UNIVERSITY OF NAIROBI
SCHOOL OF COMPUTING AND INFORMATICS

CUSTOMIZED DATABASE AND SYSTEMS
TUNING METHODOLOGY: A CASE OF PAYROLL
PROCESSING OPTIMIZATION

BY

MICHAEL NJOROGE MUKIRI
P58/61516/2010

SUPERVISOR: MR. ANDREW KAHONGE

MAY 2013

Submitted in partial fulfillment of the requirements of Masters of Science in Computer Science



DECLARATION

This research project, as presented on this report is my original work and to the best of my knowledge has

not been presented for any other university award.

Mukiri Michael Njoroge
P58/61516/2010
Signed: ..o

Date: o,

This project has been submitted as part of fulfillment of the requirements for the award of Masters of
Science in Computer Science of the School of Computing and Informatics of the University of Nairobi,

with my approval as the University Supervisor.

Mr. Andrew Mwaura

Signed: ......oooiiiiii

Date: oo,



ACKNOWLEDGEMENTS

My sincere appreciation to the following persons who made this research project a success.
Mr. Andrew Mwaura, my supervisor for his invaluable counsel and guidance.

Dr. Eike Schallen, my supervisor in Germany for his invaluable counsel and guidance.
Prof Gunter Saake, for his guidance and feedback.

Dr. Dan Orwa, for his guidance and feedback.

Dr. Agnes Wausi, for her guidance and feedback.

Lecturers, School of Computing and Informatics for sharing knowledge and contribution in developing

Kenyans through higher education.
DAAD, for facilitating my studies.
My family, for believing in me.

May God bless you.



DEDICATION

For my wife Loise Muthoni.

For my daughter Yvonne Wanjiru.



ABSTRACT

Performance of database applications is becoming increasingly important as more and more processes are
automated in organizations. Most businesses rely heavily on database systems and non-optimal
performance of computer system has an immediate negative impact on business. With internet becoming
cheaper and millions of mobile phones being used to access systems, business applications are under

pressure to perform optimally and support business needs.

An evaluation and analysis of existing database and application tuning methodologies was conducted and
gaps identified. An integrated holistic database and application fine tuning methodology was developed
that tried to address the identified gaps. The aim of the methodology is to guide the tuning expert in
identifying bottlenecks in various tiers (Database, Network, and Application) that can have impact on
performance. In each of the tiers the main bottlenecks that should be looked out for are highlighted and
resolutions of how to resolve them are also suggested. The developed methodology makes no assumption
as to which tier contains the bottleneck but gives guidelines on how various bottlenecks can be identified in
each tier. In addition an overview of existing tools for gathering performance statistics and utilizations
statics for various tiers is given. To address the challenge of choosing which bottleneck to resolve first,
ranking formulae is suggested that ranks bottlenecks based on their overall expected improvement in
performance after resolution of the bottleneck, cost of resolving the bottleneck and the time taken to resolve

the bottleneck. The bottleneck with highest rank is resolved first.

The methodology was applied on a poorly performing payroll application and it was proven that response
time of the payroll application could be improved significantly by eliminating identified bottlenecks. By
use of the methodology it was illustrated how tuning experts can approach the tuning exercise in a more
structured and holistic approach with the sole purpose of identifying and resolving bottlenecks in any tier as
fast and cost effective as possible. The tuning developed database application tuning methodology can be

in-cooperated in database and systems administrators’ standard operating manuals as a tuning guide.



TABLE OF CONTENTS

DECLARATION . ...ttt bbb et bbbt e sn bbbt e e e arens ii
ACKNOWLEDGEMENTS ...t sr e ene s iii
DEDICATION. ...ttt e b et E R e bbb s r bt b e b e e e e r e b bt en s iv
ABSTRACT e b e e R r Rt nre s %
TABLE OF CONTENTS ..ottt bbbt nn e ene s Vi
LIST OF FIGURES ..ottt nr e sr e viii
LIST OF TABLES. ... ix
LIST OF ABBREVIATIONS ..ot X
CHAPTER 1: INTRODUCTION ......cooiiiiiiiiiiiiiiie s b s 1
1.1 BACKGROUND ..ot 1
1.2. PROBLEM STATEMENT ....oiiiiiiii s 2
1.3. PURPOSE STATEMENT ..ottt e s 2
1.4. SIGNIFICANCE OF THE STUDY ....ooiiiiiiiiiiii e 2
1.5, OBIECTIVES ... 2
1.6. RESEARCH QUESTIONS.......coiiiii e s 3
1.7. SCOPE AND LIMITATION ...ttt 3
1.8. EXPECTED PROJECT OUTCOMES AND THEIR POTENTIAL IMPACTS ......ccccoviirenene, 3
CHAPTER 2: LITERATURE REVIEW ..ottt s 4
2.1. INTRODUGCTION ...ttt bttt sr bt e e nnennenne s 4
2.2. CURRENT TUNING FOCUS ..ottt 4
2.3. REVIEW OF CURRENT TUNING METHODOLOGIES .........cccootiiiiiieienneseeeeee s 6
2.4, SUMMARY AND CRITIQUE OF REVIEWED TUNING METHODOLOGIES.................... 11
2.5. CONCEPTUAL MODEL ..ottt s 11
CHAPTER 3: METHODOLOGY ..ottt sn e snesn e eennennenne 13
3.1. RESEARCH DESIGN .....ooiiiiiiiiie e 13
3.2. DATA SOURCES. ..ot e s 16
3.3. DATA COLLECTION ..ottt 17
3.4. DATA COLLECTION TOOLS ... .ottt 17
3.5. DATA ANALYSIS .. 17
3.6. LIMITATIONS OF METHODOLOGY .....cooiiiiiiiiiieiei e e 18
CHAPTER 4: RESULTS ...ttt bbb 19
41. INTEGRATED DATABASE APPLICATION TUNING HOLISTIC METHODOLOGY ....... 19
4.2. APPLICATION OF METHODOLOGY ....ooiiiiiiitiiit ittt 38
CHAPTER 5: DISCUSSIONS CONCLUSION AND RECOMMENDATIONS......ccoooiiiirerieee e 58

Vi



5.1. ACHIEVEMENTS ...t 58

5.2. VALIDATION OF THE CONCEPTUAL MODEL.....ccccooiiiiiiiiie 60
5.3. VALIDATION OF THE RANKING FORMULAE .......ccccoiiiiii 62
5.4. LIMITATIONS AND CHALLENGES ... 62
5.5. DISCUSSIONS ..o r bt bt re e 64
5.6. SUGGESTED FURTHER RESEARCH........cccoiiiiiii 65
REFERENCES ...t r bbb sr e r bbbt n e n e nre e 66
APPENDIX A: RESOURCE UTILIZATION COLLECTION TOOLS.......cccoiiiiiniicin 67
APPENDIX B: ADDM OUTPUT REPORT ..ottt e 77
APPENDIX C: EXPERMENTATION DATA SHEETS ......oiiiiiiii e 81

vii



LIST OF FIGURES

Figure 1: Problem TdentifiCation ..........cocoviieieiiie sttt ee e 6
Figure 2: ROOt CaUSE ANAIYSIS ....ccveiviiiiiieieiesiesteseste e e e e st te e steete e e e aeseesbestesreese e st esee st e tesreereeneenseseenrenes 7
Figure 3: Top down Tuning MethodoIOgy .........ccvieiiiieiieieiise et sre s 9
Figure 4: Conceptual IMOUEN ...........ciiiiiiiii bbb 12
FIQUIE 5 WaITADIES ..o bbbt et b bbb 15
Figure 6: N-tier phySical arChiteCtUIE ..........coviiiiiii e 23
Figure 9: KDE System Guard Memory MONITOTING ....c..ourerieirienieinienieisiesieis e 25
Figure 10:True throughput for 8 KB 1/Os for different drive SPeeds...........ccccovereriieneininenceseee e 26
FIQUIE 11 VMSEAL OULPUL....eviiieiicieicie ettt ettt et s b e e na e s e e e et eseesbesneeneereeneesee e e e es 27
Figure 12: Potential 1/0 DOHIENECK...........civieiiciec et see e 28
Figure 13: KDE System Guard Network MONITOING ......cccueiieiieieeieeiie e seeste e se e s sae e 29
Figure 16: Payroll @rChitECIUIE .........cveiie et sne e sneeaeenes 39
Figure 17: Client computer CPU ULIIIZAION ........ccvviiiie e 40
Figure 18: Database server top CPU ULHIZALION .........cooviiiiiiiiieee e 40
Figure 19: Client computer memory ULIIZAtION...........cooiiiiiiiiiee e 41
Figure 20: Database Server top memory UtHHZAtION ...........cooviiiriiiiniee e 41
Figure 21: Client computer DisK ULITIZATION ........ccooiiiiiiii e 42
Figure 22: Database Server 1/O ULHZAtION .........cooiiiiiiiece e 43
Figure 23: Client computer Network UtHHIZAtioN ............coveiiee i 44
Figure 24: Database server NetWork UtHHZAtiION ............ccooieiieiiiie i 44
Figure 25: Database performanCe OVEIVIEW ........cc.vciviueiieiiee e s seeste e e st ste e ta e te e ae e e e sneenaeeeeenes 45
Figure 26: Database CPU USAJE ......cccvvieeiiiiieitieste e eteseesee e e steesteatesneeassestsesta e taesteassesseesneesneesneenneenseanes 45
Figure 27: Database runnable PrOCESSES ......ccviirieirieieiieseeseeseesteesteeste et e et e st e ste e ta e e e aesseesreesraesreenneeneeenes 45
Figure 28: Database AVErage ACLIVE SESSIONS ........cuiiiiirierieirietesisie ettt sbe e 46
Figure 29: Database throUGNPUL...........ooviiiiie bbb 46
Figure 30: Database 1/O throUGNPUL ..o 46
Figure 31: Database 1/O throUGRPUL .........ooiiii e 47
Figure 32: Database Parallel EXECULIONS ..........coiiiiiiiiiiriieeees e 47
Figure 33: Database TOP ACLIVITY ......ciiiiiiiiiece ettt et et a et esreesaeesaeenaeenes 48
Figure 34: Database Automated Database Diagnostic Monitoring tool (ADDM) RuN ..........cccccevvevieenenne, 48
Figure 35: Oracle VIrtual PAgiNG .......ccvoviiieiieiieie e te sttt e ba e e e ae e sraesneesaeesaeenneenes 49
Figure 36: Free memory ULHHZAtION .........ocviiiiiicce ettt sae e nae s 49
Figure 37: TOp MEMOIY ULTHZATION .........oiiiiiecie ettt ste e sae e sne e ae s 49
Figure 38: Oracle 1/0 ULHHZALION ..ot 50
Figure 39: Payroll reSPOoNSe tiMe PEI SEIVET ........oiiiiiiieiirieieesie ettt bbb 53
Figure 40: Payroll response time vS. NiStOrical data ...........coviiriiiiiiee e 55
Figure 43: Conceptual MOUEL..........c.oiiiiiiiie bbb 60

viii



LIST OF TABLES

Table 1: Summary and Critique of Reviewed Tuning Methodologies ..........ccccveveieieiivesin i 11
Table 2; INdependent VariahIES .........c.ciuiiiiiie ittt re e n e e e nrenns 14
Table 3: Independent and Dependent Variables ...........ccceceieiiiiecieiesese s s 14
Table 4: Indicators for NEtWOIrK @NaIYSIS..........cviiriiiiiieiie et 30
Table 5: ToOp five datahaSES WAL ..........coeiiiiiiie bbb 33
Table 6: SErver SPECITICALIONS .........ciiiie it b e b et b ettt eb b 52
Table 7: RESPONSE TIME PEF SEIVET ....eviieiiiteieeieet ettt sttt sttt et b bt eb e se bbb e bbb ebesbe e ebeane e 52
Table 8: Payroll historical data VS reSPONSE tIME..........coeiiiiiiiiiieecr e 55
Table 9: UNranked DOLLIENECKS ........c.viiiieiiiiec ettt sb e erenne e 56
Table 10 : RANKEU DOLHIENECKS ......cviiiiiiieiiie ettt st sb et sb e ebe b 57
Table 11: RaNKed DOLHIENECKS ..ot st sb e ere b 62
Table 12: Linux resource Utilization t0O0IS ...........ooiiiiiiiiiiee e s 67
Table 13: Windows resource Utilization tOOIS ...........coooiiiiiiiiiiiccee e s 68
Table 14: Database monitoring and resource Utilization t0O01 .............cccooeiiiiniininiere e 69
Table 15: Application gathering StatiStiCs t001S.........coueiiiiiiiiiieiee e 70
Table 16: Application performance analysis tOO0IS..........cccviiiiiiiiieiee e 76
Table 17: EXperimental data SHEELS ........coviiii it 83



LIST OF ABBREVIATIONS

ADDM
APP
ATA
CBO
CPU
KPH
SQL
RAID
RDBMS:
scsl
SAS
SATA
SQA
)

: Automated Database Diagnostic Monitor.
: Application

: Advanced Technology Attachment

. Cost Based Optimizer

: Central processing Unit

. Kilometers per hour

: Structured Query Language

: Redu’ndant Array of Independent Disks

Relational Database Management System

: Small Computer System Interface
: Serial attached SCSI

: Serial ATA

: Semantic Query-based Annotation
: Solid State Drives



CHAPTER 1: INTRODUCTION
1.1. BACKGROUND

System performance has become increasingly important as computer systems get larger and more complex
with Internet playing a bigger role in business applications. Systems access is increasing almost
exponentially with the proliferation of mobile devices. It is expected in the near future that mobile devices
will surpass personal computers in accessing systems. Consequently, with increased usage and as the world
become exceedingly computerized more will be demanded from existing applications. Systems that do not
scale up to higher levels of workload appropriately or are currently experiencing performance challenges
will almost grind to a halt, users and business needs will continue not to be met satisfactorily. The necessity
for business applications to meet business needs and to scale up adequately is a key motivator of

performance tuning.

For database application systems to function optimally, performance has to be designed and built into a
system. It does not just happen. An application depends on multiple components for its optimal
performance, it performs sub optimally not because its components are saturated but because one
component acts as a bottleneck to overall performance of system (Sasha, 2003).Performance problems are
usually the result of contention for, or exhaustion of, some system resource. When a system resource is
exhausted, the system cannot scale to higher levels of performance. By eliminating resource conflicts,

systems can be made scalable to the levels required by the business. (Immanuel, 2011)

It is widely believed by tuning experts that Performance tuning and optimizations of applications and
databases is more of an art than a science. It is a task which is not easy to quantify or automate with
decision rules. Burleson (2009) compares database application tuning to fixing a vehicle as it cruises down
the road at 80 KPH. It’s a dynamic environment where variables and parameters change constantly and the
act of measuring performance can have an impact upon performance itself. It is for this reason that a
systematic and structured approach of tuning and optimizing database applications is paramount to ensuring
the task of tuning is not a nightmare for the expert. Performance strategies are required that give clear and
simple steps that can lead to identification and resolution of bottlenecks which will result to dramatic

improvement of database application system performance

System performance is further complicated by databases and applications being dynamic environments
where data volumes and user populations grow, new versions of applications and databases being
implemented, and server configurations changing constantly. These database and application changes make

performance unpredictable and uncertain. (Quest, 2010)



1.2. PROBLEM STATEMENT

Many methodologies exist of tuning and optimizing application and databases separately, little attention
has been given to formulating a holistic approach of tuning applications and databases in a good
documented and systematic approach.

Existing application tuning approaches are either application specific or are proposed by vendors whose
tuning software’s use the recommended approaches. Existing database tuning methodologies focus so much
on the database that they downplay the role of other components such as the operating system and middle

layer tier in overall performance of the application.

1.3. PURPOSE STATEMENT

The purpose of the project has been to develop a customized and integrated application and database tuning
methodology from selected existing methodologies. The customized methodology will be holistic in nature
and will take into consideration all components that have an impact on system performance.

The methodology will also be applied to solve a real world performance application issue.

1.4. SIGNIFICANCE OF THE STUDY

The study developed a customized integrated application and database tuning approach that can assist both
novices and experts to tune their applications
Organizations can include the developed methodology as standard operating procedures of Database
Administrators for directing tuning activities
The study has also demonstrated how the methodology can be used in a real world performance problem

scenario.

1.5.0BJECTIVES

The overall object of the study was to propose a methodology to find a solution as opposed to
recommending specific remedies for specific problems. The reason for this is that solutions belong to a
problem and there is no single problem which is always the culprit for poor performance in database
applications. The proposed methodology was also applied to fine tune a poorly performing payroll

application for a large organization
Specific objectives of the project were:-

1. To study systems performance tuning especially in database oriented applications.

2. To review the existing application and database tuning methodologies with an intention of
identifying gaps.

3. Todevelop a customized integrated holistic tuning approach that addresses identified gaps.

4. To apply the customized methodology in a real world performance problem.



1.6. RESEARCH QUESTIONS
1. What are the various factors/bottleneck that contribute to poorly performing database
applications?
2. Do existing fine tuning methodologies have gaps that can be addressed?
3. How can an integrated customized database and application tuning methodology be developed to
address identified gaps?

4. Can the methodology developed be applied in a real world performance problem scenario?

1.7. SCOPE AND LIMITATION

The study focused on reactive database application tuning or bottleneck elimination as opposed to proactive
tuning. In reactive tuning a performance optimization exercise is carried out where system performance has
already degraded to below users’ expectation or set baseline. Proactive tuning on the other hand is
continuously monitoring system behavior and resource usage and occasionally making configuration
changes. (Immanuel, 2011)

The study also focuses on transactional oriented applications where response time and throughput is a

critical factor to overall system performance.

