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PEDOTRANSFER FUNCTIONS FOR SATURATED HYDRAULIC 

CONDUCTIVITY FOR SURFACE RUNOFF MODELING 

By John P. O. Obiero, Department of Environmental and Biosystems Engineering, 

University of Nairobi, P. O. Box 30197, Nairobi, Kenya. 

 

Abstract 

The study involved development of pedotransfer functions (PTFs) for determining 

saturated hydraulic conductivity (Ks) used in surface flow prediction. This preceded 

evaluation of existing PTFs for Ks in flow simulation. The pedotransfer functions were 

developed to predict parameters used in the determination of Ks using selected basic soil 

properties. The Soil Water Assessment Tool (SWAT) model was used in flow prediction 

in the Naro Moru river catchment of the Ewaso Ng’iro river basin, Kenya. The developed 

pedotransfer functions were then used in the simulation of surface runoff on the 

catchment and their performance in surface flow prediction compared with that of 

existing pedotransfer functions.  

 

Initial model runs during flow simulation yielded poor daily flow simulations compared 

to monthly simulations. This was attributed to differences in the timing of peak 

discharges for the observed and simulated hydrographs. The model was calibrated for a 

three year period followed by a three year validation period based on monthly flows. 

Calibration results yielded acceptable, but modest agreement between observed and 

simulated monthly stream flows. The modest model performance was associated with 

input data deficiencies and model limitations. The results indicated that the model could 

be adapted to the local conditions. Manual flow calibration was performed to improve 

simulation results initially based on average annual conditions followed by monthly 

calibration. There was significant improvement in the model performance based on 

monthly flow simulations. The model simulation of surface flow registered better 

performance compared to base flow and total flow indicating the model to be a better 

simulator of surface flow than baseflow.  

 

Observed and predicted surface runoff was compared to evaluate performance of existing 

PTFs. Model performance was similar for the existing PTFs selected. There was diversity 



v 

 

in performance of PTFs when used for surface runoff prediction.  It was felt there is the 

need for continued development of PTFs for predicting Ks. The developed PTFs were 

evaluated for accuracy and reliability. The PTFs developed for saturated soil moisture 

content (θs) produced better performance in reliability compared to the remaining 

parameters in the van Genutchen moisture retention equation. The developed 

pedotransfer functions were then used in predicting Ks for surface flow simulation. The 

model performance in surface runoff simulation using developed PTFs was found 

acceptable. The study provides insight in developing equations for predicting Ks from 

basic soil properties being an input parameter in hydrological models. Hydrologic 

modeling plays a significant role in enabling policy makers, watershed planners and 

managers make appropriate decisions consistent with sustainable management of 

watershed resources. 
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1 INTRODUCTION 

1.1 Background  

Information on surface runoff is needed for several purposes in soil and water 

management (Pathak, et al. 1989). For example, the prediction of both volume and rate of 

runoff from a watershed is vital in the good design of hydraulic structures (Van Mullem, 

1991). Such structures include those used in soil and water conservation, rainwater 

harvesting, flood control, hydro electric power generation, etc. In order to simulate 

surface runoff in catchments, a number of models have been developed with rainfall 

being a major input in such runoff simulation models. The transformation of rainfall into 

runoff involves many other hydrological processes that include infiltration, 

evapotranspiration, deep percolation, lateral sub surface flow, etc, each of which has 

factors that influence them. Factors that influence the hydrological processes and which 

determine the surface runoff volumes include land use, soil characteristics, topography, 

vegetation, management practices, etc.  

 

A number of runoff simulation models have been developed in an attempt to estimate 

surface runoff taking into account the effects of factors that affect the runoff generation 

process. These models use different approaches and techniques in predicting the runoff 

process. Studies involving prediction of surface runoff process based on runoff 

simulation models have been useful in examining the effects of various land use and 

management practices on water flow behaviour for the purposes of Natural Resources 

Management in watersheds. Hence development of knowledge on surface runoff 

prediction would be useful in water resources planning especially through simulation of 

the effects of management strategies on the surface water resources in the watershed. 

