
ABSTRACT

MAPPING LAND COVER LAND USE CHANGE IN MBEERE 
DISTRIC, KENYA.

The main goal of the study was mapping land cover land use change patterns in Mbeere 

District between 1987 and 2000.Two Landsat images acquired in 1987 and 2000; and 

MODIS data were used to map and quantify the patterns of change. The results revealed 

a complex land cover change pattern between the two dates; with both positive and 

negative changes. Grasslands increased by 29 %, settlement/agriculture by 31 %, while 

woodland reduced by 41%. The study also confirmed that digital change detection is still 

a viable change detection method in arid and semi-arid lands despite limitations 

associated with factors like high spectral similarities and phenology.
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CHAPTER I

Introduction
Monitoring environmental processes is becoming increasingly important 

wherever there is increasing population and development pressure placed on fragile arid 

and semi-arid environments (Sun et al, 2005). Globally, arid and semi-arid lands cover

over 70% of total landmass (Weigand & Florian, 2000) and support approximately one 

sixth of the world’s population (Veron, et al, 2006). Arid and semi-arid lands have been 

considered agriculturally and economically unimportant, and very few surveys on their 

biological productivity and dynamics have been carried out (Wellens, 1997). Degradation 

of arid and semi-arid lands has however occurred at a global scale, with over 70% of area 

affected in Africa, Asia and Americas, and about 54% in Australia (Wellens, 1997).

Controversy, both informed and uninformed, inevitably surrounds and confounds 

discussions of land degradation in the dry lands (Dregne, 2002).Local to national scale 

studies have demonstrated the importance and the socio-ecological significance of 

dryland degradation, though land cover change in these fragile zones is poorly 

documented, and its causes are not fully understood (Lambin et al, 2001). Single factor 

causation and irreducible complexity are the two theories, which are mutually exclusive 

but unsatisfactory explanations for dryland degradations (Geist & Lambin, 2004). Single 

factor causation proponents suggest various primary causes of degradation in the fragile 

arid environments including growing population and poor management of the same 

(Houerou, 2002). On the other hand, dryland degradation has been attributed to multiple 

causative factors that are specific to each locality, revealing no distinct pattern (Dregne, 

2002).

A fundamental and continuing debate on arid land degradation has been over 

whether desertification actually exists, and if so, how it might be defined, measured and 

assessed (Herrmann & Hutchinson, 2005). Above the debate of whether the causes are 

socio-economic or biophysical, there is the question on the degree to which these causes 

are at local, and how they interact across organization levels at different regions of the 

world and at different time periods (Geist & Lambin, 2004).
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Some scientists have argued that the figures of global land cover change and 

desertification are not accurate and they have talked of the ‘myth of desertification’ as a 

publicity tool (UNEP, 2002; Herrmann & Hutchinson, 2005). The argument is that dry 

land ecosystems might after all be adapted to disturbances and may exhibit good recovery

characteristics. According to Wiegand & Florian (2000), vegetation changes generally 

occur unpredictably in the short term (years) in response to rainfall, and episodically over 

the long term (several decades) in response to rare events, or due to grazing pressure, 

climate change, or a combination of these factors. Arid and semi-arid ecosystems also 

exhibit complex non-equilibrium dynamics involving complicated non-linear processes 

and stochastic event-driven behavior (Pickup et al., 1998). Brief, unpredictable and 

episodic events like rainfall in arid regions can be of crucial importance in understanding 

the ecology of organisms or communities, but these events can best be captured by 

continuous, long term monitoring (Henschel & Seely, 2000). Weigand & Florian (2000) 

argued that the complex nature and changes in arid and semi-arid ecosystems and 

especially the mismatch between the observation times and time scales of vegetation 

changes make it difficult to fully understand their long term dynamics.  According to 

Rasmussen et al (2001), broad generalizations on land degradation process, based on 

local scale studies are risky, as they oversimplify the complex reality. The research, 

however, concluded that whereas regional or continental scale studies will be required in 

order to improve on the estimates of environmental change, local scale studies are 

required to understand the processes and causes involved. 

 Recent research into natural resources rehabilitation based on in-depth case 

studies has highlighted situations where population growth and agricultural 

intensification have been accompanied by improved rather than deteriorating 

environmental resources (Boyd & Slaymaker, 2000; Tiffen et al, 1994). Mazzucato & 

Niemeijer (2001), conducted research in eastern Burkina Faso, which had been 

experiencing high population growth and agricultural intensification, and concluded that 

there was no evidence that the land was being degraded. The research was aimed at 

establishing the relationship between population growth and agricultural intensification to 

environmental degradation. Land cover loss and soil erosion were used as the indicators 

of degradation. After analyzing land cover and soil erosion data covering a period of six 
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years, they concluded that there was no land degradation evident.  However, Boyd & 

Slaymaker (2000) did a case study of arid and semi-arid lands within six countries in 

Africa and concluded that there were few examples of reversal of natural resources 

degradation and no evidence of a wider trend towards environmental recovery. Their

research was initiated through regional and national literature reviews, and case study 

methodologies were developed and tested. The main objective was to examine how 

widespread the prospects for positive outcomes are by comparing increasing population 

with rates of erosions. The research concluded that there was no wide trend towards 

environmental recovery with increasing population. It is within these conflicting findings 

therefore that this research aims at mapping land use land cover (LULC) change in 

Mbeere using Landsat multitemporal data, and analyze the various factors responsible for 

the current LULC patterns. 
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The Problem
Kenya is an agricultural country and depends entirely on land productivity for 

subsistence and socio-economic development (GOK & UNEP, 1997). In contrast, about 

80% of Kenya’s landmass is classified as arid and semi-arid, and occupied by 25% of 

country’s population (GOK, 2005). However, despite their relative aridity, these lands 

support over 60% of the livestock population, and the largest proportion of Kenya’s 

wildlife population (Ngugi, 2005). Arid lands in Kenya also account for 10% of country’s 

GDP and more than 80% of eco-tourism interests, which are among the main earners of 

foreign exchange to the country (GOK, 2005).

Based on 2003 Kenya Demographic and Health Survey, arid and semi-arid lands 

are still facing socio-economic problems such as increasing poverty, acute food and water 

shortage, illiteracy and poor health (GOK, 2005).  In addition, human population in these 

fragile environments has been increasing rapidly; causing environmental degradation and 

fragmentation. For example, Mbeere district which is arid and semi-arid has seen 

tremendous population growth (Kamau, 2004; Mbugua, 2002; Chira, 2003). According to 

1989 population census, Mbeere district had a population density of 65 persons per 

square kilometer. By 1999 population census, the population density had increased to 85

persons per square kilometer with an average family size of 6 persons per household. 

In 1950s and 1960s, Mbeere was sparsely populated and was covered by bush or 

grasslands that were used for raising large herds of goats and cattle (Olson, 2004). 

Mbeere people were originally pastoralists who kept large herds of animals and 

subsistence shifting cultivation was practiced as supplementary economic activity. Since 

land was communally owned, it was easy to move around in search of pasture and the 

shifting cultivation gave land time to recover making it less degraded. Increasing 

population with time however forced slow sedentarization of the once pastoralist 

community and this marked the beginning of rapid changes in land cover in the area.

Migration from the neighboring high potential agricultural districts due to 

population pressure in those areas has increased cultivation practices that are 

incompatible with the unstable and fragile arid environments (Southgate & Hulme, 

1996). According to Olson (2004), in 1970s and 1980s, the Kenyan government 

implemented a land adjudication program in Mbeere district which caused rapid change 
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in land cover due to increased sedentarization of the once predominantly nomadic 

community. The area which was once covered by bushland was cleared within first years 

of adjudication causing rapid change in land cover.

Though arid and semi-arid lands globally have been facing increasing pressure

from growing human population, and degradation, LULC change in arid and semi-arid 

lands has been poorly documented (Lambin, et al, 2001). In Kenya, most research work 

has been concentrated in the high potential highland zones which are considered of high 

economic importance. However, the increasing population coupled with persisted

drought and famine in these vast lands calls for constant monitoring and management to 

control degradation and ensure sustainable use of natural resources.

The current Mbeere District development plan aims at effective management, 

sustainable economic growth, and poverty reduction.  The plan identifies drought and 

unreliable rainfall, and population growth as among the key development challenges in 

the district (GOK, 2002). To ensure effective management of these problems in the 

district and alleviation of poverty, LULC change data is poised to play a key role in 

policy formulation and implementation.

Hydro-electricity is the main source of energy in Kenya, accounting for over 70% 

of total energy supply for both industrial and domestic use (KPLC, 2004). Mbeere 

District has four of Seven Forks dams, which accounts for over 73% of Kenya’s total 

power production (KenGen, 2003). Reports have indicated that there has been increased 

siltation leading to the lowering of water levels in the reservoirs (Nthiga, 2005; Gakii, 

2005). The siltation has been attributed to both loss of vegetation within the catchment 

area as well as within and around the dams. The original buffer zones between the dams 

and surrounding communities have been cultivated illegally. Poor cultivation and soil 

conservation methods around the dams have therefore resulted into soil erosion, 

increasing the rate of siltation.

On the other hand, no digital change detection has been done on Mbeere district 

so far. The only study focusing on land cover change covered both Embu and Mbeere 

districts and used a political ecology among other approaches to understand how human 

decisions have contributed to the observable land use land cover patterns in the area. The 

research used aerial photographs, satellite images and group interviews. The images and 
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photographs were interpreted using visual interpretation and corrections made during the 

ground observations (Olson, 2004).

Research Goal and Objectives
The goal of this research was to map LULC change in Mbeere district using satellite data 

from 1987 to 2000.

The specific objectives were:

1. To create LULC maps of Mbeere district for the years 1987 and 2000.

2. Detect and quantify spatial pattern of LULC change in the district in the period 

1987-2000.

3. Analyze factors that have contributed to the observable LULC change patterns.
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CHAPTER II

LITERATURE REVIEW

Land Use Land Cover Change Mapping
The pace, magnitude and spatial reach of human alterations of the earths land 

surface are unprecedented (Lambin et al, 2001).  Several regions around the world are 

currently undergoing rapid, wide-raging changes in land cover (Mas, 1999; Coppin et al, 

2004). Land cover change on the other hand has been recognized as an important driver 

of global environmental change (Petit et al, 2001). According to Foody (2001), land 

cover change is a major component of global change with grater impact than that of 

climate change. Causes of these fluxes are anthropogenic as well as natural or 

combination of the two.