1.8. EXPECTED PROJECT OUTCOMES AND THEIR POTENTIAL IMPACTS

The result will be a customized tuning methodology that can be used in identifying and subsequent
resolution of bottlenecks. Some of the distinct benefits and advantages of utilizing the methodology
include:

e Clearly documented systematic steps to guide an application tuning exercise.
e Critical examination of the main tiers that have an impact on system performance without
downplaying or overemphasizing role played by any component.
e  Guidance on potential bottlenecks to look out for in the various tiers.
e Foridentified bottlenecks best approach in resolving them are recommended.
o Development of an integrated application and database tuning methodology.
e End result of application of the methodology is a system with the following characteristics
O Better response times: The tasks are completed in a smaller amount of time.
o Higher Throughput: Faster execution of tasks which means increased throughput. A

large number of tasks can be performed in a given unit of time.



CHAPTER 2: LITERATURE REVIEW
2.1. INTRODUCTION

Performance tuning or optimization of system performance is mainly concerned with improving the system
to perform better. Performance tuning as explained in the scope and limitation section can either be
proactive or reactive. In reactive tuning motivation for such an exercise can be referred to as a performance
problem. This performance problem can be a crippling bottleneck that makes the system unable to meet

business needs or completely unusable. Immanuel (2011) postulates as follows

“Usually, the purpose for tuning is to reduce resource consumption or to reduce the elapsed time
for an operation to complete. Either way, the goal is to improve the effective use of a particular
resource. In general, performance problems are caused by the overuse of a particular resource.

The overused resource is the bottleneck in the system. “

Performance problems also arise when a system is unable to scale gracefully with an increased workload.
Designers, developers and administrators usually aim for linear scalability this is whereby system

throughput is directly proportional to the computer resources (number of CPUS’, memory).
Several components or tiers contribute to the overall system performance, these are:-

e  Application tier
o Middle layer/Application server
e  Network tier
e Database tier
e Hardware and operating system tier
Identification of which tier is the bottleneck and subsequent tuning of the tier and any other related tier is

key to resolving performance problems in applications.

2.2. CURRENT TUNING FOCUS

Due to the potential possibility of degraded system performance affecting business negatively various
researchers and vendors have focused their energies on system performance tuning. Majority of these are:-

e Mainstream database vendors for example, oracle,db2,SQL server

e Performance tuning experts for example Burleson Consulting, Quest
software

e Mainstream ERP vendors for example PeopleSoft ,SAP

e Performance tuning Books for example Database Tuning by Dennis Sasha

and The Data Access Handbook by John Goodson



Depending on the vendor or researcher directing the tuning exercise focus seems to shift from the

application server, middle tier to database tier.

Quest (2010) asserts that SQL optimization, indexing, and database parameters changes offer the best
opportunity to improve database and application performance. Careful tuning of the two results to
considerable savings by delaying expensive hardware upgrade, avoiding time-consuming database
redesigns which in turn lead to systems been able to meet the business needs.

Quest (2010) further states that poor performing SQL statements and indexes are responsible for 60 to 90
percent of application performance problems. He claims that according to industry experts, SQL activities
typically consume as much as 70% of the system resources in a database server. In many cases, resource
consumption by SQL activity can be as reach as high as 80-90%.

.John (2009) on the other hand focuses on the middle layer, he takes the stance that within the last 10 years,
the vast majority of slowdown in applications that are database oriented has shifted from slowdown on the
database server itself to slowdown on (or caused by) the application server. Problems at the application
level include database driver issues, connection pooling and erroneous configurations. He further
emphasizes that breakthrough database and application performance can be achieved by optimizing
middleware and connectivity He claims that traditional database tuning isn't nearly enough to solve the
performance problems that applications experience and that 75-95% of the time it takes to process a data

request is typically spent in the database middleware.

Consider, another view expressed by Isam (2011) is that when troubleshooting a poorly performing
application, investigations should be done to identify where majority of the application time is being spent.

He concurs with Quest (2010) that 80 % of performance issues are database related.

Toadworld (2010) stresses the importance of not underestimating application tuning. The author claims that
as much as 80 percent of performance gains will be accomplished by application tuning through effective

writing of SQL statements.
Immanuel (2011) proposes a more balanced focus when he states as follows:-

“The ultimate measure of success is the user's perception of system performance. The performance
engineer's role is to eliminate any bottlenecks that degrade performance. These bottlenecks could be
caused by inefficient use of limited shared resources or by abuse of shared resources, causing
serialization. Because all shared resources are limited, the goal of a performance engineer is to

maximize the number of business operations with efficient use of shared resources.”



2.3. REVIEW OF CURRENT TUNING METHODOLOGIES

ISAM (2011) advances the following application tuning methodology to solve Performance Issues related
to Ebusiness suite. The methodology has some tuning steps that are applicable to most database oriented

applications.

1. The problem should be defined clearly and a clear understanding of the performance problem and

where the application is spending most time obtained.

(App)

I Time spent in database

Executing task
T
SERLETEELEEE Time spent in middletier
processing

Figure 1: Problem Identification

2. The right data to analyze the performance issue should be gathered; the use of specific oracle

database tools is demonstrated.

3. The root cause of the problem should be isolated and possibly additional data gathered.
Investigations of where the time is going? Who is consuming the most time? Why is that

happening? Should be carried out, he states that 80% of performance issues are database related.



Obtain a"Good"
SQL Trace Start End

2t Get CLient
Tlmgér;the Process
: Diagnostics =
- Search for Known |ssues
-Send all diagnostic data and il
analysis to Support/Dey
e Get PL/SQL *
ek Profiler
xecution? Report

Get AWR & Take Remedial

A few bad Analyze AWR  |—p

5QLs 7 0S Stats [ " Actions
T T
Get -
Analyze Execution
sacpamcr, e e
g hon Repo Plan ? YES ? g

Figure 2: Root Cause Analysis

4. A search for a known solution or workaround that addresses the root cause of the problem should
be conducted.

5. If it is a product issue, it should be passed on to the right information to support or the
development team through the regular channels

6. A temporary workaround should be identified to alleviate the issue while a product fix is obtained.

An alternative tuning methodology is proposed by Toadworld (2010), though biased to the database side it

nevertheless contains general guidelines that can be used to tune applications.

The methodology starts by emphasizing the need to establish a set of quantifiable goals that directly relate
to a reason for tuning. The goals ought to be kept in mind as modifications are evaluated and considered for

the system. The tuning goals should be specific and measurable rather than generic.



The methodology stresses that the operating system should be performing at its peak before any attempt to
tune the database are conducted.

The following structured methodology is proposed:-

1. Optimization of the Application Workload
Applications should contain effective SQL statements; this is achieved by utilizing hints, indexes, and
bind variables whenever necessary to obtain optimal performance.

The application developer should have a solid understanding of SQL processing, including:

= DML (Data Manipulation Language)
= DDL (Data Definition Language)

=  Transaction control

= Shared SQL and PL/SQL areas

= Optimizer modes

= Parallel query

2. Tuning Contention
The author argues that contention occurs when a process competes with another process for the same
resource simultaneously. This causes processes to wait for a resource on the database system and can

have an effect on performance. Investigations should be carried out to identify and resolve contentions.

3. Minimize Physical 10

Careful sizing of memory structures to allow sufficient information to be stored in memory is advocated
for. This is because memory access is significantly faster than disk access, it is always better to satisfy
requests for information in memory than from disk. Tuning memory allocation involves proper memory
distribution to each database area while ensuring that paging and swapping is not occurring at the operating
system level.

4. Optimize Physical 10
Disk contention usually occurs when multiple processes try to access the same disk simultaneously.
When the maximum number of accesses to a disk has been reached, other processes will need to wait
for access to the disk. The author emphasizes the importance of ensuring database files are evenly

distributed throughout the operating systems to ensure disk contention does not occur.

5. Best Practices



The following of best practices as guidelines to ensure that tasks are done in a way that is recognized as
generally acceptable is advocated for. Caution is however given that special considerations in specific

environments can preclude the use of one or more of recommended best practices.

Immanuel (2011) on behalf of oracle proposes a more balanced methodology that is highly iterative. He
notes that a common pitfall in performance tuning is to mistake the symptoms of a problem for the actual
problem itself. The author suggests that performance statistics indicate the symptoms, and that identifying
the symptom is not sufficient data to implement a remedy. An example of slow physical 1/0O which is
usually caused by poorly-configured disks is given; it could be that contrary to the norm a significant

amount of unnecessary physical 1/0O on those disks is being caused by poorly-tuned SQL.

According to Immanuel (2011) different forms of contention are symptoms that can be fixed by making

changes to three key areas:-

e Changes in the application, or the way the application is used
e Changes in the database

e Changes in the host hardware configuration Often

The author holds the opinion that the most effective way of resolving a bottleneck is to change the
application
A top down performance tuning methodology is proposed, while focus is on the database, the methodology

nevertheless has very good general application tuning guidelines.

Server
Tuning . - Disk — iostat
- RAM - vmstat

-CPU - top
Instance
Workload L )
Tuning - Parameters — optimizer settings :
© / -Metadata - Optimizer statistics tuning
- Cursor management — cursor_sharing
Tnstance - Row packing — PCTFREE - PCTUSED
Object  / - Concurrency — Freelists
Tuning / -Table row location — sorted hash clusters
- Caching — Objects inte KEEP pool
SQL - Hints — Force changes to execution plans
Statement - Rewrite SQL - Optimizer SOL with faster syntax formats

Tuning / - SQL Profiles — Force static execution plans

Figure 3: Top down Tuning Methodology



Steps in the oracle performance improvement method

The following initial standard checks are performed:

1.

Candid feedback is obtained from the users. Performance project's scope and subsequent

performance goals are determined; performance goals for the future are also identified.

A full set of operating system, database, and application statistics from the system are

obtained when the performance is both good and bad.

“Missing statistics are analogous to missing evidence at a crime scene: They make

detectives work harder and it is more time-consuming. ”

A sanity check of operating systems of all computers involved with user performance is
carried out. While conducting the check hardware or operating system resources that are fully
utilized are identified. A list of any over-used resources is made as symptoms for analysis

later. In addition, all hardware is checked to confirm there’re no errors or diagnostics.

A check for the top ten most common mistakes with Oracle Database is carried out. It is

determined if any of these are likely to be the problem.

A conceptual model of what is happening on the system using the symptoms as clues to
understand what caused the performance problem is built.

A series of remedy actions and the anticipated behavior to the system is proposed, the actions are
in turn applied in the order that can benefit the application the most. It is recommended that a
golden rule in performance work is to change one thing at a time and then measure the differences,
however this is sometimes impracticable in real time systems since the accompanying downtime is
unacceptable. Multiple changes can be applied at the same time as long they are isolated so that
the effects of each change can be independently validated. .

Changes made are validated to confirm if they have achieved desired effect, and if the user's
perception of performance has improved. If this is not the case more bottlenecks are identified and
refinement of the conceptual model continues until understanding of the application becomes more

accurate.

The last three are repeated until performance goals are met or become impossible due to other

constraints.

10



Immanuel (2011) concludes that this method identifies the biggest bottleneck and it uses an objective
approach to performance improvement. The focus of the methodology is on making large performance
improvements by increasing application efficiency and eliminating resource shortages and bottlenecks. The
author claims that minimal (less than 10%) performance gains are made from instance tuning, and large

gains (100% +) are made from isolating application inefficiencies.

2.4. SUMMARY AND CRITIQUE OF REVIEWED TUNING METHODOLOGIES

Tuning Methodology Critique

ISAM (2011) application tuning methodology e More focused on tuning specific application
(Ebusiness suite) though some tuning steps are
applicable

e Does not address all system components
adequately for example hardware and operating

system
Toadworld (2010) database tuning methodology e Highly biased on tuning the database
Immanuel (2011) application and database e Gives a more balance approach to tuning all

tiers that affect system performance, however,
biased to the oracle database.

Table 1: Summary and Critique of Reviewed Tuning Methodologies

From the reviewed methodologies and other literature and sources a hybrid one will be developed that
picks the best tuning steps and tips to come up with a holistic tuning approach that can be applied to tuning
any database oriented application. The methodology will in turn be applied in a real world problem

scenario.

2.5. CONCEPTUAL MODEL

A conceptual model is a mental model that captures ideas in a problem domain it represents 'concepts'
(entities) and relationships between them. The aim of a conceptual model is to express the meaning of
terms and concepts used by domain experts to discuss the problem, and to find the correct relationships

between different concepts (Fowler (1997).

From the literature reviewed the model below (figure 4) will guide development of the integrated tuning

methodology and subsequent tuning exercise.

As depicted in the conceptual model the methodology will focus on identification and resolution of
bottlenecks in all tiers that have impact on performance of database application systems. The Tuning
exercise is an iterative one and continues until all performance goals are achieved or a compromise is

made.

11



http://en.wikipedia.org/wiki/Mental_model
http://en.wikipedia.org/wiki/Problem_domain

Tuning at the application layer will borrow heavily from ISAM (2011) application tuning methodology

while Immanuel (2011) application and database tuning methodology will contribute immensely to

database tuning.

1.Performance
Measurement |

2.Performance
Goals

Figure 4: Conceptual Model

Application tier

Middle layer and
database drivers
tier

Network and
infrastructure tier

3.Architecture
Analysis and
gathering of
performance
statistics

A

4.Bottleneck
Identification and
ranking

Operating system
tier

Hardware and
storage subsystem
tier

Database tier

5.Bottleneck
Resolution

12




CHAPTER 3: METHODOLOGY
3.1. RESEARCH DESIGN

Research design refers to the overall strategy that will be used to integrate the different components of the
study in a coherent and logical way, thereby, ensuring research questions are addressed effectively; it

constitutes the blueprint for the collection, measurement, and analysis of data.

In the study two key research design types were utilized. These are
1. Content analysis

2. Experimental design

(University of Texas,2010) in their article titled “conduct research” defines content analysis as follows:

“Content analysis is the systematic examinations of written or recorded communication in order to break
down, identifies, and analyze the presence or relations of words, word sense, characters, sentences,
concepts, or common themes. The focus of the analysis should be a critical examination, rather than a mere
description, of the content. Examples of content include student journals, essays, online discussions, or any

form of written, visual, or oral communication.

Content analysis works best when the purpose is to gain insight into a precise and focused research problem

or topic. It can help you to recognize patterns that you might miss using other methods”

Content analysis was utilized in the evaluation and analysis of existing fine methodologies. Gaps identified

were addressed when developing the intergrated holistic methodology.

Experimental design was used when applying the customized tuning methodology to the poorly performing
payroll application. Independent and dependent variables were identified. Performance metrics were
measured before applying the methodology and after to determine its effectiveness. Some of the identified

variables are:-

13



Independent Variables
This variables will be obtained from tiers which have bottlenecks, they include

Tier Variable

Operating system tier Memory available
Number of CPUs

Network Tier Network Speed

Database Tier Memory allocation
Number of indexes

Table 2: Independent Variables

Dependent Variables
Since the goal of the tuning exercise is to achieve system performance in the eyes of the user, most of these
variables will be derived from the application tier, they include:-

1. Throughput (Number of payroll transactions processed per second)

2. Response time (How long it takes to process a given number of payroll records)

The table below shows relationship between the independent and dependent variables, that is, which

independent variables impact on which dependent variable.

Independent Variables Dependent Variables
Memory available Throughput

Number of CPUs Response time
Network Speed

Memory allocation

Number of indexes

Table 3: Independent and Dependent Variables

During experimentation as depicted in the figure below values of Independent variables which will have
been identified as bottlenecks by utilization of methodology were altered and effect of the alterations noted

on the dependent variable.

14




v
Cause / Effect/outcome

(independent variable) (dependent variable)

‘\

Other factor

(confounding variable)

Figure 5: Variables

In developing the customized tuning approach and testing the same with a payroll application that is
currently experiencing performance problems, several distinct phases were conducted, the phases ensured
that various systems components that have an impact on system performance were examined and the
subsequent tuning approach was tested. The phases were:-
1. Study of systems performance tuning in general.
2. Review of current performance tuning methodologies
3. Development of a customized database application methodology which focuses on
a. Measurement of system performance before tuning exercise.
b. Identification of tiers with bottlenecks
c. lterative resolution of identified bottlenecks
d. Measurement of system performance after tuning exercise
The methodology addresses all tiers that have impact on system performance, these are:-
a. Application tier
b. Middle layer and database drivers tier
c. Network and infrastructure tier
d. Operating system tier.
e. Hardware and storage subsystem tier
f.  Database tier
4. Application of methodology on a poorly performing payroll processing system.

5. Analysis and evaluation of tuning approach

15



3.2. DATA SOURCES
The main data source was a poorly performing payroll application for an organization with six thousand
employees. Other data sources include operating system, network, middle layer and connectivity, storage
systems and the database.
Data from payroll application
1. Response time - Response time is a measure of how quickly the system responds to a request. It is
how long it takes to finish a given task, for example how long does the payroll application take to
process 1000 records. In the poorly performing payroll application 200 payroll records are
processed in 80 seconds in the current environment.
2. Throughput - Throughput is a measure of how much work the system can do in a given period of
time, for example how many payroll records can the application process in one minute
Number of payroll records

4. Number of payroll runs

Data from operating system tier
1. Memory settings
Number of CPUs
Operating system architecture 32 bit vs. 64 bit
Input Output (10) settings (Max file open handles, virtual disks)

o M 0D

Swapping statistics

Data from middle layer and connectivity tier
1. Type of database driver in use

2. Connection pooling used

Data from hardware and storage subsystem tier
1. Redundant Array of Independent Disks (RAID) settings (Raid 0,Raid 0+1,Raid 5)

2. Processor type, cache sizes

Data from Database tier
1. Memory allocations
a. System global area (SGA) sizing.
b. Memory management, self-tuning vs. manual
2. Wait analysis
a. Events that contributing to most wait time
3. Poorly performing SQL statements
4. Database statistics, for example from ADDM output

16



3.3. DATA COLLECTION

In measuring performance of the payroll application before, during and after performance tuning exercise
the following data was collected.

Response time — Time to taken to process a payroll with six thousand records.

Throughput — Number of payroll records processed in one secs.

