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ABSTRACT 
 

The role of neutrino mass in the context of grand unified theory has been investigated using the 

equilibrium condition between a critically expanding universe and weak neutrino interaction rates 

in the early universe. The critical expansion rate has been studied using the Friedman equation 

that was modified by expressing the scale factor as a function of time. This gave rise to the model 

equation used in the investigation to establish the critical nature of the expanding universe. The 

delicate equilibrium balance between expansion and weak neutrino reaction rates generated the 

Boltzmann transport equation; this was solved by Successive Approximation technique and a 

mass value of 1.57 GeV was established for heavy or non-relativistic neutrino. For a light or 

relativistic neutrino, a mass value of 1.97 eV was determined. The results were found to generate 

a cosmological mass gap for neutrino masses in the range between 1.97 eV and 1.57 GeV as 

opposed to the standard electroweak model of particle physics that allows existence of a massless 

neutrino. More importantly, the presence of a GeV neutrino mass predicts existence of a fourth 

family of leptons. When the calculated mass was used in the calculated See-Saw relation, a 

unification scale of 1310542.1   GeV was achieved. This energy scale is interesting since the 

weak, electromagnetic and strong interactions would all have the same strength at around 1013 

GeV-1016 GeV which suggests a very similar value for the grand unification scale. This appears 

promising as the anticipated discovery of tiny neutrino masses may help in probing the structure 

of the particle physics models that lie beyond the standard electroweak model.  

Neutrino mass generation has also been investigated using the standard Higgs mechanism 

technique. The standard electroweak Lagrangian was modified by adding a mass term to it and a 

perturbation to the vacuum expectation value generated neutrino mass term couplings. This was 

found to be true with the aid of scalar fields, which, in this case was the Higgs boson. Also from 

the theory of neutrino oscillations, it was found that neutrinos of different masses travel with 

different velocities rather than with the same velocity. In particular, the dynamical effect i.e. the 

probability of neutrino oscillation was found to be very dependent on neutrino mass. This was 

studied by using the simple approach of mathematical theory of matrices rather than the 

complicated methods of renormalization. The results anticipate that the oscillation experiments 

(such as Fermilab’s LBNE and the MINOS) may play an important role in putting the evidence 

for neutrino mass on a more solid and practical evidence. 
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CHAPTER ONE 
1.1. INTRODUCTION 

There are many types of particles in nature. Particles such as the neutron, proton, electron and 

the neutrino on one hand and the photon, graviton, W  and the Z  boson on the other hand 

can be classified into fermions and bosons, respectively. In high energy physics, however, a 

very large number of particles are encountered and it is useful to further subdivide these main 

groups according to the types of interaction in which they participate. All electrically charged 

particles, by virtue of their charge, can interact electromagnetically. Being aware of this, 

some particles respond only to the weak force; such particles are collectively known as 

leptons [Burcham and Jobes, 1995]. The electron e , electron-neutrino e , muon  , muon-

neutrino  , the recently discovered tauon   and tauon-neutrino [Kodama et al., 2001] are 

leptonic. All leptons have intrinsic angular momentum of one-half and are therefore fermions. 

Those particles which can participate in the strong interactions are known as hadrons. Unlike 

the leptons, which are all fermions, the hadron family contains both fermions and bosons. 

The hadrons with half-integer spin are also known as baryons and, amongst these, the neutron 

and proton are the most familiar. The mesons, originally named because they have masses 

intermediate between the light or zero-mass leptons and the heavier baryons, are bosons 

[Lewis, 1996].  

In the general classification of particles, two particles considered most elementary are the 

electron and the neutrino. The fundamental properties of the electron are well established: it 

has a mass of 0.511 MeV, is negatively charged (-) and has an intrinsic angular momentum of 

one-half. The proper establishment of the electron’s properties has enabled it to find wide 

applications in the fields of engineering, telecommunication, medicine and many other fields 

of pure and applied sciences. On the other hand, the properties of the neutrino are not yet 

fully understood/or established. It is not an easy task determining the properties of a neutral 

particle like the neutrino since it is not affected by the electromagnetic force that acts on the 

electron or any other charged particle. This follows from the fact (fully established in this 

investigation) that the neutrino does not carry any electric charge and is, therefore, affected 

only by a weak sub-atomic nuclear force of much shorter range than electromagnetism.  

To properly describe an elementary particle, its spin, charge and mass must be fully 

established. Apart from the symmetry properties of intrinsic angular momentum (spin) and 

mass, other symmetry principles exist to cater for charge, baryon number, lepton number and 
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many other quantum numbers associated with elementary particles [Mani and Mehta, 1988]. 

In particle reactions, leptons can be created or annihilated in particle–antiparticle pairs 

[Burcham and Jobes, 1995]. Evidence for lepton number conservation comes from neutrino 

reactions and from beta decay studies. The neutrino has its spin opposite to its direction of 

motion while the antineutrino has parallel spin and momentum i.e., the neutrino is left-handed 

and the antineutrino is right-handed in helicity. This situation is compatible with lepton 

number conservation only if the neutrino has no mass [Wick and Barry, 2000]. This is 

because a massive neutrino would change or decay into a less massive or massless neutrino 

and a lepton number would not be conserved [Hitoshi, 2002]. Particle-antiparticle 

conjugation will reverse the signs of all of a particle’s additively conserved quantum 

numbers. The neutrino is immediately seen to be quite interesting then as it lacks charge, 

magnetic moment or any other measured quantum number that would necessarily reverse 

under such an operation. It is unique among the leptons and quarks in that the existence of a 

distinct antineutrino still remains an open question [Utpal, 2008]. 

 

All charged particles are Dirac particles, but the neutrino being a neutral particle, could be 

either a Dirac or a Majorana particle [Peccei, 1989]. A neutrino with a distinct antineutrino 

could be a Dirac neutrino and has a four–component field, whereas a two–component field 

will describe the possibility that the neutrino is its own antiparticle and hence a Majorana 

neutrino. The main difference between Dirac and Majorana neutrinos lies in their lepton 

number conservation or violation. If neutrinos are Dirac particles, lepton number will be 

conserved while for a Majorana neutrino, lepton number is violated by two units since they 

are their own antiparticles. Only the mass term in the Lagrangian can distinguish between a 

Dirac and a Majorana particle [Cheng and Ling-Fong, 1980]. There are still a lot of 

investigations going on to establish the true quantum nature of the neutrino. 

 

Among the fundamental properties of the neutrino, the most controversial and interesting one 

is whether it has a non-zero mass or not [Wick and Barry, 2000]. The mass of a particle is 

known to contribute to its total energy because mass is just another form of energy. But also, 

mass may be converted into energy and vice versa and indeed a huge amount of energy may 

be produced from a relatively small mass. For instance, Fermi’s calculation in 1931 aimed at 

producing results that agreed with experiment based on the fact that the end-point of a 

continuous distribution of the electrons emitted in beta decay as a function of temperature 

was sensitive to mass [Fermi, 1934]. He realized that it is possible to plot the spectrum in 
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such a way that a non-zero mass would be revealed as a distortion at the endpoint tangent to 

the energy axis.  

 

The standard Weinberg–Salam-Glashow model [Burcham and Jobes, 1995] which, 

henceforth, is coded as )1()2( USU  , is the gauge group that describe particle interactions. It 

indicates that neutrinos are massless since they are described by the two component Weyl 

fields and because the symmetry breaking Higgs structure of the theory leads to the global 

symmetry corresponding to the lepton number L  conservation. According to this model, 

there are no right-handed neutrinos that could combine with the left-handed neutrinos to form 

a Dirac mass term and lepton number conservation forbids Majorana masses for neutrinos 

[Cottingham and Greenwood, 1998]. The same applies in the grand unified theories )( sGUT  

where the restriction coming from lepton number conservation is replaced by the baryon 

number minus lepton number symmetry )( LB  . The proton is seen to be no longer stable 

and therefore can decay. Symmetries giving rise to L  and )( LB   conservation are broken 

and neutrinos should be massive. If neutrinos are massive, then there must be some reason 

that their masses are smaller than those of other leptons and quarks [Hitoshi, 2002]. In the 

proposed extensions of the standard electroweak model, neutrinos can then be regarded as 

strange and at the same time special because they can have both Dirac and Majorana masses 

[Pati and Salam, 1974; Georgi and Glashow, 1974; Fritzsch and Minkowski, 1975; Buras, 

Ellis, Gaillard and Nanopoulos, 1978 and Ellis, 1980]. This is the basis of the seesaw 

mechanism and, in these investigations it is seen to arise naturally in models with both Dirac 

and Majorana masses. 

 

The energy scales of the various neutrino reactions that occur on the surface of the earth are 

relatively low [Michael and Robert, 1992]. At these energies, the fundamental forces of 

nature are totally different from one another because the particles that transmit them have 

very different properties. However, above the energy scales of 210  GeV  the electromagnetic 

and the weak forces become indistinguishable. They take on similar identities. Such 

phenomena have been observed in the large particle accelerators especially at CERN and 

FERMILAB. This observed similarity between the electromagnetic and weak forces suggests 

that the forces might be two components of a more fundamental force. The two forces are 

seen to become unified into the electroweak force above ~ 210  GeV  [Guth and Weinberg, 

1981]. On the other hand it is known from the kinetic theory of sub-atomic matter that 
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temperature is just a measure of the amount of kinetic energy present; i.e. higher temperatures 

correspond to higher kinetic energies. Furthermore, since energy and mass are equivalent, 

then mass should be related to temperature so that for every mass there is a corresponding 

energy and temperature. The masses of the electroweak gauge particles correspond to the 

temperature of 210  GeV  and the particles are found to have two types of energy associated 

with them: energy stored in their mass and energy determined by how fast they are moving-

simply known as kinetic energy. As the temperature increases, so is their kinetic energy. The 

energy stored in the mass remains fixed however, because the masses of the particles are 

assumed to be constant. 

At very high temperatures, the kinetic energy of the particles dominates the energy contained 

within their mass. As a result, the particles will behave as if they had no mass at all. For the 

weak vector boson,  Zand  ' sW  particles, the kinetic energy begins to dominate at ~ 210  

GeV . Thus these particles will behave as if they were massless above this temperature just 

like the electromagnetic vector boson, the photon. The unification of electromagnetism with 

the weak force has a consequence that there will only be three effective forces-the strong 

nuclear force, electroweak force and gravitational force-in operation above 210  GeV  [Ellis 

and Gary, 1979]. However, the energy scales of 210  GeV  represents the highest energy scale 

that can be probed directly by current particle physics accelerators. By moving above this 

energy scale, the realm of theoretical considerations is entered. John Ellis and other 

researchers actively involved in grand unification studies have proposed that the strong and 

the electroweak forces should become unified at around      1013 toGeV GeV 1016  into a single 

unified force under the ‘grand unified theory’ [Pati and Salam, 1974, Georgi and Glashow, 

1974; Fritzsch and Minkowski, 1975; Buras, Ellis, Gaillard and Nanopoulos, 1978; Ellis, 

1980]. This is the motivation behind the construction of the Large Hadron Collider (LHC) at 

CERN. However, to date, the precise form of the GUT  theory of particle physics is still not 

settled because the higher temperatures at which it becomes possible to observe the 

phenomenon of grand unification are beyond the reach of the most powerful particle 

accelerators in the world today. But this hasn’t stopped researchers, especially theoretical 

high energy physicists, from imagining what kind of a force should be in operation. The 

strongest motivation is that the imagined force must contain the strong, weak and 

electromagnetic forces as components. One testing ground in which the predictions of these 

grand unified theories may be investigated is expected to be found in the super hot conditions 

that were prevalent in the early universe-the big bang. At sufficiently early times the 
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temperatures would have been above the temperature at which the GUT  force takes over. If 

the unification idea is correct, then this force should have dominated the universe at these 

early times and it would have had a significant effect on the way in which the universe came 

to be what it is like today. This basically suggests that the grand unified theories can be 

probed by combining ideas from elementary particle interactions at very high energies and 

the big bang cosmology. 

 

In this work, the interplay between elementary particle interactions at very high energies and 

the expansion of the early universe is studied in the context of the inflationary model to find a 

possible solution to the observed flatness of the universe that remains a cosmological puzzle. 

In the investigations, the puzzle has been attributed to existence of unseen matter in the 

universe that can be established from the validity of Newton’s theory of gravity and 

Einstein’s relativistic generalization, which cannot be tested directly at galactic or even 

cosmic distance scales [Georgi, 1991]. In particular, the velocity of stars beyond the luminous 

part of galaxies does not decrease with the distance as is expected from elementary 

considerations [Donald, 2000]. Therefore it is prudent to remain open to the possibility that 

the dark matter problem may be resolved by a suitable consideration or modification to the 

established conservation laws.  

 

Particle dark matter is necessary since the inflationary model predicts that the universe is at 

the critical energy density state and baryons can contribute at most five percent of this energy 

density [Keith, 1984]. These dark matter particle candidates can be baryonic or nonbaryonic. 

Here, focus has been on the possibility that a major component of the dark matter could 

consist of subatomic non-baryonic weakly interacting massive particles that could be 

remnants of the big bang. The most promising subatomic elementary particle candidates for 

the dark matter problem include light or heavy neutrinos, axions, supersymmetric particles, 

monopoles and black holes with different masses and number densities [Graciela, 1987]. A 

nontrivial advantage for considering massive neutrinos as the subatomic weakly interacting 

massive dark matter candidate over the other proposed candidates is that neutrinos are known 

to exist. They too have a kinematical advantage over other dark matter candidates in that they 

may cluster on larger scales where the dark matter component is highly needed.  

Because of the extreme symmetry of the homogenous and isotropic universe, the 

gravitational field acting on a mass located at a point depends on the masses within a sphere 

of the universe. But also, since the masses within a sphere act on the origin, the effects of 
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external masses will cancel themselves out since the masses are uniformly distributed. This 

will lead to an expanding universe. What is the expected fate of this expansion [Lidsey, 

2000]? Will a phase transition with non-negligible viscosity slow down the expansion and 

finally reverse [Papini and Weiss, 1985]? It is known from the theory of heat that thermal 

gradients spontaneously decrease with time and sooner or later, the large astronomical 

temperatures would disappear. Matter would then reach an isothermal state, representing the 

maximum entropy with no free energy to sustain motions or life. The universe is then bound 

to die of isothermy [Hubert, 1987]. In order to see what role a neutrino may play in an 

expanding homogenous and isotropic universe, the standard big bang model predicts a 

contribution to the mass density of the universe, now of  7.0v  where   is the energy 

density of the photons for the redshifted cosmic micro-wave background radiation at 

temperature KT 3  if neutrino is massless. For neutrino of non-zero mass, a contribution 

comparable to critical density results if the sum of the masses for three neutrino flavours is as 

little as 25 eV [Lubimov et al., 1980]. This implies that the neutrino masses within the 

existing experimental limits could close the universe and ultimately cause it to recollapse 

[Wick and Barry, 2000]. 

Before generation of baryon asymmetry in the early universe, matter and anti-matter were 

equally represented leading to zero chemical potential for all particles. Baryosynthesis, that is 

the occurrence of phenomena leading to a small excess of matter over antimatter, may have 

taken place at the grand unified theory period thereby resulting in non-zero chemical 

potentials. Without this event, essentially all the quarks would have annihilated later on, 

giving rise to no baryonic matter excess to display bound state energy spectra associated with 

nuclear and electromagnetic forces. In fact some heavy particles would have been preserved, 

as the annihilation processes would have gone out of equilibrium at low temperatures, but 

their number density would have been far too small for galactic and stellar formation to have 

been initiated later on. As time went on, the coupling constants of the four forces evolved 

differently. This is a clear indication that, if much of the history of the universe were to be 

described by equilibrium thermodynamics only, then the universe today would have been a 

very boring place. A number of crucial departures from equilibrium have taken place during 

the history of the universe. Good examples include photon decoupling, primordial 

nucleosynthesis, baryogenesis and perhaps even an inflationary phase transition [Scott and 

Michael, 1992]. The departure from equilibrium that has attracted attention in this study has 

involved neutrinos and the weak interactions in the early expanding universe. Since it is 
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natural to consider the possibility of baryonic dark matter, the light emitting regions are seen, 

in terms of the cosmological energy density parameter, to account for 01.0 , the haloes of 

galaxies for 10.0  at the largest scales(superclusters) the detected dark matter density 

reaches 1.02.0   while inflation predicts that 1 . If indeed 1 , the remaining 

1.08.0)1(  observed  which is not gravitationally detected should be in a smoothly 

distributed component that is not bound to any observed structure. The dark matter in the 

disk, the halos, in clusters of galaxies or in a smooth component in the universe, may all be 

different. The only hint of how much baryonic matter is in the universe comes from the big 

bang nucleosynthesis of light elements. From combined bounds on the abundance of 

LiHeDHe 7334   and    ,  , , present calculations infer the bound 016.00097.0 2  hB  

[Georgi, 1991]. It is then seen that B  may be as large as 0.007 for 7.0h . Thus primordial 

nucleosynthesis does not preclude the possibility that the dark matter consists of baryons. 

In the conventional hot big bang model the neutrino has been found to exist in thermal 

equilibrium with all other particles at sufficiently early times when the various interaction 

rates exceeded the cosmological expansion rate. When this condition first fails at the 

temperature ) 1( MeVT  , the neutrinos decouple or freeze out [Edward, 1986]. If the 

neutrino is non-relativistic at freeze-out, its number density will be reduced by a Boltzmann 

factor and this will imply that the cosmological energy density parameter will decrease as a 

power-law of the neutrino mass. This makes it necessary that the evolution of the universe 

depend crucially on the total matter density which is equal to the critical energy density. Out 

of this critical energy density, seventy percent comes from the vacuum energy also called 

dark energy or the cosmological constant, which is also being actively researched on. 

Baryonic and nonbaryonic matter account for about thirty percent; out of these, only five 

percent is baryonic matter and twenty-five percent is nonbaryonic. By numerical methods of 

Successive Approximation technique, the Boltzmann equation is set up and eventually solved 

in the context of the inflationary model in the early expanding universe. This is found to yield 

a neutrino mass value that is unique and interesting. 

It has also been established that two neutrino states with slightly different masses and with 

the same quantum numbers can oscillate into each other. If they differ in any quantum 

numbers, that distinguishing symmetry will be broken in the process. However, in a matter-

antimatter oscillation, charge and charge-parity symmetries are violated but in the neutrino 

oscillation, one of the neutrino species with definite lepton flavor will be transformed into 

another species violating lepton number. This is only possible if neutrinos have mass. 
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Precisely, if there is a process involving an electron, then it is automatic that an electron-

neutrino will also been produced. When this neutrino propagates, it will be the physical state 

that will propagate and after some time, it will have a certain probability to be partly in a 

different flavor state, say, muon neutrino or tauon neutrino. When this neutrino is detected at 

a given distance, a neutrino with a different flavor may be found. If the two states have same 

masses, then both of them will propagate the same way and there will not be any oscillation. 

However, if the two states have different masses but the flavor states are the same as the 

physical states (no mixing), then the flavor states will have definite evolution and they will 

not change to other states. Thus neutrino oscillations can only occur if there is a mass 

difference between the different neutrino states and that the mass eigenstates are different 

from the flavour eigenstates, which is given by the neutrino mixing matrix. Consequently 

neutrino oscillations, through the Long Baseline Neutrino Experiments, will be an interesting 

observation that will provide solid experimental evidence to the result. 

 

1.2. STATEMENT OF THE PROBLEM 
 

A massive neutrino is increasingly becoming popular in high energy physics, especially in 

particle physics and cosmology. Recently, an increased number of investigations have 

reported that a neutrino has mass. In spite of these investigations, the exact absolute neutrino 

mass value is still vague and controversial. Consequently, further clarification of these 

proposals calls for more detailed study, especially on neutrino mass generation mechanism 

and oscillations to properly settle the controversy surrounding a massive neutrino. 

Investigations on neutrino weak interaction rates in the early universe and the expansion of 

the universe will help in gaining additional insight that will be crucial in determining the 

absolute mass of a neutrino and its potential role in a flat universe. 

 

1.3. JUSTIFICATION OF THE STUDY 
 

The discovery of a particle, the electron and radiation (X-rays), in 1895 was driven by human 

curiosity but has ended up transforming the modern world. Consequently, in the context of 

this reasoning, it is hoped that other particles could be discovered with similar far-reaching 

and initially unanticipated benefits. In particular the discovery of new long-lived particles 

that can catalyze nuclear fusion or proton decay will have the potential to provide a limitless 
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supply of energy and an improved crystallographic/medical imaging. Hence the justification 

for massive neutrino study is to properly establish and understand its fundamental properties 

that may shed more light on its unanticipated potential use in other areas of science and 

technology and to peer into sources that would be opaque to conventional/standard probes 

such as photons and protons or neutrons. For instance, at high energies, photons or gamma 

rays and protons are not viable probes since (i) photons can be absorbed on the infrared 

extragalactic background i.e., they are blocked by the cosmic microwave background 

radiation and (ii) protons with energies less than eV1910  do not point back to their origin 

because galactic magnetic fields bend them significantly. They can therefore be 

degraded/absorbed by the cosmic radiation field because of photo-pair production. With high 

energy neutrino detector, a new “window” can be opened on the universe. New window, in 

this context, mean new discoveries. This necessitates a need for a new and weakly interacting 

particle that cannot lose information so easily. The success of such discovery depends on 

comprehensive knowledge on the physical properties, especially the mass of a neutrino. At 

the moment there is scarcity of such knowledge. Therefore, the study aims at shedding 

additional light on basic neutrino mass generation mechanism and the establishment of the 

absolute neutrino mass. Such information is necessary for identification of a neutrino as a 

possible dark matter candidate. Results of the weak interaction rates in a critically expanding 

universe will give a fundamental parameter which is essential for the description of the 

neutrino. 

1.4. SIGNIFICANCE OF THE STUDY 
 

The fundamental scientific motivation for high energy neutrino study is that neutrinos can 

come from cosmological distances and they can escape from optically thick sources. This 

implies that neutrino-based probes will allow us to observe what we cannot with other 

conventional detectors. In particular, we will be able to observe sources at cosmological 

distances. This may include observation of neutrinos from both diffuse and nearly point-like 

sources, whose measurements of their flux, energy spectrum, angular distribution and timing 

will be a fundamental observation of the universe. All these cannot be achieved if the 

fundamental properties of the neutrino are not well established. 

 

Neutrinos also play a very important role in some branches of subatomic physics as well as 

astrophysics and cosmology. As established from this study, the smallness of the neutrino 
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mass is very likely related to existence of a new, yet unexplored mass scales in High Energy 

Physics. These scales are so high that their direct experimental study may require 

supersensitive and high precision machines beyond the present Large Hadron Colliders. 

Neutrinos can therefore provide us with very valuable, though indirect, information about 

these mass scales and the new physics related to these scales. This is in line with our quest for 

the fundamental theory of nature (TOE). 

 

Neutrinos play a very significant role in astrophysics and cosmology. They carry away up to 

99% of the energy released in supernova explosions and therefore dominate the supernova 

energetic. This ensures a better distribution of energy within the universe.  

 

Neutrinos are copiously produced in thermonuclear reactions which occur in the stellar 

interiors and in particular our sun [Tayler, 1970]. Solar neutrinos carry information about the 

core of the sun which is inaccessible to direct optical observations. The detection of solar 

neutrinos has, actually, confirmed the hypothesis that the sun is powered by thermonuclear 

reactions [Utpal, 2008]. At the same time, the sun and supernova gives us a possibility of 

studying neutrino properties over extremely long baselines and probe the neutrino mass 

differences as small as eV510  or even smaller, beyond the reach of the terrestrial neutrino 

experiments. 

 

The big bang nucleosynthesis model depends sensitively on neutrino interactions and number 

of light neutrino species [Edward, 1986]. Neutrinos of mass of a few eV  could constitute the 

hot dark matter candidate that may be important for galaxy formation. Neutrinos may also 

have played an important role in baryogenesis i.e. the observed excess of baryons over 

antibaryons in the universe may be related to decays of heavy Majorana neutrinos [Utpal, 

2008]. 

A beam of neutrinos can also be used to study the earth’s interior core which is not possible 

with other conventional detectors. Although measurements of the seismic waves produced by 

earthquakes can be used to reconstruct a profile of the Earth’s interior, they only provide 

indirect information. Since neutrinos are electrically neutral and only interact weakly with 

other particles, they can pass through thousands of kilometers of matter without being 

absorbed [Wick and Barry, 2000]. However, they can change flavor or oscillate as they pass 

through matter with, for instance, electron neutrino oscillating into muon neutrino and so on. 
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Since the amount of oscillation depends on the electron density in the matter, and since the 

electron density is directly related to the overall matter density, it should be possible to 

determine the matter density of the earth by making accurate measurements of the 

oscillations. The experimental challenges would be to build a neutrino factory with a vertical 

decay tunnel so that the neutrino beams can pass down through the centre of the earth e.g., a 

beam of neutrinos can be sent from an accelerator tens of thousands of kilometers through the 

earth to a detector on the other side of the globe. Existing neutrino beams are only a few 

degrees below the horizontal, whereas the neutrino beam that may be required would have to 

travel directly downwards. It is possible that such an experiment may begin by 2035  

 

1.5. OBJECTIVES OF THE STUDY 
 

The aim of the study was to find out if neutrinos can control the presently observed expansion 

of the universe. The specific objectives of the study were to investigate: 

 

 Neutrino mass generation through spontaneous symmetry breaking as a phase 

transition. 