Due to increasing recognition of the impacts of the changing global land cover; 

the availability of timely, reliable LULC information is becoming more important than 

ever in supporting decision making processes at various levels, both within a country and 

between countries (Ramankatty & Foley, 1999). In addition, with increasing global 

environmental change and more emphasis on sustainable development (Bradley & 

Mustard, 2005; Leitao & Ahren, 2002), spatial data are poised to play a leading role in 

altering current environmental trends through sound policy formulation and 

implementations. According to Jansen & Gregorio (2002), land cover data may form a 

reference base for various applications; including forest and rangeland monitoring, 

statistics for planning and investment, biodiversity conservation, climate change, and

desertification monitoring.

Spatial data are important in the process of resource management decision 

making, yet there is still no substantial land cover information existing both at local and 

global scales (Chandra et al., 2005). In developing countries land cover data are 

inadequate or unavailable, of inconsistent quality, and out of date; while generating it is 

time consuming and expensive (Haack & Richard, 1996).   This has been attributed to 

difficulties in accessing some regions as a result of limited infrastructures, civil and 

military disturbances; lack of trained personnel, equipment or funds to collect 
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information properly; or rapid changes in the resource base not detectable by traditional 

data collection methods (Defries & Townshend, 1999). However, with wide application 

of land cover data, its need has increased and its availability is being aided by advancing 

technologies in remote sensing and geographic information systems.

Land use and land cover are often used interchangeably in many remote sensing 

change detection studies (Seto, et al, 2002). Land use is a term used to refer to the human 

uses of the land, or the immediate actions modifying or converting land cover (Bradley & 

Mustard, 2005; Meyer &Turner, 1992). Land use can consist of varied land covers; and it 

is an abstract concept constituting a mix of social, cultural, economic and policy factors 

which have little physical importance with the respect to reflectance properties, and 

hence has limited relationship to remote sensing (Treitz & Rogan, 2004). On the other 

hand, land cover refers to the vegetation type that characterizes a particular place, or the 

actual distribution of vegetation, water, deserts, ice and other physical features of the 

land, including those created by human activities (Estreguil & Lambin, 1996; Meyer & 

Turner, 1992). According to Cihlar & Jansen (2001), land cover is characterized by the 

biophysical features of the terrestrial environment, typically based on a classification 

system consisting of discrete classes and formulated for a specific purpose. Land use 

however refers to the manner in which these biophysical assets are used; or the intent 

with which a particular land cover was formed.

Ecosystems are continuously changing; where change is defined as “an alteration 

in the surface component of vegetation cover” or as “a spectral /spatial movement of a 

vegetation entity over time” (Coppin et al., 2004). In addition, land cover changes are 

often conceived as simple and irreversible conversion from one type to another (Mertens 

& Lambin, 2000).  Distinction has however been made between land cover conversion 

and land cover modification; with the former referring to the complete replacement of 

land cover with another and the latter implying the more subtle changes that affect the 

character of land cover without changing its overall classification (Coppin et al., 2004; 

Meyer & Turner, 1992; Jansen & Gregorio, 2002). Land cover modification is more 

prevalent than land cover conversion and both can be human induced or of natural origin. 

The rate of change can either be dramatic as exemplified by fire; or gradual, such as 

biomass accumulation (Coppin et al., 2004). Similarly, land cover changes are most often 
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viewed as non continuous in space, leading to complex landscape mosaics and mixtures 

of cover types (Mertens & lambin, 2000).

Land cover changes are so pervasive that, when aggregated globally, they 

significantly affect key aspects of Earth system functioning (Lambin et al, 2001, Lambin 

et al, 2003). Land cover exerts large influence on many basic environmental processes 

and consequently any transformation in it can have marked impact on the environment at 

local to global scales. Concerns about LULC change emerged on research agenda on 

global environmental change several decades ago with the realization that land processes 

influences climate. In the 1970s it was widely recognized that land cover change modifies 

surface albedo and thus affecting surface-atmosphere energy exchange; while in the 

1980s, terrestrial ecosystems as a sources and sinks of carbon were highlighted (Lambin, 

et al, 2001).

It is widely recognized today that land cover change causes soil erosion, increased 

surface run off and flooding, carbon dioxide concentration, and climate change (Lambin, 

et al, 2003). Land cover change contributes significantly to earth-atmosphere interactions 

and biodiversity loss, it’s a major factor in sustainable development and human responses 

to global change, and it is important in integrated modeling and assessment of 

environmental issues in general (Turner, et al, 2004). The temporal and spatial dynamics 

of land cover have, for instance, important influences on hydrological and climatic 

systems that impact significantly on global biogeochemical cycling (Boyd, 2002); and 

biodiversity loss (Mas, 1999). LULC changes also determine, in part the vulnerability of 

places and people to climate, economic, or sociopolitical perturbations (Lambin, et al, 

2003).

As a result of increasing emphasis on sustainable development today, it is

important to monitor and quantify the process of land cover change. Current data play an 

important role at regional and global level in formulation and implementation of policies. 

These policies on the other hand are aimed at achieving sustainable resource use, 

reverting negative environmental conditions, preserving biodiversity and endangered 

species and ensuring biological continuity threatened by increasing human population 

and intensification of human activities. However, land cover change is still poorly 

documented today. Since it was recognized by the international Geosphere-biosphere 
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program (IGBP) as a core field of study, it has received a wide attention from different 

scholars worldwide (Xu et al, 2002).

To understand and predict the change process, one needs to monitor and 

characterize spatial patterns of LULC change (Petit et al, 2001). While the study of land 

cover change includes description and classification of LULC, monitoring of change, and 

mechanism of driving forces, the ultimate goal of scientists is to build models that can be 

used to forecast changes and predict their impacts (Xu, et al, 2002).

A variety of methods and techniques of LULC change study have been developed 

and applied, including remote sensing, GIS, and statistical methods (Xu et al, 2000).

Historically LULC change analysis has been based on aerial photographs and ground 

surveys (Haack & Richard 1996; Mas, 2004), making it difficult to have large scale data, 

and the process being time consuming and expensive. However, due to their high 

resolution, and accessibility, aerial photographs still remain an important tool in 

surveying and mapping of natural resources today (Sebego & Arnberg, 2002). Field 

based studies on the other hand allow the observation and description of process of land 

cover though they are not sufficient in quantifying and analyzing spatial-temporal 

patterns of LULC at an aggregated level (Petit et al, 2001). According to Defries and 

Townshend (1999), a comparison of land cover data sets from ground cover based 

sources have showed substantial disagreements. This is a situation where different 

datasets of the same area reflect different geographical phenomena at the same point in 

space. The discrepancies result from differing definitions and classification of cover 

types, inconsistent interpretation of land cover definitions, confusion between natural and 

human modified vegetation, and the actual disagreement about the geographical coverage 

of land cover types (Defries & Townsend, 1999). Moreover, field studies alone cannot 

provide predictions of future patterns of change.

Remote sensing has emerged as an important method in LCLU change monitoring 

(Collins & Woodcock, 1996; Cobly & Keating, 1998; Treitz & Rogan, 2004; Petit et al,

2001). Since the launch of the first satellite in 1972 (Haack & Richard, 1996; Defries & 

Townshend, 1999), space borne remote sensing has been providing vital data for the 

analysis of regional and global land cover (Petit et al, 2001). Remote sensing has 

provided an alternative method of land cover change detection with the advantage of 



11

capabilities of large regional to global coverage, high temporal and spatial resolution and 

easy accessibility (Mayuax et al., 2004; Jansen & Gregoria, 2003). According to Defries 

and Townshend (1999), satellite data provide the basis for geographically referenced 

global land cover characterization that is consistent, repeatable over time, and potentially 

more reliable than ground based sources. The application of satellite data for mapping 

land cover at a large scale started with regional studies in Africa (Turker et al., 1985) and 

South America (Townshend et al., 1987). These laid the basis for land cover 

classification, and satellite data are now a primary source for both static depictions of 

land cover and identification of land cover change. 

Digital Change Detection
Landscapes both natural and human made are dynamic and in state of flux, and it 

is important that these changes are documented and understood (Coppin et al, 2004).Both 

remote sensing and field based methods have been used in the study of LULC change, 

and in grater sense, for inventories of both biophysical and human made features.  

Remote sensing has become more important due to ability to cover large areas, high 

temporal and spatial resolution and cheap accessibility of remote sensing data (Collins & 

Woodcock, 1996; Colby & Keating, 1998).

Digital change detection involves systematic steps from image acquisition to 

preprocessing, classification and actual change detection. Historically, this form of 

remote sensing started in the 1960s with limited analysis of mutispectral scanner data and 

digitized aerial photographs (Lillesand, et al 2004), and since the launching of landsat-1 

in 1972, digital image processing has seen tremendous growth to date. The whole process 

from data acquisition to the final extraction of the intended information involves various 

steps and every stage is important as it can have significant impacts on the final results.

Successful implementation of change detection analysis using remote sensed data 

requires careful consideration of the sensor, environmental characteristics and image 

processing methods (Lu, et al, 2003); and failure to understand the impacts of these 

various parameters can lead to inaccurate results.
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Data Acquisition and Preprocessing

Data should be obtained from a sensor that acquires data at approximately the 

same time of day and on anniversary dates. Same date images eliminate diurnal sun angle 

effects while anniversary dates images minimizes the influence of seasonal sun-angle and 

plant phonological differences (Jensen, 2005).

Raw digital images usually have some geometric distortions as a result of 

variations in the altitude, attitude, Earth curvature, atmospheric refraction, relief 

displacement, and nonlinearities in the sweep of a sensor’s IFOV (Lillesand, et al 2004). 

These errors should be corrected to ensure accuracy of the final results. According to Lu 

et al (2003), the importance of accurate spatial registration of multi-temporal imagery is

obvious because largely spurious results of change detection will result if there is 

misregistration.

Atmosphere affects the radiance received by the sensor by scattering, absorbing, 

and refracting light; and correction for these effects, as well as for sensor gains and 

offsets, solar irradiance, and solar zenith angles are necessary. These must be included in 

the in radiometric corrections procedure that are used to convert satellite recorded digital 

counts to ground reflectances (Chavez, 1996). 

Dealing with multi-date image datasets requires that images obtained by sensors 

at different times are comparable in terms of radiometric characteristics (Mas, 1999).  

Conversion of digital numbers to radiance or surface reflectance is a requirement for any 

quantitative analysis of multi-temporal images; and several methods such as dark object 

subtraction (DOS), relative calibration and second simulation of the satellite signal in the 

solar spectrum have been developed for atmospheric normalization (Lillesand et al., 

2004). The COST model (Chavez, 1996) is an improved DOS technique and includes the 

use of the cosine of the solar zenith angle to achieve results similar to those of physical 

models.

