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Definition of key terms, concepts and variables 

1. Weather forecasting entails predicting how the present state of the atmosphere will 

change. Present weather conditions are obtained by ground observations, observations from 

ships and aircraft, radiosondes, Doppler radar, and satellites. This information is sent to 

meteorological centers where the data are collected, analyzed, and made into a variety of 

charts, maps, and graphs. These charts, maps, and graphs are then sent electronically to 

forecast offices where local and regional weather forecasts are made [13]. 

2. The atmosphere is a mixture of gases surrounding any celestial object (in this case the 

Earth) that has a gravitational field strong enough to prevent the gases from escaping. 

3. Centrifugal force is the apparent outward force that draws a rotating body away from the 

centre of rotation. It is caused by inertia of the body as the body‟s path is continually 

redirected. 

4. Coriolis force is additional force acting on the motion of bodies in a rotating system of 

reference. Once the air has been motioned by the pressure gradient force, it undergoes an 

apparent deflection from its path, as seen by an observer on the earth. This apparent 

deflection because of the Earth‟s rotation is called Coriolis force. 

5. Advection is the horizontal transfer of a property such a heat caused by air movement. 

6. Troposphere is the lowest layer of the earth‟s atmosphere and site of all weather on earth. 

The troposphere is bounded on the top by a layer of air called the tropopause, which separates 

the troposphere from the stratosphere, and on the bottom by the surface of the Earth. The 

troposphere is wider at the equator (16km/10mi) than at the poles (8km/5mi). 

7. Pressure is the force per unit area exerted by a liquid or a gas on a body or a surface, with 

the force acting at right angles to the surface uniformly in all directions. 

8. Humidity is the moisture content of the atmosphere. The atmosphere always contains 

some moisture in the form of water vapour; the maximum amount depends on the 

temperature. 

9. Temperature is the property of systems that determines whether they are in thermal 

equilibrium. The concept of temperature stems from the idea of measuring relative hotness 

and coldness and from the observation that the addition of heat to a body leads to an increase 

in temperature as long as no melting or boiling occurs. 

10. Wind is air in motion. The term is usually applied to the natural horizontal motion of the 

atmosphere; motion in a vertical or near vertical direction is called a current. In this work, 

components of wind are considered in the zonal, meridional and radial directions. 

11. Density is the ratio of the mass of a substance to its density.  

12. Numerical Weather Prediction is a method of weather forecasting that employs a set of 

equations that describe the flow of fluids, which is translated into computer codes, combined 
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with parameterization of the processes that cannot be adequately formulated on a specific 

domain, and integrated based on the initial and boundary conditions. 
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Abstract 

In this study, we begin by presenting an overview of the Numerical Weather Prediction 

process as used in the Unified Model of the Met Office in UK. The primitive equations are 

the continuity equation, the momentum equations, equations for representation of moisture, 

the expression for the first law of thermodynamics and the equation of state. Discretisation of 

these equations is done using the two-time-level, off-centred, Semi-Implicit, Semi-

Lagrangian time discretisation scheme. This is preferred to the Eulerian decomposition in 

which advection terms abound, rendering it computationally inefficient. Consistency and 

stability of this scheme is analysed; the latter using the matrix method of stability analysis. 

Convergence of the SISL scheme is inferred by using Lax Equivalence Theorem.  

The coupling of the discretised governing equations results in the Helmholtz equation whose 

solution yields the increment in pressure field,  . To analyse the condition for stability of 

the Helmholtz equation we have used the Von Neumann approach, which shows that the 

spatial-steps chosen and the wave number are factors that affect stability. In the final analysis, 

the recurrence relation for a 2 D Helmholtz equation is solved using Jacobi, Gauss-seidel, 

Successive-Over-Relaxation, Conjugate Gradient, Bi-Conjugate Gradient, Bi-Conjugate 

Gradient Stabilized, Quasi-Minimal Residual and Gradient Minimal Residual methods. 

Respective iteration time is also shown. We show that Bi-CGSTAB method is most efficient, 

followed by GMRES method. Finally, a visual aid for the solution of 2-dimensional 

Helmholtz equation is shown. 
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CHAPTER 1:  INTRODUCTION 

1.1 Background of the study 

The earliest works on Numerical Weather Prediction can be traced back to the contributions 

of the great American meteorologist Cleveland Abbe in 1890. He recognized that 

“meteorology is essentially the application of hydrodynamics and thermodynamics to the 

atmosphere.” He proposed a mathematical approach to forecasting. He was optimistic that the 

scientists of the atmosphere would “take up our problems in earnest and devise either 

graphical, analytical or numerical methods” of solving equations [5]. 

This was taken up by Vilhelm Bjerkness who used the diagnostic and prognostic steps to 

predict weather. However, he was confronted with the challenge of absence of adequate 

information about weather over seas and in the upper air. He identified the following 

prognostic variables: pressure, temperature, humidity, density and the three components of 

velocity. The primitive equations he used are the three hydrodynamic equations of motion, 

the continuity equation, the equation of state and the equation expressing the first and the 

second laws of thermodynamics. Eliassen (1999) however, pointed out that Bjerkness was in 

error in listing the second law of hydrodynamics; he should have instead specified the 

continuity equation for water substance. He used the qualitative graphical methods for 

solving the partial differential equations that he obtained. 

Lewis Fry Richardson attempted a direct solution of equations of motion. He remarked that 

the atmosphere is complicated and therefore the scheme for weather forecasting is equally 

complicated. Nonetheless, he was optimistic saying that: “perhaps someday in the dim future 

it will be possible to advance the computations faster than weather advances at a cost less 

than the saving to mankind due to information gained.” The basic equations that had been 

identified by Abbe and Bjerknes were simplified by hydrostatic assumption and he rendered 

them amenable to approximate solution through transformation. He preferred the numerical 

method of solving the differential equations. Longitude, latitudes and height formed grid 

points. Unfortunately, his first worked problem did not yield realistic results because of the 

complications in initialization. 

The advances made by Richardson attracted the interest of one of the leading mathematician 

of the 20
th

 century, John Von Neumann. He noticed that versatile computing machinery was 

inevitable for solving the complex equations of turbulent flow. He rallied behind the 

construction of an electronic computer in the Institute of Advanced Technology in Princeton. 

The successful implementation of this project became a milestone in Numerical Weather 

Prediction. 

Later development saw the simulation of realistic weather forecasts. “Using the simplified 

equations proposed by Jule Charney (known as the barotropic vorticity equation) the first 

successful forecast was produced with ENIAC (Electronic Numerical Integrator and 

Computer) in April, 1950 for a level in the middle troposphere (500hpa) supposed to 

represent the total behaviour of the atmosphere.” [5] This forms the basis of Numerical 
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Weather Prediction. It is surprising that a forecast of 24 hours took 36 hours of the computer 

time! 

To alleviate this challenge, supercomputers that are more versatile were developed. Even so, 

the efficiency of the prediction process has been a challenge. There is a need to modify the 

models by simulating the weather using efficient numerical methods that converge to a 

solution faster than the existing ones. 

Although few mathematicians have taken interest in Numerical Weather Prediction, it largely 

remains the province of meteorologists. This should not be so. Ingenious numerical methods 

developed by mathematicians could help in attaining efficiency and optimality of weather 

forecasts. That very few books with mathematical treatment of weather prediction have been 

written attests to this need. 

This study, therefore, comes at the right time. Whereas it is intended to investigate the 

numerical solution of partial differential equations that form part of Numerical Weather 

Prediction already in place, attempts will be made to consider and suggest other numerical 

solutions that are relatively stable and that converge easily to the intended solution. 

 

 

1.2 Problem description/Research problem 

1.2.1 Background of the problem  

The laws of nature are fashioned in the language of partial differential equations. Evolution 

of weather, just like many physical phenomena, can be described using differential equations. 

Since weather is the condition of the atmosphere for a short period, any attempt to study 

weather involves a close study of the atmosphere.  

The atmosphere is a fluid. To study weather therefore, the equations governing the flow of 

fluids are inevitable. These equations are mainly seven: the three hydrodynamic equations of 

motion, the continuity equation, the equation of state and the equations expressing the first 

and second laws of thermodynamics (Peter Lynch 2006). Seven basic variables are of 

interest: pressure, temperature, density, humidity and the three components of velocity (ibid). 

In the past, graphical solution of equations was used in Weather Prediction. Forecasts were 

done by comparing different charts. It was based on intuition and intelligent guess. Analytical 

solutions to the partial differential equations that describe weather are cumbersome. Some 

partial differential equations that arise in weather prediction do not have analytical solutions. 

Use of numerical methods in weather prediction has been in the rise. Iterative methods are 

preferred that converge to a solution fast and that do not require a lot of storage. In many 
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cases, preconditioners are used to accelerate convergence. However, introduction of 

preconditioners come with the additional cost of storage of the preconditioner itself. 

The major bottleneck in Numerical Weather Prediction is efficiency and optimality of the 

iterative methods used. In Met Office, for example, solving of the Helmholtz equation takes 

35% of the total forecast time! A search is on for an efficient method. 

We model the weather on a sphere. Ideally, the earth is oblate spheroidal. This is attributable 

to the interaction of centrifugal and gravitation forces (Staniforth et. al. 2004). In the 

expression for the equation of conservation of momentum the apparent vertical / apparent 

horizontal decomposition is necessary in order to separate the Coriolis force from the 

centrifugal force; but the Newtonian gravity dominates over centrifugal effects that 

geopotentials may be represented as (concentric) spheres to a very good approximation (ibid). 

The English Quaker scientist Lewis Fry Richardson expressed a hope that “perhaps someday 

in the dim future it will be possible to advance the computations faster than the weather 

advances…” (Richardson 1922). Overtime, mathematicians and meteorologists have been 

trying to fulfil this hope. There has been a need to obtain efficient solutions for weather 

simulation. Great steps have been made, thanks to supercomputing. It is the bounden duty of 

this study to pursue the realization of this dream.  

 

1.2.2 Statement of the problem 

We are studying the solution to the partial differential equations in Numerical Weather 

Prediction because we want to find out how these solutions have been obtained and their 

efficiency in order to help readers understand how meteorologists have solved these 

equations so that the readers can use the most efficient solution methods. 

 

1.3 Objective of the study 

This study is of practical contribution. It is intended to investigate efficient numerical 

solutions to the partial differential equations that arise in simulation of weather. The findings 

will help in the Numerical Weather Prediction models that are in existence to give forecasts 

optimally and over a short period.  
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1.3.1 Specific objectives 

 To study the numerical solution of partial differential equations in Numerical Weather 

Prediction 

 To analyse consistency, convergence and stability of the scheme used in Numerical 

Weather Prediction. 

 To find the most efficient numerical solution for weather simulation 

 

1.3.2 Research question 

This study is made because: 

 We want to find out how weather is simulated 

 We want to find out whether there is a most efficient numerical solution to the 

equations in Numerical Weather Prediction. 

 We want to analyse stability, consistency and convergence of the scheme used in 

Numerical Weather Prediction. 

 

1.3.3 Limitation of study 

As is expected this study could have used the current available data for analysis. This has not 

been done. However, a sample problem has been used for the purposes of giving an overview 

of what is happening in the real cases. This is attributed to the costs that are incurred when 

procuring data and the complexity of the real life problems given the limited research time. In 

spite of this, it is our ardent hope that the simple sample problem used will illustrate the 

principles that can be seen in global scale. We suggest also that in future work consideration 

will be given to practical implementation of the ideas developed in this study. 

Had means afforded, more information could be sought at Met Office, UK. A visit to the 

weather station would be of invaluable benefit to this study. Information on initialization, 

computation of forecast variables and final stages of forecasting are rare. Perhaps at the 

forecast site this information could be obtained. 
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CHAPTER 2: LITERATURE REVIEW 

The model adopted for this study is the Unified Model of Met Office in UK. This model was 

chosen because it is recognised as the world‟s leader in Numerical Weather Prediction [12]. 

The treatment of the model from the primitive equations to the forecast stage has been shown 

in Staniforth et al (2004).  

The primitive equations that form the basis of Numerical Weather Prediction have been 

shown to be momentum equations, continuity equation, the equation of state, the 

representation of moisture and the expression of the first law of thermodynamics. The 

primitive equations have been cast into forms amenable for practical implementation in 

Cullen et al (2005). This includes factoring in the curvature of the domain, parameterization 

of physical processes and expunging from the equations processes with negligible effects, 

whose presence could render these equations cumbersome to compute. 

The governing equations are discretised using the Semi-Implicit Semi-Lagrangian time 

discretisation. This has been shown in Staniforth et al (2004), beginning from a thorough 

explanation of the method. It also includes a series of predictor –corrector steps for those 

quantities whose discretisation is intractable. The strengths of the Semi-Implicit Semi-

Lagranian discretisation over Eulerian decomposition have been shown. This includes its 

stability even when long time steps are used and the absence of Eulerian advection terms. The 

treatment at the poles has been elaborated in depth. 

A linear stability analysis of the two-time-level semi-implicit discretisation of the adiabatic 

compressible equations has been given in Payne (2008). Previous works had shown that the 

scheme is stable with respect to perturbations to a hydrostatic and isothermal basic state if the 

time-implicit weight is used throughout and is greater than
1

2
. This result has been 

generalised in Payne (2008) to the case where different time weights are used for different 

terms. The matrix method is used with the normal modes of the perturbed static states of the 

governing equations in rectangular coordinates. It was established that the scheme is stable 

when the time-weights are greater than 
1

2
and when 

3 1

1

2
   [3]. However, to the best of 

our knowledge, consistency and convergence of the Semi-Implicit Semi-Lagrangian 

discretisation scheme has not been done. 

