

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

CUSTOMIZED DATABASE AND SYSTEMS

TUNING METHODOLOGY: A CASE OF PAYROLL

PROCESSING OPTIMIZATION

BY

MICHAEL NJOROGE MUKIRI

P58/61516/2010

SUPERVISOR: MR. ANDREW KAHONGE

MAY 2013

Submitted in partial fulfillment of the requirements of Masters of Science in Computer Science

ii

DECLARATION

This research project, as presented on this report is my original work and to the best of my knowledge has

not been presented for any other university award.

Mukiri Michael Njoroge

P58/61516/2010

Signed: ………………………………….

Date: ……………………………………..

This project has been submitted as part of fulfillment of the requirements for the award of Masters of

Science in Computer Science of the School of Computing and Informatics of the University of Nairobi,

with my approval as the University Supervisor.

Mr. Andrew Mwaura

Signed: ………………………………….

Date: ……………………………………..

iii

ACKNOWLEDGEMENTS

My sincere appreciation to the following persons who made this research project a success.

Mr. Andrew Mwaura, my supervisor for his invaluable counsel and guidance.

Dr. Eike Schallen, my supervisor in Germany for his invaluable counsel and guidance.

Prof Gunter Saake, for his guidance and feedback.

Dr. Dan Orwa, for his guidance and feedback.

Dr. Agnes Wausi, for her guidance and feedback.

Lecturers, School of Computing and Informatics for sharing knowledge and contribution in developing

Kenyans through higher education.

DAAD, for facilitating my studies.

My family, for believing in me.

May God bless you.

iv

DEDICATION

For my wife Loise Muthoni.

For my daughter Yvonne Wanjiru.

v

ABSTRACT

Performance of database applications is becoming increasingly important as more and more processes are

automated in organizations. Most businesses rely heavily on database systems and non-optimal

performance of computer system has an immediate negative impact on business. With internet becoming

cheaper and millions of mobile phones being used to access systems, business applications are under

pressure to perform optimally and support business needs.

An evaluation and analysis of existing database and application tuning methodologies was conducted and

gaps identified. An integrated holistic database and application fine tuning methodology was developed

that tried to address the identified gaps. The aim of the methodology is to guide the tuning expert in

identifying bottlenecks in various tiers (Database, Network, and Application) that can have impact on

performance. In each of the tiers the main bottlenecks that should be looked out for are highlighted and

resolutions of how to resolve them are also suggested. The developed methodology makes no assumption

as to which tier contains the bottleneck but gives guidelines on how various bottlenecks can be identified in

each tier. In addition an overview of existing tools for gathering performance statistics and utilizations

statics for various tiers is given. To address the challenge of choosing which bottleneck to resolve first,

ranking formulae is suggested that ranks bottlenecks based on their overall expected improvement in

performance after resolution of the bottleneck, cost of resolving the bottleneck and the time taken to resolve

the bottleneck. The bottleneck with highest rank is resolved first.

The methodology was applied on a poorly performing payroll application and it was proven that response

time of the payroll application could be improved significantly by eliminating identified bottlenecks. By

use of the methodology it was illustrated how tuning experts can approach the tuning exercise in a more

structured and holistic approach with the sole purpose of identifying and resolving bottlenecks in any tier as

fast and cost effective as possible. The tuning developed database application tuning methodology can be

in-cooperated in database and systems administrators’ standard operating manuals as a tuning guide.

vi

TABLE OF CONTENTS

DECLARATION .. ii

ACKNOWLEDGEMENTS ... iii

DEDICATION... iv

ABSTRACT ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1: INTRODUCTION ... 1

1.1. BACKGROUND... 1

1.2. PROBLEM STATEMENT ... 2

1.3. PURPOSE STATEMENT... 2

1.4. SIGNIFICANCE OF THE STUDY .. 2

1.5. OBJECTIVES ... 2

1.6. RESEARCH QUESTIONS ... 3

1.7. SCOPE AND LIMITATION .. 3

1.8. EXPECTED PROJECT OUTCOMES AND THEIR POTENTIAL IMPACTS 3

CHAPTER 2: LITERATURE REVIEW .. 4

2.1. INTRODUCTION... 4

2.2. CURRENT TUNING FOCUS .. 4

2.3. REVIEW OF CURRENT TUNING METHODOLOGIES .. 6

2.4. SUMMARY AND CRITIQUE OF REVIEWED TUNING METHODOLOGIES 11

2.5. CONCEPTUAL MODEL ... 11

CHAPTER 3: METHODOLOGY .. 13

3.1. RESEARCH DESIGN .. 13

3.2. DATA SOURCES ... 16

3.3. DATA COLLECTION .. 17

3.4. DATA COLLECTION TOOLS .. 17

3.5. DATA ANALYSIS ... 17

3.6. LIMITATIONS OF METHODOLOGY ... 18

CHAPTER 4: RESULTS .. 19

4.1. INTEGRATED DATABASE APPLICATION TUNING HOLISTIC METHODOLOGY 19

4.2. APPLICATION OF METHODOLOGY ... 38

CHAPTER 5: DISCUSSIONS CONCLUSION AND RECOMMENDATIONS .. 58

vii

5.1. ACHIEVEMENTS .. 58

5.2. VALIDATION OF THE CONCEPTUAL MODEL ... 60

5.3. VALIDATION OF THE RANKING FORMULAE ... 62

5.4. LIMITATIONS AND CHALLENGES .. 62

5.5. DISCUSSIONS ... 64

5.6. SUGGESTED FURTHER RESEARCH ... 65

REFERENCES ... 66

APPENDIX A: RESOURCE UTILIZATION COLLECTION TOOLS .. 67

APPENDIX B: ADDM OUTPUT REPORT .. 77

APPENDIX C: EXPERMENTATION DATA SHEETS ... 81

viii

LIST OF FIGURES

Figure 1: Problem Identification ... 6
Figure 2: Root Cause Analysis ... 7
Figure 3: Top down Tuning Methodology.. 9
Figure 4: Conceptual Model ... 12
Figure 5: Variables ... 15
Figure 6: N-tier physical architecture ... 23
Figure 9: KDE System Guard memory monitoring .. 25
Figure 10:True throughput for 8 KB I/Os for different drive speeds .. 26
Figure 11: vmstat output ... 27
Figure 12: Potential I/O bottleneck ... 28
Figure 13: KDE System Guard network monitoring .. 29
Figure 16: Payroll architecture ... 39
Figure 17: Client computer CPU utilization ... 40
Figure 18: Database server top CPU utilization ... 40
Figure 19: Client computer memory utilization .. 41
Figure 20: Database Server top memory utilization ... 41
Figure 21: Client computer Disk utilization ... 42
Figure 22: Database Server I/O utlization .. 43
Figure 23: Client computer network utilization .. 44
Figure 24: Database server network utilization .. 44
Figure 25: Database performance overview ... 45
Figure 26: Database CPU usage ... 45
Figure 27: Database runnable processes ... 45
Figure 28: Database Average Active sessions .. 46
Figure 29: Database throughput .. 46
Figure 30: Database I/O throughput ... 46
Figure 31: Database I/O throughput ... 47
Figure 32: Database Parallel Executions .. 47
Figure 33: Database Top Activity ... 48
Figure 34: Database Automated Database Diagnostic Monitoring tool (ADDM) Run 48
Figure 35: Oracle virtual paging ... 49
Figure 36: Free memory utilization .. 49
Figure 37: Top memory utilization ... 49
Figure 38: Oracle I/O utilization ... 50
Figure 39: Payroll response time per server ... 53
Figure 40: Payroll response time vs. historical data ... 55
Figure 43: Conceptual model .. 60

ix

LIST OF TABLES

Table 1: Summary and Critique of Reviewed Tuning Methodologies ... 11
Table 2: Independent Variables .. 14
Table 3: Independent and Dependent Variables ... 14
Table 4: Indicators for network analysis ... 30
Table 5: Top five databases wait .. 33
Table 6: Server Specifications .. 52
Table 7: Response time per server .. 52
Table 8: Payroll historical data vs response time .. 55
Table 9: Unranked bottlenecks ... 56
Table 10 : Ranked bottlenecks .. 57
Table 11: Ranked bottlenecks ... 62
Table 12: Linux resource utilization tools .. 67
Table 13: Windows resource utilization tools .. 68
Table 14: Database monitoring and resource utilization tool ... 69
Table 15: Application gathering statistics tools .. 70
Table 16: Application performance analysis tools .. 76
Table 17: Experimental data sheets .. 83

x

LIST OF ABBREVIATIONS

ADDM : Automated Database Diagnostic Monitor.

APP : Application

ATA : Advanced Technology Attachment

CBO : Cost Based Optimizer

CPU : Central processing Unit

KPH : Kilometers per hour

SQL : Structured Query Language

RAID : Redu`ndant Array of Independent Disks

RDBMS : Relational Database Management System

SCSI : Small Computer System Interface

SAS : Serial attached SCSI

SATA : Serial ATA

SQA : Semantic Query-based Annotation

SSD : Solid State Drives

1

CHAPTER 1: INTRODUCTION

1.1. BACKGROUND

System performance has become increasingly important as computer systems get larger and more complex

with Internet playing a bigger role in business applications. Systems access is increasing almost

exponentially with the proliferation of mobile devices. It is expected in the near future that mobile devices

will surpass personal computers in accessing systems. Consequently, with increased usage and as the world

become exceedingly computerized more will be demanded from existing applications. Systems that do not

scale up to higher levels of workload appropriately or are currently experiencing performance challenges

will almost grind to a halt, users and business needs will continue not to be met satisfactorily. The necessity

for business applications to meet business needs and to scale up adequately is a key motivator of

performance tuning.

For database application systems to function optimally, performance has to be designed and built into a

system. It does not just happen. An application depends on multiple components for its optimal

performance, it performs sub optimally not because its components are saturated but because one

component acts as a bottleneck to overall performance of system (Sasha, 2003).Performance problems are

usually the result of contention for, or exhaustion of, some system resource. When a system resource is

exhausted, the system cannot scale to higher levels of performance. By eliminating resource conflicts,

systems can be made scalable to the levels required by the business. (Immanuel, 2011)

It is widely believed by tuning experts that Performance tuning and optimizations of applications and

databases is more of an art than a science. It is a task which is not easy to quantify or automate with

decision rules. Burleson (2009) compares database application tuning to fixing a vehicle as it cruises down

the road at 80 KPH. It’s a dynamic environment where variables and parameters change constantly and the

act of measuring performance can have an impact upon performance itself. It is for this reason that a

systematic and structured approach of tuning and optimizing database applications is paramount to ensuring

the task of tuning is not a nightmare for the expert. Performance strategies are required that give clear and

simple steps that can lead to identification and resolution of bottlenecks which will result to dramatic

improvement of database application system performance

System performance is further complicated by databases and applications being dynamic environments

where data volumes and user populations grow, new versions of applications and databases being

implemented, and server configurations changing constantly. These database and application changes make

performance unpredictable and uncertain. (Quest, 2010)

2

1.2. PROBLEM STATEMENT

Many methodologies exist of tuning and optimizing application and databases separately, little attention

has been given to formulating a holistic approach of tuning applications and databases in a good

documented and systematic approach.

Existing application tuning approaches are either application specific or are proposed by vendors whose

tuning software’s use the recommended approaches. Existing database tuning methodologies focus so much

on the database that they downplay the role of other components such as the operating system and middle

layer tier in overall performance of the application.

1.3. PURPOSE STATEMENT

The purpose of the project has been to develop a customized and integrated application and database tuning

methodology from selected existing methodologies. The customized methodology will be holistic in nature

and will take into consideration all components that have an impact on system performance.

The methodology will also be applied to solve a real world performance application issue.

1.4. SIGNIFICANCE OF THE STUDY

The study developed a customized integrated application and database tuning approach that can assist both

novices and experts to tune their applications

Organizations can include the developed methodology as standard operating procedures of Database

Administrators for directing tuning activities

The study has also demonstrated how the methodology can be used in a real world performance problem

scenario.

1.5. OBJECTIVES

The overall object of the study was to propose a methodology to find a solution as opposed to

recommending specific remedies for specific problems. The reason for this is that solutions belong to a

problem and there is no single problem which is always the culprit for poor performance in database

applications. The proposed methodology was also applied to fine tune a poorly performing payroll

application for a large organization

Specific objectives of the project were:-

1. To study systems performance tuning especially in database oriented applications.

2. To review the existing application and database tuning methodologies with an intention of

identifying gaps.

3. To develop a customized integrated holistic tuning approach that addresses identified gaps.

4. To apply the customized methodology in a real world performance problem.

3

1.6. RESEARCH QUESTIONS

1. What are the various factors/bottleneck that contribute to poorly performing database

applications?

2. Do existing fine tuning methodologies have gaps that can be addressed?

3. How can an integrated customized database and application tuning methodology be developed to

address identified gaps?

4. Can the methodology developed be applied in a real world performance problem scenario?

1.7. SCOPE AND LIMITATION

The study focused on reactive database application tuning or bottleneck elimination as opposed to proactive

tuning. In reactive tuning a performance optimization exercise is carried out where system performance has

already degraded to below users’ expectation or set baseline. Proactive tuning on the other hand is

continuously monitoring system behavior and resource usage and occasionally making configuration

changes. (Immanuel, 2011)

The study also focuses on transactional oriented applications where response time and throughput is a

critical factor to overall system performance.

1.8. EXPECTED PROJECT OUTCOMES AND THEIR POTENTIAL IMPACTS

The result will be a customized tuning methodology that can be used in identifying and subsequent

resolution of bottlenecks. Some of the distinct benefits and advantages of utilizing the methodology

include:

 Clearly documented systematic steps to guide an application tuning exercise.

 Critical examination of the main tiers that have an impact on system performance without

downplaying or overemphasizing role played by any component.

 Guidance on potential bottlenecks to look out for in the various tiers.

 For identified bottlenecks best approach in resolving them are recommended.

 Development of an integrated application and database tuning methodology.

 End result of application of the methodology is a system with the following characteristics

o Better response times: The tasks are completed in a smaller amount of time.

o Higher Throughput: Faster execution of tasks which means increased throughput. A

large number of tasks can be performed in a given unit of time.

