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Abstract

For the last few decades,exceptional concentration has been given to the field of sur-
vival analysis for its techniques applied in different areas of research.One of the main
assumptions regarding a number of survival analysis techniques is that of propor-
tional hazards.If the hazards rates are found to cross,non parametric analyses such
as Cox proportional hazards regression,Kaplan Meier and Log- rank test will either
be rendered scarce or lose power.One way to suffiently analyze survival data with
crossing hazard rate is to obtain inference using the Renyi test statistic and Stratified

Cox Regression Model,interaction model with time dependent covariate.
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Chapter 1

Introduction

Background
It is not common for clinical trials to present results on survival time as Kaplan-
Meier survival curves that cross,indicating non-proportional hazards. A recent ex-
ample was given in a pivotal trial in advanced non-small cell lung cancer (The 'TPASS
study’ [1]).Trials such as these present a hazard ratio and log-rank test for treatment
comparison as this is their planned primary analysis. However,the validity of such
analysis is questionable and has received published criticism. Therefore reviews have
used the log-rank test with crossing curves and alternatives proposed.
The analysis of lifetimes is an important topic within biology and medicine in

particular, but also in reliability analysis with engineering applications. Such data




are often highly nonnormally distributed, so that the use of standard linear models is

problematic. Lifetime data are often censored: You do not know the exact lifetime,
only that it is longer than a given value. For instance, in a cancer trial some people
are lost to follow-up or simply live beyond the study period. It is an error to ignore the
censoring in the statistical analysis, sometimes with extreme consequences. Consider,
for instance, the case where a new treatment is introduced toward the end of the
study period, so that nearly all the observed lifetimes will be cut short.

Essential concepts

Let X be the true lifetime and T a censoring time. What you observe is the
minimum of X and T together with an indication of whether it is one or the other.
T can be a random variable or a fixed time depending on context, but if it is random
then it should generally be noninformative for the methods we describe here to be
applicable. Sometimes “dead from other causes” is considered a censoring event for
the mortality of a given disease, and in thoée cases it is particularly important to
ensure that these other causes are unassociated with the disease state.The survival
function S(t) measures the probability of being alive at a given time. It is really
just 1 minus the cumulative distribution function for X,1 - F(t).The hazard function
or force of mortality h(t) measures the (infinitesimal) risk of dying within a short

interval of time t, given that the subject is alive at time t. If the lifetime distribution



has density f , then h(t) = f (t)/S(t).This is often considered a more fundamental
quantity than (say) the mean or median of the survival distribution and used as a

basis for modelling.

1.1 Statement of Problem

Analysis in a case of non-proportionality in Survival analysis

1.2 Objective of the study

1.To present an alternative way of working out non-proportional hazards in Survival

analysis.

1.3 Justification/Significance of Study

The study offers a breakthrough in that new techniques of handling even complex sit-
uations are realised, therefore increasing the bank of knowledge in the field of Survival

analysis.




Chapter 2

Literature Review

2.1 Non Proportionality

Nathan Mantel and David Cox,(1966),improvised a weighting function W(ti)=1
called the Log rank test.
Gehan and Wilcoxon, (1965 ),Generalized Mannwhitney-Wilcoxon test,

Breslow*s(1970) Generalization of Kruskal-Wallis test suggested a weighting func-

tion W(ti)=Yi.
Tarone and Ware(1977) put forward a weighting function W(ti)=f(yi) where
f=fixed function, with a choice of fy)=y~1/2.

Peto Peto(1972) and Kalbfleisch and Prentice(1980) advanced Generalized Mannwhitney-




Wilcoxon test by proposing a weighting function W(ti)=§(ti) where S(ti) is given

by

2.2 Other papers partaining Non proportional haz-

ards

In the paper Cox analysis of survival data with non-proportional hazard functions
by Michael Schemper (1992),The consequences of violated assumptions for Cox’s
proportional hazards model and current options to deal with non-proportionality in
Cox’s model are reviewed. An additional option for analysis is suggested, which
produces weighted estimates of log hazard ratios, weighted at the time points where
failures occur. The procedure amounts to generalizations of the tests by Breslow or
Prentice for multiple covariates in the same manner that the proportional hazards
model is a generalization of the log rank test by Mantel. Its advantages are repre-
sentative estimates of average hazard ratios also for covariates with non-proportional
and, in particular, converging hazard functions. The latter are often encountered in

clinical applications. By means of an empirical study these average hazard ratios are




shown to be very close to exact calculations of average hazard ratios as defined by
Kalbfleisch and Prentice. Two examples illustrate the advantages of the weighted
estimation and of other strategies for analysis with the Cox model in the presence of
non-proportional hazards. Furthermore, with respect to checking proportionality, it
is demonstrated how misleading the frequently used log-minus-log plots can be and

that the lesser known Arjas plots seem to perform quite well.

In nonproportional Hazards and Event History Analysis in International Rela-
tions by Janet M. Box-Steffensmeier and Dan Reiter Christopher Zorn,(Feb., 2003)
illustrate how to relax the PH assumption, detailed description of the PH assumption
in event history and the use of what we refer to here as "nonproportional hazards"
(NPH) analysis and then demonstrate how NPH can be applied to international rela-
tions research.Specifically,they reanalyse data from previously published scholarship
on postwar peace, civil wars, and alliances to show how using NPH permits improved
estimation and the testing of more refined hypotheses and conclude by highlighting
why NPH make sense substantively and emphasizing the methodological point that
the assumption should be tested for all PH event history models.