Esterhazy S. and Melenk J. M. (2011) studied the stability of discretisation of the Helmholtz 

equation at large wave-numbers. In as much as this has been done, we have not encountered a 

stability analysis for the Helmholtz equation using the Von Neumann approach, in spite of its 

simplicity.  

Whereas the Helmholtz equation has been solved both numerically and analytically, an 

investigation of the most efficient method among the existing iterative methods has not been 

shown to the best of our knowledge. In staniforth et al (2004) preference has been given to 

the LU decomposition preconditioned with Generalised Conjugate Residual method and the 
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Alternating Direction Implicit method. Even so, efficiency and optimality of the solution of 

the Helmholtz equation has been a major bottleneck.  

This study is intended to highlight on the previous works done and to contribute to some 

missing links in these works. 
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CHAPTER 3: RESEARCH METHODOLOGY 

The following is a flow chart that summarises the basic steps in Numerical Weather 

Prediction, whose overview has been shown in this study.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Identification of the primitive equations 

 Momentum Equation 

 Continuity equation 

 Representation of moisture 

 Equation of State 

 First Law of Thermodynamics 

 

Reformulation of primitive equations to describe 

adequately the atmospheric conditions 

Discretisation of governing equations 

 Using SISL discretisation 

 Using Predictor-Corrector steps 

Coupling of the system of discretised 

equations to form the Helmholtz equation 

Solving of the Helmholtz equation to 

obtain increment in pressure field 

Back substitution of the increment in pressure field into the 

system of discretised equations to obtain other variables 

Figure 1: A flow chart showing basic steps in Numerical Weather Prediction 
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Figure 1 shows the basic steps as have been highlighted in this study and as are used in 

Numerical Weather Prediction. 

We proceed to highlight on the consistency, stability and convergence of the Semi-Implicit 

Semi-Lagrangian time discretisation. Much of the work on stability analysis is borrowed 

from Payne (2008) almost entirely, excepting the examples given to illustrate stability. This is 

done in Chapter 5. 

The analysis of stability using Von Neumann approach is done in Chapter 6. In the same 

chapter, a sample simple example for the Helmholtz equation is solved numerically using 

Jacobi Iterative method, Gauss-Seidel Iterative method, Successive-Over-Relaxation method, 

Conjugate Gradient Method, Bi-Conjugate Gradient method, Bi-Conjugate Gradient 

Stabilised method, Quasi-Minimal Residual method and Generalised Minimal Residual 

method. The iterations are solved using MATLAB. 

The number of iteration to 4 decimal places is taken for every method and the equivalent 

CPU-time for the respective method is taken. The results of the MATLAB output are 

tabulated to a point of convergence. 

In Chapter 7, the analysis of the results obtained is done. A summary table for the number of 

iterations for the 8 methods and their respective CPU-time is drawn. A graph of number of 

iterations and CPU-time for every method used is drawn.  

In order to have a visual impression of the Helmholtz equation, Graphical User Interface in 

MATLAB is used. The figure is given in Chapter 7.  

Finally, the summary of the results obtained is provided in Chapter 8. Recommendations and 

findings are also highlighted. 

 

 

 Equation Chapter 4 Section 1  
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CHAPTER 4: OVERVIEW OF NUMERICAL WEATHER PREDICTION 

4.1. Governing equations  

This study begins with an exploration of the governing equations. Modifications of these 

equations are done to render them amenable for describing weather conditions on the Earth‟s 

surface. In these equations, 
D

Dt
 stands for the material (or Lagrangian derivative); , ,u v w  are 

the three wind components; , ,r  stand for longitude, latitude and radius coordinates 

respectively. S  stands for the tendencies obtained from parameterisation while   and X

stand for density and the various components of water respectively. 

4.1.1 Continuity equation 

When the sources of mass are neglected, the continuity equation is expressed as, 

   0div
t





 


u  (4.1.1) 

 0
D

div
Dt


 u  (4.1.2) 

Equation (4.1.2) is the more fundamental form of continuity equation. u  is the velocity of the 

rotating frame. 

The spherical polar form of (4.1.2) is 

    2

2

1 1
cos 0

cos

D u
v r w

Dt r r r


 

  

    
     

    
 (4.1.3) 

As starting point for transformation to a terrain-following coordinate system, the following 

alternative form is preferable. 

  2 2cos cos 0
cos

D u v w
r r

Dt r r r
   

  

     
            

 (4.1.4) 

This can be written as 

  2 2cos cos 0
D r

r r
Dt r

 
   

 

   
    

   

  
 (4.1.5) 

                         Where  𝑢 = 𝑟𝑐𝑜𝑠∅
𝐷𝜆

𝐷𝑡
= 𝜆 𝑟𝑐𝑜𝑠∅, 𝑣 = 𝑟

𝐷∅

𝐷𝑡
= 𝑟∅  𝑎𝑛𝑑 𝑤 =

𝐷𝑟

𝐷𝑡
= 𝑟  
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4.1.2 Equation of state 

Given the pressure, p, density, 𝜌, and temperature, T, of a gas, the perfect gas law equation is 

given by 

 p RT  (4.1.6) 

                        R is the gas constant for a unit mass of dry air. 

It is convenient to work with the Exner function 𝛱 defined by 

 
0

p

R

Cp

p

 
   

 
 (4.1.7) 

Temperature T  and potential temperature 𝜃 are related in the following way 

 
T

 


 (4.1.8) 

The pressure gradient terms in the component of momentum equation may be written in 

terms of 𝜃 rather than 𝑝 for it varies far more rapidly with height. 

 
1

p

p RT p R p
C

X p X p X X






    
  

   
 (4.1.9) 

                                    Where 𝑋 = 𝜆, ∅ or r 

(4.1.6) can be written in terms of Π and 𝑘 =
𝑅

𝐶𝑝
 as follows 

 
1

0

k

k

p

p

kC




   (4.1.10) 

 

4.1.3 The first law of thermodynamics 

It relates the change 𝛿𝑈 in internal energy of a mass of a fluid to the heating 𝛿𝑄 and the work 

𝛿𝑊 done by the mass of the fluid as follows. 

 U Q W     (4.1.11) 

Considering the pressure p of the mass of the fluid and the change in volume 𝛿𝑉 because of 

pressure p, then 𝛿𝑊 = 𝑝𝛿𝑉 and (4.1.11) becomes 

 U p V Q     (4.1.12) 

It is prudent to write (4.1.12) in terms of quantities per unit mass as follows 
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 VC T p Q     (4.1.13) 

               𝐶𝑉  is specific heat at constant volume and 𝛼(=
1

𝜌
) is the specific volume. Hence 

 
V

DT D
C p Q

Dt Dt


    (4.1.14) 

          Q  is the rate of heating per unit mass, to which the element of the fluid is subject. 

Considering the perfect gas, we have 𝑝𝛼 = 𝑅𝑇 and 𝐶𝑝 − 𝐶𝑉 = 𝑅, where 𝐶𝑝  is the specific 

heat at constant pressure; (4.1.14) becomes 

 
p

DT Dp
C Q

Dt Dt
    (4.1.15) 

 (4.1.15) can be written in terms of potential temperature defined by 

 0
p

R

Cp
T

p


 
  

 
 (4.1.16) 

            [Where 𝑝0 is a reference pressure; conveniently, 𝑝0 = 1000ℎ𝑃𝑎] 

(4.1.15) simplifies to 

 
p

D Q

Dt T C

  
  
 


 (4.1.17) 

 

4.1.4. Navier-stokes equations 

They generally have the following representation 

 


 1D
p

Dt 
  u grad G  (4.1.18) 

Where 𝒖 = 𝒖 (𝑟, 𝑡) is the velocity measured relative to an inertial frame; 

              𝜌 = 𝜌(𝒓, 𝑡) is density; 

              𝑝 = 𝑝(𝒓, 𝑡) is pressure; 

 


 .
D

Dt t


 


u grad  (4.1.19) 

 Equation (4.1.19) is the material rate of change as seen by an observer in an inertial frame. 

Finally, G includes all forces (per unit mass) except the pressure gradient force. 
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1
p


grad  is the pressure gradient force per unit mass. 

By using the relation between the rates of change of vectors seen in inertial and rotating 

frames, equation (4.1.18) can be converted to a form dealing with velocities  ,r tu u

measured or defined relative to the rotating Earth. 

 
D D

Dt Dt
  

a
a Ω a  (4.1.20) 

   Where 
𝐷

𝐷𝑡
 is the material rate of change seen by an observer in a frame rotating relative to a 

“fixed star” with angular velocity, 𝛀. 

Since 
D

Dt
u r  and 

D

Dt


r
u  with  a r  position vector relative to a point on the axis of 

rotation, (4.1.20) gives 

    u u Ω r  (4.1.21) 

Applying (4.1.20) with a u  and using (4.1.21) gives 

 


 2
D D

Dt Dt
       

u a
Ω u Ω Ω r Ω r  (4.1.22) 

Where 
D

Dt


Ω
Ω . 

Ω r  is negligible since astronomically detectable changes in magnitude and direction of the 

Earth‟s rotation vector are sufficiently small and slow. This renders (4.1.18) to be written as 

follows 

  
1

2
D

p
Dt 

       
u

Ω u Ω Ω r grad G  (4.1.23) 

Where 2 Ω u  is the Coriolis force per unit mass and    Ω Ω r  is the Centrifugal force 

per unit mass. 

In this case, the force per unit mass G  includes the contributions of gravity, friction and 

electromagnetic forces. Only gravity and friction will be represented because the model is in 

the troposphere where electromagnetic effects are negligible. 

Therefore, 

 ,   u
G grad S  (4.1.24) 
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Where u
S  is frictional force per unit mass and   is the true gravitational potential. 

(4.1.23) becomes 

  
1

2
D

p
Dt 

         uu
Ω u grad grad Ω Ω r S  (4.1.25) 

But  

    
2 2

2

2

s 
          

 
Ω Ω r Ω Ω s s grad  (4.1.26) 

In terms of  

 2 21

2
a   s  (4.1.27) 

 (4.1.25) becomes 

 
1

2 a

D
p

Dt 
       uu

Ω u grad grad S  (4.1.28) 

Where a g grad k and a  is the apparent gravitational potential. 

We now decompose (4.1.28) into its spherical polar (λ,∅, 𝑟) components while recognising 

that the spherical polar system approximates the oblate spheroidal geopotential system.  

It is noteworthy that 

                       𝜆 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, ∅ = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑎𝑛𝑑  

 r a z   (4.1.29) 

Where 𝑎 is the Earth‟s mean radius and 𝑧 is the distance above the sea mean level. 

 
tan 1

2 cos 2 sin
cos

uDu uw uv p
w v S

Dt r r r


 

  


        


 (4.1.30) 

 
2 tan 1

2 sin vDv uw u p
u S

Dt r r




 


      


 (4.1.31) 

 
2 2 1

2 cos wDw u v p
u g S

Dt r r




 
     


 (4.1.32) 

Where 
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cos

D u v
w

Dt t r r r  

   
   
   

 (4.1.33) 

                                               is the material derivative in spherical polar coordinates. 

NB: The expressions of continuity equation, equation of state, first law of thermodynamics 

and the momentum equations above are for dry air. Representation of moisture will now 

follow. 

4.1.5 Moisture representation 

Moisture is mainly in 3 forms: water vapour, cloud liquid water and cloud frozen water. 

Precipitation is not explicitly treated. The following equation expresses the contributions of 

moisture. 

 XmXDm
S

Dt
  (4.1.34) 

Xm is the amount of water substance of type X associated with unit mass of dry air, 
D

Dt
is the 

material derivative and Xm
S represents the sources of water substance of type X . 

If the mass of water substance of type X per unit volume of moist air is X , then 

 X
X

y

m



  (4.1.35) 

Where y is the mass of dry air per unit volume of moist air. So Xm is the mixing ratio of 

water substance of type X with respect to dry air. 

 v
v

y

m



  (4.1.36) 

 cl
cl

y

m



  (4.1.37) 

 cf
cf

y

m



  (4.1.38) 

Where (4.1.36), (4.1.37), (4.1.38) are the mixing ratios of water vapour, cloud liquid water 

and cloud frozen water respectively. 

The masses per unit volume are related in the following way 

 y v cl cf         (4.1.39) 

Therefore, the budget equations for various phases of water are given by 
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 XmXDm
S

Dt
  (4.1.40) 

 where ,   or .X v cl cf  

According to Dalton’s Law of Partial Pressures, the pressure exerted by a mixture of dry air 

and water vapour is equal to the sum of the pressures separately. If dR and vR  are the gas 

constants (per unit mass) for dry air and water vapour, and d

v

R
R

  , we find 

   y v v
y v y d v v d

d

R
p p p R R T R T

R

 
  

 

 
      

 
 (4.1.41) 

Or  

 d vp R T  (4.1.42) 

Where  

 

1
1

1

v

v

v cl cf

m

T T
m m m



 
 

  
   

 

 (4.1.43) 

vT  is the virtual temperature i.e. the temperature that air would have to have, at a given 

density in order to exert the same pressure as the mixture of dry air and water substance at 

temperature T . 