Scientists have therefore made attempts to study the process of the runoff generation for 

water resources management based on developed models. Singh et al. (2008) reviewed 

the understanding of the runoff generation process and simulation of daily stream flow 

for a 516km
2 

basin in the Himalayas using the SNOWMOD model. The study was 

notably useful for the planning and management of water resources in high altitude areas 

and for designing hydropower projects. Sharda, et al. (2006) employed the use of 

artificial intelligence based techniques to predict surface runoff, base flow and total flow 
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as affected by rainfall and morphological features of micro-watersheds. The study was 

part of an attempt to quantify the effect of environmental and morphological factors on 

flow behaviour in the micro-watersheds for the purposes of efficient planning and 

execution of water management practices in a sustainable manner in the Himalayas 

mountains. Surface runoff is closely related to soil erosion and sedimentation in a 

watershed. The runoff rate therefore gives an indication of how much soil is being lost 

and the resulting sedimentation of reservoirs used in water supply or for hydro electric 

power generation. Potential effects of changes in climate on surface water hydrology may 

be studied using runoff simulation models. Such models have been developed for 

selected watersheds to analyze hydrologic sensitivity for selected watersheds to climate 

change scenarios (Bekele and Knapp, 2008) for the purposes of regional water supply 

planning efforts. 

 

 In surface runoff prediction, hydraulic conductivity serves as an important parameter that 

influences hydrological process that affect flow in streams and rivers. For instance, 

ground water flow is determined by saturated hydraulic conductivity. A number of 

formulations have been developed over the years in an attempt to predict soil hydraulic 

conductivity from readily measurable soil properties. The need for mathematical 

modeling of saturated hydraulic conductivity, Ks, arises from consideration of the fact 

that insitu or laboratory measurements of hydraulic conductivity are time consuming, 

labour intensive and expensive as noted by Wells et al. (2006), making it practically 

unlikely in reality to collect permeability data. Besides, direct measurements are also 

considered unreliable for site specific applications and accuracy or replicability of the 

measurements cannot be ascertained. Use of pedotransfer functions is an alternative to 

determination of hydraulic conductivity and involves relationships that enable the soil 

property to be predicted based on measurable basic soil properties available in most soil 

data bases.  

 

1.2 Statement of the problem 

Runoff modeling is notably important in the management of soil and water resources of a 

watershed. A number of models have been developed to simulate the runoff process. The 
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models use different input data, are applicable in different climatic and soil conditions 

and vary in their level of complexity and accuracy in predicting surface runoff on 

selected catchments. Hydrologic models are not universal in their applicability and their 

reliability of runoff prediction is catchment specific. For a model to be used in estimating 

surface runoff at a selected site, its performance at the chosen site should be evaluated to 

examine its efficiency in the runoff prediction and necessary adjustments made on the 

model inputs to adapt it to the selected site and conditions. This may be partly achieved 

through improved model calibration and further validation to establish its applicability 

for runoff prediction while identifying possible reasons for poor performance. This 

research project aims to test the applicability of a selected watershed model in predicting 

stream flow on a chosen catchment located in Kenya, propose possible ways of 

improving its performance on flow simulation and establish the suitability of the model in 

estimating the surface runoff on the selected catchment in Kenya. The study further 

involves development of PTFs in predicting saturated hydraulic conductivity using an 

input parameter to the SWAT model for which it is sensitive in runoff prediction.  

 

In most developing countries, the data availability posses major challenge and 

significantly influences the choice of models and modeling approach. It is indeed 

challenging to identify a model whose data requirement fits with the data available for the 

chosen catchment. The models in most cases have been developed for environments other 

than those for which one may wish to apply them for catchment management. It would of 

major interest to identify a model that takes into account most of the runoff generation 

factors in predicting surface runoff and also able to be run using readily available data on 

local catchments without putting too much demand on data input requirements.  A 

number of catchments in developing countries like Kenya are not gauged and most of 

those that are gauged do not have continuous daily data extending over decades owing to 

breaks resulting from missing data, hence obtaining continuous readily available 

historical data on stream flows is uncommon. Through adaptation of runoff simulation 

models to specific sites, it would be possible to make estimates of stream flows through 

prediction for simulation of watershed hydrologic responses. This would offset problems 

of costs associated with setting up stream flow measuring devises which are not only 
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expensive to set up but also require maintenance, an expensive process as well. Sarangi et 

al. (2008) points out that continuous recording of rainfall and runoff is not only 

cumbersome, but also a costly affair. Runoff simulation models employ different 

techniques of surface runoff prediction. The suitability of these methods differ in various 

environments and requires assessment. The suitability of Curve Number (CN) procedure 

for continuous runoff prediction has been examined by Lamont et al. (2008) who noted 

some significant error associated with the numerical procedure.  

