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ABSTRACT

Heterogeneity in a population of assured lives in respect of mortality can be explained by
differences among the individuals; some of these are observable, while others, for
instance an individual’s attitude towards health and/or all genetic factors having influence
on survival are difficult to monitor and measure. This undermines usage of observable
risk factors as the only rating factors for life insurance. Insurance companies have not
taken proper care of unobservable risk factors possibly due to difficulties inherent in their
modeling. This heterogeneity exposes insurers to adverse selection if only the healthiest
lives purchase annuities, so standard annuities are priced with a mortality table that
assumes above-average longevity. This makes standard annuities expensive for many
individuals. To avoid biases in valuation a better understanding of heterogeneity in
required.

Frailty models are extensions of the Cox proportional hazards model which is popular in
survival studies. In many applications, the study population needs to be considered as a
heterogeneous sample. Sometimes, due to lack of knowledge or for economical reasons,
some covariates related to the event of interest are not measured. The frailty approach is a
statistical modeling method which aims to account for the heterogeneity caused by
unmeasured covariates. It does so by adding random effects which act multiplicatively on

the hazard.

This study carries out an extensive review of frailty models and is aimed at extending this
work by considering other distributions that can be used in modeling. In particular, the

non-central gamma distribution is proposed for frailty modeling.
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CHAPTER 1
GENERAL INTRODUCTION

1.1 Background Information

The concept of frailty modeling is based on mixture distributions and survival analysis.

1.1.1 Finite mixtures
Mixture distributions consist of mixing a distribution with another. This can be achieved

by taking k different distributions with probability densities f; (x), f>(x), ..., fi (x) with

mixing weights: wy, w,, ..., wy
Where w; > 0 and Yf_,w; =1

The new density function or mass function is:
k
F&) =) wifi()
j=1

This is a finite mixture (Johnson et.al. 2005 p.344)

Instead of k different distributions we can have k different components of a distribution.

1.1.2 Varying parameter and unknown covariates
A mixture distribution also arises when the density/mass function of a random variable

depends on a parameter.



Consider a random variable x depending on its parameter 6 then the conditional

probability density function can be written as:

fx) = f £(x16)g(6) db

Johnson (2005, p.345) states that this mixture distribution includes a situation where the
source of a random variable is unknown. Thus instead of considering a parameter 8 , we

consider an unknown covariate.

1.1.3 Survival analysis
Survival analysis is a branch of statistics which deals with time to the occurrence of a

given event of interest. For insurers this event could be time to death, ill health or
retirement. It’s different from other fields of statistics in that we are observing something
that develops dynamically over time and takes censoring into consideration which is

partial information about the variable of interest.
Three important functions of time to the event are:

e The survival function, S(t), describes the probability that an individual survives
longer than time t.
e The probability density function, f(t)

e The hazard function, h(t), describes the instantaneous death rate

Estimating the survival function using non-parametric methods such as the Kaplan-Meier

technique leads to obtaining the median time to the event under investigation.

Determining factors affecting the hazard, the Cox PH model has been widely used.



1.2 Problem Statement

The Cox PH model is given by:

Ri(t) = ho(t) efr¥utfador+hiki

Where:

h;(t) = is the hazard function at time t

h, (t) = is the baseline hazard function at time t

B's = are the regression coefficients.

X’s = are vector of covariates.

One reason why this model is so popular is because of the ease with which technical
difficulties such as censoring and truncation are handled. This is due to the appealing
interpretation of the hazard function as a risk that changes over time.

The concept allows for the entering of covariates in order to describe their influence and
to model different levels of risk for different sub-groups.

However, we may not know all relevant risk factors. It may also be costly to measure
them.

Ordinary life tables assume that populations are homogeneous implying that all
individuals have the same risk. Yet in reality we have a mixture of individuals with
different risks. Frailty models tackle such issues.

In an insurance setting ignoring heterogeneity could lead to model error i.e. using the
wrong life tables to price insurance products which could be costly to both the insurer

and the insured.



1.3 Research Objectives

Main Objective:
The main objective of the study is to review univariate frailty models.
Specific Objectives:

e Extend the work by considering other distributions that can be used in modeling.

e To construct the hazard function when the insured population is considered to be
heterogeneous.

e Propose the non-central gamma distribution to represent heterogeneity in an

insurance setting.



1.4 Significance of the study

Risks within an insurance contract are heterogeneous. Therefore, to come up with
premiums that are consistent with the insured risk all relevant factors affecting mortality
need to be considered. Buhlmann (1970) developed models to accounting for features of
the insured risk in non-life insurance which is unknown but relevant to explain overall
claim frequencies. In another context, Olivieri (2006) has applied frailty models to

pensions and life annuities to account for unobserved heterogeneity.



1.5 Outline
This thesis is organized as follows: Chapter 1 gives a general introduction to survival

analysis and mixture distributions, chapter 2 is an introduction to different aspects of
frailty modeling and chapter 3 reviews distributions that have been on frailty models. In
chapter 4 Gompertz model parameters are estimated using R program and in chapter 5 the
proposed model properties are discussed. Chapter 6 describes an application of frailty to
life insurance and chapter 7 is on conclusions and recommendation for further research.

Finally, the reference materials used in the study are listed.



1.6 Review of the Literature

Estimating the survival function
Existing literature on estimating the survival function includes the parametric, semi-

parametric and non-parametric methods. Frailty models are extension of Cox-
proportional hazard model where the relative risk is replaced with a random variable
called the “frailty term’.

1.6.1 Parametric Methods

For parametric inference, it is necessary to make assumptions about the distribution of
failure times. Parametric approaches such as Weibull, lognormal, exponential, etc can be
used to estimate the survival function for homogeneous populations. Basically, any
distribution of non-negative random variables can be used.

1.6.2 Non-Parametric Methods

Non-parametric approaches such as Kaplan-Meier (1958) and Aalen-Nelson (1978) can
be used to estimate the survival function when assumption of the failure time distribution
is to be avoided. An advantage of non-parametric models is their good fit and their ability

to deal with any distribution without any additional assumptions.

Important consideration when estimating the hazard function is to investigate the relation
between the survival time and some risk factors (covariates). These risk factors might be
fixed variables, or they may change over time. Examples include; age, gender, socio-
economic status, education, blood pressure, body mass index, smoking habits, nutrition,
physical activity level, heart rate and so forth. Their influence on the survival is of great

interest for insurers and can be estimated by statistical models.



The effect of X; can be either parameterized as proportional hazards (PH) or accelerated
failure time (AFT).

PH assumes h(t;) = h,(t;)exp{x;' B} for some baseline hazard h,(t;)

AFT assumes S(t;) = S, (exp{—x;'B}t;) for some baseline survival function S, (t)

Parametric survival models assume some function for h,(t) and hence for S, (t)
1.6.3 Semi-Parametric Methods

Cox proportional hazard model (1972)

A Cox model is a technique for exploring the relationship between the survival time of an
individual and several explanatory variables. The hazard function for each individual is
proportional to the baseline hazard h,(t) and thus the hazard is fully determined by the
covariate vector. The hazard function for individual i at time (age) t is written as:

hi(6) = ho(£) it Fadat-+hii

h,(t) is the baseline hazard function and corresponds to the probability of dying (or
reaching an event) when all the explanatory variables are zero. In this model it is left
unspecified. exp(B'X;) is the relative risk of individual i, where x; = (x4,...,x) are
vector of covariables and 8’ = (B, ..., Bx) are vector of regression coefficients that give
the proportional change that can be expected in the hazard, related to changes in the
explanatory variables.

Cox (1972) proposed the partial likelihood method to estimate the 3 parameter of this

model. The partial likelihood is a product over the uncensored failure times written as:

exp (B'X;)
Yyjsviexp (B'X;)

L(B) =

Yi uncensored



Each factor can be interpreted as the conditional probability that individual i dies at time
ti, given the risk set R;. The first and second derivatives of the log likelihood of the
model can be derived. Parameter estimates can then be obtained by maximizing L(f)

The log partial likelihood is given by

(P =logL() = D FXi—log ). exp(FX)}

Yi uncensored YjzYi

1.6.4 Frailty Models

Vaupel et al. (1979) introduced the term frailty and used it in individual survival models.
Clayton (1978) promoted the model by its application to multivariate situations. Ordinary
life table methods implicitly assume that the population under study is homogenous. This
means that all individuals in that study are subject under the same risk (e.qg., risk of death,
risk of accident). Basic observation of medical statistics shows that individuals differ
greatly. Thus, the study population cannot be assumed to be homogeneous but must be
considered as a heterogeneous sample.

A random effect model takes into account the effects of unobserved or unobservable
heterogeneity, i.e. an individual’s attitude towards health or some genotypic personal
characteristics. Thus, the role of “frailty” is to include all unobservable factors acting on
the individual mortality. The random effect denoted by Z is the term that describes the

individual heterogeneity.
Differential Mortality Models

The Multiplicative approach.

Vaupel et al. (1979) described the model as



h(x|z) = zh,(x)

h, (x) is the baseline mortality considered to be a known function of x that is to be
specified. The frailty, Z is meant to quantify uncertainty associated with the hazard rate

which acts in a multiplicative manner

The Aalen Additive Model.
Aalen (1980;1989) described a nonparametric additive hazard model given by

h(x|Z) = ho(x)+pZ  B>0

This model is useful in dealing with right censored survival data, especially in the

presence of time-varying covariates.

Age Shifting Model.

h(x) = h(x + 2)

The age shift model was proposed by Humphreys (1874). Who argued that the mortality
experience of a group of impaired lives accepted for life insurance should have an
increased premium rating determined by assuming that the insured’s age is higher than

the real current age, hence adopting the “age shift”.

Constant mortality model.

R(x) = h(x)+b,b > 0

Mortality increase is constant and independent of the initial age; such model is consistent

with extra-mortality due to accidents (related either to occupation or to extreme sports).
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TYPES OF FRAILTY MODELS

1.6.5 Frailty models without observed covariates.

This model is used when only survival data is available for the analysis, or when
additional information is of no interest.

h(t,Z) = Zh,(t)

The non-negative random variable Z is called frailty and h,(t) is the baseline hazard.
This model is non-identifiable from survival data, since different combinations of
h,(t) and frailty distributions may produce the same marginal hazard rate h(t). The
model becomes identifiable when the parametric structure of h, (t) is fixed and Z is

assumed to belong to some parametric distribution family.

1.6.6 Frailty models with observed covariates.

If covariates are known, they can be included in the analysis; however it is nearly
impossible to include all factors. Therefore, the individual hazard function with frailty
factor Z and covariates X is given by
h(t,x|Z) = Z h,(t) eP'X
The conditional survival function is;
s(t,x|2) = g-ZHo(D)eF X
B is a vector of regression coefficients characterizing the measure of influence of X on
the hazard rate. X and Z are assumed to be independent. However, incorporation of
unobservable factors (such as frailty) into Cox PH models poses theoretical difficulties in

the estimation and inference procedures (Therneau and Grambsch, 2000).
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1.6.7 Univariate Frailty Models

This model describes the influence of unobserved covariates in a proportional hazards
model for independent lifetimes. The variability can be split into a part that depends on
observable risk factors, and is therefore theoretically predictable, and a part that is
theoretically unpredictable, even when all relevant information is known. This model has
been used by Hougaard (1991) to show that these two sources of variability can explain

some unexpected results or gives an alternative explanation of some results.

1.6.8 Bivariate Frailty Models

Bivariate frailty models are used to analyze the effects of dependence between life spans
of two related individuals with random effect. This model estimates the impact of
dependence on the regression coefficients of the Cox-proportion hazard model

(Clayton, 1978; Hougaard, 1995).

The bivariate survival function is given by:

S(t1,t212) = S1(t1)*S,(t2)*

1.6.9 Multivariate Frailty Models

The aim for multivariate analysis is to account for the dependence in clustered event
times. A natural way to model dependence of clustered event times is through the
introduction of a cluster-specific random effect - the frailty. This random effect explains
the dependence in the sense that had we known the frailty, the events would be
independent. This approach can be used for survival times of related individuals like
family members, parent-child, twins) or recurrent observations on the same person.

Clayton (1978) used this approach to model statistical dependence for clustered events.
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The survival function is given by;

S(tl’tZ! e tn) = f S(tl |ZYX1 )S(tZ |ZYX2 )1 yS(tn |Zan ),g (Z)dZ
0

S(ty ta, i ty) = Lz (Hoi(E:))

1.6.10 Shared Frailty Models
This model was introduced by Clayton (1978) it is relevant to event times of related
individuals or observations that are clustered into groups such as cities that are assumed

to share the same frailty Z. The survival times are assumed to be conditional independent

with respect to the shared (common) frailty.

The hazard function for a shared frailty model is given by:
hij(¢1Z)) = Z; ho(2) eP'Xii 7. is the random effect associated with the i group

1.6.11 Correlated Frailty Models

In correlated frailty models, the frailty of each individual in a pair is defined by a
measure of relative risk where two associated random variables are used to characterize
the frailty effect for each pair. For example, one random variable is assigned for the
husband and one for the wife so that they would no longer be constrained to have a

common frailty. These two variables are associated and have a joint distribution. For two

individuals in a pair, frailties are not necessarily the same, as they are in the shared frailty

h(t) = Zyjho(t)eP*i

h,j(t)are baseline hazard functions, and Z;;are unobserved (random) effect or frailty.
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Yashin et al. (1993, 1995) introduced the correlated gamma frailty model and applied to
related lifetimes.

1.6.12 Nested Frailty Models

Nested frailty models account for hierarchical clustering of the data by including two
nested random effects that act multiplicatively on the hazard function. Such models are
appropriate when observations are clustered at several hierarchical levels such as in

geographical areas (Rondeau et al. 2006).

The hazard function is given by:

hiji(t1Z3, Uyj) = Z; Ugsho (t) e Xiik
The cluster random effect Z; and the sub-cluster random effect U;; are both independently

and identically distributed.

1.6.13 Joint Frailty Models

Recurrent events across time for subjects in a study may be terminated by loss to follow-
up, end-of-study, or a major failure event such as death. Here, the major failure event
could be correlated with the recurrent events. Joint frailty models provides a way to study
the joint evolution over time of two survival processes by considering the terminal event
as informative censoring (Rondeau et al. 2007).

1.6.14 Discrete Frailty Models

The distribution of the frailty factor is normally assumed to be continuous. In some cases,
it may be appropriate to express heterogeneity as a discrete mixture. Having zero frailty
can be interpreted as being immune, and population heterogeneity may be analyzed using
discrete frailty models. Continuous frailty distributions do not allow having zero risks.

Nickell(1979) used the binary discrete model to account for heterogeneity in
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unemployment spell data. In this study however continuous frailty models will be

considered.

Frailty Distributions

First, neither theory nor data typically provides much guidance for choosing a specific
distribution from which to draw the frailty, thus any distribution with positive support
and finite mean is suitable to represent the frailty distribution. However, for tractability
reasons the choice of distribution is limited to those that provide a closed form expression
for the frailty survivor function, density and hazard functions.