4

CHAPTER 2: LITERATURE REVIEW

2.1. INTRODUCTION

Performance tuning or optimization of system performance is mainly concerned with improving the system

to perform better. Performance tuning as explained in the scope and limitation section can either be

proactive or reactive. In reactive tuning motivation for such an exercise can be referred to as a performance

problem. This performance problem can be a crippling bottleneck that makes the system unable to meet

business needs or completely unusable. Immanuel (2011) postulates as follows

“Usually, the purpose for tuning is to reduce resource consumption or to reduce the elapsed time

for an operation to complete. Either way, the goal is to improve the effective use of a particular

resource. In general, performance problems are caused by the overuse of a particular resource.

The overused resource is the bottleneck in the system. “

Performance problems also arise when a system is unable to scale gracefully with an increased workload.

Designers, developers and administrators usually aim for linear scalability this is whereby system

throughput is directly proportional to the computer resources (number of CPUS’, memory).

Several components or tiers contribute to the overall system performance, these are:-

 Application tier

 Middle layer/Application server

 Network tier

 Database tier

 Hardware and operating system tier

Identification of which tier is the bottleneck and subsequent tuning of the tier and any other related tier is

key to resolving performance problems in applications.

2.2. CURRENT TUNING FOCUS

Due to the potential possibility of degraded system performance affecting business negatively various

researchers and vendors have focused their energies on system performance tuning. Majority of these are:-

 Mainstream database vendors for example, oracle,db2,SQL server

 Performance tuning experts for example Burleson Consulting, Quest

software

 Mainstream ERP vendors for example PeopleSoft ,SAP

 Performance tuning Books for example Database Tuning by Dennis Sasha

and The Data Access Handbook by John Goodson

5

Depending on the vendor or researcher directing the tuning exercise focus seems to shift from the

application server, middle tier to database tier.

Quest (2010) asserts that SQL optimization, indexing, and database parameters changes offer the best

opportunity to improve database and application performance. Careful tuning of the two results to

considerable savings by delaying expensive hardware upgrade, avoiding time-consuming database

redesigns which in turn lead to systems been able to meet the business needs.

Quest (2010) further states that poor performing SQL statements and indexes are responsible for 60 to 90

percent of application performance problems. He claims that according to industry experts, SQL activities

typically consume as much as 70% of the system resources in a database server. In many cases, resource

consumption by SQL activity can be as reach as high as 80-90%.

.John (2009) on the other hand focuses on the middle layer, he takes the stance that within the last 10 years,

the vast majority of slowdown in applications that are database oriented has shifted from slowdown on the

database server itself to slowdown on (or caused by) the application server. Problems at the application

level include database driver issues, connection pooling and erroneous configurations. He further

emphasizes that breakthrough database and application performance can be achieved by optimizing

middleware and connectivity He claims that traditional database tuning isn't nearly enough to solve the

performance problems that applications experience and that 75-95% of the time it takes to process a data

request is typically spent in the database middleware.

Consider, another view expressed by Isam (2011) is that when troubleshooting a poorly performing

application, investigations should be done to identify where majority of the application time is being spent.

He concurs with Quest (2010) that 80 % of performance issues are database related.

Toadworld (2010) stresses the importance of not underestimating application tuning. The author claims that

as much as 80 percent of performance gains will be accomplished by application tuning through effective

writing of SQL statements.

Immanuel (2011) proposes a more balanced focus when he states as follows:-

“The ultimate measure of success is the user's perception of system performance. The performance

engineer's role is to eliminate any bottlenecks that degrade performance. These bottlenecks could be

caused by inefficient use of limited shared resources or by abuse of shared resources, causing

serialization. Because all shared resources are limited, the goal of a performance engineer is to

maximize the number of business operations with efficient use of shared resources.”

6

2.3. REVIEW OF CURRENT TUNING METHODOLOGIES

 ISAM (2011) advances the following application tuning methodology to solve Performance Issues related

to Ebusiness suite. The methodology has some tuning steps that are applicable to most database oriented

applications.

1. The problem should be defined clearly and a clear understanding of the performance problem and

where the application is spending most time obtained.

Figure 1: Problem Identification

2. The right data to analyze the performance issue should be gathered; the use of specific oracle

database tools is demonstrated.

3. The root cause of the problem should be isolated and possibly additional data gathered.

Investigations of where the time is going? Who is consuming the most time? Why is that

happening? Should be carried out, he states that 80% of performance issues are database related.

7

Figure 2: Root Cause Analysis

4. A search for a known solution or workaround that addresses the root cause of the problem should

be conducted.

5. If it is a product issue, it should be passed on to the right information to support or the

development team through the regular channels

6. A temporary workaround should be identified to alleviate the issue while a product fix is obtained.

An alternative tuning methodology is proposed by Toadworld (2010), though biased to the database side it

nevertheless contains general guidelines that can be used to tune applications.

The methodology starts by emphasizing the need to establish a set of quantifiable goals that directly relate

to a reason for tuning. The goals ought to be kept in mind as modifications are evaluated and considered for

the system. The tuning goals should be specific and measurable rather than generic.

8

The methodology stresses that the operating system should be performing at its peak before any attempt to

tune the database are conducted.

The following structured methodology is proposed:-

1. Optimization of the Application Workload

Applications should contain effective SQL statements; this is achieved by utilizing hints, indexes, and

bind variables whenever necessary to obtain optimal performance.

The application developer should have a solid understanding of SQL processing, including:

 DML (Data Manipulation Language)

 DDL (Data Definition Language)

 Transaction control

 Shared SQL and PL/SQL areas

 Optimizer modes

 Parallel query

2. Tuning Contention

The author argues that contention occurs when a process competes with another process for the same

resource simultaneously. This causes processes to wait for a resource on the database system and can

have an effect on performance. Investigations should be carried out to identify and resolve contentions.

3. Minimize Physical IO

Careful sizing of memory structures to allow sufficient information to be stored in memory is advocated

for. This is because memory access is significantly faster than disk access, it is always better to satisfy

requests for information in memory than from disk. Tuning memory allocation involves proper memory

distribution to each database area while ensuring that paging and swapping is not occurring at the operating

system level.

4. Optimize Physical IO

Disk contention usually occurs when multiple processes try to access the same disk simultaneously.

When the maximum number of accesses to a disk has been reached, other processes will need to wait

for access to the disk. The author emphasizes the importance of ensuring database files are evenly

distributed throughout the operating systems to ensure disk contention does not occur.

5. Best Practices

9

The following of best practices as guidelines to ensure that tasks are done in a way that is recognized as

generally acceptable is advocated for. Caution is however given that special considerations in specific

environments can preclude the use of one or more of recommended best practices.

Immanuel (2011) on behalf of oracle proposes a more balanced methodology that is highly iterative. He

notes that a common pitfall in performance tuning is to mistake the symptoms of a problem for the actual

problem itself. The author suggests that performance statistics indicate the symptoms, and that identifying

the symptom is not sufficient data to implement a remedy. An example of slow physical I/O which is

usually caused by poorly-configured disks is given; it could be that contrary to the norm a significant

amount of unnecessary physical I/O on those disks is being caused by poorly-tuned SQL.

According to Immanuel (2011) different forms of contention are symptoms that can be fixed by making

changes to three key areas:-

 Changes in the application, or the way the application is used

 Changes in the database

 Changes in the host hardware configuration Often

The author holds the opinion that the most effective way of resolving a bottleneck is to change the

application

A top down performance tuning methodology is proposed, while focus is on the database, the methodology

nevertheless has very good general application tuning guidelines.

Figure 3: Top down Tuning Methodology

10

Steps in the oracle performance improvement method

The following initial standard checks are performed:

1. Candid feedback is obtained from the users. Performance project's scope and subsequent

performance goals are determined; performance goals for the future are also identified.

i. A full set of operating system, database, and application statistics from the system are

obtained when the performance is both good and bad.

“Missing statistics are analogous to missing evidence at a crime scene: They make

detectives work harder and it is more time-consuming.”

ii. A sanity check of operating systems of all computers involved with user performance is

carried out. While conducting the check hardware or operating system resources that are fully

utilized are identified. A list of any over-used resources is made as symptoms for analysis

later. In addition, all hardware is checked to confirm there’re no errors or diagnostics.

2. A check for the top ten most common mistakes with Oracle Database is carried out. It is

determined if any of these are likely to be the problem.

3. A conceptual model of what is happening on the system using the symptoms as clues to

understand what caused the performance problem is built.

4. A series of remedy actions and the anticipated behavior to the system is proposed, the actions are

in turn applied in the order that can benefit the application the most. It is recommended that a

golden rule in performance work is to change one thing at a time and then measure the differences,

however this is sometimes impracticable in real time systems since the accompanying downtime is

unacceptable. Multiple changes can be applied at the same time as long they are isolated so that

the effects of each change can be independently validated. .

5. Changes made are validated to confirm if they have achieved desired effect, and if the user's

perception of performance has improved. If this is not the case more bottlenecks are identified and

refinement of the conceptual model continues until understanding of the application becomes more

accurate.

6. The last three are repeated until performance goals are met or become impossible due to other

constraints.

11

Immanuel (2011) concludes that this method identifies the biggest bottleneck and it uses an objective

approach to performance improvement. The focus of the methodology is on making large performance

improvements by increasing application efficiency and eliminating resource shortages and bottlenecks. The

author claims that minimal (less than 10%) performance gains are made from instance tuning, and large

gains (100% +) are made from isolating application inefficiencies.

2.4. SUMMARY AND CRITIQUE OF REVIEWED TUNING METHODOLOGIES

Tuning Methodology Critique

ISAM (2011) application tuning methodology More focused on tuning specific application

(Ebusiness suite) though some tuning steps are

applicable

 Does not address all system components

adequately for example hardware and operating

system

Toadworld (2010) database tuning methodology Highly biased on tuning the database

Immanuel (2011) application and database Gives a more balance approach to tuning all

tiers that affect system performance, however,

biased to the oracle database.

Table 1: Summary and Critique of Reviewed Tuning Methodologies

From the reviewed methodologies and other literature and sources a hybrid one will be developed that

picks the best tuning steps and tips to come up with a holistic tuning approach that can be applied to tuning

any database oriented application. The methodology will in turn be applied in a real world problem

scenario.

2.5. CONCEPTUAL MODEL

A conceptual model is a mental model that captures ideas in a problem domain it represents 'concepts'

(entities) and relationships between them. The aim of a conceptual model is to express the meaning of

terms and concepts used by domain experts to discuss the problem, and to find the correct relationships

between different concepts (Fowler (1997).

From the literature reviewed the model below (figure 4) will guide development of the integrated tuning

methodology and subsequent tuning exercise.

As depicted in the conceptual model the methodology will focus on identification and resolution of

bottlenecks in all tiers that have impact on performance of database application systems. The Tuning

exercise is an iterative one and continues until all performance goals are achieved or a compromise is

made.

http://en.wikipedia.org/wiki/Mental_model
http://en.wikipedia.org/wiki/Problem_domain

12

Tuning at the application layer will borrow heavily from ISAM (2011) application tuning methodology

while Immanuel (2011) application and database tuning methodology will contribute immensely to

database tuning.

Application tier

1.Performance

Measurement

2.Performance

Goals

4.Bottleneck

Identification and

ranking

5.Bottleneck

Resolution

Middle layer and

database drivers

tier

Network and

infrastructure tier

Operating system

tier

Hardware and

storage subsystem

tier

Database tier

3.Architecture

Analysis and

gathering of

performance

statistics

Figure 4: Conceptual Model

13

CHAPTER 3: METHODOLOGY

3.1. RESEARCH DESIGN

Research design refers to the overall strategy that will be used to integrate the different components of the

study in a coherent and logical way, thereby, ensuring research questions are addressed effectively; it

constitutes the blueprint for the collection, measurement, and analysis of data.

In the study two key research design types were utilized. These are

1. Content analysis

2. Experimental design

(University of Texas,2010) in their article titled “conduct research” defines content analysis as follows:

“Content analysis is the systematic examinations of written or recorded communication in order to break

down, identifies, and analyze the presence or relations of words, word sense, characters, sentences,

concepts, or common themes. The focus of the analysis should be a critical examination, rather than a mere

description, of the content. Examples of content include student journals, essays, online discussions, or any

form of written, visual, or oral communication.

Content analysis works best when the purpose is to gain insight into a precise and focused research problem

or topic. It can help you to recognize patterns that you might miss using other methods”

Content analysis was utilized in the evaluation and analysis of existing fine methodologies. Gaps identified

were addressed when developing the intergrated holistic methodology.

Experimental design was used when applying the customized tuning methodology to the poorly performing

payroll application. Independent and dependent variables were identified. Performance metrics were

measured before applying the methodology and after to determine its effectiveness. Some of the identified

variables are:-

14

Independent Variables

This variables will be obtained from tiers which have bottlenecks, they include

Tier Variable

Operating system tier Memory available

Number of CPUs

Network Tier Network Speed

Database Tier

Memory allocation

Number of indexes

Table 2: Independent Variables

Dependent Variables

Since the goal of the tuning exercise is to achieve system performance in the eyes of the user, most of these

variables will be derived from the application tier, they include:-

1. Throughput (Number of payroll transactions processed per second)

2. Response time (How long it takes to process a given number of payroll records)

The table below shows relationship between the independent and dependent variables, that is, which

independent variables impact on which dependent variable.

Independent Variables Dependent Variables

Memory available Throughput

Response time Number of CPUs

Network Speed

Memory allocation

Number of indexes

Table 3: Independent and Dependent Variables

During experimentation as depicted in the figure below values of Independent variables which will have

been identified as bottlenecks by utilization of methodology were altered and effect of the alterations noted

on the dependent variable.