Taking into consideration moisture representation, the primitive equations take the following 

form: 

(i) Navier-Stokes Equations 

 
tan

2 cos 2 sin
cos

pd V u
CDu uw uv

w v S
Dt r r r


 

 


        


 (4.1.44) 

 
2 tan

2 sin
pd V v

CDv vw u
u S

Dt r r r







      


 (4.1.45) 

 
2 2( )

2 cos w

pd V

Dw u v
u g C S

Dt r r
 

 
     


 (4.1.46) 

Where  

 
0

d

pd

R

Cp

p

 
   

 
 (4.1.47) 
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1
1

1

v

V

v cl cf

m
T

m m m



 
 

  
    
 

 (4.1.48) 

(ii) Continuity Equation 

  2 2cos cos 0
cos

y y

D u v w
r r

Dt r r r
   

  

     
            

 (4.1.49) 

Where 

  1y v cl cfm m m      (4.1.50) 

(iii) First Law of Thermodynamics 

 
pd

D Q
S

Dt T C

  
   

 


 (4.1.51) 

Where 

 0

d

pd

R

CT p
T

p


 
   
  

 (4.1.52) 

(iv) Equation of State 

 
1

0 ,

d

d

k

k d
v d

d pd pd

p R
k

k C C



 

   
  

 (4.1.53) 

(v) Representation of Moisture 

 XmXDm
S

Dt
  (4.1.54) 

where ,   or X v cl cf . 

Equation Chapter 4 Section 2 

4.2. Momentum equations in a rotated system 

The Coriolis terms in the momentum equations are changed when written in terms of rotated 

longitude and latitude. 
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Let the geographical latitude of the rotated pole be 
0 . Then the Earth‟s rotation vector has 

latitude 
0  and longitude zero in the rotated system. If I, J, K be the unit vectors in the 

directions O x , O y , O z  in the rotated systems, then 

 0 0cos sin     I k  (4.2.1) 

And 

 u v w  u i j k  (4.2.2) 

,   and i j k  are unit vectors in the zonal   , meridional    and radial  r  directions in the 

rotated system as shown in figure (4.2.1). 

 

Figure 2: Rotated section of a sphere about the Earth's rotation vector 
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Figure 3: The Unit vectors I, J, k in the directions Ox, Oy, Oz in the rotated system, and the 

unit vectors i, j, k associated with the zonal, meridional and radial directions. 

From figure (2) we can express i, j and k in terms of I, J, and K: 

 sin cos   i I J  (4.2.3) 

 sin cos sin sin cos       j I J K  (4.2.4) 

 cos cos cos sin sin      k I J K  (4.2.5) 

 r   Ω i j k  (4.2.6) 

From equation (4.2.1) – (4.2.5), we get: 

 
0 1

1
. sin cos

2
f      Ωi  (4.2.7) 

  0 0 2

1
cos sin sin cos cos

2
f         Ω.j  (4.2.8) 

  0 0 3

1
sin sin cos cos cos

2
z f        Ω.k  (4.2.9) 
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Therefore, the Coriolis term in the rotated system can be represented as follows: 

 
   

     

1 2 3

3 2 1 3 2 1

2 u v w f f f

f v f w f w f u f u f v

       

     

Ω u i j k i j k

i j k
 (4.2.10) 

With these considerations, the momentum equations in the rotated system will take the 

following forms: 

 3 2

tan

cos

pd v u
CDu uw uv

f v f w S
Dt r r r



 


      


 (4.2.11) 

 
2

1 3

tan pd v v
CDv uw u

f w f u S
Dt r r r






      


 (4.2.12) 

 
 

 
2 2

2 1 1 w

cl cf pd v

u vDw
f u f v g q q C S

Dt r r


 
       


 (4.2.13) 

In this case 

 1 02 sin cosf      

  2 0 02 cos sin sin cos cosf         

  3 0 02 sin sin cos cos cosf         

Equation Chapter 4 Section 3 

4.3. Discretisation of Governing Equations 

To discretise governing equations we are going to use Semi-Implicit Semi-Lagrangian time 

discretisation. The first part of this work is devoted to highlighting how this method works. 

The strengths of this method over the Eulerian decomposition are also given. 

4.3.1 Off-centred, Semi-implicit, Semi-Lagrangian(SISL) time discretisation 

Unlike in the Eulerian decomposition where the material derivatives are separated into local 

rates of change and advection terms, we use the Semi-Lagrangian treatment where the 

material derivatives are retained intact, and next time-step values at grid points are found by 

intergrating along interpolated trajectories. 

4.3.1.1 Advantages of Semi-Lagrangian technique 

1. Stability even when long time steps are taken. 

2. It doesn‟t have Eulerian advection terms. 
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It is used for the momentum, thermodynamic and moisture equations. 

It may be subject to numerical instabilities if certain extrapolation procedures are used. 

4.3.2 Outline of the method 

Consider the following equation 

 
DF

Dt
   (4.3.1) 

In this case, 
D

Dt
is the material derivative, F is a scalar variable and  is a source term. 

We integrate (4.3.1) between times nt n t   and 1n nt t t     following a parcel of air that 

arrives at grid point ax  at time 1nt  . The change in t  for the parcel that arrives at ax  at time 

1nt   is simply the integral of   along its trajectory over the relevant time interval: 

 1

n

n

t t

n n

d

t

F F dt t



       (4.3.2) 

1nF   is the value of F  at time 1nt   at the arrival grid point ax , i.e. 

 1 1( , )n n

aF F x t   (4.3.3) 

And n

dF  is the value of F  for the same parcel of air but at time nt , i.e. 

 ( , )n n

d aF F x t  (4.3.4) 

Where dx  is the location of the parcel at time nt  (the departure point of the parcel). 

 is the time average of  along the trajectory from the departure point dx to the arrival 

point ax . 

dx and  and n

dF have to be estimated from the available gridpoint values. 

Equation (4.3.2) contains no Eulerian advection terms, is an exact integral of (4.3.1) and it 

involves no truncation errors. However, errors are introduced through the estimation of 

,  n

d dx F  and trajectory time-average . These estimates require integration and interpolation. 

(4.3.2) represents a two-time-level scheme, t  being the time step. Two-time-level schemes 

require less storage, and for a given time step they reach a given forecast time in 50% fewer 

steps because successive intervals do not overlap. 

The trajectory time-average   may be approximated by a weighted average of the values of 

 at the departure and arrival points: 
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 1 (1 )n n

d        (4.3.5) 

 is the trajectory weighting factor. If  involves F , 
1

2
  is a necessary condition for 

stability. 

For an off-centred two-time level scheme, 
1

1
2

  , the truncation error becomes ( )o t and 

(4.3.2) becomes 

 1 1 (1 )n n n n

d dF F t             (4.3.6) 

This off-centred two-time-level scheme is generally more accurate and less damping the 

closer  is to
1

2
. 

By grouping terms at the new time 1nt   on the left side and known quantities on the right, 

(4.3.6) may be written as 

    1 1 1
nn n n

d d d
F t F t F                  (4.3.7) 

The term 1nt     involves the forcing evaluated at the arrival point at the new time-level. 

The presence of this term complicates the calculation of 1nF   especially if all or part of   is 

non-linear in F  or in any of the prognostic variables of the model. The part of  that is 

linear in F  or in any of the prognostic variables can be dealt with by algebraic elimination. 

The part of 1n  that are non-linear in 1nF   have to be accommodated using some iterative 

procedure, which in practice consist of a fixed number of “predictor-corrector” steps. (4.3.7) 

is referred to as an off-centred, semi-implicit, semi-Lagrangian form. 

Evaluation of the departure point quantities n

dF  and n

d  involves approximation in two 

stages: 

1. Location of departure point dx ; and 

2. Interpolation to obtain ( , )n n

d dF F x t  and  ,n n n

d dx t   from available grid point 

values of  and F at time-level n . 

The departure-point calculation exploits the definition of the continuously-varying velocity 

field u  as the rate of change of the position x  of parcels of air relative to the rotating Earth. 

 
 

  ,
D t

x t t
Dt


x

u  (4.3.8) 

In the integrand form, this becomes 
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n

n

t t

a d

t

dt t



   x x u u  (4.3.9) 

Where the integrand u  is evaluated along the trajectory between the departure point dx  and 

the arrival point, ax . 

4.3.3 Semi-Lagrangian treatment of the momentum equation in spherical 

geometry 

Momentum equation is expressed as 

 
D

Dt


u
Ψ  (4.3.10) 

Where Ψ  represent the coriolis, centrifugal, pressure gradient and frictional forces. The 

result of integrating (4.3.10) along trajectories the same way as (4.3.2) is given by 

 1n n

d t   u u Ψ  (4.3.11) 

Where  

 
1

2 g p


      u
Ψ Ω u k grad S  (4.3.12) 

We now need to isolate (4.3.10) to its zonal meridional and radial components at the arrival 

points ax . 

The unit vectors 
,  ,  a a ai j k  in the zonal, meridional and radial directions at the arrival point (

, ,a a ar  ) may be expressed in terms of the unit vectors ,  ,  I J K  in a geocentric Cartesian 

system as 

 sin cosa a a   i I J  (4.3.13) 

 sin cos sin sin cosa a a a aa       j I J K  (4.3.14) 

 cos cos cos sin sina a a a a a      k I J K  (4.3.15) 

Similar expressions can be obtained for departure point. 

The departure and arrival point velocities are as follows 

 n n n n

d d a d d d du i v j w k  u  (4.3.16) 

 1 1 1 1n n n n

a a au i v j w k     u  (4.3.17) 

The following expressions are then obtained from (4.3.10) through scalar multiplication by 

the arrival point unit vectors. 
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 1 1. . .n n n

a a d au t    i u i u i Ψ  (4.3.18) 

 1 1. . .n n n

a a d av t    j u j u j Ψ  (4.3.19) 

 1 1. . .n n n

a a d aw t    k u k u k Ψ


 (4.3.20) 

Using (4.3.13)-(4.3.20) we write the components of velocity in the arrival point in terms of 

components of velocity at the departure point. 

 
     

. .( )

cos sin sin cos sin

n n n n

a d a d d d d d d

n n n

d a d d d a d d d a d

u v w

u v w       

  

     

i u i i j j
 (4.3.21) 

(4.3.21) can be written as  

 
1 .n n n n

uu d uv d uw d au m u m v m w t     i Ψ  (4.3.22) 

where 

      cos , sin sin , cos sinuu a d uv d a d uw d a dm m m               (4.3.23) 

(4.3.19) and (4.3.20) can similarly be written as follows 

 
1 .n n n n

vv d vu d vw d av m v m u m w t     j Ψ  (4.3.24) 

 
1 .n n n n

ww d wu d wv d aw m w m u m u t     k Ψ  (4.3.25) 

Here 

  sin sinvu a a dm       (4.3.26) 

  cos sin sin cosvv a d a d a dm cos         (4.3.27) 

  cos sin sin cos cosvw a d a d a dm          (4.3.28) 

  cos sinwu a a dm      (4.3.29) 

  sin cos cos sin coswv a d a d a dm          (4.3.30) 

  sin sin cos cos cosww a d a d a dm          (4.3.31) 

The matrix M is a finite rotation matrix. It is also orthogonal for its inverse is its transpose. 

The off-diagonal elements correspond to the metric terms of the momentum equations. 

, , , ,uv uw vu vw wum m m m m  and wvm correspond respectively to  
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  2 2tan tan
, , , ,

uv wu u vw u

r r r r r

 
   and 

2v

r
. These correspondences can be established by 

considering the limit 0t  ; then d a   and d a  . 

It now remains to discretize the source term. We begin from the following time-average. 

  1 1n n

d   Ψ Ψ Ψ  (4.3.32) 

The source term is expressed in terms of unit vectors at the arrival and departure points as 

follows: 

     1 1 1 1n n n n n n

a a r a d d d d dr d              Ψ i j k i j k  (4.3.33) 

Therefore 

   1. 1 . . .n n n n

a d d a d d a d dr a d        i Ψ i i i j i k  (4.3.34) 

   1. 1 . . .n n n n

a d a d d a d dr a d         j Ψ j i j j j k  (4.3.35) 

   1. 1 . . .n n n n

a r d a d d d dr a d         k Ψ k i k j k k  (4.3.36) 

The scalar products in equations (4.3.34)-(4.3.36) are elements of the finite rotation matrix 

M. 

Let  1   . We can rewrite (4.3.34)-(4.3.36) a follows. 

      1 1n n n n n n n n

uu d d uv d d uw d dru t m u t m v t m w t                      (4.3.37) 

      1 1n n n n n n n n

vu d d vu d d vw d drv t m u t m v t m w t                      (4.3.38) 

      1 1n n n n n n n n

r wu d d wv d d ww d drw t m u t m v t m w t                     (4.3.39) 

Or, most precisely, equations (4.3.37)-(4.3.39) can be written compactly in vector-matrix as 

follows: 

   1 1 1n n n n

d dt u t       u Ψ M Ψ  (4.3.40) 

M transforms vectors between the departure and arrival point systems. 

The source Ψ  may be represented as sum of parts k
Ψ  with the associated weighting factor 

k . Thus (4.3.40) can be expressed as follows: 

   1 1 1n n n n

k k d k kdk k
t t        u Ψ M u Ψ  (4.3.41) 
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This renders it easy to represent different terms in the momentum equation with different 

trajectory weighting factors k . 

With these very vital expressions, we can now embark on discretisation of governing 

equations that were developed earlier. 