Image Enhancement
The main goal of image enhancement is improving visual interpretability of an 

image by increasing the apparent distinction between features in the scene (Lillesand, et 

al 2004).  This ensures that features appears clear and increases the ability to distinguish 
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different features. Different techniques are used in image enhancement including 

principal components analysis, Kauth-Thomas transformations and vegetation indices. 

(Jensen, 2005; Lillesand, et al 2004).

Principal Components Analysis

Principal components analysis is a technique that transforms the original remotely 

sensed data into substantially small and easier to interpret set of uncorrelated variables 

that represent most of the information present in the original data sets (Jensen, 2005).  

Principal components analysis is therefore a data compression method which allows 

redundant data to be compacted into fewer bands. It is a linear transformation which 

decorrelates multivariate data by translating and /or rotating the axes of the original 

feature space, so that the data can be represented without correlation in a new 

components space (Lasaponara, 2006).

Spectral Vegetation Indices (SVIs)

These are dimensionless, radiometric measures that indicate relative abundance 

and activity of green vegetation (Jensen, 2005). SVIs are used to create output images by 

mathematically combining digital numbers (DN) values of different bands; and usually 

use the inverse relationship between the red and the near-infrared reflectance associated 

with the healthy green vegetation. SVIs use the well known characteristic shape of the 

green vegetation spectrum by combining the low reflectance in the visible part of the 

spectrum with the high reflectance in the near infrared (Rendeaux, et al, 1996).  These 

vegetation indices therefore operate by contrasting intense chlorophyll pigment 

absorption in the red against the high reflectivity of plant materials in the NIR (Elvide & 

Chen, 1995). 

Vegetation indices have been grouped into two categories; ratio based and 

orthogonal indices (Lawrence & Ripple, 1998). Ratio based vegetation indices include

normalized  difference vegetation index (NDVI), Simple Ratio (SR) and several modified 

versions of NDVI designed to address its sensitivity to factors such as soil variability and 

atmospheric conditions (Lawrence & Ripple, 1998). Soil based or orthogonal vegetation 

indices on the other hand are based on there being a line in the spectral space along which 
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bare soils of differing brightness will lie, with the Kauth-Thomas being the most 

common.

Kauth-Thomas or Tasseled Cap Transformations

The KT or tasseled cap was originally developed using Landsat multipsectral 

scanner data for agricultural application (Kuath & Thomas, 1976). KT is an orthogonal 

transformation of the original Landsat MSS data space to new four-dimensional feature 

space (Jensen, 2005). The KT is sensor specific; and different sets of coefficients are 

invoked depending on which Landsat data are used (Patterson & Yool, 1998). KT 

transforms develops orthogonal indices based on library of soil spectra and assumes no 

interaction between sub pixel components; and therefore producing three spectral features 

representing changes in brightness, greenness and wetness (Rogan et al, 2002).

Image Classification
Multispectral image classification is the process of sorting out pixels to finite 

numbers or class themes based on the data file values. The overall objective of image 

classification procedures is automatically categorizing all the pixel values in an image 

into land cover classes or themes (Lillesand, et al 2004). The basis of image pixel 

categorization is based on the fact that different features have different reflectance.  The 

classification process involves pattern recognition inherent in the image, with spectral 

pattern considered the most scientific, though temporal and spatial pattern recognitions 

can be used too.

Supervised and unsupervised classification schemes are the most widely used 

classification methods. Both supervised and unsupervised classification algorithms 

typically use hard classification logic to produce a classification map that consists of hard 

discrete classes (Jensen, 2005).  Before classification is carried out, the specific target 

classes should be identified. This requires the use of a classification scheme containing 

taxonomically correct definitions of classes of information that are organized according 

to logical criteria (Jensen, 2005).  Standardized classification schemes have been 

developed and applied by various researchers to aid in specifying land cover classes. The 
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main purpose of standardization of classification schemes is to ensure uniformity, and 

comparitability of various research works with high degree of accuracy. 

Supervised classification always requires a priori knowledge of the study area to 

ensure selection of the training sites. According to Jensen (2005), in a supervised 

classification, the identity and location of some of the land cover types are known a priori 

through a combination of field work, interpretation of aerial photographs, map analysis 

and personal experience. Training sites spectral characteristics are used in training the 

algorithms for the land cover mapping in the image. Petit et al (2001) used supervised 

classification to map land cover changes in South-eastern Zambia and discriminated ten 

land cover classes.

Unsupervised classification involves algorithms that examine the unknown pixels 

in an image and aggregate them into a number of classes based on the natural groupings 

or clusters present in the image values (Lillesand, et al 2004). The spectral classes from 

the unsupervised classification are then identified and their information utility defined 

through comparing the classified image with reference data available. The advantage of 

unsupervised classification is that it is automated and does not require a priori knowledge 

of the study area. This makes it easy and needing less skills and experience. There are 

various clustering algorithms used in determining the natural spectral groupings present 

in a data set; and Iterative Self-Organizing Data Analysis (ISODATA) is the widely used.  

This algorithm permits the number of clusters to change from iteration to the next, by 

merging, splitting, and deleting clusters (Lillesand, et al 2004).

Accuracy Assessment
The need for accessing accuracy of spatial data derived from remote sensing 

techniques and used in Geographic Information System (GIS) analysis has been 

recognized as a critical component of many projects (Congalton & Green, 1993). 

According to Congalton & Green (1991), if information derived from remote sensing

data is to be used in some decision-making process, then it is critical that some measure 

of its quality be known. The most common accuracy assessment elements include overall 

accuracy, producer’s accuracy, user’s accuracy and kappa coefficient (Lu, et al 2003). 

One of the most common methods of expressing classification accuracy is the preparation 



16

of a classification error matrix (Lillesand, et al 2004). An error matrix is an array of 

numbers set in rows and columns that express the number of sample units assigned to a 

particular category in one classification relative to the number of sample units assigned to 

a particular category in another classification (Congalton & Green, 1991). The error 

matrices compare, on a category by category basis, the relationship between known 

reference data and the corresponding results of the automated classification. The matrix is 

able to identify both omission and commission errors in the classification as well as the 

overall, producer’s and user’s accuracy.

Change Detection Methods
Digital change detection encompasses the quantification of temporal phenomena 

from multi-date imagery that is most commonly acquired by satellite-based multi-spectral 

sensors (Coppin et al, 2004). In general, change detection involves the application of 

multi-temporal datasets to quantitatively analyze the temporal effects of the phenomena 

(Lu et al, 2003). 

Good change detection research should provide the following information: (1) 

area of change and change rate; (2) spatial distribution of changed types; (3) change 

trajectories of land cover types; and (4) accuracy assessment of change detection results.

A large variety of change detection methods have been developed and applied (Collins & 

Woodcock, 1995), and the choice of an appropriate system and technique will depend on 

the objectives of the study and the size of the budget but few, if any, guidelines exist to 

facilitate this selection process (Green et al, 1998). Different change detection algorithms 

have their own merits and no single approach is optimal and applicable to all cases. 

Previous literature has shown that image differencing, principal component analysis and 

post classification comparison are the most common methods used for change detection. 

Change detection methods have been grouped generally into image algebra, 

transformation and classification. 

The algebra category includes image differencing, image regression, image 

ratioing, vegetation index differencing, change vector analysis and background 

subtraction. These techniques involve subtraction of two or more images of almost 

identical radiometric characteristics; where subtraction results in positive and negative 
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values in areas of radiance change and zero values in areas of no change (Green et al, 

1998)

Transformation category on the other hand includes PCA, KT, Gramm-Schmidit 

(GS), and Chi-square transformations. Transformation change detection methods usually 

results in change/no change information and do not show from/to information. 

Classification category includes post-classification comparison, spectral-temporal 

combined analysis, expectation-maximization algorithm change detection, unsupervised 

change detection, and hybrid change detection and ANN (Lu, et al, 2003). This category 

has the advantage of showing both change no change as well as ‘from to’ information.

Image Differencing

In this method, spatially registered images acquired at different times are 

subtracted to produce a residual image which represents the change between the two 

dates (Mas, 1999). This would result in datasets with positive and negative values 

representing areas of change and zero values representing no change (Coppin et al, 

2004).Using an image with 8-bit image, the potential range of differences range between 

-255 to 255. In the algebra based change detection category, image differencing is the 

most often practiced. Visible red band image differencing has shown to be suitable for 

change detection in arid and semi-arid environments, but it is not clear this is true in other 

environments such as moist tropical regions.

Vegetation Index Differencing

This method involves subtracting images which have been converted to the 

various vegetation indices for both dates in the study. The main advantage of vegetation 

index differencing is that it emphasizes differences in the spectral response and reduces 

impacts of topographic effects and illumination (Lu et al, 2003). 

Principal Components Analysis

It involves two registered images to form a new multiband image containing 

bands from each date (Lillesand, et al 2004). The main advantage of these 

transformations is reducing data redundancy and emphasizing different information in the 
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derived components. Then a PCA based on variance-covariance matrices or a 

standardized PCA based on analysis of correlation matrices is then performed. Fung & 

LeDrew (1987) used PCA in examining land cover change in the Kitchener-Waterloo-

Guelph area Canada and concluded that minor components can detect land cover changes 

and standardized principal components computed from the eigenvectors of the correlation 

matrix provide more accurate information for change detection than do non-standardized 

principal components derived from the covariance matrix.

Post Classification Comparison

Post classification analysis is the most common of these methods and it involves 

independently produced spectral classification results from each end of the time interval 

of interest, followed by a pixel by pixel or segment by segment comparison to detect 

changes in cover type (Coppin et al, 2004). In addition to the algorithms which are 

applied on the classified images to determine those pixels with a change between the two 

dates, statistics can be compiled to express the specific nature of changes between the 

two images (Lillesand, et al 2004).  The main advantage of these methods lies in the fact 

that the two images are separately classified thereby minimizing the problem of 

radiometric calibration between the dates. However, the accuracy of post classification 

comparison depends on the accuracy of initial image classification of each date. 

Misclassification and misregistration errors that may be present in the original images are 

compounded and the results obtained using post classification comparisons are therefore 

frequently judged as unsatisfactory (Coppin, et al, 2004).
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CHAPTER III

METHODS
Study Area

 Mbeere District lies in latitude 0° 20’ and 0° 50’ south and longitude 37°16’ and 

37°56’ east, and covering a total area of 2097 square kilometers. It slopes from the 

northwest to southwest direction; with altitude around 500 meters above see level on the 

Tana River basin to 1,200 meters above sea level.