15

Figure 5: Variables

In developing the customized tuning approach and testing the same with a payroll application that is

currently experiencing performance problems, several distinct phases were conducted, the phases ensured

that various systems components that have an impact on system performance were examined and the

subsequent tuning approach was tested. The phases were:-

1. Study of systems performance tuning in general.

2. Review of current performance tuning methodologies

3. Development of a customized database application methodology which focuses on

a. Measurement of system performance before tuning exercise.

b. Identification of tiers with bottlenecks

c. Iterative resolution of identified bottlenecks

d. Measurement of system performance after tuning exercise

 The methodology addresses all tiers that have impact on system performance, these are:-

a. Application tier

b. Middle layer and database drivers tier

c. Network and infrastructure tier

d. Operating system tier.

e. Hardware and storage subsystem tier

f. Database tier

4. Application of methodology on a poorly performing payroll processing system.

5. Analysis and evaluation of tuning approach

16

3.2. DATA SOURCES

The main data source was a poorly performing payroll application for an organization with six thousand

employees. Other data sources include operating system, network, middle layer and connectivity, storage

systems and the database.

Data from payroll application

1. Response time - Response time is a measure of how quickly the system responds to a request. It is

how long it takes to finish a given task, for example how long does the payroll application take to

process 1000 records. In the poorly performing payroll application 200 payroll records are

processed in 80 seconds in the current environment.

2. Throughput - Throughput is a measure of how much work the system can do in a given period of

time, for example how many payroll records can the application process in one minute

3. Number of payroll records

4. Number of payroll runs

Data from operating system tier

1. Memory settings

2. Number of CPUs

3. Operating system architecture 32 bit vs. 64 bit

4. Input Output (IO) settings (Max file open handles, virtual disks)

5. Swapping statistics

Data from middle layer and connectivity tier

1. Type of database driver in use

2. Connection pooling used

Data from hardware and storage subsystem tier

1. Redundant Array of Independent Disks (RAID) settings (Raid 0,Raid 0+1,Raid 5)

2. Processor type, cache sizes

Data from Database tier

1. Memory allocations

a. System global area (SGA) sizing.

b. Memory management, self-tuning vs. manual

2. Wait analysis

a. Events that contributing to most wait time

3. Poorly performing SQL statements

4. Database statistics, for example from ADDM output

17

3.3. DATA COLLECTION

In measuring performance of the payroll application before, during and after performance tuning exercise

the following data was collected.

Response time – Time to taken to process a payroll with six thousand records.

Throughput – Number of payroll records processed in one secs.

For each of the above values the payroll was run four times (four monthly processes) and the mean values

taken, payroll was run for 200 employees and different payroll historical data were considered, such

Different sets of Response time and throughput were obtained by varying the independent variables which

were identified as contributing to bottlenecks. The set and corresponding Independent variables fed into the

analysis section.

3.4. DATA COLLECTION TOOLS

The following tools were used to collect performance data

1. Network monitoring and analysis tools - netsat, GNOME monitor these tools were used to obtain

the network speeds and latency and determine if the network is a bottleneck.

2. Operating system monitoring and analysis tools – top. ps ,free and sar, these tools will measure

operating system metrics such cpu utilization, memory utilization, swapping levels.

3. Database monitoring and diagnostics tools –ADDM and Enterprise manage, the tools will provide

database diagnostics information such as memory sizing, indexes, execution plans.

4. Hardware monitoring and diagnostics tools –vmstat, iostat, these tools will provide insight on how

the underlying hardware layer is performing, key values will be number of page reads and page

writes.

3.5. DATA ANALYSIS

In analysis of the tuning exercise key questions were:-

1. Was the methodology concise and easy to apply?

2. Were the tuning goals achieved?

3. Was the application tuned within acceptable time limit?

By analyzing data gathered using the above mentioned tools bottlenecks were identified and options for

resolving them identified.

By comparing performance baselines before and after resolution of bottlenecks, percentage improvement in

response time was calculated for different of options of evaluating the identified bottlenecks. Some

performance tuning tools were detailed enough to give expected improvement in performance.

18

A formulae for ranking the identified bottlenecks was formulated and used to rank the bottlenecks.

3.6. LIMITATIONS OF METHODOLOGY

A lot of literature has been written on system performance tuning. One of the key phases of the

methodology is review of literature. There is a danger of too much time being spent on this phase

which can impact negatively on the overall time line. Caution was exercised to ensure literature from

published journals, tuning experts and major technology players was not given preference and too

much time was not spent reviewing works whose authenticity and validity cannot be ascertained.

19

CHAPTER 4: RESULTS

4.1. INTEGRATED DATABASE APPLICATION TUNING HOLISTIC

METHODOLOGY

In development of the integrated holistic methodology a lot of material is borrowed heavily from the oracle

improvement performance method (ISAM, 2011) and (Oracle- B10500_0, 2002) which is stated in the

critic of existing methodologies was found to offer a more balanced approached. Tools for gathering

performance statistics in the various tiers and for identifying and assisting in elimination of bottlenecks are

also suggested. Most common bottlenecks in each tiers are also given and guidelines on how they can be

resolved also suggested. The developed methodology has eight steps which are defined below.

Step 1: The first step is to get feedback from the user on how the system is behaving, user perception of the

system is very important since it can be used to set critical success factors for the tuning exercise Isam

(2011). Typical users feedback include ;-

i. “The system takes a long time to generate a receipt”

ii. “The search page in our ecommerce website takes too long to retrieve products leading to the customer

giving up and consequently loss of sales”

Step 2: Collect baseline Performance measurement of the application when it is performing below users’

expectation and when the system is performing well. Since we are focusing on the users experience,

performance of the database application is best measured using the response time, (how long it takes to

perform a certain task) examples of response time include :-

i. One payroll record is calculated in 1 sec, the response time in this case is 1 second.

ii. Each page in website loads in an average of 15 secs, response time is 15 secs.

iii. Throughput of the application is also measured, throughput is amount of work done in a unit amount of

time, and examples include:-

iv. In one minute 60 payroll records are calculated, throughput is 60 records.

Step 3: Based on the users feedback and the baseline measurement collected realistic performance goals

are set, success in a performance tuning exercise is best defined in terms of real business goals rather than

system statistics Isam (2011). The performance goals should be quantitative rather than quantitative to ease

task of determining improvement in performance. Isam (2011) goes ahead to give the following samples of

very good realistic business goals :-

i. "The billing run must process 1,000,000 accounts in a three-hour window."

ii. "At a peak period on a Web site, the response time must not exceed five seconds for a page refresh."

iii. "The system must be able to process 25,000 trades in an eight-hour window."

Step 4: Analyzing system infrastructure, in this step the following data should be gathered:-

20

Architecture of the system should be well understood; the different components to make the system work

and their interrelationships should be well understood. Detailed configuration information of all servers in

use by the application should be gathered, this include

i. Different kind of servers in use for example web application servers, database servers, mail servers.

ii. For each of the server identified the following information should be collected

a. Hardware architecture

i. 64 bit vs 32 bit architectures

ii. Memory available

iii. Disk type (SCSI,SAS,SATA, SSD)

iv. Disk speeds, 10k,15k

v. Raid configurations, RAID 0,10,1,5

vi. CPU architecture, cores, sizes and level of cache, clock speed

b. Operating systems configurations

i. Swap allocation

ii. Network card settings

iii. Kernel settings

iv. Other optimization settings

c. Network settings

i. Buffer settings

Step 5: Resource utilization and performance statics of all the tiers involved should be gathered, this

information will be useful in identifying bottlenecks, information to collect include :-

i. Operating system and hardware statistics

Operating system statistics provide information on the usage and performance of the main hardware

components of the system, as well as the performance of the operating system itself. This information is

crucial for detecting potential resource exhaustion, such as CPU cycles and physical memory, and for

detecting bad performance of peripherals, such as disk drives.

Operating system statistics are only an indication of how the hardware and operating system are working.

(Oracle- B10500_0, 2002)

The following statistics should be collected for each server utilized by the system, (Oracle- B10500_0,

2002) gives a good description of why the statistics are needed.

a. CPU utilization

CPU utilization is the most important operating system statistic in the tuning process. CPU utilization

should be obtained for the entire system and for each individual CPU on multi-processor environments.

Utilization for each CPU can detect single-threading and scalability issues.

21

Most operating systems report CPU usage as time spent in user space or mode and time spent in kernel

space or mode. These additional statistics allow better analysis of what is actually being executed on the

CPU.

b. Memory utilization and Virtual memory Statistics

Memory is faster that disk access, most applications improve immensely by having more memory available

to them since they don’t have to result to virtual memory. High memory utilization might be an indication

of inadequate memory available. Improper utilization of available memory or even memory leaks.

Virtual memory statistics should mainly be used as a check to validate that there is very little paging or

swapping activity on the system. System performance degrades rapidly and unpredictably when paging or

swapping occurs.

c. Disk utilization and I/O statistics

Since applications and databases resides on a set of disks, the performance of the I/O subsystem is very

important to the performance of the applications. Most operating systems provide extensive statistics on

disk performance. The most important disk statistics are the current response time and the length of the disk

queues. These statistics show if the disk is performing optimally or if the disk is being overworked. If a

disk shows response times over 20 milliseconds, then it is performing badly or is overworked. This can be

immediately singled out as one of the potential bottlenecks. If disk queues start to exceed two, then the disk

is also a potential bottleneck of the system.

d. Network Utilization

Network statistics can be used in much the same way as disk statistics to determine if a network or network

interface is overloaded or not performing optimally. In today's networked applications, network latency can

be a large portion of the actual user response time. For this reason, these statistics are a crucial debugging

tool.

To gather the above operating system statistics, various tools are available that can be used by a

performance analyst, below is an overview of some of the available tools for Linux based and windows

operating systems. For a listing of some of the available monitoring tools, refer to APPENDIX A.

ii. Database performance statistics

Database statistics provide information on the type of load on the database, as well as the internal and

external resources used by the database. When database resources become exhausted, it is possible to

identify bottlenecks in the application.

To collect database performance statistics in addition to vendor specific tools, each database vendor

provides a performance statistics gathering and tuning tools.

For a listing of some of the available database statistics gathering and monitoring tools, refer to

APPENDIX A.

iii. Application statistics

22

Application statistics are reputed to be the most difficult statistics to gather, nevertheless, they are the most

important statistics in measuring any performance improvements made to the system. At a minimum,

application statistics should provide a daily summary of user transactions processed for each working

period. More complete statistics provide precise details of what transactions were processed and the

response times for each transaction type. Detailed statistics also provide statistics on the decomposition of

each transaction time spent in the application server, the network, the database, and any other involved tier

(Oracle- B10500_0, 2002).

The best statistics require considerable instrumentation of the application. This is best built into the

application from the start, because it is difficult to retrofit into existing applications. Various tools exist for

gathering application statistics from various vendors, however, most of these tools are nor generic, that is,

they cannot be used to gather statistics for applications developed in all platforms, they are specific to

development platforms such as dot net applications, J2EE applications and web based applications. Some

can however give statistics for all windows applications.

Tools that gather application performance statistics , diagnose and test applications and also help in

identifying bottlenecks are often referred to as application profiling tools, some of these tools help

performance engineers determine how much memory is being used and also identify memory leaks

(Misty,2012) some of the available tools are :-

 For a listing of some of the available application gathering and monitoring tools, refer to APPENDIX A

Step 6: Identification of bottlenecks

A bottleneck is any resource hardware, network, or software that limits the performance of an application.

Bottlenecks directly affect performance and scalability by limiting the amount of data throughput or

restricting the number of application connections. (Oracle-RBI, 2010)

Impact of performance bottlenecks

i. Deterioration of response time to almost unacceptable levels

ii. Inefficient resource utilization

iii. Application does not scale as required

iv. Decrease in throughput that is, less number of transactions is processed per unit time.

v. Loss in business revenue due to customer dissatisfaction

A bottleneck can reside in any of the tiers web server, application server, database server and network

resources. Most applications have the following architecture and some can miss some layers such as the

web and load balancing tier for non-web based systems.

23

Figure 6:N-tier physical architecture

The statics collected in the prior stage provide vital information in identifying the tiers with bottlenecks.

It is tough to test each and every component’s performance thoroughly, and a guided search is the best way

out. Server hardware and network resources are usually assumed to be the main culprits for lower

performance. Server upgrades are usually considered as the best source of performance optimization and it

is not uncommon for engineers to solve performance problems by throwing more hardware (Thomas,

2012), sometimes it is a cheaper option in the short term and it some instances it is not work especially if

the application code is very inefficient.

In each of the tiers the following guidelines can be followed to identify potential bottlenecks:-

i. Operating system tier and hardware tier

It is always best to consider operating system statistics as a diagnostic tool just like doctors use body

temperature, pulse rate, and patient pain when making a diagnosis and not rush into installing more

hardware resources immediately. This is a reactionary response to a series of symptoms shown in the

operating system statistics. For example high memory utilization might be a result of a memory leak in an

application and adding more memory to the server will not solve the problem.

Linux operating system will be used as guide to illustrate how bottlenecks in the operating system can be

identified; most examples are derived from (Eduardo, 2007) in the white paper “Linux Performance and

Tuning Guidelines”

a. CPU bottlenecks

For servers whose primary role is that of an application or database server, the CPU is a

24

critical resource and can often be a source of performance bottlenecks. High CPU utilization does not

always mean that a CPU is busy doing work; it might be waiting on another subsystem. The system should

be looked as a whole and at all subsystems because there could be a cascade effect within the subsystems.

Using the available operating systems tools a CPU bottleneck can be identified; one tool that can be used is

uptime the uptime command can be used to see how long the server has been running and how many users

are logged on, as well as for a quick overview of the average load of the server.

The system load average is displayed for the past 1minute, 5 minute, and 15 minute intervals. The optimal

value of the load is 1, which means that each process has immediate access to the CPU and there are no

CPU cycles lost. The typical load can vary from system to system. For a uniprocessor workstation, 1 or 2

might be acceptable, whereas values of 8 to 10 on multiprocessor servers can be observed. For example the

output of uptime for a cpu strapped server, for the last 15 minutes is as follows.

18:03:16 up 1 day, 2:46, 6 users, load average: 182.53, 92.02, 37.95

The load averages on the server for the last 5,10 and 15 minutes are 182.53, 92.02, 37.95 which are very

high.

There is a common misconception that the CPU is the most important resource of the server. This is not

always the case, and most servers are often over configured with CPU and under configured with disks,

memory, and network subsystems. Only specific applications that are truly CPU intensive can take

advantage of today’s high-end processors.

b. Memory bottlenecks

In Operating systems, many programs run at the same time. These programs support multiple

users, and some processes are more used than others and thus use more memories than others.