Confidence intervals for the first crossing point of two hazard functions by Ming-
Yen Cheng - Peihua Qiu - Xianming Tan - Dongsheng Tu ,(1 November 2009) argued

that the phenomenon of crossing hazard rates is common in clinical trials with time




to event endpoints and that methods have been proposed for testing equality of
hazard functions against a crossing hazards alternative. However, there has been
relatively few approaches available in the literature for point or interval estimation
of the crossing time point. The problem of constructing confidence intervals for the
first crossing time point of two hazard functions is considered in this paper.After
reviewing a recent procedure based on Cox proportional hazard modeling with Box-
Cox transformation of the time to event, a nonparametric procedure using the kernel
smoothing estimate of the hazard ratio is proposed. The proposed procedure and
the one based on Cox proportional hazard modeling with Box-Cox transformation
of the time to event are both evaluated by Monte-Carlo simulations and applied to
two clinical trial datasets.

Regression Models and Non-proportional Hazards in the Analysis of Breast Can-
cer Survival by Sheila M. Gore, Stuart J. Pocock and Gillian R. Kerr,(January 1984)
.A Western General breast cancer series of 3922 patients sets research methodol-
ogy for survival data in practical perspective illustrates that the waning of covariate
effects through time is an important phenomenon in medical applications. Non-
monotone convergent hazard functions are associated with most clinical covariates
in breast cancer,an unusual hazard pattern according to menopausal state is also re-

ported. These features contraindicate the use of standard regression models for sur-




vival such as Weibull and proportional hazards. Inferences about covariate effects are
compared under these and a log-logistic model which implies proportionality of the
cumulative odds on death. Regression models are shown to be useful in exploratory
analysis. In particular, a step-function proportional hazards model elucidates the
time-dependent influence of initial covariates and leads to a more appropriate final
model, but one whose virtues are balanced by computational difficulty.

Crossing Hazard Functions in Common Survival Models by Jiajia Zhang and
Yingwei Peng ,confer that crossing hazard functions have extensive applications in
modeling survival data . However, existing studies in the literature mainly focus on
comparing crossed hazard functions and estimating the time at which the hazard
functions cross, and there is little theoretical work on conditions under which hazard
functions from a model will have a crossing.These paper investigate crossing status
of hazard functions from the proportional hazards (PH) model, the accelerated haz-
ard (AH) model, and the accelerated failure time (AFT) model. It then provides
and proves conditions under which the hazard functions from the AH and the AFT
models have no crossings or a single crossing. A few examples are also provided to
demonstrate how the conditions can be used to determine crossing status of hazard
functions from the three models.

Analysis of survival data with nonproportional hazard functions by Donald M.




Stablein, Walter H. Carter Jr., Joel W. Novak (June 1981), the log-rank test or
the proportional hazard model is a valuable, widely accepted method for analyzing
time-to-response data from comparative clinical trials. When the hazard ratio is
constant in time, this procedure is optimal. Indiscriminate or unthinking use of
this approach results in problems in the determination of treatment differences. For
example, when the true survival curves intersect, the hazard ratio cannot be constant,
i.e., the hazard functions are not proportional. It is shown that by considering time-
by-treatment interactions we gain flexibility in describing the relationships among
hazard functions. In this paper we demonstrate with the results of a clinical trial
how available methodology can be used to permit tests for the appropriateness of

the model and to enable infirmative analysis of such data.

Comparing two crossing hazard rates by Cox proportional hazards modelling by
Liu K, Qiu P, Sheng J,(2007),motivated by a clinical trial of zinc nasal spray for the
treatment of the common cold considered the problem of comparing two crossing
hazard rates. A comprehensive review of the existing methods for dealing with the
crossing hazard rates problem is provided. A new method, based on modelling the
crossing hazard rates, is proposed and implemented under the Cox proportional haz-
ards framework. The main advantage of the proposed method is the utilization of the

Box-Cox transformation which covers a wide range of hazard crossing patterns. Sim-




ulation studies are conducted for comparing the performance of the existing methods
and the proposed one, which show that the proposed method outperforms some of
its peers in certain cases. Applications to a kidney dialysis patients data and the

zinc nasal spray clinical trial data are discussed.