The choice of parametric distributions for Z is often a matter of computational
convenience and it should be strictly positive support, since negative frailty leads to
negative mortality rates. Some of the distributions considered in this study are:

» Gamma distribution Vaupel et.al (1979)

Inverse-Gaussian distribution Manton et al (1986)

» Positive Stable distribution; Hougaard (1986)

* Lognormal distribution (McGilchrist and Aisbett, 1991).
» Compound Poisson distribution (Aalen 1988, 1992)

* Inverse Gamma distribution

» Reciprocal Inverse-Gaussian distribution

¢ Non Central Gamma distribution

Baseline Hazard Distributions
Two different approaches are possible. In the parametric case the baseline hazard is
chosen in the class of parametric lifetime distributions. The model also works without

any specification of the baseline hazard function. However, there has been no study or
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survival experiment, which restricts estimates for the parametric form of the baseline
hazard. Baselines with monotone increasing hazards are often used because one is often
interested in the life of a device in the period of its life when an aging process is in force.
Models with monotone decreasing hazard functions are used less often but can have
application in the study of early lifetimes of devices. Constant hazard functions can be

used as baseline distributions to which other distributions are compared.
The baseline hazards considered in the study includes;

e The Gompertz model (1825) (Vaupel et.al. 1979)

e The Weibull distribution (Manton and Stellard, 1988),
e Exponential distribution

e Log-logistic distribution

e Lognormal distribution

e Exponential Power distribution

e Pareto distribution

1.7 Applications in Life Insurance

Frailty models are used in life insurance to represent heterogeneity in a population due to
unobservable risk factors. Heterogeneity due to observable risk factors is addressed at
policy issue during the underwriting process to ensure that each contract is assigned
premium consistent with the insured risk. Neglecting such factors may lead to biased

valuation of insurance products.
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Actuaries have developed models for valuing life insurance that only consider observable
risk factors. However, in general insurance models accounting for unobservable risk has
been developed to explain overall claim frequency i.e. the Poisson-Gamma model.

1.7.1 Life Insurance

Life insurance contracts with benefits contingent on the lifetime of an individual and
whose benefit is stated in advance is considered. Heterogeneity can be classified as
emerging from observable risk factors (at issue) i.e. age, sex, health status, profession,
smoke habits, sport activities, and so on. Or unobservable risk factors like an individual’s
attitude towards risk.

For immediate annuities, the relation of premium and annuity depends on the health of
the insured at the time the contract is taken out. However, in deferred annuities (pension
schemes), the insurer has to perform some kind of underwriting at the end of the

deferment period.

The underwriting process:

The purpose of underwriting is to assign each insured a frailty factor Z as an estimate of
Z to determine the pricing mortality rates. These underwriting factors are observable
characteristics, such as smoking status, that explain mortality heterogeneity.

Underwriting is done to ensure that premiums and benefits are fairly priced.

The tests carried out during the underwriting process are based on;
e Biological and physiological factors, such as age, gender, genotype;
e Features of the living environment; in particular: climate and pollution, nutrition

standards population density, hygienic and sanitary conditions;
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e Occupation, in particular in relation to professional disabilities or exposure to
injury, and educational attainment;
e Individual lifestyle, in particular with regard to nutrition, alcohol and drug
consumption, smoke, physical activities and pastimes;
e Current health conditions, personal and/or family medical history, civil status, and
So on.
This assessment can be performed through proper questions in the application form and

as to health conditions through a medical examination.

Modeling unobservable factors:

In addition to observable factors, heterogeneity may be caused by unobservable
individual-specific factors, referred to as frailty. Frailty models may provide an
appropriate description of the age-specific mortality shape, as well as the estimate of
parameters of the relevant models according to mortality observed within the portfolio.
However, there is no data available that can be linked to the choice of the distribution of
Z since it is unobserved

1.7.2Pension Schemes

Let x be the age at entry (time 0), N, the number of annuitants at time ¢,t > O; at the
valuation time T,T = 0, the number N; is known, while N, is random fort > T. The
amount of benefit at time t is denoted by 6. Assuming a deterministic financial setting,

the short interest rate at time t is assumed to be deterministic, thus §, = § for any t.

The value at time T of one monetary unit at time t,t > T,is e %¢-T)
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In case the population is considered homogeneous the future lifetimes {Ti¢ .y ; i =

1,2,...,n} are independent and identically distributed.

If the population is heterogeneous, then the future lifetimes are correlated through
Z..and can be assumed conditionally independent and identically distributed. This
means dependence between survival times is only due to unobservable covariates or

frailty.
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CRITICAL LITERATURE REVIEW:

2.1 Probability Tools
Some of the common probability tools used in survival analysis that will be used in the

study are described below. Let Ty be the future lifetime variable i.e. the remaining
duration of life of a person aged x, which is a positive real valued variable, having a
continuous distribution with finite expectation. Several functions characterize the
distribution of Ty:

* fo(t),t = 0 isthe probability density of Ty;

S, (t) = P(T, >1t) = f:o f x(x)dx = 1 — E.(t) is the survival function, which is
sometimes denoted with (P,

e E.(t) = P(T, < t) Expresses the probability of dying within t years for a person age x
and is denoted by (q,

. P(t<T<t+6t|T>t) _ —aS(t)/dt . :
« h(t) = % = limg, ( <6: T2t — Sit)) is the hazard function,

which represents the probability that an individual alive at t experiences the event in the

next period at. (also called the instantaneous death rate)

e H(t) = foth(x)dx is the cumulative hazard function

2.1.1 Relationships between f(t), h(t) and s(t)
Let h(t) denote the hazard function, defined by

] prt<T <t+dt|T>t)
h(t) = lim
(dt => 0) dt

T is nonnegative and represents the future lifetime of an individual

] prt<T<t+dt|T>t)
h(t) = lim
(dt => 0) prob(T > t) * dt
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pr(t<T < t+dt)/dt

h(t) = (dtli—n>l 0) prob(T > t)
_ f@®

O = T-Fm
_f@

h(t) = 0)

By definition;

S(t) = 1—F(t)
f@®) =F@ = -5

Y0
S(6)

Substitute in (1) h(t) =

d
h(t) = — I In(S(t))
— fh(t) dt = Ins(t)

S(t) = exp(—fh(t) dt)
S(t) = exp (=H(t))

2.1.2 Laplace Transform

The Laplace transform is crucial in this study since it makes computations of the survival
and hazard functions from the density function easy.

The Laplace transform of a random variable Z with density function f(z) is given by;
Lz(s) = E[e™*]

Ly(s) = [ e~ f(z)dz
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2.2 FRAILTY MODELS

Frailty models are extensions of the Cox-proportional hazards model. In many cases it is
impossible to measure all relevant covariates related to the subject of interest, sometimes
because of economical reasons or sometimes the importance of some covariates is still
unknown.

The frailty approach aims to account for heterogeneity, caused by unmeasured covariates
in the Cox-proportional model which is described by a mixture variable Z called frailty.
The Cox-proportional model is given by;

h(t,x) = h,(t) exp(B'X).

The hazard is modified to the frailty model by substituting the relative risk exp(B'X;) by
a random variable Z which represents the unobserved covariates X; i.e.

h(t,z) = h,(t)*Z

The frailty Z is then assumed to follow some distribution with positive support and has a

multiplicative effect on the baseline hazard function which is common to all individuals.

2.3 THE MULTIPLICATIVE MODEL

This model describes the population as a mixture and assumes that each individual
correspond a frailty quantity Z, describing the individual's relative risk. The non-negative
quantity z encompasses all other factors affecting mortality other than age.

The hazard at age x conditional on Z is assumed to be Z h,(x)
le. h(x|z) = z* h,(x) where h,(x) is the ‘standard hazard function’

corresponding to a ‘standard individual’, conventionally those with frailty z = 1
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Individuals with Z > 1 experience a force of mortality that is proportionally higher than
h(x) at all ages. Individuals with Z < 1 experience proportionally lower mortality rates.
Z = 1Correspond to the standard hazard function.

The composition of a cohort with respect to the frailty Z changes as a cohort grows older
because the more frail (susceptible) individuals tend to die earlier than the least frail
individuals.

Due to the stochastic nature of Z, the random effect or frailty model is stochastic.

The survival function of an individual with frailty Z is given by
S(t|1Z) = exp(— f h(t|Z) dt)

= exp(— [ Zh,(t) dt)
S(t|z) = exp{-ZH,(t)}
Since, the individual model S(t|Z) is not observable as each individual Z is unobserved;
it is ‘integrated out’ by specifying a distribution and obtaining the unconditional survival
function.
The survival function of the total population is the mean of individual survival functions
with respect to the frailty distribution. It can be viewed as the survival function of a
randomly drawn individual, and corresponds to what can actually be observed.
Integrating over the range of frailty variable Z having density f(z), we get marginal

survival function representing the population as,

S(¢) f S(¢t|12) £(2) dz

S(t)

S(t) = Elexp{—ZH,(t)}]

E[S(t]2)]
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S(t) = Lz(H,(¢))
f(2) is the density of Z and L,(s) is the Laplace transform of Z.
To obtain the marginal density function £(t)

Consider the relationship;

f(t1Z)

WD) =@z

= Zh,(t)

f(tlZ) = Zho(t)S(t]2)

. _f(t2)
Since, f(t|Z) = ey

f(t.2) = Zh,(1)S(t12)f (2)
Also, f(t) = [ f(t.2)f(2) dz

f() = ho(t)fZS(tlZ)f(z) Az o (2)

= ho()E[Z5(t|2)]

f(t) = —ho(t)L'(Ho (1))

2.3.1 Model Assumptions.
» The frailty Z has a multiplicative effect on the mortality rate of the individuals :

h(t;Z) = Zh,(t)

» The frailty Z, is stationary. i.e. the frailty of an individual keeps constant
throughout the whole lifetime span (but the probability distribution does depend
on the age, and this justifies the suffix x)

e Zis distributed independent of age(x) or time(t)

» Z has a strictly positive support since negative hazards are impossible.
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2.3.2 Individual Vs Population hazards
In frailty modeling the individual hazard rate increases over time while the population

hazard obtained by averaging over all the survivors decreases. This is because the
population becomes populated by more and more robust individuals as the frail members
fail. In a homogeneous assumption, the population hazard is the same thing since all
individuals are assumed to be identical. Whereas in a heterogeneous setting, it turns out
that the population hazard can fall while the individual hazards all rise.

2.4 DISCRETE FRAILTY MODELS

There are some situations in which a discrete distribution may be appropriate. For
example, heterogeneity in lifetime arises because of exposure to damage on a random
number of occasions. Having zero frailty can be interpreted as being immune, and
population heterogeneity may be analyzed using discrete frailty models. There are two
kinds of discrete frailty models in the literature. One kind of discrete frailty model is
constructed by separating the frailty into ones with fixed and random numbers of mass
points. The second kind of discrete frailty model is based on a fixed number of

components and with masses at integers.

CONSTRUCTION
Survival functions for the frailty model with discrete distributions:

The unconditional survival function for the discrete frailty distribution is given by;

S(t) = ZS(tIZ)P(z)
S(t) = E[S(t]|2)]

S(t) = E[e¢ZH]

Z is a discrete random variable with the probability function P (Z = z) = P (2).
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Standard discrete distributions such as Geometric, Poisson and Negative Binomial

distributions have been considered by Carolini et.al (2010)

2.4.1 GEOMETRIC DISTRIBUTION
If Z is a geometric-distributed random variable with the probability function

P(z)=p(1 -p),z=012.
The unconditional survival function is given by

S(t) = E[e¢ZHO)]

@)= ) e O sp( - p)*

Z=0
SO =p) (@=peO)
z=0
let S,(t) = e "®and1—p = g where S,(t) is the baseline survival function.
SO=p) @S®)
z=0

S(€) = p{1 + qS,(t) +(qSo(®))+(qS,(0))* + (qSo(£))* + -}

P

SO = 105,00

2.4.2 POISSON DISTRIBUTION
If Z is a Poisson distributed random variable with parameter p > 0 and probability density

function;

pre ¥

P2) = =7

z=01.2,.

The unconditional survival function is given by;

S(t) = E[eCZHO]
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_ - pre
S(t) = YFzpe ZHW —

L (€O
St)= e B > 7

z!

S(t) = e Hx e(e_H(t)Pl)

S(t) = e Hx e(So(t)n)

S(t) = eMSo(®-1)

2.4.3 NEGATIVE BINOMIAL

Let Z be a negative binomial-distributed random variable with the probability function
P(z) = C)p*(1-p)** ,z = k,k + 1,...,where k > Oandp > 0.

The unconditional survival function is given by

S(t) = E[e¢ZHO)]

[0¢]

SO = Y e O (77 )k a- oyt

Z=0

S = Q) 7-o(_1)(qe ")

() = () Z7-0(51)(@Se(6))?

using = as,@* = . (1~ 7) sy

S(t) = (S)" £ (@S, () * (1= qS, ()

pSo(t)

SO =G5 5.0 )"
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2.4.4 BINOMIAL DISTRIBUTION
Let Z be a binomial distributed random variable with the probability function

P(z) = (Tzl)pz (1-p)* 7%,z =012...nwhere p > 0.
The unconditional survival function is given by

S(t) = E[e (-zH (t))]

n

Z=0

S@) = 221:0(721)(193_1‘1(0)2 qn?

S(t) = (g + peO)"
S(t) = (q +pS,(t))"where p>0andp+q =1

However, in this study frailty models with continuous distribution of “frailty’ z will be

considered. Since, with continuous frailty it is possible to capture the finest change in
unobserved heterogeneity. Unlike the discrete models, continuous models do not allow

having zero risks.
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CHAPTER 3

CONTINUOUS FRAILTY MODELS

GAMMA MIXTURES

3.1 GAMMA FRAILTY MODEL

Vaupel et al. (1979) suggest a Gamma distribution, due to its mathematical tractability.
From a computational and analytical point of view, it fits well to failure data because it is
easy to derive the closed form expressions of unconditional survival, cumulative density

and hazard function. This is due to the simplicity of the Laplace transform.

Vaupel Approach (1979)

Construction

LetZ ~T(p,b)

With shape parameter p and scale parameter b. The marginal density of Z is;

bpzp—le—bz

r(p)

f(z) = :z>0,b>0,p>0

The Laplace transformation is given by;
b S
= (—)P = + )P
Ly(s)= )P =(1+7)

This is required to integrate out the distribution of the unobserved frailty. Once the frailty

IS integrated out, accounting for unobserved heterogeneity is reduced to estimating the

. i 1
variance of the frailty term. 5% = 5
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The mean frailty at birth is
S 1
E(z) = ~L'(0) = p* (L+) P71 +7 @s =0
_p
b

Variance; Var(z) = L"(0)- (L'(0))2

= —p(-p—-1D=* (1+ %)—p—Z * <%)2 - (%)2 @s =0

sd 1
Coefficient of variation; cv(z) = =

mean \/E

The CV shows that p plays the role of measuring, in relative terms, the level of

heterogeneity in population. If p — oo, then cv(z) — 0, i.e. the population can be
considered homogeneous; for small values of p, on the contrary, the value of cv(z) is
high, expressing a wide dispersion, i.e. heterogeneity in the population.

However, the coefficient of variation is constant and does not change with age. This is a
unique property of the gamma distributed frailty, since other assumed forms of frailty
usually exhibit a decreasing coefficient of variation. i.e. Inverse Gaussian distributed
frailty.

The marginal survival function is given by;

S(x) = Lz(Ho(x))

s@ = @+

f(x) = =ho(t) Lz (Ho(x))

FO) = ho(®) L+ 2291
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H,
h@z%%zmmu (1P

b ) b
For purposes of identifiability assume the distribution of Z has mean normalized to one

(i.e. the standard mortality table describes an "average individual") and varianced 2 = 5

Let p = b (i.e. one parametric gamma distribution). The hazard becomes,

o)
h(x) = —2
1+ G

_ ho(x)b
M) = H,®

CHOICE OF h,(x)

3.1.1 Gompertz - Gamma Frailty Model
Benjamin Gompertz (1825) idea of “exponential aging”, postulated that h(x) satisfies the

simple differential equation

dh(x) _

= Bh(x)
Solving this
dh(x) _

ho) pdx

dh(x
fhé;:fﬁ“
Inh(x) = Bx + ¢
h(x) =« ef* where <= e€
In words, this implies that a person's probability of dying increases at a constant

exponential rate as age increases. Gompertz' Law is often found to be quite accurate (at

least as a first approximation) for ages over about 25 or 30.
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Hence,
h,(x) = eP* o> 0 represents baseline mortality and p > 0 is the rate of increase of

mortality with age.