One of the key indicators of a memory bottleneck is excessive swapping and paging. Paging moves

individual pages to swap space on the disk; swapping is a bigger operation that moves the entire address

space of a process to swap space in one operation.

A key memory indicator used for analysis is amount of memory available; this indicates how much

physical memory is available for use. If, after an application is started, this value decreases significantly,

there might be a memory leak with the application. The free tool in Linux and resource monitor in windows

can be used to analyze memory usage.

25

Figure 7: KDE System Guard memory monitoring

Number of Page faults can also be used to identify problems with memory; there are two types of page

faults: soft page faults, when the page is found in memory, and hard page faults, when the page is not found

in memory and must be fetched from disk. Accessing the disk will slow your application considerably. The

sar –B command in Linux can provide useful information for analyzing page faults, specifically columns

pgpgin/s and pgpgout/s.

Paging can be a serious performance problem when the amount of free memory pages falls below the

minimum amount specified, because the paging mechanism is not able to handle the requests for physical

memory pages and the swap mechanism is called to free more pages. This significantly increases I/O to

disk and will quickly degrade a server’s performance.

If a server is always paging to disk (a high page-out rate), more memory can be added. However, for

systems with a low page-out rate, it might not affect performance.

If a memory bottleneck is identified, the following actions can remedy the situation

i. Tune the swap space using bigpages, hugetlb, shared memory.

ii. Increase or decrease the size of pages.

iii. Improve the handling of active and inactive memory.

26

iv. Adjust the page-out rate.

v. Limit the resources used for each user on the server.

vi. Stop the services that are not needed

vii. Add memory.

c. Disk bottlenecks

The disk subsystem is often the most important aspect of server performance and is usually the most

common bottleneck. However, problems can be hidden by other factors, such as lack of memory.

Applications are considered to be I/O-bound when CPU cycles are wasted simply waiting for I/O tasks to

finish.

The most common disk bottleneck is having too few disks. Most disk configurations are based on capacity.

The disk subsystem is perhaps the most challenging subsystem to properly configure.

Besides looking at raw disk interface speed and disk capacity, it is also important to understand the

workload. Is disk access random or sequential? Is there large I/O or small I/O? Answering these questions

provides the necessary information to make sure the disk subsystem is adequately tuned.

Disk manufacturers tend to showcase the upper limits of their drive technology’s throughput.

However, taking the time to understand the throughput of the workload will help to have true expectations

of underlying disk subsystem.

Figure 8:True throughput for 8 KB I/Os for different drive speeds

The following general guidelines can be followed when designing a disk subsystem:-

i. Random read/write workloads usually require several disks to scale.

ii. The bus bandwidths of SCSI or Fibre Channel are of lesser concern.

iii. Larger databases with random access workload will benefit from having more disks.

iv. Larger SMP servers will scale better with more disks. Given the I/O profile of 70% reads and 30%

writes of the average commercial workload,

27

v. A RAID-10 implementation will perform 50% to 60% better than a RAID-5.

vi. Sequential workloads tend to stress the bus bandwidth of disk subsystems.

vii. Pay special attention to the number of SCSI buses and Fibre Channel controllers when maximum

throughput is desired.

viii. Given the same number of drives in an array, RAID-10, RAID-0, and RAID-5 all have similar

streaming read and write throughput.

Two of the ways that can be used to approach disk bottleneck analysis are real-time monitoring and tracing.

Real-time monitoring must be done while the problem is occurring. This might not be practical in cases

where system workload is dynamic and the problem is not repeatable.

However, if the problem is repeatable, this method is flexible because of the ability to add objects and

counters as the problem becomes clear.

Tracing is the collecting of performance data over time to diagnose a problem. This is a good way to

perform remote performance analysis. Some of the drawbacks include the potential for having to analyze

large files when performance problems are not repeatable, and the potential for not having all key objects

and parameters in the trace and having to wait for the next time the problem occurs for the additional data.

One way to track disk usage on a Linux system is by using the vmstat tool. The important columns in

vmstat with respect to I/O are the bi (blocks sent to a block device (blocks/s)) and bo (blocks received from

a block device (blocks/s)) fields. These fields monitor the movement of blocks in and out of the disk

subsystem. High values signify high I/O activity. Having a baseline is key to being able to identify any

changes over time.

Figure 9: vmstat output

Performance problems can be encountered when too many files are opened, read and written to, then closed

repeatedly. This could become apparent as seek times (the time it takes to move to the exact track where

28

the data is stored) start to increase. Using the iostat tool, the I/O device loading can be monitored in real

time. Different options enable deeper drill down to gather the necessary data.

Below illustration shows a potential I/O bottleneck on the device /dev/sdb1. This output shows average

wait times (await) of about 2.7 seconds and service times (svctm) of 270 ms.

Figure 10: Potential I/O bottleneck

If the disk subsystem is identified to be system bottleneck some of the remedies that can be undertaken

include:-

i. If the workload is of a sequential nature and it is stressing the controller bandwidth, the solution is to

add a faster disk controller. However, if the workload is more random in nature, then the bottleneck is

likely to involve the disk drives, and adding more drives will improve performance.

ii. Add more disk drives in a RAID environment. This spreads the data across multiple physical disks

and improves performance for both reads and writes. This will increase the number of I/Os per

second. Also, use hardware RAID instead of the software implementation provided by operating

systems. If hardware RAID is being used, the RAID level is hidden from the OS.

29

iii. Consider using Linux logical volumes with striping instead of large single disks or logical volumes

without striping.

iv. Offload processing to another system in the network (users, applications, or services).

d. Network bottlenecks

One of the most common performance issues of the network is packet size. Network packets carry an

application’s messages via the database middleware to the database and vice versa. The size of the packets

makes a difference in the performance of database application. Fewer packets sent between the application

and the database equates to better performance -- fewer packets mean fewer trips to and from the database.

To analyze network performance anomalies in order to detect network bottlenecks, most operating systems

include traffic analyzers.

A good traffic analyzer is KDE System Guard because of its graphical interface and ease of use.

Figure 11:KDE System Guard network monitoring

It is important to remember that there are many possible reasons for network performance problems and

that sometimes problems occur simultaneously, making it even more difficult to pinpoint the origin.

30

The table below can help determine problems with the network.

Network Indicator Analysis

Packets received

Packets sent

Shows the number of packets that are coming in and going out of the specified

network interface. Check both internal and external interfaces.

Collision packets Collisions occur when there are many systems on the same domain. The use of

a hub may be the cause of many collisions.

Dropped packets Packets may be dropped for a variety of reasons, but the result can affect

performance. For example, if the server network interface is configure to run at

100 Mbps full duplex, but the network switch is configured to run at 10 Mbps,

the router may have an ACL filter that drops these packets. For example:

iptables -t filter –A FORWARD –p all –I eth2 -0 eth1 –s 172.18.0.0/24 –j

DROP

Errors Errors occur if the communication lines are of poor quality. In these situations,

corrupted packets must be resent, thereby decreasing network throughput.

Faulty adapters Network slowdowns often result from faulty network adapters. When this kind

of hardware fails, it might begin to broadcast junk packets on the network,

 Table 4: Indicators for network analysis

If a network bottleneck is suspected the following steps can be used to solve some of the problems:-

i. Ensure that the network card configuration matches router and switch configurations (for example,

frame size).

ii. Modify how your subnets are organized.

iii. Use faster network cards.

iv. Tune the appropriate IPV4 TCP kernel parameters.

v. If possible, change network cards and recheck performance.

vi. Add network cards and bind them together to form an adapter team, if possible.

ii. Application bottlenecks

As illustrated in the introductory section of identifying bottlenecks, a high percentage of bottlenecks are

found in the application. Business logic of an application resides on the application server and web servers.

Application server hardware, software and application design can affect the performance to great extent.

Poor application server performance can be a critical source of performance bottlenecks.

A lot of writing has been done in this area. Some of the papers that can be used to help a performance

engineer identify bottlenecks in the application and web tiers are.

i. Web applications Performance Symptoms and Bottlenecks Identification, by Thomas of agile toad

ii. Rapid Bottleneck Identification A Better Way to do Load Testing, an Oracle White Paper

iii. Application performance testing series by Scott Barber of AuthenTec

31

Most of the guidelines given below are derived from the above papers.

Some of the most common application bottlenecks include:-

i. Memory leaks

ii. Useless or inefficient garbage collection

iii. DB connections poor configuration

iv. Useless or inefficient code transactions

v. Sub-optimal session model

vi. Application server poor configuration

vii. Useless or inefficient object access model

viii. Useless or inefficient security model

ix. Less utilization of OS resources

Some of the bottlenecks to look out for in web servers include

i. Broken links

ii. Inadequate transaction design

iii. Very tight security

iv. Inadequate hardware capacity

v. High SSL transactions

vi. Server poorly configured

vii. Servers with ineffective load balancing

viii. Less utilization of OS resources

ix. Insufficient throughput

To identify bottlenecks in the application and web tier, the following guidelines can be followed:-

i. Ensure that the operating system, hardware and the network are configured optimally for the

application they are to run and they contain no major bottleneck.

ii. Profile the application using appropriate tools, some of the profiling tools are discussed in the

gathering statistics section. For each application a profiling tool can be found. Profiling an application

is very useful in identifying bottlenecks in application, especially bottlenecks that are inherent in the

application, such as memory leaks, improper function calls, and inefficient garbage collection among

others.

iii. Perform thorough tests on the application. Some of the tests include :-

iv. Throughput testing

v. Concurrency testing

vi. Stress testing

vii. The (Oracle-RBI, 2010) methodology recommends starting with the simplest test cases first and then

moving on to those with increased complexity. If the simplest test case works and the next level of

32

complexity fail, the bottleneck lies in the newly added complexity. By uncovering bottlenecks using a

tiered approach, one can quickly identify issues as well as isolate issues in components of which you

have limited knowledge.

viii. Analyze the application SQL statements using database SQL analyzers for poorly performing SQL

queries. All modern database management systems have tools that can be used to identify such SQLs.

Some of the tools are discussed in the database gathering statistics section.

In general, a database application should be written to:

a. Reduce network traffic

b. Limit disk input/output

c. Optimize application-to-driver interaction

d. Simplify queries

iii. Database Bottlenecks

Database performance is most critical for application performance as this is the main culprit in performance

bottlenecks. Database software, hardware and design can really impact the whole system performance.

Some of the database bottlenecks according to (Thomas, 2012) are:-

i. Inefficient or ineffective SQL statement

ii. Small or insufficient query plan cache

iii. Inefficient/ineffective SQA query model

iv. Inefficient/ineffective DB configurations

v. Small/insufficient data cache

vi. Excess DB connections

vii. Excess rows at a time processing

viii. Missing/ineffective indexing

ix. Inefficient/ineffective concurrency model

x. Outdated statistics

xi. Deadlocks

By use of operating system, DBMS performance tuning tools and or SQL statements performance problems

in the database can be identified. Most of these database tools are discussed in the database statistics

collection section. Thresholds that have been exceeded should be carefully investigated to determine where

the performance problem lies. For example examining the top 5 wait events in an oracle database reveals

the following

33

Top 5 Timed Events % Total

Event Waits Time(s) Elapsed Time

CPU time 4,851 4,042 55.76

db file sequential read 1,968 1,997 27.55

log file sync 299,097 369 5.08

db file scattered read 53,031 330 4.55

log file parallel write 302,680 190 2.62

 Table 5: Top five databases wait

The database is CPU bound and it is spending significant time waiting for CPU, Assuming that the

database cache and the SQLs are already optimized; more CPU's or faster CPUs will improve the

performance of this database. (Burleson, 2010)

In identifying and resolving database bottlenecks the performance engineer should be on the lookout for the

following common mistakes usually found in databases. (ISAM, 2011)

i. Bad Connection Management

 The application connects and disconnects for each database interaction. This problem is common with

stateless middleware in application servers. It has over two orders of magnitude impact on

performance, and it is totally unscalable.

ii. Bad Use of Cursors and the Shared Pool

Not using cursors results in repeated parses. If bind variables are not used, then there is hard parsing of

all SQL statements. This has an order of magnitude impact in performance, and it is totally unscalable

Use cursors with bind variables that open the cursor and execute it many times. Be suspicious of

applications generating dynamic SQL.

iii. Getting Database I/O Wrong

Many sites lay out their databases poorly over the available disks. Other sites specify the number of

disks incorrectly, because they configure disks by disk space and not I/O bandwidth.

iv. Long Full Table Scans

Long full table scans for high-volume or interactive online operations could indicate poor transaction

design, missing indexes, or poor SQL optimization. Long table scans, by nature, are I/O intensive and

unscalable.

v. In Disk Sorting

In disk sorts for online operations could indicate poor transaction design, missing indexes, or poor

SQL optimization. Disk sorts, by nature, are I/O-intensive and unscalable.

vi. Schema Errors and Optimizer Problems

In many cases, an application uses too many resources because the schema owning the tables has not

been successfully migrated from the development environment or from an older implementation.

34

Examples of this are missing indexes or incorrect statistics. These errors can lead to sub-optimal

execution plans and poor interactive user performance. When migrating applications of known

performance, export the schema statistics to maintain plan .

Likewise, optimizer parameters set in the initialization parameter file can override proven optimal

execution plans. For these reasons, schemas, schema statistics, and optimizer settings should be

managed together as a group to ensure consistency of performance.

(Burleson, 2010) gives the following silver bullet tips when identifying and tuning database bottlenecks

i. Fix the symptom first – the root cause can always be addressed later

ii. Time is critical – quick fix, instance wide adjustments are often the best option

iii. Be creative – traditional time consuming methods do not apply here.

iv. Once done root cause needs to be found and sorted out for the long term correction of the root

cause of the problem.

Step 7: Ranking in terms of cost and impact

Once bottlenecks have been identified in any of the tiers, a choice has to be made on which bottleneck is to

be resolved first. Bottlenecks that have huge improvement in performance and have minimal costs both

monetary and time wise should be considered.