Rainfall is bimodal with annual averages of 610-892mm. The ‘long rains’ fall 

between April and June, while the ‘short rains’ are experienced from October to 

December. It is interesting to note that the people in the district who are predominantly 

agriculturalists rely mostly on the short rains from October to December. Although 

rainfall is erratic and unreliable, the long rains are the most unreliable. Analysis of 

rainfall from the district since 1959 to the present has revealed that there has been a 

significant decline in the amount of rainfall recorded throughout the years to date. 

Droughts are common in the area and prolonged droughts cause significant reduction in 

vegetation which takes a long time to recover. Surface runoff and poor farming methods 

have increased soil erosion which is clearly evident by the deep gullies which are 

common and have contributed to transportation problems in the district.

Temperatures range from 20°C to 28°C with annual average of about 24°C. July 

is usually the coldest month with an average monthly temperature of 15°C; while 

September is the warmest month with temperature maximums raising up to 30°C.

Humidity is generally low throughout the district, though there is climate variation 

around Kiambere, Kindaruma, Masinga and Kamburu dams on the southern region. High 

temperatures cause high evaporation throughout the year.

Vegetation is generally of savanna type. There is one game reserve within the 

district plus several forest reserves including Kianjiru and Kiambere forests (Mbugua, 

2002; Kamau, 2004). According to Olson (2004), in 1950s and 1960s, Mbeere District 

was covered mostly by bush or grassland; and vegetation was basically of derived 

savanna created by many years of grazing animals and use of fire.
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Human population in Mbeere District has been increasing (Chira, 2003; Gicimbi,

2002). Based on the 1999 population and housing census, the total population of the 

district was 170, 593, and was growing at a rate of 2.3% annually. The population density 

based on the 1999 census was estimated to around 82 persons per square kilometer 

compared to 65 persons per square kilometer in the 1989 census. High population density 

in the neighboring high potentials districts has pushed the landless people to the more 

marginal areas in Mbeere District. This migration has increased agricultural practices that 

are incompatible with the unstable and fragile arid environment (Southgate & Hulme, 

1996).  

Agriculture and livestock keeping are the most common land use activities. In 

Mbeere District, small-scale agriculture is widely practiced with most production being 

for subsistence use, while small-scale horticulture is practiced in some parts of Gachoka 

Division (Mbugua, 2002). Increasing human population has led to loss of vegetation 

through cultivation, overgrazing, fuel wood and charcoal production (Mbugua, 2002; 

Sindiga, 1984).

Pastoralism is practiced across the district, and land under this practice is in 

patches and surrounded largely by cultivated farms. Overall, some tracts of land have 

been left intact, particularly on the lower eastern zone of the district due to its marginal 

nature (Mbugua, 2002).

Land adjudication in Mbeere District effected by the government starting in 1970s 

and 1980s caused rapid settlement and increased cultivation and grazing. This has had 

enormous impact in land cover between this period since land was cleared for agriculture 

and grazing was secluded to private lands as opposed to the traditional communal grazing 

lands. 
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Table: 1 Climate ecological zones of Mbeere.

Agro-Ecological  zone Altitude in M Annual mean temp  

in degree Celsius 

Annual Mean rainfall in mm

UM 4 Sunflower-

maize

1,280-1,400 20.7-20.0 960-1,100

LM 3 Cotton 1,070-1,280 22.0-20.7 900-1,100

LM 5 Lower midland

Livestock-millet

830-1,130 23.5-21.7 700-900

IL 5 Lowland 

Livestock-millet

760-830 23.9-23.5 640-780

Source: Olson, 2004.
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Figure 1: Study area map
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Data Sets.
Landsat Data

Landsat images used in this research included February 25th 1987 Thematic 

Mapper (TM) and 21st February 2000 Enhanced Thematic Mapper plus (ETM+). Both 

images were obtained from University of Maryland’s Global land cover facility. The 

dates chosen were significant because documented significant changes in land cover 

occurred in the late 1970s and 1980s in Mbeere District. Land adjudication program 

effected by the government within this period abolished the traditional communal land 

ownership in favor of private ownership which resulted in significant fragmentation of 

the environment.

These images were also chosen because they were cloud free and near 

anniversary in their acquisition dates. February is usually dry period and was ideal for 

differentiating evergreen woodland from Comiphori-dominated deciduous woodlands 

common in the study area.

Table 2: Landsat images

Image Path/row Acquisition date

Landsat TM 168/60 Feb 25th 1987

Landsat ETM+ 168/60 Feb 21st 2000

Landsat TM 168/61 Feb 25th 1987

Landsat ETM+ 168/61 Feb 21st 2000
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MODIS Data

Moderate Resolution Imaging Spectroradiometer (MODIS) images were also used 

in the study. The images included 13 MODIS 32 days’ composites at 1km resolution for 

the period November 16th 2000 to February 1st 2002. This period was important as it 

captured the full year growing period with both dry and wet seasons which is 

characteristic of the study area. The images were obtained from University of Maryland’s 

Global Land cover Facility. The images were subset to the study area and projected to 

UTM zone 37 South. NDVI was calculated for each image and the 13 images were 

combined into a single 13 bands image. The data was finally used to generate a time 

series for all the land cover classes indicating change in NDVI as affected by the 

phenological changes throughout the different seasons.    

Ancillary Data

Ancillary data in this research included aerial photographs, topographic maps, and 

GPS points which were used in class separation and accuracy assessment. Aerial 

photographs were full area coverage of the study area in 1988 at the scale of 1:50, 

000.Topographic maps at the scale of 1:50,000 were also used. Both aerial photographs 

and topographic maps were acquired from Kenya Department of Surveying and Mapping. 

Aerial photographs and topographic maps were both scanned to digital form, and the 

maps were projected to UTM zone 37 south. 
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Field Data

Field data included GPS points, and digital photos which were used in accuracy 

assessment of 2000 land cover map. During field work, GPS points were collected and 

accompanied by detailed description of the location and land cover types. Due to high in-

accessibility in most parts of the district, most of the points were collected off the main 

roads. Digital photos of different land cover types were taken and their GPS spatial 

location recorded. Digital photos and their accompanying GPS points were used in 

identifying different land cover classes during land cover classification and in accuracy 

assessment.
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Figure 2: Study Methodology
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Image Preprocessing
Geometric Correction.

The two Landsat images were already georectified and no image registration was 

necessary. The images were re-projected to UTM zone 37 south and subset to the study 

area using Mbeere District boundary shapefile. MODIS images were subset to Mbeere 

district and then re-projected to UTM zone 37 South. Topographic maps were 

georectified to their actual latitude and longitudes in the map using keyboard registration.

Radiometric Correction

In change detection, radiometric correction is important to ensure that the changes 

recorded are not as a result of changes in radiometric performances of the sensors, 

changes in solar illumination angle, atmospheric scattering and absorption as well as the 

general conditions of the atmosphere. The 1987 TM image was converted to ETM+ 

digital numbers (DN) equivalent (USGS, 2005). The two images were then converted to 

reflectance using COST model which reduces haze effects (Chavez, 1996). 
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Thematic Extraction
Classification Scheme

The classification of the two Landsat images was geared towards separating six 

classes as indicated in the classification scheme below. The classes were based on field 

work experience and a modification of AfriCover classification scheme (FAO, 1997) and 

a hierarchical class system was adopted. 

Table 3: Land cover classification scheme.

Class Description 
Dense Woodland This class includes dense woody vegetation with less 

undergrowth. Predominantly evergreen throughout the year and 
particularly found on the higher zones of protected Kiambere, 
Kiang’ombe and Kianjiru hills. 

Sparse Woodland This class includes the evergreen less dense woody vegetation,
and mostly surrounding the dense woodland. It is also 
characterized by open canopy with substantial under growth.

Bushland The class is characterized by scattered deciduous comiphori
species. Most of the undergrowth is perennial consisting mostly 
of grass which dries up with dry season. The canopy is open 
during the dry season but closes up during wet seasons.

Wooded Grasslands Consists of open grasslands with scattered shrubs and scrubs. 
Most of the wooded grassland has changed from bushland 
through complex interaction of natural and human factors for a 
long period of time. 

Open 
Grasslands/Abandoned 
Settlements

Includes abandoned farm lands and other fields which had been 
cleared. Characterized by bare soils and scattered regrowing 
vegetation. 

Settlement/Agriculture/
Developed Areas/Bare 
Ground

This class includes farmlands, urban centers, homes, and bare
ground.

Water This includes all water bodies in the district.
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Image Classification

Unsupervised Iterative Self-Organizing Data Analysis (ISODATA) classification 

algorithm was used in the image classification. This is because unsupervised 

classification is automated and requires little a priori knowledge of the area. During field 

work, the study area was found to be highly heterogeneous, with land cover changing

within a small area. This made it difficult to locate homogenous areas for training site

selection.

Classification of the two Landsat images was carried out within ERDAS 

IMAGINE. The maximum iterations were set to 36 and number of classes set to 20 for 

the two images to ensure consistency in the results. The targeted classes as per the 

classification scheme were all coded with particular numbers and each of the spectral 

classes in the output raster assigned a code corresponding to the class it falls in. Class 

labeling was achieved through comparison of the classified image with the original 

images, use of topographic maps, aerial photographs, digital photos and field study 

knowledge to identify the various classes.

Most of the classes were confused from the first classification. Cloud shadow and 

wet soil were classified as water while few cloud shadow pixels were classified as sparse 

woodland. Sparse woodland was highly mixed up with other types of active vegetation 

including active crops and agro forestry fields. Bushland, wooded grassland, and 

settlement were on the other hand highly mixed up, while Clouds were grouped in the 

same class with built up areas. However, dense woodland was well separated from other 

classes in both images.

Several spectral vegetation indices were used to enhance the images in order to 

extract the mixed pixels. This was also aimed at evaluating the performance of different 

spectral enhancement methods in separating different land cover classes. The indices 

used included Normalized Difference Vegetation Index (NDVI), Principal Component 

Analysis (PCA), Soil and Atmospherically Resistant Vegetation Index Two (SARVI2), 

and Kauth-Thomas (KT). NDVI was capable of extracting vegetation from non 

vegetation and the extracted pixels were reclassified separately. Though NDVI was 

capable of distinguishing the vegetation, its biggest shortcoming was inability to separate 

water and wet soil. The study area has several rice paddies which are sometimes wet and 
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flooded. These wet agricultural fields were being clustered spectrally in the same classes 

as water bodies. 

Spectral profiles of the mixed classes from the Landsat images were used to 

identify the bands which were capable of separating them. Through the profile, bands 

which could separate the mixed class were extracted from the full image, and then the 

mixed pixels extracted from the bands and reclassified. 

Time series profiles of the MODIS NDVI image composite were used to aid in 

separation of different land cover classes based on their phenological characteristics. 