 

An input parameter in many hydrological models for predicting surface runoff is the 

hydraulic conductivity (Ks). Determination of the Ks value in a watershed is time 

consuming, tedious and costly. Besides, there is no specific method that can be 

considered as being most accurate in determining this variable soil hydraulic property as 

the method used depends on the soil and environmental conditions. Furthermore, data on 

Ks is not readily available in most local soil survey data and even where they are 

available, reliability of their measured values is unknown. There is uncertainty in the 

prediction of Ks using existing pedotransfer functions some of which have been 

developed in Europe and America and which may not be applicable worldwide. Methods 

to develop these functions are also unknown if not well understood especially in Africa. 

Well known moisture characteristics functions are associated with parameters that can be 

determined using moisture retention characteristic. Data on moisture retention is not 

readily available in most soil data bases. It becomes essential to estimate such parameters 

using equations that relate them to the basic and easily available soil properties like bulk 

density, texture etc. Equations that relate moisture retention parameters to the basic soil 

properties are not easily available and attempts to develop them is rare. It is noted by 

Saxton and Rawls (2006) that modern simulation and analysis of hydrologic processes 

relies heavily on the accurate and reliable description of soil water holding and 

transmission characteristics yet hydrologists lack the capacity or time to perform field or 

laboratory determination of such properties which include the saturated hydraulic 

conductivity. The author further points out that estimated values of such hydraulic 

characteristics can be determined from local soil data bases like soil maps and published 

water retention and saturated hydraulic conductivity estimates. This involves predicting 
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saturated hydraulic conductivity from basic soil properties like texture and bulk density 

using developed pedotransfer functions based on analysis of the existing data sets, an 

approach that has been applied in agricultural hydrology and watershed management.  

 

1.3 Justification 

 

Watershed models that have been developed for simulation of surface runoff are not 

universal in terms of their accuracy in surface runoff prediction. They may over predict 

or under predict runoff depending on the location and the characteristics of the catchment 

in question. The model may be adapted, through calibration and validation processes, to 

an environment for which it was not developed. However, the model may have 

deficiencies associated with its inability to simulate some hydrological processes or 

require input parameters influencing the runoff process, but which may not be readily 

available or easily determined reliably.  This may affect its performance significantly. 

Some input parameters for a watershed model may require improvement in their 

prediction techniques. Various models also differ in their approaches used to predict 

surface runoff. The prediction techniques vary in terms of the input parameters that are 

used, the variables considered and assumptions made. The methods used in estimating the 

input parameters or processes also differ in their accuracy and reliability. This partly 

explains the under-prediction or over-prediction of surface runoff by the model. There is 

need to assess some methodologies for estimating some input parameters. One such 

parameter is the saturated hydraulic conductivity.  

 

Saturated hydraulic conductivity is among the parameters to which runoff simulated 

using SWAT hydrologic model is sensitive. The need for prediction of saturated 

hydraulic conductivity based on basic soil data is necessary to offset problems of cost and 

time in measuring it.  Measurement of Ks is also in doubt in terms of accuracy and 

reliability. Prediction of Ks involves the use of pedotransfer functions. In hydrological 

modeling using such models as SWAT, determining the input parameter Ks (saturated 

hydraulic conductivity) is based on the use of pedotransfer functions that have been 

developed from elsewhere in Europe and America. The use of these pedotrasfer functions 



6 

 

have not been evaluated for surface flow simulation using the model and hence their role 

in surface flow simulation is not known. It would also be of interest to show how 

pedotransfer functions can be developed from basic soils data. Ks can also be predicted 

using moisture retention curve described using moisture retention functions. 

Relationships between parameters of such functions and basic soil properties is rare in 

practice. In this study, several pedotransfer functions are evaluated to assess their 

performance in predicting Ks for surface runoff prediction using a watershed model. The 

research further demonstrates how pedotransfer functions can be developed from a data 

base of limited soils information in predicting moisture retention parameters, a step in 

predicting saturated hydraulic conductivity from basic, easily measurable or readily 

available data on basic soil properties that can be obtained from most available survey 

data. 

 

1.4 Objectives 

 

The broad objective of this study is to develop  pedotransfer functions for determining  

saturated hydraulic conductivity for flow prediction on a catchment.  

 

The specific objectives of the study are: 

 

1. To identify soil parameters which are pertinent to saturated hydraulic 

conductivity. 

 

2. Using statistical regression, to develop mathematical equations for predicting 

saturated hydraulic conductivity (Ks) using parameters in 1 above. 