As hardware becomes cheaper and faster, more hardware can be used to sort out sub-optimal databases; it

is often a safe, cost effective and timely solution to an acute database performance issue. The examples

below by (Burleson, 2010) illustrate such scenarios

i. Moving to faster 64 bit processor server as opposed to expensive SQL statement tuning for a CPU

bound database.

ii. Move to faster solid state disks for a heavily I/O bound application due to poorly application code

which costs less and is less risky as opposed to incurring huge costs in rewriting the application.

(Burleson, 2010) goes ahead to give the following real world scenario:

“Just last week I had a client who was having a huge CPU bottleneck, and the root cause was

excessive parsing and really sub-optimal SQL execution plans. They chose to spend $50k for

faster processors (15 minutes to fix) rather than spend $100k to tune 2,000 SQL statements (6

weeks to fix).”

To rank bottlenecks in terms of their cost and impact the following formulae is suggested:-

35

Where

 Rank: Is the Numerical value assigned to each bottleneck.

Impact: Value that represents the overall improvement of application performance on resolution of the

impact. A higher value signifies a huge improvement in performance. Rank is directly proportionate to

impact.

Cost: Value that represents the monetary implication of resolving the bottleneck. The higher the value

the more expensive it is to fix the bottleneck. Rank is inversely proportionate to cost.

Time: Value that represents how long it takes to resolve the bottleneck. The higher the value the longer it

takes to fix the bottleneck. Rank is inversely proportionate to Time.

Y: Coefficient that depicts the importance of cost and time. The higher the value the more important the

costs and time aspect. Rank is inversely proportionate to Y.

Derivation of ranking formulae

In deriving formulae it is imperative to show how the different formulae sub components relate to the

whole. A formulae can be proven/validated either mathematically or using experimentation. Proving the

formulae mathematically is suggested as future works , an experimental approach is used to validate the

formulae by using it to rank identified bottlenecks in a poorly performing payroll application. Future works

can also be carried out to validate the formulae using other poorly performing systems. An attempt to

explain how the formula was arrived at is made below.

A major challenge faced by tuning experts is the myriad of options that are available to them with each

having different impact on overall system performance (Burleson, 2010). The formulae aims to provide the

tuning expert with a simple tool which he can use to simplify the decision making process of deciding the

order in which to resolve identified bottlenecks.

Rank is the output of the formulae which is a numeric valued arrived at after applying the formulae to a

bottleneck.

Impact is a value that represents the overall improvement of application performance on resolution of the

impact. For example in a poorly performing web application, one of the bottlenecks identified can be lack

of sufficient memory in the webserver causing a high rate of swapping. Resolving the bottleneck by adding

more memory to the webserver results to 40% overall improvement in response time for the web

application. Our Impact is thus 40% for this bottleneck. A higher Impact value signifies a huge

improvement in performance. A high impact means the bottleneck should be among the first to be resolved,

it logically follows that the higher the impact of resolving a bottleneck the higher the rank of the bottleneck,

thus rank is directly proportionate to impact

36

Cost is a value that represents the monetary implication of resolving the bottleneck. Proceeding with our

hypothetical example, resolving the memory bottleneck is done by buying additional memory. Let us

assume the memory will cost USD 500. The cost of the bottleneck is thus USD 500. A scale can be adopted

depending on the figures involved, for example the following scale can be used

 USD 100 – 300 = 1

USD 300 – 500 = 2

USD 500 – 700 = 3

USD 700 – 900 = 4

USD 900 – 1100= 5

Thus the cost of resolving the bottleneck using a scale would be 2. The higher the cost the more expensive

it is to resolve the bottleneck and thus the order of resolving the bottleneck should be lowered consequently

lowering the rank. Therefore, Rank is inversely proportional to cost.

Time: Value that represents how long it takes to resolve the bottleneck. Proceeding with our example,

buying and fixing memory in the server can approximately take 3 hours. The below numeric scale

dependent on the values involved can be adopted.

 1 - 3 hrs. = 1

3 - 5 hrs. = 2

5 - 7 hrs. = 3

7 - 9 hrs. = 4

9 - 11 hrs. =5

The time value for resolving the bottleneck will thus be 1. The higher the time value the longer it takes to

fix the bottleneck and the bottleneck should thus be ordered lower in the priority of resolving the

bottlenecks.. Rank is thus inversely proportionate to Time.

Y is a Coefficient that depicts the importance that an organization or the tuning expert gives to cost and

time. In some organization cost might not be a big factor meaning the organization is willing to spend large

amounts of money to resolve the bottleneck, in others budget and cost constraints can be a huge factor in

decision making. The higher the coefficient value the more important the costs and time aspect are to the

Organization. Rank is thus inversely proportionate to Y,

We thus have four subcomponents of the equation:

37

Combining the four subcomponents gives us the final equation

Step 8: Iterative resolution of identified bottlenecks in the tiers based on the ranking

Once the bottlenecks have been ranked they are resolved iteratively until the performance goals have been

realized.

38

4.2. APPLICATION OF METHODOLOGY

Application the integrated holistic Methodology on a poorly performing payroll application

Step 1: Getting feedback from the user.

The user was asked to describe performance problems that he is experiencing with the payroll and he gave

the following response.

“The payroll application takes too long to process the 6000 university employee payroll, on average it takes

4 hours for a single run and since many runs are made before the month is closed, the process is a tedious

and time consuming process and at a minimum takes 3 days to finalize the monthly payroll processing”

“When the payroll application was developed 10 years ago, it is used to run very fast, as the year progresses

the payroll has become slower”

From the users response the following can be deduced:-

i. The user is unhappy with the response time

ii. The user is unhappy with the throughput of the application

iii. The payroll has become slower as more data is added.

iv. The payroll database has 10 years historical data.

Step 2: Collecting baseline Performance measurement of the application

For the purpose of tuning the exercise, it was decided to use a different database server in which only the

payroll application would be running. The decision was arrived at because of the following reasons:-

i. The live database server was in use by other application and the environment was changing rapidly thus

it was difficult to accurately measure improvement in performance after changes in configuration.

ii. Being a live server there were limitations on configuration changes that would be effected without

adversely affecting other users of the system.

iii. It was important to carry out scalability tests and vary the amount of historical data in the payroll

database while observing change in response times, this could not be achieved in the live server. To

reduce the amount of time taken to running the payroll during the testing exercise, for the purpose of

collecting the baseline data, a payroll data with three years historical data was to used. For the purpose

of determining the response time a sample size of 200 payroll records runs was to be considered. By

running SQL statements on the payroll application the following data was collected:-

iv.The response time is time 101 secs to process 200 records translating to 0.5 secs per payroll record.

v. The throughput of the application is 200 payroll records in 101 secs, translates to 2 payroll records per

second.

39

Step 3: Setting performance goals

After discussion with the user, the following performance goal is set

“The payroll application must process 6000 payroll records in under two hours.”

Step 4: Analyzing system infrastructure

The payroll application is a client server application and its architecture is as follows

Figure 12: Payroll architecture

The payroll application runs in the users clients machine, all payroll processing calculations are

performed in the client machine and results of the calculations saved in the database.

The payroll application is designed using Oracle forms which in modern times can be termed as a

legacy application.

Clients Computer specification

Operating system: Windows 7 32 bit

Memory available: 2 GB

Processor: Intel duo core processor

Test Database server

Operating system: Oracle Enterprise Linux 5 32 bit

Memory available: 2 GB

Processor: 2 Intel i7 core processor (4 cores in total)

Database version: Oracle 11g with 40% memory assigned

Step 5: Collection of resource utilization and performance statics of all the tiers

i. Operating system and hardware statistics

With the payroll running the following statistics are collected

1. CPU utilization

40

Client Application Computer

Figure 13: Client computer CPU utilization

CPU usage = 3 %

 Database Server

Figure 14: Database server top CPU utilization

Average CPU usage 30%

2. Memory utilization and Virtual memory Statistics

 Client Application Computer

41

Figure 15: Client computer memory utilization

Memory utilization = Used Memory / Total memory * 100

 1299/ 3071 * 100 = 42 %

 Database Server

Figure 16: Database Server top memory utilization

42

 Memory utilization = Used Memory / Total memory * 100

 1642864 / 3631920 * 100 = 45 %

 Swap utilization = 0 %

3. Disk utilization and I/O statistics

Client Application Computer Disk utilization

Figure 17: Client computer Disk utilization

Client Application Computer - Disk Activity 0%

43

 Database Server Disk (I/O) utilization

Figure 18: Database Server I/O utlization

 Database server I/O activity

 Blocks read per sec – 94.89

 Blocks written per sec – 29.61

44

4. Network Utilization

Client Application Computer

Figure 19: Client computer network utilization

Client Application Computer Network Utilization - 0%

Database Server Network Utilization

Figure 20: Database server network utilization

 Database Server Network Utilization - < 20%

ii. Database and application performance statistics

The payroll application runs on an oracle database, the Oracle Enterprise Manager Tools were

used to collect the performance statistics.

Overview of Performance

45

Figure 21: Database performance overview

CPU Usage

Figure 22: Database CPU usage

 Runnable processes

Figure 23: Database runnable processes

Average Active sessions

46

Figure 24: Database Average Active sessions

Throughput

Figure 25: Database throughput

IO

Figure 26: Database I/O throughput

47

Figure 27: Database I/O throughput

Parallel Executions

Figure 28: Database Parallel Executions

48

Top Activity

Figure 29: Database Top Activity

Automated Database Diagnostic Monitoring tool (ADDM) Run

Figure 30: Database Automated Database Diagnostic Monitoring tool (ADDM) Run

For a listing of the complete ADDM output, refer to APPENDIX B

Step 6: Identification of bottlenecks

Once performance statistics from the various tiers was collected using the various tools a critical analysis of

the data was conducted with the aim of identifying bottlenecks.

i. Operating system tier and hardware tier

1. CPU bottlenecks

49

In both the client computer and the database server CPU was not a bottleneck. In the client

computer CPU utilization was an average of 3% and on the database server 30%. The oracle

database monitoring tool reported a slightly higher CPU usage of 60% but went ahead to explicitly

state that CPU was not a bottleneck in its ADDM output which states as follows.

“CPU was not a bottleneck for the instance.”

2. Memory bottlenecks

In both the client computer and the database server memory utilization never reached 100% and

there was existence of free memory. Due to presence of free memory virtual memory in the

clients’ windows application machine was not utilized and swapping in the Linux database server

did not occur too.

Oracle ADDM tool reported that excess virtual paging was occurring in the database host machine

as illustrated below.

Figure 31: Oracle virtual paging

Further analysis indicated that this finding was not collaborated by other operating systems such

as free and top which indicated existence of free memory and no swapping taking place.

Figure 32: Free memory utilization

Output from Linux free tool

Figure 33: Top memory utilization

Output from top Linux tool

50

Review of literature on the inconsistency revealed that this is due to a bug in the ADDM tool

(Kirill, 2012)

Above inconsistency illustrates challenges experienced during performance tools and shy deeper

analysis of performance issues should be conducted before conclusions are arrived at. Use of

more than one tool is also recommended in order to validate the results obtained.

3. Disk bottlenecks

The client windows machine indicated barely noticeable disk activity of 0%.

The database server had noticeable disk activity of 94.89 Blocks read per sec and 29.61 Blocks

written per sec.

Oracle enterprise manager indicated significant disk I/O.

Figure 34: Oracle I/O utilization

Further analysis showed that specific SQL statements were causing the high disk activity.

Output from ADDM.

“ Finding 3: Top Segments by "User I/O" and "Cluster"

Impact is .24 active sessions, 24.77% of total activity.

--

Individual database segments responsible for significant "User I/O" and

"Cluster" waits were found.

 Recommendation 1: Segment Tuning

 Estimated benefit is .24 active sessions, 24.77% of total activity.

 Action

 Run "Segment Advisor" on TABLE "P15_2680_94.PROCESSED_DATA" with object

 ID 101437.

 Related Object

51

 Database object with ID 101437.

 Action

 Investigate application logic involving I/O on TABLE

 "P15_2680_94.PROCESSED_DATA" with object ID 101437.

 Related Object

 Database object with ID 101437.

 Action

 Look at the "Top SQL Statements" finding for SQL statements consuming

 significant I/O on this segment. For example, the DELETE statement with

 SQL_ID "94zaccf3h3zgw" is responsible for 100% of "User I/O" and

 "Cluster" waits for this segment.

 Rationale

 The I/O usage statistics for the object are: 97240 full object scans,

 52098200 physical reads, 3233 physical writes and 52098200 direct reads.

 Symptoms That Led to the Finding:

 Wait class "User I/O" was consuming significant database time.

 Impact is .24 active sessions, 24.77% of total activity.”.

The SQL identified causing the high I/O needed to be looked or movement to faster solid states

disks considered.

4. Network bottlenecks

For the client machine network utilization was barely noticeable being below 0 % and for the

database server it was below 20 %.

Oracle ADDM tool reported explicitly that network was not a bottleneck as quoted below.

“Wait class "Network" was not consuming significant database time”.

Despite CPU and memory not being a bottleneck. Experiments were carried out to determine if the

payroll response time would improve if more hardware resources were utilized. (Burleson, 2010)

in his Oracle performance, hardware & RAM tuning optimization article indicates that use of

faster processors almost always leads to improvement in performance.

52

Since resource utilization on the clients machine are negligible, it only the database location that

was varied in the experiment.

The following three computers were used with specifications indicated.

Specifications HP Laptop 620 Dell Power edge 880

server

HP Elite Book

Operating System Oracle Enterprise Linux Oracle Enterprise Linux Oracle Enterprise Linux

Processor Type Intel® Core™2 Duo

Processor T6670

Intel® Xeon® Processor

E7-4807

Intel® Core™ i7-

3520M Processor

Processor clock speed 2.2 GHz 1.86 GHz 2.9 GHz

Max Turbo Frequency 3.6 GHz

Processor cache 2 MB 18 MB Intel® Smart

Cache

4 MB Intel® Smart

Cache

Processor cores 2 6 2

Processor Threads 0 12 4

Processor release date Q3'09 Q2'11 Q2'12

Memory Available 8 GB 64GB 8GB

Oracle Version Oracle 11g R2 Oracle 11g R2 Oracle 11g R2

 Table 6: Server Specifications

A payroll database with two months historical data was chosen and 200 payroll records processed

in each computer. The average responses time in each computer are illustrated below.