 Why the standard Higgs mechanism does not endow a neutrino with mass in the 

context of the standard electroweak model. 

 The possible neutrino mass that can provide for a critically expanding universe. 

 Whether the determined mass can aid in the unification of the fundamental 

interactions. 
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CHAPTER TWO 

LITERATURE REVIEW AND NEUTRINO MODELS 
2.1. INTRODUCTION 

In this chapter a brief review of the scientific literature reporting on neutrino mass is 

presented. Since various investigations concurrently approach the problem from the view 

point of the standard electroweak as well as the hot big bang model, then the chapter is 

intended to capture some major results pertaining to neutrino mass investigations in the 

context of the two broader models. In particular, neutrino kinematics in the standard 

electroweak model is presented, demonstrating the way in which the various neutrino 

quantum numbers are related to the Lagrangian. This is followed with a brief description of 

the neutral and charged current neutrino interactions from the perspective of gauge theories. 

The problem of mass and the chiral nature of neutrinos, spontaneous symmetry breaking and 

mass generation are also discussed. In the context of cosmology, the qualitative and 

quantitative aspects of the inflationary model are discussed. This critical nature of the 

universe is also established by directly analyzing the dynamical Friedman equation for the 

various curvature parameter values. This is followed with a presentation on the flat model 

that has been formulated and adopted for the work. The Boltzmann transport equation for 

neutrino interactions in a homogenous and isotropic expanding universe is also presented. 

Further, a model on neutrino oscillation is presented, explicitly establishing that the 

oscillation probability is very much dependent on neutrino mass.  

 

2.2. NEUTRINOS IN THE )1()2( USU   MODEL 

 

The neutrino was first postulated in 1931 by Wolfgang Pauli (an interesting and more 

detailed discussion can be found in Laurie Brown’s article; Brown, 1978) to preserve the 

conservation of energy and angular momentum in beta decay-the decay of an atomic nucleus 

(not known to contain or involve the neutron at that time) into a proton, an electron and, now, 

an antineutrino. He theorized that an undetected particle was carrying away the observed 

difference between the energy and momentum of the initial and final particles. He originally 

named his proposed light particle a neutron. When James Chadwick discovered a much more 

massive nuclear particle in 1932 [Chadwick, 1932], he also named it a neutron. This left the 

two particles with the same name. Enrico Fermi, who developed the theory of beta decay, 
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coined the term neutrino in 1934 as a way of resolving the confusion. It is the Italian 

equivalent of “little neutral one”. In the July 20, 1956 issue of Science, Clyde Cowan and his 

research collaborators published a confirmation that they had detected the neutrino [Cowan et 

al., 1956], a result that was rewarded almost forty years later with the 1995 Nobel Prize. In 

this experiment, now known as the Cowan-Reines neutrino experiment, neutrinos created in a 

nuclear reactor by beta decay are shot into protons producing neutrons and positrons. The 

positron quickly finds an electron and they annihilate each other. The two resulting gamma 

rays are detectable. The neutron can be detected by its capture on an appropriate nucleus, 

releasing a gamma ray. The coincidence of both events-positron annihilation and neutron 

capture- gives a unique signature of an antineutrino interaction. In 1962 Leon M Lederman 

and other researchers [Lederman et. al., 1962] showed that more than one type of neutrino 

exists by first detecting interactions of the muon neutrino, which earned them the 1988 Nobel 

Prize. When the third type of lepton, the tau, was discovered in 1975 [Martin, 1975] at the 

Stanford Linear Accelerator Centre, it too was expected to have an associated neutrino (the 

tau neutrino). First evidence for this third neutrino type came from the conservation of 

missing energy and momentum in tau decays analogous to the beta decay leading to the 

discovery of the neutrino. The first detection of tau neutrino interactions was announced in 

summer of 2000 by the DONUT collaboration at Fermilab, making it the latest particle of the 

standard electroweak model to have been directly observed [Kodama et al., 2001]. 

 

To date the )1()2( USU   Model of particle physics assumes that the neutrino should be 

massless [Hitoshi, 2002]. However, in order for the anticipated phenomenon of neutrino 

oscillation to occur, the neutrino should have a nonzero mass. This idea was originally 

conceived by Bruno Pontecorvo in the 1950s [Bruno, 1958]. He pointed out that neutrinos 

created or detected with a well defined flavour are able to oscillate between the three 

available flavours while propagating through space. This occurs because the neutrino flavour 

eigenstates are not the same as the neutrino mass eigenstates and, hence, allows for a neutrino 

that was produced as an electron-neutrino at a given location to have a calculable probability 

to be detected as either a muon- or tauon- neutrino after it has travelled to another location. 

This quantum mechanical effect was first hinted by the discrepancy between the number of 

electron neutrinos detected from the sun’s core failing to match the expected number, dubbed 

“the solar neutrino problem” [Bahcall et al., 1998]. In 1998, research results at the Super-

Kamiokande neutrino detector determined that neutrinos do indeed flavor oscillate and, 



14 
 

therefore, have mass. While this shows that neutrinos have mass, the absolute neutrino mass 

scale is still not known. This is because neutrino oscillations are sensitive only to the 

difference in the squares of the masses. In particular, the best estimate of the difference in the 

square of the mass eigenstates was published by KamLAND in 2005 with a value 
22

21  000079.0 eVm   [Araki et al., 2005]. In 2006, the MINOS experiment measured 

oscillations from an intense muon neutrino beam determining the difference in the squares of 

the masses between neutrino mass eigenstates. The reported result is 22
32  0027.0 eVm   

[Fermilab’s MINOS collaboration, 2006].  

In the concerted efforts to determine the absolute neutrino mass scale, most experimentally-

oriented researchers have selected tritium which has an energy release of 18.6-keV at the end 

point. In particular, an early tritium measurement by Hamilton and other researchers 

[Hamilton et al., 1965]* found an upper limit of keVm
ev 250 . In 1972 Bergkvist, by 

combining electrostatic and magnetic spectrometric methods [Bergkvist, 1972] was able to 

reduce the limit substantially to eVm
ev 60 . Then in 1980 Lubimov and other researchers 

[Lubimov et. al, 1980] at the ITEP, using a high-precision toroidal spectrometer and tritium 

in the form of a valine molecule  2115 NOHC  reported a nonzero mass in the range 

eVmeV
ev 4614  ; a result that set off a flurry of new high precision experiments. 

Stimulated by Lubimov’s result, several groups attempted improved versions of this 

experiment. A group of researchers headed by Robertson [Robertson et al., 1991], at Los 

Alamos used a much simpler source, that is, gaseous tritium molecules, tackling at the same 

time the serious safety issues associated with handling a kilocurie of this gas. After a series of 

measurements with a carefully constructed magnetic spectrometer that filled an entire room, 

they found eVm
e

3.9


. An experiment at Mainz using a frozen tritium source reported 

[Weinheimer, 1993] nearly a similar limit, eVm
e

2.7


 and a Livermore group using 

gaseous tritium and a toroidal magnetic spectrometer achieved comparable statistics [Stoeffi 

and Decman, 1995]. In 2009 lensing data of galaxy cluster were analyzed and predicted 

[Nieuwenhuizen, 2009] a neutrino mass of about 1.5 eV. This lies below the Mainz-Troitsk 

upper bound of 2.2 eV for the electron anti-neutrino as reported earlier [Weinheimer, 2002]. 

All these are set to be tested by 2015 in the KATRIN experiment that searches for a mass 

between 0.2 eV and 2 eV.  
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In spite of the interesting mass values calculated or measured so far, none of these can be 

considered to be consistent. It is also clear that in spite of the relative role that the neutrino 

seems to play in the standard electroweak model ( )1()2( USU  ), the model still assumes that 

neutrinos are massless and the chiral fields  

      )1(
2
1

5L     (2.2.1) 

and  

      )1(
2
1 5R     (2.2.2) 

have different )2(SU  properties, with L  being part of )2(SU  doublets and R  being a 

singlet [Abers and Lee 1973]. From equations (2.2.1) and (2.2.2),   is the neutrino wave 

function, 5  is the Pauli-Dirac matrix and 5  is its transpose. Also the electromagnetic gauge 

group’s properties, which is coded as )1(U , is fixed by the electromagnetic charge 

identification [Hollik, 1999] 

      YTQ  3     (2.2.3) 

with 3T  being the third component of the )2(SU  generator and Y  being the )1(U  generator. 

Since the right handed neutrino field Ri  has no )1(U  interactions, the fields are sterile under 

)1()2( USU   and the electroweak interactions act only on the left handed neutrino Li . 

Though this might be a good idea, the statement of neutrino sterility may not be totally true 

since a LR    Higgs coupling can exist. The Higgs doublet   whose vacuum expectation 

value is responsible for the breakdown of emUUSU )1()1()2(   will then carry weak 

hypercharge of 
2
1

  so that its quantum numbers becomes 

      





 

2
1  ,2~     (2.2.4) 

Thus an invariant coupling of   with a  

      





 

2
1  ,2~Li    (2.2.5) 

and 

       0  ,1~Ri     (2.2.6) 

is allowed by )1()2( USU   [Peccei, 1988]. When the electroweak model breaks into its 

components- 
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     emUUSU )1()1()2(     (2.2.7) 

and the scalar field   acquires a nonzero vacuum expectation value  , the Yukawa 

couplings generates a Dirac mass term for the neutrino. However, since in the standard model 

no observational evidence exists at present for a Dirac mass matrix with associated 

eigenvalue iDm )( , then the mass term should vanish; that is 

   LjijDRiRjijDLi
Dirac

mass mmL  )()( *     

       0        (2.2.8) 

 

2.2.1  CHARGED AND NEUTRAL CURRENT INTERACTIONS OF NEUTRINOS 

 

In )1()2( USU  , the right handed neutrinos are ignored and only their left handed 

counterparts considered. These neutrinos with the corresponding left handed charged leptons 

form an )2(SU  doublet [Lahanas, 1987] 

    
Li

i
i l

L 










      (2.2.1.1) 

Their interactions arise from replacing in the fermion kinetic energy terms, the ordinary 

derivatives with the covariant derivatives so that the Lagrangian can take the form 

     ii LDLiL 
 ,    (2.2.1.2) 

where iLD  expands out to 

    ia
a

i LYgiWigLD 







 




22

'

,  (2.2.1.3) 

with )3 ,2 ,1( aWa
  and Y  being the )2(SU  and )1(U  gauge fields, g  and 'g  are their 

respective coupling constants. It follows from equations (2.2.1.2) and (2.2.2.3) that the 

neutrino interaction Lagrangian can be written  

     



 JYgJgWL aa

'
int  ,   (2.2.1.4) 

with the )2(SU  and )1(U  currents containing neutrinos being given by 

      i
a

ia LLJ
2


     

and  

      ii LLJ  
2
1

    (2.2.1.5) 
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To describe the physical interactions of neutrinos in the )1()2( USU   model, two effects 

resulting from the  

     emUUSU )1()1()2(     (2.2.1.6) 

breaking down are taken into account:  

 The mass and charge eigenstates for the gauge fields are linear combinations of the 


aW  and Y  fields, with the physical excitations being defined by [Peccei, 1988] 

)(
2

1
21
 iWWW      (2.2.1.7) 

 and  

   










































Y
W

A
Z

W

W

W

W 3 
cos

sin
     sin
   cos

,    (2.2.1.8) 

where W , the Weinberg angle, relates the coupling constants g  and 'g  to the electric charge 

e  via the unification condition  

     WW gge  cossin '    (2.2.1.9) 

and A  is the photon field [Peccei, 1988]. From equation (2.2.1.4), it is then found that 

 

    












AeJZJeWJWJeL emNC

WWW

  sincos2sin22int , 

           (2.2.1.10) 

where the charged currents )(CC  
J , the neutral current )(NC  

NCJ  and the 

electromagnetic current )(EM  
emJ  are defined by 

    

 

 








JJJ

JJJ

iJJJ

em

emWNC







3

2
3

21

sin2

2 

    (2.2.1.11) 

 As a result of the )1()2( USU   breakdown, quarks and charged leptons acquire mass. 

However since the quark mass eigenstates are not the same as the weak interaction 

eigenstates, there exists flavour mixing in the charged current interactions. For the 

leptonic currents, however, there is no flavor mixing in the limit that neutrino masses 

are neglected. 
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The Yukawa interactions of quarks and leptons with the Higgs doublet when  

 

     emUUSU )1()1()2(     (2.2.1.12) 

breaks, will produce mass matrices for fermions of the form  

 

  chlMldMduMuL jR
l

ijiLjR
d

ijiLjR
u

ijiLmass .    (2.2.1.13) 

 

In equation (2.2.1.13), neutrino mass term is not included since, no iR  fields are considered. 

The matrices )  ,  ,( ldufM f
ij   are, in general, not diagonal. However, they can be 

diagonalized by a basis change on the quark and lepton fields so that the fields can take the 

form 

  f
L

f
L

f
L U  ; f

R
f

R
f

R U      (2.2.1.14) 

 

This basis change produces interfamily mixing in the charged current and for three families, 

the charged current 
J , before the basis change, is found to be [Peccei, 1988] 

     
L

L

L

Lue

b
s
d

Itcu
e

IJ
































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


 

     2  2    (2.2.1.15) 

After the basis change the current then becomes 

      
L

d
L

u
LL

L

l
LLue

b
s
d

UUtcu
e

UJ


































*
    2  2 


 


   (2.2.1.16) 

For the quark sector the matrix entering in (2.2.1.16) is the 33  unitary Cabibbo-Kobayashi-

Maskawa )(CKM  mixing matrix [Cabibbo, 1963; Kobayashi and Maskawa, 1973] 

 
d

L
u

L UUV *)(     (2.2.1.17) 

 

while for the leptonic sector, the mixing matrix l
LU  is eliminated by a unitary redefinition of 

the neutrino fields  

L
l

LL U        (2.2.1.18) 
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since 0im . The form of the charged current then becomes 

   

   

 *

    2  2






 
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  (2.2.1.19) 

Equation (2.2.1.19) shows that neutrino CC  interactions do not cause family change 

transitions as long as it is assumed that 0im . The basis change equation (2.2.1.14) does 

not affect the electromagnetic and the neutral currents since what is involved in both currents 

is  

    1
**

 f
R

f
R

f
L

f
L UUUU     (2.2.1.20) 

 

Thus, these currents are diagonal in flavour and by using equation (2.2.1.11), the neutral and 

electromagnetic fermion currents takes the simple form  

 

       fQQfJ f
R

f
L

f
NC )1()1( 55      (2.2.1.21) 

           

      ffeJ ff
em

       (2.2.1.22) 

where the chiral charges f
RLQ ,  are now defined by  

    

W
ff

R

W
fff

L

eQ

eTQ





2

2
3

sin

sin




    (2.2.1.23) 

with fT3  and fe  being, respectively, the eigenvalues of the )2(SU  generator 3T  and of the 

electric charge Q  for the left handed components of the fermions in question. These 

corresponds to 
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;    (2.2.1.24) 
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For three generations, the neutral current interaction will then become 
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555  eeneutrinosNCJ   

           LLLLeLeL 






       (2.2.1.26) 

 

Because the EMNCCC  and  ,  interactions of leptons are family diagonal, as in (2.2.1.26), 

then the standard electroweak model in the absence of neutrino mass terms conserves 

separately the lepton number for each family. 

Except for experiments at the large pp  colliders at CERN and FERMILAB [The ALEPH 

Collaboration, 1993] where real sW '  and sZ '  have been produced, it is possible that other 

experimental investigations of the standard model may occur in circumstances where the 

momentum transfer 2q  is far much less than 2
WM  and 2 ZM . In this case, the weak part of 

the interaction Lagrangian of equation (2.2.1.10) can be replaced by an effective current-

current Lagrangian as in figure 2.2.1.1 below  
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Figure 2.2.1.1: Effective interactions in the low energy scale (q2 << MW 2, MZ 2) 

 

so that the effective Lagrangian takes the form [Peccei, 1988] 
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           (2.2.1.27) 

For the charged current interactions, comparison with the Fermi theory identifies the Fermi 

coupling constant FG  as [Lahanas, 1987]  

    22

2

sin82 WW

F

M
eG


      (2.2.1.28) 

which provides the formula for the charged gauge boson’s mass (W ) once W
2sin  is 

determined experimentally. Using equation (2.2.1.28) and defining a parameter   by 
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  ,     (2.2.1.29) 

the effective weak Lagrangian can then be written as 

    





  NCNC
fweak

eff JJJJ
G

L  2
    (2.2.1.30) 

 
2.2.2. A NEUTRINO MASS IN )1()2( USU   MODEL 

 
Since neutrinos are neutral particles, it is possible that they can have two distinct types of 

mass term [Zralek, 1997]; either Dirac (a particle-antiparticle mass term) or Majorana (a 

particle-particle mass term). Only the first kind of mass term is available for the charged 

leptons and the quarks, since Majorana masses for these particles would violate charge 

conservation. 

 

On the basis of the transformation properties of the fields R and  L  under )1()2( USU  , 

neutrinos can get a mass from the Higgs Yukawa couplings. This means that the neutrino 

mass term that can arise after )1()2( USU   symmetry breakdown, can be written as [Utpal, 

2008] 

     T
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T
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R
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T
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T
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MLRRLDmass CCmCCmmL  

2
1

2
1   

           (2.2.2.1) 

 

The equation shows that it is possible to have a Dirac mass Dm  plus a Majorana mass for the 

left handed L
Mm  and right handed R

Mm  neutrino fields. The Dirac mass Dm  arise from the 

Yukawa coupling of neutrinos with the standard Higgs doublet  

      













 0

    (2.2.2.2) 

so that the Yukawa Lagrangian can take the form 

  
L

RRLYukawa l
lL 











  **)   ( ,    (2.2.2.3) 

In this case, l  will be the lepton associated with the neutrino field   in question [Peccei, 

1988] and  

     0
Dm       (2.2.2.4) 
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This mass term is lepton number conserving since the Lagrangian YukawaL  is found to be 
invariant under the transformation 
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    (2.2.2.5) 

The presence of a Dirac mass matrix for neutrinos implies lepton mixing and, since the 

vacuum expectation value is roughly of the order GeV 2460   [Weinberg S 1976], then 

to get neutrino masses in the eV  range requires Yukawa couplings which are extraordinary 

small; that is, 1110 1010~   ev . In contrast to the Dirac mass Dm  which is connected to the 

scale of the )1()2( USU   breaking of GeV2460  , the majorana mass R
Mm  is allowed by 

)1()2( USU   since the right handed neutrinos are singlets. In addition, R
Mm  is an independent 

scale altogether [Linde, 1977] and the presence of R
Mm  breaks lepton number with the 

combinations 
T
RRR

T
R CC   and  having 2L  and 2L  respectively. Although R

Mm  is 

an explicit renormalizable mass term, it can also arise from a Yukawa coupling with some 

)1()2( USU   singlet Higgs field   which acquires a non zero vacuum expectation value. 

This means that [Peccei, 1988] 
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2

g
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

R
M

R
M

m
m ,   (2.2.2.6) 

where g  is a neutrino coupling constant. If   carries a lepton number, then the Yukawa 

coupling of   with R  fields can be lepton number conserving and lepton number is only 

broken spontaneously by the   vacuum expectation value  . In this latter case, unless 

lepton number is gauged, a Goldstone boson will appear in this theory. This is usually known 

as a Majoron [Graciela, 1987]. 

On the other hand the Majorana mass L
Mm  cannot be an explicit mass term as it violates 

)1()2( USU   but can arise after the breaking of )1()2( USU  . If L
Mm  is taken to be the result 

of the renormalisable interactions, then it is necessary to introduce an )2(SU  triplet Higgs 

field   in the theory. From the Yukawa interaction that [Schetchter and Valle, 1980]  
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   (2.2.2.7) 
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and the assumption that the zero charge component of   acquires a non zero vacuum 

expectation value  0 , then the Majorana mass term can take the form  

 

      oL
M gm 2     (2.2.2.8) 

 

The presence of a triplet Higgs field expectation value, however, changes the prediction for 

  so that [Utpal, 2008] 
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


      (2.2.2.9) 

The mass scale L
Mm  could also arise from violating-L  non renormalisable interactions from 

which 
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
    (2.2.2.10) 

For  , equation (2.2.2.10) yields a Majorana mass 

     




202 L

Mm      (2.2.2.11) 

By making use of the conjugate spinor C , the general neutrino mass term equation (2.2.2.1) 

can then be written in a more symmetrical form [Peccei, 1988] 
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     RL      (2.2.2.12) 

where C and C-T are charge and anti-charge conjugates respectively Thus, 

 

     R
C

L
C

RLRL )()(
2
1      (2.2.2.13) 

 

and using the definitions [Peccei, 1988] 

RL
C

R
T
R C  )(      (2.2.2.14) 

and  
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C

L
T

LL vvvCv )()(       (2.2.2.15) 
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equation (2.2.2.1) can reduce to the form  
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where the matrix  
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K
  
  

   (2.2.2.17) 

has two eigenvalues 21  and mm , and its eigenstates are Majorana neutrino states. This implies 

that, it is possible to build a hierarchy between these two eigenvalues if there is a hierarchy in 

the matrix K . Since L
Mm  is connected to the vacuum expectation value of a triplet Higgs field 

) 246  ( 0 GeV  or is inversely proportional to a large scale  , a hierarchy via R
Mm  can 

be build by taking 0    L
MD

R
M mmMm  so that equation (2.2.2.17) reduces to 
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    (2.2.2.18) 

The matrix K  is diagonalised via a unitary transformation [Gupta, 2004] 
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If DmM  , then  
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    (2.2.2.20) 

The diagonalisation of the matrix K  corresponds to a basis change for the left handed and 

right handed neutrino fields  
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   (2.2.2.21) 

from which it is found that 
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and 
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    L
CD

L
C

L M
m

)()(                   21      (2.2.2.23) 

Equations (2.2.2.22) and (2.2.2.23) show that R  is mostly made up of the heavy neutrino 

field 2 , while L  is mostly the light neutrino field 1  respectively. In terms of 1  and 2 , 

the mass Lagrangian (2.2.2.16) then becomes [Utpal, 2008] 
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which are Majorana mass terms for these fields. The Majorana fields 21  and   are then 
defined by [Peccei, 1988] 
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so that mass Lagrangian (2.2.2.24) reduces to 
 

      222111 2
1

2
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 mmLmass      (2.2.2.27) 

Consequently, combination of equations (2.2.2.22) and (2.2.2.25) leads to  

    R
D

RR M
m

12                       (2.2.2.28) 

and 

    L
D

LL M
m

21                        (2.2.2.29) 

Equations (2.2.2.28) and (2.2.2.29) show that R  is mostly 2  and L  is mostly 1 . From 

equations (2.2.2.27) it is explicit that if 2m  is sufficiently heavy, then it would not be easy to 

have any evidence for 2  yet. However, the see saw relation allows a light neutrino 1  to 

exist which is essentially the same as the massless left handed neutrino of the standard 

electroweak model. 
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2.2.3. SPONTANEOUS SYMMETRY BREAKING AND MASS GENERATION 

 

In the context of the electroweak model, all particles should be massless but in realty matter 

particles are massive. Particles especially the weak gauge bosons are massive since the weak 

interaction is of short range. Therefore, unifying SU(2) and U(1) can only be possible if a 

mechanism can be found that can give the weak gauge bosons and other particles the required 

masses but not the photon. One such mechanism is spontaneous symmetry breaking (SSB) 

which is a very crucial ingredient in the electroweak standard model of Glashow, Weinberg 

and Salam [Weinberg, 1967; Salam, 1968; Glashow and Georgi, 1972]. In this scheme, the 

fundamental idea is that the weak interactions should be mediated by gauge bosons  0, ZW   

which are, to begin with, massless. The Lagrangian for the theory also contains terms for 

massless leptons. A scalar field (the Higgs field) is then introduced with a non-vanishing 

vacuum-expectation value. The resulting spontaneous breakdown of symmetry gives masses 

to the charged leptons and gauge bosons, but not to the electromagnetic gauge boson. This is 

done by considering the free Lagrangian of the form 

 

      
  miL     (2.2.3.1) 

which becomes  

       
 iL     (2.2.3.2) 

for 0m . The following projection operators [Feyman and Gell-Mann, 1958]  
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are applied so that the Lagrangian (2.2.3.2) takes the form 
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This finally reduces to  

       iL       

 

        LLRR ii            (2.2.3.5) 
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Since transformations are between particles whose space-time properties are the same, then 

the only possibility is a mixing of Le  and e  from which the isospinor doublet has to be 

written as  
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
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
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e
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L
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    (2.2.3.6) 

To preserve gauge invariance, the doublet is assigned a non-Abelian weak isospin charge 

      
2
1

WI     (2.2.3.7) 

so that the neutrino takes  

      
2
13 WI     (2.2.3.8) 

as its third component and the electron  

      
2
13 WI     (2.2.3.9) 