 

3. To verify mathematical equations developed in 2 above, using empirical data, in 

surface runoff simulation on a Kenyan catchment. 
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2.  LITERATURE REVIEW 

 

2.1   Evaluation of hydrologic system models performance 

A number of hydrologic models have been developed for estimation of surface runoff or 

other water balance components in a catchment. In order for these models to be applied 

for surface runoff prediction on a catchment there is need for its performance to be tested 

and evaluated so as to establish the possibility of using it for a specified application on 

the watershed in question and where possible be improved for better performance. The 

process involves initial observation of model performance, calibration and validation of 

the simulation models. The evaluation process usually involves the use of observed data 

on stream flow, sediment discharge etc which is compared to the model predictions to 

establish the goodness of fit. The performance indicators of a model are established 

through the use of a number of measures of goodness of fit criteria. Such measures 

include the coefficient of determination (r
2
), Nash Sutcliffe Coefficient (NSE), etc. One 

or more of these measures may be used in model evaluation. The measures help establish 

how well the model predictions compare with the observed data. Such measures have 

been used in a number of research studies to describe model performance. Jain and 

Sudheer (2008) points out that the quantitative assessment of the degree to which the 

modeled behaviour of system matches with the observations provide means of evaluating 

a model’s predictive abilities, and further observes that the Nash Sutcliffe efficiency 

index is widely used in water resources, but cautions that the index alone should not be 

considered adequate in describing model performance and so proposes that other 

statistical measures be used alongside it to reach a definite conclusion about the 

hydrologic model performance.  

 

Statistical parameters that have been used in evaluating hydrologic model performance 

are presented as follows: 
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Model efficiency factor presented as: 

 

  
        

  
   

        
   

             (2.1) 

 

Where n is the total number of observations, Oi is the ith observed value, O the mean 

observed values and Pi the predicted value. Sarangi, et al. (2008) used the model 

efficiency to select the best model for predicting surface runoff based on the E-value 

approaching one (1) while comparing performances of the curve number and 

geomorphological instantaneous unit hydrograph methods of surface runoff prediction. 

The coefficient of determination was used alongside it in the study. 

 

The Nash and Sutcliffe efficiency (NSE), another statistical parameter for evaluating 

model performance is expressed as, 

 

      
   

        
             (2.2) 

 

Where SSE is the sum of squared errors given by, 

 

            
 
             (2.3) 

 

   The simulated value of stream flow (m
3
/s). 

Q = observed value of stream flow (m
3
/s). 

    The average observed value of stream flow (m
3
/s). 

 

The NSE parameter takes values between -∞ and 100%, in which the latter corresponds 

to a perfect fit between the observed and simulated values. NSE indicates the predictive 

power of hydrological models and determines the relative magnitude of the residual 

variance as noted by Dawadi and Ahmad (2012). 
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Levesque et al. (2008) notes that the use of NSE is recommended mainly because of its 

extensive use and adds further that an assessment of underestimation or overestimation of 

the total observed stream flow may be done using the deviation volume, DV presented as, 

 

      
         

  
                        (2.4) 

 

  = simulated stream flow (m
3
/s). 

Q= observed stream flow (m
3
/s). 

 

The coefficient of determination, r
2
 has also been used severally in evaluating model 

performance in various modeling studies. The correlation coefficient (r) has been used by 

Schmalz et al. (2008) in establishing correlation between measured and modeled 

discharges on selected catchments while modeling water balances and hydrological 

processes in lowland river basins. The method was used together with the Nash-Sutcliffe 

coefficient in the study.  A good agreement is associated with the value of r approaching 

unity with a value of 1 indicating a perfect correlation. 

 

Other measures of performance that may be used in evaluation of model performance 

include: 

 

Percent bias (PBIAS) which measures the average tendency of simulated data to be larger 

or smaller than the corresponding observed values. An optimal value of 0.0 indicates 

accurate model simulation where as positive values indicate the extent to which the 

model underestimates the observed values and the negative values indicating the extent of 

model overestimation. It is expressed as: 

 

PBIAS =  
    

      
         

   

      
   

           (2.5) 
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Where PBIAS expresses the percentage deviation of data being evaluated.   
   

is the ith 

observation,    
   

is the ith simulated value for the constituent being evaluated and n the 

number of observations.  

 

Root Mean Square Error (RMSE) is an error index statistic expressed as  

 

RMSE =       
      

      
               (2.6) 

 

A lower value of RMSE implies better model performance. Closely related to RMSE is 

the RSR calculated as the ratio of RMSE and the standard deviation of measured data. It 

varies from the optimal value of 0 for perfect model simulation to a larger positive value. 

It is expressed as; 

 

RSR = 
      

      
      

    

      
      

       
    

            (2.7) 

 

A lower RSR implies lower RMSE and hence better model simulation performance. 

 

The above indicated statistical measures of model performance are further documented in 

Moriasi et al. (2007) who also indicates the ranges of values of some of the parameters 

and associated levels of performance in calibration and validation of hydrologic system 

models.  