4.3.4 Discretisation of the u-component of the momentum equation 

The equation to be discretised is the following: 

 3 2

tan

cos

pd v u
CDu uv uw r

f v f w S
Dt r r r r



  

   
       

   
 (4.3.42) 

(i) At levels 
3 5 3

, ,.....,
2 2 2

k N   

(4.3.42) is discretised using a 2-time-level, off-centred, semi-implicit, semi-Lagrangian 

scheme at point u( 1 1 1

2 2

, ,
j k

  
 

) to yield: 

  

 

 

1
1

3 3

3 3

1

4 2 4 2

1

cos

1
cos

1

1

n
rn n

rpdd
v v

n
r

rpd
v v

d

n n
r r

d

n n
u u

p p d

Cu u r
f v

t rr

C r
f v

rr

f w f w

S S


 




 



 

  
 

  
 

 

 








     
    

       

   
    

    

     
      

        

 (4.3.43) 

In this expression, as in all others, the following expressions are noteworthy.  

  
1 1

2 2
1 1

, ,,
2 2

i i
i i

i j i ji j
i i

F F F


   

 

 

 

    
    
       
   

 (4.3.44) 

  
1 1

2 2
1 1

, ,,
2 2

j j
j j

i j i ji j
j j

F F F


   

 

 

 

    
    
       
   

 (4.3.45) 
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   
,

,

1 1 1

2 2 2
1 1 1 1

, ,
2 2 2 2

1 1 1

2 2 2
1 1 1 1

, ,
2 2 2 2

i j
i j

j i i
j i i

i j i j
j i i

j i i
j i i

i j i j
j i i

F F

F F

F F


 

     

  

     

  

  

   

  

   

 
  
 

         
       
                    

        
      
            
     

 
,i j

F



 
 
  



 (4.3.46) 

 

, , 1 1 1 , , 1
, , , , , , , ,

2 2 2 2

1 1
, , , ,

2 2

i j k i j k
i j k i j k i j k i j kr

k

i j k i j k

r r F r r r F r

F
r r

   

 

       
         

       


 (4.3.47) 

 

1 1 1 1

2 2 2 2

1 1

2 2

k k
k k k k

k

k k

F F

F


     

 

   

 

       
         

       


 (4.3.48) 

    
1 1 1 1

, ,
2 2 2 2

,
1 1

2 2

, ,

,

j j
i i i j i j

i j i j
i

i i

F F F F

F F 

   

   
  

   

 

   
    

     
 

 (4.3.49) 

    
1 1 1 1

, ,
2 2 2 2

,
1 1

2 2

, ,

,

i i
j j i j i j

i j i j
j

j j

F F F F

F F 

   

   
  

   

 

   
    

     
 

 (4.3.50) 

 

    
1 1 1 1

, , , ,
2 2 2 2

, ,

1 1 1 1
, , , , , , , ,

2 2 2 2

i j k i j k k k

r i j k r k

i j k i j k i j k i j k

F r F r F F

F r F
r r r r

 
   

   

   
    

     
 

 (4.3.51) 

    
   , , 1 , , 1 1 1

2 , , 2

, , 1 , , 1 , , 1 , , 1

i j k i j k k k
r i j k r k

i j k i j k i j k i j k

F r F r F F
F r F

r r r r
 

   

   

 
  

 
 (4.3.52) 
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Due to the complexity associated with the time-implicit treatment of 2f w  Coriolis term, the 

non-linear pressure gradient terms and the forcing term, uS , the predictor corrector method is 

developed below. 

1.) Predictor step 

Let 
 1

u  be the first predictor for 1nu  . We first neglect the forcing term, uS , and then replace 

all the remaining terms evaluated at mesh points at time  1n t   in (1.1.43) by their values 

at the same mesh points but at time n t . 

Thus, 

 

  

 
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      

 (4.3.53) 

Equivalently, let   1 n

uR u u  . This step is actually the computation of uR  and is given by: 
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    
 
    

 (4.3.54) 

 

2.) First ‘Physics’ corrector 
uS  is written as the sum of two terms 

1 2

u u uS S S   and we let the value of the physics time-

weight, 
p , associated with 

1

uS  be 0 and that associated with 
2

uS  be 1. The terms for 
1

uS  are 

evaluated as functions of the model state at the previous, n th time-step. Therefore, 

      1 1

u u n u nS S u G u   (4.3.55) 

The effects of sub-grid scale gravity-wave drag. Let 
 1p

u be the first physics predictor for 

1nu  . This can be written as the sum of the first predictor 
 1

u  and a first physics corrector as 
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             1 11 1p p

u u u u    (4.3.56) 

The first physics corrector is defined as 

       1 1

1

np
u

d
u u t S       (4.3.57) 

Let   1
1

pp n

uR u u  . This step is equivalently written as follows 

 1

1

n
p u

u u d
R R t S      (4.3.58) 

 

3.) Second ‘Physics’ corrector 

2

nS  is then evaluated implicitly using model variables at time level 1n . Let 
 2p

u  be the 

second physics predictor for 1nu  . This can be written as the sum of the (first physics) 

predictor 
 1p

u  and a second physics corrector as 

             2 1 2 1p p p p

u u u u    (4.3.59) 

       2 1 *

2

p p
uu u t S       (4.3.60) 

*

2

uS    is calculated from intermediate, unbalanced model state. 

This step can briefly be represented thusly:  

 2 1
*

2

p p u

u uR R t S      (4.3.61) 

Here,   2
2

pP n

uR u u  . 

4.) First ‘Dynamics’ Corrector 

Let 
 2

u  be the a second dynamics predictor for 1nu  . This can be written as the sum of the 

second physics predictor 
 2p

u  and a first dynamics corrector as 

             2 22 2p p

u u u u    (4.3.62) 

This first dynamics corrector is defined as 
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    2 * *

3

cos

n
r r

pdp

u u v v v v r

C
R R t r

r

 

 
       




  

        
   

 (4.3.63) 

Here,   2 n

uR u u    and  

 

*

* *

* * *

1
1

1

v

v

v cl cf

m

m m m

 

 
 

  
   

 

 (4.3.64) 

  2* ,
p

XXm m   , ,X v cl cf , and *  are the latest predictors for Xm  and   at time  1n t  .  

5.) Second ‘Dynamics’ corrector 

Let 
 3

u  be a third dynamics predictor for 1nu  . This can be written as the sum of the second 

dynamics predictor 
 2

u  and a second dynamics corrector as 

             3 2 3 2

u u u u    (4.3.65) 

This step is defined as 

       3 2 * *

3 3

cos

r r
pd

v v r

C
u u t f v r

r

 

 
     



 
           
   

 (4.3.66) 

In this case 

 1 1,n n n nv v v        (4.3.67) 

Most conveniently, 

 * *

3

cos

r r
pd

u u v v r

C
R R t r

r

 

 
     



 
 

         
   

 (4.3.68) 

6.) Third ‘Dynamics’ corrector 

Let 
 4

u  be the fourth dynamics predictor for 1nu  . This can be written as the sum of the third 

predictor 
 3

u  and a third dynamics corrector. 

       3 3
1 1n nu u u u     (4.3.69) 

This step is defined as follows 



30 

 

          
2 2 2

3 3
1 3 3

3 32 2 2

3 3

1
1

n nf t
u u I u u f tv

f t

 




 
     

 
  (4.3.70) 

I  is a unit operator such that 

 I F F
 

  (4.3.71) 

This step is chiefly approximating the time tendency, v  as follows: 

 
2 2 2

1 3 3
3 3 2 2 2

3 31

n n

u

I f t I
u u u tf v R

f t


 




 
  

       
  
 

 (4.3.72) 

2. At levels 
1

2
k   and 

1

2
k N   

Discretisation of the u -component of the momentum equation at this points proceeds the 

same way as at the intermediate levels excepting the modification of certain terms on account 

of the presence of the upper boundaries. 

(a.) At 
1

2
k   

In calculation of 
1

2

uR


, the term 

1

2

r r
n n n n

v v r r
 

 



        
 

 has to be evaluated, and both 

of the sub-terms involve an averaging over the layer  0 10,  . Since v ,   or q  is not 

prognostically carried out at 0 0  , to circumvent the problem it is instead assumed that v  

is constant in the layer  0 10,  .  

Therefore 

    
0 10v v 

 

  (4.3.73) 

And 

  
1

1 1
2

2

r
n n n n

v v

 

 


 

           
   

 (4.3.74) 

The contribution due to the vertical derivative of   normally spans two vertical mesh-

lengths and this poses a problem in the second sub-term because data is not available below 

the surface. As a result, we evaluate 
1

2

r
n n

v r





   
 

 at the bottom boundary as: 

 
0 0

n n

v r

pd

g

C
 


    (4.3.75) 
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 
1

2

Ru


 is computed by evaluating the term  
1

2

2

r

f w




by assuming that 
0

0w


 . 

For   1

2

uR   and  
1

2

uR


 , the terms  
1

2

*
r

v v







  
 

   
 and 

1

2

*
r

v







  
  

 are evaluated as 

follows: 

      
1

1 1 2

2

* *
r

v v v v

 

  
 

     
   

         
 (4.3.76) 

For the second term, an assumption is done as in (4.3.75).  
1

2

*
r

v v r r






   
 

   
 is 

evaluated by applying (4.3.75) with *

v replacing n

v . 

Finally, the term  
1

2

uR


  is computed as follows: 

  
 

 
1 0 3 1

2 2 2

11
1 2

2
1 0 3 1

2 2

* *
r

v r v

r r

r r

r r r r



   


  


   

    

  
       

     
   

   
 

 (4.3.77) 

Isentropic assumption has been made for v  in the layer  0 10,  . 

(b.) At 
1

2
k N   

We begin by computing  
1

2

.
N

Ru




 The term 
1

2
N

r r
n n n n

v v r r
 

 



    



    
 

 has to be 

evaluated by averaging both of its sub-terms over the layer 1, 1N N 
   . 

1

2
N

r
n n

v r r






  



  
 

 has a difficulty arising from the fact that the vertical derivative of   

normally spans two vertical mesh-lengths and data is unavailable above the rigid lid. This is 

overcome by defining the coordinate  in such a way as to make 
1

2
N

r




 constant and so 

1

2

0

N

r
n n

v r r






  



   
 

 since  
1

2

0
N

r 




 . 
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Computing of  
1

2
N

Ru




 involves the use of 0
N

w

  in evaluation of the term  

1

2

2

N

r

f w





. 

Similarly, we evaluate 

1

2

*

N

r

v







 



 
  

,  
1

2

*

N

r
n n

v v r r






   



 
   

,  
1

2

*

N

r
n n

v v







  



 
   

  

and 

1

2

*

N

r

v r r






  



 
  

 which will help in the calculation of  
1

2
N

Ru




  and  
1

2
N

Ru




 . 

 

 

4.3.5 Discretisation of the v-component of the momentum equation 

1. At levels 
1 1 1

, ,...,
2 3 2

k N   

The V-component of momentum equation is given by 

 
2

3 1

tan pd v v
CDv u uw r

f u f w S
Dt r r r r



 

   
       

   
 (4.3.78) 

Discretisation of this equation follows the same way as that in u  component of momentum 

equation. 

The predictor-corrector stages are as follows. Let 

         1 2
1 2

1 2 3

3 3, , , ,
p pp pn n n n n

v v v v vR v v R v v R v v R v v R v v f tu


               

a. vR  is computed at the v points as follows: 

 

 

     

3 3 4 1

3 3 4 11 1

n

r r rpd
vv v r

n

r r rpd
v v r

d

C
R v t f u r tf w

r

C
v t f u r tf w

r

   

 

   

 

      

      

   
          
   

   
           
   

 (4.3.79) 

b. 1p

vR  is then computed at v points as follows: 

 1

1

n
p v

v v d
R R t S      (4.3.80) 

In this case, 
1

n
v

d
S    is the parallel or process-split component of the physics increment. 

c. 2p

vR  is equally calculated as follows: 
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 2 1
*

2

p p v

v vR R t S      (4.3.81) 

*

2

vS    is the sequential, or time-split, component of the physics increment computed in the 

same way as 
1

n
v

d
S   . 

d. We now obtain 
vR  at the v points. 

    2 * *

3 ,

n
r r

pdp

v v v v v v r

C
R R t r

r

 

 
          

        
  

 (4.3.82) 

Where  

 

*

* *

* * *

1
1

1

v

v

v cl cf

m

m m m

 

 
 

  
   

 

 (4.3.83) 

e. 
vR  is obtained at v points as follows: 

 
* *

3

r r
pd

v v v v r

C
R R t r

r

 

 
                 

  
 (4.3.84) 

f. Finally, the approximation of the tendency v  is obtained as follows 

 
2 2 2

1 3 3
3 3 2 2 2

3 3

1

1

n n

v

f t I
v v v tf u R

f t


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


 
  

        
  
 

 (4.3.85) 

In this case,  

 
1

1

n n

n nv v v





   

  
 (4.3.86) 

4.3.6 Discretisation of the vertical component of the momentum equation 

The vertical component of momentum equation amenable for weather prediction is given by: 

 
2 2

2 1 0pd v

Dw u v
f u f v g C

Dt r r


  
       

 
 (4.3.87) 

At levels 1,2,..., 1k N   

Using the two-time-level off-centred semi-implicit semi-Lagrangian scheme, the following is 

obtained at points 1 1

2 2

, , k
I J
  

 

 
 
 

: 
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 

   

1 1

4 2 1

4 2 11

n n n
r r

d
pd v r

n
r r

pd v r
d

w w
f u f v g C

t

f u f v g C

 

 

  

  

       
  

      
  

 (4.3.88) 

Due to the complexity of treating the Coriolis terms and non-linear pressure gradient term, 

the following predictor corrector method is useful. 