Vegetated and non vegetated pixels were separated by their phenological characteristics 

as vegetated areas were found to have high NDVI values throughout the period for 

evergreen vegetation and high NDVI values during rainy seasons for deciduous 

vegetation. 

Apart from separating vegetated with non vegetated pixels, the MODIS data were 

used to distinguish between various vegetation types. Evergreen vegetation had high 

NDVI values throughout the season though the peak fluctuated during the dry season. 

Deciduous vegetation had low NDVI values during the dry season and high values in the 

wet season, with almost the same values as the evergreen vegetation at the peak of the 

growing season.  Deciduous vegetation was differentiated with grass by the time it took 

to build to peak NDVI values during the growing season. Both classes started at low 

levels during the dry season, but grass peaked up faster than deciduous vegetation. The 

same trend was observable as NDVI values dropped with dry season, with the grass 

values dropping to the minimum faster than the bushland.
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Figure 3: MODIS land cover classes spectral profiles.
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Accuracy Assessment
Points used in accuracy assessment were based on the GPS points acquired during 

the field work and interpretation of 1988 aerial photographs and 1974 topographic maps. 

The accuracy assessment points were independent from those used in land cover classes 

labeling. A confusion matrix was generated for both 1987 and 2000 land cover maps with 

both producers and users accuracies. Kappa statistics were also calculated for the two 

land cover maps.

Change Detection
Several change detection techniques were used in this research and their 

applicability in mapping land cover change in arid lands evaluated. The techniques 

included post classification comparison, vegetation index differencing and multiple 

principle component analysis. 

Multitemporal PCA

The two images were combined into one 12 band image and PCA was run 

resulting in 12 principal components. The components were then interpreted separately to 

identify which captured land cover change between the two dates. Each component was 

compared to an image displaying two bands representing 1987 and 2000 SARVI2. There 

was no component showing consistency with the change observable from the 1987 and 

2000 SARVI2.

SARVI2

The 2000 SARVI2 image was subtracted from 1987 SARVI2 image. Different 

color codes were used to show areas that changed and areas that had not changed 

between the two dates.  Different colors were also used to show areas where land cover 

increased and degreased between the dates. The change difference images was then 

threshold to identify change pixels, and it was found that SARVI2 did not capture 

changes consisted with the two images.
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Post Classification Comparison

Post classification comparison change detection method was applied on the final 

1987 and 2000 Mbeere land cover maps. The two land cover maps were compared pixel 

by pixel with the final results showing both change-no-change information as well as 

‘from to’ land cover change information. The results were used to generate different 

maps including change-no change map, change in settlement class map, and a general 

land cover change map.
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CHAPTER IV

RESULTS ANALYSIS AND DISCUSSIONS
Two land cover maps of Mbeere District based on 1987 Landsat TM and 2000 

ETM+ were produced using unsupervised classification. Clouds and shadows in the 1987 

image were masked out using unsupervised classification. There were no clouds in the 

2000 images and the few shadows were masked out using unsupervised classification. 

Initial maps had seven classes corresponding to the classification scheme. However, after 

accuracy assessment, dense woodland and sparse woodland were combined to woodland, 

while open grassland and wooded grassland were combined to grassland. These classes 

had low initial accuracy and their pixels were highly mixed. The final two land cover 

maps therefore had five land cover classes.

Classification of the 1987 Landsat TM Image.

Initial unsupervised classification of the 1987 Landsat TM image yielded results 

with most of the classes mixed. Dense woodland was however separated from most of the 

other classes but was mixed with sparse woodland. Sparse woodland was on the other 

hand mixed with other types of active green vegetation including crops. The upper zone 

of the district covering Siakago, Evurori and parts of Gachoka Divisions had high 

concentration of agro-forestry which was classified as sparse woodland.

Bushland was mixed with dry crops especially dry rice fields. Some of abandoned 

farmlands in the more marginal areas were also picked out as bushlands in the initial 

classification. Wooded grassland was on the other hand clumped in the same class as 

abandoned farmlands, open grasslands and some dry crop fields. Water was mixed with 

wet soils, flooded rice paddies and shadows. Settlement had the poorest differentiation of 

all the classes, and was mixed with virtually all the other classes except with dense 

woodland.

Mixed classes were then masked out and enhanced with several spectral 

enhancement including NDVI, SARVI2, KT, PCA and SR. The main aim was to evaluate 

the applicability of different spectral enhancement methods in separating different land 

cover classes. Simple ratio (SR) was used to separate water and cloud shadows which 
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could not be achieved through initial unsupervised classification. NDVI on the other hand 

was capable of separating sparse woodland with active crops, while SARVI2 was capable 

of separating water with wet soil.

The classification resulted in a 1987 land cover map with seven classes. 

Settlement was the dominant class covering 37.2%, followed by sparse woodland at 

13.8% while dense woodland covered 3.9 % and water 2.8% (Table 4).

Table 4: Area covered by each land cover class in 1987 land cover map, in hectares and 

percentage.

Land cover class Area in Ha Percentage %

Dense Woodland 8505.45 3.86

Sparse Woodland 27404.47 13.78

Bushland 30553.47 12.43

Wooded Grassland 40849.11 18.53

Grassland 24874.56 2.84

Settlement 81972.36 37.19

Water 6260.22 2.79
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Classification of the 2000 ETM+ Image

Unsupervised ISODATA classification was run on the 2000 image and the 

resulting spectral clusters were mostly mixed. Dense woodland was well separated with 

most of the other classes but was mixed with sparse woodland. Sparse woodland was in 

addition mixed with agro-forestry and active green crops, while some dry irrigated crops 

were classified as bushland. Settlement was the most confused class and was mixed with 

all other classes except with dense woodland.

The 2000 image had high spectral similarities between classes than the 1987 

image.  The image was enhanced using PCA and subset to the first four components. The 

remaining two components had little or no information and were considered noise.  The 

PCA subset was reclassifified again using unsupervised classification and then recoded. 

Mixed classes were masked out and reclassified for several times until they were clearly 

separated.

The classification resulted into a land cover map with seven classes.  Settlement was the 

most dominant class covering 51.1%, while dense woodland covered only 2.2 % of the 

total area (Table 5).

Table 5: Area covered by each land cover class in 2000 land cover map, in hectares and 

percentage.

Land cover class Area in Ha Percentage %

Dense Woodland 5179.32 2.23

Sparse Woodland 21768.21 3.39

Bushland 24370.11 10.51

Wooded Grassland 29650.32 12.79

Grassland 27330.75 2.23

Settlement 118367.20 51.06

Water 5168.79 2.25
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Accuracy Assessment Results

The 1987 land cover map had an overall accuracy of 73.3% and kappa statistics of 

0.6791. Water had the highest accuracy with 100% producer’s and 95% user’s accuracy. 

Dense woodland had high producer’s accuracy but the lowest user’s accuracy. The 

commission errors in the dense woodland class were attributed to high agro-forestry in 

the upper wet areas in the district. The results also indicated a high level of class 

confusion between the sparse woodland and settlement. The overall low accuracy in the 

land cover map was attributed to the high heterogeneity in land cover classes which 

caused high spectral similarities.

Table 6: 1987 land cover map accuracy assessment error matrix

 Reference data

Classified data                                                                           
1 2 3 4 5 6 7

Classified 

total

Producer’s

Accuracy 

%

User’s 

Accuracy %

Dense Woodland 26 21 0 0 0 3 0 50 100 52.00

Sparse Woodland 0 66 4 1 0 17 2 90 65.33 71.74

Bushland 0 2 40 6 0 8 3 59 81.63 67.80

Wooded Grassland 0 2 3 38 0 6 6 54 74.51 70.37

Water 0 0 0 0 20 1 0 21 100 95.24

Settlement/Built up

Areas 0 9 0 2 0 73 6 90

66.97 81.11

Grassland 0 2 2 4 0 1 45 54 72.58 83.33

Totals 26 101 49 51 20 109 62 418

Overall classification accuracy= 73.33

Overall kappa statistics = 0.6197
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The 2000 land cover map had an overall classification accuracy of 73.6% and a 

kappa statistics of 0.6852. Wooded grassland and sparse woodland had the lowest 

producer’s accuracy of 59.5% and 60.8% respectively. The high omission errors in sparse 

woodland were attributed to high confusion with dense woodland and agro-forestry. On 

the other hand, the high omission errors in wooded grassland were due to high spectral 

confusion between the wooded grasslands and the open grasslands. 

 

Table 7: 2000 land cover map accuracy assessment error matrix

  Reference data

Classified data                                                                           
1 2 3 4 5 6 7

Classified 

total

Producer’s

Accuracy 

%

User’s 

Accuracy %

Dense Woodland 19 10 0 1 0 0 0 30 100 63.3

Sparse Woodland 0 65 1 1 0 10 1 78 60.8 83.3

Bushland 0 5 54 3 0 3 0 65 81.8 83.1

Wooded Grassland 0 8 4 44 0 7 2 65 59.5 67.7

Water 0 0 0 0 41 0 0 41 100.00 100.00

Settlement/Built up

Areas 0 15 4 11 0 64 3 97

68.8 66.00

Grassland 0 4 3 14 0 9 44 74 88.00 59.5

Totals 19 107 66 74 42 93 50 450

Overall classification accuracy= 73.6%

Overall kappa statistics = 0.6852

Overall, the low accuracy in both maps was attributed to high spectral similarities 

between classes, and high heterogeneity in land cover classes. Overgrazing and irregular 

settlement in the district has resulted into complicated vegetation pattern leading to high 

spectral confusion.

Post classification comparison requires high level of accuracy in the land cover 

maps. Due to low accuracy in the two land cover mps, some classes which had highest 
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level of confusion were combined into single class.  Dense woodland and sparse 

woodland were combined into woodland, while wooded grassland and grassland were 

combined into grasslands. In the end, the final maps had five classes; Woodland, 

Bushland, Grassland, Settlement/Agriculture/Bare soil, and Water. Woodland covered all 

the evergreen woody vegetation, mostly concentrated in the higher zones of protected 

areas of Kiambere, Kiang’ombe, and Kianjiru hills. Grassland on the other hand included 

all open areas covered with grass, scrub and shrubs. It also included abandoned farmland 

with grass and shrub regrowth.

The final1987 map had an overall accuracy of 85.5% and a kappa statistics of 

0.8268 (Table 8). All the five classes had a producer’s and user’s accuracy of above 80%, 

with water having the highest accuracy.

Table 8: Final 1987 land cover map accuracy assessment error matrix.