H,(x) = tho(x) dt

0

X
= f o« ePtdt
0

H, = Z(efr—1
0(X) —[),(e )

Using the Gompertz model the hazard becomes

o bePx

b +%(eﬁx —1)

h(x) =

for b =0.05 « =0.00088 = 0.1 h(x)has a log — logistic shape shown below

gamma-gompertz curve (var=2) gamma-gompertz curve (var=0.02)
n
[ o -
s
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The hazard can be re-parametized as:

x beh*
h(x) = —= x
b _F*{1+ﬁb——oceﬁx}
1 « beP*
h(x) = = * =
-5 1+ ebx
p pb—x
let & = X b 5 = x
AT %% T B
B
Thus,
Hx) = delx
(x) = 1+ ebx

Has a logistic shape and belongs to the Perks family (1932)

3.1.2 Weibull-Gamma Frailty Model
Alternatively, h,(x) can be chosen to follow a weibull (4, p) distribution with probability

density function

f(x) = ApxP~lexp(—2AxP) wherep > 0,1 > 0 p is the shape parameter
The survival function is;

s(x) =Pr (X >x)

s(x) = fxoo AptP~lexp(—AtP)dt ..... eqtl
dz
let z = AtP i AptP~1  substituting ineqn 1

s(x) = [, exp (-z)dz
s(x) = exp(—AxP)

f(x) _ ApxP~lexp(—AxP)

h(x) = s(x) exp(—AxP)
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hyo(x) = ApxP~1

H,(x) = tho(t) dt

0

X
H,(x) = f AptP~1ldt

0
H,(x) =AxP
if p > 1the hazard increases and if p < 1 the hazard decreases
The extreme value character of the Weibull distribution makes it appropriate for the
distribution of individual time to death, because there are different causes of death which
compete with each other.

Using Weibull as the baseline hazard, the hazard function for gamma;

h,(x)b
h) o(X)
b+ H,(x)
becomes
B(x) = ApxP 1« b
) =

Letb =20p = 1.1 1 = 0.01 the output is shown below

3.1.3 Exponential-Gamma Frailty Model
A special case of the weibull distribution is the exponential distribution when the shape parameter

isone (p=1)

The Weibull hazard is given by
hyo(x) = ApxP~1
Substitutingp = 1

h,(x) = 4
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This is the hazard of an exponential distribution which is constant.

The cumulative hazard is given by;

H,(x) = f xho (t) dt

0

= [ Adt

H,(x) = Ax

Using the Exponential distribution for the baseline hazard h, (x);

The hazard for the gamma distribution;

h,(x)b
hey = @
b+ H,(x)
becomes
L b
) = 7

3.1.4 Log-logistic Gamma Frailty Model
The probability density function for a log-logistic distribution is

Mx>0 , x>0
C

S(x) =Pr(X >x)

flx) =

[ee) ﬁ Eﬁ_l
(@R
0=

d
ety = (o 2= EH
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[0¢]

_ dy
S(x) - .f(g)ﬁ (1 +y)2

S(x) = —1 N (g)ﬁ
By Xy5-1
h(x) = %
1+ (E)B
Thus
AYEA .
ho(t) — Q.C)(;.C)

()

The cumulative hazard is given by;

Ho(x) = f x @) (@B_l

]

dt

x\B

Ho(x) = {1+ (3) }

The hazard for the gamma distribution;

becomes

B 1 x\B
h(x):%/{l+ Eln<1+(g) )}

3.1.5 Log normal - Gamma Frailty Model
Using the log normal distribution with parameters p ando:

W =In(x) ~ N(u,o)
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1 e
f(x) = e
P = ot
f(x)
h(x) =
1— q)(lnxa— u)
d
h(x) = —aln (1-F(x))
Inx —pu
H@) = —In(1 - (1)
Thus
f(x)
ho(x) =
1— q)(lnxa— u)

The cumulative hazard is given by;

X

H,(x) :f —iln(l—F(x))dx

o dx

Inx —pu

H,(x) = —In(1— &( )

o

The hazard for the gamma distribution;

_ hy(x)b
h(x) = b+ Ho(x)
becomes
?(x)
) 1— @ (lnxa— u)
h(x) = 1 Inx —

1-3n(1 - o(==—t)

3.1.6 Exponential power - Gamma Frailty Model
Using the exponential power density with survival function;
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A

S() = e« 1>0

d
h(t) = — Eln s(t)

A = — (1 - o)
h,(x) = o At<1eAt™
H(t) = —In(S(t))
H(t) = —ln(e*¢"")
Ho(x) = e —1

The hazard for the gamma distribution;

_ he(x)b
h(x) = b + H,(x)
becomes
e Axoc—lelx“
h(x) =

1+ (e —1)/b

3.1.7 Pareto - Gamma Frailty Model
Using the Pareto distribution with survival function;

A
S(t):? x>0,1>0t=>21

A

h(t) = —Eln?
t—l
h(t) = T
ho(t) = =

H(t) = —In(5(t))
A
Ho(x) = =In(7)
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The hazard for the gamma distribution;

_ he(x)b
M) =,
becomes
h(x) = —*—
1- ln(;)/b

INVERSE-GAUSSIAN MIXTURES

3.2 INVERSE-GAUSSIAN FRAILTY MODEL
Alternative to the Gamma distribution is the Inverse Gaussian as a frailty distribution

introduced by Hougaard (1984). When the inverse Gaussian is used, the variability of Zx
decreases with age which can be justified by the fact that those with low frailty keep on

living.

Hougaard Approach (1984)

Construction

Let Z ~ IG(u,)

The probability density function of Z is

)Uzexp{—w} forz>0 >0u>0

2zu?

fawm) = (

2mz3

- - HZ
Substituting = n

_ 1 1/2 (Z_”)Z
flz,u,A) = ”(2n323) exp{—W} forz>0B>0p>0
The Laplace transform is given by;

L,(s) = exp{— % [(1+ 265)% — 1]}
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Mean=-L',(0) = pu

Variance = L ,(0) - u?
=up

Coefficient of Variation = g

For identifiability reasons the mean is normalized to one. i.e. u = 1 thus the variance
§2=p
The Laplace transform becomes

1-(1+2s562)1/2
652

La(s)=exp|
The marginal survival function is given by;

S(x) = Lz(Ho(x))

1—(1+2H, (x)52)1/2]

- exp|

f(x) = —ho(x) Lz'(Ho(x))

ho(x) ex [
T (1+2H, (x)82)1/2 P

1- (1+2H0(x)52)1/2]

flx) hy(x)
— s(x) (1 + 2Hy(x)82)1/2

CHOICE OF h,(x)

3.2.1 Gompertz - Inverse Gaussian Frailty Model
Using Gompertz assumption for the baseline mortality h,(x) = x ef*

The Inverse Gaussian hazard becomes
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o ebx

h(x) = =
(1+25(efr = 1)67)1
I.G-Gompertz hazard
[e0]
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3.2.2 Weibull-Inverse Gaussian Frailty Model
Using Weibull distribution for h, (t)

ho(t) = Apx?™!
Hy(x) =AxP

ho (%)
(1 +2H,(x)62)"/?

h(x) =

becomes,

ApxP~1
(1+ 2 AxP52)1/2

h(x) =
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3.2.3 Exponential Inverse-Gaussian Frailty Model
Using the Exponential distribution for the baseline hazard h, (t);

ho(t) = A

The cumulative hazard

H, (t) = At

The hazard for the inverse Gaussian distribution;

h,(t
(1 +2H,(t)62)1/2
becomes,
y)
MO = T30

3.2.4 Log-logistic Inverse-Gaussian Frailty model
Using the Log-logistic distribution for the baseline hazard h, (t);

CC
()

The cumulative hazard

h,(t) =

x\B

H,(x) =In{1+ (oc) }
The hazard for the inverse Gaussian distribution;

ho (t)

MO = T+ 28,0607

becomes,
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B
ROl

(1 +2n{1+ (& ) }52)1/2

h(t) =

3.2.5 Log normal - Inverse Gaussian Frailty Model
Using the Log normal distribution for the baseline hazard h, (t);

f(x)

ho(x) =
1— @ (lnx U

)

The cumulative hazard is given by;

H,(x) = —-In(1- q)(lnx il

)

The hazard for the inverse Gaussian distribution;

ho) = 73 2};100((1:1:))52)1/2
becomes,
h(t) =

(1-2In(1 - cb( "))52)1/2

3.2.6 Exponential power - Inverse Gaussian Frailty Model
Using the exponential power distribution for the baseline hazard h, (t);

hy(x) = o At*1eAt™

The cumulative hazard is given by;

Hy(x) =eM* -1

The hazard for the inverse Gaussian distribution;
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ho (t)

MO = T am,@eny 7
becomes,

e Atoc—le/lt“
h(t) =

1+ 2(3/1t°< — 1)52)1/2

3.2.7 Pareto - Inverse Gaussian Frailty Model
Using the Pareto distribution for the baseline hazard h, (t);

h,(t) = p

The cumulative hazard is given by;

A
H,(t) = =In(3)

The hazard for the inverse Gaussian distribution;

_ ho(t)
MO = Tz, (en
becomes,
h(t) = t

(1 - 2in(hys2)12

POWER VARIANCE FUNCTIONS

3.3 POWER VARIANCE FUNCTION FRAILTY MODEL
Tweedy (1984) suggested the family of power variance functions that includes the

Gamma, Inverse Gaussian and Positive stable distributions and later derived

independently by Hougaard (1986).
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Tweedie Approach (1984)

Construction

The PVF model is a three parameter family denoted by PVF(r, k, 1).

The Laplace transform is
k r T
L(s) = e—;{(/1+5) -A"}
The marginal survival function;

S(x) = Lz(Ho(x))

_ o~ HA+Ho ()T -7}

f(x) = —ho(x) Lz'(Ho(x))

k -
= hy(x)k(1 + Hy(x))"~Le rAHHo ()=}

h(x) = ];(—23 = ho(x)k(A + Ho(x))"*

For identifiability the mean is normalized to one i.e. E [Z] = kA"~ = 1 this implies that
Var [Z] = 6%= k(1 —r)A2 ===

The resulting hazard becomes;

o (0
@+ g2 H O

h(t) =

SPECIAL CASES

Case 1l

For r = 0, the hazard
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ho (t)

M) = —
(1 + 7= Ho ()"
Becomes
_ ho(t)
M) = @+ 52m,m)

This is the hazard function for the gamma I"(k, A) distribution.

Case 2
Forr = 05,
h, ()
hlx) = 52 -
(1 + 1= H,(2))
Becomes
h,(t
he) = ()

(1+2x8%H,(6))"?

This is the hazard function for the inverse Gaussian distribution.

Case 3
Forr = —1,
h, ()
h(x) = 52
L+ H ()"

Becomes

h,(t
he) = ()

(1+ 5« 52H,(1))?
This is the hazard function for the Non-central Gamma distribution with shape parameter

Zero.

46



Case 4

When 1= 0,

h(x) = ho (Ok(A + Ho(x))
Becomes

h(x) = ho (Ok(Ho(x)) "

This is the hazard function for the positive stable distribution.

POSITIVE STABLE MIXTURES
A random variable Z is said to have a stable distribution if it has the property that a linear

combination of two independent copies of the variable has the same distribution.

3.4 POSITIVE STABLE FRAILTY MODEL
Hougaard (1986) introduced the Positive Stable model as a frailty distribution. Despite
the fact that no closed form expressions exist for the probability density or the survival

function, the Laplace transform has a very simple form.
Hougaard Approach (1986)

Construction

The density function of positive stable law can be represented using infinite series

expansion as.
flz k) = ——Zw F(CH 1)( kz~T)esin(rem)

This distribution has an infinite mean.
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The Laplace transform is a special case of the PVF (r, k,A) Laplace
k r T
L(s) = e—;{(/1+s) -1}

WhenA1= 0

—ks”

Ly(s) = e 7

For identifiability reasons let k = r

Ly(s) = e O0<r<1
The marginal survival function;

S(x) = Lz(Ho(x))

:e_HO(x)r

fx) = —ho(x) Lz'(Ho(x))

= rhy(x)Hy(x)"1 % e Ho"

The hazard function is

];(—23 = rho(x)Ho(x)" !

h(x) =

The positive stable distribution is the only frailty distribution which preserves the
proportional hazards assumption in the unconditional hazards after integrating out the

frailty.

CHOICE OF h,(x)

3.4.1 Gompertz —Positive Stable Frailty Model
Using Gompertz assumption for the baseline mortality h,(x) = x ef*
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The hazard function for Positive Stable
h(x) = rho(x)Hy(x)"*

Becomes,

h(x) = rocoh {% (e — 1)}H

Positive stable-Gompertz

hazard
0.02 0.03 0.04
| | |

0.01
|

20 40 60 80 100

age

The power variance family contains members whose relative frailty distribution in

survivors becomes less homogeneous with time.

3.4.2 Weibull-Positive Stable Frailty Model
Using Weibull distribution for h, (t)

ho(t) = Apx?~!

Ho(x) = AxP
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The hazard for the positive stable distribution;
h(x) = rho(x)Ho(x)" "
becomes,

h(x) = rApxP~1 (AxP)™1

3.4.3 Exponental-Positive Stable Frailty Model
Using the Exponential distribution for h, (t);

ho(t) = A

The cumulative hazard

H,(x) = Ax

The hazard for the positive stable distribution;
h(x) = rho(x)Hy(x)" 1

becomes,

h(x) = rA (Ax)"1

3.4.4 Log-logistic Positive Stable Frailty Model
Using the Log-logistic distribution for the baseline hazard h, (t);

BIE
()

The cumulative hazard

h,(t) =

x\B

Ho(x) = {1+ (3) }

The hazard for the positive stable distribution;
h(x) = rho(x)Ho(x)" !
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becomes,

D@

h(x) = r<—ﬁ In{1 + (f)ﬁ}r—l

O

(04

3.4.5 Lognormal-Positive Stable Frailty Model
Using the Log normal distribution for the baseline hazard h, (t);

f(x)
1— @ (lnxa— u)

ho(x) =

The cumulative hazard is given by;

Inx —pu

H,(x) = —In(1— &( )

o

The hazard for the positive stable distribution;
h(x) = rho(x)Ho(x)" !

becomes,

f(x) Inx — u
o

h(x)=r * {—In(1 — d(
1— q)(lnxa— u)

N

3.4.6 Exponential power — Positive Stable Frailty Model
Using the exponential power distribution for the baseline hazard h, (t);

hy(x) = o At*1eAt™

The cumulative hazard is given by;

Hy(x) =eM* -1
The hazard for the positive stable distribution;
h(x) = rho(x)Ho(x)" "
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becomes,

h(x) = 1o A% 1eM™ « (eM™ — 1)1

3.4.7 Pareto - Positive Stable Frailty Model
Using the Pareto distribution for the baseline hazard h, (t);

h,(t) = p

The cumulative hazard is given by;

A
Ho() = ~In()
The hazard for the positive stable distribution;
h(x) = rho(x)Ho(x)" !

becomes,

h(x) = ;{—ln <%)}T‘1

COMPOUND POISSON MIXTURES
3.5 COMPOUND POISSON FRAILTY MODEL
The compound Poisson distribution was introduced by Aalen (1988, 1992) as a frailty

distribution.

Aalen (1988, 1992) approach
Construction

Using the Laplace transform obtained and xi’s~gamma(k, 1)

LZ (S) = ep(Lx(s)_l)
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= ep((l-%) -1

T

and k = —r

by reparametization substitute p =

L,(s)= e%ﬂ*((“i)r‘l)

-k
L,(s)=er

#(A+s)"=1")
For r > 0, the power variance function distribution (PVF) is obtained.

For r < 0O the compound Poisson distribution is obtained, these two subclasses are

separated by the gamma distribution (r = 0).
For identifiability assume the mean frailty is normalized to one.

Mean

L,/ (s)=k(A+ s)r‘l*e_Tk*((“s)r_’lr) @s=0

L/ (0)=kr1=1

Variance

Lz"(s)-(L7'(0))?