In Modelling Survival Data with Crossing Hazards by MacKenzie, Gilbert; Do
Ha, II converse that despite the ubiquity of Cox’s proportional hazards (PH) model
it is being realised increasingly that not all survival data obey the PH assumption.In
multi-factor studies the effect of one or more covariates may be noticeably non-PH. A
clear signal is that of crossing hazards. A classical example is the well-known data set
of the Gastrointestinal Tumor Study Group (GTSG)(1982), reporting the effects of
chemotherapy and combined chemotherapy and radiotherapy on the survival times of
gastric cancer patients. The question then arises as to how best to model these effects.
Sometimes, in practice, non-PH covariates are ignored and they are analysed as being
PH in a larger model, but the optimality of this expediency is unclear.An alternative
approach is to adopt a model which can cope with non-PH and PH effects. The
Generalised Time-Dependent Logistic family of survival models contains two non-
PH parametric models which are potential competitors for Cox’s model, namely, the
GTDL model (MacKenzie, 1996) and the logistic accelerated life model, the LAL (Al-

tawarah & MacKenzie, 2003). Recently, the family has been extended to incorporate

10




frailty (Blagojevic, MacKenzie & Ha, 2003) and to more general multivariate forms
(Blagojevic & MacKenzie, 2007).In relation to tests and models developed specically
for crossing hazards situations per se we refer the reader to Stablein & Koutrouvelis

(1985),Aalen(1994), Hseish (2001) and Bagdonavicius et al (2005).

In the paper Significance tests of differences between two crossing survival curves
for small samples by Tomasz Jurkiewicz and Ewa Wyecinka,(2011) examined a small-
sample characteristics of recently developed tests that compare survival at two or
more cohorts,most popular are log-rank test and tests of Gehan,Tarone-Ware, Peto-
Peto,Harrington—Fleming,Renyi—type.There were made a variety of simulations by

means of Monte Carlo simulations.With the assumption that survival curve has

Weibull distribution,there were taken into consideration different share of censored
observations(randomly appeared due to uniform distribution) and the ability of these
test to detect overall differnces between crossing survival curves.

Cox regression models with nonproportional hazards applied to lung cancer sur-
vival data by Nihal Ata and M.Tekin Sozer,(28:09:2007) acknowledge that Cox re-
gression model is widely used for the analysis of treatment and prognostic effect
with censored survival data,makes the assumption of constant hazard ratio.In the
violation of this assumption,different methods should be used to deal with nonpro-

portionality of hazards.In this study the stratified cox regression model and extended

11




cox regression model,which uses time dependent covariate terms with fixed functions
of time are discussed.Results are illustrated by an analysis of lung cancer data in or-
der to compare these methods with respect to Cox regression model in the presence

of nonproportional hazards.

Keywords

) hazard function;log-rank test;survival data;time-by-treatment interactions;accelerated
hazard model; accelerated failure time model; monotone hazard; U-shape hazard;
bellshape hazard.Cox regression model,hazard ratio,Non-proportional hazards,Stratified
Cox regression model,Extended Cox regression model, Time dependent-covariate,Lung

cancer.
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Chapter 3

Methodology

Several datasets used to reinforce different concepts are used but two of them are
heavily employed,which are Stablein and Koutrouvelis(1985) and Survival data from
a survey in KEMRI-Kilifi, Mombasa.A few forms of weighting functions and a de-
tailed illustration on how Renyi type test works is also exemplified.For Stablein and
Koutrouvelis(1985),Kaplan Meier technique is used to illustrate non-proportionality
of hazard functions by crossing,whereas stratified Cox Regression Model is utilized
for the reason that assumption of proportionality is violated as well,that is, effects

of a given covariate(s) are changing over time.

Assumptions of Kaplan Meier:

13



tj

. Y, —d
st =11 th t

t=0

1.Probabilities for the event of interest should depend only on time after the initial
event—they are assumed to be stable with respect to absolute time. That is, cases
that enter the study at different times (for example, patients who begin treatment
at different times) should behave similarly.

2.There should also be no systematic differences between censored and uncensored
cases. If, for example, many of the censored cases are patients with more serious
conditions, your results may be biased.

The stratified Cox Regression Model is given by

hg(t, ©) = hog(t) exp[Bi21 + BaZ2 + .. + BpTplig = 1,2, .., k

where hg,(t) is the baseline hazard function.To obtain estimates of the regression
coefficients 3y, B, ..., B, a likelihood function L that is obtained by multiplying to-
gether the likelihood functions for each stratum is maximized.The software used for

analysis is R.
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3.1 Comparing two Survival Curves Kaplan-Meier Curves

An illustration of how Survival data is captured

A X
B X
X=Event Recorded
C 0
O=No event
DX
S R EEEEEARRREL

2 4 6 8 10 12 14 16
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Data Structure
Individual | Survival time | 6(¢)
A 10 1
B 14 1
C 11 0
D 0 1
E 16 0

Data={10,14,114+,0,16+} where 11+,16 + are right censored

Quartiles of Survival analysis

Hazard Survival Function

Time,tj Death,dj Risk Set,Y 7 | Probability of dying,dj/Yj | Survival
t1 dl Y, dl/Yl 1-— dl/Yl
to d2 Y2 dg/Y2 1-— d2/Y2
t, d, Y, d.]Y, 1-4d,/Y,

where

16




d;j/Y; = Hazard Rate

Actual Kaplan Meier estimate

3.2 Consider the data (Survival times) without

Censoring

1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23

17



t|di | Y| B | S(ti) = - Yidi
t=0
0|0 211000 1.000
1] 2210905 0.905
2 | 21190895 0.810
3|1 |17]0.941 0.762
41216087 0.667
512140857 0.571
8 | 4]12|0.667 0.381
1|2 | 8 |0.750 0.286
12| 2| 6 |0.667 0.190
15| 1| 4 |0.750 0.143
17 1| 3 |0.667 0.095
22| 1| 2 |0.500 0.048
23| 1| 1 |0.000 0.000