 

2.1.1 Calibration and validation of hydrologic system models 

In order to test the applicability of a mathematical hydrologic model, on a selected 

catchment, it has to taken through a rigorous calibration and validation process. The data 

is initially prepared according to the prescribed format required for the data input to the 

measured model followed by test running of the model to examine whether it is able to 

successfully load the data. Based on the preliminary outputs from the model after it has 
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been run e.g. surface runoff, sediment discharge, ground water flow, etc, a comparison is 

made of the observed and predicted parameter values of the selected output parameter. 

The initial performance of the model is then assessed using performance indicators 

discussed earlier. Initial observations may show poor comparisons between the observed 

and predicted parameter values. In the subsequent calibration process, a combination of 

input parameters are determined for which the observed and predicted values would show 

significant improvement in the goodness of fit as measured by performance indicators 

like correlation coefficient, Nash Sutcliffe coefficient, etc. A proportion of data set 

acquired is usually used for the validation. 

 

The need for calibration arises from the fact that models and their associated parameters 

are approximations to reality (Maidment, 1993). The process involves checking with 

observed data the parameter values estimated from physical considerations. In stream 

flow prediction, for instance, where flow records are available, one way of calibration 

involves the adjustment of one or more model parameters to give the best possible fit 

between the predicted and observed hydrographs. Adjustment of parameters may be 

carried out by manual trial and error adjustment of parameters or automatic optimization 

programmes. Chinnarasi et al. (2008) made a comparative study of two mathematical 

models for analyzing lateral erosion in which the models were validated by means of 

comparison with observations. The model calibration process involved comparing mean 

daily water levels with computed results for both the models.  The average percentage 

error (PE) between the computed and measured values for a selected period was used as a 

basis for comparisons. The Soil Water Assessment Tool (SWAT) model has been 

calibrated for daily stream flows using manual and automatic calibration methods 

(Bekele and Knapp, 2008). This was done to assess the performance of a developed 

version of the model intended to improve the model’s capability of simulating low flows. 

Comparison of observed and predicted flows has therefore become an acceptable basis 

for evaluation of hydrologic models’ performance in predicting hydrologic behavior in 

catchments. In this study, a preliminary performance of the model performance in 

predicting stream flow is evaluated using automatic calibration method after a sensitivity 

analysis has been carried out to establish the order of sensitivity of the input parameters. 
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Thereafter, a detailed manual calibration is performed to improve model performance in 

flow simulation. The correlation coefficient, Coefficient of Determination, Nash-Sutcliffe 

Efficiency, percentage bias, and other statistical performance measures were used in the 

evaluation of model performance during calibration and validation periods. 

 

2.2 Hydrologic Model Applications 

 

2.2.1  Modeling effects of Land-Use Change on Watershed Hydrology 

 Land use practices in a watershed is a factor that significantly influences stream flow and 

hence surface runoff in a catchment. Changes in land use alter the hydrologic response of 

a catchment through its effects on various hydrologic processes like infiltration, 

interception, evapotranspiration, erosion and sedimentation, subsurface flow among 

others. As a result, water availability for various purposes that include irrigation, crop 

production, hydroelectric power generation, ground water exploration, etc are determined 

by the kind of land use/land cover prevailing in a watershed. For the purposes of planning 

and management of future water supply capabilities in a watershed and to evaluate 

catchment water resources, especially under changing land-use scenarios, it is important 

that potential effects of land use on the water resources is predicted with certainty. This 

may be done through watershed hydrologic modeling using various approaches. The Soil 

Water Assessment Tool (SWAT) has been, in various ways, used to study the effect of 

land use on catchment hydrology in a number of watersheds. In Technical Brief 2 (2007), 

a modeling exercise, based on SWAT, was carried out to estimate runoff from various 

land use types in upper Malalprabha catchment, India. Various land use scenarios were 

built into the model to study the impact of water availability in irrigated agriculture. 