K(r — 1) (1 + s)™2eT G0 4 (i + 5y 1)n2 « 7Y =2) _ (1r-1y2 @5 = 0
62 = K(r—1) A2

(r-1

2:
J A
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The marginal survival function is given by
S(x) = Lz(Ho(x))

S(x) = e (GG —11)

f(x) = =ho(t) Lz'(Ho(x))

—k r_yT
F(x) = khy(£)(A+ Hy(x))r~LeT ((HH(I) =47

h(x) = L2 = khy (A + Ho(x))™

hG) = ho(®) (1+ 2 o))
CHOICE OF h,(x)

3.5.1 Gompertz -Compound Poisson Frailty Model
Using Gompertz assumption for the baseline mortality

ho(x) =x eh*
Ho(x) = %(eBX—l)

The hazard

r—1

hG) = ho(8) (1+ 5 Ho()

becomes,

r—1
h(x) = « eh* (1 + %%(eﬁx — 1))

RCODE
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Using r=1.1
gcp=ho*((1+(0.05/0.1)*Ho0)"0.1)

plot(x,gcp,main="CompoundPoisson-Gompertz",type="0", xlab="age",ylab="hazard")

CompoundPoisson-Gompertz
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3.5.2 Weibull -Compound Poisson Frailty Model
Using Weibull distribution for h, (t)

ho(t) = ApxP~1
Ho(x) = AxP
The hazard

h(x) = hy()(1+ éHooc))r_1
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Becomes,

2 r—1
h(x) = ApxP~1 <1 + rdj Axp)

3.5.3 Exponential -Compound Poisson Frailty Model
Using the Exponential distribution for h, (t);

ho(t) = A

The cumulative hazard

H,(x) = Ax

The hazard

r—1

hG) = ho(8) (1+ 5 Ho()

Becomes

r—1

Ry = 2(1+ %Ax)

3.5.4 Log-logistic Compound Poisson Frailty model
Using the Log-logistic distribution for the baseline hazard h, (t);

CC
()

The cumulative hazard

h,(t) =

H,(x) = In{l1+ (g)ﬁ}
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The hazard

r—1

hG) = ho(8) (1+ 5 Ho()

Becomes

r—1

o0 = B 1 £ ()

3.5.5 Lognormal-Compound Poisson Frailty Model
Using the Log normal distribution for the baseline hazard h, (t);

f(x)

Inx —
1- (=)

ho(x) =

The cumulative hazard is given by;

H,(x) =—-In(1- q)(lnx il

)

o

The hazard

r—1

hG) = ho(8) (1+ 5 Ho()

Becomes

r—1

h(x) = ho(t) (1= = In(1 - (2ty)

3.5.6 Exponential Power — Compound Poisson Frailty Model
Using the exponential power distribution for the baseline hazard h, (t);

hy(x) = o Atx"1eAt™

The cumulative hazard is given by;
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Hy(x) =eM* -1

The hazard

r—1

hG) = ho(8) (1+ 5 Ho()

Becomes

2 r—1

h(x) = o« At*-LleAt” (1 + 0 et _ 1)

r—1

3.5.7 Pareto - Compound Poisson Frailty Model
Using the Pareto distribution for the baseline hazard h, (t);

h,(t) = p

The cumulative hazard is given by;

A
Ho(8) = =In(})

The hazard

r—1

hG) = ho(8) (1+ 5 Ho()

Becomes

r—1

Mﬂ:z@—faﬂﬁ)

LOG-NORMAL MIXTURES
A log-normal distribution is a continuous probability distribution of a random variable

whose logarithm is normally distributed.
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3.6 LOG-NORMAL FRAILTY MODEL
McGilchrist and Aisbett (1991) used the Log-normal frailty mixture to model

multivariate dependence structures.

McGilchrist and Aisbett (1991) approach

Construction
Assuming normally distributed random effect W with E[W] = 0 and frailty Z = eV

The hazard is given by

h(t) = h,(t)e"” W~N(0, 62)
If Z = e" then Z~lognormal(0, §)
The probability density function of Z is given by

(Inz)?
262 z>0

e
zOV 21

f(z) =

With scale parameter § > 0
E(Z) = exp(6%/2) Var(Z) = exp(26?%) — exp(62?)

The Laplace transform has no explicit form but can be approximated i.e. using the

LambertW function

Lw?2(s8%2eM)+2LW (582 eM)

1
262

Lz(S) =~ ,—LW(S52_e“)e

Using the notation t.;(s) for this approximation, the marginal survival function is given

by
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S(x) = t;(H, (x))

1 _ LW?2(Ho(x)8%eM)+2LW (Ho (x) 5% €M)

e 2682
VLW (H,(x)5%eW)

S(x) =

f(x) ==S"(x) = -t (H,(x))

h(x) = %
_ —L;'(H,(x))
") =, ()

CHOICE OF h,(x)

3.6.1 Gompertz -Log-normal Frailty Model
Using Gompertz assumption for the baseline mortality

ho(x) =x eh*
Ho(x) = %(eBX—l)

The hazard

_LZ,(HO(X))

Alx) = LZ(Ho(x))

Becomes

e )

h(x) = . <% (P 1))
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3.6.2 Weibull - Log-normal Frailty Model
Using Weibull distribution for h, (t)

ho(t) = ApxP~1
Ho(x) = AxP

The hazard

_ _LZ,(HO(X))
Alx) = LZ(Ho(x))

Becomes

_LZ,(Axp)

h(x) = LZ(Axp)

This model has been used by Damgaard et.al (2002) for sire evaluation of longevity with
and without genetic interpretations.

3.6.3 Exponential — Log-normal Frailty Model
Using the Exponential distribution for h, (t);

ho(t) = A

The cumulative hazard

H,(x) = Ax
The hazard

_ —L;'(H,(x))
") =, ()

Becomes
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_LZ’(AX)

h(x) = Ly (Ax)

3.6.3 Log-logistic — Log-normal Frailty Model
Using the Log-logistic distribution for the baseline hazard h, (t);

BlE
()

The cumulative hazard

h,(t) =

x\B
Ho(x) = {1+ (3) }
The hazard

—t,'(H, (x))

") =, ()

Becomes

OTHER FRAILTY MIXTURES

RECIPROCAL INVERSE GAUSSIAN MIXTURES

3.7 RECIPROCAL INVERSE-GAUSSIAN FRAILTY MODEL
Giventhat Z = %where X~IG(u,) then Z is said to be the reciprocal of the 1G

distribution. The probability density function is given by;
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— % MZ 1 z 2
() = G (-5, (1 =)
is the shape parameter and u is the location parameter

The Laplace transform is given by

N =

L) = A+ e - (14 7))

For identifiability the mean is normalized toonei.e. E[Z] =pu=1

The Laplace becomes

N =

2 2
Li(s) = @+ =) el - (1+=) )
The marginal survival function is given by

S(x) = Lz(Ho(x))

SG) = @+ 20O g1 - (1 +

2Ho(x))%]}

F(x) = —hy(x) Ly (Ho(x))
3 » .
f(x) = {ho &, <1 4 2o (x)> ‘L ho(x) * <1 4 2o (x)> }exp {[1- (1 + 2H(’(x)>2]}

1

hx) = ho(x) (1 N 2Ho(x)>_ ho () + (1 N 2Ho(X)>_E
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CHOICE OF h,(x)

3.7.1 Gompertz —-Reciprocal Inverse-Gaussian Model
Using Gompertz assumption for the baseline mortality

ho(x) =x eh*
Ho(x) = %(eBX—l)

The hazard

1

ho(x) | (1 . 2Ho(x)>‘ ) (1 . 2Ho(x)>‘E

Becomes

h(x) =

1
_1 p—
X (eP* —1) 25 (efr - 1)\ ?

x
Zﬁ o
+oc eBX x| 1+

B

x eP*
* | 1+

h(x) =

GRAPH
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3.7.2 Weibull - Reciprocal Inverse-Gaussian Model
Using Weibull distribution for h, (t)

ho(t) = ApxP~1
Hy(x) = AxP

The hazard

1

hey = 1@ (1 . 2Ho(x)>‘ ) (1 . 2Ho(x)>‘E

Becomes

h(x) =

1
ApxP~1 22xP\ ! _ 2AxP\ "2
*<1+ ) +/1pxp1*<1+ )
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3.7.3 Exponential — Reciprocal Inverse-Gaussian Model
Using the Exponential distribution for h, (t);

ho(t) = A

The cumulative hazard

H,(x) = Ax

The hazard function
1

hx) = ho(x) (1 N 2Ho(x)>_ ho () + (1 N 2Ho(X)>_E

Becomes

A 22x\ * 2Ax\ 2
h(x) = — = <1+—) +/1*<1+—)

3.7.4 Log-logistic - Reciprocal Inverse-Gaussian Model
Using the Log-logistic distribution for the baseline hazard h, (t);

B
1+ (g)

The cumulative hazard

h,(t) =

H,(x) = In{l1+ (g)ﬁ}

The hazard function

hx) = ho(t) <1+2Ho(x)>_ +1*<1+2Ho(9€)>_E

Becomes
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3.7.5 Lognormal - Reciprocal Inverse-Gaussian Model

Using the Log normal distribution for the baseline hazard h, (t);

f(x)
1— (lnxa— u)

ho(x) =

The cumulative hazard is given by;

H,(x) = —-In(1- q)(lnx il

)

o

The hazard function

1

ho(t) (1 N 2Ho(x)>_ L1 (1 N ZHO(X)>_E

h(x) =

Becomes

_ . 1
1 - p(X—H ( 2ln(1 — o(E—H “))) 1 ( 2in(1 — o(E—H “))) 2
1- g + 1- g

h(x)= ———% =«

3.7.6 Exponential power - Reciprocal Inverse-Gaussian Model
Using the exponential power distribution for the baseline hazard h, (t);

hy(x) = o Atx"1eAt™

The cumulative hazard is given by;

Hy(x) =eM* -1

The hazard
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1

hx) = ho(t) | <1+2Ho(x)>_ +1*<1+2Ho(9€)>_E

Becomes

1 1

o« A< 1eAt” 2eM" —1\ T 1 2eM% — 1\ 2
h(x)= ————* |1+ ——— %14+ —

3.7.7 Pareto - Reciprocal Inverse-Gaussian Model
Using the Pareto distribution for the baseline hazard h, (t);

ho(t) = =

The cumulative hazard is given by;

/17"
Ho(8) = ~n()

The hazard

1

oy < M@ (1 . 2Ho(x)>‘ L (1 . 2Ho<x)>‘E

Becomes
AT\t AT _%
r 21n(t—r) 1 21n(t—r)
h(x) = il +=x[1-
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INVERSE GAMMA MIXTURES
3.8 INVERSE GAMMA FRAILTY MODEL
The probability density function is given by

f(z, B) = %Z‘“‘lexp <_7ﬁ) forx=>0

B is the shape parameter and « scale parameter

The Laplace transform is

2(8s)z
Ly(s) = %mws)

K« (.)is the modified Bessel function of the Il kind.

EQ2) = b Var(Z) = B
o« —1 (¢ —2)(ox —1)2
For identifiability E(Z) = 2~ = 1 and 62 = ——
o«—1 x—2

The Laplace transform becomes

2(s(x ~1))?

LZ(S) = ()

K (4s(x —1))

The marginal survival function
S(x) = Lz(Ho(x))

2(Ho(x)(x —1))Z
()

S(x) = Ky (4Ho(x)(x —1))

CHOICE OF h,(x)

3.8.1 Gompertz —-Inverse Gamma Frailty Model
Using Gompertz assumption for the baseline mortality
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h,(x) = ef*
X
Hy(x) = —(ef*-1)
B
The survival function becomes,

~2((ox —1) o (ePr — 1))%

D Ke(B(x =1) o (e = 1))

S(x)

3.8.2 Weibull -Inverse Gamma Frailty Model
Using Weibull distribution for h, (t)

ho(t) = ApxP~1
Hy(x) = AxP

The survival function becomes

2(( —1)AxP)2

S(x) = e

Ko (4(x —1)AxP)

3.8.3 Exponential -Inverse Gamma Frailty Model
Using the Exponential distribution for h, (t);

h,(t) = A
The cumulative hazard

H,(x) = Ax

The survival function becomes

S(x) = 2((“F—(()1c;/1x)2

K. (4(x —1)Ax)
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3.8.4 Log-logistic - Inverse Gamma Frailty Model
Using the Log-logistic distribution for the baseline hazard h, (t);

B
1+ (g)

The cumulative hazard

h,(t) =

H,(x) =In{1+ (g)ﬁ}

The survival function becomes

N[ R

2 <(oc _1)in{l + (g)ﬁ })

S(x) = )

Ko (4(c —1)In{1 + (é)ﬁ})

3.8.5 Lognormal - Inverse Gamma Frailty Model
Using the Log normal distribution for the baseline hazard h, (t);

f(x)

ho(x) =
1— (lnxa— u)

The cumulative hazard is given by;

H,(x) = —-In(1- q)(lnx il

)

o

The survival function becomes

2 (—(oc ~1)In(1 — d)(lnxa_ ”)))7 Inx

—u
) Ke(=4(e ~1)In(L = ®(——))

S(x) =

3.8.6 Exponential Power — Inverse Gamma Model
Using the exponential power distribution for the baseline hazard h, (t);
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hy(x) = o Atx1eAt™

The cumulative hazard is given by;

Hy(x) =eM* -1

The survival function,

2(8H, (x))2
S() = %K«mmm)
Becomes
_ A% %
sy = AEDE =D a1yt - 1y)

I'(x)

NON-CENTRAL GAMMA MIXTURES
3.9 NON-CENTRAL GAMMA FRAILTY MODEL
The probability density function for the non-central gamma distribution with Y being a

mixing of the distributions of X;, X,, ..., Xy
Where Xi's ~ Gamma(n, 1) and N~poisson(1)

e ()t .
- l.e
il

Then the density function is a convolution with respective weights

Y =X, X o X

Prob(Y =j) = » prob(Xy,X,, .., X;|N = j)prob(N = j)

[0¢]

Jj=0
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—- I'(j) J!
j=0
d Tl+] 1, —X /1j€ A
Prob(Y =) F(n+]) * { i }
n+j—le—X lje_l
flen )= ){ —tx{——}

r(n+j) J!
j=0

Where I'(n) is the central complete gamma function with n >01>0x >0
The hazard function is a special case of the three parameter power variance function

when r = -1

ho(0)
h(t) = T
(1+5 % 82H, ()2

CHOICE OF h,(x)

3.9.1 Gompertz -Non central Gamma Frailty Model
Using Gompertz assumption for the baseline mortality

h,(x) = ef*
Hy(x) = 5P = 1)

The hazard function

ho (t)

nt) = —
(1+35* 62H,(0))?
Becomes,
o« ehx
h(t) - 1

(1+5% 825 (P~ 1))
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gompertz-noncentral gamma
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Justification

According to a study conducted by Olivieri (2001); mortality experience shows an
increasing concentration of deaths around the mode of the curve of deaths and the mode
moves towards older ages.

The Non-central gamma model can be used to explain the deceleration of the mortality
rate at older ages as suggested above. The model further provides insights on the impact
of omitted covariates and heterogeneity when estimating mortality rates for a

heterogeneous population.

3.9.2 Weibull -Non central Gamma Frailty Model
Using Weibull distribution for h, (t)
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ho(t) = ApxP~1
Hy(x) = AxP

The hazard function

ho (£)
h() = —
(1 + 5« 52H,(1))?
Becomes,
ApxPt
h(t) = Pr

1+ % * §2AxP)?

3.9.3 Exponential -Non central Gamma Frailty Model
Using the Exponential distribution for h, (t);

ho(t) = A

The cumulative hazard

H,(x) = Ax
The hazard function

ho (t)

h(t) = T
(1+5* 82H,(1))?
Becomes,
2
h(t) =

1+ % * §2Ax)?