The other particle ReR  , which is an isosinglet, has  

      0WI     (2.2.3.10) 

This will lead the Lagrangian (2.2.3.5) to take the form 
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Gauge invariance demands that the Lagrangian L  remains invariant under the operators 
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and  

      RR       (2.2.3.13) 

which are rotations in the weak isospin space. This generates the group )2(SU  whose 

transformation matrix is suggested to be of the form 
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   (2.2.3.14) 

The relation between the electric charge  Q and the third component I is given by the Gell-

Mann-Nishijima relation [Lewis, 1985] 
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   (2.2.3.15) 

and since the electromagnetic ( )1(U ) symmetry leads to a conserved charge of which Re  

possesses one value and Le e and   the other value, then it is not the electric charge Q  as they 

have different values of Q . This charge is the “Weak Hypercharge” WY  defined by a quasi-

Gell-Mann-Nishijima relation [Stancu, 1996] as 
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From equation (2.2.3.15) the following quantum numbers can easily be calculated;  
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It is evident that the left-handed field should couple with half the strength of the right-handed 

fields to the hypercharge gauge field so that the )1(U  transformation matrix can now take the 

form  
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To establish the gauge invariance of the Lagrangian (2.2.3.11) the product of the matrix 

(2.2.3.18) and (2.2.3.14), that is, ))1()2(( USU   should be allowed operate on the Lagrangian 

(2.2.3.11) and observe the results. This is done by taking the matrix product of 

))1()2(( USU   so that 
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The above operation yields 
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On using the substitutions 

      ).(
2
1 ,   ,    (2.2.3.21) 

on the matrix equation (2.2.3.20) leads to 
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When the matrix (2.2.3.22) is allowed to operate on 
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On using (2.2.3.23) on the Lagrangian (2.2.3.11) yields 
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or 
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This simplifies to 

   eeLLRR ieeieeiLL  '     (2.2.3.26) 



31 
 

Thus, it is explicitly clear that, the Lagrangian is invariant under )1()2( USU  . To gauge 

)2(SU , three gauge potentials iW  are introduced so that, by acting on the isospinor L , the 

ordinary derivative is replaced by the covariant derivative [Lahanas, 1987] 

    LWgiLLD   
2

,    (2.2.3.27) 

where g is the )2(SU  coupling constant. Gauging )1(U  symmetry introduces a gauge 

potential X and a coupling constant 'g  so that, since L  has half the hypercharge of R , the 

covariant derivatives then become 

    
RXigRRD

LXgiLLD
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    (2.2.3.28) 

 

Substitution of equations (2.2.3.27) and (2.2.3.28) into (2.2.3.11) and the gauge field kinetic 

terms included leads to the Lagrangian 
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  (2.2.3.29) 

 

Next an isospinor scalar field (the Higgs field)  
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that carries the quantum numbers  

     1  ,
2
1

 WW YI     (2.2.3.31) 

is introduced into this Lagrangian, with both   and 0  being complex fields (the particle 

and antiparticle are distinct). Thence, 
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where 43,21    ,      ,   are real and the covariant derivative of   defined as 
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    (2.2.3.33) 

Since the Higgs field   interacts with the leptons with strength eG , then the overall 

Lagrangian containing   becomes  
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The second and last terms can be written out fully as  
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In the case ,02 m  the situation describes a scalar field with mass m , and the lowest energy 

state corresponds to 0 . However, if 02 m , the lowest energy state is not at 0  but at  

     



2

0)( m
     (2.2.3.36) 

The symmetry is then broken by choosing the isospinor frame in which  

 2)( 01       (2.2.3.37) 

and  

0)()()( 040302       (2.2.3.38) 

so that 
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for real  . The fact that the symmetry is local means that a different isospin rotation can be 

performed at each point in space so that )(x  reduces to the form  
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at every point. Thus equation (2.2.3.33) reduces to  
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The Hermitian conjugate of (2.2.3.42) is 
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where  
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 iWW       (2.2.3.44) 

and 
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 XggW       (2.2.3.45) 

Hence, the product of the equations (2.2.3.42) and (2.2.3.43) yields 
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           (2.2.3.46) 

It is then suggested that the various terms be defined as; 
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where W  (the Weinberg angle) is defined by 
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Then, from equation (2.2.3.46),  ZandW   2,1  pick up masses with 
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and A  remains massless. A  can physically be identified with the usual electromagnetic 

field vector potential. To this end, it is important to know why this field remains massless. 

This can be argued out by considering the relation  

     
23
YIQ        (2.2.3.53) 

that relates the electric charge Q, the third component of weak isospin 3I  and the 

hypercharge Y. With 1Y  for the doublet, the 
2
1

3 I  component has charge +1 (in units 

of e ) and the 
2
1

3 I  component is electrically neutral. Fluctuations around the vacuum 

will correspond to the emission or absorption of a Higgs boson, meaning that any quantum 

numbers carried by the Higgs boson can be spontaneously created or annihilated. 

Conservation of charge will dictate that a non-zero vacuum expectation value for the neutral 

component is the most appropriate. This follows from the fact that a non-zero vacuum 

expectation value for the charged spinor   would imply non-conservation of electric 

charge. Now, if the choice 0  with 
2
1

3 I  and 1Y  breaks both the )2(SU  and YU )1(  

symmetry, then the gauge boson associated with that symmetry will remain massless. Such 

symmetry exists, for, if the vacuum is operated on with the electric charge operator Q , then  
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YIQ      

             0      (2.2.3.54) 

so that the vacuum is invariant under a transformation  
00

)('
00  Qxie   for any 

value of ).(x  This is also a )1(U  transformation whose generator is a linear combination 

)
2

( 3
YIQ   of the generators of the overall YUSU )1()2(   transformations, and it is just the 

)1(U  transformation of electromagnetism emU )1( . It is a subgroup of YUSU )1()2(   and of 

the generators I  and Y  of )1()2( USU   only the combination  
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which is the generator of emU )1( , satisfies  

     030 )
2

( 
YIQ     

              0      (2.2.3.56) 

and consequently the associated gauge boson should remain massless. The other generators 

break the symmetry and the associated bosons become massive. From equation (2.2.3.1), if 

 

      0Dm     (2.2.3.57) 

then a Dirac mass term can be written as  

 

    RLDLRDDDD mmm     (2.2.3.58) 

 

where the second term is the hermitian conjugate of the first term. In the context of the 

electroweak model, it is convenient to work with the states L  and R  as independent states; 

CPT invariance will then include the states R
c  and L

c . However, in the grand unified 

theories, the states L  and L
c  are considered independent states, so that they can be put 

into a single representation of the grand unification group 
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CPT invariance will then include the CP conjugate states in the theory, which are the right-

handed particles 
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The states L  and R  can then belong to the representations )(G  and )(G , respectively 

of any unifying group G  that commutes with the Lorentz group. One can then write the 

Dirac masses as 
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36 
 

Grand unified theories also regard )1()2()3( USUSU L   as a low-energy relic of a more 

unified theory, based on a simple group G which incorporates QCD and )1()2( USU   

(Glashow-Weinberg-Salam) as subgroups: 

   
GeVGeV

USUUSUSUG L
214 10~                         10~   

)1()3()1()2()3( 
  (2.2.3.62) 

Indicated in equation (2.2.3.62) are the expected scales at which the primordial symmetry G 

is successively broken down; the scale 102 GeV is that of the gauge bosons, W  and Z0 and 

the accepted structure of the known fermions is as shown in figure 2.2.3.1 below: 
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      SU(3) 
Figure 2.2.3.1: The multiplet structure of fermionic particles that participate in the strong, weak and 

electromagnetic interactions. 

 

They seem to occur in generations or families containing 15 helicity states each of which has 

the group theoretic LSUSU )2()3(   content of: 

   )1,1(          )2,1(          )1,3(2          )2,3(     (2.2.3.63) 

Here, only particle content of the first generation has been given since the electroweak 

interaction does not admit the right-handed neutrinos. 
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Currently, grand unified theories are attempting to unify all the interactions within each 

generation with the intention of  making quarks and leptons share representations of G, which 

may provide direct quark lepton transitions. However, the major obstacle to the unification 

of the different known interactions is the disparity between the different coupling constants 

     123 ggg       (2.2.3.64) 

measured at low energies. Nevertheless, the property of asymptotic freedom guarantees that 

the strong interaction gets weaker at higher momenta, whereas the renormalization group 

demand that the SU(2) and U(1) coupling constants should also change with momentum with 

g1 rising and g2 remaining intermediate between g1 and g3. These evolutions suggest that it is 

possible for g3, g2 and g1 to become equal at some momentum scale at which grand 

unification can take place as sketched in the figure 2.2.3.2 below: 

 

 

  gi 

    SU(3) 

 

    SU(2)          Equality 

 

 

    U(1) 

 

 

         Q (GeV) 
                      Figure 2.2.3.2: Schematic picture of the evolution of SU(3), SU(2) and U(1) coupling constants 

 

The slow logarithmic variations of the different coupling constants suggest that this may take 

place at around 1014 GeV [Ellis, 1980] 

 

2.3. A NEUTRINO IN THE BIG BANG MODEL 
 

The )1()2( USU   model is a low-energy-scale gauge model i.e. it takes place at 102 GeV 

energy scales. In addition, the model assumes that the neutrino is massless. Thence, to endow 

the neutrino with mass, higher energy scales should be probed. But also it is not easy to 
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achieve these higher energies since the present particle accelerators are incapable of 

producing them. Consequently, the only natural particle accelerator available is the very early 

and hot universe. This means that neutrino properties beyond the )1()2( USU   energy scales 

can be studied from the view-point of a neutrino-dominated and evolving early universe. In 

particular, long before neutrinos had experimentally been detected, Alpher and his research 

collaborators [Alpher et al., 1953] had noted that they would have been in thermal 

equilibrium in the early universe through interactions with mesons at temperatures above 

MeV 5 . They noted that the subsequent annihilation of e e  pairs would heat the photons but 

not the decoupled neutrinos so that by conservation of entropy the temperature ratio 
T
T

o  

would decrease from its initial high temperature value of unit, down to the numerical value  
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T
To      (2.3.1) 

at MeVTdec  1   ; oT  is the expected neutrino temperature (to be calculated in this work) and 

KT  726.2  is the observed photon temperature [Wick and Barry, 2000]. As long as they 

remain relativistic, neutrinos would retain a Fermi-Dirac distribution with phase-space 

density given as [Srivastava, 2008] 
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where g  is neutrino degrees of freedom and p is neutrino momentum. In their calculation, 

Chiu and Morrison managed to show that the rate for the reaction e e       in plasma 

should be  

 
 G TF

2      (2.3.3) 

for the universal Fermi interaction [Chiu and Morrison, 1960]. Here 25  1017.1  GeVGF  

is Fermi coupling constant and T is the temperature of the neutrino. Zeldovich later 

established that the expansion rate in the radiation- dominated era should be 

3
G8 N

e


      (2.3.4) 

with 

4
*30
Tg



       (2.3.5) 
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and g*  counts the relativistic degrees of freedom [Zeldovich, 1965]. However, Zeldovich and 

Chiu, in their analysis concluded that relic neutrinos although nearly as numerous as the 

blackbody photons, cannot make an important contribution to the cosmological energy 

density since they are probably massless [Zeldovich and Chiu, 1966]. Also, Gershtein and 

Zeldovich [Gershtein and Zeldovich, 1966] made the connection that if relic neutrinos are 

massive, then a bound on their mass will follow from a simple relation, that is, 

    mn  m       (2.3.6) 

where m  is the cosmological energy density in form of matter, m  is the neutrino mass and 

n  is the neutrino number density. Using the general relativistic constraint  
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


 Ht
crit

     (2.3.7) 

they derived the energy density contributed by matter as 325102  gcmm  and 

inferred that eVm  400  for photon temperature of K3  (Ho is Hubble’s constant at time to). 

Their calculation of the relic neutrino abundance was rather approximate in that they adopted 

gv  4  i.e. assumed massive neutrinos to be Dirac particles with fully populated right-handed 

)(RH  states. Cowsik and McClleland [Cowsik and McClelland, 1972] using direct limits on 

the cosmological energy density parameter  
cirtical

matter




 and h obtained a more restrictive bound 

of eVm 8  assuming  m m me n    .  They also assumed that  T T   and that 

right-handed states are fully populated. 

 

An upper bound of eVm 130  was reported by Marx and Szalay [Marx and Szalay, 

1976] who numerically integrated the cosmological Friedmann equation from   decoupling 

to the present epoch, subject to the condition Gyearsto  5.4   . The modern version of the 

bound was arrived at by Bernstein and Feinberg [Bernstein and Feinberg, 1981]. Here the 

conservative limits gigayearsto   10    and 4.0 oh  imply 32 54.10  ie  1   keVcmh m
m 



.  

 

When they combined these values with the relic neutrino number density, they arrived at a 

result 
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(Here, h is the value of the Hubble parameter in units of 100 km per mega parsec per second 

and 
i

m  is the neutrino mass species). The bound (2.3.8) together with the Hubble Key 

project determination of 08.072.0 h  implies that the sum of all neutrino masses cannot 

exceed about 15eV. It also assumes that neutrinos constitute all of the dark matter permitted 

by the dynamics of the universal Hubble expansion. However, Cowsik and McClleland 

[Cowsik and McClelland, 1972] had earlier suggested that neutrinos with a mass of a few eV 

could, also, naturally be the missing mass in cluster of galaxies. They arrived at this 

conclusion by requiring that the mass density within a cluster should be 

 

    cl
clN

M
rG

M 33

1
      (2.3.9) 

 

which they obtained by modeling a cluster of mass clM  as a square potential well of core 

radius clr  filled with a Fermi-Dirac gas of neutrinos at zero temperature. Although the 

microscopic phase-space density in equation (2.3.2) is conserved for collisionless particles, 

the coarse-grained phase-space density in bound objects can decrease below its maximum 

value during structure formation. Modeling the bound system as an isothermal sphere with 

velocity dispersion   and core radius 

     
)(4

9 2
2

ClN
cl rG

r

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     (2.3.10) 

 

Tremaine and Gunn [Tremaine and Gunn 1979] obtained the relation 
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They found this bound to be consistent with the cosmological upper bound in equation (2.3.8) 

down to the scale of galaxies. However, there is a conflict for smaller objects like, dwarf 

galaxies, which require a minimum mass of eV100  [Spergel et al., 1988; Lake, 1989]. 

The central phase space density of the observed dark matter cores in these structures 

decreases rapidly with increasing core radius, rather than being constant as would be 
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expected for neutrino [Burkert, 1997]. Moreover since neutrinos would cluster more 

efficiently in larger potential wells, there should be a trend of increasing mass-to-light ratio 

with scale. This was indeed claimed to be the case initially but later it was recognized that the 

actual increase is far less than expected [Blumenthal et al., 1984]. Thus a massive neutrino 

was disfavored as the constituent of the missing mass in galaxies and clusters. 

Nevertheless cosmological arguments have continued to be of major interest since the 1980s 

when the ITEP ’s tritium beta decay experiments reported a eV30 mass for the electron 

neutrino [Lubimov et al., 1980]. In particular the attention of cosmologists has been focusing 

on how the large-scale-structure )(LSS  of galaxies, clusters and super clusters would have 

formed if the universe is indeed dominated by such massive neutrinos. The basic picture is 

that structure grows through gravitational instability from primordial density perturbations 

[Padmanabhan, 1993]. These density perturbations were first detected by COBE  via the 

temperature fluctuations they induce in CMB  [Smoot et al., 1992]. On small scales 

   10 mpc  structure formation is complicated by non-linear gravitational clustering as 

well as non-gravitational processes but on large scales, gravitational dynamics is linear and 

provides a robust probe of the nature of the dark matter. Density perturbations in a medium 

composed of relativistic collisionless particles are subject to a form of Landau damping 

which effectively erases perturbations on scales smaller than the free-streaming length [Bond 

et al., 1980]
1

30
41~











eV
mmpc  . This is essentially the distance traversed by a neutrino from 

the big bang until it becomes non-relativistic and corresponds to the scale of super clusters of 

galaxies. Thus huge neutrino condensations containing a mass
2

5

30
103~



 







eV
MM   would 

have begun growing at a red-shift 







eV

MZ eq 30
107~ 3  , when the universe became matter-

dominated and gravitational instability set in. This is well before the epoch of recombination 

at 310~recZ  so that the baryons were still closely coupled to the photons, while the neutrinos 

were mildly relativistic  

     1.0~
c
v      (2.3.12) 

and, hence, hot. After the universe became neutral, baryonic matter could have accreted into 

these potential wells, forming a thin layer of gas in the central plane of the pancakes. Thus 
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super clusters would be the first objects to condense out of the Hubble flow in a “hot dark 

matter” )(HDM cosmogony and smaller structures such as galaxies would form only later 

through the fragmentation of the pancakes [Zeldovich, 1970]. The gross features of such a 

“top down” model for structure formation are compatible with several observed features of 

large scale structure, in particular the distinctive voids and filaments seen in large galaxy 

surveys. Studies [Peebles, 1982; White et al., 1983; Bond and Szalay, 1983] have, however 

found that galaxies form too late through the break-up of the pancakes at a red-shift 1Z  

counter to observations of galaxies and quasars at 4Z , i.e., galaxies should have formed 

last in a HDM  universe, whereas our galaxy is in fact dynamically much older than the local 

group. Therefore, the HDM model was abandoned and considerable attention was turned to 

cold dark matter )(CDM , i.e., particles which were non-relativistic at the epoch of matter-

domination. Detailed studies of CDM  universes gave excellent agreement with observation 

of galaxy clustering and a standard cold dark matter model for large scale structure formation 

was established, viz a critical density CDM universe with an initially scale-invariant 

spectrum of density perturbations [Peebles, 1982; Bond and Efstathiou, 1984;Davis et al., 

1985; Ostriker, 1993]. Plausible particle candidates were provided notably the neutralino in 

supersymmetric models which has a relic abundance of order of the critical density [Jungman 

et al., 1996]. Nevertheless neutrinos were resuscitated some years later as a subdominant 

component of the dark matter when the CDM  cosmogony itself ran into problems [Liddle 

and Lyth, 2000]. To appreciate the background to this, it is necessary to recapitulate the 

essential ingredients of a model for cosmic structure formation. A key assumption made 

concerns the nature of the primordial density perturbations, which grows through 

gravitational instability in the dark matter. Such fluctuations are assumed to have a power 

spectrum of the scale-free form: 

 

    
2)( kkp        (2.3.13) 

where 

      xdex xk
k

3. 




       (2.3.13’) 

is the Fourier transform of spatial fluctuations in the density field of wavelength 



2
k

. 

Powerful support for their conjecture was provided by the inflationary model that had been 

developed earlier by Allan Guth and Alexander Linde [Guth, 1981; Linde, 1982] and later 
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applied to the cosmological model by Edward Kolb, Michael Turner and Alexander Linde 

[Kolb and Turner, 1990; Linde, 1990]. According to this model, perturbations arise from 

quantum fluctuations of a scalar field , the vacuum energy of which drives a period of 

accelerated expansion in the early universe. Primordial perturbations have another unique 

observational signature in that they induce temperature fluctuations in the cosmic microwave 

background through gravitational red/blue shift corresponding to spatial scales larger than the 

Hubble radius on the last scattering surface. The anisotropy in the cosmic microwave 

background ( CMB ) measured by Cosmic Background Explorer ( COBE ) allows 

determination of the fluctuation amplitude at the scale H h mpc0
1 13000   corresponding to 

the present Hubble radius. With this normalization, it became clear that a HDM model had 

too little power on small-scales for adequate galaxy formation [Brandenberger et al., 1987; 

Bertschinger and Watts, 1988]. However, it also became apparent that the standard 

CDM model when normalized to COBE  had too much power on small-scales [Smoot G F et 

al., 1992]. It was, thus, a logical step to invoke a suitable mixture of CDM and HDM models 

to try and match the theoretical power spectrum to the data on galaxy clustering and motions 

[Wright et al., 1992; Davis et al., 1992; Taylor and Rowan, 1992]. 

 

Shafi and Stecker motivated by theoretical considerations of supersymmetric grand unified 

theories had earlier discussed the possibility that the dark matter may have both a hot and a 

cold component [Shafi and Stecker, 1984]. In the post-COBE era, studies on mixed dark 

matter )(MDM model were performed and a neutrino fraction of about 20% was found to 

give the best match with observations [Dalen and Schaefer, 1992; Klypin et al., 1993; Jing et 

al., 1994; Ma and Bertschinger, 1994; Pogosian and Starobinsky, 1995; Liddle et al., 1996]. 

The implied neutrino mass was 5eV. This was an exciting time for neutrino cosmology as 

both laboratory data and astronomical observations supported the possibility that a substantial 

fraction of the cosmological mass density is in the form of massive neutrinos. However, in 

the absence of a standard model of inflation it might be argued that the inflationary spectrum 

may instead have 1  n , thus allowing a large HDM component. Yet another way of 

suppressing small-scale power in the CDM cosmogony is to decrease the matter content of 

the universe, since this postpones the epoch of matter-radiation equality and thus shifts the 

peak of power spectrum to larger scales. Further, the spatial geometry can be maintained flat 

if there is a cosmological constant with 7.01  m . Evidence for such a cosmology 

)( CDM has come subsequently from observations of the Hubble diagram of type Ia 
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supernova which suggests that the expansion is in fact accelerating [Riess et al., 1998; 

Perlmutter et al., 1999]. When this is coupled with the observation that m  does not exceed 

0.3 even on the largest scales probed, it is yields a scale invariant power spectrum  

     13.0
m

v
vf




    (2.3.14) 

which corresponds to an upper bound of eV 1.2 on the sum of neutrino masses [Elgaroy et al., 

2002]. To fully establish how a neutrino can lead to a flat universe, the relevant cosmological 

ingredients must be fully utilized. Essentially, since cosmology deals with the physical 

structure of the universe at large scales, it is suggested that the physical processes occurring 

in its early phases of evolution may have observable, though indirect, consequences in the 

present structure. However, a proper cosmological setting relies on the following guiding 

assumptions [Keith, 1984]: 

 There does not exist privileged observers and on average, the universe is not expected 

to look any different from any other spatial position (The Copernican Principle). 

 Physical laws do not depend on space-time (The relativity Principle).  

These two principles taken together constitute the Cosmological Principle which can be 

stated as; the universe is isotropic in all its measurable properties at all times over all space. 

That is, the universe is spatially homogenous and isotropic. As Keith observes, there are two 

immediate consequences of the cosmological principle. The first is that the only true velocity 

fields allowed are either overall expansion or contraction. Other possibilities such as rotation, 

shear, combined expansion and contraction are all contained in the anisotropic Bianchi 

models. Furthermore, any expansion or contraction present must have no apparent centre i.e. 

the relative velocity between any two observers must depend only on their separation 

      1212 Hrv      (2.3.15) 

where H is a universal spatial constant known as Hubble’s constant. The second consequence 

of the cosmological principle is that, there must exist a measure of distance which is 

independent of direction such that 

      
H
zcd      (2.3.16) 

where z is the redshift due to expansion of an emitted signal. More generally, the second 

consequence implies that there exists a metric g which does not depend on direction but is a 

symmetric tensor of the form 

     
 dxdxgg      (2.3.17) 
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that defines the line element ds2. The metric must also be non-singular so that it has an 

inverse defined by 

     


xx
gg







1     (2.3.18) 

and  

     



 gg      (2.3.19) 

If the cosmological principle is applied to the metric, then  

     00 ig      (2.3.20) 

 

     jig ij         0     (2.3.21) 

and 

     ii
ii dxdxgdtgds  2

00
2    (2.3.22) 

A set of coordinates can further be defined so that the homogenous and isotropic metric takes 

the form 

     2222 )( dtSdtds     (2.3.23) 

where 2d  is the three-space metric of constant curvature and is time-independent. The 

different three-space geometries are those of positive, negative and zero curvature, so that the 

metric takes the form 

    )sin)(( 222222  ddrfdrd    (2.3.24) 

In this equation, the function )(rf  is defined by 
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and k is the curvature parameter of the space-time. Homogeneity and isotropy then 

guarantees that the form of f be independent of   and   so that the resulting metric, known 

as the Friedmann-Robertson-Walker metric (FRW), takes the form, 

   










 222

2

2
222 sin

1
)(  ddr

kr
drtSdtds    (2.3.26) 

To derive the equations describing the dynamical evolution of a cosmological model with 

FRW metric, general relativity is required. To begin with, the covariant derivative of a vector 

Av is defined by 
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where  

     



 AA ,  

or 

      AA ,      (2.3.29) 

is the ordinary derivative and the affine connection (or Christoffel) symbol is given in terms 

of the metric by 

      
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
 gggg ,,,2

1
    (2.3.30) 

In terms of the affine connection, the Riemann curvature tensor can be written as [Srivastava, 

2008] 
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A space-time will be defined to be flat if  

      0
S     (2.3.32) 

Contraction on   and   gives the Ricci tensor S  and further contraction yields the 

curvature scalar Sc which is defined by [Gupt, 2004] 
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      



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To derive the field equations, the set of the Christoffel symbols are worked out to yield 

[Keith, 1984] 
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The calculated Christoffel symbols are then used to establish that the only non-vanishing 

Ricci coefficients are 
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and the curvature scalar is 
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Concentrating on the 0-0 term in the field equations yields the standard Friedman equation 

[Keith, 1984] 
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More interestingly, when the equation (2.3.45) is written (with the cosmological constant 

equated to zero) in the form 
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

,    (2.3.46) 

then the left hand side can be interpreted as the total energy )( k  of the universe with the 

kinetic energy term represented by 
2

S and the potential energy by the term containing   in 

the right hand side. If the left-hand side (total energy) is positive ( 1k ), then the kinetic 

energy term is great enough (the initial velocity is greater than the escape velocity) and the 

universe will expand forever (the universe is open). If the total energy is negative ( 1k ), 

the universe will recollapse (the universe is closed). In the 0k  model, the universe is at the 

escape velocity and it will expand indefinitely. It is not yet clear which situation describes the 

present universe. However, since the universe has been expanding at almost exactly the 

critical rate to avoid recollapse, it is expected that some mechanism in the early universe 

could have driven it to its present state. Hence, from the inflationary model, if the energy 

difference between two vacua is denoted by v , then until the tunneling has taken place, the 

universe has an extra energy density v  at its disposal which must have dynamical effects in 

Einstein’s equation for the standard cosmology described by the Friedmann equation of 

motion for cosmic dynamics: 
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    (2.3.47) 

 

2.4. INSTANTONS 
 

In the standard cosmology, the universe is suggested to have started from a big bang and 

continued to expand. When extrapolated backwards, the universe is found to be very dense in 

and the average energy per particle is much higher. The extrapolation predicts a singularity at 

0t  and as this epoch is approached ( 0)( tS ), the Hubble constant H  increases rapidly 

becoming infinite at 0)( tS . The epoch is normally referred to as a singularity. 