  Reference data            

Classified data 1 2 3 4 5 Classified 

total

Producer’s 

Accuracy

User’s 

Accuracy

Woodland 71 3 4 6 0 84 85.5 83.5

Bushland 0 52 4 4 0 60 91.2 86.7

Grassland 0 1 70 13 0 84 86.4 83.3

Settlement/Built 

up Areas

12 1 3 104 1 121 81.3 86.00

Water 0 0 0 1 49 50 98.00 98.00

Totals 83 57 81 128 50 399

Overall Accuracy=86.50

Overall kappa statistics=0.8268



40

Figure 4: 1987 Land cover Map

The 2000 map had an overall accuracy of 85% and an overall kappa statistics of 

0.8107 (Table 9).  Water had the highest accuracy with producer’s and user’s accuracy 

standing at 97% and 96% respectively. The other four classes had relatively high values 

of user’s and producer’s accuracy ranging from 77% to 88%.  Woodland had low 

producer’s accuracy of 77.5% indicating high omission errors.  This means that there was 

a 77.5% probability of correctly mapping out woodland pixel in the image.  Settlement on 



41

the other hand had low user’s accuracy of 77.8%; an indication of relatively high 

commission errors. 

Table 9: The final 2000 land cover map accuracy assessment error matrix

The final accuracy achieved after merging some previous classes was therefore 

considerably high given the fact that there was high spectral confusion between land 

cover classes.  Given the high complex nature of arid and semi-arid environments, the 

level of accuracy achieved could be considered high enough for post classification 

comparison change detection.

 Reference data

Classified data 1 2 3 4 5 Classified 

total

Producer’s 

Accuracy

User’s 

Accuracy

Woodland 79 5 2 4 0 90 77.5 87.9

Bushland 6 67 4 3 0 80 83.8 83.8

Grassland 1 6 76 6 1 90 88.4 84.4

Settlement/Built 

up Areas

16 0 4 70 0 90 84.3 77.8

Water 0 2 0 0 48 50 98.00 96.00

Totals 102 80 86 83 49 400

Overall Accuracy=85

Overall kappa statistics=0.8107
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Figure 5: 2000 Land cover Map
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Change Detection Results and Discussion
Multitemporal PCA Change Detection.

Multi-temporal PCA results indicated that the first three components accounted 

for 92.6 % of variation between the two dates. However, PCA was unable to capture 

meaningful changes consisted with the observable pattern in the two images. No 

component was consistent with the land cover change between the two dates.

SARVI2 Change Detection

The SARVI2 change map was evaluated at different thresholds for changes 

consisted with two land cover map dates. The different thresholds did not yield changes 

consistent with the visual changes in the two dates.  Therefore SARVI2 was unable to 

capture any substantial land cover changes between the two dates.

Post Classification Comparison 
The two land cover maps were compared pixel by pixel through post 

classification comparison. Post classification comparison was the only method which was 

capable of capturing land cover changes between the two dates. Apart from change no 

change information, post classification comparison also resulted in a change matrix that 

provided “from-to” change information. The results indicated that both land cover 

conversion and land cover modifications were significant between 1987 and 2000.

Woodland reduced by 41.3%, while bushland reduced by 29.5% (Table10). Land 

cover change matrix between the two maps indicates that settlement and agriculture 

accounted for the highest percentage loss in vegetation.  The only woodland covered area 

that remained relatively unchanged between the two dates was restricted to the highest 

points in the three protected hills; Kiambere, Kianjiru and Kiang’ombe. The results 

indicated loss of woodland in the lower zones on these protected areas, an indication of 

increasing human encroachment on protected areas.

Vegetation modification was also high between the two dates. Woodland changed 

significantly to bushland and grassland. Woodland modification could be attributed to 

selective cutting of trees in the protected areas for fuel wood, charcoal making, building 

materials and overgrazing. Similarly, there was a huge conversion of woodland to 
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bushland around Kiambere dam. This may be attributed to the change in land tenure 

which made a huge part of the woodland a public property leading to increased 

overgrazing, charcoal making, fuel wood harvesting and vegetation clearing for 

agriculture and settlement. 

The results however indicated that grassland increased between the two dates.  

This could be attributed to high rates of abandonment of once agricultural farms which 

were no longer productive. After privatization of land was initiated by the government in 

the early 1970s, there was rapid in migration since people were free to sell their private 

lands. Most of the migrating population was from surrounding high potential districts like 

Embu which were already experiencing high population pressure. The migrating 

population introduced farming skills which were incompatible with the arid environment 

and most abandoned their farms after a few seasons since they were unproductive. On the 

other hand, overgrazing was converting woodland and bushland to grassland as the 

grazing land continued to shrink. Change matrix however indicated that there was very 

high loss of grasslands to settlements between the two dates. The highest loss was around 

Mwea and attributed to increased irrigation agriculture.

Water level in the reservoirs receded between 1987 and 2000. Some areas which 

were mapped as water in the 1987 image were mapped either as vegetation or bare soil in 

the 2000 image. Although the rainfall patterns in the area were found to be decreasing 

with time, the receding water level could be partly attributed to land cover loss which has 

contributed to more soil erosion and therefore dam siltation.
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Table 10: Land cover change between 1987 and 2000.

Land cover 

classes 

1987 2000 Land cover 

change in sq. 

km

% land cover 

change

Woodland 50062.5 29409.57 -20652.93 -41.3

Bushland 18818.01 11800.35 -7017.66 -29.5

Grassland 49750.38 63952.56 +14202.20 +28.5

Settlement 95528.52 121503.4 +29974.90 +31.4

Water 6260.22 5168.79 -1091.43 -17.4
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Figure 6: Land cover change between 1987 and 2000.
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Table 11: 1987-2000 land cover change matrix

 2000 land cover classes

1987 land cover 

classes

Woodland Bushland Grassland Settlement/Built 

up Areas

water Total(Ha)

1.Woodland 11146.14 2491.92 2936.7 9256.14 133.65 25964.55

2. Bushland 3830.22 2620.17 2187.18 1781.91 60.66 10480.14

3.Grassland 10379.43 5852.34 24729.3 20375.28 665.28 62001.63

4.Settlement/Built 

up Areas

24467.22 7647.3 19570.14 63040.68 972.72 115698.06

5. Water 37.44 35.65 187.11 349.0 4282.38 4282.38

Total(Ha) 49860.45 18647.37 49610.43 95003.46 6114.69
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Figure 7: Change-no-change 1987-2000 Mbeere land cover map
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Causes of Land Cover Change 
The current land cover change pattern in Mbeere District could be attributed to a 

complex interaction of environmental, socio-economical and demographic factors. Some 

of the factors that may have influenced rapid change in land cover in the district are as 

follows.

Land Tenure System

The land tenure system before 1980s in most parts of Mbeere District was

communal. Shifting cultivation and pastrolisim were the main economic activities as 

there was plenty of the land. Communal grazing land was also readily available and 

therefore less overgrazing. Land adjudication in the district was effected by the 

government which led to rapid change in land cover. Subdivision and privatization of 

land meant no communal grazing land and this led to overgrazing. Land adjudication also 

meant the end to shifting cultivation, causing increased overcultivation and degradation 

of the fragile environment. Privatization of land resulted into increased further 

subdivision of the land and subsequent selling of the land to people outside the district, 

contributing to population increase in the district through immigration.

Kiambere Dam had a two-kilometer buffer zone of free land at completion. 

Increasing population in the areas surrounding the dam and beyond led to the landless 

people encroaching on the buffer area for settlement, agriculture and grazing. Extensive 

overgrazing on this buffer zone coupled with other human activities including charcoal 

making and selective cutting of trees for building materials became significant. 

Destruction of this buffer zone has caused increased soil erosion which partly may be 

responsible for siltation of the reservoir.

Rapid Population Growth

Kenya as a country has been experiencing high population growth. Mbeere 

District population density was 65 persons per kilometer squared according to 1989 

population census, and during the 1999 population census, the population density had 

increased to 82 persons per square kilometer. Based on 1999 population census, Mbeere 

District population was growing at a rate of 2.3%, with average family size of around six 
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persons per family.  Agriculture is the main economic activity with over 80% of the 

population depended on farming (GOK, 2005). Rapid population growth has therefore 

translated to increased clearance of vegetation for agriculture and overgrazing. 

Fuel wood is the main source of energy in the district.  Rapidly growing 

population has increased the rate of trees cutting for fuel wood. This selective cutting has 

had adverse effect on land cover and is responsible for a big percentage of land cover 

conversion in the district. Harvesting of posts and poles as building materials also has 

been a major cause of land cover conversion in the district. The increasing population has 

meant increased demand for building materials further stretching the already 

overstretched environment.

Table 12: Mbeere population growth from 1969 to 1999.

Population  Density km2 Growth rate

1969 1979 1989 1999 1969 1979 1989 1999 1969-

79

1979-

89

1989-

99

Mbeere 62,407 92,037 135,403 170,953 30 46 65 82 4.0 3.9 2.4

Siakago 11,207 16,522 25,982 34,330 30 46 71 93 4.0 4.6 2.8

Gachoka 21,809 31,165 45,560 59,102 27 39 57 74 3.6 3.9 2.6

Mwea 12,915 22,642 32,911 40,680 25 53 65 79 5.8 3.8 2.1

Evurori 16,476 21,708 30,950 36,841 40 53 74 90 2.8 3.6 1.8

Source: Olson, 2004.
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Figure 8: Mbeere population density from 1969 to 1999.
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Poverty and High Dependency Ratio

Poverty level in the district stands at above 60%, while dependency ratio is 100: 

97.8 (GOK, 2005). High poverty levels can be attributed to over reliance on agriculture, 

persistent drought, poor soils and erratic rainfall. High dependency levels are as result of 

large household size with majority of the population consisting of the young and 

nonworking. Charcoal making has been a very common way of survival during the harsh 

conditions among the poor. Charcoal making has on the other hand been one of the main 

causes of vegetation conversion due to selective cutting of the big trees.

Poverty has led to subdivisions of the already small pieces of land for reselling. 

This has increased the population further and reduced considerably the available grazing 

land, causing more overgrazing and land degradation.  New agricultural techniques that 

are incompatible with arid lands have been introduced through in-migration from high 

agricultural potential areas, and these methods have adversely affected the environment 

causing increased degradation.

Infrastructures

Mbeere district population pattern is greatly influenced by physical amenities like 

road network. Population density is high in urban areas and along the main roads in the 

district. Market centers like Siakago, Ishiara, Kiritiri, Karaba and Gachoka have 

influenced high population settlement around them. On the other hand, there is linear 

settlement pattern along Kiritiri-Embu road, Embu-Siakago-Kiritiri road and Embu-

Ishiara road.