Kaplan Meier Plot of Sft)

18




Kaplan-Meier estimate with 95% confidence bounds

8
5
g
e
?
time
Property
-Kaplan Meier Curve if no censoring begins at one and end at zero.
Ilustration

A clinical trial of chemotherapy against chemotherapy combined with radiother-
apy in the treatment of locally unresectable gastric cancer was conducted by the
Gastrointestinal Tumor Study Group(1982).In this trial,forty-five patients were ran-
domized to each of the arms and followed for about eight years.The data,found in

Stablein and Koutrouvelis(1985),is as follows.
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Test of hypothesis on two (or more) Kaplan Meier Curves Hy:hy(t)
hao(t) = ... = hi(t) ;t <7

H;:at least one hazard is different

Assume:

Group1={30, 35,40}

Group2={30+, 45, 50, 65}

Group3={20+, 25+, 30, 35, 42}

T = 40 i.e.smallest of the largest actual time in all the k groups

D=65 (the largest actual death time in all groups) ti<tac...<tp

j=1,2,....k(groups)

i=1,2,...,D(actual death times)

k
j=1
(total deaths in all groups, at time ;)
k
Yi=) Y
j=1

(total risk set at t;,across the groups) and i =time and j =sample

Sample j

21




Time=t; Risk Set=Y;; Deaths= d;;
If Hy (null hypothesis) is true,then the estimate of expected hazard rate is
d;/Y;,(at time t;,over all groups) and d;;/Y;;, (in the jth sample).
The test is to compare the sample hazard to the expected hazard but weighted

by some weight

0 if Y;=0

w;(t;) Otherwise
\

Test statistic

Zi(7) = Zz]:;wj(ti) <% - d?:)

ij
j=1,2,..k if Z;(7) — 0 fail to reject Hy and a Larger Z;(7) implies the two
groups are different.
Note:Purpose of the weight function is to reduce the difference between sample

hazard and expected hazard

22




3.3 The Weight Function

If the weight function w;(¢;) = 1 then we are doing a Log Rank Test which is a naive
test,commonly used weight function is
w;(t;) = Yijw(t;) where w(t;) is constant for all groups

implying that

D
d; 4

i=1

At time #2

Groups | Number of deaths | Number of survivors | Risk set

Groupl di1 Yii—da Y,
Group2 din Yio—dio Yio
Total d; Y, —d; Y;

If we know the distribution of d;; and d;» then we know everything about the

table.

D
d; .

i=1
d;; =Observed values, Y;j% =Expected values

23




Standardizing Z;(7)

2(r) - BlZ,(r)] am-B
/_—VG/I‘Z]'(’T) N(07 1) ’UaT‘(Z]‘(T)) X(l)

VarlZ,(r)] = 8;; = iw(tif% (1 - Y7> (’;__‘i) di

D
cov(Zj(7), Zg(T)) = Zw Y7Y7 (? _d') di for g #j

where

1  if no two individuals have a common event time

#1 if there are common event times i.e. d; > 1

\
Note:For di > 1 scales up the estimate

Proof. The terms % ( ) di and - ” ’9 dz are variance and covariance of a
multinomial random variable with parameters d; and pj = %l Vi=1,2,...k m

In multinomial experiment X = {1,2,3,...,k} a set of outcomes.

Let Y; =number of 1‘s with Probability P,

24



Yi;
Y;

Y5 = number of 2‘s with Probability P

Y, = number of ks with Probability P,
such that number of Y7, Y5,...Y;‘s is a binomial experiment and that Y; + Y5 +
+Y.=n
Y ~multinomial(n,Py, P, ..., Py)

n!

Yi pYa pY
YllYg!...Yk!PI Pyt Bk

Pr[Yy = ykln, P(vector)] =

Y j ~Binomial(n, P;)

E(Yj)=nP; and Var(Y j)=nP;(1 — F;)

Note:

Yj. +Y; ~Binomial(n, P;.; P;) ,the sum of two binomial distributions is binomial

Var(Vj, +Y;)=n(P;. + P)(1 — (P...P;)) implying that Var(¥;)=nP;(1 - P,) =

(-3

Besides:Var (Y}, + Y;)=Var(Y},)+Var(Y;) + 2cov(Y;.,Y;)

Equating the two equations then cov(Yj., Y;)=-nP;.P;

25



Zi(r) = XD: w(t) (dw - Ya%)

i=1

Note:Log rank case is w(t) = 1

D

d; .
Zj(tl) = Z <dlj - Y;J?) V]

=1

Time | Groupl Group2 Combined

t; Deaths Risk set Deaths Risk set Deaths Risk set
1 diy Y diz Yio dy Y,
ta dax You daz Yoo dsy Y,
tm dml le dm2 Ym2 dm Ym

j=12 i=12,..m

We note that Z;(7) is computed for each group j=1,2,...,k.Define the vector Z =

[Z1(7), Za(7), ... Z4(7)]"

k
Notezz Z;(T) = 0 and test statistic is constructed from k-1 because they are
j=1

linearly independent vectors.
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Test statistics:

X2=7"S"'7~ X{r_1) and for equal dimensions Z* = [Z,(7), Zy(7), ...Z(k_l)(T)]T

021

>~ = (k—1)(k—1) variance covariance matrix of Zj(r)‘s=

~

U(kfl)l

3.4 For K =2 or K > 2 (Special Case)

We are testing the hypothesis

Hoihl(t) = hg(t)
Hy:hi(t) > ho(t) (one graph is above the other)

Reject Ho if X2, > Za

D
> w(t) (dz‘j - Ymd?)
2 _ i=1
Xspecial - )
Yy Y i
St (1 ) (44)
i=1

Note few forms of weighting functions w(t;):

27
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O-l(kfl)

Uz(k—1)

A

o-(k—l)(k—l)

/




Law(t;) = 1 (Log rank test)
2.w(t;) = Y; (Gehan-Wilcoxon) where Y; =Risk set in all groups at time ;

3aw(t;) = g(tz)y—y‘- where g(tl) = H(l - yd—)
i+1

i+1
¢, <t

3.5 Dealing with crossing hazards by Renyi-Type

test

Renyi-test is an equivalent of Kolmogorov-Sirnov test of goodness of fit for two
samples (Uncensored,normal data),but Renyi test for (Censored data).

Here we consider two samples of survival data,size n; and n, such that n=nq + ny

Consider times t;<ty<...<tp

Yi =Yu+ Y
di =dii +di

t=time group=2

Vt; death times,we compute

28




Z(t:;) = iw(tk) <dk1 Ym;l,—:)

tk=0

Assume the Log rank case

Time | Deaths Risk sets Z(t)

t; Groupl Group?2 Total Groupl Group2 Total

131 diy  dig d; Y Yo Y, di1— Yll%

12 da da2 do Yo Yo Y, dii— Ylléi/_i‘f‘dﬂ_ Y21%

t;
ti | da diy  d; Ya Yis i | D [di— Yia ()]
tr=0

Note:Z(t;)‘s are computed cummulatively till #; and not till 7 because of the
difference in parts of the curves due to distinct variances at different times.

We also define a variance

o*(1) = Z (t )2)%: flf (Yk dl’“) dr  where 7 is
tp <t

the largest ¢; such that Y;; and Yo > 0.

The test statistics is given by

sup{|Z(t:)|;t: < 7}
a(7)

Q=

29




The distribution of Q is approximated by the distribution of sup{|B(x)};0<x<1}

where B is a standard Brownian motion process.

30




Data Analysis and Results

Chapter 4

Renyi Test Statistic Graph
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Shows the value of ABS (Cum (z (ti))), with the maximum at time t; = 315 with a value of 9.80.

31



pata | Group | dy; | dyj [ di | vy | vai | i | z(ti) | ABS(z(ti)) | Cum(z(ti)) | ABS(Cum(z(ti))) o’ (1)
1 a 1 0 1|45 | 45 |90 | 0.50 0.50 0.50 0.50 0.25
17 b 0 1 11|44 | 45 | 89 0.219 0.49 0.01 0.01 0.25
42 b 0 1 1|44 | 44 | 88 0.-50 0.50 -0.49 0.49 0.25
44 b 0 1 11|44 | 43 | 87 0.-51 0.51 -1.00 1.00 0.25
48 b 0 1 1|44 | 42 | 86 0.-51 0.51 -1.51 1.51 0.25
60 b 0 1 1 (44| 41 | 85 O.-52 0.52 -2.03 2.03 0.25
63 a 1 0 1|44 | 40 | 84| 0.48 0.48 -1.55 1.55 0.25
72 b 0 1 1 (43| 40 | 83 O.-52 0.52 -2.07 2.07 0.25
74 b 0 1 11|43 | 39 | 82 0.252 0.52 -2.60 2.60 0.25
95 b 0 1 11]43| 38 |81 O._53 0.53 -3.13 3.13 0.25
103 b 0 1 1 (43| 37 |80 0.-54 0.54 -3.66 3.66 0.25
105 a 1 0 1|43 | 36 | 79| 0.46 0.46 -3.21 3.21 0.25
108 b 0 1 1 (42| 36 |78 0.-54 0.54 -3.75 3.75 0.25
122 b 0 1 11|42 )| 35 |77 0.;55 0.55 -4.29 4.29 0.25
129 a 1 0 1 (42| 34 |76 | 045 0.45 -3.84 3.84 0.25
144 b 0 1 1 (41| 34 |75 O._55 0.55 -4.39 4.39 0.25
167 b 0 1 1|41 33 |74 0.-55 0.55 -4.95 4.95 0.25
170 0 1 141 32 |73 O.;56 0.56 -5.51 551 0.25
182 1 0 1|41 31 (72| 043 0.43 -5.08 5.08 0.25
183 b 0 1 1140| 31 |71 O.-56 0.56 -5.64 5.64 0.25
185 b 0 1 1 (40| 30 |70 0.-57 0.57 -6.21 6.21 0.24
193 b 0 1 1140 29 | 69 0.-58 0.58 -6.79 6.79 0.24
195 b 0 1 1|40 | 28 | 68 0.-59 0.59 -7.38 7.38 0.24
197 b 0 1 1|40 | 27 |67 O.;SO 0.60 -7.98 7.98 0.24
208 b 0 1 1|40 | 26 | 66 0.-61 0.61 -8.58 8.58 0.24
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216 a 1