3.9.4 Log-logistic — Non-Central Gamma Frailty Model
Using the Log-logistic distribution for the baseline hazard h, (t);
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B
1+ (g)

The cumulative hazard

h,(t) =

x\B
Ho(x) = {1+ (3) }
The hazard function

ho (t)

h(t) = —
(1+35* 82H, (1))?

Becomes,

(&) (é)’:l
h(o) = 1+ ()

@+ 87+ (2) 2

3.9.5 Lognormal — Non-Central Gamma Frailty Model
Using the Log normal distribution for the baseline hazard h, (t);

f(x)

ho(x) =
1— @ (lnxa— u)

The cumulative hazard is given by;

Inx —pu

H,(x) = —In(1— &( )

o

The hazard function

ho (t)

(1+35* 62H,(0))?

h(t) =

Becomes,
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f(x)
1— (lnxa— u)

h(t) =

(1 -3+ 8%In(1 — OELy)y2

3.9.6 Exponential Power — Non central Gamma Model
Using the exponential power distribution for the baseline hazard h, (t);

hy(x) = o At*1eAt™

The cumulative hazard is given by;

Hy(x) =eM* -1
The hazard function

ho (t)

hE) = —
@+ 3 82,0y
Becomes,
e Atoc—le/lt“
h(t) =

(1+5 % 82(eH" — 1))2

3.9.7 Exponential Power — Non central Gamma Model
Using the Pareto distribution for the baseline hazard h, (t);

ho(t) = =

The cumulative hazard is given by;

/17"
Ho(8) = ~tn()

The hazard becomes,

r

h(t) = -
52In(5))?

1

t(l—z*
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CHAPTER 4

4.1 PARAMETER ESTIMATION

Model parameters are fixed quantitative values that characterize the model believed to
reflect the real world. They have to be estimated either by statistical inference from
observations or by expert opinion.

4.1.1CHOICE OF EXPLANATORY VARIABLES

In order to make comparisons between the Gamma-Gompertz model, the Inverse-
Gaussian-Gompertz model and the Non-central Gamma-Gompertz model, it is necessary
to estimate and fix the baseline model parameters using insurance based mortality rating.

The baseline model has no underwriting.

The Gompertz parameters are estimated using simulation as shown in the R-CODE
(appendix 1C)

4.1.2CHOICE OF THE INSUREDS LEVEL OF HETEROGENEITY

In Butt and Haberman (2002) an insurance application of frailty-based survival model is
proposed. In particular, the authors discuss various choices and fit some models to two
sets of life insurance mortality data. The obtained results suggest that when life annuities
are referred to 62 = 1/b should fall in the range (0.025, 0.05).

Unless otherwise stated in this exercise the insured population will be considered to have
heterogeneity level of §2 =0.05

4.1.3 SHARED FRAILTY MODEL

To show relevance of frailty models, the insured population can be grouped into two i.e.

insured persons who have an above average life expectancy are clustered in one group
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and individual underwriting is only performed for impaired persons.
The hazard function for the j™ insured in the group is defined as;
h(t;j|Z) = Zho(t))exp(B'x;) j=1,...k

The joint survival function for the k individuals is given by

S(ty, . ty) = pr(Ty >ty ... T > tg)

. k
S(tq, ... tg) = f npf(Ti > t;,12) g(z)dz
0 o3
Since Z~Noncentral Gamma(b, A) assuming shape parameter b = 0

YK Ho(t)
1+1/2682 Zj?:l Hy (t)

S(ty,...ty) = e
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CHAPTER S

APPLICATIONS TO ACTUARIAL SCIENCE

The aims of this exercise are threefold:

e The first aim is to show that when heterogeneity is disregarded the expected
residual lifetime is underestimated.

e Secondly, is that neglecting heterogeneity leads to an underestimation of the
insurer’s liability.

e Finally, is to show the relevance of the proposed non-central Gamma frailty

mixture to reflect an insurer’s mortality rating.

ILLUSTRATION
Consider three hypothetical insurers i.e. insurer x, y and z.

Insurer X assumes the population to be homogeneous and applies the KE 2001-2003 life

tables.

Insurer Y assumes the population to be heterogeneous and uses frailty modeling to

account for heterogeneity.

Finally, Insurer Z carries out underwriting and adjusts the rates to reflect safety loadings.

In this case data from Jubilee insurance is considered.
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APPROACH 1
The first approach is to use the KE 2001-2003 as the baseline hazard for the frailty

model.

The KE life table was published by the Association of Kenya Insurers and is based on a
study conducted between 2005 and 2007. The data compiled was supplied by 18 Kenya

based insurance companies.

CASE 1: Inverse Gaussian Frailty
The inverse Gaussian frailty mixture is given by:

ho (t)
(1+2x8%H,(£))"?

h(t) =
The frailty model: h(t|Z) = Z * h,(t)

When Z = 1 the hazard corresponds to an average individual, hence h(t|1) = h,(t).

Thus the baseline hazard h, (t) can be approximated using the standard life tables

CASE 2 : Non-central Gamma Frailty
The inverse Gaussian frailty mixture is given by:

ho(t)
(1+1/2x682%H,(t))?

h(t) =

Using similar assumptions for the baseline i.e.
h,(t)~ K.E 2001 — 2003 life table

From TABLE 1.1 to 2.1 the output is represented in the graph below.

GRAPH
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life expectancy table
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RESULTS

1. Ignoring heterogeneity leads to an underestimation of life expectancy.
2. The choice of frailty distribution does not have a significance impact on the life

expectancy

APPROACH 2
Considering law based assumptions for the baseline hazard. i.e H,(t)~Gompertz

Case 1: Non-central gamma gompertz model
Considering Z~Non — central Gamma gompertz, H,(t)~Gompertz

The model is given by:

o ebx

52 (eF* — 1))?

h(x) = 1
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From TABLE 2.1 the output is represented in the graph below.

GRAPH
HAZARD FUNCTION
KEY:

0

O_ ]
) o RED: K.E 2001-2003 life
x
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N
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o gamma gompertz

] GRFEN" Inatirer 7 hazard

o

O_ ]

= [ [ [ [ [

20 40 60 80 100
AGE

RESULTS:

1. The results shows an underestimation of residual life time when heterogeneity is

disregarded

5.1 PENSION SCHEME
Pension schemes are (essentially) deferred annuities whose benefits are payable on

retirement.
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5.1.1 Present Value
These are annuities which commence in m (say) years' time, provided that the annuitant is

then active. Thus the present value of amount b payable for a future lifetime T,

- Dx+m
mlax - D * Axt+m
x

D - . .
Where % is a pure endowment factor and a,,, IS an annuity factor at age x+m
X

For illustration purposes any safety loadings assigned by the insurer is not accounted for
since the focus is on the effects of heterogeneity.

From TABLE 3.1 the output is represented in the graph below.

GRAPH
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RESULTS

1. When heterogeneity is disregarded the expected liability is underestimated.

2. The non-central gamma frailty is a close estimate of the insurer liability.

CHAPTER 6
6.1 SUMMARY TABLE
MIXING DISTRIBUTION | BASELINE HAZARD | FRAILTY HAZARD
1. Gamma Gompertz < bheBx
Distribution h(x) = b+ X (eh 1)
— e —
p
Weibull L _ /1pxp_1 * D
¥ =
Exponential b
M) =
Log-logistic B\ (x\F 1
) \x B
h(x) =M/{l+ 1ln 1+ (f) }
x\A b o
1+ (%)
Log normal ?(x)
. 1— q)(lnxa— y)
() = 1 Inx —
1- Eln(l — O >
Exponential Power o AxX1eAx™
hC) = T e = 1)/
Pareto =
h(x) = ————
1- ln(;)/b
2. Inverse Gompertz L o ePx
Gfaus.5|an. (x) = 1+ 25(33" —1ysyire
Distribution

B
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Weibull

ApxP~1

W) = G52 aery7z
Exponential A
p MO = G35 00y7
Log-logistic B\t B-1
(&) &)
t\P
1+ (—)
— <
h(t) = G
(1 +2n{1 + (5) J62)12
Log normal f(x)
. 1— q)(lnx y)
h(t) =
(1—2in(1 — E—H T —Ey)ezyrr2
Exponential Power ho o AtX—LpAt™
t) = =
(1 + 2(3/115 — 1)52)1/2
Pareto ho) = I
(1 - 2in(hys2)2
3. Positive Stable | Gompertz o r—1
Distribution h(x) = r « &f* {E (P> — 1)}
Weibull h(x) = rapxP~t (AxP)"1
Exponential h(x) = rA2 (Ax)" !
Log-logistic (ﬁ) (E)B_l
hx) = = ln{1+( ) -1
1+ (&)
Lag normel hw = r—L2 - oy
1- o5
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Exponential Power

h(x) = 1o A< TeAt™ x (eM" — 1)1

Paret r A
areto h(x) = f{_ln <?)}r—1
4. Log-normal Gompertz o <E px _ )
Distribution h(x) = L, B (e D
(=)
Weibull —b, (AxP
h(x) = —Lzz(ixp))
Exponential h(x) = -t,'(Ax)
- LZ(AX)
-logisti B
Log-logistic 1, (ln{l . (g) })
h(x) = —
L, <ln{1 +(2) })
5. Compound Gompertz _ 52 o r-1
Poisson h(x) = « eh* (1 + :E(eﬁx _ 1))
i r—1
Weibull h(x) — Apxp—l (1 +£ Axp)
i r—1
Exponential h(x) = /1(1 4 %Ax)
Log-logistic (g)(g)ﬁ—l 52 N
= L (12 e (2))
Log normal r-1

h(x) = ho() (1= in(1 - ("ty)

Exponential Power

r—1

o 2 o
h(x) = oc A% 1t (1 +r5j * eM” — 1)

Pareto

r—1

1= (1= Sn)
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6. Reciprocal Gompertz bt 2% (b 1)\ 2% (ohx — 1)\ 2
Inverse h(x) = N P A Y N PR
Gaussian
Distribution

1 1
Weibull Apxp 203! 2)xP\ 2
h(x) = * (1 + ) + ApxP~L % (1 + )
Log-logistic B t\F 1 B\ BN\
P e e
1+ (%)
Log normal f&) .
Inx —p Inx — p\\
1-0o(—) 2ln(1 - o(——)) 1
h(x) = ————F——« (1 - 9 +=
1
Inx — u\ 2
( 2ln(l - CD(—)))
x| 1— a
Exponential

1
A 2Ax\ * 2Ax\ 2
a0 = 2o (1+25) 2 (14 2)

Exponential Power

-1

1
o AX1gAt™ 2eM* — 1 1 2eM* —1\ 2
h(x)= ———* (1+ +x(1+

Pareto PR /V -1
r 2in(zF) 1 2in(3F)
h(x):z* 1-— +Zx[1-
7. Inyer;e Qamma Gompertz 2(( —1) o (eF* — 1))%
Distribution S(x) = e Ko (4(x —1)  (eF* — 1))
S(x) = e Ky (4(x —1)AxP)
Exponential X
_ 2((x —1)Ax)?
S(x) = () K, (4(x —1)Ax)
Log-logisti 7
0g-logistic 2((()( yinfL+ (é)ﬁ}) s
S(x) = e Ke(4(ec ~1)infL + () )

88




x
2

Log normal 2 (~(x ~Dyin(1 — o(E=ty) nx —
S@) = =) Ke(=4(c ~Din(1 = ("))
Exponential Power 2((oc —1)(eM" — 1))§
S(x) = ) Ko (4o =1)(e*" - 1))
8. Non-Central Gompertz o eBx
Gamma h(t) = T %, 5 )
Distribution (456%™ —1))
We|bu” h _ Apxp_l
(t) - 1
1+ > * 6%AxP)?
Exponential _ A
h(t) - 1
1+ > * 62%1x)?
Log-logistic (ﬁ) (L)ﬁ‘l
o/ \X
t\P
1+ (=
oo 1
(L +5+62n{l+(X) 1?
Log normal f()
1— cI)(lnx - ,u)
h(e) = 1 . Inx —
(1 -5 *82n(1 — OE=——E)))?
Exponential Power oc AtX—1pAt™
h(t) =
(145 = 82(eMt* — 1))2
T
Pareto h(t) = - -
t(l - z * 5zln(t—r))2
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6.2 MODEL FRAMEWORK

CONSTRUCTION MIXING DISTRIBUTION PROPERTIES

A

A\ 4

CONTINOUS FRAILTY MIXTURE INFINITE DIVISIBILITY

DISCRETE

A

e Baseline hazards IDENTIFIABILITY

A 4

SURVIVAL FUNCTION

DENSITY FUNCTION

HAZARD FUNCTION

A
v’ ESTIMATES

v" APPLICATIONS
v GRAPHS
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6.3 DISCUSSION
The conclusion to be reached from the analyses and discussions is that comparing the

standard life tables with the Gamma-Gompertz and Inverse Gaussian model; shows an
increase in the insurers expected liability when heterogeneity is considered. That is,
assuming the insured to be homogeneous could lead to an underestimation of future

liability.

Further, using Non-central Gamma model in estimating future liability by directly
adjusting the A.K.l mortality tables shows an increase in longevity risk. The extent of

heterogeneity of the insured group determines the level of risk.

A key point to note is that the non-central gamma frailty model as proposed gives better
estimate of the insurer rates compared to the gamma frailty model with similar
assumptions of the population level of heterogeneity. The correlation coefficient between

the non-central gamma and insurers rates is also higher.

Thus, the non-central family distributions is recommended for further study as it gives

better estimates for the insurer’s rating.
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APPENDIX 1A

LAPLACE TRANSFORMS

1.1 Gamma Distribution

Let Z ~ I'(p, b) be gamma distributed with shape parameter p and scale parameter b. The
probability density function is given by;

prp—le -bz
r'(p)

Ly(s) = E[e™**]

f(z) =

o ., pPzP—1lp—bz
:f SZ =

0 r(p)

— bP o _zi(s+b) yp-1

=t o e ZP~ dz
y dy
lety=Zx(s+b), z=———:dz=
Y ( ): 2 s+b z s+b
_ bP oo oy \poq dy
=2 y(Y yp-14Y
r(p)-o0 € (s+b) s+b
pP

= rveinpdo €70 dy
—_ (b _ Sy—
Ly(s)= GP=@A+))7?

1.2 Inverse-Gaussian distribution

Willmot (1986) derived the Laplace from a Generalized Inverse-Gaussian mixing
distribution

M—oczoc—le—(zzﬂtz)/zﬁz

2K (uB1)

Where K (.) is the modified Bessel function of the Il kind

(2) =

Substituting <= —%
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M1/2Z—3/26 —(z%2+u?)/2Bz

2K1,,(uB™1)

(2) =

(Z) — y(ZT[ﬁZ3)_1/2€_(Z_”)Z/2BZ

The Laplace transform is

L,(s) = exp {—%(1 +2Bs5)M2 — 1

1.3 Reciprocal Inverse-Gaussian distribution

u? A
(2) = () 2exp(~ 55 (L= 1))

The Laplace transform is given by

N =

L= A+ e - (1+2) )

1.4 Compound Poisson distribution

Let N be a Poisson random variable with parameter p >0 and let X;,i = 1,2,... be i.i.d.

random variables, independent of N.

Z ~ Compound Poisson Distribution (CPD) defined as

If E(X) and V(X) are the common mean and variance of the random variables X;,i =

1,2,... then, the moments of Z are given by

E(Z) = p*E(X)

V(Z) = p*[V(X) + [E(X)]’]
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The Laplace transform is given by
Ly(s) = E[e™**]
= E{E[e~sG1tx2t+xm)|N = n]}
=E{E[(e™* xe™* x ... x e 5¥)]
= E{[E(e™)]"}
Lz(s) = F(Lx(s))
L,(s) =ePlx()-1)

1.5 Power Variance Functions

The PVF model is a three parameter family denoted by PVF(r, k, 1).

The Laplace transform is
k r r
L(s) = 6—7{(/1+S) -A"}

Special Case (A=0)

The Laplace transform becomes
_E*ST
L(s) = er
This is the Laplace for a Positive Stable distribution.