For each of the above values the payroll was run four times (four monthly processes) and the mean values
taken, payroll was run for 200 employees and different payroll historical data were considered, such

Different sets of Response time and throughput were obtained by varying the independent variables which
were identified as contributing to bottlenecks. The set and corresponding Independent variables fed into the

analysis section.

3.4. DATA COLLECTION TOOLS
The following tools were used to collect performance data
1. Network monitoring and analysis tools - netsat, GNOME monitor these tools were used to obtain
the network speeds and latency and determine if the network is a bottleneck.
2. Operating system monitoring and analysis tools — top. ps ,free and sar, these tools will measure
operating system metrics such cpu utilization, memory utilization, swapping levels.
3. Database monitoring and diagnostics tools —~ADDM and Enterprise manage, the tools will provide
database diagnostics information such as memory sizing, indexes, execution plans.
4. Hardware monitoring and diagnostics tools —vmstat, iostat, these tools will provide insight on how
the underlying hardware layer is performing, key values will be humber of page reads and page

Wwrites.

3.5. DATA ANALYSIS

In analysis of the tuning exercise key questions were:-
1. Was the methodology concise and easy to apply?
2. Were the tuning goals achieved?

3. Was the application tuned within acceptable time limit?

By analyzing data gathered using the above mentioned tools bottlenecks were identified and options for

resolving them identified.
By comparing performance baselines before and after resolution of bottlenecks, percentage improvement in

response time was calculated for different of options of evaluating the identified bottlenecks. Some

performance tuning tools were detailed enough to give expected improvement in performance.

17



A formulae for ranking the identified bottlenecks was formulated and used to rank the bottlenecks.

3.6. LIMITATIONS OF METHODOLOGY
A lot of literature has been written on system performance tuning. One of the key phases of the
methodology is review of literature. There is a danger of too much time being spent on this phase
which can impact negatively on the overall time line. Caution was exercised to ensure literature from
published journals, tuning experts and major technology players was not given preference and too

much time was not spent reviewing works whose authenticity and validity cannot be ascertained.

18



CHAPTER 4: RESULTS

4.1. INTEGRATED DATABASE APPLICATION TUNING HOLISTIC
METHODOLOGY

In development of the integrated holistic methodology a lot of material is borrowed heavily from the oracle
improvement performance method (ISAM, 2011) and (Oracle- B10500_0, 2002) which is stated in the
critic of existing methodologies was found to offer a more balanced approached. Tools for gathering
performance statistics in the various tiers and for identifying and assisting in elimination of bottlenecks are
also suggested. Most common bottlenecks in each tiers are also given and guidelines on how they can be

resolved also suggested. The developed methodology has eight steps which are defined below.

Step 1: The first step is to get feedback from the user on how the system is behaving, user perception of the
system is very important since it can be used to set critical success factors for the tuning exercise Isam
(2011). Typical users feedback include ;-

i. “The system takes a long time to generate a receipt”

ii. “The search page in our ecommerce website takes too long to retrieve products leading to the customer

giving up and consequently loss of sales”

Step 2: Collect baseline Performance measurement of the application when it is performing below users’
expectation and when the system is performing well. Since we are focusing on the users experience,
performance of the database application is best measured using the response time, ( how long it takes to
perform a certain task) examples of response time include :-
i. One payroll record is calculated in 1 sec, the response time in this case is 1 second.
ii. Each page in website loads in an average of 15 secs, response time is 15 secs.
iii. Throughput of the application is also measured, throughput is amount of work done in a unit amount of
time, and examples include:-

iv. In one minute 60 payroll records are calculated, throughput is 60 records.

Step 3: Based on the users feedback and the baseline measurement collected realistic performance goals
are set, success in a performance tuning exercise is best defined in terms of real business goals rather than
system statistics Isam (2011). The performance goals should be quantitative rather than quantitative to ease
task of determining improvement in performance. Isam (2011) goes ahead to give the following samples of
very good realistic business goals :-

i. "The billing run must process 1,000,000 accounts in a three-hour window."

ii. "At a peak period on a Web site, the response time must not exceed five seconds for a page refresh."

iii. "The system must be able to process 25,000 trades in an eight-hour window."

Step 4: Analyzing system infrastructure, in this step the following data should be gathered:-

19



Architecture of the system should be well understood; the different components to make the system work
and their interrelationships should be well understood. Detailed configuration information of all servers in
use by the application should be gathered, this include
i. Different kind of servers in use for example web application servers, database servers, mail servers.
ii. For each of the server identified the following information should be collected
a. Hardware architecture
i. 64 bit vs 32 bit architectures
ii. Memory available
iii. Disk type (SCSI,SAS,SATA, SSD)
iv. Disk speeds, 10k,15k
v. Raid configurations, RAID 0,10,1,5
vi. CPU architecture, cores, sizes and level of cache, clock speed
b. Operating systems configurations
i. Swap allocation
ii. Network card settings
iii. Kernel settings
iv. Other optimization settings
c. Network settings

i. Buffer settings

Step 5: Resource utilization and performance statics of all the tiers involved should be gathered, this
information will be useful in identifying bottlenecks, information to collect include :-

i. Operating system and hardware statistics

Operating system statistics provide information on the usage and performance of the main hardware
components of the system, as well as the performance of the operating system itself. This information is
crucial for detecting potential resource exhaustion, such as CPU cycles and physical memory, and for
detecting bad performance of peripherals, such as disk drives.

Operating system statistics are only an indication of how the hardware and operating system are working.
(Oracle- B10500_0, 2002)

The following statistics should be collected for each server utilized by the system, (Oracle- B10500_0,
2002) gives a good description of why the statistics are needed.

a. CPU utilization

CPU utilization is the most important operating system statistic in the tuning process. CPU utilization
should be obtained for the entire system and for each individual CPU on multi-processor environments.

Utilization for each CPU can detect single-threading and scalability issues.

20



Most operating systems report CPU usage as time spent in user space or mode and time spent in kernel
space or mode. These additional statistics allow better analysis of what is actually being executed on the
CPU.

b.  Memory utilization and Virtual memory Statistics

Memory is faster that disk access, most applications improve immensely by having more memory available
to them since they don’t have to result to virtual memory. High memory utilization might be an indication
of inadequate memory available. Improper utilization of available memory or even memory leaks.

Virtual memory statistics should mainly be used as a check to validate that there is very little paging or
swapping activity on the system. System performance degrades rapidly and unpredictably when paging or
swapping occurs.

c. Disk utilization and 1/O statistics

Since applications and databases resides on a set of disks, the performance of the I/O subsystem is very
important to the performance of the applications. Most operating systems provide extensive statistics on
disk performance. The most important disk statistics are the current response time and the length of the disk
queues. These statistics show if the disk is performing optimally or if the disk is being overworked. If a
disk shows response times over 20 milliseconds, then it is performing badly or is overworked. This can be
immediately singled out as one of the potential bottlenecks. If disk queues start to exceed two, then the disk
is also a potential bottleneck of the system.

d. Network Utilization

Network statistics can be used in much the same way as disk statistics to determine if a network or network
interface is overloaded or not performing optimally. In today's networked applications, network latency can
be a large portion of the actual user response time. For this reason, these statistics are a crucial debugging
tool.

To gather the above operating system statistics, various tools are available that can be used by a
performance analyst, below is an overview of some of the available tools for Linux based and windows
operating systems. For a listing of some of the available monitoring tools, refer to APPENDIX A.

ii. Database performance statistics

Database statistics provide information on the type of load on the database, as well as the internal and
external resources used by the database. When database resources become exhausted, it is possible to
identify bottlenecks in the application.

To collect database performance statistics in addition to vendor specific tools, each database vendor
provides a performance statistics gathering and tuning tools.

For a listing of some of the available database statistics gathering and monitoring tools, refer to
APPENDIX A.

iii. Application statistics

21



Application statistics are reputed to be the most difficult statistics to gather, nevertheless, they are the most
important statistics in measuring any performance improvements made to the system. At a minimum,
application statistics should provide a daily summary of user transactions processed for each working
period. More complete statistics provide precise details of what transactions were processed and the
response times for each transaction type. Detailed statistics also provide statistics on the decomposition of
each transaction time spent in the application server, the network, the database, and any other involved tier
(Oracle- B10500_0, 2002).

The best statistics require considerable instrumentation of the application. This is best built into the
application from the start, because it is difficult to retrofit into existing applications. Various tools exist for
gathering application statistics from various vendors, however, most of these tools are nor generic, that is,
they cannot be used to gather statistics for applications developed in all platforms, they are specific to
development platforms such as dot net applications, J2EE applications and web based applications. Some

can however give statistics for all windows applications.

Tools that gather application performance statistics , diagnose and test applications and also help in
identifying bottlenecks are often referred to as application profiling tools, some of these tools help
performance engineers determine how much memory is being used and also identify memory leaks
(Misty,2012) some of the available tools are :-

For a listing of some of the available application gathering and monitoring tools, refer to APPENDIX A

Step 6: Identification of bottlenecks

A bottleneck is any resource hardware, network, or software that limits the performance of an application.
Bottlenecks directly affect performance and scalability by limiting the amount of data throughput or
restricting the number of application connections. (Oracle-RBI, 2010)

Impact of performance bottlenecks
i. Deterioration of response time to almost unacceptable levels
ii. Inefficient resource utilization
iii. Application does not scale as required
iv. Decrease in throughput that is, less number of transactions is processed per unit time.

v. Loss in business revenue due to customer dissatisfaction

A bottleneck can reside in any of the tiers web server, application server, database server and network
resources. Most applications have the following architecture and some can miss some layers such as the

web and load balancing tier for non-web based systems.

22



Fuewall
Internet

Figure 6:N-tier physical architecture
The statics collected in the prior stage provide vital information in identifying the tiers with bottlenecks.

It is tough to test each and every component’s performance thoroughly, and a guided search is the best way
out. Server hardware and network resources are usually assumed to be the main culprits for lower
performance. Server upgrades are usually considered as the best source of performance optimization and it
is not uncommon for engineers to solve performance problems by throwing more hardware (Thomas,
2012), sometimes it is a cheaper option in the short term and it some instances it is not work especially if
the application code is very inefficient.

In each of the tiers the following guidelines can be followed to identify potential bottlenecks:-

i.  Operating system tier and hardware tier

It is always best to consider operating system statistics as a diagnostic tool just like doctors use body
temperature, pulse rate, and patient pain when making a diagnosis and not rush into installing more
hardware resources immediately. This is a reactionary response to a series of symptoms shown in the
operating system statistics. For example high memory utilization might be a result of a memory leak in an

application and adding more memory to the server will not solve the problem.
Linux operating system will be used as guide to illustrate how bottlenecks in the operating system can be
identified; most examples are derived from (Eduardo, 2007) in the white paper “Linux Performance and

Tuning Guidelines”

a.  CPU bottlenecks

For servers whose primary role is that of an application or database server, the CPU is a

23



critical resource and can often be a source of performance bottlenecks. High CPU utilization does not
always mean that a CPU is busy doing work; it might be waiting on another subsystem. The system should

be looked as a whole and at all subsystems because there could be a cascade effect within the subsystems.

Using the available operating systems tools a CPU bottleneck can be identified; one tool that can be used is
uptime the uptime command can be used to see how long the server has been running and how many users
are logged on, as well as for a quick overview of the average load of the server.

The system load average is displayed for the past 1minute, 5 minute, and 15 minute intervals. The optimal
value of the load is 1, which means that each process has immediate access to the CPU and there are no
CPU cycles lost. The typical load can vary from system to system. For a uniprocessor workstation, 1 or 2
might be acceptable, whereas values of 8 to 10 on multiprocessor servers can be observed. For example the

output of uptime for a cpu strapped server, for the last 15 minutes is as follows.

18:03:16 up 1 day, 2:46, 6 users, load average: 182.53, 92.02, 37.95
The load averages on the server for the last 5,10 and 15 minutes are 182.53, 92.02, 37.95 which are very
high.

There is a common misconception that the CPU is the most important resource of the server. This is not
always the case, and most servers are often over configured with CPU and under configured with disks,
memory, and network subsystems. Only specific applications that are truly CPU intensive can take

advantage of today’s high-end processors.

b. Memory bottlenecks
In Operating systems, many programs run at the same time. These programs support multiple

users, and some processes are more used than others and thus use more memories than others.

One of the key indicators of a memory bottleneck is excessive swapping and paging. Paging moves
individual pages to swap space on the disk; swapping is a bigger operation that moves the entire address

space of a process to swap space in one operation.

A key memory indicator used for analysis is amount of memory available; this indicates how much
physical memory is available for use. If, after an application is started, this value decreases significantly,
there might be a memory leak with the application. The free tool in Linux and resource monitor in windows

can be used to analyze memory usage.

24



ﬂ redpaper memory - KDE System Guard - |I:I|L|

File Edit Settings Help

wE Q0 ) XY

SensorBrowser | System Load | Process Table | redpaper memory

_ # localhost

O
-
+
e CPU Load
+-CPUO
4. CPUL
i--Memnry
- .Physical Memory
;....Mﬁpplicatiun Memory
g----MEuH’ered Memaory
%..-ﬁ_ﬁCached Memory
é_..-MFree Memory
+*
s

: :'....mu;uu Memory —
-.Swap Memory
E_...mFree Memory
i....&Used Memary
T_..Net‘lful’k
i--Pan‘:ltmn Usage
---ﬂPmcess Controller
- [MaProcess Count
@« Al

| 90Processes | Memory: 225,804 KB used, 289,340 KB free | Swap: 0 KB used, 1,048,120 KB free

Figure 7: KDE System Guard memory monitoring

Number of Page faults can also be used to identify problems with memory; there are two types of page
faults: soft page faults, when the page is found in memory, and hard page faults, when the page is not found
in memory and must be fetched from disk. Accessing the disk will slow your application considerably. The
sar —-B command in Linux can provide useful information for analyzing page faults, specifically columns
pgpgin/s and pgpgout/s.

Paging can be a serious performance problem when the amount of free memory pages falls below the
minimum amount specified, because the paging mechanism is not able to handle the requests for physical
memory pages and the swap mechanism is called to free more pages. This significantly increases 1/0O to

disk and will quickly degrade a server’s performance.

If a server is always paging to disk (a high page-out rate), more memory can be added. However, for

systems with a low page-out rate, it might not affect performance.

If a memory bottleneck is identified, the following actions can remedy the situation

i. Tune the swap space using bigpages, hugetlb, shared memory.
ii. Increase or decrease the size of pages.

iii. Improve the handling of active and inactive memory.

25



iv. Adjust the page-out rate.
v. Limit the resources used for each user on the server.
vi. Stop the services that are not needed

vii. Add memory.

c. Disk bottlenecks

The disk subsystem is often the most important aspect of server performance and is usually the most
common bottleneck. However, problems can be hidden by other factors, such as lack of memory.
Applications are considered to be 1/0-bound when CPU cycles are wasted simply waiting for 1/O tasks to

finish.

The most common disk bottleneck is having too few disks. Most disk configurations are based on capacity.
The disk subsystem is perhaps the most challenging subsystem to properly configure.

Besides looking at raw disk interface speed and disk capacity, it is also important to understand the
workload. Is disk access random or sequential? Is there large 1/0 or small 1/0? Answering these questions

provides the necessary information to make sure the disk subsystem is adequately tuned.

Disk manufacturers tend to showcase the upper limits of their drive technology’s throughput.
However, taking the time to understand the throughput of the workload will help to have true expectations

of underlying disk subsystem.

Disk speed Latency Seek Total random I/Os per Throughput
time access time® second given 8 KB I/0
per disk?
15 000 RPM 2.0 ms 3.8 ms 6.8 ms 147 1.15 MBps
10 000 RPM 3.0ms 49 ms 8.9ms 112 900 KBps
7 200 RPM 4.2 ms 9ms 13.2 ms 75 600 KBps

a. Assuming that the handling of the command + data transfer < 1 ms, total random
access time = latency + seek time + 1 ms
b. Calculated as 1/total random access time

Figure 8:True throughput for 8 KB 1/Os for different drive speeds

The following general guidelines can be followed when designing a disk subsystem:-
i. Random read/write workloads usually require several disks to scale.
ii. The bus bandwidths of SCSI or Fibre Channel are of lesser concern.
iii. Larger databases with random access workload will benefit from having more disks.
iv. Larger SMP servers will scale better with more disks. Given the 1/O profile of 70% reads and 30%

writes of the average commercial workload,

26



v. A RAID-10 implementation will perform 50% to 60% better than a RAID-5.
vi. Sequential workloads tend to stress the bus bandwidth of disk subsystems.
vii. Pay special attention to the number of SCSI buses and Fibre Channel controllers when maximum
throughput is desired.
viii. Given the same number of drives in an array, RAID-10, RAID-0, and RAID-5 all have similar

streaming read and write throughput.

Two of the ways that can be used to approach disk bottleneck analysis are real-time monitoring and tracing.
Real-time monitoring must be done while the problem is occurring. This might not be practical in cases
where system workload is dynamic and the problem is not repeatable.

However, if the problem is repeatable, this method is flexible because of the ability to add objects and

counters as the problem becomes clear.

Tracing is the collecting of performance data over time to diagnose a problem. This is a good way to
perform remote performance analysis. Some of the drawbacks include the potential for having to analyze
large files when performance problems are not repeatable, and the potential for not having all key objects

and parameters in the trace and having to wait for the next time the problem occurs for the additional data.

One way to track disk usage on a Linux system is by using the vmstat tool. The important columns in
vmstat with respect to 1/O are the bi (blocks sent to a block device (blocks/s)) and bo (blocks received from
a block device (blocks/s)) fields. These fields monitor the movement of blocks in and out of the disk
subsystem. High values signify high I/O activity. Having a baseline is key to being able to identify any

changes over time.