1. Predictor 

Suppose 
1

2w
 
 
  is the first predictor for 1nw  . Thus 
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d
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n
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  

      
  

 (4.3.89) 

 Equivalently, let   1 n

wR w w  . This step is ideally the computation of wR as follows: 
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n
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n
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  

       
  

      
  

 (4.3.90) 

2. First corrector 

Here we let 
 2

w be a second predictor for 1nw  . This can be written as the sum of the first 

predictor and the first corrector, that is, 

             2 1 2 1

w w w w    (4.3.91) 

The first corrector is defined as follows: 

         
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*

4

n n

pd v v rw w t C         
 

 (4.3.92) 

Where 

 

*

* *

* * *

1
1

1
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v
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m

m m m

 

 
 

  
   

 

 (4.3.93) 

Most precisely, this step can be written as follows: 

Let   2 n

wR w w   , we compute 
wR  
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  *

4

n n

w w p v v rR R tC          (4.3.94) 

3. Second corrector 

Let 
 2

w be a third predictor for 1nw  . This can be written as the sum of the second predictor 

and the second corrector. 

             3 2 3 2

w w w w    (4.3.95) 

We define the second corrector as follows: 

       3 2
*

4 pd v rw w tC         (4.3.96) 

Here, 
1n n   . This leads to an implicit coupling of the momentum equation with the 

other governing equations and eventually leads to a Helmholtz to be solved for the Exner 

pressure tendency,  . 

4. Third Corrector 

Let 
 4

1nw w  be the fourth and final predictor, which can be written as the sum of the third 

predictor and the third corrector. 

       3 3
1 1n nw w w w     (4.3.97) 

The third corrector is defined as 

      
3

1 1 *

4

n n n

pd v v rw w tC           (4.3.98) 

The final discretisation of the wcomponent of the momentum equation can be written as 

 

 
  

   

1

4 2 1

1 1 1 * 1

4

4 2 11

n n n
r r

d

n n n n n

pd v r pd v v r r

n
r r

pd v r
d

w w
f u f v g

t

C C

f u f v g C

 

 



      

  



   

    
  

       
 

      
  

 (4.3.99) 

 

4.3.7 Discretisation of the continuity equation 

The momentum equation can be written in Eulerian flux form as follows: 
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  
  
  



 (4.3.100) 

Where 

 ,
cos

r u r v r
w

r r


   

  
  

  
  (4.3.101) 

Furthermore, 

 
0 1

0
 

 
 
    (4.3.102) 

By use of (1.24) we can write (1.23) as 
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2 2

2

2 2 2
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r u r v
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    

          
   

                  

 (4.3.103) 

At levels
1 3 1

, ,...,
2 2 2

k N   

By a two-time-level off-centred semi-implicit Eulerian scheme, the following is obtained at 

the point 1 1 1

2 2 2

, , ,
I J K

p   
  

 
 
 

 

 
   

1

1

2

1
2 2 2

2

1

cos

1 1
cos

cos

y

n n

y y y

average
r

y

r r
u

r

r r r r
v

t r r

r r






 






 



 

 




   
 

 

  



 
 

  
  
  
 
         
  
 
      
 
  



 (4.3.104) 

r






is time independent and time-weighting is done at mesh-point at times n t and  1n t  . 
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1. Predictor 

Let 
 1

yp be a predictor for
 1n

yp


. This is meant to replace all the terms evaluated as time 

averages of quantities at mesh-points at time levels n t and  1n t  by their values at the 

same mesh-points but at time n t . Therefore, 
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  
  
  

  
 

           
 

    
  
 
 





  (4.3.105) 

In this case,  

 
1

cos

n

n n

n n u v
w r r

r r r

 

  



  
 

 
   
 
 
 

  (4.3.106) 

And 

 
0 0 1

0
N

n n

 
 

 
    (4.3.107) 

2. Corrector 
1n

y


can be written as the sum of the predictor and corrector as follows: 

       1 1
1 1n n

y yv y        (4.3.108) 

This corrector is defined by 
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 (4.3.109) 

 In this case, 
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  (4.3.110) 

 
0 0

1

0
N

averageaverage

 

 




     (4.3.111) 

And 

 1 1;n n n nu u u v v v       (4.3.112) 

 

4.3.8. Discretisation of thermodynamic equation, moisture equations and 

equation of state 

These equations are discretised using the SISL scheme following the same way as the 

momentum equation. The various predictor corrector steps are shown in section 11 of 

Staniforth et al. (2004). 

4.3.8.1. Discretised form of Thermodynamic Equation 

When discretisation is done at levels 1,2,..., 1,  it yields:k N   

 
*

2 2( ) ( )n

r reft w           (4.3.113) 

 2( )1 * and 
pn n        is the latest available predictor for  at time ( 1)n t  . 

At levels 0 and ,  respectively,k k N   

 
0 10 

 


   (4.3.114) 

And  
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  
1

1

*

N
N

n

 
  




    (4.3.115) 

4.3.8.2. Discretised forms of Moisture Equations 

The final forms at levels 1,2,...,k N are: 

   2* ;  ( , . )
p

XXm m X v cl cf   (4.3.116) 

At level 0,k  we have the following: 

    
0 1

* *

0
,  ( , . )X Xm m X v cl cf

 
   (4.3.117) 

4.3.8.3. Discretised form of the Equation of State 

After linearising and discretising the equation of state, the final form at levels 

1 3 1
, ,...,

2 2 2
k N  is: 

 
n nr r rr

n n n n n n n n n

d v d v d v d vn

d pd

k k k k
R C

 
       

 
           

 
 (4.3.118) 

In this case: 1 1,  n n n n

v v v           . 

So far, we have had an overview of the discretisation of the governing equations having been 

cast in a form amenable to practical implementation on a spherical surface. In this overview, 

we have not shown the treatment at the poles partly because that would make the task 

enormous, and partly because we aimed at concerning ourselves with the numerical methods 

used and their analysis. Suffice it to indicate that the prognostic variables are mostly held 

constant at the poles. 

The discretisation of governing equations yields 13 7N  levels of unknown with 13 

variables. 8 of these variables are determined from the associated prognostic equation of the 

variable. These variables are ,  ,  ,  ,  ,  ,   and y v cl cfu v w m m m  . The other 5; 

,  ,  ,   and v p    are diagnostically determined. To solve this coupled set of linear 

equations, an equivalent Helmholtz equation is obtained by decomposing them algebraically. 

To crown this chapter, we shall state the Helmholtz equation as indicated in Buckeridge 

(2010). The derivation of the Helmholtz equation has been done and the explanation can be 

obtained in Davies et al. (2004). 

Equation Chapter 4 Section 4 

4.4. The Helmholtz Equation  
Algebraic decomposition of discretised equations yields an elliptic eqaution of Helmholtz 

type. Due to cross derivative terms in this equation, it is difficult to implement it. 

Simplification of this equation is done by rendering the Coriolis terms constant. With these 

simplifications, we get the following Helmholtz equation that is amenable to implementation: 
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 (4.4.1) 

As indicated in Buckeridge (2010), (4.4.1) is solved with the assumption that the Earth‟s 

surface and the top of the atmosphere are rigid boundaries. We therefore impose rigid 

boundary conditions . 0 n  at these boundaries. n


 is a unit vector pointing outwards from 

the boundary. This leads to the following Neumann boundary condition: 

 .
n


 


x n  (4.4.2) 

The Helmoltz equation (4.4.1) is solved for  , which is used to calculate the Exner pressure 

in the next time-step. The Exner Pressure thus obtained is used to find 1 1,n nu v   and 1nw   

which are afterwards used to obtain 1n  and 1n  . 

For the purpose of our analysis in the subsequent parts, we are going to use a 2-dimensional 

Helmholtz equation shown below. 

      2 2, , ,x y x y x y       (4.4.3) 

 

2 2
2

2 2
 is the Laplacian in rectangular coordinates,  is the wave number, 

 is the increment in pressure field and  represent the value of the pressure field 

calculated from the previous tim

x x


 
  

 

 

e step.

 

In the next chapter, we are going to analyse the consistency, stability and convergence of the 

Semi-implicit Semi-Lagrangian scheme that has been used in this chapter for discretisation. 

 

 

Equation Chapter 5 Section 1 
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CHAPTER 5: CONSISTENCY, CONVERGENCE AND STABILITY 

ANALYSIS OF THE SEMI-IMPLICIT SEMI-LAGRANGIAN 

DISCRETISATION SCHEME 

5.1 Consistency 
A finite difference scheme is said to be consistent if the scheme reduces to the original 

differential equation as the time step and the space steps in the independent variables vanish. 

As has been pointed out in Urroz(2004), any finite difference scheme based on reasonable 

approximation of the derivatives should be consistent. The Semi-implicit semi-Lagrangian 

time discretisation scheme given by 

 
1

,
n n

dF FDF

Dt t

 
    


 (5.1.1) 

Here, .
D

Dt t


  


u . 

In this case, the finite difference shown in (5.1.1) will reproduce the original equation as 

0t   and 0x  (we have considered x as the only special variable for this analysis). 

    
1

,
n n

i iF F
F x t o t

t t

   
   

  
 (5.1.2) 

And 

    21 1 ,
2

n n

i iF F
u u F x t u o x

x x

  
   
  

 (5.1.3) 

Thus (5.1.1) can be written as 

        2, ,F x t o t u F x t u o x
t x

                     
 (5.1.4) 

As 0x   and 0t  , The scheme reduces to the original equation. 

    , ,F x t u F x t
t x

    
     

    
 (5.1.5) 

Or in vector form 

 
DF

Dt
   (5.1.6) 

Hence the SISL scheme is consistent. 

Equation Chapter 5 Section 2 
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5.2 Stability analysis of Semi-Lagrangian Semi-implicit scheme 
It is enough to show that for any initial perturbation, the solution to governing equations 

remains bounded. This means that the eigenvalues of the discrete propagator lie within the 

unit circle.  

We shall begin by stating two theorems whose proofs are found in appendix A of Payne 

(2008). 

Theorem 1: Let 
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  Where , ,a b c  and i are real numbers. If 1 3 0    and 2 4 0   , then 
4

I L  is non-

singular and the matrix  
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4 4 4
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  M I I L L  exists. Then if 0ac   and 
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1
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2
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the eigenvalues of 4M  all lie strictly inside the unit circle. 

Theorem 2: Let 
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Where , , , ,a b c d f and i  are real. If 1 3 0    and 2 4 0   , then 
5

I L  is non-singular and 

the matrix 

  
1

5 5 5




  M I I L L  (5.2.5) 

Exists. Then if 0ac   and  

  

Then one of the eigenvalues of 5M  is equal to 1 and the other four all lie within the unit 

circle. 

Example 1: for Theorem 1 

Let 1a b c    and 1 2 3 4 0.8       . Clearly 1 3 2 40, 0     and 0ac  . 

Furthermore, 
1 2 3 4

1
, , ,

2
     .  

In the following Matlab output 
4 4,   L L N L  and 4M M . 
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It is enough to show that 1ir  . In this example, 1 2 0.6426r r   and 3 4 0.9033r r  . 

Therefore, 
1 2 3 4, , , 1r r r r  . 

Example 2: for Theorem 2 

 

  

Clearly, one eigenvalue is equal to 1 and the other four all lie inside the unit circle. 

We now use these developments to illustrate the stability of SISL scheme. 

Proof of stability of SISL scheme 

The continuous governing equations, in Cartesian coordinates without forcing terms are given 

by: 
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p

Du
fv C

Dt x



 


 (5.2.6) 

 
p

Dv
fu C

Dt y



  


 (5.2.7) 

 
p

Dw
g C

Dt z



  


 (5.2.8) 

 0
D

Dt


  (5.2.9) 

 
Dp u v w

Dt x y z

   

    
   

 (5.2.10) 

 

1

0

k

k

p

p

kC




   (5.2.11) 

In this case, .
D

u
Dt t


  


 
. 

To begin with, we represent each independent variable  , , ,F x y z t  as the sum of the 

motionless horizontally-independent basic state  sF z , in which 

 
 

 

 

0s s s

s s

s s

s s

u v w

z

z

z

 

 

  





 

 (5.2.12) 

Let  , , ,F x y z t  be a perturbation and assume that the basic state satisfies the governing 

equations, and products of perturbation are neglected. This implies that the basic state is 

independent of  , ,x y z , and is hydrostatic: 

 0s
p sg C

z



  


 

Let the basic state be at the same temperature, sT . Then, 

 

 

 

  0

kaz

s s

kaz

s

az

s

z T e

z e

z e



 







 



 (5.2.13) 
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Here, 
s

g
a

RT
  and 0

0

s

p

RT
  .  

In the following equations, we substitute      , , , , , ,sF x y z t F z F x y z t   into the SISL 

discretisation of equations (5.2.13)-(5.2.17) and use a linearised equation of state (5.2.17) to 

eliminate  . The time-discrete spatially-continuous equations for the perturbation are: 

 

1 1 2

21 1 1L

s s

s s s

k D u v w
w

k Dt z z x y z

  
 

 

         
      

      
 (5.2.14) 

 

3

3

L

p s

D u
C f v

Dt x





 

  


 (5.2.15) 

 

3

3

L

p s

D v
C f u

Dt y





 

  


 (5.2.16) 

 

4

4

L

s
p s p

D w
C C

Dt z z




 
  

  
 

 (5.2.17) 

 
2

L

sD
w

Dt z

 
 


 (5.2.18) 

It should be noted that  

 
   1L

dF N F ND F

Dt t

 



 (5.2.19) 

      1 1
i

i d iF F N F N


      (5.2.20) 

dF F  since  0su   . 