1.6 Log-Normal distribution

If W is a random variable with a normal distribution, then Z = exp(W) has a log-

normal distribution.
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_(w-w)?
262 —oco<w< oo

flw) =

1
e
sV2n
The probability density function Z is given by

1 _(nz—p)?
e 2% z>0
zOV 21

f(z) =

Where § > 0 is the scale and —oo < u < oo is the location parameter
The mean and variance are

E[Z] = eH*8/2

Var[Z] = e2#+9 x ¢0°-1

CV = (e%*~1)¥2 Only depends on &

An approximation of the Laplace transform is obtained by

L,(s) = E[e™7]

= fooo e 5°f(z)dz

Lo(s)= [ e dz

No closed form of the Laplace transform is known, however several approximation

methods are possible. i.e.

The Initiative Approach

Consider fork =0,1,2,3 ...
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_(nz—p)?

Zk-1
282 dz

e
V2

—-SZ

E[zKe~7] = [
Using change of variable

w = logz

2
0 eWE-1) _ _w_w=-p)
e ¢ 282 dw * "

E [ewk—SeW] - fo T

(w—p)?
262 dw

—seW+kw—

=L w5zt

— )2
Replacing the expression - —se"” + kw — % by a by a Taylor approximation of

second order around the value k that maximizes this expression. That is

ook _ w=k)% _ wep?
se*[1+ (w—k) + 1+ kw -

Thus the resulting integral can be explicitly obtained

(w=k)?
2

(w—p)?
262 dx

—sek[1+(w-Kk)+ 1+kw

= [* _r
—0 52
The difficulty in the lognormal case is the explicit calculation of the value
k = —LW(s62ek0*H + |82 + )
Where the function LW[—e~1, o] known as the LambertW, is the inverse of
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fw) = we":
In particular, with k = 0

Lw2(82el)+2Lw (52%eM)

1
262

L,(s) =~ m e

1.7 Inverse Gamma Distribution

The probability density function is given by

f(z, B) = %Z‘“‘lexp <7ﬁ) forx >0

Where 3 is the shape parameter and o scale parameter

The Laplace transform is given by

2(—ps)z
Ly(s) = %M—ws)

Where K (.)is the modified Bessel function of the Il kind.

Construction

The density function for the Gamma distribution is

(k=1) g (=x7)

f(x)zw

Define the transformation Z = g(x) = L

X

d
f@ =17 @N7 97 @)l

1. _ 1
(E)(k 1)6( 1/z)Z_2
kr(k)

f(2) =

(Z)(—k—l)e (-1/2)
(k)

f(z) =
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Replacingk=oc,"1 = g

f(2) = fo)z—“ exp ()

1.8 Non Central gamma distribution

Let 1> 0, let N; X3, X,,.., Xy be independent random variables such that N is Poisson
distributed with mean A. Define Y=X; + --- + X,y with the convention that Y = 0 if N = 0:
then the Laplace transform is

Ly(s)=E(e™")

Ly(S) - E[e—S(X1+---+Xn)]

Ly(s) = E{(e™s¥ )"} since X; are IID

Ly(s) = E{(Lx(s))"} =F (Lx(5))

Ly (s) = e~ A(1=Lx(s) where L, (s) is the Laplace tranform of X

e A"

Y being a mixing of the distributions of X; + --- + Xywith respective weights py

leads to the convolution;

—A(A)n Xy b+n—-1

f(x.b,2) = Z F(b+n)]

n:

The Laplace transform is given by
Ly(s) =E (e™5¥)

Lx(s) = [" e™*f(x,b, )dx
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_sa(/l)2
e 1+as with a being the non-centrality parameter, b is the shape

Lx(s) = (1+21s)b

parameter and A is the scale parameter

Using shape parameter b =0

_sa(/l)2
LY(S) = e 1+1s

For identifiability the mean is normalized to one
Mean = a(1)? =1
Var=2a(2)*: 62 =212 82 = A

S

1
Ly(S): e 1+§*625

The marginal survival function is given by;

Ho(t)

S(x) = Ly(H,(t)) = e 1+1/28%H, ()

Ho(t)
S(x) = e T1+1/28%H,(t)

h,(t)  Ho(D)
f(x) = ° % e 1+1/28%H,(t)
(1+ 1/26%H,(t))"2

The hazard function is given by;

) h(®)
SC) (@43 #57H,(0))?

h(t) =
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APPENDIX 1B

The Multiplicative Model using Taylor’s Series
The multiplicative model can be described using Taylor’s series expansion as shown
Let h(t, z) be an individual hazard.

p(Tx < t|Zx = 2z)
t

he(z) = ltl_TfOl

By Taylor series expansion;

2 3

A A
h(t;:Z) = h(t; 0) + Zh'(t; 0) + 5}1”&; 0) +§h”’(t; 0)+ -

h(t;Z) = h(t; 0) + Zh'(t; 0) + 0(2)

The 0(Z) denotes the terms containing Z of higher order than one. By omitting these
terms we get

h(t;Z) = h(t; 0) + Zh'(t; 0)

Making the natural assumption that zero frailty (susceptibility) yields zero mortality it
holds that

h(t;Z) = Zhy(t)

where hy(t) = h'(t; 0) = % h(t;z) @z = 0

Thus the underlying hazard h,(t) is a partial derivative of the individual hazard with
respect to frailty taken at point Z = 0. this is the non-frailty hazard.
This shows that a multiplicative frailty model is a rather simplified view of how

heterogeneity may act.
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APPENDIX 1C

R-CODES

R-Code 1

r-code

alpha = 4.419e-06

beta=0.1

ho=alpha*(exp(beta*x))

Ho=(alpha/beta)*(exp(beta*x)-1)

gig=ho/sqrt(1+2*Ho*0.05)

plot(x,gig,main="1.G-Gompertz hazard",type="0",xlab="age",ylab="hazard")
R-code 2

Using r=1.1, A=0.01

wcp=(1.1*0.01*age™0.1)*((1+0.5*0.01*age™1.1)"0.1)

R-code 3

grig=(ho/1.1)/(1+2*Ho/1.1)+ho/sqrt(1+2*Ho/1.1)
plot(age,grig,main="gompertz-reciprocal 1G",type="0",col="blue")
R-code 4

psgf=0.4*alpha*exp(beta*x)*(((alpha/beta)*(exp(beta*x)-1))*(0.4-1))

plot(x,psgf,main="Positive stable-Gompertz",type="0", xlab="age",ylab="hazard")
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R-code 5

alpha=0.00004 #initial estimate

beta=0.1 #fixed for estimation
ho=alpha*(exp(beta*x))

gho=ho/(1+0.5*ho)

jubileegx /((1-0.5* jubileegx)*( exp(beta*x)))#inverse
median(jubileeqx /((1-0.5* jubileegx)*( exp(beta*x))))
4.419414e-06 #alpha new estimate

R-code 4

alpha=0.00025

beta=0.1

age=20:100

ho=alpha*(exp(beta*age))
Ho=(alpha/beta)*(exp(beta*age)-1)
gngf=ho/((1+0.05*Ho0/2)"2)

plot(age,gngf,main="gompertz-non-centralgamma",type="0", xlab="age",ylab="hazard")
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APPENDIX 1D

TABLES
TABLE1.0

K.E 2001-2003 Male mortality rates

Age (x) Ix dx px gx x ex
20 100,000 239 0.99761 0.00239 0.00239 52.29
21 99,761 222 0.99778 0.00222 0.00223 51.41
22 99,539 206 0.99793 0.00207 0.00207 50.53
23 99,333 191 0.99808 0.00192 0.00193 49.63
24 99,142 178 0.99820 0.00180 0.00180 48.73
25 98,964 167 0.99831 0.00169 0.00169 47.81
26 98,797 158 0.99840 0.00160 0.00160 46.89
27 98,639 151 0.99847 0.00153 0.00153 45.97
28 98,489 146 0.99852 0.00148 0.00148 45.04
29 98,343 144 0.99854 0.00146 0.00146 4411
30 98,199 144 0.99853 0.00147 0.00147 43.17
31 98,055 148 0.99849 0.00151 0.00151 42.23
32 97,907 154 0.99842 0.00158 0.00158 41.30
33 97,753 164 0.99832 0.00168 0.00168 40.36
34 97,589 178 0.99818 0.00182 0.00182 39.43
35 97,411 194 0.99800 0.00200 0.00200 38.50
36 97,216 213 0.99781 0.00219 0.00220 37.58
37 97,003 234 0.99758 0.00242 0.00242 36.66
38 96,769 257 0.99735 0.00265 0.00266 35.75
39 96,512 280 0.99709 0.00291 0.00291 34.85
40 96,232 304 0.99684 0.00316 0.00317 33.95
41 95,927 328 0.99658 0.00342 0.00343 33.06
42 95,599 352 0.99632 0.00368 0.00369 32.17
43 95247 375 0.99607 0.00393 0.00394 31.29
44 94872 396 0.99583 0.00417 0.00418 30.41
45 94476 415 0.99561 0.00439 0.00440 29.54
46 94061 432 0.99541 0.00459 0.00461 28.67
47 93629 446 0.99523 0.00477 0.00478 27.80
48 93183 458 0.99509 0.00491 0.00492 26.94
49 92725 465 0.99498 0.00502 0.00503 26.07
50 92260 469 0.99492 0.00508 0.00509 25.20
51 91791 478 0.99479 0.00521 0.00522 24.33
52 91313 485 0.99469 0.00531 0.00532 23.46
53 90828 495 0.99455 0.00545 0.00546 22.58
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54 90333 506 0.99440 0.00560 0.00562 21.71
55 89827 526 0.99414 0.00586 0.00588 20.83
56 89301 558 0.99375 0.00625 0.00627 19.95
57 88743 600 0.99324 0.00676 0.00678 19.08
58 88143 654 0.99258 0.00742 0.00745 18.21
59 87489 745 0.99149 0.00851 0.00855 17.34
60 86744 863 0.99006 0.00994 0.00999 16.49
61 85882 | 1008 0.98826 0.01174 0.01181 15.66
62 84874 | 1182 0.98607 0.01393 0.01403 14.84
63 83692 | 1386 0.98344 0.01656 0.01670 14.05
64 82306 | 1619 0.98033 0.01967 0.01987 13.29
65 80686 | 1881 0.97669 0.02331 0.02358 12.55
66 78806 | 2167 0.97250 0.02750 0.02789 11.85
67 76639 | 2476 0.96770 0.03230 0.03283 11.19
68 74163 | 2798 0.96227 0.03773 0.03846 10.56
69 71365 | 3123 0.95624 0.04376 0.04475 9.98
70 68242 | 3303 0.95160 0.04840 0.04961 9.43
71 64939 | 3442 0.94700 0.05300 0.05446 8.91
72 61497 | 3628 0.94100 0.05900 0.06081 8.41
73 57869 | 3761 0.93500 0.06500 0.06721 7.94
74 54107 | 3788 0.93000 0.07000 0.07257 7.49
75 50320 | 3849 0.92350 0.07650 0.07958 7.06
76 46470 | 3876 0.91660 0.08340 0.08708 6.64
77 42595 | 3876 0.90900 0.09100 0.09541 6.24
78 38719 | 3872 0.90000 0.10000 0.10536 5.87
79 34847 | 3833 0.89000 0.11000 0.11653 5.52
80 31014 | 3660 0.88200 0.11800 0.12556 5.20
81 27354 | 3447 0.87400 0.12600 0.13467 4.90
82 23907 | 3251 0.86400 0.13600 0.14618 4.61
83 20656 | 2974 0.85600 0.14400 0.15549 4.33
84 17682 | 2723 0.84600 0.15400 0.16724 4.06
85 14959 | 2453 0.83600 0.16400 0.17913 3.80
86 12505 | 2151 0.82800 0.17200 0.18874 3.55
87 10354 | 1905 0.81600 0.18400 0.20334 3.28
88 8449 | 1665 0.80300 0.19700 0.21940 3.02
89 6785 | 1452 0.78600 0.21400 0.24080 2.77
90 5333 | 1237 0.76800 0.23200 0.26397 2.52
91 4096 | 1028 0.74900 0.25100 0.28902 2.28
92 3068 841 0.72569 0.27431 0.32064 2.04
93 2226 672 0.69799 0.30201 0.35956 1.81
94 1554 516 0.66785 0.33215 0.40369 1.60
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95 1038 379 0.63517 0.36483 0.45387 1.39
96 659 264 0.59981 0.40019 0.51113 1.20
97 395 173 0.56163 0.43837 0.57691 0.99
98 222 106 0.52054 0.47946 0.65289 0.77
99 116 61 0.47638 0.52362 0.74154 0.48
100 55 55 0.00000 1.00000 0.00
TABLE1.1
KENYAN LIFETABLE - MALES BENEFIT:
SUM ASSURED:
Age (x) Gy A X P(A) ﬂ_x:65-x 65- &,
20 | 19.34732 | 10339.4 | 534.4101 | 18.47529 87203.66
21| 19.28485 | 10636.9 | 551.5675 | 18.36702 91783.20
22 | 19.2159 | 10965.23 | 570.6334 | 18.25003 96587.18
23 | 19.14035 11325 | 591.6824 | 18.12408 101626.70
24 | 19.05812 | 11716.56 | 614.7806 | 17.98898 106913.84
25| 18.96918 | 12140.07 | 639.9889 | 17.84457 112461.63
26 | 18.87355 | 12595.45 667.36 | 17.69071 118284.25
27 | 18.77126 | 13082.57 | 696.9466 | 17.52729 124397.00
28 | 18.66237 | 13601.07 | 728.7967 | 17.35421 130816.49
29 | 18.54701 | 14150.42 | 762.9488 | 17.1714 137560.89
30 | 18.42533 | 14729.84 | 799.4343 | 16.97883 144650.13
31| 18.29753 | 15338.42 | 838.2783 | 16.77647 152105.93
32| 18.16385 | 15974.99 | 879.4939 | 16.56433 159952.28
33| 18.02454 | 16638.39 | 923.0967 | 16.34238 168215.17
34 |17.87991 | 17327.1 | 969.0822 | 16.11067 176923.51
35| 17.73029 | 18039.54 | 1017.442 | 15.8692 186108.95
36 | 17.57594 | 18774.54 | 1068.195 | 15.61789 195805.04
37 | 17.41702 | 19531.31 | 1121.392 | 15.35655 206047.36
38 | 17.25363 | 20309.37 | 1177.107 | 15.08489 216873.69
39 | 17.08572 | 21108.91 | 1235.471 | 14.80249 228323.34
40 | 16.91321 | 21930.39 | 1296.642 | 14.50883 240437.98
41| 16.73588 | 22774.84 | 1360.839 | 14.20327 253260.94
42 | 16.55342 | 23643.68 | 1428.326 | 13.88505 266837.63
43 | 16.36542 | 24538.92 | 1499.437 | 13.55327 281214.96
44 | 16.17137 25463 | 1574.574 | 13.20695 296441.60
45| 15.97063 | 26418.87 | 1654.215 | 12.84496 312567.72
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46 | 15.7625 27410 | 1738.938 | 12.46605 329644.57
47 | 15.54613 | 28440.34 | 1829.416 | 12.06888 347724.59
48 | 15.32055 | 29514.51 | 1926.465 | 11.65195 366859.99
49 ] 15.08471 | 30637.53 | 2031.032 | 11.21368 387103.68
50 | 14.83745 | 31815.01 | 2144.238 | 10.75237 408507.95
51 | 14.57744 | 33053.12 | 2267.416 | 10.26621 431123.45
52 | 14.30491 | 34350.88 | 2401.335 | 9.754407 455050.43
53 | 14.01867 | 35713.96 2547.6 | 9.21513 480353.61
54 | 13.71844 | 37143.62 2707.57 | 8.647083 507135.22
55 | 13.40349 | 38643.38 | 2883.084 | 8.048579 535490.69
56 | 13.07435 | 40210.71 | 3075.543 | 7.418551 565579.54
57 | 12.73171 | 41842.33 | 3286.467 | 6.755773 597593.47
58 | 12.37602 | 43536.06 | 3517.774 | 6.058587 631743.72
59 12.008 | 45288.58 | 3771.535 | 5.325099 668289.62
60 | 11.63145 | 47081.66 | 4047.789 | 4.55418 707726.85
61 | 11.24895 | 48903.07 | 4347.345 | 3.743182 750576.97
62 | 10.86296 | 50741.14 | 4671.024 | 2.888309 797464.89
63 | 10.47609 | 52583.38 | 5019.373 | 1.984433 849165.28
64 | 10.09108 | 54416.75 5392.56 | 1.024695 906638.41
65 | 9.710743 | 56227.88 | 5790.275 0