234 b 0

235 b 0

250 a 1

254 b 0

262 a 1

301 2

307 b 0

315 b 0 1 135 21 |56 0.63 0.63 -9.80 9.80 0.23
342 a ! 0 1|35| 20 [ 55| 0.36 0.36 -9.44 9.44 0.23
354 a 1 0 1 |34] 20 |54 | 0.37 0.37 -9.07 9.07 0.23
356 a 1 0 1]33) 20 |53 0.38 0.38 -8.69 8.69 0.23
358 a al 0 1|32)| 20 |52 0.38 0.38 -8.31 8.31 0.24
380 a 1 0 1 |31] 20 |51 0.39 0.39 -7.92 7.92 0.24
383 a 2 0 2 |30 | 20 | 50| 0.80 0.80 -7.12 7.12 0.47
388 a 1 0 1|28 | 20 |48 | 0.42 0.42 -6.70 6.70 0.24
394 a il 0 127 | 20 |47 | 0.43 0.43 -6.27 6.27 0.24
401 b 0 il 1|26| 20 |46 | 0.57 0.57 -6.84 6.84 0.25
408 a 1 0 1126 | 19 | 45| 0.42 0.42 -6.42 6.42 0.24
445 b 0 il 1|25)| 19 |44 | 0.57 0.57 -6.99 6.99 0.25
460 a 1 0 1|25 | 18 | 43| 0.42 0.42 -6.57 6.57 0.24
464 b 0 1 1|24 | 18 |42 | 0.57 0.57 -7.14 7.14 0.24
484 b 0 1 11|24 | 17 | 41| 0.59 0.59 -7.72 7.72 0.24
489 a 1 0 1|24 ) 16 | 40| 0.40 0.40 -7.32 7.32 0.24
499 a 1 0 1123 | 16 |39 041 0.41 -6.91 6.91 0.24
523 a 1 0 1]22)| 16 | 38| 0.42 0.42 -6.49 6.49 0.24
524 a 1 0 1121 16 | 37| 0.43 0.43 -6.06 6.06 0.25
528 b 0 1 1]120)| 16 | 36| 0.56 0.56 -6.62 6.62 0.25
535 a i 0 1120 | 15 | 35| 0.43 0.43 -6.19 6.19 0.24
542 b 0 1 1|19 | 15 |34 | 0.56 0.56 -6.75 6.75 0.25
547 b 0 1 1|19| 14 |33 ]| 0.58 0.58 -7.32 7.32 0.24
562 a 1 0 1]119] 13 (32| 041 0.41 -6.92 6.92 0.24
569 a 1 0 1|18 | 13 |31 | 0.42 0.42 -6.50 6.50 0.24
577 b 0 1 1|17 | 13 |30 - 0.57 -7.06 7.06 0.25
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Total

Sup=9.80

19.86

Q=ABS (Cum (z (ti))) /o (t) therefore Q=9.80 /4.46=2.20

So we find that the p-value of this test is 0.053 so the null hypothesis of no difference in survival rates between the

two treatment groups is not rejected at the 5% level.
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Performing a Log Rank Test

N Observed Expected (O-E) ~2/E (O-E)*2/V
Group=1 45 43 45.1 0.102 0.232
Group=2 45 39 36.9 0.125 0.232

Chisq= 0.2 on 1 degrees of freedom, p= 0.63

Given a p-value=0.63 implies that we fail to reject a null hypothesis that there is no difference in survival
rates between those two groups at 5% level of significance.

Comparison:

Renyi test p-value is 0.053 and Log rank test p-value is 0.63 evident that both of them show no
difference in survival rates but Renyi test in marginally insignificant, its leaner compared to Log rank
test. Therefore, Renyi test is a better when hazards are crossing indicative of non-proportionality.
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Kaplan-Meier,curves by sex
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4.3 Cox PH Results

Table 1.Shows a model with all the covariates.
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coef exp(coef) | se(coef) |z Pr(>|z|)
adeno_prevyes 0.048204 1.049385 0.224330 | 0.215 0.829861
corona_ prev -0.496691 0.608541 0.226615 | -2.192 0.028395 *
ageyrs -0.031532 0.968960 | 0.009213 | -3.422 0.000621 ***
hhsize 0.046236 1.047321 0.010891 | 4.245 2.18e-05 ***
sexmale 0.275478 1.317160 0.216188 | 1.274 0.202575
locationRoka -0.188063 0.828563 0.518127 | -0.363 0.716629
exp(coef) exp(-coef) | lower .95 | upper .95
adeno_ prevyes 1.0494 0.9529 0.6761 1.6289
corona_prev 0.6085 1.6433 0.3903 0.9488
ageyrs 0.9690 1.0320 0.9516 0.9866
hhsize 1.0473 0.9548 1.0252 1.0699
sexmale 1.3172 0.7592 0.8622 2.0121
locationRoka 0.8286 1.2069 0.3001 2.2875
Concordance=0.665 (se =0.032)
Rsquare= 0.062(max = 0.872)
Likelihood ratio test= 31.43,df 6 | p=2.102e-05
Wald test = 29.64 on 6 df p=4.596e-05
Score (logrank) test = 30.19,df 6 | p=3.618e-05
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Table 2. Diagnosis of Cox Proportional Hazard to check for proportionality.