[root@x232 root]# vmstat 2
r b swpd free buff cache si so  bi bo in cs us sy id wa

2 1 0 9004 47196 1141672 0 0 0 950 149 748713 0 0
0 2 0 9672 47224 1140924 0 0 1242392 189 658310 0 1
0 2 0 9276 47224 1141308 0 0 448 0 144 28 0 0 0 100
0 2 0 9160 47224 1141424 0 0 448 1764 149 66 0 1 099
02 0 9272 47224 1141280 0 0 448 60 155 46 0 1 099
0 2 0 9180 47228 1141360 0 0 6208 10730 425 413 0 3 097
10 0 9200 47228 1141340 0 0 11200 6 631 737 0 6 094
10 0 9756 47228 1140784 0 0 12224 3632 684 763 0 11 0 89
0 2 0 9448 47228 1141092 0 0 5824 25328 403 373 0 3 097
0 2 0 9740 47228 1140832 0 0 640 0 159 31 0 0 0100

Figure 9: vmstat output

Performance problems can be encountered when too many files are opened, read and written to, then closed

repeatedly. This could become apparent as seek times (the time it takes to move to the exact track where

27



the data is stored) start to increase. Using the iostat tool, the 1/O device loading can be monitored in real

time. Different options enable deeper drill down to gather the necessary data.

Below illustration shows a potential 1/0 bottleneck on the device /dev/sdbl. This output shows average

wait times (await) of about 2.7 seconds and service times (svctm) of 270 ms.

[root@x232 root]# iostat 2 -x /dev/sdbl

avg-cpu: %user %nice  %sys  %idle
11.50  0.00  2.00 86.50

Device:  rrgm/s wrgm/s r/s w/s vrsec/s wsec/s  rkB/s  wkB/s avgrg-sz
avgqu-sz  await svctm %util
/dev/sdbl 441,00 3030.00 7.00 30.50 3584.00 24480.00 1792.00 12240.00 748.37
101.70 2717.33 266.67 100.00

avg-cpu: %user %nice  %sys %idle
10,50  0.00 1,00 88.50

Device:  rrgn/s wrgm/s r/s w/s rsec/s wsec/s  rkB/s  wkB/s avgrq-sz
avgqu-sz  await svetm %util

/dev/sdbl 441.00 3030.00 7.00 30.00 3584.00 24480.00 1792.00 12240.00 758.49
101.65 2739.19 270.27 100.00

avg-cpu: %user %nice  %sys %idle
10.95 0.00 1.00 88.06

Device: rrqn/s wrgm/s  r/s  w/s rsec/s wsec/s rkB/s wkB/s avgrg-sz
avgqu-sz  await svctm %util

{dev/sdbl 438.81 3165.67 6.97 30.35 3566.17 25576.12 1783.08 12788.06 781.01
101.69 2728.00 268.00 100.00

Figure 10: Potential 1/0 bottleneck

If the disk subsystem is identified to be system bottleneck some of the remedies that can be undertaken
include:-

i. If the workload is of a sequential nature and it is stressing the controller bandwidth, the solution is to
add a faster disk controller. However, if the workload is more random in nature, then the bottleneck is
likely to involve the disk drives, and adding more drives will improve performance.

ii. Add more disk drives in a RAID environment. This spreads the data across multiple physical disks
and improves performance for both reads and writes. This will increase the number of 1/Os per
second. Also, use hardware RAID instead of the software implementation provided by operating
systems. If hardware RAID is being used, the RAID level is hidden from the OS.

28



iii. Consider using Linux logical volumes with striping instead of large single disks or logical volumes
without striping.
iv. Offload processing to another system in the network (users, applications, or services).

d. Network bottlenecks

One of the most common performance issues of the network is packet size. Network packets carry an
application’s messages via the database middleware to the database and vice versa. The size of the packets
makes a difference in the performance of database application. Fewer packets sent between the application

and the database equates to better performance -- fewer packets mean fewer trips to and from the database.

To analyze network performance anomalies in order to detect network bottlenecks, most operating systems

include traffic analyzers.

A good traffic analyzer is KDE System Guard because of its graphical interface and ease of use.

n redpaper network - KDE System Guard - |I:I|L|

File Edit Settings Help

HE R Hdi) NP

Sensor Browser +  oad ‘PmcessTable ‘rel:l;:|a|:ne|rmem|:|r1|I iredpapernetwork 4

~-Receiver
i - [MaCompressed Pa

----anata

- [MaDropped Packet
----fhEI‘TUI‘S

..-.”FIFO Qverruns
....f.pFrame Errars
....”Multicast
._-“Packets
—-Transmitter

-—-“Carrler
----ﬂCnlllsmns

~[MaCompressed Pa

—[MaData

~[MaDropped Packet

-~ [MErrors

~[M&FIFO Overruns ¢

— [MPackets 3
A .

| B9Processes |  Memory: 225,980 KB used, 289,164 KBfree | Swap: 0 KB used, 1,048,120 KB free

—Netilbri

Figure 11:KDE System Guard network monitoring

It is important to remember that there are many possible reasons for network performance problems and

that sometimes problems occur simultaneously, making it even more difficult to pinpoint the origin.

29



The table below can help determine problems with the network.

Network Indicator

Analysis

Packets received

Packets sent

Shows the number of packets that are coming in and going out of the specified

network interface. Check both internal and external interfaces.

Collision packets

Collisions occur when there are many systems on the same domain. The use of

a hub may be the cause of many collisions.

Dropped packets

Packets may be dropped for a variety of reasons, but the result can affect
performance. For example, if the server network interface is configure to run at
100 Mbps full duplex, but the network switch is configured to run at 10 Mbps,
the router may have an ACL filter that drops these packets. For example:
iptables -t filter —~A FORWARD —p all —I eth2 -0 ethl —s 172.18.0.0/24 —j
DROP

Errors

Errors occur if the communication lines are of poor quality. In these situations,
corrupted packets must be resent, thereby decreasing network throughput.

Faulty adapters

Network slowdowns often result from faulty network adapters. When this kind
of hardware fails, it might begin to broadcast junk packets on the network,

Table 4: Indicators for network analysis

If a network bottleneck is suspected the following steps can be used to solve some of the problems:-

i. Ensure that the network card configuration matches router and switch configurations (for example,

frame size).

ii. Modify how your subnets are organized.

iii. Use faster network cards.

iv. Tune the appropriate IPVV4 TCP kernel parameters.

v. If possible, change network cards and recheck performance.

vi. Add network cards and bind them together to form an adapter team, if possible.

ii. Application bottlenecks

As illustrated in the introductory section of identifying bottlenecks, a high percentage of bottlenecks are
found in the application. Business logic of an application resides on the application server and web servers.

Application server hardware, software and application design can affect the performance to great extent.

Poor application server performance can be a critical source of performance bottlenecks.

A lot of writing has been done in this area. Some of the papers that can be used to help a performance

engineer identify bottlenecks in the application and web tiers are.

i. Web applications Performance Symptoms and Bottlenecks Identification, by Thomas of agile toad

ii. Rapid Bottleneck Identification A Better Way to do Load Testing, an Oracle White Paper

iii. Application performance testing series by Scott Barber of AuthenTec

30




Most of the guidelines given below are derived from the above papers.
Some of the most common application bottlenecks include:-

i. Memory leaks

ii. Useless or inefficient garbage collection

iii. DB connections poor configuration

iv. Useless or inefficient code transactions

v. Sub-optimal session model

vi. Application server poor configuration

vii. Useless or inefficient object access model
viii. Useless or inefficient security model
ix. Less utilization of OS resources
Some of the bottlenecks to look out for in web servers include

i. Broken links

ii. Inadequate transaction design

iii. Very tight security

iv. Inadequate hardware capacity

v. High SSL transactions

vi. Server poorly configured

vii. Servers with ineffective load balancing
viii. Less utilization of OS resources
ix. Insufficient throughput
To identify bottlenecks in the application and web tier, the following guidelines can be followed:-

i. Ensure that the operating system, hardware and the network are configured optimally for the

application they are to run and they contain no major bottleneck.

ii. Profile the application using appropriate tools, some of the profiling tools are discussed in the
gathering statistics section. For each application a profiling tool can be found. Profiling an application
is very useful in identifying bottlenecks in application, especially bottlenecks that are inherent in the
application, such as memory leaks, improper function calls, and inefficient garbage collection among

others.

iii. Perform thorough tests on the application. Some of the tests include :-
iv. Throughput testing
v. Concurrency testing

vi. Stress testing

vii. The (Oracle-RBI, 2010) methodology recommends starting with the simplest test cases first and then

moving on to those with increased complexity. If the simplest test case works and the next level of

31



complexity fail, the bottleneck lies in the newly added complexity. By uncovering bottlenecks using a
tiered approach, one can quickly identify issues as well as isolate issues in components of which you
have limited knowledge.

viii. Analyze the application SQL statements using database SQL analyzers for poorly performing SQL
queries. All modern database management systems have tools that can be used to identify such SQLs.
Some of the tools are discussed in the database gathering statistics section.

In general, a database application should be written to:

a. Reduce network traffic
b. Limit disk input/output
c. Optimize application-to-driver interaction
d. Simplify queries
iii. Database Bottlenecks
Database performance is most critical for application performance as this is the main culprit in performance
bottlenecks. Database software, hardware and design can really impact the whole system performance.
Some of the database bottlenecks according to (Thomas, 2012) are:-
i. Inefficient or ineffective SQL statement
ii. Small or insufficient query plan cache
iii. Inefficient/ineffective SQA query model
iv. Inefficient/ineffective DB configurations
v. Small/insufficient data cache
vi. Excess DB connections
vii. Excess rows at a time processing
viii. Missing/ineffective indexing
ix. Inefficient/ineffective concurrency model
X. Outdated statistics
xi. Deadlocks
By use of operating system, DBMS performance tuning tools and or SQL statements performance problems
in the database can be identified. Most of these database tools are discussed in the database statistics
collection section. Thresholds that have been exceeded should be carefully investigated to determine where
the performance problem lies. For example examining the top 5 wait events in an oracle database reveals

the following

32



Top 5 Timed Events % Total

Event Waits Time(s) Elapsed Time
CPU time 4,851 4,042 55.76

db file sequential read 1,968 1,997 27.55

log file sync 299,097 369 5.08

db file scattered read 53,031 330 4.55

log file parallel write 302,680 190 2.62

Table 5: Top five databases wait

The database is CPU bound and it is spending significant time waiting for CPU, Assuming that the
database cache and the SQLs are already optimized; more CPU's or faster CPUs will improve the

performance of this database. (Burleson, 2010)

In identifying and resolving database bottlenecks the performance engineer should be on the lookout for the

following common mistakes usually found in databases. (ISAM, 2011)

i. Bad Connection Management

The application connects and disconnects for each database interaction. This problem is common with
stateless middleware in application servers. It has over two orders of magnitude impact on
performance, and it is totally unscalable.

ii. Bad Use of Cursors and the Shared Pool
Not using cursors results in repeated parses. If bind variables are not used, then there is hard parsing of
all SQL statements. This has an order of magnitude impact in performance, and it is totally unscalable
Use cursors with bind variables that open the cursor and execute it many times. Be suspicious of
applications generating dynamic SQL.

iii. Getting Database 1/0 Wrong
Many sites lay out their databases poorly over the available disks. Other sites specify the number of
disks incorrectly, because they configure disks by disk space and not I/O bandwidth.

iv. Long Full Table Scans
Long full table scans for high-volume or interactive online operations could indicate poor transaction
design, missing indexes, or poor SQL optimization. Long table scans, by nature, are 1/O intensive and
unscalable.

v. In Disk Sorting
In disk sorts for online operations could indicate poor transaction design, missing indexes, or poor
SQL optimization. Disk sorts, by nature, are 1/0-intensive and unscalable.

vi. Schema Errors and Optimizer Problems
In many cases, an application uses too many resources because the schema owning the tables has not

been successfully migrated from the development environment or from an older implementation.

33



Examples of this are missing indexes or incorrect statistics. These errors can lead to sub-optimal
execution plans and poor interactive user performance. When migrating applications of known
performance, export the schema statistics to maintain plan .

Likewise, optimizer parameters set in the initialization parameter file can override proven optimal
execution plans. For these reasons, schemas, schema statistics, and optimizer settings should be

managed together as a group to ensure consistency of performance.

(Burleson, 2010) gives the following silver bullet tips when identifying and tuning database bottlenecks
i. Fix the symptom first — the root cause can always be addressed later
ii. Time is critical — quick fix, instance wide adjustments are often the best option
iii. Be creative — traditional time consuming methods do not apply here.
iv. Once done root cause needs to be found and sorted out for the long term correction of the root

cause of the problem.

Step 7: Ranking in terms of cost and impact
Once bottlenecks have been identified in any of the tiers, a choice has to be made on which bottleneck is to
be resolved first. Bottlenecks that have huge improvement in performance and have minimal costs both
monetary and time wise should be considered.
As hardware becomes cheaper and faster, more hardware can be used to sort out sub-optimal databases; it
is often a safe, cost effective and timely solution to an acute database performance issue. The examples
below by (Burleson, 2010) illustrate such scenarios

i. Moving to faster 64 bit processor server as opposed to expensive SQL statement tuning for a CPU

bound database.
ii. Move to faster solid state disks for a heavily 1/0 bound application due to poorly application code

which costs less and is less risky as opposed to incurring huge costs in rewriting the application.

(Burleson, 2010) goes ahead to give the following real world scenario:

“Just last week I had a client who was having a huge CPU bottleneck, and the root cause was
excessive parsing and really sub-optimal SQL execution plans. They chose to spend $50k for
faster processors (15 minutes to fix) rather than spend $100k to tune 2,000 SQL statements (6

weeks to fix).”

To rank bottlenecks in terms of their cost and impact the following formulae is suggested:-

Impact

Rank = ————————
an Y = Cost x Time

34



Where
Rank: Is the Numerical value assigned to each bottleneck.
Impact: Value that represents the overall improvement of application performance on resolution of the
impact. A higher value signifies a huge improvement in performance. Rank is directly proportionate to
impact.
Cost: Value that represents the monetary implication of resolving the bottleneck. The higher the value
the more expensive it is to fix the bottleneck. Rank is inversely proportionate to cost.
Time: Value that represents how long it takes to resolve the bottleneck. The higher the value the longer it
takes to fix the bottleneck. Rank is inversely proportionate to Time.
Y: Coefficient that depicts the importance of cost and time. The higher the value the more important the

costs and time aspect. Rank is inversely proportionate to Y.

Derivation of ranking formulae

In deriving formulae it is imperative to show how the different formulae sub components relate to the
whole. A formulae can be proven/validated either mathematically or using experimentation. Proving the
formulae mathematically is suggested as future works , an experimental approach is used to validate the
formulae by using it to rank identified bottlenecks in a poorly performing payroll application. Future works
can also be carried out to validate the formulae using other poorly performing systems. An attempt to

explain how the formula was arrived at is made below.

A major challenge faced by tuning experts is the myriad of options that are available to them with each
having different impact on overall system performance (Burleson, 2010). The formulae aims to provide the
tuning expert with a simple tool which he can use to simplify the decision making process of deciding the

order in which to resolve identified bottlenecks.

Rank is the output of the formulae which is a numeric valued arrived at after applying the formulae to a

bottleneck.

Impact is a value that represents the overall improvement of application performance on resolution of the
impact. For example in a poorly performing web application, one of the bottlenecks identified can be lack
of sufficient memory in the webserver causing a high rate of swapping. Resolving the bottleneck by adding
more memory to the webserver results to 40% overall improvement in response time for the web
application. Our Impact is thus 40% for this bottleneck. A higher Impact value signifies a huge
improvement in performance. A high impact means the bottleneck should be among the first to be resolved,
it logically follows that the higher the impact of resolving a bottleneck the higher the rank of the bottleneck,

thus rank is directly proportionate to impact Rank a Impact

35



Cost is a value that represents the monetary implication of resolving the bottleneck. Proceeding with our
hypothetical example, resolving the memory bottleneck is done by buying additional memory. Let us
assume the memory will cost USD 500. The cost of the bottleneck is thus USD 500. A scale can be adopted
depending on the figures involved, for example the following scale can be used

USD 100 -300 =1

USD 300 -500 =2

USD 500 -700 =3

USD 700 -900 =4

USD 900 - 1100=5
Thus the cost of resolving the bottleneck using a scale would be 2. The higher the cost the more expensive

it is to resolve the bottleneck and thus the order of resolving the bottleneck should be lowered consequently

lowering the rank. Therefore, Rank is inversely proportional to cost. Rank o ﬁ

Time: Value that represents how long it takes to resolve the bottleneck. Proceeding with our example,
buying and fixing memory in the server can approximately take 3 hours. The below numeric scale

dependent on the values involved can be adopted.

1-3hrs. =1
3-5hrs. =2
5-7hrs. =3
7-9hrs. =4
9-11hrs. =5

The time value for resolving the bottleneck will thus be 1. The higher the time value the longer it takes to

fix the bottleneck and the bottleneck should thus be ordered lower in the priority of resolving the

bottlenecks.. Rank is thus inversely proportionate to Time. Rank a

Time

Y is a Coefficient that depicts the importance that an organization or the tuning expert gives to cost and
time. In some organization cost might not be a big factor meaning the organization is willing to spend large
amounts of money to resolve the bottleneck, in others budget and cost constraints can be a huge factor in

decision making. The higher the coefficient value the more important the costs and time aspect are to the
Organization. Rank is thus inversely proportionate to Y,Rank a 11,

We thus have four subcomponents of the equation:

Rank a Impact

Rank o
Cost

Rank o
Time

36



Rank o —

Combining the four subcomponents gives us the final equation

Rank = Impact
antk = Y * Cost x Time

Step 8: Iterative resolution of identified bottlenecks in the tiers based on the ranking
Once the bottlenecks have been ranked they are resolved iteratively until the performance goals have been

realized.

37



4.2. APPLICATION OF METHODOLOGY
Application the integrated holistic Methodology on a poorly performing payroll application

Step 1: Getting feedback from the user.