66 | 9.337991 | 58002.89 | 6211.495

67 | 8.975823 | 59727.5| 6654.264

68 | 8.627356 | 61386.86 | 7115.373

69 | 8.295777 | 62965.81 | 7590.104

70 | 7.984024 | 64450.34 | 8072.413

71| 7.678957 | 65903.05 | 8582.291

72 | 7.378009 | 67336.13 | 9126.598

73| 7.089247 | 68711.19 | 9692.312

74 | 6.810459 | 70038.75 10284

75| 6.532313 | 71363.25 | 10924.65

76 | 6.262046 | 72650.24 | 11601.68

77 |5.999584 | 73900.06 | 12317.53

78 | 5.746571 | 75104.88 | 13069.51

79 | 5.508855 | 76236.86 | 13838.97

80 | 5.290301 | 77277.6 | 14607.41

81 | 5.078103 | 78288.06 | 15416.79

82 | 4.869655 | 79280.68 | 16280.55

83 | 4.672693 | 80218.59 | 17167.53

84 | 4474766 | 81161.1 | 18137.51

85 | 4.282002 | 82079.02 | 19168.37

86 | 4.091115 | 82988.01 | 20284.94
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87 | 3.888576 | 83952.48 | 21589.52
88 | 3.68514 | 84921.22 | 23044.23
89 | 3.478787 | 85903.85 | 24693.62
90 | 3.278369 | 86858.22 | 26494.34
91 | 3.081194 | 87797.16 | 28494.52
92 | 2.882946 | 88741.19 | 30781.42
93| 2.68871 | 89666.13 | 33349.13
94 | 2.503225 | 90549.39 | 36173.09
95 | 2.324548 | 91400.23 | 39319.57
96 | 2.148795 | 92237.15 | 42925.05
97 | 1.967783 | 93099.11 | 47311.68
98 | 1.763161 | 94073.51 | 53355.04
99 | 1.489594 | 95376.2 64028.3
100 | 1.024695 | 97590.01 95238.1

TABLE2.0

insurer x male mortality rates

Age
(x) Ix dx px Ox Hx ex(insurer x)
20 | 100,000 23.12 | 0.999769 | 0.000231 | 0.000231 71.61
21| 99,977 23.31 | 0.999767 | 0.000233 | 0.000233 70.63
22 | 99,954 23.01 | 0.99977 | 0.00023 | 0.00023 69.64
23| 99,931 22.60 | 0.999774 | 0.000226 | 0.000226 68.66
24 | 99,908 22.10 | 0.999779 | 0.000221 | 0.000221 67.68
25| 99,886 21.40 | 0.999786 | 0.000214 | 0.000214 66.69
26 | 99,864 20.79 | 0.999792 | 0.000208 | 0.000208 65.70
27 | 99,844 20.59 | 0.999794 | 0.000206 | 0.000206 64.72
28 | 99,823 20.38 | 0.999796 | 0.000204 | 0.000204 63.73
29 | 99,803 20.58 | 0.999794 | 0.000206 | 0.000206 62.74
30 | 99,782 20.97 | 0.99979 | 0.00021 | 0.00021 61.76
31| 99,761 21.67 | 0.999783 | 0.000217 | 0.000217 60.77
32| 99,739 22.36 | 0.999776 | 0.000224 | 0.000224 59.78
33| 99,717 23.46 | 0.999765 | 0.000235 | 0.000235 58.80
34 | 99,694 24.75 | 0.999752 | 0.000248 | 0.000248 57.81
35| 99,669 26.24 | 0.999737 | 0.000263 | 0.000263 56.83
36 | 99,643 28.04 | 0.999719 | 0.000281 | 0.000281 55.84
37 | 99,615 30.32 | 0.999696 | 0.000304 | 0.000304 54.86
38 | 99,584 3291 | 0.99967 | 0.000331 | 0.000331 53.87
39 | 99,551 35.90 | 0.999639 | 0.000361 | 0.000361 52.89
40 | 99,515 39.28 | 0.999605 | 0.000395 | 0.000395 51.91
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41| 99,476 43.26 | 0.999565 | 0.000435 | 0.000435 50.93
42| 99,433 47.33 | 0.999524 | 0.000476 | 0.000476 49.95
43| 99,386 52.01 | 0.999477 | 0.000523 | 0.000523 48.98
441 99,334 56.87 | 0.999428 | 0.000573 | 0.000573 48.00
45| 99,277 62.43 | 0.999371 | 0.000629 | 0.000629 47.03
46 | 99,214 67.97 | 0.999315 | 0.000685 | 0.000685 46.06
47 | 99,146 74.01 | 0.999254 | 0.000747 | 0.000747 45.09
48 | 99,072 80.35 | 0.999189 | 0.000811 | 0.000811 44.12
49 | 98,992 87.47 | 0.999116 | 0.000884 | 0.000884 43.16
50 | 98,905 94.97 | 0.99904 | 0.00096 | 0.000961 42.20
51| 98,810 103.65 | 0.998951 | 0.001049 | 0.00105 41.24
52 | 98,706 113.31 | 0.998852 | 0.001148 | 0.001149 40.28
53| 98,593 124.35 | 0.998739 | 0.001261 | 0.001262 39.33
54 | 98,468 136.75 | 0.998611 | 0.001389 | 0.00139 38.38
55| 98,331 149.92 | 0.998475 | 0.001525 | 0.001526 37.43
56 | 98,182 164.13 | 0.998328 | 0.001672 | 0.001673 36.49
57| 98,017 178.80 | 0.998176 | 0.001824 | 0.001826 35.55
58 | 97,839 194.41 | 0.998013 | 0.001987 | 0.001989 34.61
59 | 97,644 210.54 | 0.997844 | 0.002156 | 0.002159 33.68
60 | 97,434 228.38 | 0.997656 | 0.002344 | 0.002347 32.76
61| 97,205 248.43 | 0.997444 | 0.002556 | 0.002559 31.83
62 | 96,957 270.95 | 0.997206 | 0.002795 | 0.002798 30.91
63 | 96,686 296.41 | 0.996934 | 0.003066 | 0.00307 30.00
64 | 96,389 324.39 | 0.996635 | 0.003365 | 0.003371 29.09
65| 96,065 354.56 | 0.996309 | 0.003691 | 0.003698 28.19
66 | 95,711 385.77 | 0.995969 | 0.004031 | 0.004039 27.30
67 | 95,325 418.30 | 0.995612 | 0.004388 | 0.004398 26.41
68 | 94,906 451.51 | 0.995243 | 0.004757 | 0.004769 25.52
69 | 94,455 486.62 | 0.994848 | 0.005152 | 0.005165 24.65
70 | 93,968 525.19 | 0.994411 | 0.005589 | 0.005605 23.77
71| 93,443 567.70 | 0.993925 | 0.006075 | 0.006094 22.91
72| 92,875 615.85 | 0.993369 | 0.006631 | 0.006653 22.05
73| 92,260 669.79 | 0.99274 | 0.00726 | 0.007286 21.19
74| 91,590 728.08 | 0.992051 | 0.007949 | 0.007981 20.35
75| 90,862 792.04 | 0.991283 | 0.008717 | 0.008755 19.51
76 | 90,070 856.93 | 0.990486 | 0.009514 | 0.00956 18.68
77| 89,213 921.30 | 0.989673 | 0.010327 | 0.010381 17.86
78 | 88,291 083.81 | 0.988857 | 0.011143 | 0.011205 17.05
79| 87,308 | 1046.47 | 0.988014 | 0.011986 | 0.012058 16.24
80| 86,261 | 1112.29 | 0.987106 | 0.012894 | 0.012978 15.44
81| 85,149 | 1182.91 | 0.986108 | 0.013892 | 0.01399 14.64
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82 | 83,966 | 1260.41 | 0.984989 | 0.015011 | 0.015125 13.85
83| 82,706 | 1344.95 | 0.983738 | 0.016262 | 0.016396 13.06
84 | 81,361 | 1432.09 | 0.982398 | 0.017602 | 0.017759 12.27
85| 79,929 | 1517.72 | 0.981012 | 0.018988 | 0.019171 11.49
86| 78,411 | 1597.82 | 0.979623 | 0.020378 | 0.020588 10.72
87| 76,813 | 1670.53 | 0.978252 | 0.021748 | 0.021988 9.94
88 | 75,142 | 1748.12 | 0.976736 | 0.023264 | 0.023539 9.16
89 | 73,394 | 1818.84 | 0.975218 | 0.024782 | 0.025094 8.38
90 | 71,576 | 1884.14 | 0.973676 | 0.026324 | 0.026676 7.59
91| 69,691 | 1945.94 | 0.972078 | 0.027922 | 0.028319 6.80
92 | 67,745 | 2008.49 | 0.970352 | 0.029648 | 0.030096 5.99
93 | 65,737 | 2097.40 | 0.968094 | 0.031906 | 0.032426 5.17
94 | 63,640 | 2220.15 | 0.965114 | 0.034886 | 0.035509 4,34
95| 61,419 | 2418.76 | 0.960619 | 0.039381 | 0.040178 3.50
96 | 59,001 | 2806.75 | 0.952429 | 0.047572 | 0.04874 2.64
97 | 56,194 | 3578.39 | 0.936321 | 0.063679 | 0.065797 1.78
98 | 52,615 | 5400.04 | 0.897368 | 0.102632 | 0.108289 0.90
99 | 47,215 | 41869.77 | 0.113219 | 0.886781 | 2.178432 0.00
TABLE2.1
INSURER X ANNUITIES SUM ASSURED: 100000
BENEFIT: 100000
Age (X) Gy A X P(A) 65 65 | B
20 | 20.71344 | 3723.547 179.7648 19.02748567 168595.6
21 | 20.67796 | 3886.932 187.9746 18.90730149 177066.3
22 | 20.64075 | 4058.33 196.6174 18.78111649 185963
23 | 20.6016 | 4238.633 205.743 18.64853538 195306.1
24 | 20.5604 | 4428.388 | 215.3844 18.5092191 205117.8
25 | 20.51703 | 4628.165 | 225.5768 18.36281208 215421.4
26 | 20.47133 | 4838.661 | 236.3628 18.20892321 226240.9
27 | 20.42322 | 5060.313 | 247.7725 18.04719696 237602.4
28 | 20.37265 | 5293.291 | 259.8234 17.87731328 249534
29 | 20.31951 | 5538.162 272.554 17.69886322 262064.2
30 | 20.26373 | 5795.136 | 285.9857 17.51148742 275224.2
31 | 20.20523 | 6064.629 | 300.1514 17.31477153 289046.1
32 | 20.14394 | 6346.982 | 315.0815 17.1082962 303564.4
33 | 20.07971 | 6642.847 | 330.8239 16.89156827 318814.1
34 | 20.01247 | 6952.514 347.409 16.66413792 334833.6
35 |19.94212 | 7276.503 | 364.8812 16.42549344 351662.5
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36 | 19.86853 | 7615.353 | 383.2873 16.17509718 369342.9
37 | 19.79159 | 7969.529 | 402.6724 15.91239996 387919.2
38 | 19.71124 | 8339.352 | 423.0759 15.63684998 407439.2
39 | 19.62736 | 8725.337 | 444.5497 15.34783511 427952.6
40 | 19.53985 | 9127.945 | 467.1452 15.04472217 449512.3
41 | 19.44858 | 9547.666 | 490.9183 1472684113 472174.3
42| 19.3535 | 9984.828 | 515.9184 14.39351309 495998.7
43 ] 19.25441 | 10440.26 | 542.2271 14.04394383 521046.7
441 19.15122 | 10914.37 | 569.9044 13.67736856 547385.5
451 19.04376 | 11407.95 | 599.0389 13.29291735 575084
46 | 18.93192 | 1192141 | 629.6991 12.88973846 604218.1
47 | 18.81548 | 12455.81 | 661.9984 12.46683658 634864
48 | 18.69428 | 13011.82 | 696.0326 12.02322392 667105.2
49| 18.56812 | 13590.34 | 731.9177 11.55782868 701029
50 | 18.43689 | 14191.85 | 769.7531 11.06957136 736731.4
51 | 18.30037 | 14817.28 | 809.6709 10.55725717 774311.5
52 | 18.15851 | 15466.88 | 851.7702 10.01970087 813880.8
53 | 18.01118 | 16141.12 896.172 9.455611124 855557
54 | 17.85834 | 16840.17 | 942.9864 8.86364156 899469.4
55| 17.6999 | 17564.26 | 992.3364 8.242340771 945756.3
56 | 17.5357 | 18314.17 | 1044.393 7.590099845 994560.4
57 | 17.36559 | 19090.49 | 1099.329 6.905218461 1046037
58 | 17.1893 | 19894.38 1157.37 6.185833751 1100346
59 | 17.00662 | 20726.68 | 1218.742 5.429984989 1157664
60 | 16.81729 | 21588.62 | 1283.716 4.63554958 1218174
61 | 16.62118 | 22480.56 | 1352.525 3.800305143 1282087
62 | 16.41827 | 23402.51 | 1425.395 2.921857962 1349641
63 | 16.20855 | 24354.34 | 1502.562 1.997603333 1421094
64 | 15.99207 | 25335.59 | 1584.259 1.024695077 1496738
65 | 15.76881 | 26346.19 | 1670.778 0

66 | 15.53868 | 27386.38 | 1762.465

67 | 15.30135 | 28457.38 | 1859.795

68 | 15.05656 | 29560.31 | 1963.284

69 | 14.80389 | 30696.88 | 2073.569

70 | 14.54308 | 31867.99 | 2191.282

71| 14.27408 | 33073.54 | 2317.035

72 | 13.99689 | 34313.14 | 2451.483

73| 13.71172 | 35585.3 | 2595.246

74| 13.4188 | 36888.46 | 2749.013

75| 13.11809 | 38222.16 | 2913.699

76 | 12.80973 | 39585.1 | 3090.238
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77| 12.49314 | 40979.33 | 3280.146
78 | 12.16752 | 42408.04 | 3485.347
79| 11.83181 | 43875.55 3708.27
80 | 11.48513 | 45385.11 3951.64
81 | 11.12693 | 46938.32 | 4218.442
82 | 10.75679 | 48535.98 | 4512.126
83 | 10.37443 | 50177.83 | 4836.685
84 | 9.979503 | 51863.78 5197.03
85 | 9.571015 | 53596.72 | 5599.899
86 | 9.147329 | 55382.45 | 6054.494
87 | 8.706176 | 57229.7 6573.46
88 | 8.244864 | 59149.05 | 7174.047
89 | 7.761748 | 61145.13 | 7877.752
90 | 7.253663 | 63229.96 | 8716.969
91| 6.71724 | 65416.07 | 9738.534
92 | 6.148862 | 67716.49 | 11012.85
93 | 5.544764 | 70143.94 | 12650.48
94 | 4902491 | 72701.36 | 14829.47
95 | 4.218867 | 75391.78 | 17870.15
96 | 3.491375 | 78205.84 | 22399.72
97 | 2.719379 | 81099.53 | 29822.81
98 | 1.900436 | 83976.91 | 44188.22
99 | 1.024695 | 86540.97 | 84455.34
TABLE3.0