Quantitatively, 0)( tS  implies a breakdown of the concept of space-time geometry and has 

been recognized as an inevitable feature of Einstein’s general theory of relativity [Narlikar, 

1993]. Qualitatively, it is a feature that prevents one from investigating what happened at 

0)( tS  or prior to it. This abrupt termination of the past signifies an incompleteness of the 

general theory of relativity hence a need for a better and consistent solution [Maumba et al., 

2011]. In the context of the particle physics of the big bang cosmology, little known field 
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solutions from the non-linear gauge field theories are suggested as a possible solution. These 

extended solutions known as solitons may represent stable configurations with well-defined 

energies that are nowhere singular. On this account, if gauge theories are to be taken 

seriously, then so must these solutions, for they promise to give rise to some physics that may 

even solve the problem of quark confinement. A number of soliton solutions exist in the 

literature [Lewis, 1985]. Of particular interest are those localized in time as well as in space, 

known as instantons. The basic idea is to write down the instanton solution for the equation 

of motion exhibiting its topological nature and then examine the physical consequences that 

may follow from it. To begin with, Euclidean space is considered to have co-ordinates (x1, x2, 

x3, x4) with 

     04 ixx       (2.4.1) 

and  

     ctx 0      (2.4.2) 

Its Euclidean field tensor aF , defined in the same way as the Minkowski tensor 

[Brandenberger, 1985], then takes the form  

     cbabcaaa AAgAAF     (2.4.3) 

with 

     aa AA  
2
1

  

     aa FF  
2
1

     (2.4.4) 

This means that the tensor F  can be written as 

       AAigAAF   ,     (2.4.5) 

Defining 

        AAA     (2.4.6) 

implies that F  can be written as 

         AAigAF   ,      (2.4.7) 

The dual of F  (denoted 

~
F ) is correspondingly defined by 

       FF
2
1~

     (2.4.8) 

With the antisymmetric tensor 11234  , this yields 
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       FF 
~

    (2.4.9) 

In the Minkowski space, it is defined that when 10123  , then 10123   so that 

       FF 
~

    (2.4.10) 

Under the gauge transformations that 

    11' )(   SS
g
iSSAA       (2.4.11) 

     1'  SSFF      (2.4.12) 

and the vector 

   







 







 









AAAigAATr

AAAgAAK cba
abc

aa

32
1       

34
1

,   (2.4.13) 

then, 

    

a
a

FF

FFTrK





~

~

8
1           

4
1





     (2.4.14) 

If a 4-dimensional volume V4 in E4, with boundary 34 ~ SV  is considered, then 

    0K       (2.4.15) 

in a pure vacuum with 

    0  ;0   FA      (2.4.16) 

and the field equations (in the absence of matter) 

    0 FD       (2.4.17) 

are clearly satisfied over the whole region V4, as is the Bianchi identity 

    0
~

 FD       (2.4.18) 

Applying Gauss’ theorem to equation (2.4.14) then gives 
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



 



4

4
4

3

44
~

4                           

4

V

V
V

xdK

xdKxdFTrF 

   (2.4.19) 

 

2.4.1. COSMOLOGICAL INSTANTONS 
 

Equation (2.4.19) is the action solution for the non-linear gauge instanton. To find the 

corresponding action from the view point of cosmology, it is suggested that a universe that 

starts in the symmetric vacuum state is described by the Friedman-Robertson-Walker metric 

[Kolb, 1986] 

   










 22

2

2
222

1
)( dr

kr
drtSdtd     (2.4.1.1) 

together with the Friedman evolution equation  

      
3

8
2

2

G
S

kS





   (2.4.1.2) 

In this case, 
dt
dSS 



 and k is a parameter that can take the values 1or    0  ,1  . The 

equation, for 1k , is solved to yield the usual de Sitter solution  

 

    )cosh()( 1 HtHtS       (2.4.1.3) 

 

This solution (2.4.1.3) describes a universe that is contracting at 0t , reaches its minimum 

size 1
min )0(  HS  at 0t  and expands at 0t . This behavior is analogous to that of a 

particle bouncing off a potential barrier at 1)(  HtS  with S  playing the role of the particle 

coordinate. Since particles can tunnel through potential barriers quantum mechanically, then 

the creation of the universe can be visualized as a quantum tunneling process [Shuryak, 

1985], where it emerges having a finite size 1)0(  HS  and zero velocity. Its following 

evolution is described by equation (2.4.1.2) with 0t . 

A semiclassical description of quantum tunneling process is given by the solution of equation 

(2.4.1.2) with t  replaced by it  ( it  is the complex imaginary time). This is because if 

potential energy is greater than the total energy, i.e. 
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     EV        (2.4.1.4) 

then the process is classically )0(   forbidden, but the actual tunneling amplitude is 

[Michael et al., 1992] 

    E

b

a

AdxEVm 








  exp2exp     (2.4.1.5) 

EA  (the Euclidean action) is defined by the integral in brackets and for quantum tunneling to 

occur it must be the action for imaginary times. To show this, a case is considered where  

     VE        (2.4.1.6) 

and the transition is classically allowed. In this case, the “wave function” oscillates and the 

number of oscillations is normally given by [Bransdein and Joachain, 1989] 

       
b

a

b

a

dxVEmpdx 2    (2.4.1.7) 

For convenience, equation (2.4.17) may be written as 

        



b

a

b

a

dtxppdx     

      
b

a
TE dtLH )(       

      
b

a

dtLE )(      (2.4.1.8) 

where HTE is the total energy or the Hamiltonian. If HTE is normalized to zero, then  

        
b

a

b

a

Ldtpdx      

     A       (2.4.1.9) 

which is the total action for transition from vacuum state a  to b . The only difference 

between equation (2.4.1.5) and (2.4.1.7) is that the sign of VE   is reversed. However, the 

sign of V  in the familiar equation of motion 

     
x
Vxm






     (2.4.1.10) 

is reversed if t is replaced by it . Hence, EA  is the action for imaginary times and the 

Euclidean version of equation (2.4.1.2) is [Kolb, 1986; Coleman, 1977; Curtis and Coleman, 

1977] 
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     
3
 8

2

2 G
S

Sk





    (2.4.1.11) 

This equation (2.4.1.11) can then be solved to yield 

     )cos()( 1 HtHtS      (2.4.1.12) 

Equations (2.4.1.3) and (2.4.1.12) describe a four-sphere 4S  which is the de Sitter instanton 

[Vilenkin, 1982]. However, solution (2.4.1.12) does bounce at the classical turning point 

1 HS , but it does not approach any initial state at t . It is defined only for
H

t 2
 . 

The equation (2.4.1.12) describes the tunneling to the de Sitter space from a non classical 

space-time state and this can be represented pictorially as in figure (2.4.1.1) below: 

 

 
Figure 2.4.1.1: A pictorial representation of the creation of the inflationary Universe. 

 

Physically, the connection between the instanton solution and the quantum tunneling of the 

universe from a non classical space-time state is not an obvious concept. To agree with the 

instanton solution, a hypothetical example from condensed matter physics is discussed in 

order to make the concept more obvious. Creation of an electron-positron pair in a constant 

S 

t 

O        H-1 H-1 
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field, say the electric field 


E , is considered. It is then suggested that the electrons that are 

emitted from the emitter surface do not all of them have the same energy. This is because, 

they are emitted from varying depths of the emitter region, hence, lose different amounts of 

energy before emanating from the emitter surface. When the potential between the emitter 

and the collector is equal to the stopping potential, then even the most energetic electrons 

would just fail to reach the collector. If maxv  is the maximum velocity of the emitted electrons 

at the emitter, then their kinetic energy at the emitter is 2
max2

1 vme , where em  is the mass of 

the electron. As the electron travels from the emitter to the collector, its kinetic energy 

decreases and its potential energy increases such that the total energy is conserved. For those 

electrons that just manage to reach the collector, the velocity, and hence the kinetic energy 

becomes zero. The work-energy theorem then suggest that 

    xEq
v

mo 


 21
     (2.4.1.13) 

The system of units has been adopted in such a way that 1 Bkc  . The equation 

(2.4.1.13) may be solved as follows: first v is replaced with 
t
x

  and both sides of the 

equation squared to get  

         2222 xqEtxqEtmo     (2.4.1.14) 

which, when rearranged yields 

        0
2

222 







 t

qE
m

txx o    (2.4.1.15) 

Applying the quadratic formula, with xx  2 , bt  2  and ct
qE
mo 










2

, solution of 

(2.4.1.15) to first-order is found to yield 

        222 Rttxx oo      (2.4.1.16) 

where  

    22

2
2

Eq
mR o       (2.4.1.17) 

Equation (2.4.1.16) describes a circular trajectory which, in this context, is an instanton. This 

is pictorially represented in figure (2.4.1.2) below 
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Figure 2.4.1.2: Particle-antiparticle pair creation in a constant electric field E [Kuo, 1976]  

 

PQ and TU are the classically allowed trajectories: PQ describes a particle moving 

backwards in time (positron), the semicircle QST represents the instanton (2.4.1.16) and TU 

describes a particle moving forwards in time (electron) [Maumba et al., 2011]. 

 

2.4.2. TUNNELING PROBABILITY. 
 

From the foregoing section (2.4.1), it has been established that the universe emerges quantum 

mechanically from a non-classical vacuum state with a finite size and begins to evolve along 

the inflationary lines. The singularity predicted by the big bang model is explicitly 

eliminated. However, the big challenge is to find out how a neutrino mass can influence this 

transition from a non-classical space-time state. To do so, it is suggested that the vacuum is 

an infinitely degenerate state consisting of an infinite number of non-equivalent vacua where 

the instanton will represent a transition from one vacuum state to another (i.e., the probability 

amplitude that the transition takes place). Classically, it is zero since the particle cannot 

penetrate the energy barrier. But, quantum mechanically, there is a barrier penetration factor 

i.e. the instanton solution can be used to estimate the barrier penetration amplitude which 

takes the standard form [Lewis, 1996] 

      EA
b eP  ,    (2.4.2.1) 

where, as before, AE is the Euclidean action for imaginary time that is given as 

x
 

t 

O 

E 
P 

Q 

S 

T 

R R 

R 

U 
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    dtxEq
x

mA o
E  

)(1 2

























   (2.4.2.2) 

After the quantum tunneling, the universe may not be totally stable. This means that at early 

times the universe may have been extremely hot [Gamow, 1946] and has since cooled down 

to the presently observed temperature of K726.2  [Wick and Barry, 2000]. The analysis of 

the finite effective potential shows that initially 0  is the only ground state of the theory. 

As time increases, the temperature of the universe decreases and at some critical temperature 

cTT  , the symmetric vacuum ceases to be stable and a new energetically favored ground 

state appears. Hence, thermal, gravitationally induced or quantum fluctuations tends to force 

the field into the new asymmetric ground state which is the true vacuum. To study 

temperature effects, a real scalar field is considered that is described by the Lagrangian [Ellis 

et al., 1979] 

     )())((
2
1  

 VL  ,   (2.4.2.3) 

where  

     422

4
1

2
1)(   MV    (2.4.2.4) 

For convenience, if the parameters  and M  are set to unity, then table 2.4.2.1 can be 

generated whose potential can also be sketched as in figure (2.4.2.1) below: 
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  Table 2.4.2.1: Data table for the potential (2.4.2.4)[Maumba et al, 2011] 
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Figure 2.4.2.1: An example of the potential for a model with spontaneous symmetry breaking 

 

By the condition that 

     0 V      (2.4.2.5) 

the minimum of the potential and the value of the potential at the minimum are found to be  

     



2M

      (2.4.2.6) 

     



4

)(
2MV      (2.4.2.7) 

The ground state of the system is either    or    and the reflection symmetry    

present in the Lagrangian is not respected by the vacuum state hence spontaneous symmetry 

breaking. From the definition of the stress energy-momentum tensor in terms of the 

Lagrangian [Kolb, 1986] 

      LgT   ,    (2.4.2.8) 

the energy density of the vacuum should be  

     VooT      

              L       
              )(V       

              
4

4M
      (2.4.2.9) 

V( ) 

  

    
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The contribution of the vacuum energy to the total energy density today must be smaller than 

the critical density 3229  1088.1  cmghc  [Coughlan, 1991]. Since this number is quite 

small, it is appropriate to require that 0V . This can be accomplished by adding to the 

Lagrangian a constant factor of 
4

4M . The constant term will not affect the equations of 

motion but will only cancel the present vacuum energy. 

High-temperature symmetry restoration requires that the effective finite temperature mass of 

  be expressed as the zero-temperature mass 2M  and an interaction mass, [Kolb, 1986] 

      22
int TM  ,   (2.4.2.10) 

where   is a constant of order unity.  

If  

     0int
222  MMM T ,   (2.4.2.11) 

then the minimum of the potential will be at 0  (SSB), while if  

     0int
222  MMM T    (2.4.2.12) 

the effective mass term will be positive and the minimum of the potential will be at 0 , 

that is, symmetry is restored. However, there is a critical temperature  

      

MTc  ,    (2.4.2.13) 

above which  

      0     (2.4.2.14) 

A detailed approach to symmetry restoration is to account for the effect of the ambient 

background gas in the calculation of the higher-order quantum corrections to the classical 

potential; in particular, the finite temperature potential will include a temperature-dependent 

term that represents the free energy of   particles at temperature T. To one loop, the full 

potential can be evaluated as follows: 

First, the finite temperature one loop effective potential )()1( T
effV  is written as 

[Brandenberger, 1985] 
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with 

    
2

    
222 

 kE
k

     (2.4.2.17) 

The part containing E is calculated by first differentiating it with respect to E, then summing 

the resulting series using the identity 
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and finally integrating the resulting function; this yields  

   onst1ln1
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Using the definition that  
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




-

22 constantln
2
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

idxi    (2.4.2.20) 

 

then equation (2.4.2.19) becomes 
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When the second term on the right hand side of equation (2.4.2.21) is rotated to Euclidean 

space, the equation reduces to 

   
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)1(  (2.4.2.22) 

 

where the first two terms of (2.4.2.22) are the zero temperature terms [Edward, 1986]. The 

equation shows that introducing a finite temperature gives an extra term 
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in the one loop effective potential; hence, the full potential takes the form  
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For high temperatures, )(I  can be expanded into a power series in 2  to get 
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In this approximation, the scalar field theory result becomes 

  )(
9048

)()( 4
4

2
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2
0)1()1( 


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
 OVV T

effeff      (2.4.2.27) 

The term proportional to 4T  is minus the leading contribution to the free energy and the 

second term is the interaction mass term for  . Equation (2.4.2.27) has a critical temperature 


MTc

2
  above which the symmetry is restored and the phase transition from the symmetric 

to the broken phase can either be first order or higher order [Daniel, 1981]. If at cT  there is a 

barrier between 0 and the SSB minimum   , then the change in   will be 

discontinuous signaling a first order transition. However, if no barrier is present at cT , then 

the change in   will be continuous signaling a higher order transition. But at some 

temperature cTT  , the 0  phase is a metastable phase and this phase is terminated by the 

decay of the false vacuum by tunneling. 

 

2.5. INFLATIONARY MODEL 

2.5.1. INTRODUCTION 
 

Grand unified models of particle physics predict that the state of thermal equilibrium of a 

quantum field will undergo a phase transition at a critical temperature cT  of order of the 

grand unification scale GeV1410  [Kennedy et al., 1981]. Hence, if this quantum field began 

in an arbitrary hot state at the big bang singularity, then such a phase transition would have 

occurred in the early universe as the field cooled to below cT  as a result of the expansion of 

the universe. An appealing consequence that has been predicted so far is the possible 

existence of inflation. In 1981, Guth suggested this model as a panacea to the cosmological 

problems guided by the SU(5) grand unified theory [Guth, 1981]. He noted that if expansion 

of the early universe is speeded up in such a way that scale factor grows by a huge factor 

during a short period, then the cosmological problems could be avoided. The model has 

become so popular that work is still going on this idea. Here, the model is analyzed from the 

view point of the 0k  curvature parameter. In particular, both the qualitative and 

quantitative aspects of the model are analyzed. 
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2.5.2. QUALITATIVE ASPECT OF THE INFLATIONARY MODEL 

 

In the original scenario of inflation, Alan Guth suggested that the zero temperature potential 

energy of the field  , known as the inflaton field, could have a local minimum with energy 

density v  above that of the absolute minimum [Guth, 1981]. If the inflaton settled into the 

local minimum over a sufficiently large region of space as it cooled, then it could remain 

trapped there in a metastable state until it tunneled through to the true minimum. While in a 

false vacuum, the kinetic and spatial derivative energies of the field would be negligible 

compared with its potential energy v . Hence, the stress-energy tensor T of the field would 

be dominated by the vacuum energy density v  and the effect of the inflaton on the dynamics 

of the universe via Einstein’s equations would be like having a large positive cosmological 

constant. In the Robertson-Walker model this produces the de-Sitter solution which yields an 

expansion of the universe on an exponential time scale.  

However, Guth’s model [Guth, 1981] suffers from the problem of not allowing the inflaton 

field to exit from the inflationary phase in such a way as to evolve to the presently observed 

universe. The new inflationary model [Linde, 1982; Albrechdt and Steinhardt, 1982], was 

proposed mainly to overcome the problem of obtaining a graceful exit from the inflationary 

phase. It is associated with the evolution of a weakly-coupled scalar field, the inflaton, which 

was initially displaced from the minimum of its potential. In particular, the inflaton field has 

the one-loop effective potential of the form shown in figure (2.5.2.1) below. It is assumed 

that, initially, the field is in thermal equilibrium at high temperature and in a symmetric 

minimum of TV  at 0  as in the curve (a). As the field cools due to expansion, it will 

transition into the metastable state shown in curve (c) by the local minimum of TV  at 0  

for intermediate temperatures. At lower temperatures, the dip in TV  goes away and the 

dynamics of the field is governed by the classical evolution of   in the zero-temperature 

potential of curve (d) with initial conditions 0  and 0


 . If )(V  is very flat near 0 , 

then it will take a long time for   to reach c , i.e., as the temperature drops below cT , the 

state of lowest energy shifts in the false vacuum at 0  until the field tunnels across the 

potential ( 0)( V ) barrier and rolls down the )0(V  slope to its true vacuum as shown in 

figure (2.5.2.1) below. During this time, the stress-energy tensor of the field   will be 

dominated by v  ( v  is vacuum energy above the true minimum of the flat part of the 
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potential )(V ). Consequently, the universe has extra energy v  at its disposal which will 

have dynamical effects via the Friedman equation 

     v
G

S
kS



3

8
2

2






    (2.5.2.1) 

 

Fig 2.5.2.1: The behavior of the one-loop effective potential )1(
TV . 

 

Figure 2.5.2.1 shows the behavior of the one-loop effective potential )1(
TV  in Coleman-

Weinberg models [Sidney and Erick, 1973]. At high temperatures, )1(
TV  has the form shown 

in curve (a), with a single minimum at 0 . At lower values of T , )1(
TV  develops side 

minima as shown in curve (b). At still lower temperatures )1(
TV  has the form shown in curve 

(c). Finally curve (d) represents the effective potential at 0T  which can also be represented 

by figure 2.5.2.2 below after symmetry breakdown.  
 

(a) Symmetric phase 

0



cTT
 

(b) Lower values of 0,  bTT  

(c) Metastable 0,  cb TTT  

    (d) 0,0  T  
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    Fig 2.5.2.2:  Effective potential for a field  .  

 

2.5.3. QUANTITATIVE ASPECT OF THE INFLATIONARY MODEL 

 

Guth (1981) proposed the inflationary model of the early universe to provide a physical basis 

for the high-order accuracy that is observed in the present universe. Addressing to flatness 

and horizon puzzles of the big-bang theory, he noted that if expansion of the early universe 

speeded up in such a way that the scale factor grew by a factor 2810  within a short period, 

then the cosmological puzzles could be avoided. To achieve this, he argued that even though 

the cosmological term   which gives vacuum energy density  

     
N

v G


8


      (2.5.3.1) 

is almost negligible in the present universe, it was very high in the early universe and could 

have dictated early cosmic dynamics. He considered that the Friedman equation should take 

the form [Guth, 1981] 

       
3

2
















 

S
S      

      2
 H      (2.5.3.2) 

as   term dominates the curvature term and the vacuum contains no particles. Equation 

(2.5.3.2) when integrated yields the de Sitter solution 

v  

)(V  

O      



65 
 

     )()()( ittH
i etStS  ,    (2.5.3.3) 

where it  is the initial time. If inflationary period ends by time ft , then )( if ttHe   is required to 

be 2810 , i.e., 

     65)(  if ttH     (2.5.3.4) 

To explain how such a high cosmological term could arise in the early universe, Guth drew 

SU(5) grand unified theory into service and used the Higgs mechanism for SSB; he used the 

Higgs potential with thermal corrections as 

  4
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



    (2.5.3.5) 

for Higgs scalar   satisfying the condition 
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      (2.5.3.6) 

The potential yields stationary points when 
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       0      (2.5.3.7) 

from which the corresponding stationary points are found to be 

 

     0       (2.5.3.8) 

and 

     
2

14

 
2

22













 cT
T




    (2.5.3.9) 

where 

     

2

cT      (2.5.3.10) 

is the critical temperature. So   tunnels through the barrier cTT   and, hence, 0  yields 

the false vacuum. However, when cTT  ,   settles in the true vacuum states 

      



       (2.5.3.11) 
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 which is separated by a domain wall 0 ; this is a manifestation of spontaneous symmetry 

breaking. The vacuum energy density released when the inflaton field   rolls down from the 

state 0  to states 



   is given by  

         










 VVv 0       (2.5.3.12) 
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Then, at cTT  , equation (2.5.3.1) reduces to 

    vNG 8        

        




4

2 NG       (2.5.3.13) 

In this scenario, at the epoch of phase transition, vacuum energy is released as latent heat and 

super-cooled universe with temperature 0T  is heated up to the temperature cT . 

 

Soon after the proposal of the original model [Guth, 1981], it was realized that the model 

suffers from the problem of exponential exit i.e. the model prompted the question “How did 

inflation end so that the observed particle-driven universe could emerge?” Earlier, Coleman 

[Coleman, 1977], Callan and Coleman [Callan and Coleman, 1977] as well as Coleman and 

De Luccia [Coleman and De Luccia, 1980] had obtained a mechanism for a transition from 

false vacuum to true vacuum. According to this mechanism, when potential barrier is large 

enough, transition from false to true vacuum takes place through nucleation of bubbles which 

expand with speed rapidly approaching that of light. The released energy during transition is 

transferred to walls of accelerating bubbles. As a result, the interior of the bubble approaches 

a vacuum and its nucleation rate takes the form [Michael and Robert, 1992] 

     EACe      (2.5.3.14) 

where EA  is the Euclidean action and GeVC 1410  as is the scale for GUT phase transition. 

Using the potential (2.5.3.5), the action becomes 
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Hence, nucleation rate of bubbles is very high in the false vacuum state 0  since 

0)( TV . This means that large number of bubbles are formed when 0  near cTT   

with the Higgs potential of (2.5.3.5). The situation is analogous to the formation of large 

number of bubbles when water falls from a high altitude; however, when it flows on a flat 

surface, bubbles are not formed. This means that bubbles are created during fast motion, but 

in slow motion possibility of bubble creation is almost negligible. When the water bubbles 

expand after formation, energy inside it is transferred to their walls. These bubbles break 

when outside pressure is unable to balance inside pressure. Thus, this is what should happen 

when   rolls down the hill tunneling through the temperature barrier cTT  . Expansion 

speed of these bubbles is limited by the speed of light and the universe expands with 

superluminal speed, so that the bubbles move randomly without colliding with each other. 