Based on an existing trend in irrigation water demand at a downstream section, an ideal 

land use to guarantee the required river flow is modeled. Such a study presents a 

modeling approach in which the predicted impact of land use on stream flow may be used 

for planning land use for irrigation water management in agriculture. Land use scenario 

analysis has also been done by Heuvelmans et al. (2005), to predict the impact of land 

allocation on the hydrology and erosion on selected watersheds in which the rate 

variables used to describe the land use impacts included evapotranspiration, surface 
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runoff, discharge, ground water recharge, and soil loss through erosion. Such variables 

can be simulated using the SWAT model. Hydrologic modeling has also been used to 

understand the effects of land use/land cover changes on the hydrological behavior of a 

watershed. A study to investigate land use/land cover dynamics and impacts on stream 

flow has been conducted by Tadele and F  rch (2007) on Hare river watershed, Ethiopia 

which drains a land area of 167.3km
2
. This was in recognition of the fact that knowledge 

of the influence of land use/land cover changes would serve as an important tool for use 

by local governments and policy makers in formulating and implementing effective and 

appropriate response strategies intended to minimize undesirable effects of future land 

use/land cover changes. The study provided insight to understanding the upstream-

downstream linkages with respect to irrigation water use by relating seasonal stream 

variability to land use/land cover dynamics. The study demonstrates a typical application 

of modeling land use/land cover for the purposes of water resources management in 

irrigated agriculture. Runoff simulation was based on the use of SWAT model and land 

cover maps used to analyze land use/land cover dynamics were chosen for years 1967, 

1975 and 2004. An assessment of the fact that land use influences stream flow was done 

by performing simulations for a chosen period using different maps. 

 

2.2.2 Modeling the Impact of Climate Change on Stream flow and surface runoff 

Flow in streams/rivers is significantly affected by variations in weather parameters 

associated with climate change especially temperatures and rainfall. Such changes may 

be modeled to study the resulting effects on surface flow in streams and rivers. Such 

studies are important in simulating variations in the river flows to establish possibility of 

floods or low flows, droughts, etc, when they are likely to occur and the expected 

magnitudes, an important approach in water resources planning. Climate change and 

extreme weather related events like droughts, floods, etc significantly affect such 

important sectors as agriculture, energy, water resources, among others. A modeling 

approach to investigate climate change impacts on stream flow has been attempted by 

Githui et al. (2008) using the SWAT model on the Nzoia catchment in the Lake Victoria 

basin, Kenya. This was in view of the fact that the impact on the ability of the basin to 

support community livelihoods in the region resulting from stream flow variations 
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associated with climate change is of primary concern. The approach involved setting up 

the model based on available historical spatial and temporal data followed by calibration 

using observed stream flow to establish the model performance in stream flow prediction. 

Based on predicted future climate change scenarios obtained from the Global Circulation 

Models, it was possible to simulate future changes in stream flow and its relationship to 

changes in temperature and rainfall. Similarly, Odira et al. (2010) demonstrated the use of 

SWAT model in evaluating the effect of land use/land cover change in the hydrology of 

Nzoia catchment for use in flood management. Noting that evaluation of water resources 

in light of future climate change is important for sustainable planning and management of 

the resource, Obuobie and Bernd (2008) applied the Soil Water Assessment Tool 

(SWAT), to simulate the present considered to be 1990-2000 and the future (2030-2039) 

water resources. A calibration period of 1981-1991 was used and the model validated for 

the period 1992-1999, with the model being evaluated using performance indicators that 

included Nash-Sutcliff Model Efficiency (NSE), coefficient of determination (R
2
), and 

Index of Agreement (IA). Comparison of observed and simulated flow formed the basis 

of model evaluation, in which good correlations were noted between simulated and 

observed flows. The study demonstrates how a calibrated model may be used in the 

prediction of future changes of flow in the rivers resulting from rainfall increases 

associated with climate change. Based on this study, reliability of the water resources can 

be assessed and occurrence of extreme events like floods and droughts predicted to help 

in watershed planning. 

 

2.3  Improvement of a Hydrological model performance 

In order to improve the performance of a hydrological model in predicting surface runoff, 

several approaches may be used as has been attempted by scientists. Lamont et al. (2008), 

in an attempt to improve the simulation of surface runoff using curve number technique, 

developed a soil physics model intended to calculate the soil moisture content that would 

be equivalent to an Antecedent Runoff Condition (ARC), an input into the NRCS curve 

number. The developed model was to provide estimates of soil moisture and infiltration 

parameters based on soil type and soil depth. Bekele and Knapp (2008), in developing the 
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SWAT model to improve flow simulations, introduced a level pool routing algorithm to 

simulate the reservoir storage routing, which was incorporated into the SWAT model. 