Computer Response Time (secs)

HP Laptop 620 88

Dell Power edge 880 server 80

HP Elite Book 30

 Table 7: Response time per server

53

Figure 35: Payroll response time per server

 As depicted in the chart the faster more recent processor of the Elite book computer performed

considerably better than the other processors. There is a 65 % (88-30)/88 * 100 improvement in

performance by using a faster processor.

Despite the Dell Power Edge server having 64 GB of RAM and 24 cores available, it did not lead to

significant improvement in performance.

 For detailed values of the experiment refer to Appendix C.

i. Application and Database Bottlenecks

An analysis of the application activity indicates existence of the following bottlenecks.

1. Problem with SQL statements

Using the ADDM tool it was found that a performance gain of 60 % could be

obtained by tuning selected SQL statements.

Below are excerpts from ADDM analysis

“ Finding 2: Top SQL Statements

Impact is .58 active sessions, 60% of total activity.

SQL statements consuming significant database time were found. These

statements offer a good opportunity for performance improvement.

 Recommendation 1: SQL Tuning

 Estimated benefit is .35 active sessions, 36% of total activity.”

0 20 40 60 80 100

HP Laptop 620

Dell Power edge 880
server

HP Elite Book

Response Time (secs)

Response Time (secs)

54

2. High commit rate

Analysis of the payroll application transactions indicated that the application was

committing records to the database too frequently. The application was performing

1242 transactions per minute. A performance improvement of 2.9% can be gained by

reducing the rate of commit and increasing the size of transactions.

Below An excerpt from ADDM

“ Finding 4: Commits and Rollbacks

Impact is .03 active sessions, 2.91% of total activity.

Waits on event "log file sync" while performing COMMIT and ROLLBACK

operations

were consuming significant database time.

 Recommendation 1: Application Analysis

 Estimated benefit is .03 active sessions, 2.91% of total activity.

 --

 Action

 Investigate application logic for possible reduction in the number of

 COMMIT operations by increasing the size of transactions.

 Rationale

 The application was performing 1242 transactions per minute with an

 average redo size of 1001 bytes per transaction.”

3. Scalability bottleneck.

While collecting user feedback, it was noted that the user indicated the payroll

application seemed to slow down further with each year.

An experiment was set up to investigate the scalability of the payroll application.

Payroll databases with different historical data were considered and the average

response times collected.

55

Payroll historical data Response time

2 months 33

1 year 50

2 years 75

3 years 101
Table 8: Payroll historical data vs response time

Figure 36: Payroll response time vs. historical data

 As depicted in the chart the application scales very poorly as more data is added.

Performance degrades by 67% (101-33)/101 * 100 if the database contains 3 years historical

data as compared to having historical data of only two months. Each year performance

degrades roughly by 20% as more data is added.

In summary the following bottlenecks have been identified in the payroll application.

1. Disk I/O bottleneck: This is attributed to application logic and poorly performing SQL, the

bottleneck can be resolved by rewriting application logic and identified SQL statements or

adding faster disks such as Solid State Disks. Estimated performance improvement 24%.

2. Poor performing SQL statements: Tuning Identified SQL statements offer opportunity for

improving performance of the database application by 60 %. Moving to faster processors also

realized 65% improvement in performance.

3. High Commit rate: Caused by small transaction size, can be resolved by increasing

transaction size by rewriting application code. Estimated improve in performance 3%.

4. Poor scalability: The payroll application scales very poorly with an estimated 20% degrade in

performance each year. Since current payroll contains 10 years historical data, archiving 9

years historical data can lead to 180% improvement in performance.

0

20

40

60

80

100

120

2 months 1 year 2 years 3 years

Response time

Response time

56

Step 7: Ranking in terms of cost and impact

Using the formulae

 Which is discussed in the methodology section for each bottleneck a rank was calculated.

For the values of Impact a percentage range was used and for the values of Cost, Time and

Coefficient Y values in the ranges of [1 -10] were assigned based on the analysis and findings obtained

in identification of the bottleneck section.

 Bottleneck Option to

address

bottleneck

Impact % Cost Time Y Rank

1 Disk I/O bottleneck Rewriting

application

logic and SQL

20 7 6 7 0.07

2 Disk I/O bottleneck Move to faster

Solid State

Disks

20 4 1 7 0.71

3 Poor performing

SQL statements

Tune SQL

Statements

60 8 10 7 0.11

4 Poor performing

SQL statements

Move to faster

processors

60 3 1 7 2.86

5 High Commit rate Rewriting

application

logic

2 6 7 7 0.07

6 Poor scalability Archive old

data

180 1 1 7 25.71

 Table 9: Unranked bottlenecks

Step 8: Iterative resolution of identified bottlenecks in the tiers based on the ranking

Based on the rank calculated for each bottleneck, the table below orders the bottleneck by rank.

 Bottleneck Option to

address

bottleneck

Impact % Cost Time Y Rank

1 Poor scalability Archive old

data

180 1 1 7 25.71

2 Poor performing

SQL statements

Move to faster

processors

60 3 1 7 2.86

3 Disk I/O bottleneck Move to faster

Solid State

Disks

20 4 1 7 0.71

4 Poor performing

SQL statements

Tune SQL

Statements

60 8 10 7 0.11

5 Disk I/O bottleneck Rewriting

application

20 7 6 7 0.07

57

logic and SQL

6 High Commit rate Rewriting

application

logic

2 6 7 7 0.07

 Table 10 : Ranked bottlenecks

The performance goal was to have the payroll application process 6000 payroll records in less than two

hours. This is a 50% improvement in performance.

By resolving the scalability bottleneck through archiving of old data performance of the application

will improve by 180% and the target will we be met.

Further resolution of identified bottlenecks will lead to better improvement in payroll processing.

58

CHAPTER 5: DISCUSSIONS CONCLUSION AND

RECOMMENDATIONS

5.1. ACHIEVEMENTS

The following were achieved as per the objectives set out in chapter one.

Objective 1: To study systems performance tuning especially in database oriented applications.

An in depth study of systems performing tuning was carried out. Various literatures were reviewed and

factors that affect system performance were identified. It was realized that all tiers that an application

interacts with can be a source of bottlenecks.

Objective 2: To review the existing application and database tuning methodologies with an intention of

identifying gaps.

Various fine tuning methodologies were reviewed and detailed in the literature survey section. It was found

that most existing methodology had some bias to a tier depending on the origin of the methodology. A

summary and critique of existing methodology was given.

Objective 3: To develop a customized integrated holistic tuning approach that addresses identified gaps.

Using the reviewed methodology and addressing gaps that were identified, a holistic methodology was

developed. The methodology focused on the following:

1. Tools for gathering and analyzing performance statistics in ach tier.

2. How to identify bottlenecks in each tier and suggestions on resolution of some of the identified

bottlenecks.

3. Ranking of bottlenecks to assist in choosing which bottlenecks to resolve at minimal cost and time

to the organization while achieving the greatest impact. A formula to aid in ranking was

suggested.

Objective 3: To apply the customized methodology in a real world performance problem.

The developed methodology was applied to a poorly performing payroll application and the following

bottlenecks identified.

1. Disk I/O bottleneck:

2. Poor performing SQL statements

3. High Commit rate

4. Poor scalability

59

Various options for resolving the bottlenecks were discussed and analyzed and their overall impact arrived

at.

Best improvement in performance was realized by using faster processors and maintaining historical data to

a minimum as illustrated in figure 39 and 40.

The ranking formulae were applied to each bottleneck and the bottlenecks ranked based on the overall

impact, cost and time to resolve.

 The bottlenecks that offered greatest improvement in performance at minimum cost and time to the

Organization were identified.

60

5.2. VALIDATION OF THE CONCEPTUAL MODEL

In the beginning of the tuning exercise the following conceptual model was developed to guide the tuning

exercise.

Application tier

1.Performance

Measurement

2.Performance

Goals

4.Bottleneck

Identification and

ranking

5.Bottleneck

Resolution

Middle layer and

database drivers

tier

Network and

infrastructure tier

Operating system

tier

Hardware and

storage subsystem

tier

Database tier

3.Architecture

Analysis and

gathering of

performance

statistics

Figure 37: Conceptual model

Step I in the model is performance evaluation, this was carried and the following baseline performance

measurement values collected

The response time was 101 secs to process 200 records translating to 0.5 secs per payroll record.

The throughput of the application was 200 payroll records in 101 secs, translates to 2 payroll records

per second.

61

Step 2 in the model is setting of performance goals, in consultation with the user the following goal was set

 “The payroll application must process 6000 payroll records in under two hours.”

Step 3 involved architecture analyses and gathering of performance statistics, this was extensively carried

out for all the tiers as depicted in Operating system and hardware statistics, CPU utilization, Memory

the tiers as detailed in section 4 and 5 in the Application of the Methodology chapter

Stage 4 in the model is Identification and ranking of bottlenecks, this was done and the following

bottlenecks identified.

ii. Disk I/O bottleneck: This is attributed to application logic and poorly performing

SQL, the bottleneck can be resolved by rewriting application logic and identified

SQL statements or adding faster disks such as Solid State Disks. Estimated

performance improvement 24%.

iii. Poor performing SQL statements: Tuning Identified SQL statements offer

opportunity for improving performance of the database application by 60 %. Moving

to faster processors also realized 65% improvement in performance.

iv. High Commit rate: Caused by small transaction size, can be resolved by increasing

transaction size by rewriting application code. Estimated improve in performance

3%.

v. Poor scalability: The payroll application scales very poorly with an estimated 20%

degrade in performance each year. Since current payroll contains 10 years historical

data, archiving 9 years historical data can lead to 180% improvement in

performance.

Ranking of the bottlenecks based on different methods of resolving them resulted to the following ranking

table

 Bottleneck Option to

address

bottleneck

Impact % Cost Time Y Rank

1 Poor scalability Archive old

data

180 1 1 7 25.71

2 Poor performing

SQL statements

Move to faster

processors

60 3 1 7 2.86

3 Disk I/O bottleneck Move to faster

Solid State

Disks

20 4 1 7 0.71

4 Poor performing

SQL statements

Tune SQL

Statements

60 8 10 7 0.11

5 Disk I/O bottleneck Rewriting

application

logic and SQL

20 7 6 7 0.07

62

6 High Commit rate Rewriting

application

logic

2 6 7 7 0.07

 Table 11: Ranked bottlenecks

Step 5 in the model is resolving identified bottlenecks until performance goal is met, The performance

goal was to have the payroll application process 6000 payroll records in less than two hours. This is a

50% improvement in performance.

By resolving the scalability bottleneck through archiving of old data performance of the application

will improve by 180% and the target was met. Further resolution of the bottleneck would lead to better

improvement in performance.

 Thus all the stages of the conceptual model were validated and found to hold.

5.3. VALIDATION OF THE RANKING FORMULAE

An attempt to validate the formulae proposed using data collected from the poorly performing application

was made. This method of validating a formula is referred to as experimental as opposed to mathematically

validating the formulae.

The above formula used to rank the identified bottlenecks in the poorly performing application, Values of

Impact were derived from various performance tools used to analyze the poorly performing application and

also from experimentation.

Values of cost, time and Coefficient were arrived at with consultation with the user of the payroll

application.

After application of the formulae using the values obtained it was found out that bottlenecks that had huge

impact in overall improvement of performance and cost less and while taking minimum to resolve had the

highest rank. A good example is the poor scalability bottleneck, it had an Impact of 180 % and Cost and

Time values of 1 and coefficient of 7. The rank of the bottleneck was 25.71which was the highest.

5.4. LIMITATIONS AND CHALLENGES

In the developed integrated methodology illustrations were given using Linux and Windows operating

systems which are perceived to be to be the most common operating systems.

In the developed integrated methodology option for switching to a different database system was not

considered.

63

Obtaining different type of computers with different hardware configurations was a challenge.

64

5.5. DISCUSSIONS

Due to the importance of systems performance in the current business context the study set out to review

existing fine tuning methodologies and develop a customized tuning methodology based on identified gaps

and test the developed methodology on an existing application.

Many methodologies exist of tuning and optimizing application and databases separately, after reviewing

available literature, it was discovered not much attention has been given to formulating a holistic approach

of tuning applications and databases in a good documented and systematic approach.

Existing application tuning approaches are either application specific or are proposed by vendors whose

tuning software’s use the recommended approaches. Existing database tuning methodologies focus so

much on the database that they downplay the role of other components such as the operating system and

middle layer tier in overall performance of the application.

The study achieved its objectives of developing a customized holistic database and systems fine tuning

methodology and demonstrating how the methodology can be used to tune a poorly performing payroll

application.

Main stages of the developed methodology are:

1. Obtaining feedback from the user on how the system is behaving

2. Collecting baseline Performance measurement of the application when it is performing below users’

expectation and when the system is performing well.

3. Setting realistic performance goals which are realistic.

4. Analyzing system infrastructure

5. Collecting resource utilization and performance statics of all the tiers involved.

6. Identification of bottlenecks by analyzing statistics collected, using various tools and

experimentation.

7. Ranking of identified bottlenecks by using impact, Cost and Time. A formula for calculating the rank

for each bottleneck is suggested.

8. Iterative resolution of identified bottlenecks in the tiers based on the ranking

Highlights of the methodology include:

1. Overview of various tools available for gathering resource utilization statistics in various operating

systems.

2. Overview of tools for analyzing performance of various applications and databases.

3. Guidelines on how to identify bottlenecks in various tiers that have impact on system performance.

4. A simple formula that can be used to rank bottlenecks based on Impact, time and cost.

65

5. Tips on how to resolve bottlenecks in various tiers.

The developed methodology is can be used by system administrators, database administrators and

performance engineer to trouble shoot and fine tune their applications and can be in cooperated in their

standard operating procedures.

5.6. SUGGESTED FURTHER RESEARCH

Enhance the methodology and include illustrations from other operating systems.

Enhance the methodology give a comparative analysis of performance of different DBMS and what

factors to consider in deciding to change the DBMS.

Mathematically prove and derive the suggested ranking formula and or use further experiments to prove it.