Let the domain be 

 

0

0

0

x L

y J

z H

 

 

 

 (5.2.21) 

We then consider the boundaries. Let there be a rigid boundary at 0z   and z H , and 

periodicity in the lateral direction so that all perturbation variables are proportional to 

   exp i m x l y   (5.2.22) 
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Here, 
2 m

m
L


   and 

2 l
L

J


   for integers m  and l .  We now consider just one horizontal 

spectra component, and suppress the term (5.2.28) which multiplies all perturbation variables. 

When initial perturbation is expanded, we get the sum of normal mode-like structures: 

             0

1

, sin cos Tz

n

n

z N N n z n n z e N z


           (5.2.23) 

           
1

2
0

1

, sin cos
az p skaz

n

n

C
u z N u n z n n z e u aN e il z

f





           (5.2.24) 

             
1

2
0

1

, sin cos
az p skaz

n

n

C
v z N v N n z n n z e v N e im z

f





           (5.2.25) 

      
1

2

1

, sin
az

n

n

w z N w N n z e


   (5.2.26) 

      
1

2

1

, sin
k az

s
n

n s

z N N n z e
ka z


 

 
 

 




  

 
  (5.2.27) 

0N  , and 
n

n
H


   for integer n . 

1

2
k a

 
   

 
 and the stationary state   satisfies 

  ,0 s

s

z
ka z





 

 
 (5.2.28) 

At 0,z z H  .  

Substituting (5.2.29)-(5.2.33) into equations (5.2.20)-(5.2.24) using equations (5.2.25)-

(5.2.26) with dF F  and using the fact that 
x




 and 

y




 becomes multiplication by im  and 

il  respectively, for 1n  , we obtain the internal modes; 

      2 1 1

1
1

n n nn n

k
N N w im u il v t

k

  
       


 (5.2.29) 

      3 3

1 nnn n p su N u N im C T f u t
 

        (5.2.30) 

  3 3

( 1) ( ) nnn n p sv N v N il C T f u t
 

        (5.2.31) 

    4 42
1 ( ) nnn n p s pw N w N C T q C ka t

 

        (5.2.32) 

    
2

1 nn n sN N T kaw t


       (5.2.33) 
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2

a
q ka in   . For external mode, that is, 0n  we obtain the time-step relations: 

      1 1

0 00 01
1

k
N N i m u l v t

k

 
       


 (5.2.34) 

      3 3

000 01 p su N u N im C T f v t
 

        (5.2.35) 

      3 3

000 01 p sv N v N il C T f u t
 

        (5.2.36) 

To obtain the propagator of the SISL scheme, we set: 

  

 

 

 

 

 

n

n

n

n

n

N

iu N

N iv N

w N

N

 
 
 
 
 
 
 
 

X  (5.2.37) 

 

2

0 0
1 1 1

0 0 0

0 0 0

0 0 0

0 0 0 0

p s

p s

p s p

s

m k l k k

k k k

C T m f
t

C T l f

C T q C ka

T ka

   
   
 

  
  
 
 
 
 

k  (5.2.38) 

And 

 

1 1 2

3 3

5 3 3

4 4

2

0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

  

 

 

 



 
 
 
 
 
 
  

A  (5.2.39) 

Let 
5 5 5

 L A L . In this case,   is the Hadamard product. Setting
5

 K A K , the relations 

(5.2.35)-(5.2.39) may be written: 

           1 1N N N N N      X X KX K X X  (5.2.40) 

Therefore, 

       
1

1N N


   X I I K K X  (5.2.41) 
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Finally, we let E  be a scalar multiple of 

 

 
1

2

0 0 0 0

0 1 0 0 0

0 0 1 0 0

1
0 0 0 0

0 0 0 0

s

s

s

c

Yk

q

c

q T Yk

 
 
 
 
 
 
 
 
 
 
 
  

 (5.2.42) 

Here, 
 

1

1
Y

k



 and 2

s sc RT . This considerations lead to the following expression 

     
1 1

1E E 
 

    I I K K I I L L  (5.2.43) 

Where  

 
1

0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

s s s

s

s

s s

s

m c l c q c

m c f

E E tl c f

q c N

N



   
 

  
   
 

 
 
 

L K  (5.2.44) 

2
2

s

p s

g
N

C T
  and 

 1

5E E   L K A L  (5.2.45) 

In this case, E  amounts to energy weighting. 

We now investigate the external mode. Set 

  

 

 

 

0

0

0

N

N iu N

iv N

 
 

  
 
 

X  (5.2.46) 

This satisfies an equation of the form (5.2.47), where 
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0
1 1

0

0

p s

p s

m k l k

k k

C T m f t

C T l f

  
  
 

    
 
 
 

K  (5.2.47) 

And 
3

 K A K , where 
3A  is the top-left sub-matrix of 

5A . If we choose E  to be a scalar 

multiple of  

 

0 0

0 1 0

0 0 1

sc

k

 
 
 
 
 
 
  

 (5.2.48) 

An equation similar to (5.2.48) is satisfied, and in this case; 

 

0

0

0

s s

s

s

m c l c

m c f t

l c f

  
    
 

  

L  (5.2.49) 

 And 
3

 L A L . 

L  and L  in (5.2.50) and (5.2.51) have the form (5.2.10), and so are L  and 
L  in (5.2.55). 

Hence if condition  

 
3 1

2 4

1

2

1
,

2

 

 

 



 (5.2.50) 

Holds, then by theorem 2 all internal and external modes of the discretisation are stable. 

Furthermore, let 0f   and 0
y





. Using a similar process as above, we arrive at the 

equation of internal modes 

  

 

 

 

 

n

n

n

n

N

iu N
N

w N

N

 
 
 
 
 
  

X  (5.2.51) 

The resulting equation is of the same form as (5.2.47). K  and 
K  are related to L  and 

L  as 

in equation (5.2.48), where now 1E EL K  and 1E E  L K  are 4 by 4 matrices formed 
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by deleting the middle row and column of (5.2.50) and (5.2.51) respectively. L  and 
L  have 

the form (5.2.8). As 0f   and 0l  , the matrices L  and 
L  for the external mode given in 

equation (5.2.55) have the form (5.2.8) with 0b c  . Hence, if the condition 

1 2 3 4

1
, , ,

2
      holds, then by Theorem 1 , all internal and external modes of discretisation 

with 0f   and 0
y





 are stable. 

 

5.3. Convergence of the Semi-Implicit Semi-Lagrangian scheme 
The analysis of convergence of the discretised equation using the SISL scheme is hard given 

the number of terms and the nature of these equations. However, to circumvent this problem, 

we are going to use Lax Equivalence Theorem by Peter Lax as a way of escape. We shall 

begin by stating this theorem without proof. 

5.3.1. Theorem 3: Lax Equivalence Theorem 

It is also called Lax-Richtmyer Theorem. It states that for a consistent finite difference 

method for a well-posed linear initial value problem, the method is convergent if and only if 

it is stable. 

We note that to the extent to which the scheme is linear, consistent and stable, to that extent, 

it is convergent. Therefore, having shown the consistency and stability of this scheme, we 

conclude that the linear part of the discretised scheme is convergent. 

 

 

 

 

 

 

 

Equation Chapter 6 Section 1 
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CHAPTER 6: THE HELMHOLTZ EQUATION 

As it has been pointed out in chapter 4, the discretisation of governing equations leads to the 

Helmholtz equation, which is solved for the increment in pressure field. Solving of this 

equation alone takes 35% of the forecast time. As a result, optimal and efficient methods are 

being sought for solving this equation. In this chapter, we are going to solve a simple sample 

example of the Helmholtz problem using Gauss-Seidel, Jacobi, Successive-Over-Relaxation 

and Conjugate Gradient Methods. Comparison of these methods will be done in regards to 

efficiency. Before then, let us analyse the stability of the 2-dimensional Helmholtz equation. 

6.1. Analysis of stability of the Helmholtz equation 
We seek to analyse the stability of the simplified form of Helmholtz equation (4.4.1). 

      2 2, , ,x y x y x y       (6.1.1) 

 

2 2
2

2 2
 is the Laplacian in rectangular coordinates,  is the wave number, 

 is the increment in pressure field and  represent the value of the pressure field 

calculated from the previous tim

x x


 
  

 

 

e step.  

 

Let  , 0x y  . Therefore, 

    2 2, , 0x y x y       (6.1.2) 

This simplified form of equation (6.1.1) eases the analysis of stability. Central difference 

approximation of (6.1.2) yields the following difference equation: 

 
   

1, , 1, , 1 , , 1 2

,2 2

2 2
0

i j i j i j i j i j i j

i j
x y


   
            

   
 

 (6.1.3) 

Let x y h    .  This substitution and multiplication by 2h leads to: 

  
2

1, , 1, , 1 , , 1 ,2 2 0i j i j i j i j i j i j i jh   
                  (6.1.4) 

 Collecting like terms together in (6.1.4) leads to: 

  2 2

, 1, 1, , 1 , 14 i j i j i j i j i jh     
           (6.1.5) 

Suppose we use Jacobi iteration for (6.1.5). The recurrence relation for the Helmholtz 

equation (6.1.2) is then given by: 

  

 
       1

, 1, 1, , 1 , 12 2

1

4

k k k k k

i j i j i j i j i j
h 



   
          
 

 (6.1.6) 
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For stability analysis, we use Von Neumann‟s method.  

Let us define an error at the thk iteration as 

 
         , , ,Exact Approximated
k k k

i j i j i je      (6.1.7) 

Since the exact solution satisfies the relation (6.1.6), so is the error. Hence, 

  

 
       1

, 1, 1, , 1 , 12 2

1

4

k k k k k

i j i j i j i j i je e e e e
h 



   
    
 

 (6.1.8) 

Let the error equation have a solution of the form 

  
, sin sin ,  1 , 1
k

l m pq

p l q m
e A p q m

m m

 
     (6.1.9) 

pqA  is an arbitrary constant. 

 

   
1,

1
sin sin

         sin sin cos cos sin

k

i j pq

pq

p i q j
e A

m m

q j p i p p i p
A

m m m m m

 

    






 
  

 

 (6.1.10) 

 

   
1,

1
sin sin

         sin sin cos cos sin  

k

i j pq

pq

p i q j
e A

m m

q j p i p p i p
A

m m m m m

 

    






 
  

 

 (6.1.11) 

 

   

 

1, 1,

,

2 sin sin cos

                    2cos sin sin 2cos e   

k k

i j i j pq

k

pq i j

q i p i p
e e A

m m m

p p i q j p
A

m m m m

  

   

  

 
  

 

 (6.1.12) 

 In the selfsame way, 

      
, 1 , 1 ,2 cos sin sin 2cos
k k k

i j i j pq i j

q p i q j q
e e A e

m m m m

   
     (6.1.13) 

Substituting equations (6.1.12) and (6.1.13) into equation (6.1.8) yields: 

 

 

 
 

 

 

1

, ,2 2

, 2 2

1
2cos 2cos

4

2
          where = cos cos

4

k k

i j i j

k

i j

p q
e e

m mh

p q
e

m mh

 



 
 



  
    

 
    

 (6.1.14) 
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 is known as the propagating factor.  

For stability; 

 

 

 

1

,

,

1

k

i j

k

i j

e

e




   (6.1.15) 

This implies that 

 
 2 2

2
cos cos 1

4

p q

m mh

 



 
    

 (6.1.16) 

Let 1p q  . Therefore, 

 
2 2

4
1 cos 1

4 h m




  


 (6.1.17) 

(6.1.17) is the condition for stability of the Helmholtz equation (6.1.2). It shows that the wave 

number  and the spatial step-size h determine the stability of the numerical scheme. To 

guarantee stability, the wave number and the spatial step-sizes should be chosen to satisfy 

(6.1.17). 

Equation Chapter 6 Section 2 

6.2. Solving the Helmholtz equation 
In this part, we seek a numerical solution of equation (6.1.1); 

      2 2, , ,x y x y x y       (6.2.1) 

With boundary conditions; 

    
2 2, ln 1x y x y    

 
 (6.2.2) 

Let    
1

,
4

x y x y   , 0.25x y     and 1  . Furthermore, let this problem be solved 

on a unit square 0 , 1.x y   

This problem is a simple form of that which is used in Numerical Weather Prediction. We 

have deliberately taken a simple case for the purpose of our analysis, to give a „feel‟ of what 

happens in large scale. 

Central difference discretisation of this problem and rearranging in the form 

  A b  (6.2.3) 

Leads to the expression; 
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1

2

3

4

5

6

7

3.9375 1 0 1 0 0 0 0 0

1 3.9375 1 0 1 0 0 0 0

0 1 3.9375 0 0 1 0 0 0

1 0 0 3.9375 1 0 1 0 0

0 1 0 1 3.9375 1 0 1 0

0 0 1 0 1 3.9375 0 0 1

0 0 0 1 0 0 3.9375 1 0

0 0 0 0 1 0 1 3.9375 1

0 0 0 0 0 1 0 1 3.9375

  
    
 

   
 

   
     
 

   
   
 

   
   

8

9

0.6319117244

0.9984302162

2.771030124

0.4106435513

0.25

1.759418983

1.637270447

1.491154996

3.294669267

   
   
   
   
   
   
   
   
   
   
   
   
      

 (6.2.4) 

In the following parts, the system of equations (6.2.4) is solved using Jacobi Iterative, Gauss-

Seidel, Successive-Over-Relaxation and Conjugate Gradient methods. 