The user was asked to describe performance problems that he is experiencing with the payroll and he gave

the following response.

“The payroll application takes too long to process the 6000 university employee payroll, on average it takes
4 hours for a single run and since many runs are made before the month is closed, the process is a tedious

and time consuming process and at a minimum takes 3 days to finalize the monthly payroll processing”

“When the payroll application was developed 10 years ago, it is used to run very fast, as the year progresses
the payroll has become slower”
From the users response the following can be deduced:-
i. The user is unhappy with the response time
ii. The user is unhappy with the throughput of the application
iii. The payroll has become slower as more data is added.

iv. The payroll database has 10 years historical data.
Step 2: Collecting baseline Performance measurement of the application

For the purpose of tuning the exercise, it was decided to use a different database server in which only the

payroll application would be running. The decision was arrived at because of the following reasons:-

i. The live database server was in use by other application and the environment was changing rapidly thus
it was difficult to accurately measure improvement in performance after changes in configuration.

ii. Being a live server there were limitations on configuration changes that would be effected without
adversely affecting other users of the system.

iii. It was important to carry out scalability tests and vary the amount of historical data in the payroll
database while observing change in response times, this could not be achieved in the live server. To
reduce the amount of time taken to running the payroll during the testing exercise, for the purpose of
collecting the baseline data, a payroll data with three years historical data was to used. For the purpose
of determining the response time a sample size of 200 payroll records runs was to be considered. By
running SQL statements on the payroll application the following data was collected:-

iv.The response time is time 101 secs to process 200 records translating to 0.5 secs per payroll record.

v. The throughput of the application is 200 payroll records in 101 secs, translates to 2 payroll records per

second.

38



Step 3: Setting performance goals
After discussion with the user, the following performance goal is set

“The payroll application must process 6000 payroll records in under two hours.”

Step 4: Analyzing system infrastructure

The payroll application is a client server application and its architecture is as follows

Figure 12: Payroll architecture

The payroll application runs in the users clients machine, all payroll processing calculations are
performed in the client machine and results of the calculations saved in the database.
The payroll application is designed using Oracle forms which in modern times can be termed as a

legacy application.

Clients Computer specification
Operating system: Windows 7 32 bit
Memory available: 2 GB

Processor: Intel duo core processor
Test Database server

Operating system: Oracle Enterprise Linux 5 32 bit
Memory available: 2 GB
Processor: 2 Intel i7 core processor (4 cores in total)

Database version: Oracle 11g with 40% memory assigned

Step 5: Collection of resource utilization and performance statics of all the tiers
i. Operating system and hardware statistics
With the payroll running the following statistics are collected
1. CPU utilization

39



Client Application Computer
Resource Monitor El@

File | Monitor | Help
| Over\.riew| cPU |Memor}r | Disk I Networkl

Processes B 30 CPU Usage [T 1003 Maximum Frequency A “ ) Views |»| | =
[7] image FID Descrip...  Status Threads CPU  Averag.. * CPU - Total 100%
|:| System Interrupts - Deferr... Runni... - 3 169 |E

D FSORUMNZ2.EXE 4352 Cracle ... MNotRe.. 3 0 2,29

|:| perfmon. exe 4440 Resour..  Runni... 20 0 0.83

|:| explorer.exe 3072 Windo... Runni.. 37 1] 0.44

|:| taskmgr.exe 2852 Windo... Runni. [ 0 0.21

|:| System 4 MT Ker... Runni... &3 1] 015 <

[C] vBoxTray.exe 1304 Virtual..  Runni., 7 0 008 60 Seconds 0%
[7] MSACCESS.EXE 4516 Micos..  Runni. g 0 0.05 Service CPU Usage 100%
|:| swchost.exe [LocalService] 1116 Host Pr...  Runni. 15 1] 0.03 il

= ca Peaia P .
‘ Services B 03 CPU Usage (v) ‘
‘ Associated Handles Search Handles L |¥4 (v ‘

- - 0% -

Associated Modules (v

Figure 13: Client computer CPU utilization

CPU usage =3 %

Database Server

top - ©01:16:47 up 15 min, 2 users, load average: 2.80, 1.89, 1.83
Tasks: 156 total, 5 running, 151 sleeping, @ stopped, 0 zombie
Cpu(s): 30.3%us, 47.3%sy, 0.0%ni, 9.7%id, 10.0%wa, 2.3%hi, 0.3%si, 0.0%st

Mem: 3631920k total, 1598880k used, 2033040k free, 79348k buffers

Swap: 1735012k total, Ok used, 1735012k Tree, 1261964k cached
NI 5 %CPU %MEM TIME+ COMMAND
3283 oracle 16 f 194Im 26m 23m R 32.3 0.7 1:30.72 oracle
3281 oracle 16 ® 1941m 28m 24m R 31.3 0.8 1:13.58 oracle
3275 oracle 15 2 194Im &lm 5ym S 8.3 1.7 0:20.62 oracle
3289 oracle 15 ® 1938m 2Im 20m S 1.3 0.6 B:82.84 oracle
3285 oracle 15 @ 1939m 22m 20m S 1.8 0.6 0:82.90 oracle

Figure 14: Database server top CPU utilization

Average CPU usage 30%
2. Memory utilization and Virtual memory Statistics

Client Application Computer

40



Resource Monitor EI@

File Monitor Help

| Overview | CPU | Memory |Disk | Network|

Processes B 73 Used Physical Memory -J.\_- ( } I Views v‘
[7] 1mage FID Hard Faults...  Commit (KB} Waorking 5. Shareable (.. Private * Used Physical Memo 100%
" y
[ skype.exe 3308 0 59,388 66,672 16,068 50, =
|:| explorer.exe 3072 [i] 48,000 58,776 29,444 29,
[T svehost.exe (.. 928 0 29,288 34,684 6,564 28,
[T httpd.exe 1944 0 26,272 27,164 6,112 21
[T nttpd.exe 1488 0 21,732 25,056 6,548 18,
[C] MSACCESS.E... 4516 0 22,208 37,424 22,196 15,
] MSACCESS.E... 4228 0 20,420 35,656 21,652 14, 60 Seconds 0% -
[T svehost.exe (... 960 0 14,156 25,040 13,668 11, _ Commit Charge 100%
| [ T anan ~ P L N T 1.7 | e a4
- n 3
Physical Memory B 719 MB In Use [T 2315 MB Available A
o
I:‘ Hardware E In Use E Modified . Standby I:‘ Free . 0% -
Reserved 719 MB 37 MB 543 MB 1772 MB Hard Faults/sec 100 7
0 MB
Available 2315 MB
Cached 580 MB
Total 3071 MB
Installed 3071 MB

Figure 15: Client computer memory utilization

Memory utilization = Used Memory / Total memory * 100
1299/ 3071 * 100 =42 %

Database Server

Mem: 3631920k total, 1642864k used, 1989056k free, 81368k buffers
Swap: 1735012k total, Ok used, 1735012k free, 1292684k cached
5 %CPU %MEM TIME+ COMMAND

3414 oracle 15 G 1948m 28m 18m 5 32.9 0.6 0:29.29 oracle

3412 oracle 15 O 1946m 20m 17m S 32.3 0.6 0:25.45 oracle

3275 oracle 15 G 1945m 89m 8lm 5 8.6 2.5 1:82.62 oracle

3418 oracle 15 ® 1938m 17m 15m 5 1.3 6.5 0:00.99 oracle

3422 oracle 15 B 1938m 16m 15m 5 1.3 8.5 0:01.81 oracle

2823 root 15 O 39860 13m 6344 5 1.0 0.4 0:087.76 Xorg

3072 oracle 15 0 64980 14m 9434 R 1.8 0.4 0:02.56 gnome-terminal

3416 oracle 15 ® 1938m 17m 15m 5 1.8 6.5 0:01.83 oracle

3420 oracle 15 B 1938m 16m 15m 5 1.8 8.5 0:01.84 oracle

2500 oracle 15 ® 1953m 46m 39m D 0.7 1.2 0:04.43 oracle

A8 nrarla -7 A 1G3I08m 13Im 1m S [ (2 | A«1A BA nrarlao

Figure 16: Database Server top memory utilization

41



Memory utilization = Used Memory / Total memory * 100
1642864 / 3631920 * 100 = 45 %

Swap utilization =0 %

3. Disk utilization and I/O statistics
Client Application Computer Disk utilization
@ Resource Monitor EI@

File Monitor Help
| Overview | CPU | Memory| Disk |Network|

Processes with Disk Activity RIS [ views |v] |©
Image FID Read (B/sec)  Write (B/seq) Total‘ [B/sec) Disk 100 KB/sec 4
System 4 0 2,517 2,517
svchost.exe ... 883 Q 9 9

Disk 0 (C:) Queue Length  0.01
‘ Disk Activity i 0 KB/sec Disk VO 03 Highest Active Time v ‘
‘Storage v ‘
04

Figure 17: Client computer Disk utilization

Client Application Computer - Disk Activity 0%

42



Database Server Disk (1/0) utilization
[root@localhost hardware-monitor-1.4.3]# iostat

Linux 2.6.18-194.17.1.0.1.e15 (localhost.localdomain) 02/12/2013

avg-cpu: %Buser  %nice %system %iowait %steal  %idle
20.13 .81 23.61 2.80 0.80 53.45

Device: tps Blk read/s Blk wrtn/s Blk_read Blk wrtn
hda 3.71 94.89 29.61 1646386 326504
hdal 3.70 94.68 29.61 1044058 326504
hdaz2 8.008 8.16 0.008 17608 8
hdb 20.26 183.13 218.79 1137293 2412690
hdbl 20.26 163.04 218.79 1136261 2412690
hdc 8.008 8.02 0.008 168 8
sda 8.01 8.19 0.00 2051 4
sdal 8.01 g.18 0.008 1979 4

[root@localhost hardware-monitor-1.4.3]# vmstat

procs ----------- memory---------- --- swap-- ----- ip---- -- system-- ----- cpu------
r b swpd free buff cache 51 50 bi bo in €S us sy id wa st
1 0 0 1562324 134344 1576632 ] a 99 124 1247 2235 20 24 53 3 0O

[root@localhost hardware-monitor-1.4.3]#

Figure 18: Database Server 1/0 utlization

Database server 1/O activity
Blocks read per sec — 94.89

Blocks written per sec — 29.61

43



4. Network Utilization

Client Application Computer

@ Resource Monitor EI@
File Monitor Help
Overview | CPU Memory | Disk MNetwork
Processes with Network Activity 2 1 > | Views |v| =
Image FID Send (Bfsec) Receive (B/.. Total (B/sed)
FS0RUMNZZ.EXE 4352 5,352 7636 12,958
svchost.exe . 1260 138 133 276
System 4 &6 22 107
Skype.exe 3308 [} [} [}
60 Seconds 04
TCP Connections 104 ||=
| Network Activity @ 95 Kops Network /O W 0% Network Utilization o |
| TCP Connections " |
E & i E
| Listening Bots | Local Area Connection 3 100%

Local Area Connection 2 100%

Figure 19: Client computer network utilization

Client Application Computer Network Utilization - 0%

Database Server Network Utilization

Network History

‘

Received: 15 .4 KiB/s Total: 81.0 MIiB

| [ ‘ Sent: 185KB/s Total: 98.0 MiB

Figure 20: Database server network utilization

Database Server Network Utilization - < 20%

ii. Database and application performance statistics
The payroll application runs on an oracle database, the Oracle Enterprise Manager Tools were
used to collect the performance statistics.

Overview of Performance

44



LaUT91 GG WMITLASU | IV | GIYEL | U 16y VI Lt | ML D)

Home | Performance { Administration ~ Targets ~ Configuration
View | Performance Summary E

View Data | Real Time: Manual Refresh E

CPU Utilization Memory Utilization Disk /0 Utilization
100 100 100
75 75 75
50 50 50
25 25 25
qQ Q o
227 2:30 227 2:30 227 2:30
feb 12,2013 | CPU Utiization Feb 12, 2013 [ Mernory Utilization ¢4 Feb 12, 2013 [ Toual /05 per second
CPUIn VO Wait (%) v 1.5 Memary Page Scan Rate (pagesisec) 0 Longest Sendce Time (ms)  2.06
Run Queue Length (5-minute average) v 2.1 Swap Utilzation (%) v 0 Additional Metrics Disk Actiity
Additional Metrics CPU Usage Additional Metrics Paging Activity
Processes

Processes 183
Top 10 Processes
View By| CPU Utilization (%) El

CPU CPU Resident
Process Utilization ~ Total  Size Virtual
ID Command (%) (seconds)  (KB) Size (KB) Owner

20123 ora_p003_orcl 261 64 22720 1,986,944 oracle
20121 ora_p002_orc! 256 63 24,336 1,986,944 oracle
20115 oracleorc] {(LOCAL=NO) 51 14 53,632 1,988,012 oracle
19844 le/app/oracle/product/11.2.0/dbhome_2j java -server -Xmy192M -XX MaxPermSize=200M -XX MinHeapFreeRatio=20 -XX MaxHeapFreeRatio=40 - 509 19 158,776 565956 oracle

DORACLE_HOME=/t le/app/oracle/product/11.2.0/dbhome_2 -Doracle.home=/home/oracle/app: ‘product/11.2.0/dbhome_2focd] -

Doracle.ocd). localhome=/t le/app/oracle/prod.

11.2.0/dbhome_2/localhost.localdomain_orcl/sysman -DEMSTATE=/home/oracle/apploracle/product/11.2.0/dbhome_2/localhost.localdomain_orcl
Daracle i7ee dont use memany archive=trus Niava oratarnl handler nkns=HTTRClient -

Figure 21: Database performance overview

CPU Usage

Uatahase Lontrol

Liatahase
Host locathostlocaldomain > Allkletrics >
CPU Usage

Page Refieshed Feb 12, 2013 2:36:40 P PST &
\ CPU Number CPU User Time (%) CPU System Time (] CPU idle T (4]
0 81 s

b ik}

pE

Database | Setup | Preferences | Help | Logout

Copyright @ 1996, 2010, Oracle. Al rights reserved
(Oracle, JD Edwards, PeopleSoft and Refek are registered trademarks of Oracle Corporafion andlor t= affilates. Other names may be trademarks of thelr respective owners.
About Oracle Enterprise Manager

Figure 22: Database CPU usage

Runnable processes

Database Instance: orcl

Home | Performance { Avallablity ~ Sever  Schema  DataMovement  Software and Suppart

Baseline Name  SYSTEM_MOVING_WINDOW

Baseline statistics have not yat been computed

| Settings | View Data Real Time: 15 Second ReﬁeshE

Show || cpU Cores

Host: Average Runnable Processes [v] show Load Average

H

0 4

[

I

8

s W Load Average

iz

F Non-Database Host CPU
E A T iR 1 mstance Badkground cpu
g Instance F d CPU
c 04:45AM 04:504M 04:55AM 05:00AM 05:05AM 05:10AM 05:15AM 05:20AM 05:254M 05:30AM 05:35AM ts:anay B Instance Foregroun

Run ADDM Now Run ASH Report

Figure 23: Database runnable processes

Average Active sessions

45



Average Active Sessions () Foreground Only () Foreground + Background

18 B Other
1 Cluster
I Queueing
=2 M Network
N B Administrative
W cConfiguration
o-E B Commit
0.6 B Application
B Concurrency
o B System1/0
0.z B User1/O
Scheduler
o CPU Wait
04:45aM 04:50aM 04:55aM 05:00aM 05:05AM 05:10AM 05:15aM 05:208M 05:25aM 05:308M 05:35AM SseOM oy
& Top Activity
Figure 24: Database Average Active sessions
Throughput | I/0 | Parallel Execution | Services
Instance Throughput Rete () Per Sacond () Fer Transacion
o 120
H
H
v ow
0 B Logons
i 0
o N
04:438M 04:508M 04:55AM 05:00AM 05:05AM 03:108M 0511540 05:20AM 03:258M 05:30AM 03:358M 03:408M W Transactions
g 800000
H
400000
0 B Physical Reads (KB)
§ 0
04:458M 04:30AM 04:354M 05:00AH 03:034M 03:108M 05:134M 05:204M 05:258M 03:304M 03:338M 05:40AM 1 Redo Size (k&)
Figure 25: Database throughput
Throughput |~ 1/0 | Parallel Execution ~ Services
Latency For Synchronous Single Block Reads
¢ €
o
0415080 04:55AM 05:008M 05:058M 05:108M 05:15AM 05:204M 05:258M 05:308M 05:358M 05:408M osiasay M Latency

10 Brezkdown (s) 1/0 Function () 1/0 Type () Consumer Group

1/0 Calibration

1/0 Megabytes per Second by I/0 Function

800
800
700
0o
500

400

MB per Sec

a0e

04:504M 04:35AM 035:004M 05:05AM 05:10AM 05:15AM

Figure 26: Database 1/0 throughput

46

05:20AM

03:25AM

05:30AM

05:35AM

05:404M 035:4354M

Archive Manager
Smart Scan
Others

XDB

Streams AQ
Data Pump
Recovery

RMAN

ARCH

LGWR

DBWR

Direct Writes
Diract Reads
Buffer Cache Reads



1/0 Requests per Second by I/0 Function

00 W Archive Manager

I SmartScan
i W Others
U X0B
W Streams AQ
|l Data Pump
[l Recovery
RMAN
B ARCH
B LGWR
B DBWR
Direct Writes
W Direct Reads
[ Buffer Cache Reads

300

200

VO per Sec

100

04:30AM 04:33AM 03:00AM 03:03AM 03:10AM 03:13AM 032044 03:23AM 03:30AM 03:33AM 034041 03:434M
Figure 27: Database 1/0O throughput