66

REFERENCES

Azeem, M., 2002, A Successful Performance Tuning Methodology Quest Software, Inc. (NASDAQ:

QSFT).

Dennis, S. and Philippe, B., 1992. Database Tuning – Principles, Experiments and Troubleshooting

Techniques, Prentice-Hall.

Donald, K., 2009, Inside Oracle fully automated SQL tuning, Burleson Consulting

Burleson, 2010, Oracle performance, hardware & RAM tuning optimization, Burleson Consulting

Chris Farrell , P., 2010, The Complete Guide to .NET Performance Testing and Optimization, [Online]

Available at: <http://en.wikipedia.org/wiki/List_of_performance_analysis_tools.html> [Accessed , 24

November 2012]

Eduardo Ciliendo, T., 2007, Linux Performance and Tuning Guidelines, IBM

Fowler, Martin., 1997, Analysis Patterns, Reusable object models, Addison-Wesley Longman

Jitesh K., 2005, PeopleSoft Global Payroll Performance Analysis & Tuning approach, Tata Consultancy

Services

John, G and Robert, A., 2009, The Data Access Handbook: Achieving Optimal Database Application

Performance and Scalability. Prentice-Hall, Upper Saddle River, New Jersey

Mark, D., 2010, Guide for Developing High-Performance Database Applications, Oracle Corporation

Misty Faucheux, 2012, Windows Profiling Tools, eHow Contributor, [Online] Available at:

<http://www.ehow.com/list_7166039_windows-profiling-tools.html> [Accessed 10 December 2012].

Immanuel, C and Lance, A., 2011, Oracle Database Performance Tuning Guide 11g Release 2 (11.2),

Oracle Corporation

Sitansu, S.M., 2002. Database Performance Tuning and Optimization, Springer Verlag

Isam, A and Lester, G., 2011, Tuning All Layers of E-Business Suite, Oracle Corporation

Kirill Loifman, 2012, Oracle ADDM shows Virtual Memory Paging on 10gR2 11gR2, [Online] Available

at: <https://forums.oracle.com/forums/thread.jspa?threadID=2132991> [Accessed 09 February 2013].

Oracle - B10500_01, 2002, Monitoring and Improving Application Performance, Oracle Corporation

Oracle, 2010, Rapid Bottleneck Identification A Better Way to do Load Testing, Oracle Corporation

Quest, S., 2010, Performance Tuning for Mission-Critical Database Applications an Example in

PeopleSoft, Quest Software (Nasdaq: QSFT)

Thomas, 2012, Web applications Performance Symptoms and Bottlenecks Identification, Agiletoad

Toadworld., 2010, 5 Step Tuning Methodology – Overview, [Online] Available at:

<http://www.toadworld.com/KNOWLEDGE/KnowledgeXpertforOracle/tabid/648/TopicID/OPS3/Default.

aspx> [Accessed 1 Feb 2012].

University of Texas,2010, Conduct research , [Online] Available at:

<http://www.utexas.edu/academic/ctl/assessment/iar/research/plan/method/content.php> [Accessed 12

January 2013].

http://www.red-gate.com/products/ants_performance_profiler/want_to_be_dotnet_perf_testing_expert_ebook.htm?utm_source=simpletalk&utm_medium=article&utm_content=dotnetperftestexpert-ebook&utm_campaign=antsperformanceprofiler
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools
http://en.wikipedia.org/wiki/Martin_Fowler
http://www.dadbm.com/author/admin/
http://www.toadworld.com/KNOWLEDGE/KnowledgeXpertforOracle/tabid/648/TopicID/OPS3/Default.aspx
http://www.toadworld.com/KNOWLEDGE/KnowledgeXpertforOracle/tabid/648/TopicID/OPS3/Default.aspx
http://www.utexas.edu/academic/ctl/assessment/iar/research/plan/method/content.php

67

APPENDIX A: RESOURCE UTILIZATION COLLECTION TOOLS

To collect resource utilization statistics (IBM, 2011) in Linux Performance and Tuning Guidelines

gives a good overview of the available Linux tools and their function.

Tool Most useful tool function

Top Process activity

Vmstat System activity, Hardware and system information

uptime, w Average system load

ps, pstree Displays the processes

Free Memory usage

Iostat Average CPU load, disk activity

Sar Collect and report system activity

Mpstat Multiprocessor usage

Numastat NUMA-related statistics

Pmap Process memory usage

Netstat Network statistics

Iptraf Real-time network statistics

tcpdump, ethereal Detailed network traffic analysis

Nmon Collect and report system activity

Strace System calls

Proc file system Various kernel statistics

KDE system guard Real-time systems reporting and graphing

Gnome System Monitor Real-time systems reporting and graphing

Lmbench Microbenchmark for operating system functions

Iozone File system benchmark

Netperf Network performance benchmark

 Table 12: Linux resource utilization tools

For windows in (arik books) in his Operating System and Process Monitoring Tools survey provides a good

description the available windows monitoring tools.

Tool Most useful tool function

Task Manager (taskmgr) fast look into the current system state

Performance Monitor (perfmon) acts as both a real time and log-based performance monitoring

tool

Process Monitor (pmon) real-time monitoring of process performance

Process Explode (pview) provides a vast amount of performance data of processes, threads,

memory, and the system in general.

68

Process Viewer (pviewer) shows a subset of the process performance measurements shown

by Process Explode

 Table 13: Windows resource utilization tools

The table below lists some of the tools that can be used for database monitoring and resource utilization for

main of the databases.

Vendor Database

Target

Tool Name Most useful tool function

Oracle Oracle Oracle

Enterprise

manager

 Provide real time statistics of the following

resources utilized by the database

 Cpu

 Processors

 Disk Usage

 Memory usage

 Sessions consuming most resources

 Users consuming most resource

 Wait analysis

Oracle Oracle ADDM Analyzes statistics to provide automatic

 Diagnosis of major performance issues.

Jayam

Systems

Oracle MyOra Real Time Performance Monitoring using graphs,

bar charts & pie charts.

 Multiple Performance Monitoring Windows for

same or different databases.

 Ability to show System Waits using pie charts.

 View Top 5 SQLs and its details using interactive

3-D bar charts.

 View Top 5 Resource Using Sessions and its

details using interactive 3-D bar charts.

IBM DB2 Monitor

Switches

Activates collections of DB2 useful information such

as time spent in sorts and other important tuning

information

IBM DB2 Snapshot

Monitor

Administrative

Views

Views that allow querying of performance

information by use of SQL

IBM DB2 Activity Monitor GUI tool that monitors the following

 application performance and concurrency

69

 resource consumption

 SQL statement usage of a database or

database partition.

Microsoft SQL Server SQL Server

Management

Studio

The Activity Monitor in SQL Server Management

Studio graphically displays information about:

 Processes running on an instance of SQL

Server.

 Blocked processes.

 Locks.

 User activity.

Microsoft SQL Server sp_trace_setfilter

(Transact-SQL)

 SQL Server Profiler tracks engine process events

 Monitor server and database activity such as

 deadlocks

 fatal errors

 login activity

Red Gate

Software

Ltd

SQL Server SQL Monitor Real time performance data

 Long running queries

 Blocked processes

 Centralized alerts

 Sun

Oracle

Mysql Mysqladmin Provides tool for querying MySQL performance

counters increment

 Contains information about server run status

Percona Mysql Percona Toolkit MySQL Performance Analyses and maintenance

tools

 Summarize MySQL servers

 Analyze queries from logs and tcpdump

 Collect vital system information when problems

occur

Webyog Mysql Monyog Deadlock Monitoring

 Query Analyzer with Query Sniping

 Disk Monitoring & Lock Monitoring

 Real-Time Monitoring

 Error log Monitoring

 Table 14: Database monitoring and resource utilization tool

:

http://msdn.microsoft.com/en-us/library/ms174404(v=sql.100).aspx
http://msdn.microsoft.com/en-us/library/ms174404(v=sql.100).aspx

70

 Application gathering statistics tools

Vendor Development

Platform

Target

Tool Name Most useful tool function

CodersNotes Windows

based

applications

Very Sleepy

Save application performance information in

documents

Generates call graphs - graphical representation of

procedures and how they relate to each other

C and C++ CPU (central processing unit) profiler.

Microsoft Windows-

based

applications

and

Windows-

hosted

applications

Microsoft Source

Profiles

PROFILE.EXE.

PROFILEW.EXE

Collect statistics and information about Windows

applications

Microsoft Windows

based

applications

VSPerfCmd

Allows profiling applications in a certain mode

Restrict access to the profiler.

Profile applications over all Windows sessions.

Profile using commands.

Set how often application samples should be taken.

Microsoft Windows

based

applications

Xperf Visualizer for analyzing Event Trace Log (ETL)

files.

Microsoft .NET

Applications

CLR Profiler

memory profiling tool

Red Gate .NET

Applications

ANTS Memory

and Performance

Profiler 5.0

Memory and Performance Profililing

Linux Linux based

applications

Linux perf tools Profile application and hardware use

Table 15: Application gathering statistics tools

In addition to the above tools (en.wikipedia.org) in an article titled List of performance analysis tools

provides an overview of the following tools for analyzing performance of applications

71

Name/Vendor
Operating

System
Development platform

Most useful tool

function
License

AQtime by Smart

Bear Software
Windows

.NET 1.0 to 4.0 applications

(including ASP.NET applications),

Silverlight 4.0 applications,

Windows 32- and 64-bit

applications including C,

C++, Delphi for Win32 and

VBScript and JScript functions

Performance profiler

and memory/resource

debugging toolset

Proprietary

CodeAnalyst by

AMD

AMD, Intel

hardware x86

based

machines

Linux, Windows

GUI based code

profiler; does only basic

timer-based profiling on

Intel processors. Based

on OProfile.

Free/open

source

(GPL) or

proprietary

Caliper by HP

HP-UX with

Intel Itanium

Integrity

platform (IA-

64).

Profiling tool

DevPartner by Mi

cro Focus

.NET, Java

Test suite that

automatically detects

and diagnoses software

defects and performance

problems.

Proprietary

DTrace by Sun

Microsystems

Solaris,

Linux, BSD,

Mac OS X

Comprehensive

dynamic tracing

framework for

troubleshooting kernel

and application

problems on production

systems in real time.

Free/open

source

(CDDL)

http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/CodeAnalyst
http://en.wikipedia.org/wiki/AMD
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/HP
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/IA-64
http://en.wikipedia.org/wiki/IA-64
http://en.wikipedia.org/wiki/DevPartner
http://en.wikipedia.org/wiki/Micro_Focus
http://en.wikipedia.org/wiki/Micro_Focus
http://en.wikipedia.org/wiki/DTrace
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Common_Development_and_Distribution_License

72

Name/Vendor
Operating

System
Development platform

Most useful tool

function
License

dynaTrace

byCompuware

.NET, Java, AJAX (for web sites)

Application

Performance

Management

Proprietary

DynInst

Linux,

Windows,Blu

eGene/Q

API to allow dynamic

injection of code into a

running program

Free/open

source

GlowCode Windows

64-bit and 32-bit applications, C,

C++, .NET, and dlls generated by

any language compiler.

Performance and

memory profiler which

identifies time-intensive

functions and detects

memory leaks and

errors

Proprietary

gprof Linux/Unix Any language supported by gcc

Several tools with

combined sampling and

call-graph profiling. A

set of visualization

tools, VCG tools, uses

the Call Graph Drawing

Interface (CGDI) to

interface with gprof.

Another visualization

tool which interfaces

with gprof is KProf.

Free/open

source -

BSD

version is

part

of 4.2BSD

and GNU

version is

part

of GNU

Binutils (by

 GNU

Project)

Linux Trace

Toolkit

Linux Requires patched kernel

Collects data on

processes blocking,

context switches, and

execution time. This

helps identify

http://en.wikipedia.org/wiki/Compuware
http://en.wikipedia.org/wiki/Application_Performance_Management
http://en.wikipedia.org/wiki/Application_Performance_Management
http://en.wikipedia.org/wiki/Application_Performance_Management
http://en.wikipedia.org/wiki/DynInst
http://en.wikipedia.org/wiki/BlueGene
http://en.wikipedia.org/wiki/BlueGene
http://en.wikipedia.org/wiki/GlowCode
http://en.wikipedia.org/wiki/Gprof
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/w/index.php?title=VCG_tools&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=KProf&action=edit&redlink=1
http://en.wikipedia.org/wiki/4.2BSD
http://en.wikipedia.org/wiki/GNU_Binary_Utilities
http://en.wikipedia.org/wiki/GNU_Binary_Utilities
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/Linux_Trace_Toolkit
http://en.wikipedia.org/wiki/Linux_Trace_Toolkit

73

Name/Vendor
Operating

System
Development platform

Most useful tool

function
License

performance problems

over multiple processes

or threads. Superceded

by LTTng.

LTProf Windows
Visual C++, Borland CBuilder,

Delphi and VB applications
CPU profiling tool

LTTng (Linux

Trace Toolkit

Next Generation)

Linux

System software

package for correlated

tracing of kernel,

applications and

libraries

OProfile[2] Linux

Profiles everything running on the

Linux system, including hard-to-

profile programs such as interrupt

handlers and the kernel itself.

Sampling profiler for

Linux that counts cache

misses, stalls, memory

fetches, etc.

Oracle Solaris

StudioPerformanc

e Analyzer[3]

Linux, Solaris C, C++, Fortran, Java; MPI
Performance and

memory profiler

Paraver

Linux, Mac

OS X,

Windows
[4]

For parallel computing clusters

Performance analysis

tool based on trace files;

allows viewing the

progress of the

application in a

temporal axis and also

perform accumulation

of performance metrics

in a table like regular

profilers.