   

6.2.1. Using Jacobi Iterative (JI) Method 

Given the system of equations (6.2.3), A can be decomposed into the diagonal matrix, D, the 

upper triangular matrix, U and the lower triangular matrix, L, that is, 

 ( )   Ax L D U x b  (6.2.5) 

Simple manipulation of (6.2.5) yields; 

  1    x D b L U x  (6.2.6) 

(6.2.6) can be written iteratively as follows: 

 
     1 1 ,   0,1,2,...
k k

k
      

 
x D b L U x  (6.2.7) 

Most precisely, (6.2.7) can be cast in the form: 

 
   1

,  1,2,...
k k

j k

  x c T x  (6.2.8) 

In this case,  1 1 and the Jacobi iteration matrix .j

    c D b T D L U  

Using (6.2.8), equation (6.2.4) can be solved in MATLAB. The solution is given in the table 

below. The MATLAB codes used are in Appendix A. 

   

Table 1: MATLAB output for JI Method solution of Helmholtz equation 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

4 

0.1605    0.2536    0.7038    0.1043    0.0635    0.4468    0.4158    0.3787    0.8367 

0.2514    0.4892    0.8816    0.2668    0.3640    0.8542    0.5385    0.7129    1.0464 

0.3525    0.6338    1.0449    0.3973    0.6535    1.0290    0.6646    0.8737    1.2347   

0.4224    0.7744    1.1260    0.5286    0.8086    1.1918    0.7386    1.0271    1.3199 
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5 

6 

7 

8 

9 

. 

. 

. 

34 

35 

 

0.4914    0.8522    1.2031    0.6045    0.9579    1.2734    0.8109    1.1069    1.4003 

0.5304    0.9272    1.2436    0.6783    1.0379    1.3513    0.8504    1.1835    1.4413   

0.5682    0.9677    1.2824    0.7186    1.1150    1.3923    0.8887    1.2243    1.4805   

0.5888    1.0068    1.3031    0.7575    1.1563    1.4317    0.9093    1.2636    1.5013   

0.6085    1.0277    1.3230    0.7784    1.1961    1.4527    0.9291    1.2846    1.5213 

. 

. 

. 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

 

 

     

6.2.2. Using Gauss-Seidel Iterative (GSI) Method 

Generally, for n  linear equations, the Gauss-Seidel Iterative Method is defined as: 

 
   

1
1 1

1 1

1 i n
k k k

i i ij j ij j

j j iii

x b a x a x
a


 

  

 
   

 
   (6.2.9) 

 1,2,..., ;  0,1,2,...i n k   

In matrix form, the Gauss-Seidel Iterative Method is given by: 

 
   1k k

G


 x T x c  (6.2.10) 

 
   

1 1
where  and G

 
    T D L U c D L b

 

This method is also known as the method of successive iteration because the most recent 

values of all ix  are used in the calculation. 

The solution of (6.2.4) using Gauss-Seidel Iterative Method given by (6.2.10) in MATLAB is 

given below. The MATLAB codes used in this part are in Appendix A. 

 

Table 2: MATLAB output for GSI Method solution of Helmholtz equation 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

4 

5 

6 

7 

8 

. 

. 

0.1605    0.2943    0.7785    0.1450    0.1751    0.6890    0.4527    0.5381    1.1484 

0.2721    0.5648    1.0222    0.3328    0.6031    1.1513    0.6370    0.9853    1.3794 

0.3885    0.7650    1.1904    0.5179    0.9319    1.3362    0.7976    1.1683    1.4728 

0.4863    0.9161    1.2758    0.6670    1.1016    1.4247    0.8819    1.2565    1.5177 

0.5625    1.0002    1.3196    0.7509    1.1891    1.4694    0.9256    1.3012    1.5404 

0.6052    1.0444    1.3422    0.7951    1.2343    1.4924    0.9482    1.3242    1.5521 

0.6277    1.0673    1.3538    0.8180    1.2576    1.5042    0.9599    1.3361    1.5581 

0.6393    1.0792    1.3599    0.8298    1.2697    1.5104    0.9659    1.3422    1.5612 

. 

. 
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. 

17 

18 

. 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

 

 

 

6.2.3. Using Successive-Over-Relaxation (SOR) Method 

This method is one of the techniques for improving the convergence of Gauss-Seidel Method. 

It is generally given by: 

 
         

1
1 1

1 1

1
i n

k k k k

i i i ij j ij j

j j iii

x x b a x a x
a





 

  

 
     

 
   (6.2.11) 

 1,2,..., ;  1,2,...i n k   

In matrix form, (6.2.11) can be written as follows; 

 
   1k k




 x T x c  (6.2.12) 

 
     

1 1

where 

            1  and      
 

       T D L D U c D L b
 

  is called the relaxation factor. It can be shown that convergence is obtained within the 

range 0 2.   To accelerate convergence of an already convergent Gauss-Seidel Method, 

over-relaxation method is used, that is, by choosing   in the interval 1 2.   

The solution of (6.2.4) using Successive-Over-Relaxation equation (6.2.12) in MATLAB is 

in table 3 below. The MATLAB codes used are in Appendix A. 

Table 3: MATLAB output for SOR Method solution of the Helmholtz equation 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

4 

5 

6 

7 

8 

. 

. 

. 

12 

13 

0.2054    0.3913    1.0280    0.2003    0.2736    0.9951    0.5973    0.7679    1.6441 

0.3402    0.7487    1.1798    0.4711    0.9743    1.5281    0.7678    1.3705    1.5529 

0.5067    0.9799    1.3857    0.7326    1.3074    1.5244    1.0010    1.3562    1.5726 

0.6202    1.1273    1.3748    0.8804    1.3043    1.5273    0.9791    1.3585    1.5688 

0.6844    1.1023    1.3707    0.8517    1.2894    1.5190    0.9766    1.3510    1.5648 

0.6490    1.0916    1.3657    0.8426    1.2820    1.5160    0.9719    1.3478    1.5639 

0.6525    1.0917    1.3661    0.8424    1.2820    1.5167    0.9721    1.3485    1.5646 

0.6515    1.0915    1.3662    0.8422    1.2823    1.5169    0.9722    1.3487    1.5645 

. 

. 

. 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 
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6.2.4. Using Conjugate Gradient (CG) Method 

Let A be positive definite and orthogonal with respect to inner product notation 

 , T x y x Ay  (6.2.13) 

 where  and  are dimensional vectorsnx y  

Let the following hold for x and y. 

 ,   ,    x Ay Ax y  (6.2.14) 

We seek the vector *
x , a solution to the system (6.2.4) if and only if it minimises the error 

    , 2 ,E x      x Ax x b  (6.2.15) 

Furthermore, the function  E tx v  has a minimum for any , x v 0  when 

 
,

,
t

  


 

v b Ax

v Av
 (6.2.16) 

Starting this process involves specifying an initial estimate and computing the initial residue 

vector as follows: 

 
   0 0
 r b Ax  (6.2.17) 

Improved estimates are obtained iteratively as follows: 

 
     1k k k

kt


 x x v  (6.2.18) 

 k
v  is a search direction expressed  in vector form. 

 
   

   

1
,

,

k k

k k k
t


  


 

v b Ax

v Av
 (6.2.19) 

 
  is chosen so that  is minimised.
k

E x  

We use 
   1 0
v r  only at the beginning of the process. For subsequent iterations, we use the 

following expression. 

    

 

 

 

2

1

2
1

k

k k k

k




 

r
v r v

r

 (6.2.20) 

Therefore, by using the Conjugate Gradient Method to solve (6.2.4) in MATLAB, we obtain 

the following. 
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Table 4: MATLAB output for CG Method solution of the Helmholtz equation 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

4 

5 

6 

0.2787    0.4404    1.2223    0.1811    0.1103    0.7761    0.7222    0.6578    1.4533 

0.4337    0.9360    1.3004    0.5637    0.8928    1.6281    0.8162    1.3499    1.5411 

0.5560    1.0073    1.3623    0.7047    1.3007    1.5669    0.9085    1.3388    1.6024 

0.6211    1.0937    1.3661    0.8467    1.2863    1.5141    0.9536    1.3465    1.5789 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

 

6.2.5. Using Bi-Conjugate Gradient Stabilised (BiCGSTAB) Method 

This method avoids the often irregular convergence patterns of the Conjugate Gradient 

Squared method. It computes      0

i ii Q A P A r  where iQ  is an ith degree polynomial 

describing a deepest descent. 

The following is a MATLAB output for (6.2.4) using the Bi-Conjugate Gradient Stabilized 

method. 

Table 5: MATLAB output for Helmholtz equation using BiCGSTAB Method 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

0.6514    1.0914    1.3658    0.8420    1.2820    1.5164    0.9719    1.3482    1.5640 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645     

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

 

6.2.6. Bi-Conjugate Gradient Method (BICG) 

The residuals in Conjugate Gradient method are replaced with relations that are similar but 

based on T
A instead of A . Two sequences of residuals are updated. 

 
            11

,  
i i ii i i T

i i 


   r r Ap r r A p   (6.2.21) 

The sequences of search directions are 

 
             1 11 1

1 1,  
ii ii i i

i i 
  

    p r p p r p  (6.2.22) 

 

   

    

   

   

        

1 1

1 1

where

          ,  

       which ensure the bi-orhogonality relations

                          0   if 

T T

TT

T T

i ii i

i i ii ii

i ij j
i j

 

 

 

 

  

r r r r

r rp Ap

r r p Ap

 




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Using the Bi-Conjugate Gradient Method to solve (6.2.4) in MATLAB we obtain the 

following output. 

Table 6: MATLAB output for the solution of the Helmholtz equation using BICG Method 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.3938    0.7570    1.3256    0.8626    0.6988    1.0954    1.2532    1.3280    1.5384 

0.3938    0.7570    1.3256    0.8626    0.6988    1.0954    1.2532    1.3280    1.5384     

0.6846    1.0839    1.3987    0.8987    1.3052    1.5566    0.9959    1.2426    1.5321 

0.6838    1.1022    1.3777    0.8555    1.2799    1.5289    0.9632    1.2996    1.5649 

0.6616    1.0886    1.3669    0.8457    1.2733    1.5214    0.9684    1.3297    1.5715 

0.6543    1.0885    1.3663    0.8431    1.2766    1.5197    0.9700    1.3416    1.5683 

0.6517    1.0926    1.3669    0.8413    1.2838    1.5157    0.9729    1.3483    1.5643 

0.6516    1.0918    1.3662    0.8424    1.2824    1.5168    0.9724    1.3485    1.5646 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

 

6.2.7. Quasi-Minimal Residual (QMR) Method 

It is meant to overcome the irregularity of the convergence of BICG method. It solves the 

reduced tri-diagonal system in a least squares sense. It uses look-ahead techniques to avoid 

breakdowns that make it more robust than BICG.  

Table 7: MATLAB output of the solution to the Helmholtz equation using QMR Method 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.3598    0.6915    1.2110    0.7880    0.6383    1.0007    1.1448    1.2132    1.4054 

0.3598    0.6915    1.2110    0.7880    0.6383    1.0007    1.1448    1.2132    1.4054 

0.6657    1.0612    1.3881    0.8925    1.2664    1.5241    1.0045    1.2412    1.5251 

0.6812    1.0963    1.3792    0.8609    1.2779    1.5282    0.9692    1.2912    1.5592 

0.6641    1.0896    1.3684    0.8476    1.2739    1.5222    0.9685    1.3249    1.5699 

0.6558    1.0886    1.3666    0.8438    1.2762    1.5200    0.9697    1.3390    1.5686 

0.6521    1.0922    1.3668    0.8415    1.2832    1.5161    0.9727    1.3475    1.5647 

0.6516    1.0919    1.3662    0.8424    1.2825    1.5168    0.9724    1.3485    1.5646 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

 

6.2.8. Generalised Minimal Residual (GMRES) Method 

The iterates of this method are given by; 

 
       0 1

1 ...
i i

iy y   x x v v  (6.2.23) 

The coefficients ky  are chosen to minimise the residual norm
 i

b Ax . 

The solution to (6.2.4) using the Generalised Minimal Residual Method in MATLAB is 

shown below. 
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Table 8: MATLAB output for the solution of the Helmholtz equation using GMRES Method 

k   
1

k        
 

2

k      
 

3

k       
 

4

k      
 

5

k       
 

6

k      
 

7

k       
 

8

k      
 

9

k  

1 

2 

3 

4 

0.6441    1.0837    1.3798    0.8277    1.2601    1.5188    0.9745    1.3469    1.5834 

0.6516    1.0918    1.3662    0.8424    1.2825    1.5170    0.9722    1.3487    1.5645    

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 

0.6517    1.0918    1.3663    0.8424    1.2825    1.5169    0.9723    1.3487    1.5645 
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CHAPTER 7: DATA ANALYSIS AND RESULTS 

In Chapter 4, an overview of numerical aspect of Weather Forecasting has been highlighted. 

It begins with the primitive equations of hydrodynamics. These are then cast in a form that is 

amenable to description of the atmospheric flow. This process involves incorporating the 

Coriolis and centrifugal forces, factoring in the aspect of the rotation of the earth and 

consideration of the change in the position vectors of two points due to curvature effects of 

the grid. The result is a system of equations (4.1.49), (4.1.51), (4.1.53), (4.1.54) and (4.2.11)-

(4.2.13).  