Parallel Executions

| Throughput  1/0 | Parallel Exccution | Serviees |

f
H
8
i . 1 Active Serial Sessions
04:50AM 04:558M 05:004M 0510544 05:10AM 05:15AH 05:208H 05:254M 05:308M 05:358M 05:40AM 0514584 B Active Parallel Sessions
@ Parallel Max Servers
H
o 20
'i 0 e e B Parallloc
04:50AM 04:558M 05:00M 05:05AM 051108 05:15AM 05:208M 05:25M 05:308M 05:35AM 05:40am 05:458M B Parallel Slaves
0.08
0.0
?
8 .04
H
? W DDL Statements Paraliclized
5
L 1 DML Statements Parallelized
04:504M 04:338M 03:00m 05:058M 031108 05:15AM 05:208M 03:238M 05:308M 05:338M 031408 05:438M B Queries Parallelized
€0
B Serialized
-] @0 W Downgraded 100%
g
8 Downgraded 75%
L B Downgraded 500
5
& 1 Downgraded 25%
04:150AM 04:55AM 05:004M 05:05AM 05110AM 05115AM 05:208M 051254 05:308M 05:35AM 05140aM 05:145AM B ot Downgraded

Figure 28: Database Parallel Executions

47



Top Activity
Top Activity

Drag the shaded box to change the time period for the detail section below.
View Data| Real Time: 15 Second Refresh E

2.4
Other
> Queueing
Network
16 Administrative
Configuration
L2 Commit
aximum CPU
Application
e Concurrency
System I/0
0.4
User1/0
P aaa Scheduler

05:06AM 05:11AM 05:16AM 05:21AM 05:264M 05:31AM 05:36AM 05:41AM 05:46AM 05:51AM 05:564M 06:01AM CPU + CPUWait

Astive Sszsions

Detail for Selected 5 Minute Interval

Start Time Feb 12, 2013 6:00:04 AM PST {Run ASH Report )

Top SQL Top Sessions

Actions | Schedule SQL Tuning Advisor E@ View | Top Sessions E
Select Al | Select None | Activity (%) Session D |QC Session ID UserName |Program |
Select Activity (%) |saLn [satType | — 17 1 5Y8 oracle@Iocalhost localdamain (LGWR)

0 a5 1s3pssuvatend SELECT —— 130 2 2 P15.2680 94  CUsersvex\DeskioplUMIS2000 nk

[ —TT izacchihizaw DELETE -8 10 SYS oracle@localhost localdomain (DBWO)

= e 80 SYSTEM OMS

D o 1554 LLEe SELECT m 6 3 SYS oracle@localhost localdomain (PSPO)

O o 1339 6k02pghisfb3 SELECT | 56 41 2 P15.2680 %  oracle@localhost localdomain (P003)

0 w3 —_— [EE=r | 56 4 % P15.2680 %4 oracle@localnost localdomain (POU3)

0 g I2kow31hu36ig SELECT 156 52 2 P15.2680 9  oracle@localhost.ocaldomain (PO02)

0 g23% Bubb48vajczT INSERT |5 4 2 P15.2680 94 oracle@localhostlocaldomain (PO03)

O gsr BuBbibiaczT INSERT | % 48 2 P15.2880 94 oracle@Iocalhost localdomain (P002)

01 dayalB2sidlis  INSERT Totl Sample Count 176

Figure 29: Database Top Activity

Automated Database Diagnostic Monitoring tool (ADDM) Run

Database Instance:orel > Advisor Central > Logged in As SYSTEM

Automatic Database Diagnostic Monitor (ADDM)
Page Refreshed Feb 12, 2013 6:17:42 AM PST ( Refresh

Database Activity
(Run ADDM )  Finding Histary
The icon selected below the graph identifies the ADDM analysis period. Click on a diflerent icon to select a different analysis period
1

w

2

s

h0s 0 wait

3 W User 1O Zoom

@ W cPu

= [

g0

< 114 2 3 4 5 &

Feb 12, 2013

2 @ @ [} [} El-
@TIP For an explanation of the icons and symbols used in this page, see the lcon Key
ADDM Performance Analysis

Task Name ADDM:1229390655_1_1965
((Fitters )  view Snapshots ) ( View Report
Task Owner SYSTEM Average Active Sessions 1 Period Start Time  Feb 12, 2013 6:00:18 AM PST Pg””dtgﬁ":‘“&”a"} 8.4

|impact (%)= Finding o (24 hrs ending with analysis period) |
I Virtual Memory Paging 40f7
re— 60 Top SOL Statements 40f7
- 248 Top Segments by "User /0" and "Cluster” 40fT
I 29 Commits and Rollbacks 40f7

Peinformational Findings

Database | Setup | Preferences | Help | Logout

Figure 30: Database Automated Database Diagnostic Monitoring tool (ADDM) Run

For a listing of the complete ADDM output, refer to APPENDIX B

Step 6: Identification of bottlenecks
Once performance statistics from the various tiers was collected using the various tools a critical analysis of
the data was conducted with the aim of identifying bottlenecks.
i. Operating system tier and hardware tier
1. CPU bottlenecks

48



In both the client computer and the database server CPU was not a bottleneck. In the client
computer CPU utilization was an average of 3% and on the database server 30%. The oracle
database monitoring tool reported a slightly higher CPU usage of 60% but went ahead to explicitly
state that CPU was not a bottleneck in its ADDM output which states as follows.

“CPU was not a bottleneck for the instance.”

Memory bottlenecks

In both the client computer and the database server memory utilization never reached 100% and
there was existence of free memory. Due to presence of free memory virtual memory in the
clients’ windows application machine was not utilized and swapping in the Linux database server
did not occur too.

Oracle ADDM tool reported that excess virtual paging was occurring in the database host machine

as illustrated below.

Uentral > Automatic Jatabase Liagnoshe Montor (AUDM5Y:S | WL ALK 22439065 1 1465 >

Ualanase [3tEncs: (7 42
Performance Finding Details: Virtual Memory Paging
Finding  Siqnificant virtual memory paging was detected on the host operating system.  fincing History
Impact {Acthe Sessions) .37
Perceatage of Fining's Impact (% I
Pened Start Tme Feb 12, 2013 6:00:18 AM PST
Pericd Dursion {miutes) 84
Fittrag Mo fiters |

Recommendations

Show AL Detals | fide Al Detals

Defails Category Benefit %]

1yt Host Configaatin I 10

Host operating System was experiencing significant paging but no particular root cause could be deterted, Investiate processes that do not belong to this instance running on the host that are consuming significant amaunt of virtal
memary. Also cansider adding more physical memary to the host,

ALl

Figure 31: Oracle virtual paging

Further analysis indicated that this finding was not collaborated by other operating systems such

as free and top which indicated existence of free memory and no swapping taking place.

[oracle@localhost ~]% free -m

total used free shared buffers cached
Mem: 3546 2532 1014 6} 164 1775
-/+ buffers/cache: 592 20954
Swap: 1694 a 1694

Figure 32: Free memory utilization

Output from Linux free tool

top - 15:06:23 uwp 7:11, 3 users, Tload average: 3.48, 3.65, 3.29

Tasks: 179 total, 4 running, 175 sleeping, 0 stopped, 0 zombie

Cpu(s): 49.2%us, 39.5%sy, 0.0%ni, 8.6%id, 0.3%wa, 2.0%hi, 0.3%si, 0.0%st
Mem: 3631920k total, 2593332k used, 1038588k free, 168936k buffers

Swap: 1735012k total, Ok used, 1735012k free, 1818792k cached

Figure 33: Top memory utilization

Output from top Linux tool

49



Review of literature on the inconsistency revealed that this is due to a bug in the ADDM tool
(Kirill, 2012)

Above inconsistency illustrates challenges experienced during performance tools and shy deeper
analysis of performance issues should be conducted before conclusions are arrived at. Use of

more than one tool is also recommended in order to validate the results obtained.

3. Disk bottlenecks

The client windows machine indicated barely noticeable disk activity of 0%.

The database server had noticeable disk activity of 94.89 Blocks read per sec and 29.61 Blocks
written per sec.

Oracle enterprise manager indicated significant disk 1/O.

Disk IO Utilization

100
=
0
25

0 Il 'l 1 Il
227 245 =00 =15
Feb 12, 201= @l Total IfOs per secand

Longest Service Time (ms) 1.83

Additional Metrics Disk Activity

Figure 34: Oracle 1/O utilization

Further analysis showed that specific SQL statements were causing the high disk activity.
Output from ADDM.
“Finding 3: Top Segments by "User /0" and "Cluster"

Impact is .24 active sessions, 24.77% of total activity.

Individual database segments responsible for significant "User 1/0" and

"Cluster" waits were found.

Recommendation 1: Segment Tuning
Estimated benefit is .24 active sessions, 24.77% of total activity.

Action
Run "Segment Advisor" on TABLE "P15_2680_94.PROCESSED_DATA" with object
ID 101437.
Related Object

50



Database object with ID 101437.
Action
Investigate application logic involving I/O on TABLE
"P15_2680_94.PROCESSED_DATA" with object ID 101437.
Related Object
Database object with ID 101437.
Action
Look at the "Top SQL Statements" finding for SQL statements consuming
significant 1/0 on this segment. For example, the DELETE statement with
SQL_ID "94zaccf3h3zgw" is responsible for 100% of "User I/0" and
"Cluster" waits for this segment.
Rationale
The 1/0 usage statistics for the object are: 97240 full object scans,
52098200 physical reads, 3233 physical writes and 52098200 direct reads.

Symptoms That Led to the Finding:

Wait class "User I/0™ was consuming significant database time.

Impact is .24 active sessions, 24.77% of total activity.”.

The SQL identified causing the high 1/0 needed to be looked or movement to faster solid states
disks considered.

4. Network bottlenecks
For the client machine network utilization was barely noticeable being below 0 % and for the
database server it was below 20 %.

Oracle ADDM tool reported explicitly that network was not a bottleneck as quoted below.

“Wait class "Network" was not consuming significant database time”.

Despite CPU and memory not being a bottleneck. Experiments were carried out to determine if the

payroll response time would improve if more hardware resources were utilized. (Burleson, 2010)

in his Oracle performance, hardware & RAM tuning optimization article indicates that use of

faster processors almost always leads to improvement in performance.

51



Since resource utilization on the clients machine are negligible, it only the database location that

was varied in the experiment.

The following three computers were used with specifications indicated.

Specifications

HP Laptop 620

Dell Power edge 880

server

HP Elite Book

Operating System

Oracle Enterprise Linux

Oracle Enterprise Linux

Oracle Enterprise Linux

Processor Type Intel® Core™2 Duo | Intel® Xeon® Processor | Intel®  Core™  i7-
Processor T6670 E7-4807 3520M Processor

Processor clock speed 2.2 GHz 1.86 GHz 2.9 GHz

Max Turbo Frequency 3.6 GHz

Processor cache 2MB 18 MB Intel® Smart | 4 MB Intel® Smart
Cache Cache

Processor cores 2 6 2

Processor Threads 0 12 4

Processor release date Q3'09 Q211 Q2'12

Memory Available 8 GB 64GB 8GB

Oracle Version

Oracle 11g R2

Oracle 11g R2

Oracle 11g R2

Table 6: Server Specifications

A payroll database with two months historical data was chosen and 200 payroll records processed

in each computer. The average responses time in each computer are illustrated below.

Computer Response Time (secs)
HP Laptop 620 88
Dell Power edge 880 server 80
HP Elite Book 30

Table 7: Response time per server

52




Response Time (secs)
HP Elite Book

Dell Power edge 880

server M Response Time (secs)

o
N
o
o
o
2]
o
(0]
o
=
o
o

Figure 35: Payroll response time per server

As depicted in the chart the faster more recent processor of the Elite book computer performed
considerably better than the other processors. There is a 65 % (88-30)/88 * 100 improvement in

performance by using a faster processor.

Despite the Dell Power Edge server having 64 GB of RAM and 24 cores available, it did not lead to

significant improvement in performance.

For detailed values of the experiment refer to Appendix C.

i Application and Database Bottlenecks
An analysis of the application activity indicates existence of the following bottlenecks.

1. Problem with SQL statements
Using the ADDM tool it was found that a performance gain of 60 % could be
obtained by tuning selected SQL statements.
Below are excerpts from ADDM analysis
“Finding 2: Top SQL Statements
Impact is .58 active sessions, 60% of total activity.

SQL statements consuming significant database time were found. These

statements offer a good opportunity for performance improvement.

Recommendation 1: SQL Tuning

Estimated benefit is .35 active sessions, 36% of total activity.”

53



2. High commit rate
Analysis of the payroll application transactions indicated that the application was
committing records to the database too frequently. The application was performing
1242 transactions per minute. A performance improvement of 2.9% can be gained by
reducing the rate of commit and increasing the size of transactions.
Below An excerpt from ADDM
“Finding 4: Commits and Rollbacks

Impact is .03 active sessions, 2.91% of total activity.

Waits on event "log file sync” while performing COMMIT and ROLLBACK
operations

were consuming significant database time.

Recommendation 1: Application Analysis

Estimated benefit is .03 active sessions, 2.91% of total activity.

Action
Investigate application logic for possible reduction in the number of
COMMIT operations by increasing the size of transactions.

Rationale
The application was performing 1242 transactions per minute with an

average redo size of 1001 bytes per transaction.”

3. Scalability bottleneck.
While collecting user feedback, it was noted that the user indicated the payroll
application seemed to slow down further with each year.
An experiment was set up to investigate the scalability of the payroll application.
Payroll databases with different historical data were considered and the average
response times collected.

54



Payroll historical data Response time
2 months 33

1 year 50

2 years 75

3 years 101

Table 8: Payroll historical data vs response time

Response time

120

100 /
80 /
60 .
/ = Response time
40

/

20

2 months 1year 2 years 3 years

Figure 36: Payroll response time vs. historical data

As depicted in the chart the application scales very poorly as more data is added.
Performance degrades by 67% (101-33)/101 * 100 if the database contains 3 years historical
data as compared to having historical data of only two months. Each year performance

degrades roughly by 20% as more data is added.

In summary the following bottlenecks have been identified in the payroll application.

1.

Disk 1/0 bottleneck: This is attributed to application logic and poorly performing SQL, the
bottleneck can be resolved by rewriting application logic and identified SQL statements or
adding faster disks such as Solid State Disks. Estimated performance improvement 24%.

Poor performing SQL statements: Tuning Identified SQL statements offer opportunity for
improving performance of the database application by 60 %. Moving to faster processors also
realized 65% improvement in performance.

High Commit rate: Caused by small transaction size, can be resolved by increasing
transaction size by rewriting application code. Estimated improve in performance 3%.

Poor scalability: The payroll application scales very poorly with an estimated 20% degrade in
performance each year. Since current payroll contains 10 years historical data, archiving 9

years historical data can lead to 180% improvement in performance.

55



Step 7: Ranking in terms of cost and impact

Using the formulae

Impact
Rank = P

Y+Cost+Time

Which is discussed in the methodology section for each bottleneck a rank was calculated.
For the values of Impact a percentage range was used and for the values of Cost, Time and
Coefficient Y values in the ranges of [1 -10] were assigned based on the analysis and findings obtained

in identification of the bottleneck section.

Bottleneck Option to | Impact % Cost Time Rank
address
bottleneck

Disk 1/0 bottleneck Rewriting 20 7 6 0.07
application
logic and SQL

Disk 1/0 bottleneck Move to faster | 20 4 1 0.71
Solid State
Disks

Poor performing | Tune SQL | 60 8 10 0.11

SQL statements Statements

Poor performing | Move to faster | 60 3 1 2.86

SQL statements processors

High Commit rate Rewriting 2 6 7 0.07
application
logic

Poor scalability Archive  old | 180 1 1 25.71
data

Table 9: Unranked bottlenecks
Step 8: Iterative resolution of identified bottlenecks in the tiers based on the ranking
Based on the rank calculated for each bottleneck, the table below orders the bottleneck by rank.

Bottleneck Option to | Impact % Cost Time Rank
address
bottleneck

Poor scalability Archive  old | 180 1 1 25.71
data

Poor performing | Move to faster | 60 3 1 2.86

SQL statements processors

Disk 1/0 bottleneck Move to faster | 20 4 1 0.71
Solid State
Disks

Poor performing | Tune SQL | 60 8 10 0.11

SQL statements Statements

Disk 1/0 bottleneck Rewriting 20 7 6 0.07
application

56




logic and SQL

6 High Commit rate Rewriting 2 6 7 7 0.07
application
logic

Table 10 : Ranked bottlenecks

The performance goal was to have the payroll application process 6000 payroll records in less than two

hours. This is a 50% improvement in performance.

By resolving the scalability bottleneck through archiving of old data performance of the application
will improve by 180% and the target will we be met.

Further resolution of identified bottlenecks will lead to better improvement in payroll processing.

57



CHAPTER 5: DISCUSSIONS CONCLUSION AND

RECOMMENDATIONS
5.1. ACHIEVEMENTS

The following were achieved as per the objectives set out in chapter one.
Obijective 1: To study systems performance tuning especially in database oriented applications.

An in depth study of systems performing tuning was carried out. Various literatures were reviewed and
factors that affect system performance were identified. It was realized that all tiers that an application

interacts with can be a source of bottlenecks.

Objective 2: To review the existing application and database tuning methodologies with an intention of

identifying gaps.

Various fine tuning methodologies were reviewed and detailed in the literature survey section. It was found
that most existing methodology had some bias to a tier depending on the origin of the methodology. A

summary and critique of existing methodology was given.
Objective 3: To develop a customized integrated holistic tuning approach that addresses identified gaps.

Using the reviewed methodology and addressing gaps that were identified, a holistic methodology was

developed. The methodology focused on the following:

1. Tools for gathering and analyzing performance statistics in ach tier.

2. How to identify bottlenecks in each tier and suggestions on resolution of some of the identified
bottlenecks.

3. Ranking of bottlenecks to assist in choosing which bottlenecks to resolve at minimal cost and time
to the organization while achieving the greatest impact. A formula to aid in ranking was

suggested.
Obijective 3: To apply the customized methodology in a real world performance problem.