rho chisq P

adeno_prevyes | 0.0409 | 0.1730 | 0.67746

corona_ prev -0.3246 | 8.0875 | 0.00446

hhsize -0.0388 | 0.2069 | 0.64920

sexmale -0.1293 | 1.4721 | 0.22501

locationRoka 0.0338 | 0.1041 | 0.74693

ageyrs 0.0143 | 0.0242 | 0.87639

GLOBAL NA 11.3015 | 0.07949
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Figure 2. Plots of scaled Schoenfeld residuals against transformed time for each

covariate in a model fit to the Survival data.

Table 3.Clearly shows that all the covariates are proportional.
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rho chisq p
adeno_ prevyes 0.0381 | 0.1515 | 0.6971
corona_ prev -0.0983 | 0.9669 | 0.3255
hhsize -0.0478 | 0.3213 | 0.5708
sexmale -0.1392 | 1.7354 | 0.1877
locationRoka 0.0316 | 0.0912 | 0.7626
ageyrs 0.1362 | 1.7623 | 0.1843
corona_ prev:ageyrs | -0.1402 | 2.3691 | 0.1238
GLOBAL NA 13.8328 | 0.0542
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Table 4.Summary of all covariates with interaction of corona_prev and ageyrs.




coef exp(coef) Se(coef) z Pr(>]z])
adeno_prevyes 0.05155 1.05291 0.22386 0.230 0.81787
corona_prev -0.61789 0.53908 0.31395 -1.968 0.04905*
ageyrs -0.03626 0.96439 0.01282 -2.828 0.00469**
hhsize 0.04666 1.04776 0.01097 4.252 2.12e-05***
sexmale 0.28421 1.3287 0.21691 1.310 0.19010
locationRoka -0.18520 0.83094 0.51855 -0.357 0.72098
corona_prev:ageyrs 0.01005 1.01010 0.01810 0.555 0.57862
exp(coef) exp(-coef) lower .95 upper .95
adeno_prevyes 1.0529 0.9498 0.6789 1.6328
corona_prev 0.5391 1.8550 0.2914 0.9974
ageyrs 0.9644 1.0369 0.9405 0.9889
hhsize 1.0478 0.9544 1.0255 1.0705
sexmale 1.3287 0.7526 0.8686 2.0326
locationRoka 0.8309 1.2035 0.3007 2.2959
corona_prev:ageyrs 1.0101 0.9900 0.9749 1.0466
Concordance=0.668 (se=0.032)
Likelihood ratio P=4.552e-05
test=31.73,df 7
Wald test=30.25,df 7 P=8.554e-05
Score P=5.772e-05

(logrank)test=31.17,df 7
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Table 5.0utput with the summary of all covariates with the stratification of

corona_ prev.

coef exp(coef) | se(coef) |z Pr(>|z|)
adeno_ prevyes 0.007314 1.007341 | 0.224278 | 0.033 0.973984
ageyrs -0.031801 0.968699 0.009201 | -3.456 0.000548 ***
hhsize 0.044643 1.045655 0.010698 | 4.173 3.01e-05 ***
sexmale 0.274537 1.315921 0.216284 | 1.269 0.204322
locationRoka -0.243524 0.783861 0.520596 | -0.468 0.639942
exp(coef) exp(-coef) | lower .95 | upper .95
adeno prevyes 1.0073 0.9927 0.6490 1.5634
ageyrs 0.9687 1.0323 0.9514 0.9863
hhsize 1.0457 0.9563 1.0240 1.0678
sexmale 1.3159 0.7599 0.8612 2.0106
locationRoka 0.7839 1.2757 0.2826 2.1746
Concordance=0.67 (se = 0.044 )
Likelihood ratio test= 30.21,df 5 | p=1.344e-05
Wald test = 28.43 on 5 df p=2.998e-05
Score (logrank) test = 29.15,df5 | p=2.164e-05

43




Chapter 5

Conclusions and Recommendations

Variables Description;
Response variable;timetoinfect rsva2 implies time to develop respiratory syncli-
tial virus type A.
Independent covariates;adeno _prev implies previous infection with adeno virus.
corona_ prev implies previous infection with corona virus.
ageyrs implies age in years.
hhsize implies household size or those living in a particular household.
sex(male/female).

Location(Roka/Matasango) implies residential area whether Roka or Matasango.
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5.1 Interpretation of the outputs

Figure 1 Kaplan Meier curve for sex covariate shows that females have a higher
survival rate as compared to males in the actual data.

Table 1 corona_ prev,ageyrs and hhsize are statistically significant at 5 % level of
significance in a model with all the covariates implying that they help us explain a
scenario when one has our outcome variable(timetoinfect rsva2).

Table 2 is the output for verifying proportionality,therefore strong evidence of
non-proportional hazards for corona_prev variable while GLOBAL model for the
test as a whole is not quite statistically significant.