The resultant equations are discretised using the off-centred, Semi-Implicit, Semi-Lagrangian 

method. Unlike the Eulerian decomposition that sustains the advection term, the SISL scheme 

retains intact the material derivative. Moreover, the SISL scheme is stable even when long 

time steps are taken. However, it is subject to numerical instabilities under certain 

extrapolation procedures. Discretisation of governing equations involves series of predictor 

corrector steps, especially for terms that cannot be readily obtained. 

Successful discretisation of governing equations yields 13 7N   system of equations where 

N is the number of grid points considered. This system of equations contains 13 variables 

from which 8 are prognostically determined while 5 of them are obtained diagnostically. The 

system of equations is then substituted to the equation of state and the result is a Helmholtz 

problem. Due to the rigidity of the boundary, that is, the tropopause and the Earth‟s surface, 

the Neumann boundary conditions are inferred. The solution of the Helmholtz equation with 

the boundary conditions yields the increment in pressure field,  . The pressure field 

increment is substituted back to the system of discretised equations to obtain the various 

prognostic variables.  

Chapter 5 is concerned with the analysis of consistency, stability and convergence of SISL 

scheme. It was established that the scheme is consistent, stable given that 
1 2 3 4

1
, , ,

2
      

and is convergent by Lax Equivalence theorem. 

In chapter 6, a simple 2-dimensional Helmholtz equation is chosen for analysis of stability 

and solution. It was established that for stability, the following condition holds: 

 
2 2

4
1 cos 1

4 h m




  


 (7.1.1) 

(7.1.1) shows that the stability of the Helmholtz equation depends on the spatial step-size, h , 

and the wave number,  . 

The solution of the sample 2-dimensional Helmholtz has been summarised in Table 5 and 

Graph 1 for the different methods used. 
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Table 9: A summary of the number of iterations for methods used 

Method JI       GSI      SOR      CG      Bi-CGSTAB      BICG      QMR      GMRES            

No. of iterations 

CPU-Time*1000 

(Seconds) 

34       17         12          5                 2                   9             9               3 

 

31.2     0           0           0                 0                 31.2        46.8           15.6 

 

 

Graph 1: A graph showing the number of iterations and CPU-time of different methods 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

50

No of Iterations

CPU-Time*1000 Secs



64 

 

The Helmholtz equation can be visualized using the Graphical User Interface in MATLAB. 

The following is an output of the Helmholtz equation with 1  . 

 

Figure 4: Visualization of the Helmholtz equation using Graphical User Interface in 

MATLAB  
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CHAPTER 8: FINDINGS AND RECOMMENDATIONS 

8.2. Findings 
From the study of Numerical Weather Prediction, particularly the Unified Model of UK Met 

Office, It was established that the Governing equations are discretised using the off-centred 

Semi-Implicit Semi-Lagrangian time discretisation method.  Before discretisation of these 

equations, the primitive equations, which include the momentum equations, the continuity 

equation, the representation of moisture equation and the equation of state, are cast in a form 

amenable for practical implementation. The earth is estimated on a spherical surface. This is 

because the Newtonian gravitational force supersedes the Centrifugal force in lower 

atmosphere.  

The SISL time discretisation is preferred for its stability even when long time-steps are taken 

and it doesn‟t have Eulerian advection terms. However, it may be subject to numerical 

instabilities if certain extrapolation procedures are used. A two-time-level scheme is used 

because it requires less storage, and for a given time step they reach a given forecast 50% 

fewer steps because successive intervals do not overlap. For any off-centred two-time-level 

scheme, the time weighting factor, , is chosen such that, 
1

1
2

  .  is chosen closer to 
1

2

to render the scheme more accurate and less damping. 

The source term in the SISL scheme is divided into the linear and non-linear terms. The 

linear part is dealt with by algebraic elimination while the non-linear part is accommodated 

using iterative procedures, which consist of a fixed number of predictor-corrector steps. 

The number of discretised governing equations obtained is 13N+7, where N is the number of 

grid points used, with 13 variables. 8 of these variables are determined from the associated 

prognostic equation of the variable. These variables are ,  ,  ,  ,  ,  ,   and y v cl cfu v w m m m  . The 

other 5; ,  ,  ,   and v p    are diagnostically determined. The coupling of these equations 

by algebraic decomposition yields a Helmholtz equation, which, when solved, yields the 

increment in pressure field,  . By back substitution of the value of the increment in pressure 

field in the discretised equations, other prognostic variables are obtained. 

The top of the atmosphere and the Earth‟s surface assume rigid boundaries. Neumann 

boundary conditions are therefore imposed in solving the Helmholtz equation. It was further 

established that in the horizontal an Arakawa C-grid is used while in the vertical the Charney-

Phillips grid staggering is used. 

The consistency analysis of the SISL scheme showed that it is consistent with the initial 

partial differential equation. On the other hand, the stability analysis of the SISL scheme 

revealed that the linear part of the scheme is stable on condition that

3 1 4 2

1 1 1
,  ,  and 

2 2 2
       .  By Lax Equivalence Theorem, it was established that the 

linear part of the scheme is convergent. 
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Stability analysis of the Helmholtz equation using Von Neumann method showed that 

stability is guaranteed when the wave number  and the spatial step size h  are chosen such 

that; 

 
2 2

4
1 cos 1

4 h m




  


 

Solving the Helmholtz equation iteratively, using different methods, showed that the 

iterations converge faster by Bi-Conjugate Gradient Stabilized Method followed by the 

Generalised Minimal Residual Method. The least convergent method is the Jacobi Iterative 

Method. While the Quasi-Minimal Residual Method converges relatively faster than the 

Jacobi Iterative Method, it takes longer CPU-time than all other methods. It is therefore not 

efficient. 

The most efficient method for solving the Helmholtz equation is therefore Bi-Conjugate 

Gradient Stabilized Method followed by Generalised Minimal Residual Method. Finally, it 

was established that visualization of the Helmholtz equation can be obtained using the 

Graphical User Interface in MATLAB. 

 

8.2. Recommendations 
 In full view of the findings in this study, we recommend that: 

 The Bi-Conjugate Gradient Stabilized Method be used in the solving of the Helmholtz 

equation for its efficiency. This can drastically reduce the forecast time, which has 

been a long-standing bottleneck in Numerical Weather Prediction. 

 The Generalised Minimal Residual Method be used only when, for some reasons, the 

Bi-Conjugate Gradient Stabilized Method cannot be adopted. 

 In the choice of the spatial step for the grid, care should be taken to ensure that the 

condition for stability (7.1.1) is observed. Otherwise, the Helmholtz equation may be 

rendered unstable. 
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APPENDIX A 

MATLAB CODES FOR DIFFERENT METHODS USED IN THIS PAPER 

1. Jacobi Iterative Method 
function x = JacobiM(Ab,x,acc) 

%Jacobi Iterations 

[n,t]=size(Ab);b=Ab(1:n,t);R=1;k=1; 

d(1,1:n+1)=[0 x];while R>acc 

    for i=1:n 

        sum=0; 

        for j=1:n; if j~=i 

            sum=sum+Ab(i,j)*d(k,j+1);end; 

        x(1,i)=(1/Ab(i,i))*(b(i,1)-sum);end;end 

k=k+1;d(k,1:n+1)=[k-1 x]; 

R=max(abs((d(k,2:n+1)-d(k-1,2:n+1)))); 

if k>10 & R>100 

    ('Jacobi Method is diverges') 

     break;end; 

end;x=d; 

JacobiM(Ab,x,acc) 

t = cputime; JacobiM(Ab,x,acc); e = cputime-t 

 

2. Gauss-Seidel Iterative Method 
function x=GaussSM(Ab,x,acc) 

[n,t]=size(Ab);b=Ab(1:n,t);R=1;k=1; 

d(1,1:n+1)=[0 x];k=k+1; while R>acc 

    for i=1:n;sum=0; for j=1:n  

        if j<=i-1; sum = sum+Ab(i,j)*d(k,j+1); 

        elseif j>=i+1 

            sum = sum + Ab(i,j)*d(k-1,j+1);end;end 

    x(1,i)=(1/Ab(i,i))*(b(i,1)-sum); 

    d(k,1)=k-1;d(k,i+1)=x(1,i);end 

R=max(abs((d(k,2:n+1)-d(k-1,2:n+1)))); 

k=k+1; if R>100 & K>10; ('Gauss-seidel method is Diverges') 

    break; end; 

end;x=d; 

GaussSM(Ab,x,acc) 

t = cputime; GaussSM(Ab,x,acc); e = cputime-t 

 

3. Successive-Over-Relaxation Method 
function sol=SORM(Ab,w,acc) 

[n,t]=size(Ab);b=Ab(1:n,t);R=1;k=1; 

x=zeros(1,n);d(1,1:n+1)=[0 x]; 

k=k+1; while R>acc 

    for i=1:n 

        sum=0; 
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        for j=1:n 

            if j<=i-1; sum=sum+Ab(i,j)*d(k,j+1); 

            elseif j>=i+1; sum=sum+Ab(i,j)*d(k-1,j+1); 

            end; end 

        x(1,i)=(1-w)*d(k-1,i+1)+(w/Ab(i,i))*(b(i,1)-sum); 

        d(k,1)=k-1;d(k,i+1)=x(1,i);end 

    R=max(abs((d(k,2:n+1)-d(k-1,2:n+1)))); 

    if R>100 & k>10; break;end 

    k=k+1;end;x=d  

SORM(Ab,w,acc) 

t = cputime; SORM(Ab,w,acc); e = cputime-t 

 

4. Conjugate Residual Method 
function x=CONJG(A,b,x0,acc,maxI) 

x=x0;r=b+(A*x0);v=r; 

alpha=r'*r; iter=0; flag=0; 

normb=norm(b); if normb<eps; normb=1; end 

while (norm(r)/normb>acc) 

    u=A*v;t=alpha/(u'*v); x=x+t*v; 

    r=r-t*u; beta=r'*r; 

    v=r+beta/alpha*v; alpha=beta; 

    iter=iter+1; if(iter==maxI); flag=1; 

        break;end; 

end; 

CONJG(A,b,x0,acc,maxI) 

t = cputime; CONJG(A,b,x0,acc,maxI); e = cputime-t 

 

5. Bi-Conjugate Gradient Stabilized Method 
function x1 = run_bicgstab 

n = 9; 

b = afun(ones(n,1)); 

tol = 1e-12;   

maxit = 15;  

x1 = bicgstab(@afun,b,tol,maxit,@mfun); 

  

    function y = afun(x) 

       y = [0; x(1:n-1)] + ... 

           [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ... 

           [x(2:n); 0]; 

    end 

  

    function y = mfun(r) 

        y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)']; 

    end 

end 

x = bicgstab(A,b,tol,maxit,M1) 
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t = cputime; x = bicgstab(A,b,tol,maxit,M1); e = cputime-t 

 

6. Bi-Conjugate Gradient Method 
function x1 = run_bicg 

n = 9;  

on = ones(n,1);  

b = afun(on,'notransp');  

tol = 1e-12;  

maxit = 15; 

M1 = spdiags([on/(-2) on],-1:0,n,n);  

M2 = spdiags([4*on -on],0:1,n,n); 

x1 = bicg(@afun,b,tol,maxit,M1,M2); 

  

    function y = afun(x,transp_flag) 

       if strcmp(transp_flag,'transp')      % y = A'*x 

          y = 4 * x; 

          y(1:n-1) = y(1:n-1) - 2 * x(2:n); 

          y(2:n) = y(2:n) - x(1:n-1); 

       elseif strcmp(transp_flag,'notransp') % y = A*x 

          y = 4 * x; 

          y(2:n) = y(2:n) - 2 * x(1:n-1); 

          y(1:n-1) = y(1:n-1) - x(2:n); 

       end 

    end 

end 

x = bicg(A,b,tol,maxit,M1,M2) 

t = cputime; x = bicg(A,b,tol,maxit,M1,M2); e = cputime-t 

 

7. Quasi-Minimal Residual (QMR) Method 
function x1 = run_qmr 

n = 9;  

on = ones(n,1);  

tol = 1e-12;  

maxit = 15; 

M1 = spdiags([on/(-2) on],-1:0,n,n);  

M2 = spdiags([4*on -on],0:1,n,n); 

x1 = qmr(@afun,b,tol,maxit,M1,M2); 

  

    function y = afun(x,transp_flag) 

       if strcmp(transp_flag,'transp')      % y = A'*x 

          y = 4 * x; 

          y(1:n-1) = y(1:n-1) - 2 * x(2:n); 

          y(2:n) = y(2:n) - x(1:n-1); 

       elseif strcmp(transp_flag,'notransp') % y = A*x 

          y = 4 * x; 

          y(2:n) = y(2:n) - 2 * x(1:n-1); 

          y(1:n-1) = y(1:n-1) - x(2:n); 
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       end 

    end 

end 

x = qmr(A,b,tol,maxit,M1,M2) 

t = cputime; x = qmr(A,b,tol,maxit,M1,M2); e = cputime-t 

 

8. Generalised Minimal Residual (GMRES) Method 
function x1 = run_gmres 

n = 9; 

b = afun(ones(n,1)); 

tol = 1e-12;  maxit = 15;  

x1 = gmres(@afun,b,9,tol,maxit,@mfun); 

  

    function y = afun(x) 

        y = [0; x(1:n-1)] + ... 

              [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ... 

              [x(2:n); 0]; 

    end 

  

    function y = mfun(r) 

        y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)']; 

    end 

end 

x = gmres(A,b,9,tol,maxit,M1) 

t = cputime; x = gmres(A,b,9,tol,maxit,M1); e = cputime-t 

 