The developed methodology was applied to a poorly performing payroll application and the following

bottlenecks identified.

Disk 1/0 bottleneck:
Poor performing SQL statements

High Commit rate

A w0 e

Poor scalability

58



Various options for resolving the bottlenecks were discussed and analyzed and their overall impact arrived
at.

Best improvement in performance was realized by using faster processors and maintaining historical data to
a minimum as illustrated in figure 39 and 40.

The ranking formulae were applied to each bottleneck and the bottlenecks ranked based on the overall
impact, cost and time to resolve.

The bottlenecks that offered greatest improvement in performance at minimum cost and time to the
Organization were identified.

59



5.2. VALIDATION OF THE CONCEPTUAL MODEL
In the beginning of the tuning exercise the following conceptual model was developed to guide the tuning

exercise.
2.Performance
Goals
3.Architecture
o Analysis and
Application tier gathering of
performance
statistics
Middle layer and
database drivers
tier
Network and
infrastructure tier v
1.Performance | » 4-3?“'9_”6‘* g
Measurement » Identification an
L Operating system — ranking
tier

Hardware and
storage subsystem
tier

Database tier

5.Bottleneck
Resolution

Figure 37: Conceptual model

Step | in the model is performance evaluation, this was carried and the following baseline performance

measurement values collected
The response time was 101 secs to process 200 records translating to 0.5 secs per payroll record.

The throughput of the application was 200 payroll records in 101 secs, translates to 2 payroll records

per second.

60



Step 2 in the model is setting of performance goals, in consultation with the user the following goal was set

“The payroll application must process 6000 payroll records in under two hours.”

Step 3 involved architecture analyses and gathering of performance statistics, this was extensively carried

out for all the tiers as depicted in Operating system and hardware statistics, CPU utilization, Memory

the tiers as detailed in section 4 and 5 in the Application of the Methodology chapter

Stage 4 in the model is Identification and ranking of bottlenecks, this was done and the following

bottlenecks identified.

Disk 1/O bottleneck: This is attributed to application logic and poorly performing
SQL, the bottleneck can be resolved by rewriting application logic and identified
SQL statements or adding faster disks such as Solid State Disks. Estimated
performance improvement 24%.

Poor performing SQL statements: Tuning Identified SQL statements offer
opportunity for improving performance of the database application by 60 %. Moving
to faster processors also realized 65% improvement in performance.

High Commit rate: Caused by small transaction size, can be resolved by increasing
transaction size by rewriting application code. Estimated improve in performance
3%.

Poor scalability: The payroll application scales very poorly with an estimated 20%
degrade in performance each year. Since current payroll contains 10 years historical
data, archiving 9 years historical data can lead to 180% improvement in

performance.

Ranking of the bottlenecks based on different methods of resolving them resulted to the following ranking

table
Bottleneck Option to | Impact % Cost Time Y Rank
address
bottleneck
1 Poor scalability Archive old | 180 1 1 7 25.71
data
2 Poor performing | Move to faster | 60 3 1 2.86
SQL statements processors
3 Disk 1/0 bottleneck Move to faster | 20 4 1 0.71
Solid State
Disks
4 Poor performing | Tune SQL | 60 8 10 0.11
SQL statements Statements
5 Disk 1/0 bottleneck Rewriting 20 7 6 0.07
application
logic and SQL

61




6 High Commit rate Rewriting 2 6 7 7 0.07
application

logic

Table 11: Ranked bottlenecks

Step 5 in the model is resolving identified bottlenecks until performance goal is met, The performance
goal was to have the payroll application process 6000 payroll records in less than two hours. This is a
50% improvement in performance.

By resolving the scalability bottleneck through archiving of old data performance of the application
will improve by 180% and the target was met. Further resolution of the bottleneck would lead to better

improvement in performance.

Thus all the stages of the conceptual model were validated and found to hold.

5.3. VALIDATION OF THE RANKING FORMULAE

An attempt to validate the formulae proposed using data collected from the poorly performing application
was made. This method of validating a formula is referred to as experimental as opposed to mathematically
validating the formulae.

Rank = Impact
anx = Y * Cost * Time

The above formula used to rank the identified bottlenecks in the poorly performing application, Values of
Impact were derived from various performance tools used to analyze the poorly performing application and

also from experimentation.

Values of cost, time and Coefficient were arrived at with consultation with the user of the payroll
application.

After application of the formulae using the values obtained it was found out that bottlenecks that had huge
impact in overall improvement of performance and cost less and while taking minimum to resolve had the
highest rank. A good example is the poor scalability bottleneck, it had an Impact of 180 % and Cost and

Time values of 1 and coefficient of 7. The rank of the bottleneck was 25.71which was the highest.

5.4. LIMITATIONS AND CHALLENGES

In the developed integrated methodology illustrations were given using Linux and Windows operating

systems which are perceived to be to be the most common operating systems.

In the developed integrated methodology option for switching to a different database system was not

considered.

62



Obtaining different type of computers with different hardware configurations was a challenge.

63



5.5. DISCUSSIONS
Due to the importance of systems performance in the current business context the study set out to review
existing fine tuning methodologies and develop a customized tuning methodology based on identified gaps

and test the developed methodology on an existing application.

Many methodologies exist of tuning and optimizing application and databases separately, after reviewing
available literature, it was discovered not much attention has been given to formulating a holistic approach

of tuning applications and databases in a good documented and systematic approach.

Existing application tuning approaches are either application specific or are proposed by vendors whose
tuning software’s use the recommended approaches. Existing database tuning methodologies focus so
much on the database that they downplay the role of other components such as the operating system and

middle layer tier in overall performance of the application.

The study achieved its objectives of developing a customized holistic database and systems fine tuning
methodology and demonstrating how the methodology can be used to tune a poorly performing payroll

application.
Main stages of the developed methodology are:

1. Obtaining feedback from the user on how the system is behaving

2. Collecting baseline Performance measurement of the application when it is performing below users’
expectation and when the system is performing well.

Setting realistic performance goals which are realistic.

Analyzing system infrastructure

Collecting resource utilization and performance statics of all the tiers involved.

IS

Identification of  bottlenecks by analyzing statistics collected, using various tools and

experimentation.

7. Ranking of identified bottlenecks by using impact, Cost and Time. A formula for calculating the rank
for each bottleneck is suggested.

8. Iterative resolution of identified bottlenecks in the tiers based on the ranking

Highlights of the methodology include:

1. Overview of various tools available for gathering resource utilization statistics in various operating
systems.

2. Overview of tools for analyzing performance of various applications and databases.

3. Guidelines on how to identify bottlenecks in various tiers that have impact on system performance.

4. A simple formula that can be used to rank bottlenecks based on Impact, time and cost.

64



5. Tips on how to resolve bottlenecks in various tiers.

The developed methodology is can be used by system administrators, database administrators and
performance engineer to trouble shoot and fine tune their applications and can be in cooperated in their

standard operating procedures.

5.6. SUGGESTED FURTHER RESEARCH

Enhance the methodology and include illustrations from other operating systems.

Enhance the methodology give a comparative analysis of performance of different DBMS and what

factors to consider in deciding to change the DBMS.

Mathematically prove and derive the suggested ranking formula and or use further experiments to prove it.

65



REFERENCES

Azeem, M., 2002, A Successful Performance Tuning Methodology Quest Software, Inc. (NASDAQ:
QSFT).

Dennis, S. and Philippe, B., 1992. Database Tuning — Principles, Experiments and Troubleshooting
Techniques, Prentice-Hall.

Donald, K., 2009, Inside Oracle fully automated SQL tuning, Burleson Consulting
Burleson, 2010, Oracle performance, hardware & RAM tuning optimization, Burleson Consulting

Chris Farrell , P., 2010, The Complete Guide to .NET Performance Testing and Optimization, [Online]
Available at: <http://en.wikipedia.org/wiki/List_of performance_analysis_tools.html> [Accessed , 24
November 2012]

Eduardo Ciliendo, T., 2007, Linux Performance and Tuning Guidelines, IBM
Fowler, Martin., 1997, Analysis Patterns, Reusable object models, Addison-Wesley Longman

Jitesh K., 2005, PeopleSoft Global Payroll Performance Analysis & Tuning approach, Tata Consultancy
Services

John, G and Robert, A., 2009, The Data Access Handbook: Achieving Optimal Database Application
Performance and Scalability. Prentice-Hall, Upper Saddle River, New Jersey

Mark, D., 2010, Guide for Developing High-Performance Database Applications, Oracle Corporation

Misty Faucheux, 2012, Windows Profiling Tools, eHow Contributor, [Online] Available at:
<http://www.ehow.com/list_7166039 windows-profiling-tools.html> [Accessed 10 December 2012].

Immanuel, C and Lance, A., 2011, Oracle Database Performance Tuning Guide 11g Release 2 (11.2),
Oracle Corporation

Sitansu, S.M., 2002. Database Performance Tuning and Optimization, Springer Verlag
Isam, A and Lester, G., 2011, Tuning All Layers of E-Business Suite, Oracle Corporation

Kirill Loifman, 2012, Oracle ADDM shows Virtual Memory Paging on 10gR2 11gR2, [Online] Available
at: <https://forums.oracle.com/forums/thread.jspa?threadlD=2132991> [Accessed 09 February 2013].

Oracle - B10500_01, 2002, Monitoring and Improving Application Performance, Oracle Corporation
Oracle, 2010, Rapid Bottleneck Identification A Better Way to do Load Testing, Oracle Corporation

Quest, S., 2010, Performance Tuning for Mission-Critical Database Applications an Example in
PeopleSoft, Quest Software (Nasdaq: QSFT)

Thomas, 2012, Web applications Performance Symptoms and Bottlenecks Identification, Agiletoad

Toadworld., 2010, 5 Step Tuning Methodology - Overview, [Online] Available at:
<http://www.toadworld.com/KNOWLEDGE/KnowledgeXpertforOracle/tabid/648/TopiclD/OPS3/Default.
aspx> [Accessed 1 Feb 2012].

University of Texas,2010, Conduct research , [Online] Available at:
<http://www.utexas.edu/academic/ctl/assessment/iar/research/plan/method/content.php>  [Accessed 12
January 2013].

66


http://www.red-gate.com/products/ants_performance_profiler/want_to_be_dotnet_perf_testing_expert_ebook.htm?utm_source=simpletalk&utm_medium=article&utm_content=dotnetperftestexpert-ebook&utm_campaign=antsperformanceprofiler
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools
http://en.wikipedia.org/wiki/Martin_Fowler
http://www.dadbm.com/author/admin/
http://www.toadworld.com/KNOWLEDGE/KnowledgeXpertforOracle/tabid/648/TopicID/OPS3/Default.aspx
http://www.toadworld.com/KNOWLEDGE/KnowledgeXpertforOracle/tabid/648/TopicID/OPS3/Default.aspx
http://www.utexas.edu/academic/ctl/assessment/iar/research/plan/method/content.php

APPENDIX A: RESOURCE UTILIZATION COLLECTION TOOLS

To collect resource utilization statistics (IBM, 2011) in Linux Performance and Tuning Guidelines

gives a good overview of the available Linux tools and their function.

Tool Most useful tool function

Top Process activity

Vmstat System activity, Hardware and system information
uptime, w Average system load

ps, pstree Displays the processes

Free Memory usage

lostat Average CPU load, disk activity
Sar Collect and report system activity
Mpstat Multiprocessor usage

Numastat NUMA-related statistics

Pmap Process memory usage

Netstat Network statistics

Iptraf Real-time network statistics

tcpdump, ethereal

Detailed network traffic analysis

Nmon

Collect and report system activity

Strace

System calls

Proc file system

Various kernel statistics

KDE system guard

Real-time systems reporting and graphing

Gnome System Monitor

Real-time systems reporting and graphing

Lmbench Microbenchmark for operating system functions
lozone File system benchmark
Netperf Network performance benchmark

Table 12: Linux resource utilization tools

For windows in (arik books) in his Operating System and Process Monitoring Tools survey provides a good

description the available windows monitoring tools.

Tool

Most useful tool function

Task Manager (taskmgr)

fast look into the current system state

Performance Monitor (perfmon)

acts as both a real time and log-based performance monitoring

tool

Process Monitor (pmon)

real-time monitoring of process performance

Process Explode (pview)

provides a vast amount of performance data of processes, threads,

memory, and the system in general.

67




Process Viewer (pviewer)

shows a subset of the process performance measurements shown

by Process Explode

Table 13: Windows resource utilization tools

The table below lists some of the tools that can be used for database monitoring and resource utilization for
main of the databases.

Vendor | Database Tool Name Most useful tool function
Target
Oracle Oracle Oracle e Provide real time statistics of the following
Enterprise resources utilized by the database
manager e Cpu
e Processors
o Disk Usage
o Memory usage
e  Sessions consuming most resources
e  Users consuming most resource
o Wait analysis
Oracle Oracle ADDM e Analyzes statistics to provide automatic
o Diagnosis of major performance issues.
Jayam Oracle MyOra e Real Time Performance Monitoring using graphs,
Systems bar charts & pie charts.
e Multiple Performance Monitoring Windows for
same or different databases.
e Ability to show System Waits using pie charts.
e View Top 5 SQLs and its details using interactive
3-D bar charts.
e View Top 5 Resource Using Sessions and its
details using interactive 3-D bar charts.
IBM DB2 Monitor Activates collections of DB2 useful information such
Switches as time spent in sorts and other important tuning
information
IBM DB2 Snapshot Views that allow querying of performance
Monitor information by use of SQL
Administrative
Views
IBM DB2 Activity Monitor | GUI tool that monitors the following
e application performance and concurrency

68




e resource consumption
e SQL statement usage of a database or
database partition.
Microsoft | SQL Server | SQL Server | The Activity Monitor in SQL Server Management
Management Studio graphically displays information about:
Studio e Processes running on an instance of SQL
Server.
e Blocked processes.
e Locks.
e  User activity.
Microsoft | SQL Server | sp_trace_setfilter | o SQL Server Profiler tracks engine process events
(Transact-SQL) | e Monitor server and database activity such as
o deadlocks
o fatal errors
e login activity
Red Gate | SQL Server | SQL Monitor ¢ Real time performance data
Software e Long running queries
Ltd « Blocked processes
o Centralized alerts
Sun Mysql Mysgladmin e Provides tool for querying MySQL performance
Oracle counters increment
e Contains information about server run status
Percona | Mysql Percona Toolkit | ¢ MySQL Performance Analyses and maintenance
tools
e Summarize MySQL servers
e Analyze queries from logs and tcpdump
e Collect vital system information when problems
occur
Webyog | Mysql Monyog e Deadlock Monitoring
e  Query Analyzer with Query Sniping
e Disk Monitoring & Lock Monitoring
e Real-Time Monitoring
e Error log Monitoring

Table 14: Database monitoring and resource utilization tool

69



http://msdn.microsoft.com/en-us/library/ms174404(v=sql.100).aspx
http://msdn.microsoft.com/en-us/library/ms174404(v=sql.100).aspx

Application gathering statistics tools

Vendor Development | Tool Name Most useful tool function
Platform
Target
CodersNotes | Windows Very Sleepy Save application performance information in
based documents
applications Generates call graphs - graphical representation of
procedures and how they relate to each other
C and C++ CPU (central processing unit) profiler.
Microsoft Windows- Microsoft  Source | Collect statistics and information about Windows
based Profiles applications
applications PROFILE.EXE.
and PROFILEW.EXE
Windows-
hosted
applications
Microsoft Windows VSPerfCmd Allows profiling applications in a certain mode
based Restrict access to the profiler.
applications Profile applications over all Windows sessions.
Profile using commands.
Set how often application samples should be taken.
Microsoft Windows Xperf Visualizer for analyzing Event Trace Log (ETL)
based files.
applications
Microsoft .NET CLR Profiler memory profiling tool
Applications
Red Gate .NET ANTS Memory | Memory and Performance Profililing
Applications and  Performance
Profiler 5.0
Linux Linux based | Linux perf tools Profile application and hardware use
applications

Table 15: Application gathering statistics tools

In addition to the above tools (en.wikipedia.org) in an article titled List of performance analysis tools

provides an overview of the following tools for analyzing performance of applications




Operating
Name/Vendor Development platform
System
NET 1.0 to 4.0 applications
(including ASP.NET applications),
. Silverlight 4.0 applications,
AQtime by Smart
Windows Windows 32- and 64-bit
Bear Software o . .
applications including C,
C++, Delphi for Win32 and

VBScript and JScript functions

AMD, Intel

CodeAnalyst by  hardware x86 )
Linux, Windows
AMD based

machines

HP-UX with
Intel Itanium

Caliper by HP Integrity

platform (1A-

64).
DevPartner by Mi

.NET, Java

cro Focus

Solaris,
DTrace by Sun )

) Linux, BSD,

Microsystems

Mac OS X

71

Most useful tool

function

Performance  profiler
and  memory/resource

debugging toolset

GUI based code
profiler; does only basic
timer-based profiling on
Intel processors. Based

on OProfile.

Profiling tool

Test suite that
automatically  detects
and diagnoses software
defects and performance

problems.

Comprehensive

dynamic tracing
framework for
troubleshooting  kernel
and application

problems on production

systems in real time.