Sharda et al. (2006) developed artificial intelligence (AI) models based on Multiple 

Regression Splines (MARS) techniques for use in predicting surface runoff, base flow 

and total flow in the Himalayan mountains. This technique involved the use of data from 

two (2) watersheds to develop the MARS models and exploring their applicability on an 

ungauged watershed. Daily rainfall, runoff, base flow and total flow recorded over two 

years in three watersheds were used. The adoption of the use of AI models was based on 

the argument that they require fewer easily available data and measurable input 

parameters which can be used to simulate complex phenomenon. The author points out 

that process based models (e.g. SWAT, AGNPS, etc.) require a large number of input 

parameters that cannot be easily and accurately measured under field conditions. The AI 

models, however, are site specific, but can be applied under analogous climatic 

conditions. This approach to model development required that the watershed used in the 

study be gauged to monitor daily rainfall, runoff at their respective outlets through 

construction of broad based weirs equipped with automatic water level recorders and 

recording as well as non-recording gauges. This requirement is expensive in terms of 

investment and maintenance. The model performance was evaluated through computation 

of a number of statistical parameters that included; correlation coefficient, absolute 

deviations, average deviations etc to compare observed and predicted values. The 

variables identified as being most important for simulating runoff in hilly watersheds 

were API5, day of the year, runoff estimated by curve number method and watershed 

area. Observed and predicted values were found to be in reasonable agreement using this 

method.  In this study, prediction of saturated hydraulic conductivity was chosen as a way 

of making a contribution to development of an important input parameter in hydrological 

model. The approach involved development of pedotransfer functions for predicting 

saturated hydraulic conductivity being an input parameter in the SWAT model that is not 

readily available in the existing data bases and also cannot be easily and accurately 

measured. It involved prediction of Ks from easily measurable basic soil properties. 
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2.4 Mathematical modeling of hydraulic conductivity for surface flow prediction  

Methods used to determine hydraulic conductivity has been categorized (Zayani et al., 

1992), among them predictive methods involving mathematical relationships.  

Theoretical methods for the estimation of hydraulic conductivity from basic physical and 

chemical soil properties like % sand, % clay, % organic matter etc or soil moisture 

characteristic have been developed. Some of the proposed relations may be exemplified 

as follows;  

2.4.1  Saturated hydraulic conductivity prediction 
 
Young and Gowing (1996) proposed the following relationship for estimating saturated 

hydraulic conductivity, Ks (mm/h). 
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Where   фe= Effective soil porosity (vol/vol). 

              θr   = residual soil moisture content (vol/vol). 

             BD = Soil bulk density (g/cm
3
) 

              C = soil carbon content (%). 

 фe=Ø-θr 
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Where OM = % organic matter content 

             Cl = %clay content 

             CEC = Fractional Cation Exchange Capacity of Clay (cm cm-1) 

. BD = Bulk density (gm/cm
3
) 

Entrap air = 
 

100

))((126.0)(337.020019.08.30.1 OMClCECSaCl 

               (2.12)
 

Where Cl = %clay content  

            Sa = % sand content 

            OM = % organic matter content. 
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C = 0.17 + 0.181(Cl) – 0.00000069(Sa
2
)(Cl

2
) – 0.00000041(Sa

2
)(100-Sa-Cl)

2
   

+0.000118(Sa
2
)(BD

2
) + 0.000049(Sa

2
)(Cl) – 0.000085(100-Sa-Cl)(Cl

2
).                  (2.13)    

The soil water content at field saturation (θs) is given by: 

 θ=Ø-EntrapAir 

 

Lorentz et al. (2001) presented the following equations for estimating hydraulic 

conductivity. An equation reportedly developed by Lorentz in 1995 for estimating 

saturated hydraulic conductivity based on Brooks-Corey hydraulic characteristic function 

is presented as:.   
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Where       ф=porosity   

       γ= pore size distribution index 

                  ρ  = density of water  

                  g = gravitational acceleration 

                  σ = surface tension of water 

                   ko= pore shape factor, equal to 2.5 and 

                   Pb = air entry pressure = hdρg 

 

The author further notes that three hydraulic characteristic functions have been used in 

the determination of hydraulic conductivity. These are Van Genuchten, Brookes Corey 

and Campbel functions presented as follows: 
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             θ  = volumetric water content (mm
3
 mm

-3
) 

             θr = residual volumetric water content (mm
3
 mm

-3
) 

              θs = saturated volumetric water content (mm
3
 mm

-3
) 

              α  = air entry parameter (mm
-1

) 

              h = matric pressure head (mm) 

               n = pore size distribution parameter (dimensionless) and 

              m = pore connectivity parameter taken as 
n

1
1   

 The Brooks Corey retention characteristic is written as; 
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)(
h

dh
eS       for h >hd          (2.17)                                                     

Se = 1 for 0<=h<=hd 

Where hd = air entry pressure (mm) and 

            λ   = pore size distribution parameter (dimensionless). 