The bubbles do not coalesce for mixing up of their interiors to yield true vacuum. Unless the 

transition from false to true vacuum takes place, universe cannot come out of the exponential 

phase. This is the inflationary exit problem. 

 

In 1982 Linde [Linde, 1982] and, Albrecht and Steinhardt [Albrechdt and Steinhardt, 1982] 

realized that the graceful exit problem of Guth’s model is caused by the Higgs potential as the 

field   falls rapidly from the potential height. So they proposed another inflationary model, 

popularly known as the new inflationary model. In this model, temperature dependent Higgs 

potential is replaced by temperature-dependent Coleman-Weinberg potential 
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where, 3.02 g , GeV1410  and 2
2

2
2

12
5


T
gx   for GUTs. Hence, at 0 , 

equation (2.5.3.16) becomes 
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They argued that near 0 ,   should vanish so that only one bubble is formed due to this 

potential in the false vacuum. Moreover, when   tunnels through the temperature barrier, 

then  
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d
Vd T

     (2.5.3.18) 
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in the super-cooling stage. It shows that this potential remains almost flat for    and very 

near to    it falls to zero. So   rolls down very slowly and, hence, only one bubble 

formed in the false vacuum state makes transition from the false to true vacuum state. 

 

2.6. THE BOLTZMANN TRANSPORT EQUATION 
 

The Boltzmann Equation, established by Ludwig Boltzmann in 1872 (a detailed account can 

be found in Cercignani, 1975), is an integro-differential equation that is well known to 

describe the behaviour of dilute gases. The equation still forms the basis for the kinetic theory 

of gases and has proved fruitful not only for a study of classical gases that Boltzmann had in 

mind, but also properly generalized, for studying electron transport in solids and plasmas, 

neutron transport in nuclear reactors, phonon transport in superfluids and radiative transfer in 

planetary and stellar atmospheres [Cercignani, 1975]. In spite of its relative importance to 

many areas of science and engineering, its relevance to neutrino interactions is not well 

known. Consequently, the present section is primarily intended to demonstrate how the 

equation can be extended to the description and, hence, its connection to neutrino interactions 

in the early expanding universe. 

 
2.6.1. The Neutrino Boltzmann Equation 

 

It is suggested that when considering a system of N particles of which the state is prescribed 

by its position and velocity coordinates ),.........;,......,( 11 NN uuxx  respectively, the time 

evolution of the system can be studied using Newton’s laws of motion or by Hamilton’s 

equations. However, if N is large then it is not realistic to solve the equations of motion for all 

the position and velocity coordinates [Gupta, 1990]. Hence, a distribution function 

)  ,  ,( tuxf , which gives the particle number density in phase-space (six-dimensional space 

)  ,( ux ) at time t, should be introduced. A dynamical theory at this level requires an equation 

which will govern the time-evolution of )  ,  ,( tuxf . The time derivative of )  ,  ,( tuxf  for a 

neutral system or fluid is given by the Boltzmann transport equation while, the corresponding 

equation for an ionized system (plasma) is the Vlasov equation [Choudhuri, 1998]. However, 

in this study the main interest will be the establishment of a neutrino Boltzmann transport 

equation. 
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For a statistical treatment of a neutrino system, it is useful to introduce the concept of an 

ensemble [Gupta, 1990], which is a set of many replicas of the same system that are identical 

in all other respects apart from being in different states at an instant of time. Hence, each 

member of the ensemble can be represented by a point in the phase space at an instant of time 

and their evolutions will correspond to different trajectories in the phase space. If the density 

 ttptq ssens   ),(  ),(  is measured as a function of time, then Liouville’s theorem [Cercignani, 

1975] will require the time derivative of this density along the trajectory to be zero, i.e., 

     0
Dt

D ens
,     (2.6.1.1) 

where DtD  is the time derivative operator along the trajectory. If 

)  ,(  and  )  ,( ssssss ppqqpq    denote the states of the neutrino density at times 

ttt   and   on this trajectory respectively, then 
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Expansion in a Taylor series  to linear terms in small quantities gives [Thomas/Finney, 1984] 

 

t
t

p
p

q
qtpqttppqq ens

s s

ens
s

s s

ens
sssensssssens 











  






 ) , ,() , ,(  

           (2.6.1.3) 

Substituting equation (2.6.1.3) in equation (2.6.1.1) gives 
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To be consistent with Liouville’s theorem, it has to be shown that the right hand side of 

equation (2.6.1.4) is equal to zero. This can be done by considering the equation of continuity 

which applies to ordinary fluids in ordinary space or to ensemble point distributions in phase 

space where the total number of ensemble points is conserved in time. If   be the density of 

the neutrino fluid in some space, then the neutrino mass flux  dV  within a volume can 

change only due to its mass flux across the surface bounding that volume, i.e., 

      
 AdudV
t

.     (2.6.1.5) 

where  Adu.  is the outward neutrino mass flux through the bounding surface with the 

negative sign implying that the outward mass flux reduces the mass within the bounded 
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volume. The surface integral can be transformed into a volume integral by using Gauss’s 

theorem [Gupta, 2004] so that 
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Since this is true for any arbitrary volume, then  
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which is the continuity equation [Jackson, 1999]. This equation is then applied to neutrino 

fluid in phase space by taking 
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i.e. 
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Using Hamilton’s equations [Gupta, 1990], it is found that 
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Hence, the right hand side of equation (2.6.1.4) is zero and Liouville’s theorem is established.  

 

Considering that the ensemble points initially inside the phase-space volume element  
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fills the volume element  
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after some time t, then from the conservation of ensemble points 
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where '  and  ensens   are the corresponding densities in the phase-space volume elements. 

Since Liouville’s theorem demands that  
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then  
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A state of N neutrinos is prescribed by 6N position and velocity coordinates. The 

corresponding 6N-dimensional phase space is referred to as the space  and a state of the 

system is represented by a point in this space . Also a six-dimensional space with six 

dimensions corresponding to the position and velocity )  ,( tx  of an individual neutrino can be 

introduced. This is referred to as the space  and each of the N neutrinos would be 

represented by a point in this space  at an instant of time. Hence, N points in the 

space  will be required to represent a state of a system of N neutrinos. Thus, there is a 

correspondence between the representations in the space  and space , i.e., the state of 

the system represented by one point in the space  gets mapped into a configuration of N 

points in the space  and the time evolution of the system will give rise to a trajectory in 

the space  that gets mapped to N trajectories of the N points in the space . To 

quantitatively define the distribution function ) , ,( tuxf  in space , a small number n  of 

points in a small volume element V  of the space  is considered so that  

    
V
ntuxf
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 0
lim),,(


      (2.6.1.16) 

If the N neutrinos do not interact with each other but move under the influence of some 

external potential )(x  alone, then one can introduce a Hamiltonian  

    )(
2
1) , ,( 2 xutuxH      (2.6.1.17) 

appropriate for space . The Hamiltonian can then be used in Hamilton’s equations to give 

the neutrino equations of motion. However, to incorporate interactions amongst the particles 

can cause a problem, i.e., if a particle with coordinates ) ,( ux  interacting with a nearby 

particle ) ,( '' ux  is considered, then the interaction can be described by a potential of the form 

) ,( 'xx  and, hence, incorporating it in the Hamiltonian for the space  would not be 

difficult. But it cannot be written in the form )(x  and, therefore, cannot be incorporated in 

the Hamiltonian for the space . Hence, a Hamiltonian formulation of the dynamics of N 

particles is possible in the space ; however, the same can be possible in the space  

only if the mutual interactions amongst the particles can be neglected. If the mutual 

interactions are negligible, then the system is collisionless and, thus,  

    0
Dt
Df       (2.6.1.18) 

Therefore, the total derivative can be put in the form 
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Thus, from equations (2.6.1.18) and (2.6.1.19), it follows that 
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This is the familiar collisionless Boltzmann equation [Choudhuri, 1998] and the value of the 

distribution function )  ,  ,( tuxf  does not change along the trajectory of a particle provided 

collisions are neglected.  

However, collisions can produce changes in )  ,  ,( tuxf  due to two reasons: 

1. Some neutrinos originally having velocity u  may have other velocities after 

collisions; this causes a decrease in )  ,  ,( tuxf . 

2. Some neutrinos originally having other velocities may have the velocity u  after 

collisions, thereby causing an increase in )  ,  ,( tuxf . 

Consequently, equation (2.6.1.18) must be modified to the suggested form 

    inout CCudxd
Dt
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33      (2.6.1.21) 

where inout CC  and  are the rates at which neutrinos leave and enter the elementary volume 

uxdd 33  of the space  due to collisions. To describe neutrino binary collisions, it is 

considered that two neutrinos with initial velocities 1 and uu  acquire velocities '
1

'  and uu  after 

a collision. Since all neutrinos are assumed similar, i.e., have the same mass m, the 

conservation laws of momentum and energy imply [Blatt, 1986] 

    '
1

'
1 uuuu       (2.6.1.22) 

 

    2'
1

2'2
1

2 )()( uuuu      (2.6.1.23) 

To calculate the final velocities '
1

'  and uu  from the initial velocities, six scalar equations are 

required since '
1

'  and uu  have six scalar components. Four of these are provided by the 

equations (2.6.1.22) through (2.6.1.23) and the fifth condition comes from the fact that 

collisions are coplanar if the force of interaction between the two particles is always radial 

,i.e., 'u  will have to lie in the plane of 1 and uu , forcing '
1u  also to lie in the same plane. A 

sixth condition is still needed. This comes from the nature of the interaction between 

neutrinos as the outcome of neutrino collisions is not expected to be independent of the 
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nature of interaction. Since the interest is in a statistical treatment, then knowledge of the 

probability of neutrino deflection in different directions becomes necessary. This can be 

determined by introducing the concept of a differential scattering cross-section. To 

quantitatively define this quantity, a beam of neutrinos of number density 1n  and velocity 1u  

colliding with a second beam of number density n  and velocity u  is considered. A neutrino 

in the second beam will experience a flux 

    11 nuuI        (2.6.1.24) 

of neutrinos from the first beam and the number of collisions per unit volume per unit time 

which will deflect neutrinos from the second beam into a solid angle d  is cn . This number 

is proportional to [Bransden and Joachain, 1989]: 

 the number density n of neutrinos in the second beam; 

 

 the flux I these neutrinos are exposed to and; 

 

 the solid angle d   

This information can be put together to yield 

    dnuunuuuunc ..). , ,( 11
'
1

'
1 ,    (2.6.1.25) 

where the constant of proportionality ),,( '
1

'
1 uuuu  is the differential scattering cross-section. 

The conservation laws (2.6.1.22) and (2.6.1.23) along with the condition that neutrinos from 

the second beam are required to go into the solid angle d  completely determines the final 

velocities 'u  and '
1u .  

 

To evaluate the term outC , a stream of neutrinos having their velocity vectors within ud 3  and 

neutrinos of velocity vectors within 1
3ud  is suggested. The first stream makes up a beam 

with number density udtuxfn 3) , ,(  and velocity u , whereas the second constitutes a 

beam with number density 1
3

1 ) , ,( udtuxfn   and velocity 1u . Substituting for n  and 1n  in 

equation (2.6.1.25) leads to 

 1
33

11
'
1

'
1   ). , ,() , ,() , ,( ududdtuxftuxfuuuuuunc     (2.6.1.26) 
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Since outC  is the total number of collisions per unit time within the volume udxd 33  , it is 

obtained by multiplying cn  with xd 3  and then integrating the result over all 1 and u . That 

is,  

    ) , ,() , ,() , ,(  11
'
1

'
11

333 tuxftuxfuuuuuudududxdCout    (2.6.1.27) 

To evaluate inC , reverse collisions between neutrinos with velocities in '3ud  and neutrinos 

with velocities in '
1

3ud  such that their velocities after collisions lie within 1
33  and udud , 

respectively, is considered. In analogy with equation (2.6.1.26) the number of such collisions 

per unit volume per unit time is 

  '
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3'3'
1

''
1

'
1

'
1

''   ). , ,() , ,() , ,( ududdtuxftuxfuuuuuunC   (2.6.1.28) 

Since  

     '
1

'
1 uuuu      (2.6.1.29) 

and 

     '
1

3'3
1

33   udududud  ,   (2.6.1.30) 

then 

  1
33'

1
'

1
'
1

'
1

'   ). , ,() , ,() , ,( ududdtuxftuxfuuuuuunC   (2.6.1.31) 

Thus the term inC  is obtained by multiplying '
Cn  by xd 3  and the result integrated over 

1 and u . That is, 

    ) , ,() , ,() , ,(  '
1

'
1

'
1

'
11

333 tuxftuxfuuuuuudududxdCin    (2.6.1.32) 

Hence, substitution of equations (2.6.1.27) and (2.6.1.32) into (2.6.1.21) yields 

   

 ) )((.. 1

'
1

'
11

3 ffffuududf
m
Ffu

t
f

u  ,  (2.6.1.33) 

where 

 
.

'
1

'
1

''
11   and  ) , ,(  ), , ,(  ), , ,(  ), , ,( umFtuxfftuxfftuxfftuxff   

           (2.6.1.34) 

The term 
.
umF   incorporates any force field the neutrinos may be subjected to. The 

equation (2.6.1.33) with the collision integral for binary collisions is, a non-linear integro-

differential equation for neutrino distribution function ) , ,( tuxf . 

For a homogenous and isotropic universe, the second and third terms on the left hand side of 

equation (2.6.1.33) vanish.  
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Hence,  

    

 ) )(( 1

'
1

'
11

3 ffffuudud
t
f

     (2.6.1.35) 

Using the definition that 

     
VVolume
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then 
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3 ffffuudud    (2.6.1.37) 

Taking 3SV  , equation (2.6.1.37) reduces to 

     2'23 nnv
S
Sn

t
n







     (2.6.1.38) 

where 1uuv  . In equilibrium, 0



t
n  and, if no new neutrinos are being created then 

0
2' n ; hence, equation (2.6.1.38) reduces to 

     nv
S
S   3 


     (2.6.1.39) 

 

2.7. COSMOLOGICAL NEUTRINO MASS BOUNDS 
 

In the context of the electroweak model, it is established that the neutrino can acquire mass 

through the standard Higgs mechanism through a modified standard Lagrangian. However, 

the result is inadequate for the reason that it fails to predict the actual numerical mass value. 

Hence, it is suggested that the investigations be extended to the very early and expanding 

universe where the neutrino weak interactions were very dominant. Essentially, physical 

conditions in an expanding universe change with time. Consequently, to understand the 

observational features of the universe today, it is important that the past history of the 

universe is well understood. By extension, the physical processes that occur in the early 

universe when the temperature T  is very high require knowledge of physics of particle 

interactions at high energies. Based on present knowledge of the latter, the universe can be 

divided into three different phases: 
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 Present understanding of particle interactions is reasonably complete for energies 

below GeV 00 1  [Weinberg, 1967]. Correspondingly, one should be able to follow the 

evolution of the universe from the temperature of KGeVT 13102.1 100   

downwards with reasonable accuracy. 

 

 There are theoretical models which attempt to describe the particle interactions in the 

energy range GeV 100  to GeV1610  [Langacker, 1980]. These models are 

comparatively more speculative with the uncertainties increasing with energy, i.e., 

given a specific particle physics model, the evolution of the universe in the range 

KGeV 2916 102.110   to KGeV 13102.1 1   can be worked out. Since the models 

are not unique, obtaining unique predictions is most unlikely.  

 

 The physics at energies above GeV1610  is very uncertain. Quantum gravitational 

effects will be very significant at energies, especially GeVME Planck
191022.1   

[Misner, 1957; Conradi and Zeh, 1990]. The very basis for most of the present 

discussions, classical general relativity, breaks down (at these energies) and the 

uncertainties in the knowledge of particle interactions at high energies will prevent 

one from predicting a unique material content for the universe. To make any progress, 

reasonable assumptions should be made about this material content of the universe at 

some moment in time and the consequences then worked out. Chief among these 

assumptions is the distribution functions for the various particles. 

 

2.7.1. DISTRIBUTION FUNCTIONS IN THE EARLY UNIVERSE 
 

The contents of the universe at early epochs will be in a form very different from that in the 

present universe. This is because, atomic and nuclear structures have respective binding 

energies of the order of a few eV  and MeV  [Padmanabhan, 1993], so that when the 

temperature of the universe is higher than these values, such systems cannot exist as bound 

objects. Further, when the temperature T  of the universe becomes higher than the rest mass 

m  of a charged particle, say an electron or muon, the photon energy will be large enough to 

produce these particles and their antiparticles in large numbers [Wataghin, 1965]. For 

example, when T >> KMeVmelectron
9108.55.0   there will be a large number of positrons 
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in the universe. The typical energy of these particles will be T  making them ultra relativistic. 

Thus, depending on the temperature T , the early universe would be populated by different 

kinds of elementary particles at different times. To work out the physical processes at time t , 

the distribution function ),(),,( tpftpxf ii   of these particles should be known; the 

dependence of if  on the space coordinates is ruled out because of the homogeneity of the 

universe [Padmanabhan, 1993]. To determine the form of ),( tpf i , it is considered that 

different species of particles will be interacting constantly through various forces, scattering 

off each other and exchanging energy and momentum. If the rate of these reactions )(t  is 

much higher than the rate of expansion of the universe  

     

















S
StH )( ,     (2.7.1.1) 

then these interactions can produce and maintain thermodynamic equilibrium among the 

interacting particles with some temperature )(tT . Therefore, the role of interactions will be 

limited to providing a mechanism for thermal equilibrium and, hence, the participating 

neutrinos can be treated as ideal Fermi gas with the distribution function [Srivastava, 2008] 
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where ig  is the spin degeneracy factor of the neutrino species, )(Ti  is the chemical 

potential, E(p) is the energy given as 

     2
122

)()( mppE      (2.7.1.3) 

for 1 c  and )(tTi  is the temperature of the neutrino species i  at time t.  

At any time, the universe will also contain a blackbody distribution of photons with some 

characteristic temperature )(tT . Its distribution will be given by 
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   (2.7.1.4) 

If the neutrino species i  couples to the photon and the rate of these i  interactions is high 

enough i.e. )( Hi   , then the interacting neutrino will have the same temperature as that 

of the photons and the photon temperature TTi   will be the universal temperature of the 
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very early and hot universe. As the universe evolves, the temperature )(tT  will change due to 

expansion in a timescale of the order of [Hughes, 1991] 

     )(1 tHt       
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S      (2.7.1.5) 

It could happen that, at some given instant, the total interaction rate )(ti  of the neutrino  

species falls below the expansion rate )(tH  ))()(( tHti  but the interaction rate among all 

the other species other  could still be much higher than the expansion rate Hother  . In such 

a case, the distribution functions of all species other than that of the neutrino will still be 

given by equation (2.7.1.2) with a common temperature T  after the neutrino has completely 

decoupled. 

 

Once the neutrino is completely decoupled, it will be traveling a long a geodesic in the space-

time. This enables one to obtain the decoupling temperature distribution function, decf , after 

the neutrino has decoupled from the known form of the equilibrium distribution function, 

equilf , before decoupling (the subscript dec implies decoupling). For simplicity, it is assumed 

that the decoupling occurs instantaneously at some time dectt   when the temperature is decT  

and the scale factor is DS . For dectt  , the distribution function is given by equation (2.7.1.2) 

and at some later time dectt  , the distribution function can be ),( tpfdec . Because of the 

redshift in momentum, all neutrinos with momentum p  at time t  must have had momentum 









)(

)(

dectS
tSp  at dectt  . Therefore,  
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






 dec

dec
equildec t

tS
tSpftpf ,

)(
)() ,(     (2.7.1.6) 

for dectt  , where equilf  is the equilibrium distribution function of the neutrino species i . 

Thus, as long as the neutrino was in equilibrium at some time t , its distribution at later times 

can easily be determined from equation (2.7.1.6). Consequently, from the distribution 

function (2.7.1.2), the number density n , energy density   and the pressure P  for the 

neutrino species can be defined by the expressions [Murugeshan, 2003]: 
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When the neutrinos are highly relativistic )( mT   and nondegenerate )( T , then their 

energy density and that of photons becomes  
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Hence, the total energy density contributed by all the relativistic species should be  
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where 
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In writing totalg , the possibility that all the species may have a thermal distribution but may 

not have the same temperature has explicitly been taken into account. But, if they have the 

same temperature, then  
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    fermionboson ggq
8
7

      (2.7.1.13) 

and totalgq  . Therefore, the pressure due to relativistic neutrino species is  

     
3
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90
Tg       (2.7.1.14) 

and its entropy density j  is [Kolb, 1986] 
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whereas, the number density of all the relativistic species is  
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with 202.1)3(   being the Riemann-Zeta function of order 3 [Gupta, 2004]. Combining 

equation (2.7.1.17) with (2.7.1.10), it is found that the mean energy density of the relativistic 

particles 
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n
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is about T7.2  for bosons and T15.3  for fermions. In the limit mT  , (thermal energy less 

than rest energy) the exponential in equation (2.7.1.2) is large compared to unity. Therefore, 

for both bosons and fermions, it is found that 
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A comparison of (2.7.1.17) and (2.7.1.19) shows that the number and energy density of 

nonrelativistic neutrinos are exponentially damped by the factor 







T
mexp  with respect to 

that of the relativistic neutrinos so that, for equiltt   in the radiation dominated phase, the 

contribution of nonrelativistic neutrinos to   can be ignored. During the radiation dominated 

phase, the scale factor is proportional to the square root of time 
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Equation (2.7.1.20) is differentiated with respect to time to yield 

       )(2

2

tH
S
S














 

     

      24
1
t

      

      
3

8 G
     

      4
2

303
8 TgG











    (2.7.1.21) 

The last two steps of equation (2.7.1.21) follow, after applying equations (2.7.1.14) and 

(2.7.1.10) respectively. The equation (2.7.1.21) can also be written in terms of the Planck 

mass [Coughlan, 1991] 
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The factor g  in these expressions counts the degrees of freedom of those neutrinos which are 

still relativistic at temperature T . As the temperature decreases, more neutrinos will become 

nonrelativistic and, g  and q  will decrease as functions of temperature;  

    )(Tgg   and )(Tqq      (2.7.1.25) 

,i.e., are slowly varying functions of T . In particular, 210g  at GeVT 300 , 10g  for 

MeVT )1100(   and 3g  for MeVT 1 . The slow variation of )(Tq  has the 

consequence that the expression for the conserved entropy J  in the radiation dominated 

phase is  

     33)( STTqJ      (2.7.1.26) 

The equation shows that the temperature T  will decrease as 1S  only if q  is constant and if 

the number of degrees of freedom changes, then T  will decrease slightly more slowly than 
1S  so that, from(2.7.1.26), the correct relation is  
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For a neutrino that decouples while still relativistic )( mTdec  , the distribution function 

takes the form  
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This has the same form as the equilf  for a relativistic neutrino species with the temperature  
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even though the neutrino species is not in thermodynamic equilibrium any longer. The 

temperature in this distribution falls strictly as 1S  while the entropy J  of the particles is 

conserved separately. The number density of the decoupled neutrinos is then given by 
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where  

    
4

3gg eff        (2.7.1.31) 

for fermion and 
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    gg eff        (2.7.1.32) 

for boson. This number density will be comparable to the number density of photons at any 

given time. In particular, any such neutrino species will continue to exist in our universe 

today as a relic background, with number densities comparable to that of photons. On the 

other hand, for a neutrino species which decouples when it is already nonrelativistic, its 

distribution changes to 
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which has the same form as the nonrelativistic Maxwell-Boltzmann distribution with a 

temperature  
2
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which decreases as the square of the scale factor. Then the corresponding number density 

becomes  
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from which, the number density is found to be 

      3 Sn     (2.7.1.36) 

and the energy density as  

      nm     (2.7.1.37) 

To any neutrino species which is not being created or destroyed, a conserved number N is 

assigned to it so that  

     3nSN        

          
j
n

      (2.7.1.38) 

From equations (2.7.1.15), (2.7.1.16) and (2.7.1.19), for T , it follows that for photons 

and neutrinos, N should be  
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respectively. At the decoupling temperature ( KT 1210 ) a significant number density (i.e., 

number density comparable to that of photons) of relativistic electrons )(e  and positrons e , 

whose rest mass energy is[Mani and Mehta, 1988] 

    MeVme 5.0        

           K9108.5       (2.7.1.40) 

were also in equilibrium with the photons. In addition, neutrons and protons contained in the 

present universe must have existed at KT 1210  as well, since these particles could not have 

been produced at KT 1210 . Therefore, the ratio between the number density of baryons 

)( Bn  and the number density of photon )( n  remains approximately constant from the 

temperature KT 1210  to the present. At KT 1210 , the energy density of the universe is 

dominantly contributed by    ,  ,  , ee  and photons. Since the interactions among them 

maintain the required equilibrium, they will all have the same temperature and by taking  

gg B         

          2        

    ee gg         

          2       (2.7.1.41) 

     gg         

         1         

and including three flavours of neutrinos [DiLella, 1987], the total number of degrees of 

freedom becomes 

     FBtotal ggg
8
7

     (2.7.1.42) 

             )3222(
8
72      

           75.10      (2.7.1.43) 
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The g values for electrons and positrons represent the two possible spin states for massive 

spin one-half fermions. Photons have two accessible states (corresponding to two states of 

polarization) giving 2g  and massless spin one-half neutrinos exist only in left-handed or 

right-handed states, making 1g . From equations (2.7.1.23) and (2.7.1.24), the precise 

time-temperature relationship for this phase of evolution then becomes  
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44.5)(     (2.7.1.44) 

and 

            

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
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 209.0
T
mt Pl     (2.7.1.45) 

Since neutrinos have no electric charge, they have no direct coupling with photons. Also their 

interaction with baryons can be ignored because of the low density of baryons. So they are 

essentially kept in equilibrium through reactions of the form  

     ee        (2.7.1.46) 

and   

     ee          (2.7.1.47) 

The cross section )(E , for these weak interaction processes is of the form [Padmanabhan, 

1993] 
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where 2108.2   is related to the gauge coupling constant g  by  

     



4

2g
      (2.7.1.49) 

and  

     GeVmx 90      (2.7.1.50) 

is the mass of the gauge vector boson mediating the weak interaction [Hollik, 1992]. Defining 

the Fermi coupling constant as 
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x

F m
G 

        

           25 )(1017.1  GeV  

           2)293(  GeV     (2.7.1.51) 
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and using the fact that TE  , then 

      22 EGF       

          22TGF     (2.7.1.52) 

Since the number density of the interacting neutrinos is  

      3
2)3(

4
3 Tgn


      

         3096.1 T     (2.7.1.53) 

and  

      1 cv     (2.7.1.54) 

then the rate for neutrino interactions becomes 

      vn           

         52   3.1 TGF    (2.7.1.55) 

Hence, from equations (2.7.2.45) through (2.7.1.55), equilibrium neutrino Boltzmann 

transport equation is obtained to be 
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Equation (2.7.1.56) shows that the interaction rates of neutrinos become lower than the 

expansion rate when the temperature drops below MeVTD 1 . At lower temperatures, the 

neutrinos are completely decoupled from the rest of matter. Since they are assumed to be 

massless in the standard electroweak model they are, therefore, relativistic at the time of 

decoupling. Their distribution function at later times is given by equation (2.7.1.33) with 
1 ST . Consequently, the present day universe should contain a relic background of these 

neutrinos.  