Natural Factors

Based on the observable land cover change pattern in this research, land cover 

change in Mbeere District can be attributed to several natural factors. An analysis of 

rainfall data from the district dating back to the 1950s revealed a downward trend in the 

annual averages over time. The decreasing rainfall has meant prolonged drought which 

causes adverse land cover conversion through vegetation loss.

The more agricultural potential areas of Siakago, Evurori and Gachoka have had 

high population density than the more marginal areas. On the other hand, water bodies in 
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the district have influenced settlement pattern, with people preferring to settle close to 

water bodies like dams and permanent rivers. 



54

CHAPTER V

CONCLUSION AND RECOMMEDATIONS
Results Summary

Two land cover maps corresponding to 1987 and 2000 Landsat images were 

produced. The overall accuracy of the two maps was above 85% and the overall kappa 

statistics was above 0.81.  Different land cover classes had differing producer’s and 

user’s accuracy levels indicating different levels of omission and commission errors.

Woodland in 2000 had the lowest producer’s accuracy of 74.4%, while settlement in 

2000 user’s accuracy of 77.8 % was the lowest.

Post classification comparison change detection was the only method which was 

able to capture changes between the two dates. Apart from capturing the changes between 

the two land cover maps, it provided important “from-to” change information. Results 

revealed that Mbeere District had undergone significant land cover change between 1987 

and 2000.  A total of 29,409.6 hectares of woodland and 7,017.7 hectares of bushland 

were lost between the 1987 and 2000 period. Grassland on the other hand increased by 

14,202.2 hectares. Settlement/ agriculture increased by 29,974.9 hectares and accounted 

for the highest type of change between the two dates. 

Land cover modification was by far the most common type of land cover change 

in the district between the two dates. There was high conversion of woodland and 

bushland to grassland. Most dense woodland in the district is found in protected areas, 

and conversion to bushland and grassland is an indication of selective cutting of trees as 

well as overgrazing in the protected areas.

The research confirmed that vegetation phenology can be used to aid in land 

cover change detection especially in arid and semi-arid areas which are characterized by 

high spectral similarities between classes. MODIS NDVI data was used to aid in class 

separation by following phenological characteristics of various land cover classes.

The research had several limitations. Choosing satellite images was the most 

significant limitation of the research. Cloud free images were hard to get, a typical 

problem in the tropics. Mbeere District experiences erratic rainfall, with rainfall 
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differences within very small areas causing high intra seasonal variability. This was a big 

shortcoming since even anniversary date images exhibited very high variability on 

different spots within a small area.

Ancillary data to support satellite images were limited. The ancillary data used 

was 1988 aerial photographs, topographic maps based on 1974 aerial photographs and 

GPS points. Topographic maps used were too general and failed to capture finer details.  

More ancillary data like aerial photographs corresponding to the same period as the 

satellite images could have been of more use.

Field work in this research was also inadequate. Time available for the field work 

was limited. Mbeere district on the other hand has a poor road network and this limited 

the accessibility of some regions. The study area however exhibited high variability in 

land cover classes within very small distance, and therefore accurate classification in this 

area requires extensive field work.

Image classification was highly inhibited by high spectral similarities between 

several land cover classes.  Woodland for example had high spectral similarities with 

agro-forestry agriculture. This spectral similarities affected the classification accuracy of 

both woodland and settlement/agriculture classes. Some grassland pixels had similar 

spectral characteristics with some dry crops especially dry rice fields. The high 

heterogeneity coupled with high spectral similarities was therefore a significant drawback 

in this research.
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Conclusion
There are several important inferences that can be drawn from this research. It can 

be inferred that despite the difficulties associated with digital land cover change detection 

in arid lands, it is still an important method in understanding the changing fragile arid 

environments globally. It can also be inferred that anniversary dates is not an adequate 

solution in choosing satellite images for land cover change detection in arid 

environments. Stochastic events like erratic rainfall in arid lands can lead to high spectral 

differences within a small area. This makes availability of images one of the most 

important factors that determine results of any digital land cover change detection in arid 

and semi-arid environments.

Land cover change pattern as demonstrated by the change matrix revealed a 

complex land cover change pattern with no clear cut direction. Based on this research 

therefore, it can be inferred that there was no specific direction in land cover change in, 

as change occurred in both positive and negative directions.

Post classification comparison is an important method for land cover change 

detection in arid and semi-arid lands. Apart from its ability to show change from no 

change, the ‘from-to’ information is important in indicating the trends in environment.  

This information is useful in environmental policies formulation and planning. However, 

caution should be taken right from choosing satellites images through image 

classification to ensure high accuracy. Images with phenological differences should be 

avoided to ensure mapping of actual changes between the images as opposed to 

phenological differences. On the other hand, MODIS data can be of significant use in 

both choosing ideal data for change detection as well as aiding in image classifications. 

MODIS data can be used to distinguish actual changes and phenological differences 

between images. 

Extensive field work is necessary in order to ensure high accuracy in land cover 

change detection in arid and semi-arid regions. Extensive field work will aid in image 

classification in areas characterized by high heterogeneity and spectral similarities.
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Recommendations and Future Research
Based on the findings of this research, several recommendations can be made. To 

begin with, Mbeere district is undergoing rapid land cover change and therefore there is 

need for increased application of digital land cover change detection to ensure clear 

understanding of the trends and impacts of the changes. In addition, more satellite based 

land cover change research should be carried out in the other arid areas of Kenya to 

establish the current environmental conditions.

Arid and semi-arid lands in Kenya are characterized by persistent drought and 

famine. This research established that there are likely alarming land cover changes in 

these environments too. Sound policies which are aimed at achieving long term balance 

between the population and the physical environment should therefore be formulated 

based on the current environmental changes pattern. Up to date land cover, rainfall, and 

other types of data should be used to predict impacts of the observable trend, and set up 

necessary mitigation measures.

Further research in arid and semi-arid land should try to integrate both field based 

and digital based land cover change methods to ensure high accuracy. On the other hand, 

digital change detection should make use of more ancillary data as well as extensive field 

work. Future research also should focus on application of higher temporal and spatial 

resolution data to achieve higher accuracy.



58

References:  

Bernard, E.F. (1985) Planning and Environmental Risk in Kenyan Drylands. 

Geographical Review, 75, 58-70.

Boyd, C & Slaymaker, T. (2000) Re-examining the ‘more people less erosion’ 

hypothesis: Special case or wider trend? Natural resources perspectives, No.63 

Nov.2000.

Boyd, D.S, Foody, G.M & Ripple, W.J. (2002) Evaluation of Approaches for forest cover 

estimation in Pacific Northwest, USA, using remote sensing. Applied Geography, 

22, 375-392. 

Bradley, A.B. & Mustard, J.F. (2005) Identifying land cover variability distinct from land 

cover change: Cheatgrass in the great basin. Remote sensing of Environment, 94,

200-213.

Chandra, G; Zhilang, Z., & Reed, B. (2005) A comparative Analysis of The Global Land 

cover 2000 and MODIS land cover data sets. Remote Sensing of Environment 94, 

123-132.

Chira, R.M. (2003) Changes in Wildlife Habitat and Numbers in Embu and Mbeere 

Districts, Eastern Province, Kenya. LUCID working paper no.37. 

www.lucideastafrica.org

Cihlar, J. & Jansen, J M. (2001) From Land cover to land Use: A Methodology for 

Efficient Land Use Mapping Over large Areas. Professional Geography, 53(2), 

275-289.

Chavez, P. S (1996) Image-based atmospheric corrections-revisited and improved. 

Photogrametric Engineering and Remote Sensing 60, 1285-1294.

Colby, J.D & Keating, P.L. (1998) Land cover classification using Landsat TM imagery 

in the tropical highlands: the influence of anisotropic reflectance. International 

Journal of Remote Sensing, 1998 (19), 1479-1500.

Collins, J.B. & Woodcock E.C. (1996) An Assessment of Several Linear Change 

Detection Techniques for Mapping Forest Mortality Using Multitemporal Landsat 

TM Data. Remote Sensing of Environment 56, 66-77.



59

Coppin, P.I; Jonckheere, K. & Nackers, B.M. (2004) Digital change detection in 

ecosystem monitoring: a review. International journal of remote sensing, 25, (9),

1565-1596.

Congalton, R. (1991) A review of assessing the accuracy of classifications of remotely 

sensed data. Remote Sensing of Environment, 37, 35-46.

Congalton, R; Green, K (1993) a practical look at the sources of confusion in error matrix 

generation. Photogrammetric Engineering and Remote sensing 59(5), 641-644.

Defries, R.S. & Townshend, R.G. (1999) Global land cover characteristics from satellite 

data: from research to operational implementation? Global Ecology and 

Biogeography 8, 367-379.

Dregne, H.E. (2002) Land Degradation in the Drylands. Arid Land Research and 

Management, 16, 99-132. 

Elvidge, C.D & Chen, Z. (1995) Comparison of Broad-Band and Narrow-Band Red and 

Near-Infrared Vegetation Indices. Remote Sensing of Environment 54, 38-48.

Estreguil, C. & Lambin, E.F. (1996) Mapping Forest Cover Disturbances in Papua New 

Guinea with AVHRR Data. Journal of Biogeography 23, 757-777.

FAO (1997) AfriCover Land Cover Classification. Environment and Natural Resources 

Service (SDRN), pp 76.

Foody, G.M. (2001) Monitoring the magnitude of land cover change around the southern 

limits of Sahara. Photogrammetric Engineering & remote sensing 67(7), 841-847.

Fung, D & LeDrew, E. (1987) Application of Principal Components Analysis to Change 

Detection. Photogrammetric Engineering and Remote Sensing 53(12), 1649-1658.

Gakii, C. (2005) Logging around Seven Forks dam may affect electricity production. The 

Standard March 9, 2005. www.eastnadard.net

Geist, H.J & Lambin, E.F. (2004) Dynamic causal of desertification. Bioscience, 54 (9).

Gicimbi, L.N. (2002) Technical Report of Soil Survey and Sampling Results: Embu-

Mbeere Districts, Kenya. LUCID working paper series 9. 

www.lucideastafrica.org

GOK & UNEP, (1997) National Land Degradation and Mapping in Kenya. UNEP, 

Nairobi. 



60

GOK, (2002) Mbeere district Development Plan 2002-2008. Effective Management for 

Sustainable Economic Growth and Poverty Reduction. GOK, Nairobi.

GOK, (2005) Economic Recovery Program for North-Eastern Province and Isiolo, 

Marsabit and Moyale Districts. GOK, Nairobi.