License

Proprietary

Free/open
source
(GPL) or

proprietary

Proprietary

Free/open

source

(CDDL)


http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/CodeAnalyst
http://en.wikipedia.org/wiki/AMD
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/HP
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/IA-64
http://en.wikipedia.org/wiki/IA-64
http://en.wikipedia.org/wiki/DevPartner
http://en.wikipedia.org/wiki/Micro_Focus
http://en.wikipedia.org/wiki/Micro_Focus
http://en.wikipedia.org/wiki/DTrace
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Common_Development_and_Distribution_License

Name/Vendor

dynaTrace

byCompuware

Dynlnst

GlowCode

gprof

Linux
Toolkit

Trace

Operating
Development platform
System
NET, Java, AJAX (for web sites)
Linux,
Windows,Blu
eGene/Q
64-bit and 32-bit applications, C,
Windows C++, .NET, and dlls generated by
any language compiler.
Linux/Unix | Any language supported by gcc
Linux Requires patched kernel

72

Most useful tool

function

Application
Performance

Management

APl to allow dynamic
injection of code into a
running program
Performance and
memory profiler which
identifies time-intensive

functions and detects

License

Proprietary

Free/open

source

Proprietary

Free/open
source -
BSD
version is
part

of 4.2BSD
GNU

version s

and

part

of GNU
Binutils (by
GNU

memory  leaks and
errors

Several  tools  with
combined sampling and
call-graph profiling. A
set of visualization
tools, VCG tools, uses
the Call Graph Drawing
Interface  (CGDI) to
interface with gprof.
Another  visualization
tool which interfaces
with gprof is KProf.
Collects data on
processes blocking,
context switches, and
execution time. This
helps identify

Project)


http://en.wikipedia.org/wiki/Compuware
http://en.wikipedia.org/wiki/Application_Performance_Management
http://en.wikipedia.org/wiki/Application_Performance_Management
http://en.wikipedia.org/wiki/Application_Performance_Management
http://en.wikipedia.org/wiki/DynInst
http://en.wikipedia.org/wiki/BlueGene
http://en.wikipedia.org/wiki/BlueGene
http://en.wikipedia.org/wiki/GlowCode
http://en.wikipedia.org/wiki/Gprof
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/w/index.php?title=VCG_tools&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=KProf&action=edit&redlink=1
http://en.wikipedia.org/wiki/4.2BSD
http://en.wikipedia.org/wiki/GNU_Binary_Utilities
http://en.wikipedia.org/wiki/GNU_Binary_Utilities
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/Linux_Trace_Toolkit
http://en.wikipedia.org/wiki/Linux_Trace_Toolkit

Operating
Name/Vendor

System
LTProf Windows
LTTng (Linux
Trace Toolkit | Linux
Next Generation)
OProfile[2] Linux
Oracle Solaris

Development platform

Visual C++,

Delphi and VB applications

Profiles everything running on the

Linux system,

profile programs such as interrupt

handlers and the kernel itself.

StudioPerformanc | Linux, Solaris | C, C++, Fortran, Java; MPI

e Analyzer[3]

Linux, Mac

Paraver 0S

Windows 4

X, | For parallel computing clusters

73

Borland CBuilder,

including hard-to-

Most useful tool
function
performance problems

over multiple processes

or threads. Superceded

by LTTng.

CPU profiling tool

System software
package for correlated
tracing of  kernel,
applications and
libraries

Sampling profiler for
Linux that counts cache
misses, stalls, memory

fetches, etc.

Performance and

memory profiler

Performance  analysis

tool based on trace files;

allows viewing the
progress of the
application in

temporal axis and also
perform  accumulation
of performance metrics
in a table like regular

profilers.

License

Free/open
source
(LGPL)


http://en.wikipedia.org/wiki/LTTng
http://en.wikipedia.org/w/index.php?title=LTProf&action=edit&redlink=1
http://en.wikipedia.org/wiki/LTTng
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/Oracle_Solaris_Studio
http://en.wikipedia.org/wiki/Oracle_Solaris_Studio
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools#cite_note-3
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/w/index.php?title=Paraver&action=edit&redlink=1
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools#cite_note-4

Operating
Name/Vendor Development platform
System
Linux, o
PGPROF by The C, C++, and Fortran applications
MacOS X, . ]
Portland Group ] using OpenMP and MPI parallelism
Windows
PmcTools FreeBSD
Linux kernel
perf tools
2.6.31+
Performance
Application
_ Various
Programming
Interface(PAPI)
) Linux,
Pin by Intel )
Windows
pprof, part of
gperftools
by Google
. AIX, Linux,
Rational .
Solaris,

74

Most useful tool )
] License
function

Sampling and compiler-
based instrumentation |Proprietary

for application profiling

Provides non-intrusive,
low-overhead and
innovative  ways of
measuring and
analysing system
performance. It exploits
the same underlying
counters as

Linux'OProfile.

Sampling profiler

Library for hardware
performance  counters
on modern

miCroprocessors

Dynamic binary | Proprietary
instrumentation system |but free for
that allows users to| non-

create custom program |commercial

analysis tools use

Sampling profiler with
context-sensitive  call

graph capability.

Performance  profiling proprietary
tool, memory


http://en.wikipedia.org/wiki/The_Portland_Group
http://en.wikipedia.org/wiki/The_Portland_Group
http://en.wikipedia.org/wiki/OpenMP
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/w/index.php?title=PmcTools&action=edit&redlink=1
http://en.wikipedia.org/wiki/OProfile
http://en.wikipedia.org/wiki/Perf_(Linux)
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Performance_Application_Programming_Interface
http://en.wikipedia.org/wiki/Pin_(computer_program)
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/IBM_Rational_Purify
http://en.wikipedia.org/wiki/Memory_debugger

Operating Most useful tool )
Name/Vendor Development platform ) License
System function

PurifyPlus Windows debugger and code
coverage tool

Mac OS X
Shark by Apple | (discontinued Performance analyzer | Free
with 10.7)

Diagnose performance
SlowSpotter and . . _ |problems related to data
. _ |Most compiled languages including .
ThreadSpotter by | Linux, Solaris Ad locality, cache
a
Acumem utilization and  thread

interactions.

Sampling CPU profiler
that uses a kernel
module to profile the
entire system, as
Sysprof Linux opposed to a single
application. It displays
the time spent in each
branch of the

applications' calltrees.?

Programmable  system
tracing/probing tool;
may be scripted to
) generate  time-  or
Systemtap Linux
performance-counter- or
function-based profiles
of the kernel and/or its

userspace.

Valgrind Linux Any, including assembler System for debugging |Free/open
and profiling; supports |source

75


http://en.wikipedia.org/wiki/IBM_Rational_Purify
http://en.wikipedia.org/wiki/Memory_debugger
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Shark_(application)
http://en.wikipedia.org/w/index.php?title=SlowSpotter&action=edit&redlink=1
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Cache_(computing)
http://en.wikipedia.org/wiki/Cache_(computing)
http://en.wikipedia.org/w/index.php?title=Sysprof&action=edit&redlink=1
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools#cite_note-7
http://en.wikipedia.org/wiki/Systemtap
http://en.wikipedia.org/wiki/Valgrind

Name/Vendor

VTune Amplifier
XE bylintel

Corporation

RotateRight

Zoom

Operating
System

Windows

Linux

Development platform

C, C++, Fortran, .NET, Java

Supports most compiled languages

on ARM and x86 processors.

Table 16: Application performance analysis tools

76

Most useful tool

function

tools to either detect
memory  management
and threading bugs, or
profile performance
(cachegrind and
callgrind).KCacheGrind
, valkyrie and alleyoop
are  front-ends  for

valgrind.

Tool for serial and
threaded  performance
analysis. Hotspot, call
tree  and threading
analysis works on both
Intel and AMD x86
processors.  Hardware
event sampling that uses
the on chip performance
monitoring unit requires

an Intel processor.

Graphical and
command-line statistical

(event-based) profiler

License

(GPL)

Proprietary


http://en.wikipedia.org/wiki/KCacheGrind
http://en.wikipedia.org/wiki/KCacheGrind
http://en.wikipedia.org/wiki/VTune
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/RotateRight_Zoom
http://en.wikipedia.org/wiki/RotateRight_Zoom

APPENDIX B: ADDM OUTPUT REPORT

ADDM Report for Task '"ADDM:1229390655 1 1965'

Analysis Period

AWR snapshot range from 1964 to 1965.
Time period starts at 12-FEB-13 06.00.19 AM
Time period ends at 12-FEB-13 06.08.41 AM

Analysis Target

Database 'ORCL' with DB ID 1229390655.

Database version 11.2.0.2.0.

ADDM performed an analysis of instance orcl, numbered 1 and hosted at
localhost.localdomain.

Activity During the Analysis Period

Total database time was 489 seconds.
The average number of active sessions was .97.

Summary of Findings

Description Active Sessions  Recommendations
Percent of Activity
1 Virtual Memory Paging .97 100 1
2 Top SQL Statements .58 |60 2
3 Top Segments by "User 1/0" and "Cluster" .24 |24.77 1
4 Commits and Rollbacks .03]2.91 2

Findings and Recommendations

Finding 1: Virtual Memory Paging
Impact is .97 active sessions, 100% of total activity.

Significant virtual memory paging was detected on the host operating system.

Recommendation 1: Host Configuration
Estimated benefit is .97 active sessions, 100% of total activity.

Action
Host operating system was experiencing significant paging but no
particular root cause could be detected. Investigate processes that do
not belong to this instance running on the host that are consuming
significant amount of virtual memory. Also consider adding more physical
memory to the host.

77



Finding 2: Top SQL Statements
Impact is .58 active sessions, 60% of total activity.

SQL statements consuming significant database time were found. These
statements offer a good opportunity for performance improvement.

Recommendation 1: SQL Tuning
Estimated benefit is .35 active sessions, 36% of total activity.

Action
Run SQL Tuning Advisor on the DELETE statement with SQL_ID
"94zaccf3h3zgw".
Related Object
SQL statement with SQL_ID 94zaccf3h3zgw.
DELETE FROM PROCESSED DATA WHERE PROCESSED _DATA.PAYROLL_NO =:b1 AND
PROCESSED_DATA.PRD_CODE = :h2
Rationale
The SQL spent 100% of its database time on CPU, 1/0 and Cluster waits.
This part of database time may be improved by the SQL Tuning Advisor.
Rationale
Database time for this SQL was divided as follows: 100% for SQL
execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java
execution.
Rationale
SQL statement with SQL_ID "94zaccf3h3zgw" was executed 935 times and had
an average elapsed time of 0.11 seconds.
Rationale
At least one execution of the statement ran in parallel.
Rationale
Full scan of TABLE "P15 2680 94.PROCESSED_DATA" with object ID 101437
consumed 100% of the database time spent on this SQL statement.

Recommendation 2: SQL Tuning
Estimated benefit is .19 active sessions, 20% of total activity.

Action
Run SQL Tuning Advisor on the SELECT statement with SQL_ID
"fkv43164kf4rz".
Related Object
SQL statement with SQL_ID fkv43164kf4rz.
SELECT COUNT(*) FROM PROCESSED_DATA WHERE
PROCESSED_DATA.PAYROLL_NO =:bl AND PROCESSED_DATA.PRD_CODE = :b2
Rationale
The SQL spent 83% of its database time on CPU, 1/0 and Cluster waits.
This part of database time may be improved by the SQL Tuning Advisor.
Rationale
Database time for this SQL was divided as follows: 100% for SQL
execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java
execution.
Rationale
SQL statement with SQL_ID "fkv43164kf4rz" was executed 935 times and had
an average elapsed time of 0.099 seconds.
Rationale
At least one execution of the statement ran in parallel.

78



Rationale
Full scan of TABLE "P15_2680_94.PROCESSED_DATA" with object ID 101437
consumed 83% of the database time spent on this SQL statement.

Finding 3: Top Segments by "User I/0" and "Cluster"
Impact is .24 active sessions, 24.77% of total activity.

Individual database segments responsible for significant "User I/0" and
"Cluster" waits were found.

Recommendation 1: Segment Tuning
Estimated benefit is .24 active sessions, 24.77% of total activity.

Action
Run "Segment Advisor" on TABLE "P15_2680_94.PROCESSED_DATA" with object
ID 101437.
Related Object
Database object with ID 101437.
Action
Investigate application logic involving I/O on TABLE
"P15 2680_94.PROCESSED_DATA" with object ID 101437.
Related Object
Database object with ID 101437.
Action
Look at the "Top SQL Statements” finding for SQL statements consuming
significant 1/0 on this segment. For example, the DELETE statement with
SQL_ID "94zaccf3h3zgw" is responsible for 100% of "User 1/0" and
"Cluster" waits for this segment.
Rationale
The 1/0 usage statistics for the object are: 97240 full object scans,
52098200 physical reads, 3233 physical writes and 52098200 direct reads.

Symptoms That Led to the Finding:

Wait class "User I/0" was consuming significant database time.
Impact is .24 active sessions, 24.77% of total activity.

Finding 4: Commits and Rollbacks
Impact is .03 active sessions, 2.91% of total activity.

Waits on event "log file sync" while performing COMMIT and ROLLBACK operations
were consuming significant database time.

Recommendation 1: Application Analysis
Estimated benefit is .03 active sessions, 2.91% of total activity.

Action
Investigate application logic for possible reduction in the number of
COMMIIT operations by increasing the size of transactions.

Rationale
The application was performing 1242 transactions per minute with an
average redo size of 1001 bytes per transaction.

Recommendation 2: Host Configuration

79



Estimated benefit is .03 active sessions, 2.91% of total activity.

Action
Investigate the possibility of improving the performance of 1/0 to the
online redo log files.

Rationale
The average size of writes to the online redo log files was 0 K and the
average time per write was 3 milliseconds.

Rationale
The total I/O throughput on redo log files was 0 K per second for reads
and 30 K per second for writes.

Rationale
The redo log I/0 throughput was divided as follows: 0% by RMAN and
recovery, 100% by Log Writer, 0% by Archiver, 0% by Streams AQ and 0% by
all other activity.

Symptoms That Led to the Finding:

Wait class "Commit" was consuming significant database time.
Impact is .03 active sessions, 2.91% of total activity.

Additional Information

Miscellaneous Information

Wait class "Application™ was not consuming significant database time.

Wait class "Concurrency™ was not consuming significant database time.

Wait class "Configuration™ was not consuming significant database time.
CPU was not a bottleneck for the instance.

Wait class "Network™ was not consuming significant database time.

Session connect and disconnect calls were not consuming significant database
time.

Hard parsing of SQL statements was not consuming significant database time.

80



APPENDIX C: EXPERMENTATION DATA SHEETS

Intel 2 duo core,8GB RAM, HOST os Solaris 32 bit,

Application server setings cpu 1, memory 2GB Held constant

Database memory 1 GB held constant

Number | start stop secs | start stop secs | start stop Sec start stop Secs Response | Average
of cpus Time
available (Seconds)

to

database

servers

1 11;32:55 | 11;34:11 | 76 | 11:40;41 | 11;42:06 85 11:46:29 | 11:47:57 | 88 11:52:58 | 11:51:30 | 88 84 337
2 10:33:02 | 10.35.12 | 130 | 10:59:50 | 11:02:28 158 | 11:07:53 | 11'10:29 | 156 11:16:51 | 11:19:30 | 159 215 0.93
3

4

HP 17 4 cores,8GB RAM, HOST Windows 64 bit,

Application server setings cpu 1, memory 2GB Held constant

Database memory 1 GB held constant

Payroll data for only two months existing

Number | start stop secs | start stop secs | start stop sec | start stop Secs Response | total
of cpus Time

available (Seconds)

81




to

database

servers

1 4:42:10 | 4:42:40 | 30 | 4:31:31 | 4:32:02 |31 | 4:35:44 4:36:14 | 30 | 4:39:14 4:39;43 | 29 30 120
2 4:50:27 | 4:51:01 | 34 | 4:54:35 | 4:55:09 | 34 | 4:59:24 4:59:58 | 34 | 5:02:39 5:03;13 | 34
3 5:13:21 | 5:13:59 |38 | 5:17:57 | 5:18:36 |39 | 7:31:59 7:32:39 | 40 | 7:34:48 7:35:29 | 41
4 7:42:34 | 7:43:20 | 46 | 7:47:32 | 7:48:19 | 47 7:51:11 7:52:02 51 | 7:53:39 7:54:28 0:00:00
Memory tests for database server

cpu 1, application server settings held constant,memory allocated to database changed to 40% of total memory

Memory | start stop secs | start stop secs | start stop sec | start stop Secs
available

to

database

Servers

1GB 8:55:23 | 8:55:54 | 31 | 8:57:32 | 8:58:03 |31 | 9:00:21 9:00:53 | 32 | 9:03:35 9:04:06 | 31
2GB 10:19:38 | 10:20:10 | 32 | 10:22:57 | 10:23:29 | 32 | 10:34:37 | 10:35:11 | 34 | 10:37:51 | 10:38:23 | 32
3GB 10:54:55 | 10:55:29 | 34 | 11:01:19 | 11:01:52 | 33 | 11:08:52 | 11:09:24 | 32 | 11:11:52 | 11:12:24 | 32
4GB 12:58:36 | 12:59:10 | 34 1:01:43 | 1:02:19 | 36 1:05:41 1:06:16 35 | 1:09:20 1:09:54 34

HP 17 4 cores,8GB RAM, HOST Windows 64 bit,

Testing using payroll data for previous years, application server, 1 cpu,3GB, database server 1cpu, 4GB

82




Historicsl | start stop secs | start stop secs | Average response time
data

available

2months | 5:58:28 | 5:59:00 | 32 | 6:06:21 | 6:06:54 | 33 | 33

1 year 5:29:34 | 5:30:24 | 50 | 5:39:21 | 5:38:31 |50 |50

2 years 4:50:18 | 4:51:32 | 74 | 4:55:13 | 4:56:28 | 75 75

3 years 7:11:13 | 7:12:53 | 100 | 7:17:11 | 7:18:52 | 101 | 101

Dell poweredge server 64 GB RAM, Intel Xeon 4807, 1.87 GHZ, details provided

Application server setings cpu 1, memory 2GB Held constant

Database memory 1 GB held constant

Payroll data for only two months existing

Number | start stop secs | start stop secs | start stop sec | start stop Secs Avg

of cpus response
available time

to

database

servers

1 4:55:46 | 4:57:08 | 82 4:59:55 | 5:01:10 | 75 5:04:34 5:05:54 80 | 5:21:24 5:22:48 82 80 319

Table 17: Experimental data sheets

83