At the time of decoupling, the photons, neutrinos and the rest of the matter had the same 

temperature. As long as the photon temperature decreases as 1S , neutrinos and photons will 

continue to have the same temperature even though the neutrinos have decoupled. However, 

the photon temperature will decrease at slightly lower rate if the g-factor is changing. In this 
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case, T  will become higher than T  as the universe cools and the change in the value of g 

will occur when the temperature of the universe falls below [Mani and Mehta, 1988] 

      emT      

         MeV5.0    

         K9108.5      (2.7.1.57) 

Thus, when the temperature becomes lower than K9105 , the mean energy of the photons 

falls below the energy required to create ee  pairs and, hence, the backward reactions in the 

process 

         ee     (2.7.1.58) 

becomes suppressed while the forward reactions continues to occur, resulting in the 

disappearance of the ee  pairs. This process clearly changes the value of g , i.e., at 

eD mTT    , neutrinos decouple and their entropy is separately conserved but the photons 

)2( g  are in equilibrium with electrons )2( g  and positrons )2( g  so that equation 

(2.7.1.43) becomes 
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8
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      (2.7.1.59) 

However, for emT  , the ee  annihilation is complete and, therefore, the only relativistic 

species left in this set is the photon )2( g . It is known that the conservation of entropy  

      3)(STqJ      (2.7.1.60) 

implies that the quantity  

      33 )()( STgSTq     (2.7.1.61) 

remains constant during expansion as photons, electrons and positrons have same temperature 

in order for qg  . Further, since g  decreases during the ee  annihilation, then the value of 

3)( ST  after the ee  annihilation will be higher than its value before, that is, 
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The neutrinos do not participate in this process as they are already decoupled. They are 

characterized by a temperature )(tT  which falls as 1S  and their entropy )( 3Sj  is 

conserved separately. If the temperature of the neutrino is parameterized to  
1 KST ,     (2.7.1.63) 

then originally before ee  annihilation, the photons and the neutrinos had the same 

temperature so that, from (2.7.1.63), it is found that 

     beforebefore STST )()(      (2.7.1.64) 
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The first equality in equation (2.7.1.65) follows from equation (2.7.1.62), whereas the second 

is from the fact that  TT   at emT   and the third from strict constancy of )( ST . Hence, 

the ee  annihilations increase the temperature of photons compared to that of neutrinos by a 

factor 
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The photons released by the process  

      )( ee     (2.7.1.67) 

get thermalized rapidly due to the scattering with charged particles. After the ee  

annihilations, the g  factor does not change. Both T  and T  fall as 1S  and the ratio  

 TTT 714.0
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4 3
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should be maintained till today. The relic neutrino background today should have the 

distribution given by equation (2.7.1.28) with 
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   KKT now 946.1726.2714.0)(      (2.7.1.69) 

Thus, the species of particles which remain relativistic today will be photons )2( g  with a 

temperature KT 726.2  and three flavors of massless neutrinos and antineutrinos 

)633( Fg  with a temperature 
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From equations (2.7.1.11) and (2.7.1.16), it is found that 
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Therefore, the energy and entropy densities of these relativistic neutrinos in the present day 

universe should be 
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    (2.7.1.72) 

 

2.7.2. BIG BANG NUCLEOSYNTHESIS 
 

The standard hot big bang model of the universe [Srivastava, 2008] provides a reliable 

framework for understanding the origin and evolution of the universe. One of the features of 

the present universe which is naturally explained in this model is relative abundance and 

formation of the light element especially helium-4 ( He4 ). The formation of these elements is 

known as nucleosynthesis and the success of primordial nucleosynthesis in predicting the 

large primordial abundance of He4  and deuterium D is the strongest evidence that the 

universe can be described by a Friedmann-Limatre-Robertson-Walker cosmology at very 

early times [Duane et al., 1982]. Because of this concordance, it is attractive to assume that 

the Friedmann-Limatre-Robertson-Walker cosmology was applicable at the time of 

nucleosynthesis and then demand that the resulting primordial abundances of the light 

elements be within bounds extrapolated from present observations. This approach results in a 
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limit on the contribution to the energy density from additional particles present in the 

universe at temperature MeVT  1  such as additional neutrino species [Lidsey, 2000]. 

 

At very high temperatures where MeVT  1   , the weak interaction rates for the following 

processes  
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    (2.7.2.1) 

were all in equilibrium, i.e., HW    . Thus, it is expected that, initially the number of 

neutrons to protons is unity ( 1)/( pn ) and this ratio is essentially controlled by the 

Boltzmann factor so that [Carr, 1985] 
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where pn mmm   is the neutron-proton mass difference and 1 ckB . At temperatures 

MeVT  1   , nucleosynthesis cannot occur even though the rate for forming the first isotope, 

deuterium, through the reaction [Keith, 1984] 

      Dpn     (2.7.2.3) 

is possible. At MeVT  1   , deuterium is photodissociated because MeVE  2.2   (the 

binding energy of deuterium). But, since the density of photons is very high  

     1010~
Bn

n ,     (2.7.2.4) 

then the onset of nucleosynthesis will depend on the quantity T
MeV

e
2.2

1  , where  

     



n
nB      (2.7.2.5) 

is the baryon to photon ratio. When this quantity becomes of order )1(  O , the rate for 

 Dnp  finally becomes greater than the rate for dissociation npD   . This is 

found to occur when MeVT  1.0~  [Kolb, 1986]. Since nucleosynthesis begins when 

MeVT  1   , then the rates for processes which control the neutron-to-proton ratio equation 

(2.7.2.1) as well as those which keep neutrinos in equilibrium are frozen out. Neutrinos are 
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effectively at a lower temperature at MeVT  5.0  and taking this into account, the expansion 

rate becomes  
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Once deuterium is produced by a reaction process (2.7.2.3), then tritium can be produced by a 

process 

    pTDD       (2.7.2.7) 

which, on further reaction, produces He4  by a process 

    nHeTD  4      (2.7.2.8) 

He4  has, in addition, several other processes which go towards its production [Keith A O, 

1984] 
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Additional processes for producing HeT 3and   include [Hughes, 1991] 

    

nHeDD

HeDp

TDn







3

3 



     (2.7.2.10) 
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The nuclear chain is temporarily halted at this point because there are gaps at masses 

8 and 5  AA , i.e., there are no stable nuclei with those masses [Keith, 1984]. However, 

there is some further production which accounts for the abundance of LiLi 76 and   through 
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   (2.7.2.11) 

Due to the gap at 8A , there is very little subsequent nucleosynthesis in the big bang. A 

second chief factor in the ending of nucleosynthesis is that during this whole process the 

universe continues to expand and cool. At lower temperatures it becomes exponentially 

difficult to overcome the coulomb barriers in nuclear collisions. Hence, the contribution by 

baryons and photons from the big bang nucleosynthesis to the number density in the present 

universe is [Keith, 1984]  
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where B  is the energy density of baryons, Bm  is the nucleon mass and B  is that part of 
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is the critical energy density. The number density of photons is then given by  

      dnn     

         3
2

)3(2 T



  

         3
3

726.2
400 









 cm

Tp     (2.7.2.14) 



93 
 

where pT  is the present temperature of the microwave background radiation. The baryon-to-

photon ratio is usually expressed as [Michael, 1987] 
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Hence, it is possible to determine   if ppB Th  and  ,  are known. But, turning around 

equation (2.7.2.15) gives 
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The limits of   consistent with the abundances of deuterium D, helium-3 He3  and lithium-7 

Li7  is [Mohapatra and Lai, 1981] 

    1010 10)107(10)43(       (2.7.2.17) 

Combining equations (2.7.2.15) through (2.7.2.17) and using the limits 

      15.0  ph      (2.7.2.18) 

and 

     KTp 37.2   ,    (2.7.2.19) 

yields  

     03.001.0  B     (2.7.2.20) 

Since 1    for a closed universe, then from (2.7.2.20), it is evident that baryons can 

negligibly contribute to the energy density of the universe. 

 

2.7.3.  RELIC BACKGROUND OF MASSIVE NEUTRINOS 
 

From the outgoing section (s), it has been found that a massless neutrino has negligible 

contribution to the total energy density of the universe. In particular, a massless neutrino has 

been found to contribute energy density of 3341009.8  gcm  as compared to 
3229   1088.1  cmgho  for a closed universe. Hence, a massive neutrino that decouples while 

still relativistic ( mTdec   with m  being the mass of the particle and decT  the decoupling 

temperature) is suggested in this section. Essentially, the massive neutrino should be 

characterized by the conserved physical quantity  
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where  

     
4

3gg eff       (2.7.3.2) 

for a neutrino. They will have a number density 
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          31))((619  cmTqg dec    (2.7.3.3) 

in the present universe and would have been non-relativistic at some temperature mTnonrel   

in the past for decTm  . If not, then they will be relativistic even today and will behave just 

like the massless neutrino case analyzed earlier. The energy that must be contributed by each 

of this stable relativistic neutrino in the present universe is 

     mE        (2.7.3.4) 

Using equation (2.7.3.3), the total energy density of these massive neutrinos is 

     mno      (2.7.3.5) 

For a weakly interacting massive neutrino that decouple when it is non-relativistic, the 

conserved number of neutrinos N  is modified to the form 
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Equation (2.7.3.6) shows that N  depends strongly on mass vm . In this case, to determine the 

mass m, the decoupling temperature decT  has to be determined by the equilibrium condition 

that  

      H3~     (2.7.3.7) 

The reactions which are capable of changing the number N  of the weakly interacting 

massive neutrinos are of the form  

XXAA  ,    (2.7.3.8) 

where X  is some generic species particle.  
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The average value of the reaction rates v   for the annihilation processes involving this 

generic particle is found to take the form [Kolb, 1986] 
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where k  is set to unity and the cross section o  is defined as [Gary S, 1984]  
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with the constant c depending on the type of the fermions; that is Fermions with spin one-half 

can be either Dirac type or Majorana type and for Dirac-type fermions, 5c  so that the 

equation (2.7.3.10) becomes  

 

     22

2
5 mGFo 

      (2.7.3.11) 

whereas for Majorana type, 1c  and equation (2.7.3.10) becomes  
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2
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      (2.7.3.12) 

For very heavy neutrinos, their interaction behavior is modified drastically so that the 

reaction rate becomes  

      vn     

        
k

o
T
m

A m
TemTg 




















2
3

2
  

        T
mk

Ao e
T
mTg 











2
3

3

2
3

)2( 


   (2.7.3.13) 

Since the expansion rate is given by  

     
Plm

TgH
2

66.1 ,    (2.7.3.14) 

then from the calculated Boltzmann equation, the equilibrium condition (2.7.3.7) gives 

      1~
3H
     (2.7.3.15) 

This leads to 
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when (2.7.3.13) and (2.7.3.14) are applied. Hence, when equation (2.7.3.16) is solved for 









T
mexp  and the result substituted into equation (2.7.3.6), it is found to yield  
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Equation (2.7.3.17) corresponds to a number density  
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and the density parameter wimph )( 2  now becomes 
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2.8. A NEUTRINO OSCILLATION 
 

In this section, the possibility of a neutrino oscillating from one quantum state to the other as 

it propagates through space and in matter is examined. It is suggested that knowledge or 

information on neutrino oscillations may form an indirect but reliable and sensitive way of 

experimentally searching for a non-zero neutrino mass. This is because the oscillation 

probability can be expressed as a function of mass difference which is the focus of the study. 

 

2.8.1. NEUTRINO OSCILLATIONS IN VACUUM 
 

The idea of a neutrino oscillation was put forward by Bruno Pontecorvo [Pontecorvo, 1957] 

who pointed out that oscillations can occur if neutrino states of definite mass do not coincide 

with the weak interaction eigenstates. Using the Kaon oscillation analogy, Pontecorvo took 

nearly ten years to develop the quantitative formalism of neutrino oscillation in a vacuum. He 

considered that for Dirac neutrino mass, the part of the Lagrangian that describes the lepton 

(the electron plus the neutrino) masses and charged current interactions is  
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 chmeemWegL bRaLabDbRaLablaLaLmW .)()(
2

''''''
 

  
   (2.8.1.1) 

The mass matrix of charged leptons lm and the neutrino mass matrix Dm  in equation (2.8.1.1) 

are complex matrices that can be diagonalized by unitary transformations 

   

RRR

LLL

eVe

eVe
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'

'

  

RRR

LLL

U

U









'

'

    (2.8.1.2) 

where the matrices LRL UVV   ,  ,  and RU  are unitary; hence, the diagonalized form of the mass 

matrices of charged leptons and neutrinos under the transformation (2.8.1.2) are 

    diaglRlL mVmV )(*  ,      

    diagDRDL mUmU )(*       (2.8.1.3) 

respectively, whereas the unprimed fields iLiRiL ee    ,   ,  and iR  are the components of the 

Dirac mass eigenstate fields 

    iRiLi eee        (2.8.1.4) 

and  

    iRiLi         (2.8.1.5) 

Therefore, the Lagrangian (2.8.1.1) under the transformation (2.8.1.2) becomes  

 chmeemWUVegL RiLiDiRiLiliLjijLLimW .)(
2

*  
  

   (2.8.1.6) 

where lim  are the charged lepton masses and Dim  are the neutrino masses. However, the 

matrix 

     LLUVU *      (2.8.1.7) 

is the lepton mixing matrix or Maki-Nakagawa-Sakata )(MNS  matrix [Maki et al., 1962], the 

leptonic analog of the Cabibbo-Kobayashi-Maskawa )(CKM  mixing matrix [Cabibbo, 1963; 

Kobayashi and Maskawa, 1973]. It relates a neutrino flavour eigenstate '
a  produced or 

absorbed alongside with the corresponding charged lepton, to the mass eigenstate i  

       iaia U  *'     (2.8.1.8) 

The challenge is to know the probability of finding a neutrino in a state b  at a later time t  

given that, at a time 0t , the neutrino flavor eigenstate a  was produced. If its initial state 

( 0t ) is 
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   a )0(     

       
jaj vU     (2.8.1.9) 

then, at a later time t , its state will be given by  

      
j

tiE
aj

jeUt   )( *     (2.8.1.10) 

By definition, the probability amplitude for finding a particle at time t  in a flavor state b  is 

[Hughes, 1991] 

    )();( ttA bba     

      
ji

tiE
ajbi vveUU i  

      aj
tiE

bj UeU i      (2.8.1.11) 

where the sum over intermediate states j is implied. Hence, the neutrino oscillation 

probability, i.e., the probability of transforming a  into b  is given by  

         2
;; tAtP baba       

     
2*

aj
tiE

bj UeU j     (2.8.1.12) 

If neutrinos have a Majorana mass term, then equation (2.8.1.1) has to be modified, i.e., the 

term chm bRaLabD .)( ''
  is replaced by [Peccei, 1988] 

  chCmchm bR
T

aLabMbR
C
aLabM .)(.)( ''''

      (2.8.1.13) 

 

The mass term (2.8.1.13) breaks not only the individual lepton flavours, but also the total 

lepton number; further, the symmetric Majorana mass matrix abMm )(  is diagonalized by the 

transformation  

diagMLM
T
L mUmU )(     (2.8.1.14) 

so that the field transformation operators in equation (2.8.1.2) are used. Thus, the structure of 

the charged current interactions is the same as in the case of the Dirac neutrinos or the 

oscillation probability in the case of Majorana mass term is the same as in the case of the 

Dirac mass term; this means that one cannot distinguish between Dirac and Majorana 

neutrinos by studying neutrino oscillations. This is because the total lepton number is not 

violated by the neutrino flavor oscillations. 
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2.8.2. NEUTRINO OSCILLATIONS IN MATTER 
 

In the preceding section (2.8.1), neutrino oscillation in a vacuum has been analyzed. But 

since the medium through which it propagates is not empty, it is likely that the oscillations in 

matter may differ from those in the vacuum. Therefore, to model neutrino oscillations as they 

propagate through medium, it is important that matter effects be taken into account. When 

propagating through matter, neutrinos can be absorbed by the matter constituents, or scattered 

off them changing their momentum and energy. To come up with an evolution equation, 

neutrinos flavors    and   ,e  are considered to interact with the electrons, protons and 

neutrons of matter through neutral current )(NC  interactions mediated by 0Z  bosons [Peccei, 

1989]. Electron neutrinos, in addition, have charged current )(CC  interactions with electrons 

of the medium which are mediated by the W  exchange as in figure 2.8.2.1 below.  

 

 
Figure 2.8.2.1 Neutrino Feynmann diagrams 

 

At low neutrino energies, the charged current interactions are described by the effective 

Hamiltonian [Munoz and Paredes, 2007]. 
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             ee
F eeG

 
 )1( )1(

2 55  ,   (2.8.2.1) 

where the Fierz transformation has been used [Lewis, 1996]. In order to obtain the coherent 

forward scattering contribution to the energy of the electron-neutrino e  in matter, i.e. the 

matter-induced potential for e , the variables corresponding to e  are fixed so that 

[Akhmedov, 1999] 

    electronCCeeff HH )(     

       eeeV       (2.8.2.2) 

For convenience, the following definitions 
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*
0 e  ,  e  ,  e  ,  e   

           (2.8.2.3) 

are made, and for unpolarized medium of zero total momentum, only the first term survives 

so that  

     CCCCe VV )(     

      eF NG2     (2.8.2.4) 

Neutral current ( NC ) contributions NCV  to the matter-induced neutrino potentials can also be 

included. But, in an electrically neutral medium, the number densities of protons and 

electrons coincide so that the corresponding contributions to NCV  cancel. The contribution 

due to the NC  scattering of neutrinos off the neutrons is then 

2/)( nFNCa NGV     (2.8.2.5) 

where nN  is the neutron number density. Equations (2.8.2.5) and (2.8.2.4) combine to yield 
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However, in the absence of matter, the evolution equation in the mass eigenstate basis is  

       H
dt
di      (2.8.2.7) 

where  

     )  ,( 21 EEdiagH      (2.8.2.8) 
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This gives the evolution equation in the flavour basis as  

    

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Since the matrix 
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For relativistic neutrinos, 

E
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By considering that 

     22 cosc  

     22 sins      (2.8.2.16) 
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and using the trigonometric relations 
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equation (2.8.2.9) then yields 
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The expressions in brackets in the diagonal elements of equation (2.8.2.18) coincide. This 

means that they can only modify the common phase of the neutrino states and, therefore, 

have no effect on neutrino oscillations which depend on the phase differences. Hence, they 

can be omitted and the evolution equation describing neutrino oscillations in vacuum will 

then take the form 
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  (2.8.2.19) 

To arrive at the full neutrino evolution equation in matter, the matter-induced potential eV  is 

added to the diagonal elements of the effective Hamiltonian flH  in equation (2.8.2.19) to 

obtain  
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2.8.2.1. MATTER OF CONSTANT DENSITY 
 

For the case of constant matter density and a certain chemical composition ( tconsN e tan ), 

diagonalization of the effective Hamiltonian in (2.8.2.20) requires that the neutrino 

eigenstates in matter be given by 

MMeA   sincos       

    MMeB   cossin  ,    (2.8.2.1.1) 

where the mixing angle M  is defined by [Wick and Barry, 2000]  
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It is different from the vacuum mixing angle   and, therefore, the matter eigenstates A  and 

B  do not coincide with mass eigenstates 1  and 2 . The difference of the neutrino 

eigenenergies in matter will then be given by [Akhmedov, 1999]  
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and the probability of  e  oscillations will take the form  
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where Ml  is defined by 
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The following oscillation amplitude  
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has a resonance-like form, with the maximum value 12sin 2 M  being achieved when the 

condition  

    2cos
2

2
2

E
mNG eF


     (2.8.2.1.7) 

is satisfied; this is similar to the Mikheyev-Smirnov-Wolfenstein ( MSW ) [Wolfenstein, 

1978; Mikheyev and Smirnov, 1985] resonance condition for neutrino oscillations in matter. 

From equation (2.8.2.1.5), it follows that when the condition (2.8.2.1.7) is fulfilled, mixing in 

matter is maximal for o
M 45  and is independent of the vacuum mixing angle  . Thus, the 

probability of neutrino flavour oscillation in matter can be large even if the mixing angle is 

very small. However, for resonance enhancement of neutrino oscillations in matter to be 

possible, the right hand side of equation (2.8.2.1.7) must be positive so that  

 

   0)sin)(cos(2cos 222
1

2
2

2   mmm ,  (2.8.2.1.8) 

 

i.e., if 2  is heavier than 1 , then  22 sincos   and vice versa. From equation (2.8.2.1.1) it 

can then be interpreted that the condition (2.8.2.1.8) is equivalent to the requirement that, of 

the two mass eigenstates 1  and 2 , the lower-mass one has a larger e  component.  

 

2.8.2.2. MATTER OF VARYING DENSITY 
 

In this section, neutrino oscillation in matter of varying density is studied. Typically, a beam 

of non-monochromatic neutrinos (neutrinos with some energy distribution) propagating in a 

medium with a density profile is considered. In particular, a case where an electron neutrino 

produced in matter of very high density (e.g. in the core of the sun and propagates in matter 

whose density decreases along the neutrino trajectory) is considered. As it propagates toward 

regions of smaller matter density, the mixing increases and becomes maximal at the 

resonance point, where o45 . As it propagates further toward smaller densities, the mixing 

angle continues to decrease, reaching the value  f  at densities MSWee NN )( , where 
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MSWeN )(  is the resonance value of the electron number density given by equation (2.8.2.1.7). 

If the matter density changes slowly enough (that is, adiabatically along the neutrino path), 

the neutrino system will have enough time to adjust itself to the changing external conditions.  

