entering

El is



3
var(n,,) = q + 3pgz- q
(1 - pq)
and
Var(n24) P+ 3pg -p
{1 = pq)

(iii) The probability that the boy is absorbed

in E4 starting from E2 is

2
b = ( g )
e ¢

(iv) Probability that the boy is absorbed in

state E, given that he started at E, is
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