Green, E; Clark, C.D; Mumby, P.J; Edwards, A.J & Ellis, A.C. (1998) Remote sensing 

techniques for mangrove mapping. International journal of remote sensing 19(5), 

935-956.

Haack, B & Richard E.(1996) National Land cover Mapping by Remote Sensing. World 

Development 24, (5), 845-855.

Henschel R, J & Seely K, M. (2000) Long-term patterns of Welwitshia mirabilis , a long-

lived plant of the Namib Desert. Plant Ecology 150, 7-26.

Herrmann, S.M & Hutchinson, C.F. (2005) The changing context of Desertification 

Debate. Journal of Arid Environments 63, 538-555.

Hietel, E; Waldhardt, R. & Otte, A. (2004) Analysing land-cover changes in relation to 

environmental variables in Hesse, Germany. Landscape Ecology 19, 473- 489.

Houerou Le, H.N. (2002) Man-made Deserts: Desertization Process and Threats. Arid 

Land Research and Management 16, 1-36.

Houghton, R.A., (1995) Land-use change and the carbon cycle. Global Change Biology 

1, 275-287.

Jensen ,R. (2005) Introductory Digital Image Processing: A Remote Sensing Perspective. 

(3nd edition). Pretence Hall, New Jersey.

Jansen, L.J.M & Gregoria A. (2002) Parametric  land cover and land-use classifications 

as tools for environmental change detection. Agriculture, Ecosystems and 

Environment 91, 89-100.

Jansen, L.J.M & Gregoria A. (2003) Land-use data collection using the “land cover 

classification system”: results from a case study in Kenya. Land Use policy, 20,

131-148.

Kamu, P. (2004) Forage Diversity and impact of grazing management on rangeland 

ecosystems in Mbeere district, Kenya. LUCID working paper series Number: 36

Kauth, R & Thomas, G. (1996) The tasseled cap-a graphic description of the spectral-

temporal development of agricultural crops as seen by Landsat, proceedings,



61

symposium on Machine Processing of Remotely Sensed Data, Laboratory for 

Applications of Remote sensing, Purdue University, West Lafayette, IN, pp.41-

51.

KenGen, (2003) www.kengen.co.ke

KPLC, (2004). www.kplc.co.ke

Lambin, E.F; Geist, J.H & Lepers, E. (2003) Dynamics of land-use and land-cover 

change in tropical regions. Annual review of environmental resources 28, 205-

241.

Lambin, E.F; Tuner, B.L; Geist, H.J; Agbola, S.B; Angelsen, A; Bruce, J.W, Coomes, 

T.O; Dirzo, R; Ficher, G; Folke, C; George, P.S; Homewood, Imbernon, J; 

Leemans, R; Li, X; Moran, E.F; Mortimore, M; Ramakrishan, P.S; Richards, J.F; 

Skanes, H; Stone, G.D; Svedin, U; Veldkamp,T.A; Coleen, V & Xu, J. (2001) 

The causes of land-use and land-cover change: moving beyond the myths. Global 

environmental change 11,261-269.

Lasaponara, L (2006) On the use of principal component analysis (PCA) for evaluating 

interannual vegetation anomalies from SPOT/ VEGETATION NDVI temporal 

series. Ecological Modeling, 194, 429-434.

Lawrence, R, L & Ripple W, J. (1998) Comparisons among vegetation indicies and 

bandwise regression in a highly disturbed, heterogenous landscape. Mt st. Helens, 

Washington.  Remote Sensing of environment. 64, 91-102.

Leitao, A.B. & Ahern, J. (2002) Applying Landscape ecological concepts and metrics in 

sustainable landscape planning. Landscape and urban Planning 59, 65-93.

Lillesand, T.M, Kiefer, R. & Chipman, J.W. (2004) Remote Sensing and Image 

Interpretation(5th edition).John Wiley & sons, Inc. New York.

Loveland, T.R. & Belward, A.S. (1997) The IGBP-DIS global I km land cover data set, 

discover: first results. International Journal of Remote Sensing. 18, 3289-3295.

Lu, D; Mausel, P; Brondizio, E & Moran, E. (2003) Change detection techniques. 

International Journal of Remote Sensing, 25 (12), 2365-2407.

Mayaux, P; Batholome E; Fritz , S. & Belward ,A. (2004) A new land cover map of 

Africa for the year 2000. Journal of Biogeography 31, 861-877.



62

Mas J.F (2004) Mapping land use/cover in a tropical coastal area using satellite data, GIS 

and artificial neural networks. Estuarine, coastal and Shelf Science 59, 219-230. 

Mazzucato, V. & Niemeijer, D. (2001) Overestimating Land degradation, Understanding 

Farmers in the Sahel , Drylands. Issues paper.London, Ineternational institute for 

Environment and development. http://www.iied.org/pdf/dry_ip10leng.pdf

Mbugua, S.M. (2002) Influence of Land use patterns on diversity, distribution and 

abundance of small mammals in Gachoka, Mbeere District, Kenya. Land Use 

Change Impacts and Dynamics (LUCID) Project working paper No.8. Nairobi, 

Kenya. International Livestock Research institute. www.lucideastafrica.org

Mertens, B & Lambin, E.F (2000) Land cover change trajectories in southern Cameroon. 

Annals of association of American Geographers, 90(3), 467-494. 

Meyer, W.B. & Turner II B.L. (1992) Human Growth and Global Land-Use/Cover 

Change. Annual review of Ecology and Systematics, 23, 39-61.

Nthiga, S. (2005) Forest plunder ruining major hydro-power dams. Daily Nation, march 

9, 2005. www.nationmedia.com

Olson, J.M. (2004) Multi-scale Analysis of land use and management change on the 

eastern slopes of Mt. Kenya. www.lucideastafrica.org

Otuoma, J. (2004) The Effects of Wildlife-Livestock-Human interactions on Habitat in 

the Meru Conservation Area, Kenya. www.lucideastafrica.org

Patterson, W.M & Yool, S.R. (1998) Mapping Fire-induced Vegetation Mortality Using 

Landsat Thematic Mapper Data. A comparison of Linear Transformation 

Techniques. Remote Sensing of Environment, 65, 132-142.

Petit, C; Scudder, T & Lambin, E. (2001) Quantifying processes of land-cover change by 

remote sensing: resettlement and rapid land-cover changes in south-east Zambia. 

International Journal of Remote Sensing 22(17), 3435-3456.

Pickup, G.: Bastin, G.N. & Chewings V.H. (1998) Identifying Trends in Land 

degradation in Non-Equilibrium Rangelands. The Journal of Applied Ecology, 35

(3), 365-377.

Ramankatty, N. & Foley, J.A. (1999) Estimating Historical changes in land cover: North 

American Croplands from 1850 to1992. Global Ecology and Biogeography 8, 

381-396.



63

Rasmussen, K; Fog, B & Madsen, J.E (2001) Desertification in reverse? Observations 

from northern Burkina Faso. Global environmental change 11, 271-282.

Rendeaux, G; Steven, M & Baret, F. (1996) Optimization of soil adjusted vegetation 

indices. Remote Sensing of Environment 55, 95-107.

Rogan, J., Franklin, J & Roberts, D, A. (2002) A comparison of methods for monitoring 

multitemporal vegetation change using Thematic mapper Imagery. Remote 

Sensing of Environment 80, 143-156.

Sebego, R.J.G & Amberg, W. (2002) Interpretation of mopane woodlands using air 

photos with implications on satellite images classification. International Journal 

of Applied Earth Observation, 4, 119-135.

Seto, K; Woodcock, C; Song, C; Huang, H ; Lu, J; Kaufmann, R. (2002) Monitoring 

Land-use change in Pearl River Delta using Landsat TM. International Journal of 

Remote Sensing, 23, 1985-2004.

Sindiga, I. (1984) Land and Population Problems in Kajiado and Narok, Kenya. African 

Studies Review, Vol.27, No.1, 23-39.

Skole, D. & Tucker, C. (1993) Tropical deforestation and habitat fragmentation in the 

Amazon: satellite data from 1978 to 1988. Science, 260, 1950-1910.

Southgate, C. & Hulme, D. (1996) Environmental Management in Kenya’s Arid and 

Semi-Arid Lands: An Overview. Institute for Policy and Management. University 

of Manchester.

Sun, D; Dawson, R; Li, H; Li, B. (2005) Modeling Desertification change in Minqin 

County, china. Environmental Monitoring and Assessment 108, 169-188.

Tekle, K. & Hedlund, L. (2000) Land cover change between 1958 and 1986 in Kalu 

District, Southern Wello, Ethiopia. Mountain Research and Development, 20, (1), 

42-51.

Tiffen, M; English, J; Mortimore, M. (1994) Land resource management in Machakos 

District, Kenya 1930-1990. World Bank Environmental paper 5.

Tucker , C.J., Townshed, J.R.G & Goff, T.E. (1985) African Land-cover classification 

using satellite data. Science, 227, 369-375.



64

Townshed J.R.G., Justice, C.O. Kalb, V.T. (1987) Characterization of and classification 

of South American land cover types using satellite data. International journal of 

Remote Sensing 8, 1189-1207.

Turner, M., Gardner, R., & O'neill, R. (2001) Landscape ecology in theory and practice, 

pattern and process. New York: Springer-Valeg.

Tretiz, P & Rogan, J. (2004) Remote Sensing for mapping and monitoring land-cover and 

land-use change-an introduction. Progress in planning 61, 269-279.

UNEP, (1999) Global Environment Outlook, 2000.www.unep.org

UNEP, (2002) Geo-3. www.unep.org

UNEP, (2003) The state of environment. www.unep.org

UNFPA, (2001) Population issues. www.unfpa.org

USGS (2005) United States Geological Surveys. Current Landsat 7 Calibration Parameter 

Files. http://landsat.usgs.cov/calibrations/L7CPF20020101_20020331.05

Veron, S.R; Paruelo, J.M; Oesterheld, M. (2006) Assessing Desertification. Journal of 

Arid Environments 66, 751-763. 

Wass, P. (2000) Kenya’s Forest Resource Assessment. FAO, forest department, 2000. 

Wellens, J. (1997) Rangeland Vegetation Dynamics and Moisture Availability in Tunisia: 

An Investigation Using Satellite and Meteorological Data. Journal of 

Biogeography 24 (6), 854-855.

Wiegand, T. & Florian, J. (2000) Long-term Dynamics in Arid and semiarid ecosystems-

synthesis of a workshop. Plant Ecology 150, 3-6.

Xu, X; Guo, H; Chen, X; Lin, H & Du, Q. (2002) A multi-scale study on land use and 

land cover quality change: The case of the Yellow River Delta in China. 

Geojournal, 56, 177-183.