NON-CENTRAL GAMMA MODEL: h(x)=ho(x)/(1+0.5*8A2*Ho(X))"2

ho(x) ~ Gompertz (,B)

the resulting model: : h(x)=aexp(Bx)/(1+0.5*0.05*5/2*(a/B)* (exp(Bx)-1)))"2

Age €x (NON-CENTRAL GAMMA

(x) Ix dx gx pX h(x) FRAILTY)
20 100000 | 4.444218 | 4.44422E-05 | 0.999956 | 4.44E-05 69.95
21 | 99995.56 | 4.911379 4,9116E-05 | 0.999951 | 4.91E-05 68.95
22 |1 99990.64 | 5.427619 | 5.42813E-05 | 0.999946 | 5.43E-05 67.96
23 | 99985.22 | 5.998086 | 5.99897E-05 | 0.99994 6E-05 66.96
24 | 99979.22 | 6.628471 | 6.62985E-05 | 0.999934 | 6.63E-05 65.96
25 | 99972.59 | 7.325057 | 7.32707E-05 | 0.999927 | 7.33E-05 64.97
26 | 99965.27 | 8.094784 8.0976E-05 | 0.999919 8.1E-05 63.97
27 | 99957.17 | 8.94532 | 8.94915E-05 | 0.999911 | 8.95E-05 62.98
28 | 99948.23 | 9.885129 | 9.89025E-05 | 0.999901 | 9.89E-05 61.98
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29 | 99938.34 | 10.92356 | 0.000109303 | 0.999891 | 0.000109 60.99
30 | 99927.42 | 12.07095 | 0.000120797 | 0.999879 | 0.000121 60.00
31 | 99915.35 | 13.33868 0.0001335 | 0.999867 | 0.000134 59.00
32| 99902.01 | 14.73934 | 0.000147538 | 0.999852 | 0.000148 58.01
33 | 99887.27 | 16.28684 | 0.000163052 | 0.999837 | 0.000163 57.02
341 99870.98 | 17.9965 | 0.000180197 | 0.99982 | 0.00018 56.03
35| 99852.98 | 19.88524 | 0.000199145 | 0.999801 | 0.000199 55.04
36 | 99833.1 | 21.97176 | 0.000220085 | 0.99978 | 0.00022 54.05
37 | 99811.13 | 24.27664 | 0.000243226 | 0.999757 | 0.000243 53.06
38 | 99786.85 | 26.82262 | 0.000268799 | 0.999731 | 0.000269 52.08
39 | 99760.03 | 29.63478 | 0.000297061 | 0.999703 | 0.000297 51.09
40| 99730.39 | 32.74074 | 0.000328293 | 0.999672 | 0.000328 50.10
411 99697.65 | 36.17099 | 0.000362807 | 0.999637 | 0.000363 49.12
421 99661.48 | 39.9591 | 0.000400948 | 0.999599 | 0.000401 48.14
431 99621.52 | 44.14206 | 0.000443098 | 0.999557 | 0.000443 47.16
441 99577.38 | 48.76064 | 0.000489676 | 0.99951 | 0.00049 46.18
451 99528.62 | 53.85967 | 0.000541148 | 0.999459 | 0.000541 45.20
46 | 99474.76 | 59.48855 | 0.000598027 | 0.999402 | 0.000598 44.23
471 99415.27 | 65.70156 | 0.00066088 | 0.999339 | 0.000661 43.25
48 | 99349.57 | 72.55843 | 0.000730335 | 0.99927 | 0.000731 42.28
491 99277.01 | 80.12474 | 0.000807083 | 0.999193 | 0.000807 41.31
50 | 99196.89 | 88.47255 | 0.000891888 | 0.999108 | 0.000892 40.35
51 | 99108.41 | 97.68092 | 0.000985597 | 0.999014 | 0.000986 39.38
52 | 99010.73 | 107.8365 | 0.00108914 | 0.998911 | 0.00109 38.42
53 | 98902.9 | 119.0344 | 0.001203548 | 0.998796 | 0.001204 37.46
54 | 98783.86 | 131.3783 | 0.001329958 | 0.99867 | 0.001331 36.51
55 | 98652.48 | 144.9821 | 0.001469625 | 0.99853 | 0.001471 35.56
56 | 98507.5 | 159.9698 | 0.001623935 | 0.998376 | 0.001625 34.61
57 | 98347.53 | 176.4767 | 0.00179442 | 0.998206 | 0.001796 33.66
58 | 98171.06 | 194.6502 | 0.001982766 | 0.998017 | 0.001985 32.72
59 | 97976.4 | 214.6504 | 0.002190838 | 0.997809 | 0.002193 31.79
60 | 97761.75 | 236.6511 | 0.002420693 | 0.997579 | 0.002424 30.86
61 | 97525.1 | 260.8404 | 0.002674598 | 0.997325 | 0.002678 29.93
62 | 97264.26 | 287.4213 | 0.002955056 | 0.997045 | 0.002959 29.01
63 | 96976.84 | 316.6125 | 0.003264826 | 0.996735 | 0.00327 28.10
64 | 96660.23 | 348.6487 | 0.003606951 | 0.996393 | 0.003613 27.19
65 | 96311.58 | 383.7808 | 0.003984784 | 0.996015 | 0.003993 26.29
66 | 95927.8 | 422.2761 | 0.00440202 | 0.995598 | 0.004412 25.40
67 | 95505.52 | 464.4176 | 0.00486273 | 0.995137 | 0.004875 2451
68 | 95041.11 | 510.5035 | 0.005371397 | 0.994629 | 0.005386 23.63
69 | 94530.6 | 560.8458 | 0.005932955 | 0.994067 | 0.005951 22.76
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70 | 93969.76 | 615.7681 | 0.006552833 | 0.993447 | 0.006574 21.89
71 | 93353.99 | 675.603 | 0.007237002 | 0.992763 | 0.007263 21.04
72 | 92678.39 | 740.6883 | 0.007992028 | 0.992008 | 0.008024 20.19
73 | 91937.7 | 811.3613 | 0.008825121 | 0.991175 | 0.008864 19.35
74 | 91126.34 | 887.9531 | 0.009744199 | 0.990256 | 0.009792 18.52
75 | 90238.38 | 970.7797 | 0.010757947 | 0.989242 | 0.010816 17.71
76 | 89267.6 | 1060.132 | 0.011875889 | 0.988124 | 0.011947 16.90
77 | 88207.47 | 1156.264 | 0.013108454 | 0.986892 | 0.013195 16.10
78 | 87051.21 | 1259.375 | 0.014467057 | 0.985533 | 0.014573 15.32
79 | 85791.83 | 1369.596 | 0.015964172 | 0.984036 | 0.016093 14.54
80 | 84422.24 | 1486.964 | 0.01761342 | 0.982387 | 0.01777 13.78
81 | 82935.27 | 1611.403 | 0.019429652 | 0.98057 | 0.019621 13.02
82 | 81323.87 | 1742.692 | 0.021429033 | 0.978571 | 0.021662 12.28
83 | 79581.18 | 1880.434 | 0.023629136 | 0.976371 | 0.023913 11.55
84 | 77700.74 | 2024.029 | 0.026049024 | 0.973951 | 0.026394 10.83
85 | 75676.71 | 2172.628 | 0.028709334 | 0.971291 | 0.02913 10.12
86 | 73504.09 | 2325.107 | 0.031632355 | 0.968368 | 0.032143 9.42
87 | 71178.98 | 2480.025 0.0348421 | 0.965158 | 0.035464 8.73
88 | 68698.95 | 2635.591 | 0.038364361 | 0.961636 | 0.03912 8.04
89 | 66063.36 | 2789.641 | 0.042226749 | 0.957773 | 0.043144 7.36
90 | 63273.72 | 2939.616 | 0.046458712 | 0.953541 | 0.047573 6.69
91 | 60334.11 | 3082.561 | 0.051091524 | 0.948908 | 0.052443 6.01
92 | 57251.54 | 3215.146 | 0.056158237 | 0.943842 | 0.057797 5.34
93 | 54036.4 | 3333.699 | 0.06169359 | 0.938306 | 0.063679 4.66
94 | 50702.7 | 3434.289 | 0.067733858 | 0.932266 | 0.070137 3.96
95 | 47268.41 | 3512.83 | 0.074316644 | 0.925683 | 0.077223 3.25
96 | 43755.58 | 3565.23 | 0.081480583 | 0.918519 | 0.084992 2.51
97 | 40190.35 | 3587.59 | 0.089264971 | 0.910735 | 0.093503 1.73
98 | 36602.76 | 3576.429 | 0.097709277 | 0.902291 | 0.102819 0.90
99 | 33026.33 | 3528.948 | 0.106852552 | 0.893147 | 0.113004 0.00
TABLE3.1
SUM
NON-CENTRAL GAMMA ANNUITIES ASSURED: 100000
BENEFIT: 100000
Age (X) Gy Ay P(A) 65 65 | @
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20 | 20.68897 | 10914.76 | 527.5642 | 19.05790536 163106
21| 20.6484 | 11250.06 | 544.8393 | 18.93571234 171269
22 | 20.6059 | 11617.19 | 563.7799 | 18.80749188 | 179841.2
23 | 20.56139 | 12016.13 | 584.4027 | 18.67295023 | 188843.5
24 | 20.51476 | 12446.58 | 606.7138 | 18.53177963 | 198297.6
25 | 20.46592 | 12908.16 630.715 | 18.38365759 | 208226.3
26 | 20.41478 | 13400.26 656.4 | 18.22824623 | 218653.6
27 | 20.36124 | 13921.99 | 683.7497 | 18.06519156 | 229604.9
28 | 20.30519 | 144722 | 712.7339 | 17.89412268 | 241106.7
29 | 20.24652 | 15049.5 | 743.3128 | 17.71465101 | 253187.1
30 | 20.18512 | 15652.17 | 775.4311 | 17.52636941 | 265875.5
31| 20.12088 | 16278.42 | 809.0311 | 17.32885133 279203
32 | 20.05367 | 16925.98 | 844.0338 17.1216498 | 293202.3
33| 19.98338 | 17592.4 | 880.3518 | 16.90429649 | 307907.9
34 | 19.90986 | 18275.64 | 917.9188 | 16.67630059 323356
35 19.833 18974 | 956.6883 | 16.43714772 339585
36 | 19.75265 | 19686.12 | 996.6316 16.1862987 | 356635.3
37 | 19.66868 | 20411.31 | 1037.757 | 15.92318826 | 374549.5
38 | 19.58095 | 21149.18 1080.09 | 15.64722365 | 393372.6
39 | 19.48931 | 21899.97 | 1123.691 | 15.35778316 | 413152.3
40 | 19.3936 | 22664.33 1168.65 15.0542145 | 433938.8
41| 19.29369 | 23443.57 1215.09 | 14.73583306 | 455785.4
42| 19.1894 | 24239.53 | 1263.173 14.40192 | 478748.3
431 19.08059 | 25054.59 | 1313.093 | 14.05172018 | 502887.4
44| 18.9671 | 25891.79 1365.09 13.6844399 | 528265.8
45| 18.84875 | 26754.72 | 1419.443 | 13.29924438 | 554950.9
46 | 18.72539 | 27647.81 | 1476.487 | 12.89525501 | 583013.9
47 | 18.59686 | 28575.98 | 1536.603 | 12.47154624 | 612530.9
48 | 18.46297 | 2954491 | 1600.225 | 12.02714222 | 643582.8
49| 18.32357 | 30561.08 | 1667.856 | 11.56101291 | 676255.8
50 | 18.17849 | 31621.04 | 1739.476 11.0720698 | 710642.2
51 | 18.02756 | 32730.42 | 1815.576 | 10.55916105 | 746840.4
52 | 17.87063 | 33888.53 | 1896.326 | 10.02106601 | 784956.1
53 | 17.70751 | 35097.66 | 1982.077 | 9.456488914 | 825102.5
54 | 17.53807 | 36350.92 | 2072.687 | 8.864051839 | 867401.6
55| 17.36213 | 37639.57 | 2167.912 | 8.242286492 | 911984.6
56 | 17.17956 | 38955.68 | 2267.561 | 7.589624887 | 958993.2
57| 16.9902 | 40288.57 | 2371.284 | 6.904388582 1008581
58 | 16.79391 | 41601.91 | 2477.202 | 6.184776265 1060913
59 | 16.59057 | 42866.65 | 2583.796 | 5.428849386 1116172
60 | 16.38006 | 44052.36 2689.39 | 4.634515498 1174554
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61 | 16.16225 | 45125.17 2792.01 | 3.799508885 1236274
62 | 15.93706 | 46048.29 | 2889.384 | 2.921367983 1301569
63 | 15.70439 | 46783.1 | 2978.982 | 1.997409006 1370698
64 | 15.46417 | 47289.58 | 3058.009 | 1.024695077 1443947
65 | 15.21633 | 47527.83 | 3123.474 0

66 | 14.96084 | 47459.56 | 3172.253

67 | 14.69765 | 47050.82 | 3201.249

68 | 14.42675 | 46277.68 | 3207.768

69 | 14.14816 | 45273.68 | 3199.971

70 | 13.86188 44068 | 3179.079

71| 13.56795 | 42593.97 | 3139.308

72 | 13.26642 | 40890.83 | 3082.279

73 | 12.95737 | 39059.88 | 3014.491

74 | 12.64087 | 37049.39 | 2930.921

75 12.317 | 34883.7 | 2832.159

76 | 11.98586 | 32576.84 | 2717.938

77 | 11.64755 | 30118.88 | 2585.855

78 | 11.30215 | 27532.81 | 2436.068

79 | 10.94974 | 24962.79 | 2279.761

80 | 10.59037 | 22452.75 | 2120.111

81 | 10.22403 | 19980.84 | 1954.301

82 | 9.850702 | 17647.69 | 1791.516

83 | 9.470246 | 15429.75 | 1629.287

84 | 9.082438 | 13358.1 | 1470.761

85 | 8.686916 | 11488.68 | 1322.527

86 | 8.283135 | 9763.678 | 1178.742

87 | 7.870319 | 8190.526 | 1040.685

88 | 7.447388 | 6744.838 905.665

89 | 7.012872 | 5445.609 | 776.5162

90 | 6.564795 | 4305.173 655.797

91 | 6.100528 | 3311.535 | 542.8276

92 | 5.616584 | 2461.001 | 438.1669

93| 5.10836 | 1759.137 | 344.3644

94 | 4569774 | 1203.415 | 263.3423

95| 3.99278 | 783.585 | 196.2505

96 | 3.36669 | 482.9503 | 143.4496

97 | 2.677237 | 280.6508 | 104.8285

98 | 1.905241 0 0

99 | 1.024695 0 0
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COMPARISON GRAPHS
1.1 Heterogeneity effect in the Gamma-Gompertz model:

Graphs for the Gamma-Gompertz model with different values of b is shown

When o« =8 %1077 g = 0.15
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RESULTS

If b is low, then heterogeneity is strong; the opposite occurs if b is high.
Higher variance implies heterogeneity and lower variance homogeneity
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1.2 Comparing the Gamma-Gompertz and Inverse Gaussian-Gompertz

Comparisons can be made with similar parameter estimators for both models.

Gamma vs IGaussian

|
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=
=
[ | [ | [
B0 50 100 120 140
age
RESULTS

The output shows that the relative frailty distribution among survivors is independent of
age for the Gamma, but becomes more homogeneous with time for the Inverse Gaussian.

(‘i.e. concentration of deaths at small age interval)
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1.3 Comparing different frailty levels i.e.

z = 1 (average),z = 2(more frail),z = 0.5(less frail)

The frailty model is given by: h(t) = Z = h,(t) , assuming h, (t)~gompertz(x, B)

comparing different frailty levels
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RESULTS

The output shows that for higher levels of frailty the probability of dying is higher
compared to lower frailty levels. i.e. more frail individuals are likely to die earlier that the

less frail ones.
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