In the adiabatic regime, the effective Hamiltonian )(tH fl  will then be diagonalized by a 

unitary transformation 

              )(~ tUfl       (2.8.2.2.1) 

   )(~)(~)((t)U~ * tHtUtH dfl     

        ))(E  ),(( B ttEdiag A ,   (2.8.2.2.2) 

where )(tEA  and )(tEB  are instantaneous eigenstate values of )(tH fl  and the matrix )(~ tU  

has the same form as (2.8.2.10) except that the vacuum mixing angle   has to be replaced by 

the mixing angle )(t , with )(tNN ee  . The evolution equation in the basis of the 

instantaneous eigenstates can then be written as  
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which may also be expressed as 
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with  
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)(      (2.8.2.2.7) 

and 
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The effective Hamiltonian in this basis change is not diagonal since the mixing angle   is not 

constant; the matter eigenstate basis changes with time. If the off-diagonal terms are small so 

that 

BA EE 


 ,    (2.8.2.2.9) 

then the transitions between the instantaneous eigenstates A  and B  are suppressed. This 

corresponds to the adiabatic condition defined by 

    2cos
2

2
2

E
mNG eF


              (2.8.2.2.10) 

From this relation, it is explicit that  

    eF NG
m
E 222cos 2

              (2.8.2.2.11) 

and when the equation (2.8.2.2.11) is differentiated with respect to time, it yields 

    e
F NG

m
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



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2sin
2

2               (2.8.2.2.12) 

This then means that the adiabaticity parameter   may be written as 
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where BA EE   and CCV  are given by equations (2.8.2.1.3) and (2.8.2.4) respectively. If at a 

time itt  , the electron neutrino is produced with the field 

       )()( tt ei      

    BiAi tt  )(sin)(cos  ,              (2.8.2.2.14) 

then (in the adiabatic approximation) the neutrino state at time ft  is 
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Considering that ftt   and mixing angle fft  )(  is different from i , then 
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where 
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Therefore, the probability for an electron-neutrino transforming into a muon-neutrino is 
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Taking  
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1sin 2                (2.8.2.2.20) 

     )2cos1(
2
1cos 2   , 

then equation (2.8.2.2.19) becomes 

   cos2sin2sin
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1)( fifieP   (2.8.2.2.21) 

To include all possible transitions between matter eigenstates BA   and  due to violation of 

adiabaticity, 'P  (known as the hopping probability) is considered as the probability that 

BA    transitions have occurred in the course of the evolution of the neutrino system. 

Then 

    '1)( PP e       (2.8.2.2.22) 

But, from the Landau-Zener approximation [Zener, 1932], the hopping probability 'P  is 

defined by 

reP
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
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      (2.8.2.2.23) 

Therefore, the adiabaticity parameter at the MSW  resonance becomes 
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where  
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is the length scale at resonance (the characteristic distance over which the electron number 

density varies significantly in the resonance region). Hence, by defining  

    Lr 2tan2     (2.8.2.2.26) 

and applying the oscillation length relation (2.8.2.1.5) defined as 
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at the resonance, then the adiabaticity parameter (2.8.2.2.24) becomes 

    
resm

r l
r
)(


       (2.8.2.2.28) 

i.e., 3r  is the condition that at least one oscillation length fits into the resonance region. 

From (2.8.2.2.10) and (2.8.2.2.24), both the MSW  resonance condition and the adiabaticity 

parameter at the resonance r  depend on neutrino energy. This shows that the efficiency of 

the matter-enhanced neutrino flavor conversion is energy dependent. In addition, heavy 

neutrinos may have a chance to decay into lighter neutrinos via, for example, the process 

shown in figure 2.8.2.2 below which is proportional to the amount of mixing.  

 
Figure 2.8.2.2: Heavy neutrino decay via mixing 

 

To model neutrino decay, a beam of independent massive neutrinos each having a probability 

  of decaying per unit time is considered. The number decaying per unit time dt  is taken to 

be [Murugeshan, 2003]  

     dttNdN )( ,   (2.8.2.2.29) 

 

where )(tN  is the number of neutrinos at time t . Integration of equation (2.8.2.2.29) yields  

     teNtN  )0()(    (2.8.2.2.30) 

In one half-life, half of all neutrinos present will decay. Since the mean life is the average 

time a neutrino exists before it decays, it is connected to   and 
2

1t  by  

H  
W  

e  

e  

e  
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To relate the exponential properties of a decaying neutrino, the time dependence of neutrino 

spinor at rest, that is, 0P , is expressed explicitly as 

     

iEt
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 )0()(     (2.8.2.2.32) 

 

If the energy E  of this state is real, then the probability of finding the particle is not a 

function of time because 

     22 )0()(  t    (2.8.2.2.33) 

 

A particle described by a wave function of the type in equation (2.8.2.2.33) with real energy 

E  does not decay. To introduce a decay of a state described by )(t , a small imaginary term 

is added to the energy, so that  

      iEE
2
1

0     (2.8.2.2.34) 

where  and 0E  are real, and the factor 
2
1  is chosen for convenience. With equation 

(2.8.2.2.34), the probability of decaying becomes 
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Equation (2.8.2.2.35) agrees with equation (2.8.2.2.30) if  

 

          (2.8.2.2.36) 

 

With definitions (2.8.2.2.33) and (2.8.2.2.34), the wave function of a decaying neutrino is 

found to be of the form  
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where the addition of a small imaginary part to the energy allows a description of an 

exponentially decaying state. But from equation (2.8.2.2.37), shows )(t  is a function of 

time rather than energy. Hence, a change from )(t  to )(E  is effected by Fourier transform 

[Gupta, 2004]; this is done by considering a function )(tf  expressed as an integral 
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which inverts to 
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If )(tf  is set equal to )(t  in equation (2.8.2.2.37) and the decay starts at time 0t , then 

the lower limit on the integral can be set equal to zero. Therefore, )(g  becomes 
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which on integration, yields  
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Since E , then the probability density )(EP  of finding a neutrino with energy E  is 

proportional to )()()( 2  ggg  , that is, 
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Therefore, from the condition 
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it is found that 
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and hence, combination of equations (2.8.2.2.42) and (2.8.2.2.44) leads to 
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  (2.8.2.2.45) 

The relation (2.8.2.2.45) shows that the energy of a decaying neutrino state is not sharp. The 

small imaginary part in equation (2.8.2.2.34) leads to decay, which introduces a broadening 

of the state. With definitions (2.8.2.2.32) and (2.8.2.2.36), the product of lifetime and width 

becomes 

           (2.8.2.2.46) 

 

This relation can be interpreted as a Heisenberg uncertainty relation  

 

      Et     (2.8.2.2.47) 

 

Thus, to determine the mass or energy of the neutrino to within an accuracy of E , a 

time t  is required. This shows that even if a longer time is used, an uncertainty in the 

energy or mass of a decaying neutrino is inevitable.  
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CHAPTER THREE 
NEUTRINO MASS RESULTS 

3.1. INTRODUCTION 
In this chapter, results for neutrino mass investigation are presented. In particular, the result 

in regard to the existence of the neutrino is presented and the process by which the neutrino 

can acquire mass through a modified standard electroweak Lagrangian presented. The result 

for massive neutrino in the big bang model is also presented. Essentially, the equilibrium 

condition between the weak interactions and the expansion rate generate a Neutrino 

Boltzmann transport equation which is solved by successive approximation technique to yield 

a neutrino mass value. This value, when used in the calculated seesaw relation, it is found to 

give a unification-energy-scale result that is interesting in the context of grand unified 

models. Further, a result on neutrino oscillation as a consequence of its propagation in matter 

is presented. By using the binomial expansion theorem, it is explicitly found that the 

phenomenon of neutrino oscillations can only occur if a neutrino has mass.  

 

3.2. EXISTENCE OF THE NEUTRINO 
 

In a decay process, if N(T) is taken as the relative number of particles emitted with kinetic 

energy T, then the number of particles N(T) emitted against their kinetic energies T can 

theoretically be represented by a graph like the one below: 

 

 N(T) 

 

  

 

 

          Tmax 

 

        End point  T 
  Figure 3.2.1: Number of particles emitted with energy T 

N(T) is zero above an end point energy Tmax, which reflects the fact that the kinetic energy of 

the particles is limited by the differences in rest masses of the parent nucleus A and the 

daughter nucleus B. In a typical beta ( ) decay process such as the one suggested below 
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      eBA     (3.2.1) 

the visible particles are A, B and e. If these were the only particles, then one would be dealing 

with a two-body decay process 

     eBA       (3.2.2) 

which, in the rest frame of A, would have momenta that add up to zero and are uniquely 

determined by the rest masses mA, mB and me. In this case, N(T) versus T would generate the 

graph given below and all the particles would have the same kinetic energy. 

 

   N(T) 

         
 

 

        (T) 
   Figure 3.2.2: Electron number density for a two-body decay 

Away from the general case, the decay process that is sampled for investigation in this study 

involves the a related beta ( ) decay process of the neutron given in equation (3.2.3) below 

      epn      (3.2.3) 

This equation is physically inadequate especially from the viewpoint of conservation laws. 

Further, the justification for this is found by generating the following data that gives the 

quantum numbers for the various particles participating in this decay process (3.2.3): 

 
                         Equation  

 

      Quantum No. 

Left-hand side 

              (n) 

Right-hand side 

           (p + e) 

          Spin 

            (s) 
              

2
1           1

2
1

2
1

                  ? 

         Charge 

           (q) 

 

               0 
         0

2
1

2
1







          ok 

   Baryon Number 

            (B) 

 

               1 

 

         1 + 0 = 1                 ok 

    Lepton Number 

            (L) 

 

               0 

 

          0 + 1 =1                  ? 

 

  Table 3.2.1: Particle Quantum Numbers 
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From this data, it is evident that the above process is lacking some information or something 

is wrong with it. In order for the process to describe physical reality, the equation is modified 

to the form 

      Xepn      (3.2.4) 

and the proposed particle X, henceforth known as the neutrino, is found to have the following 
quantum numbers: 
 
 
                     Equation 
 
Quantum No. 

Left-hand side 

            (n) 

Right-hand side 

           (p + e) 

 
  ? = X  

 
Xep    

          Spin 

            (s) 
             

2
1           

2
1

2
1
         -

2
1          

2
1  

         Charge 

           (q) 

 
             0      


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
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2
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         0 

 
         0 

Baryon Number 

            (B) 

 
              1 

 

         1 + 0  

 
         0 

 
         1 

Lepton Number 

            (L) 

 
              0 

 
          0 + 1 

 
         -1 

 
         0 

 
  Table 3.2.2: Neutrino Quantum Numbers 

 

To investigate the role this neutrino may play in an evolving universe, it is suggested that the 

universe is a uniformly distributed collection of mass points defined by a mass density m . 

By considering a sphere of radius S(t) anywhere in the universe, the gravitational field acting 

on the mass m located at A is found to depend on the masses within the sphere as in the figure 

below: 

               A 

     

      

 

 
     Figure 3.2.3: Sphere of radius S(t) 

The equation of motion for the mass mA is then written as  

     2

..

S
GmMSm      (3.2.5) 



116 
 

S is a function of time since the universe is expanding and M is constant in time, which is the 

mass within the sphere. Multiplying both sides of equation (3.2.5) by 
.
S  gives 

     
.

2

...
S

S
GMSS      (3.2.6) 

which is the same as  

     























Sdt
dGMS

dt
d 1

2

2.

   (3.2.7) 

Equation (3.2.7) is integrated to yield 

     E
S

GMS


2

2.

    (3.2.8) 

where E is a constant of integration. Since M(S) is the mass contained within the spherical 

volume, it can also be calculated by the relation 

     mSSM  3

3
4)(      (3.2.9) 

so that the equation (3.2.8) now becomes 

     EGSS
m  

 2

2.

3
4

2
    (3.2.10) 

This equation has the same form as the energy conservation law in a gravitational potential, 

namely: 

   Kinetic energy + Potential energy = Total energy  (3.2.11) 

 

From equation (3.2.10), the following interesting observations can be made: 

If 

 0E , there should be no bound on S. 

 0E , S is bound in an orbit. 

 0E , S can just ‘escape’. 

 

But here, S stands for the universal scale factor, which means that 

 0E , the universe will expand for ever; 

 0E , the universe will stop expanding at some finite time in the future; 

 0E , the universe is just free to continue expanding. 
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In the context of general relativity, the conditions can be related to the curvature of space. In 

particular, the third condition means that space is ‘flat’. This is what is being referred to as 

the “flatness problem”; the “problem” being to explain why E = 0 or nearly so.  

 

3.3. THE FLATNESS PROBLEM 
 

A neutrino-dominated and evolving universe can be considered to be described by the 

dynamical Friedman equation  

      

3

8
2

2

G
S

kS





,   (3.3.1) 

where S(t) is the scale factor, k  is the curvature parameter and   is the energy density. In the 

0k  model, a resulting relationship between S and t can be established; from the elementary 

kinetic theory of gases, an equation of state for a free neutrino gas can be written as  

      
3


P      (3.3.2) 

The equation (3.3.2) is used in the energy conservation law 

      )(3 P
S
S






    (3.3.3) 

to give 

      
S
S




 4      (3.3.4) 

This is integrated to yield  

      4  S     (3.3.5) 

Applying equation (3.3.5), equation (3.3.2) can be found to take the form  

      2

2

2 )1(
S
S

S
k



    (3.3.6) 

             24
1

t


     

where 

         
c


     (3.3.7) 
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  is the relative cosmological energy density parameter. For the present epoch, equation 

(3.3.6) can be written as  

     2

2

2 )1(
p

p
p

p S
S

S
k



     (3.3.8) 

Using the simple fact that  

      1)(  TtS     (3.3.9) 

it can be established that, for 1k ,  

     2

2
224)1()1(

p
pp T

TtH  , (3.3.10) 

where T  is the corresponding value of temperature. Equation (3.3.10) is then used to 

generate the following data for the important phases in the early universe: 

 

 

 

PHASE 

 

TIME  

    (s) 

(Hughes, 1991) 

 

TEMPERATURE  

             (K) 

(Hughes, 1991) 

COSMOLOGICAL ENERGY 

DENSITY 

2

2
224)1()1(

p
pp T

TtH  

(Maumba, et al. 2008) 

 

Planck 

 

10-43  

 

1032 

 

)1(10108.3)1( 261  
ph  

 

 

GUT 

 

10-35 

 

1028 

 

)1(10626.4)1( 253  
ph  

Electroweak 

symmetry 

breaking 

 

10-10 

 

1015 

 

)1(10626.4)1( 227  
ph  

Quark 

confinement 

 

10-5 

 

1012 

 

)1(10140.5)1( 222  
ph  

Neutrino 

Decoupling 

 

100 

 

1010 

 

)1(10626.4)1( 217  
ph  

 

  Table 3.3.1: Data for Flatness Problem  
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From the data, it is interesting to observe that the coefficient on the right-hand side of 

equation (3.3.10) keeps on changing, i.e. at the Planck time, the approximate value of 10-61 

leads the force of gravity to break away from the strong and electroweak interactions, 

whereas the value 10-53 leads to the strong force breaking from its counterpart electroweak 

interaction and 10-27 leads to the electroweak symmetry breaking. However, when equation 

(3.3.1) is rewritten as 

    2
2

3
8 SGSk 





     (3.3.11) 

then, –k can be interpreted as the total energy of the universe with the kinetic energy term 

being represented by 
2

S  and the gravitational potential energy by the term containing  . If 

the total energy is positive (k = -1), then the kinetic energy is great enough (the initial 

velocity is greater than the escape velocity) and the universe will continue to expand forever 

i.e. the universe is open. If the total energy is negative (k = +1), the universe will recollapse 

i.e. the universe is closed. If the total energy is zero (k = 0), the universe is at the escape 

velocity and it will expand indefinitely. Since the universe has been expanding at almost the 

critical rate, it is expected that some mechanism or processes in the early universe could have 

driven it into its present state. Rewriting equation (3.3.1) in the form 

    )(
3

8
2

2

rv
G

S
kS 






    (3.3.12) 

analogous results for the flatness problem can be obtained. Here, 4)(  tSr  is the energy 

density of radiation and since r  falls as the universe expands while v  stays constant, the 

vacuum energy density dominates. Therefore, r  is neglected and the equation (3.3.12) is 

solved for the cosmic models 1  and  1  ,0  kkk  as follows: 

     The 0k  model 
In this model, equation (3.3.12) reduces to  

      v
G

S
S



3

8
2

2





    (3.3.13) 

or  

     v
G

S
S



3

8




     

         H      (3.3.14) 
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where H  is Hubble’s constant. This integrates to give  

 

     HtS exp      (3.3.15) 

 

     The 1k  model 
In this case, equation (3.3.12) reduces to  

      v
G

S
S



3

81
2

2






   (3.3.16) 

or 

      1
3

8 2 


SGS v
     (3.3.17) 

which can be expressed as 

      221



 S

dt
dS       

    12

2




 S      

    12  u ,      (3.3.18) 

with  

      
vG


8

3
     (3.3.19) 

      1   

and  

      

Su       (3.3.20) 

Using equation (3.3.20), equation (3.3.18) then becomes 

     

dt

u
du


12

     (3.3.21) 

which integrates to yield  

      tS  cosh      

         t cosh1    (3.3.22) 

or  

     HtHS cosh1      (3.3.23) 
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when equations (3.3.14), (3.3.19) and (3.3.20) are applied. Thus, equation (3.3.23) imply  

 

     HtS cosh      (3.3.24) 

 

     The 1k  model  
For 1k , equation (3.3.12) reduces to  

     v
G

S
S



3

81
2

2






    (3.3.25) 

or  

     1
3

8 2 


SGS v
     (3.3.26) 

which can be rewritten as 

     )(1 22 


 S
dt
dS       

           12

2



S     (3.3.27) 

Making use of the substitutions in equations (3.3.19) and (3.3.20), then equation (3.3.27) 

becomes 

    dt
u
du


1

12



     (3.3.28) 

which, when integrated yields  

     HtHS sinh1     (3.3.29) 

This implies that  

     HtS sinh      (3.3.30) 

In the approximation that 

     Ht ,      (3.3.31) 

both equations (3.3.24) and (3.3.30) reduce to equation (3.3.15), which is the flat model. If 

the total energy density t  is represented by )( rv   , then, for 4Tr   and 1 ST ,it is 

found that 

     4 S      (3.3.32) 
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Equation (3.3.32) can be expanded into a Taylor series to yield  

 

  n
not xaxaxaxaxaax  .....)( 4

4
3

3
2

21    (3.3.33) 

 

where .4 Sx  When the relevant coefficients are inserted, equation (3.3.33) reduces to 

 

  ......120204)( 191494   SSSSx ot     (3.3.34) 

 
3.4. PARTICULATE NATURE OF THE UNIVERSE 

 
To model the early universe as a particle, the various possible quantum numbers should be 

calculated. One of the important quantum numbers calculated is the size or volume of the 

very early universe. The main idea is that; current observations indicate that the universe is 

expanding. When extrapolated backwards, it is natural to expect the volume and/or size of the 

universe to vanish at zero time. Consequently, to make meaningful studies/investigations on 

the physical processes (especially the weak interaction processes) in the very early universe, 

it is mandatory that the eminent singularity be addressed first. In this particular study, the 

idea of instantons is suggested as a possible solution to this puzzle. It is considered that the 

creation of the universe is a spontaneous tunneling process that occurs by the nucleation of 

bubbles whose tunneling probability is calculated by solving the simple equation of motion  

   0)()( '2
2

2
'  


 V

dt
dVE    (3.4.1) 

subject to boundary conditions  

     0  at  222 txr    (3.4.2) 

and  

      0
dr
d  at 0r    (3.4.3) 

The probability of the bubble nucleation per unit volume per unit time is defined by the 

relation 

 

     )exp( EAC  ,    (3.4.4) 

where the action AE is defined by the relation  
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      


















 


 V
dt
dxdAE

2
2

4

2
1

2
1)(    (3.4.5) 

and C is a constant. The Euler-Lagrange equations of motion are then applied to equation 

(3.4.5) to yield 

   0)()( '2
2

2
' 




 


 V
t

VE    (3.4.6) 

When the following coordinate transformations  

      

22
0

2

22
0

2

22

ttt

xxx

rR


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

    (3.4.7) 

are made, equation (2.4.1.16) reduces to 

222 txr        

          2222 tzyx     (3.4.8) 

This equation (3.4.8) is then differentiated to give  

     
22

tx

x
x
r





     (3.4.9) 

     
22
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t
t
r





     (3.4.10) 
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r
x 







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rtx

x







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    (3.4.11) 

This means that 
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
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


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
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For the first term of the last step on the right hand side of (3.4.12), the following quotient rule  
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is used to yield 
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Equation (3.4.14) is now substituted into equation (3.4.12) to give 
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By repeating the procedure for 2

2
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  , 2

2

z
   and 2

2

t
  , it is found that  
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and 
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respectively. The combination of equations (3.4.15) through (3.4.18) yields 

    0)(3 '1
2

2

  
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dr
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d     (3.4.19) 

Equation (3.4.19) has no general solution but can be solved approximately. The 

approximation is made that if the difference in energy between the metastable and true vacua 

is small compared to the height of the barrier, then the damping term can be neglected 

0
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d      (3.4.20) 

and equation (3.4.19) reduces to  
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Since  
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When equation (3.4.23) is cross-multiplied by dr
dr
d , it yields  
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       (3.4.24) 

Using the substitution that 
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      y 
dr
d     (3.4.25) 

makes equation (3.4.24) to take the form  

dVydy      (3.4.26) 

which integrates to give  
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Since the potential energy level is always arbitrary, the integration constant 0V  can be set to 

zero to yield 
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Hence, substituting equation (3.4.25) into (3.4.28) leads to  
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Since, from equations (3.4.20) and (3.4.29) the action is  
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then  
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But, in terms of V, equation (3.4.29) can also be expressed as  

V
ddr
2


    (3.4.32) 

From equations (3.4.31) and (3.4.27), the action can be obtained as 





0

)(2VdAE     (3.4.33) 

Equation (3.4.33) has a familiar form from the theory of instantons and to agree with the 

physical interpretation of the instanton solution (as probability of barrier penetration), the 

equation (3.4.33) is solved by making a coordinate transformation. It is suggested that  

 xxx o    

      cosk    (3.4.34) 

       ttt o   
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      sink    (3.4.35) 

and 
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Then equation (2.4.2.2) becomes 
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Thus, combination of equations (2.4.2.1) and (3.4.37) yields 
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    (3.4.38) 

From equations (3.4.4) and (3.4.38), a result for barrier penetration probability is obtained as  
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3.5. NUMERICAL NEUTRINO MASS VALUE 
 
To generate a mass term for the neutrino, existence of the right-handed neutrino R  is 

suggested which leads to a total of 16 helicity states. With this additional neutrino helicity, it 

is possible to generate the following flavor results from figure 2.2.3.1: 
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   Figure 3.5.1: Sixteen helicity states 

 

In particular, to generate a mass term for the neutrino, the standard electroweak Lagrangian 

without the mass term is first written as  
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           (3.5.1) 

Then, the following gauge invariant term is added to the Lagrangian 

       RRgL       (3.5.2) 

where  
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The first term in brackets on the right hand side of (3.5.2) is expanded out to the form 

      0
0

       



 LeLe eve 









 


   (3.5.4) 

Then the symmetry is then spontaneously broken by substituting  

    










pH

0   

2
1      (3.5.5) 

into the Lagrangian (3.5.2) to give 

      pRLLRRLLR HggL    
2

  
2
 


     (3.5.6) 

where pH  represents the Higgs fluctuations around the ground state  0 . Comparison of 

the result (3.5.6) with the standard mass term of the electroweak model  

      RLLR ffffmffmffm 






  55 1

2
11

2
1    (3.5.7) 

shows that the first term in equation (3.5.6) has precisely the form of a fermion mass term 

with  

     
2




g
m

e
      (3.5.8) 

In terms of 
e

m , the Lagrangian (3.5.6) can then be written as 

    pH
m

mL e

e
   


 

      (3.5.9) 

instead of 

   RRgL e      (3.5.10), 

where ReR )( . This leads to both a mass term and an interaction term for the neutrino. The 

results (3.5.9) above shows that the neutrino can acquire mass through the same mechanism 

as the other leptons, only if the standard electroweak Lagrangian is modified. The 

modification generates a mass term whose actual numerical value is yet to be determined 

once the mass of the Higgs boson is observed experimentally. But before the issue of the 

Higgs boson is resolved by the yet-to-be-built powerful particle accelerators (such as the 

super LHC), it is important that the very high temperatures that existed in the very early 

universe be utilized. In particular, it is suggested that the energy that must be contributed by 

each of the stable relativistic neutrino in the present universe should follow the simple 

Einsteinium law 
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      mE       (3.5.11) 

for a relativistic particle. But for non-relativistic and massive neutrino, the equation (3.5.11) 

should be modified so as to yield the total energy density of massive neutrinos as 

    mno      

        33

10)(
1019.6 






 eVcm

eV
m

Tq
g

dec

  (3.5.12) 

On substituting  

     
G

H
c 


8
3 2

     

          32410  eVcmh     (3.5.13) 

and 

     
c


      (3.5.14) 

into equation (3.5.12), the following relation is found 

    
)(10

619.0)( 2

decTq
g

eV
mh 






    (3.5.15) 

For a closed universe, the constraint condition that 1296.02 h  in equation (3.5.15) gives 

abound on m  as  

     eV
g

Tq
m dec )(

26.2     (3.5.16) 

The relation (3.5.16) shows that the value of m depends on the value of q  at the time of 

decoupling; neutrinos with mass less than about MeV 1  decouple at MeVTD  )31(   when 

the total number of degrees of freedom is  

     75.10q      (3.5.17) 

This implies that for a massive Majorana neutrino ( 2g ), equation (3.5.15) yields 

     
eV

mh
 10.91

2 
      (3.5.18) 

from which it is clear that  

     eVm  84.11 ,    (3.5.19) 

while for a Dirac massive neutrino ( 4g ), equation (3.5.15) leads to 

     
eV

m
h

5.45
2 

      (3.5.20) 

from which it is found that  
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     eVm  92.5      (3.5.21) 

Actually, the limit (3.5.18) is additive in the sense that if more than one flavor of light 

neutrinos exist, then the limit becomes 

      


 eVhm 210.91    (3.5.22) 

Thus, for Majorana-type neutrinos, the limit (3.5.19) reduces to 

 

      eVm  94.3 ,    (3.5.23) 

whereas for Dirac-type, it becomes 

      eVm  97.1     (3.5.24) 

The value of q  will be higher at higher decoupling temperature DT ; for example, at 

temperatures above 300GeV, the )5(SU  grand unified model of particle interactions predicts 

that 8 gluons, one photon, three weak gauge bosons ( ZW   and    W, - ), one Higgs doublet 

and three generations of quarks and leptons will all be relativistic so that  

      75.106q     (3.5.25) 

For a neutrino decoupling at GeVTD  300 , the corresponding mass bound is  

     







eV

mh wimp 7.904
)( 2     (3.5.26) 

Then, equation (3.5.26) leads to  

     eVm  09.112     (3.5.27) 

for a massive Majorana neutrino or 

     eVm  05.56     (3.5.28) 

 

for a massive Dirac neutrino. However, for three species of neutrinos, the value of mass mv is 

 

        36.37 eVm      (3.5.29) 

 

     eVm  68.18       (3.5.30) 

for Majorana and Dirac neutrinos, respectively; but, decoupling at such high energies is 

possible only if the neutrinos have non-standard interactions. 
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For very massive and non-relativistic neutrinos, a numerical estimate is made i.e., the 

Boltzmann equation (2.7.3.16) is solved for the decoupling temperature DT  by taking the 

natural logarithms of the equation (2.7.3.16) to give 
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Since g  is a slowly varying function of temperature T , then equation (3.5.31) is to be solved 

approximately. By successive approximation technique this gives the result  

    966.17
DT

m       (3.5.32) 

Starting with 0k  in equation (3.5.32), the 




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

DT
mln  term corrects the result to  

     41.19
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m      (3.5.33) 

from which the decoupling temperature becomes 

     MeVTD 52      (3.5.34) 

At this temperature (3.5.34), the total number of degrees of freedom 75.106q ; hence, 

equation (3.5.31) yields 
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       61.1      (3.5.35) 

which corrects 
DT

m  in (3.5.31) to  

    8.17
DT

m       (3.5.36) 

Thus, to this order, it is found that  

    8.17
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m       (3.5.37) 

On substituting equation (3.5.37) into equation (2.7.1.39), then 
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and 
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The neutrino A  and its antineutrino A  will contribute twice this value to  , so that  
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From equation (3.5.40), the constraint condition that 1296.02 h  gives the mass bound as 

      GeVm  71.4    (3.5.41) 

and for three neutrino flavors, the result reduces to 
 
      GeVm  57.1    (3.5.42) 

 
3.6. NEUTRINO MASS AND GRAND UNIFICATION 

 
The neutrino mass can aid in the unification of the fundamental interactions if the 

corresponding Seesaw relation can be found. Most of the standard models use or follow 

complicated methods, especially the renormalization method, to arrive at the seesaw relation. 