Figure 2 Plots of scaled Schoenfeld residuals against transformed time for each
covariate, with the broken lines representing a + 2-standard-error band around the
fit.A systematic departure from a horizontal line like Corona_Prev is indicative of
non-proportional hazards.

Table 3 is the output after interacting corona_prev with a time dependent co-
variate (ageyrs)

which proportionalises it (corona prev) as depicted by p-value 0.3255 at 5 % level
of signicance. GLOBAL is almost at the threshold though not statistically significant.

Table 4 is the output with the summary of all covariates with the interaction

term of corona_prev with ageyrs.
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-Those who had adeno previously were 1.0529 times more likely to have the

response variable (timetoinfect rsva2) compared to those who did not have.

-Those who had corona previously were 0.5391 less likely to contract our varialbe
of interest(timetoinfect rsva2) compared to those who did not.

-As hhsize increases by one,those living in that household are 1.0478 times likely
to have virus (timetoinfect rsva2) or 4.78% likely to than not.

-As one increases age by one, he/she becomes less likely to develop the variable
of interest(timetoinfect rsva2) by 4%.

-Those who resided in Roka were 17% less likely to contract response variable
compared to those who reside in Matasango.

-Male are more likely by 32.87% to develop (timetoinfect rsva2) as compared to
female who are the reference category.

Table 5 is the output of a stratified Cox model with corona prev blocked for it
is not proportional as illustrated from Table 2.

-Ageyrs and hhsize are statistically significant at 5% level.

5.2 Recommendation

Ignoring non-proportional hazards in analysis of survival can lead us to incorrect

results, so one should first check the proportional hazards assumption. In medical
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research, survival analysis is erupting as an area with many developments and I

recommend that readers do more research work in this area of Survival analysis.
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Chapter 6

Appendix

Brownian motion is the simplest stochastic process on a continuous domain, and it
is a limit of both simpler (random walk) and more complicated stochastic processes.
This universality is closely related to the universality of the normal distribution.
Brownian motion is related to the random walk problem and it is generic in the
sense that many different stochastic processes reduce to Brownian motion in suitable
limits.

R Codes:

datazc(l,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23)

length(data)

status=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
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length(data)

surv.fn=Surv(data,status==1)

surv.fn

surv.fnl=survfit(Surv(data,status==1)"1)

surv.fnl

plot(surv.fnl)

/***Codes for chemotherapy plus radiotherapy curve *** /
chemplRad=c(17,42,44,48,60,72,74,95,103,108,122,144,167,170,183,185,193,195,197,208,234,235.
254,307,315,401,445,464,484,528,542,547,577,580,795,855,1366,1577,2060,2412,2486,2796,2802,
2934,2988)
h=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0)
surv.fn=>Surv(chemplRad,h==1)

surv.fn=survfit(Surv(chemplRad,h==1)"1)

plot(surv.fn)

/***Codes for chemotherapy curve ***/
chem=c(1,63,105,129,182,216,250,262,301,301,342,354,356,358,380,383,383,383,394,408, 460,489,
499,523,524,535,562,569,675,676,748,778,786,797,955,968,1000,1245,1271,1420, 1551, 1694, 2363,
2754,2950)

hl=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0)
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surv.fn=Surv(chem,h1==1)

surv.fn=survfit(Surv(chem,h1==1)"1)

plot(surv.fn)

/***Codes for crossing survival curves ***/
data=c(17,42,44,48,60,72,74,95,103,108,122,144,167,170,183,185,193,195,197,208,234,235 254,307,
315,401,445,464,484,528,542,547,577,580,795,855,1366,1577,2060,2412,2486,2796,2802,2034, 2988,
1,63,105,129,182,216,250,262,301,301,342,354,356,358,380,383,383,383,394,408,460,489,499,523.
524,535,562,569,675,676,748,778,786,797,955,968,1000,1245,1271,1420,1551,1694,2363,2754,2950)
status=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0)
group=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2.2,2,2,
2,2,2,2,2,2,22,22222222222222922292222222222222222)

my _data=data.frame(data,status,group)

my data

fit=survfit(Surv(data,status==1) "group)

plot(ﬁt,xlab:’time’,ylabz’probability’,mainz’Crossing survivor curves’)
plot(fit,Ity=2:3,col =c(’blue’, black’), xlab="time’,ylab="probability’, main="Crossing
survivor curves’)

legend("top", legend = c("chemoplsRad", "chemo"),col=c(’blue’,’black’),
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text.col = c(’blue’,’black’))

cox_all=coxph(formula = Surv(timetoinfect rsva2, everrsva == "yes") Tadeno prev
-+ corona_ prev

+ ageyrs+ hhsize + sex + location)

qqt2=cox.zph(cox _all)

qqt2

colll=coxph(formula=Surv(timetoinfect _rsva2,everrsva=="yes") adeno_prev+

corona,_prev*ageyrs+hhsize+sex-+location)

t=cox.zph(colll)

t

coxph(formula = Surv(timetoinfect _rsva2, everrsva == "yes") “adeno_prev +
corona_ prev * ageyrs

+ hhsize + sex + location)

coxph(formula = Surv(timetoinfect rsva2, everrsva == "yes") “adeno_prev +
strata(corona_prev) +

hhsize + sex + location + ageyrs)
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