Free/open

source

(LGPL)

http://en.wikipedia.org/wiki/LTTng
http://en.wikipedia.org/w/index.php?title=LTProf&action=edit&redlink=1
http://en.wikipedia.org/wiki/LTTng
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/Oracle_Solaris_Studio
http://en.wikipedia.org/wiki/Oracle_Solaris_Studio
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools#cite_note-3
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/w/index.php?title=Paraver&action=edit&redlink=1
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools#cite_note-4

74

Name/Vendor
Operating

System
Development platform

Most useful tool

function
License

PGPROF by The

Portland Group

Linux,

MacOS X,

Windows

C, C++, and Fortran applications

using OpenMP and MPI parallelism

Sampling and compiler-

based instrumentation

for application profiling

Proprietary

PmcTools FreeBSD

Provides non-intrusive,

low-overhead and

innovative ways of

measuring and

analysing system

performance. It exploits

the same underlying

counters as

Linux'OProfile.

perf tools

Linux kernel

2.6.31+

Sampling profiler

Performance

Application

Programming

Interface(PAPI)

Various

Library for hardware

performance counters

on modern

microprocessors

Pin by Intel
Linux,

Windows

Dynamic binary

instrumentation system

that allows users to

create custom program

analysis tools

Proprietary

but free for

non-

commercial

use

pprof, part of

gperftools

by Google

Sampling profiler with

context-sensitive call

graph capability.

Rational
AIX, Linux,

Solaris,

Performance profiling

tool, memory

Proprietary

http://en.wikipedia.org/wiki/The_Portland_Group
http://en.wikipedia.org/wiki/The_Portland_Group
http://en.wikipedia.org/wiki/OpenMP
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/w/index.php?title=PmcTools&action=edit&redlink=1
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/Perf_(Linux)
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Pin_(computer_program)
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/IBM_Rational_Purify
http://en.wikipedia.org/wiki/Memory_debugger

75

Name/Vendor
Operating

System
Development platform

Most useful tool

function
License

PurifyPlus Windows debugger and code

coverage tool

Shark by Apple

Mac OS X

(discontinued

with 10.7)

Performance analyzer Free

SlowSpotter and

ThreadSpotter by

Acumem

Linux, Solaris
Most compiled languages including

Ada

Diagnose performance

problems related to data

locality, cache

utilization and thread

interactions.

Sysprof Linux

Sampling CPU profiler

that uses a kernel

module to profile the

entire system, as

opposed to a single

application. It displays

the time spent in each

branch of the

applications' calltrees.
[7]

Systemtap Linux

Programmable system

tracing/probing tool;

may be scripted to

generate time- or

performance-counter- or

function-based profiles

of the kernel and/or its

userspace.

Valgrind Linux Any, including assembler System for debugging

and profiling; supports

Free/open

source

http://en.wikipedia.org/wiki/IBM_Rational_Purify
http://en.wikipedia.org/wiki/Memory_debugger
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Shark_(application)
http://en.wikipedia.org/w/index.php?title=SlowSpotter&action=edit&redlink=1
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Cache_(computing)
http://en.wikipedia.org/wiki/Cache_(computing)
http://en.wikipedia.org/w/index.php?title=Sysprof&action=edit&redlink=1
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools#cite_note-7
http://en.wikipedia.org/wiki/Systemtap
http://en.wikipedia.org/wiki/Valgrind

76

Name/Vendor
Operating

System
Development platform

Most useful tool

function
License

tools to either detect

memory management

and threading bugs, or

profile performance

(cachegrind and

callgrind).KCacheGrind

, valkyrie and alleyoop

are front-ends for

valgrind.

(GPL)

VTune Amplifier

XE byIntel

Corporation

Linux,

Windows
C, C++, Fortran, .NET, Java

Tool for serial and

threaded performance

analysis. Hotspot, call

tree and threading

analysis works on both

Intel and AMD x86

processors. Hardware

event sampling that uses

the on chip performance

monitoring unit requires

an Intel processor.

Proprietary

RotateRight

Zoom

Linux
Supports most compiled languages

on ARM and x86 processors.

Graphical and

command-line statistical

(event-based) profiler

Table 16: Application performance analysis tools

http://en.wikipedia.org/wiki/KCacheGrind
http://en.wikipedia.org/wiki/KCacheGrind
http://en.wikipedia.org/wiki/VTune
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/RotateRight_Zoom
http://en.wikipedia.org/wiki/RotateRight_Zoom

77

APPENDIX B: ADDM OUTPUT REPORT

ADDM Report for Task 'ADDM:1229390655_1_1965'

Analysis Period

AWR snapshot range from 1964 to 1965.

Time period starts at 12-FEB-13 06.00.19 AM

Time period ends at 12-FEB-13 06.08.41 AM

Analysis Target

Database 'ORCL' with DB ID 1229390655.

Database version 11.2.0.2.0.

ADDM performed an analysis of instance orcl, numbered 1 and hosted at

localhost.localdomain.

Activity During the Analysis Period

Total database time was 489 seconds.

The average number of active sessions was .97.

Summary of Findings

 Description Active Sessions Recommendations

 Percent of Activity

 -- ------------------- ---------------

1 Virtual Memory Paging .97 | 100 1

2 Top SQL Statements .58 | 60 2

3 Top Segments by "User I/O" and "Cluster" .24 | 24.77 1

4 Commits and Rollbacks .03 | 2.91 2


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


 Findings and Recommendations

Finding 1: Virtual Memory Paging

Impact is .97 active sessions, 100% of total activity.

--

Significant virtual memory paging was detected on the host operating system.

 Recommendation 1: Host Configuration

 Estimated benefit is .97 active sessions, 100% of total activity.

 Action

 Host operating system was experiencing significant paging but no

 particular root cause could be detected. Investigate processes that do

 not belong to this instance running on the host that are consuming

 significant amount of virtual memory. Also consider adding more physical

 memory to the host.

78

Finding 2: Top SQL Statements

Impact is .58 active sessions, 60% of total activity.

SQL statements consuming significant database time were found. These

statements offer a good opportunity for performance improvement.

 Recommendation 1: SQL Tuning

 Estimated benefit is .35 active sessions, 36% of total activity.

 --

 Action

 Run SQL Tuning Advisor on the DELETE statement with SQL_ID

 "94zaccf3h3zgw".

 Related Object

 SQL statement with SQL_ID 94zaccf3h3zgw.

 DELETE FROM PROCESSED_DATA WHERE PROCESSED_DATA.PAYROLL_NO = :b1 AND

 PROCESSED_DATA.PRD_CODE = :b2

 Rationale

 The SQL spent 100% of its database time on CPU, I/O and Cluster waits.

 This part of database time may be improved by the SQL Tuning Advisor.

 Rationale

 Database time for this SQL was divided as follows: 100% for SQL

 execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java

 execution.

 Rationale

 SQL statement with SQL_ID "94zaccf3h3zgw" was executed 935 times and had

 an average elapsed time of 0.11 seconds.

 Rationale

 At least one execution of the statement ran in parallel.

 Rationale

 Full scan of TABLE "P15_2680_94.PROCESSED_DATA" with object ID 101437

 consumed 100% of the database time spent on this SQL statement.

 Recommendation 2: SQL Tuning

 Estimated benefit is .19 active sessions, 20% of total activity.

 --

 Action

 Run SQL Tuning Advisor on the SELECT statement with SQL_ID

 "fkv43164kf4rz".

 Related Object

 SQL statement with SQL_ID fkv43164kf4rz.

 SELECT COUNT(*) FROM PROCESSED_DATA WHERE

 PROCESSED_DATA.PAYROLL_NO = :b1 AND PROCESSED_DATA.PRD_CODE = :b2

 Rationale

 The SQL spent 83% of its database time on CPU, I/O and Cluster waits.

 This part of database time may be improved by the SQL Tuning Advisor.

 Rationale

 Database time for this SQL was divided as follows: 100% for SQL

 execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java

 execution.

 Rationale

 SQL statement with SQL_ID "fkv43164kf4rz" was executed 935 times and had

 an average elapsed time of 0.099 seconds.

 Rationale

 At least one execution of the statement ran in parallel.

79

 Rationale

 Full scan of TABLE "P15_2680_94.PROCESSED_DATA" with object ID 101437

 consumed 83% of the database time spent on this SQL statement.

Finding 3: Top Segments by "User I/O" and "Cluster"

Impact is .24 active sessions, 24.77% of total activity.

--

Individual database segments responsible for significant "User I/O" and

"Cluster" waits were found.

 Recommendation 1: Segment Tuning

 Estimated benefit is .24 active sessions, 24.77% of total activity.

 Action

 Run "Segment Advisor" on TABLE "P15_2680_94.PROCESSED_DATA" with object

 ID 101437.

 Related Object

 Database object with ID 101437.

 Action

 Investigate application logic involving I/O on TABLE

 "P15_2680_94.PROCESSED_DATA" with object ID 101437.

 Related Object

 Database object with ID 101437.

 Action

 Look at the "Top SQL Statements" finding for SQL statements consuming

 significant I/O on this segment. For example, the DELETE statement with

 SQL_ID "94zaccf3h3zgw" is responsible for 100% of "User I/O" and

 "Cluster" waits for this segment.

 Rationale

 The I/O usage statistics for the object are: 97240 full object scans,

 52098200 physical reads, 3233 physical writes and 52098200 direct reads.

 Symptoms That Led to the Finding:

 Wait class "User I/O" was consuming significant database time.

 Impact is .24 active sessions, 24.77% of total activity.

Finding 4: Commits and Rollbacks

Impact is .03 active sessions, 2.91% of total activity.

Waits on event "log file sync" while performing COMMIT and ROLLBACK operations

were consuming significant database time.

 Recommendation 1: Application Analysis

 Estimated benefit is .03 active sessions, 2.91% of total activity.

 --

 Action

 Investigate application logic for possible reduction in the number of

 COMMIT operations by increasing the size of transactions.

 Rationale

 The application was performing 1242 transactions per minute with an

 average redo size of 1001 bytes per transaction.

 Recommendation 2: Host Configuration

80

 Estimated benefit is .03 active sessions, 2.91% of total activity.

 --

 Action

 Investigate the possibility of improving the performance of I/O to the

 online redo log files.

 Rationale

 The average size of writes to the online redo log files was 0 K and the

 average time per write was 3 milliseconds.

 Rationale

 The total I/O throughput on redo log files was 0 K per second for reads

 and 30 K per second for writes.

 Rationale

 The redo log I/O throughput was divided as follows: 0% by RMAN and

 recovery, 100% by Log Writer, 0% by Archiver, 0% by Streams AQ and 0% by

 all other activity.

 Symptoms That Led to the Finding:

 Wait class "Commit" was consuming significant database time.

 Impact is .03 active sessions, 2.91% of total activity.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


 Additional Information

Miscellaneous Information

Wait class "Application" was not consuming significant database time.

Wait class "Concurrency" was not consuming significant database time.

Wait class "Configuration" was not consuming significant database time.

CPU was not a bottleneck for the instance.

Wait class "Network" was not consuming significant database time.

Session connect and disconnect calls were not consuming significant database

time.

Hard parsing of SQL statements was not consuming significant database time.

81

APPENDIX C: EXPERMENTATION DATA SHEETS

Intel 2 duo core,8GB RAM, HOST os Solaris 32 bit,

Application server setings cpu 1, memory 2GB Held constant

Database memory 1 GB held constant

Number

of cpus

available

to

database

servers

start stop secs start stop secs start stop Sec start stop Secs Response

Time

(Seconds)

Average

1 11;32:55 11;34:11 76 11:40;41 11;42:06 85 11:46:29 11:47:57 88 11:52:58 11:51:30 88 84 337

2 10:33:02 10.35.12 130 10:59:50 11:02:28 158 11:07:53 11'10:29 156 11:16:51 11:19:30 159 215 0.93

3

4

HP I7 4 cores,8GB RAM, HOST Windows 64 bit,

Application server setings cpu 1, memory 2GB Held constant

Database memory 1 GB held constant

Payroll data for only two months existing

Number

of cpus

available

start stop secs start stop secs start stop sec start stop Secs Response

Time

(Seconds)

total

82

to

database

servers

1 4:42:10 4:42:40 30 4:31:31 4:32:02 31 4:35:44 4:36:14 30 4:39:14 4:39;43 29 30 120

2 4:50:27 4:51:01 34 4:54:35 4:55:09 34 4:59:24 4:59:58 34 5:02:39 5:03;13 34

3 5:13:21 5:13:59 38 5:17:57 5:18:36 39 7:31:59 7:32:39 40 7:34:48 7:35:29 41

4 7:42:34 7:43:20 46 7:47:32 7:48:19 47 7:51:11 7:52:02 51 7:53:39 7:54:28 0:00:00

Memory tests for database server

cpu 1, application server settings held constant,memory allocated to database changed to 40% of total memory

Memory

available

to

database

servers

start stop secs start stop secs start stop sec start stop secs

1GB 8:55:23 8:55:54 31 8:57:32 8:58:03 31 9:00:21 9:00:53 32 9:03:35 9:04:06 31

2GB 10:19:38 10:20:10 32 10:22:57 10:23:29 32 10:34:37 10:35:11 34 10:37:51 10:38:23 32

3GB 10:54:55 10:55:29 34 11:01:19 11:01:52 33 11:08:52 11:09:24 32 11:11:52 11:12:24 32

4GB 12:58:36 12:59:10 34 1:01:43 1:02:19 36 1:05:41 1:06:16 35 1:09:20 1:09:54 34

HP I7 4 cores,8GB RAM, HOST Windows 64 bit,

Testing using payroll data for previous years, application server, 1 cpu,3GB, database server 1cpu, 4GB

83

Historicsl

data

available

start stop secs start stop secs Average response time

2 months 5:58:28 5:59:00 32 6:06:21 6:06:54 33 33

1 year 5:29:34 5:30:24 50 5:39:21 5:38:31 50 50

2 years 4:50:18 4:51:32 74 4:55:13 4:56:28 75 75

3 years 7:11:13 7:12:53 100 7:17:11 7:18:52 101 101

Dell poweredge server 64 GB RAM, Intel Xeon 4807, 1.87 GHZ, details provided

Application server setings cpu 1, memory 2GB Held constant

Database memory 1 GB held constant

Payroll data for only two months existing

Number

of cpus

available

to

database

servers

start stop secs start stop secs start stop sec start stop secs Avg

response

time

1 4:55:46 4:57:08 82 4:59:55 5:01:10 75 5:04:34 5:05:54 80 5:21:24 5:22:48 82 80 319

Table 17: Experimental data sheets