A simple approach that is formulated in this study, involves the mathematical theory of 

matrices. In particular, the eigenvalue equation (2.2.2.18) is solved by simply putting it into 

the form 

      0 IK       (3.6.1) 

where I is 22  unitary matrix and s'  are the distinct eigenvalues of the matrix K. The 

corresponding values of the matrices K and I are substituted in (3.6.1) to give 
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From equation (3.6.1), equation (3.6.2) takes the form 

     022  DmM     (3.6.3) 

To first order, application of the quadratic formula on equation (3.6.3) gives 
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In this case, one neutrino is superheavy  

     DmMm 2     (3.6.5) 

while the other is superlight  
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Having found that 
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and  

     
MeV

mm eD
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then a unification scale unif  can be found as follows: taking  
 
      unifM       (3.6.9) 
and if 

     
eV

mm tD

G 3.174      


    (3.6.10) 

then 
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3.7. A MASSIVE NEUTRINO OSCILLATION 

 
It is suggested that a neutrino can change flavor if it has mass. In particular, results for this 

dynamical phenomenon can be found by considering two neutrino flavor states e  and  , 

whose lepton mixing matrix U  is considered to be 

    
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


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
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      (3.7.1) 

The matrix (3.7.1) is applied to equation (2.8.1.8) to give 
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     (3.7.2) 

To determine the time evolution of the neutrino state, the evolving state is written as  



135 
 

       )0(t      

 

             21  cs     (3.7.3) 

so that 
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where E1 and E2 are the energy of the two neutrino mass eigenstates. They are given by 
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with 

     ppp  21      

The approximate equations 
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together with the assumption that the neutrino is relativistic i.e., 
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makes equations (3.7.6) and (3.7.7) to become 
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The results (3.7.9) and (3.7.10) are arrived at, by applying the binomial expansion theorem 

that 

    sorder termhigher  
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to equation (3.7.6) and keeping only the first two terms. The expressions (3.7.9) are then 

substituted into equation (3.7.4) to get 
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By defining  
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then, equation (3.7.12) becomes 
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To calculate the probability for a pure   state oscillating into e  state, the quantum 

mechanical amplitude describing neutrino transition is squared to give 
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then the amplitude becomes 
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Substituting equation (3.7.20) into equation (3.7.17), the transition probability is obtained as 
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The approximation that the neutrino is relativistic implies that 

       Ep  ,    (3.7.22) 

Hence, equation (3.7.21) reduces to 
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The following trigonometric relation 
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is applied in equation (3.7.23) to give 

    






 
 L

E
mP e


 
4

sin2sin)(
2

22    (3.7.25) 

To make the argument of the second sin2 term dimensionless, appropriate numbers of 

scs '  and  '  are introduced so that  
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and the variables assigned appropriate units of LeVcm   ),( 242 (meters) and )(MeVEv . 

Since nmeVc  197 , the quantity in parenthesis reduces to 
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Thus, from equations (3.7.25) up to (3.7.27), the transition probability becomes 
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where the term 2sin 2  which does not depend on distance describes the amplitude of the 

neutrino oscillations.  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 
4.1. INTRODUCTION 

In this chapter, the result of absolute neutrino mass investigations is discussed. In particular, 

particle mass generation result through the Higgs mechanism is discussed. Because of the 

chiral nature of neutrinos, it is seen that the standard mass generation mechanism does not 

immediately apply to the neutrino case in the framework of the standard electroweak model. 

This problem is resolved by suggesting that the absence of right-handed neutrinos is an 

experimental limitation of the standard electroweak model and, hence, neutrinos should also 

acquire mass through the Higgs mechanism. However, since the theory does not predict a the 

required numerical mass value for the neutrino, the equilibrium condition between neutrino 

weak interaction and the expansion rates in the early phase of the universe is used to calculate 

this value. When the value is used in the seesaw relation, an interesting grand unified energy 

scale is obtained. A result on the phenomenon of neutrino oscillation is also discussed. It is 

explicitly established that neutrino oscillation probability is proportional to mass squared 

difference, i.e., neutrino oscillations can only occur if neutrinos have hierarchical masses. 

Towards the end of the chapter, a result on the possibility of neutrino decays is also 

presented.  

4.2. FLATNESS PUZZLE 
 

On the basis of the dynamical Friedman equation (3.3.1), a free neutrino gas equation (3.3.2) 

was used in the energy conservation law (3.3.3) to yield the resulting equation (3.3.8). For the 

curvature parameter 1k , equation (3.3.10) was obtained. This result was then used to 

generate the data for the various cosmological phases in the early universe as in table 3.3.1. 

From the data, it was observed that the cosmological energy density parameter   at any 

cosmological phase always tends to unity. This translates to the fact that the flatness puzzle is 

a natural phenomenon on the basis of inflation (3.3.31). 

 

4.3. PARTICULATE NATURE OF THE UNIVERSE 

 

To model the universe as an unstable particle, its creation as a spontaneous tunneling process 

that occurs by bubble nucleation was analyzed. This was done by considering the Euclidean 

equation (3.4.1) subject to the conditions (3.4.2) and (3.4.3). This yielded the action (3.4.33) 
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that agreed with (2.4.19) which was obtained from the Bianchi identity (2.4.18) after 

applying Gauss’ theorem. The calculations resulted to equation (3.4.39) which confirmed that 

the universe approaches the radiation-dominated phase in a neutrino-dominated and evolving 

model. 

4.4. NEUTRINO MASS TERM 
Neutrino mass generation was explicitly investigated using the standard Higgs mechanism. 

This was done by considering the free Dirac Lagrangian (2.2.3.1) which reduced to (2.2.3.2) 

in the massless neutrino case. When the projection operators (2.2.3.3) were applied on the 

massless Lagrangian (2.2.3.1), a gauge invariant result (2.2.3.5) was obtained. The 

established gauge invariance of (2.2.3.5) was interpreted to imply the isospinor doublet 

(2.2.3.6) be assigned a weak isospin charge (2.2.3.7), from which the neutrino had one-half as 

its third component; the electron and the other singlet particle were found to have one-half 

and zero components, respectively. These quantum numbers generated the transformation 

matrices of (2.4.3.18) and (2.2.3.19) for the electromagnetic and electroweak interactions, 

respectively. This led to the lepton Lagrangian (2.2.3.25), which, was found to be gauge 

invariant also. To determine the strengths of neutrino chiralities, the transformation matrix 

)2(SU  and the relation between the electric charge  Q  and the third component I given by 

the Gell-Mann-Nishijima relation (2.2.3.53) were applied. This helped to calculate the weak 

hypercharge, from which it was found that left-handed chiralities couple with half the 

strength of right-handed chiralities; i.e., the left-handed neutrino fields couple with half the 

strength of the right-handed fields to the hypercharge gauge field. To gauge )2(SU  

interactions, three gauge potentials iW  were introduced so that, by acting on the isospinor 

L , the ordinary derivative was replaced by the covariant derivative (2.2.3.27). Gauging )1(U  

introduced a potential X and a coupling constant 'g  so that, for L  coupling with half the 

hypercharge strength of R , the corresponding covariant derivatives were (2.2.3.28). These 

were then put into the Lagrangian (2.2.3.11) and, when the gauge field kinetic terms were 

included, they generated a Lagrangian (2.2.3.29). To generate a mass term, an isospinor 

scalar field   with quantum numbers (2.2.3.31) was introduced into the Lagrangian 

(2.2.3.29) and a perturbation introduced. This led to the result (2.2.3.46). The result of 

(2.2.3.46) was found to be important only in the massless neutrino case. To generate a mass 

term for the neutrino, the standard electroweak Lagrangian was written as in (3.5.1) and the 

gauge invariant mass term (3.5.2) added. This then generated the result (2.2.3.60) which was 
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found to be )2(SU  invariant. The symmetry was then spontaneously broken by substituting 

the Higgs field (3.5.5) into the Lagrangian (3.5.2) to yield (3.5.6). This helped to generate a 

neutrino mass term (3.5.8). When the result (3.5.6) was compared with the standard mass 

term (3.4.7), it was recognized that the first term had precisely the form of a mass term. In 

terms of 
e

m  the Lagrangian (3.5.6) then reduced to (3.5.9). The result showed that, in 

addition to the mass term, the Lagrangian contained a term that described the coupling of the 

Higgs field to the neutrino with the coupling strength of 

m . However, in the )1()2( USU   

model, there is no coupling of the Higgs field to the neutrino since the theory is normally 

constructed with a left-handed neutrino only. The absence of the right-handed neutrino 

prevents one from adding the term (3.5.2) which will lead to both a mass term and an 

interaction term for the neutrino. However, since the coupling constant g  was arbitrary, the 

theory did not give the numerical mass value of the neutrino but it gave an attractive feature 

that through the standard Higgs mechanism, the model can also be modified to accommodate 

massive neutrinos.  

4.5. NEUTRINO MASS BOUNDS 
 

Results of section 4.4 on neutrino-mass-generation mechanism are found to give a mass term 

to the neutrino but not the-much-sought-after numerical value. To explicitly determine this 

value, neutrino interactions at very high energies were considered. However, at the moment 

these high energies are not available within the realm of particle accelerators. They are 

suggested to have existed at the very early universe where neutrinos and photons were very 

dominant. Nevertheless, extrapolation into the very early universe was found to generate a 

big bang singularity which was regarded as one of the cosmological puzzles. The ensuing 

calculations performed managed to show that, indeed, the universe did not begin from zero 

volume at zero time; instead, it emerged quantum mechanically with a finite size from a non-

classical space-time state (3.6.2.16) and began to evolve exponentially. This exponential 

behavior was established by rewriting the Friedman equation (3.4.1) in the form (3.4.15) and 

then solved for the three cases of the curvature parameter k. This gave rise to the result 

(3.4.18). To find out why the initial non-classical space-time state began to expand, it was 

suggested that the inflaton field was initially kept in equilibrium by massive neutrino 

interactions. As neutrinos begun to decay and became less massive, the transition 

amplitude/tunneling probability also grew as calculated in equation (3.3.33). This result 
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established, firmly, that the entropy in a neutrino-dominated and expanding universe always 

increases. To establish the exact numerical mass value required for equilibrium to be 

maintained, neutrino distribution functions in the early universe were considered. In 

particular, three cases were established; in the first case, the temperature of the present 

neutrino background was found to correspond to the result (2.7.1.69). This value was applied 

in equation (2.7.1.11) to yield equation (2.7.1.72). This was found to be far much lower than 

the energy density required for a critically expanding universe. The second case was for 

massive neutrinos that decouple when still relativistic. In this case, the number density of 

neutrinos was found to correspond to (2.7.3.3). This was then used in the energy density 

relation of massive neutrinos (3.5.12) that combined with (3.5.15) to yield (3.5.16). This 

bound was found to be valid for a weakly interacting massive neutrino that decouples while 

still relativistic and the value of m depended on the value of the total number of degrees q  at 

the time of decoupling. However, neutrinos with masses less than MeV 1  were found to 

decouple at temperature MeVTD  1 , when total number of degrees of freedom is 75.10 . 

Hence, for a massive Majorana neutrino, the constraint mass equation (3.5.16) was found to 

correspond to (3.5.18) which yielded the result (3.5.23), whereas, for a Dirac massive 

neutrino, the constraint equation corresponded to (3.5.20) which yielded (3.5.24).  

For weakly interacting massive neutrinos that decouple when they are non-relativistic, the 

value of N  was modified to the form (2.7.3.6) so that the number density depended strongly 

on m . In this case, the decoupling temperature DT  was calculated by invoking the 

equilibrium condition between the weak interaction rates and the expansion rate of the 

universe. The average value of neutrino reaction rates was found to take the form (2.7.3.9) 

and, when the cross section o  was taken in the form (2.7.3.10), result (2.7.3.13) was 

obtained. Combining the expansion rate result (2.7.2.14) with the reaction rates (2.7.3.13) 

yielded the neutrino-Boltzmann transport result (2.7.3.16). To determine the actual mass, the 

exponential part of equation (2.7.3.16) was solved by the numerical methods of successive 

approximation technique to yield (3.5.37). This was then substituted into equation (2.7.3.17) 

and (2.7.3.18) to give (3.5.39). For a neutrino and its antineutrino, this corresponded to 

(3.5.40). The constraint equation that 1296.02 h  then gave the mass bound (3.5.41) and, 

for three flavors of neutrinos, the result reduced to (3.5.42). When the masses eV97.1  and 

GeV3.174 -for the electron neutrino and the top quark leptons-, respectively, were inserted 

into the calculated seesaw relation (3.6.6), a unification energy-scale result (3.6.11) of 

~ GeV1310542.1   was obtained. 
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4.6. NEUTRINO OSCILLATION PROBABILITY AND DECAY 
Here, the result on the effect of the neutrino mass on the phenomenon of flavor oscillation is 

discussed. In particular the result on the probability of neutrino oscillations is discussed. The 

effect was established by considering a case of two neutrino flavours e  and   with the 

lepton mixing matrix (3.7.1). The matrix then generated the neutrino eigenstate equation 

(2.8.1.8) whose evolution equation took the form of equation (3.7.4). The approximate 

equations (3.7.6) were then applied to equation (2.8.1.10) together with the binomial 

expansion theorem to yield (3.7.12). Definitions (3.7.13) were used in (3.7.2) to yield 

equation (3.7.16). To calculate the probability for one neutrino state, say  , oscillating into 

another neutrino state, say e , the quantum mechanical amplitude describing the transition 

was squared to obtain (3.7.17). Using the definitions (3.7.18), the amplitude was then 

calculated as in equation (3.7.20). This was then squared to get the transition probability as 

(3.7.23). Using the trigonometric relation (2.8.2.17), equation (3.7.23) reduced to (3.7.25). In 

the more experimentally acceptable units, this yielded (3.7.28). In equation (3.7.28), the 

second sine factor was found to oscillate with distance L  (or time) traveled by neutrinos; this 

showed that the oscillation phase is proportional to the energy difference of the mass 

eigenstates and to the distance L . To model neutrino decay, an assembly of massive 

neutrinos each having a probability   of decaying per unit time was considered. The number 

decaying per unit time was modeled into the form of equation (2.8.2.2.29) which was 

integrated to yield (2.8.2.2.30). More appropriately, the time dependence of the neutrino 

wave function was expressed as (2.8.2.2.32) and a small imaginary energy part was added to 

the energy E . This generated the result (2.8.2.2.35) that agreed with the decay law 

(2.8.2.2.30) on taking   as  . It was then considered that the wave function of a decaying 

neutrino state should take the form (2.8.2.2.37). To express this as a function of energy, a 

Fourier transformation was made, i.e., a neutrino wave function )(t  was expressed as an 

integral (2.8.2.2.38), which was inverted to yield (2.8.2.2.39). On substituting   for E , the 

probability density )(EP  of finding a neutrino with energy E  was found to be proportional 

to the square of )(g  which yielded (2.8.2.2.42). The condition (2.8.2.2.43) gave the 

constant of integration in equation (2.8.2.2.44). This was substituted into (2.8.2.2.42) to yield 

the uncertainty relation (2.8.2.2.45).  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1. CONCLUSIONS 
A related beta decay process was studied in the context of a neutrino-dominated and evolving 

universe. At first, the decay process was found to be inadequate in as much as the physical 

laws are concerned. In particular, the two-body decay process failed to account for the 

experimentally observed facts on the basis of black-body radiation. This necessitated the 

introduction of a hypothetical particle X, so that the process became a three-body decay 

process. To describe physical reality, the appropriate quantum numbers were calculated for 

this difficult-to-detect and controversial particle from the viewpoint of conservation laws. It 

was firmly established that the neutrino is a lepton that participates in various weak 

interaction reactions, including those taking place in the sun.  

Having modeled the evolving universe as a decay process, the neutrino-dominated and 

evolving universe was found to be described by the dynamical Friedman equation. The 

equation was used to generate data for the important phases of the early universe. The 

flatness problem was resolved on the basis of this data and seen to be a natural phenomenon. 

This was found to imply that the universe must remain flat on the large scale. The fine-tuning 

was vindicated by inflation which ensuingly resulted. 

To make meaningful investigations on the physical decay processes in the early universe, it 

became mandatory that the big bang singularity be addressed first. Bubble nucleation 

indicated that the physical interpretation of the instanton solution as a probability of barrier 

penetration is a remedy for the cosmological puzzle that the size of the universe should 

vanish at zero time. The dependence of the probability amplitude on the mass of the neutrino 

was an indication that entropy always increases. This was consistently found to be truly a 

phase transition.  

Further, it was established that a neutrino has a finite mass and it can acquire this mass 

through the Higgs mechanism. This was found to be true by studying a standard electroweak 

Lagrangian which was modified by adding a mass term to it. A scalar field that was 

introduced generated both a mass term and an interaction term for a neutrino. To determine 

the numerical mass value, the neutrino Boltzmann Transport equation that governs the 

neutrino phase-space distribution functions in an early expanding universe was set up and 

then solved in the context of the flat model. The masses found established that weakly 

interacting massive neutrinos close the universe and ultimately contribute to the unseen 
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matter component that is appropriately needed to control the expansion of the universe. 

Essentially, due to the slight heating of neutrinos by electron-positron annihilations, the 

calculated neutrino temperature was found to be 1.946 K, slightly lower than that of photons 

2.726 K, so that much of the energy density of the universe is due to massive neutrinos. 

These massive neutrinos were found to possess masses corresponding to ) 94.3(or   97.1 eVeV  

for relic Dirac (Majorana) neutrinos. Very massive weakly interacting neutrinos of mass 

GeV 57.1  were also found to close the universe. These results were found to be unique from 

those of the previous investigations. In particular, Bergkvist (1972) managed to obtain 60 eV 

using electrostatic and magnetic spectrometric methods; Lubimov et al., (1980) obtained the 

range eVmeV
ev 4614   using a toroidal spectrometer and tritium molecule; Robertson et 

al., (1991) obtained 9.3 eV using gaseous tritium molecule while Weinheimer et al., (1993) 

obtained 7.2 eV using a frozen tritium source. On the cosmological front, Marx and Szalay 

(1976) obtained 130 eV by numerically integrating the Friedman equation while Bernstein 

and Feinberg (1981) obtained 15 eV when they used 10 gigayears as the age of the universe 

and 0.4 as the value of Hubble’s constant. The results further indicated that cosmology has a 

mass gap for neutrino masses in the range between, above GeVeV  57.1 and  97.1  as opposed 

to the )1()2( USU   model of particle physics. For instance, the present upper limits for muon 

neutrinos and tau neutrinos from particle physics data group ( MeVKeVeV  2.18 and  190 , 8.2 ) 

allow these masses to be in this mass gap (Yao, 2006). This shows that cosmology strongly 

constrains the value of the muon and tauon neutrino masses. In particular, the presence of 

GeV masses calculated in this study requires the existence of a fourth family of leptons in 

addition to electron, muon and tauon families. It has also been found that the mass scale of 

heavy neutrinos can arise from lepton-number violation, beyond the standard electroweak 

model interactions. This mass scale is small if the energy scale   is big. If one would wish to 

have neutrino mass in the eV  range say 1.97 eV, then the calculated energy scale from the 

seesaw relation should correspond to GeV 10542.1 13  when the mass of 174.3 GeV is 

chosen for the top quark. This corresponds to an interesting grand unification energy scale 

which could naturally explain the smallness of the neutrino mass that signals the presence of 

new physics at very large energy scales beyond the standard electroweak model. In addition, 

it has been found that massive neutrinos will propagate with different velocities rather than 

with the uniform velocity, say c . Consequently the time of arrival of higher energy neutrinos 

from any given source will precede that of their lower energy counterparts in the neutrino 

detectors. This leads to the phenomenon of neutrino oscillation. In particular, it was found 
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that a neutrino oscillation is highly related to mass and an oscillation in matter is different 

from oscillations in a vacuum. More so, when both the mixing angle and the mass differences 

are positive, the neutrino oscillations are enhanced, whereas in the case where the mass 

difference is negative the situation is opposite. This means that, in the absence of the charge-

parity violating phase in the mixing matrix, the probabilities of neutrino oscillations are 

different from those of antineutrino oscillations (matter can induce the charge-parity violating 

effects). Thus matter effects may mimic the charge-parity violation and this may make it 

difficult to disentangle the genuine charge-parity violation from the macroscopic one in the 

long baseline neutrino oscillation experiments. This issue demands further investigations. In 

particular, many of the experiments on neutrino oscillations, like Fermilab’s Long Baseline 

Neutrino Experiment and MINOS, will be used to put the evidence for neutrino mass on a 

more solid footing. This is because neutrinos produced by accelerators or in nuclear reactors 

(‘man made’) will be preferred as they can be controlled unlike atmospheric or primordial 

neutrinos. However, from the theory of neutrino oscillations, it has been found that neutrinos 

can oscillate over appreciably long distances thereby motivating the cascading of long-

baseline experiments. This will pave way for collaborative research. On the basis of these 

results, it is clear that a neutrino has a finite mass of ) 94.3(or   97.1 eVeV  for a light case and 

1.57 GeV for the heavy one; can acquire mass through the a quasi-Higgs mechanism and that 

weakly interacting eV massive neutrinos are the hot dark matter particles that dominate the 

larger scales of the universe, while the GeV massive ones dominate the smaller scales. The 

)1()2( USU   model of Particle Physics that allows only massless neutrinos is incomplete. To 

incorporate neutrino mass into the model and to explain, convincingly, why it is so small may 

require major changes to the model. Besides, the quantum nature of the neutrino, i.e., whether 

it is a Dirac or Majorana particle is not given any attention in this work. These aspects remain 

open puzzles for the future to resolve. 
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5.2. RECOMMENDATIONS 

 

 A comprehensive and systematic study of the effect of neutrino mass on the 

standard electroweak gauge model is suggested. This may help in shedding 

more light on the possibility of establishing the exact quantum nature of the 

neutrino. 

 The instanton solution as clearly revealed that a neutrino-dominated and 

evolving universe is truly a phase transition. Detailed studies are suggested to 

properly identify the nature of the phase transition in the grand unified models 

that still remains a puzzle. 

 Additional detailed investigations on neutrino mass in the context of the 

formation of structures in the universe are also suggested. This may help in 

determining the exact nature of the neutrino mass that is required for the 

formation of structures in the universe. 
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