 

The Campbell function for the retention characteristic comprises two functions presented 

as; 
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Where he = Campbell air entry parameter (mm) 

             b = Campbell pore size distribution parameter and 

             hi = inflexion point where the equation changes from exponential to quadratic. 

θ  = θs (1-ch
2
) for 0<=h<=hi                     (2.19) 

hi is reportedly related to the pore size distribution parameter b, and air entry parameter 

he, as, 
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Parameters in the Van Genuchten and Brooks-Corey functions can be obtained by fitting 

the soil hydraulic characteristic functions to the Van Genuchten and Brooks-Corey 

functions using optimization models. Similarly parameters in the Brooks Corey model is 

fitted to data to determine its parameters. 

The hydraulic conductivity function is reportedly derived as follows; 
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Where K(h) = unsaturated hydraulic conductivity (mmh
-1

) and  

            Ks      = saturated hydraulic conductivity (mmh
-1

) 
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The above equations use the Van Genuchten retention characteristic substituted into a 

conductivity model. 

Based on the Brooks-Corey retention characteristic applied to a model of hydraulic 

conductivity, a hydraulic conductivity function is yielded as, 
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            (2.24) 

The hydraulic conductivity function used with the Campbell function equation is 

expressed as  
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n is fitted directly to the hydraulic conductivity data. 

It is reported by Obiero et al. (2003) that the Campbell function may be used to express 

saturated hydraulic conductivity as: 
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Si=2b(1+2b)                                                                                                              (2.27) 

 

M = Constant dependent on liquid properties = 9.81 x 10
8
 to yield Ks in mmh

-1 

The equation is reported to have been developed by Hutson, 1983 (Lorentz et al., 2001) 

 

Nandagari and Prasad (1995) points out that the Brooks-Corey and Van Genuchten 

models are the most suitable provided a reliable insitu soil moisture content is available.  

The soil moisture characteristic (SMC), which expresses the relationship between matric 

potential (h) and moisture content (θ) is important is estimating unsaturated hydraulic 

conductivity. Hydraulic conductivity can be predicted from water retention curve (Touma 

& Albergel, 1992). Two common methods for measuring SMC are the laboratory 

pressure plate extraction and the use of insitu paired neutron probe tensiometer 

measurements as indicated by Nandagari & Prasad (1997) who observed that insitu 

measurements are more realistic as they represent field conditions better, but involves 

more time and expenses necessitating the use of texture based models of SMC that rely 
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on regression approach. The authors further noted that model predictions compare more 

favourably with laboratory measured SMC than with insitu measured SMC. 

Several PTFs used to estimate saturated hydraulic conductivity from basic soil data such 

as texture, bulk density, porosity etc are summarized by Sobieraj et al. (2001; Table 3), 

who also used the indicated PTFs for estimating Ks in modeling storm flow. Some of the 

PTFs reported by the author are tabulated (Table 2.1). The tabulated PTF’s would yield 

different values of Ks since they use different sets of data obtained from different sources 

and regions. 

______________________________________________________________________ 

Table 2.1: Pedotransfer functions for estimating saturated hydraulic conductivity  
_______________________________________________________________________ 

Brakensiek  Ks =  10Exp(( 19.52348ф)-8.96847-(0.028212(Cl)) 

 + (0.00018107(Sa)
2
)-(0.0094125(Cl)

2
)-(8.395215ф

2
) 

+ (0.077718(Sa)ф)-(0.00298(Sa)
2
ф

2
)-(0.019492(Cl)

2
ф

2
)  

 (0.0000173(Sa)
2
(Cl))+(0.02733(Cl)

2
ф)+(0.001434(Sa)

2
ф) 

- (0.0000035(Cl)
2
(Sa))). 

Campbell and Shiozawa  Ks=54exp(-0.07Si-0.16Cl). 

Jabro     Log(Ks)(cm/h) = 9.56-0.81logSi-1.09log(Cl)-4.64(BD) 

Puckett    Ks(mm/h) = 156.96exp(-0.1975Cl) 

Dane and Puckett   Ks(mm/h) = 303.84exp(-0.144Cl) 

Saxton     Ks (mm/h) = 10exp[12.012-0.0755Sa+(-3.895+0.03671Sa 

-0.1103Cl+0.00087546Cl
2
/θs] 

Where θs=0.332-0.0007251Sa+0.1276log10(Cl) 

________________________________________________________________________ 

(Adapted from Sobieraj et. al., 2001). 

In this study, some of the aforementioned pedotransfer functions were evaluated in 

establishing the effect of their use in estimating saturated hydraulic conductivity (Ks) as 

an input parameter in surface flow prediction using the SWAT model. Measured Ks value 
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was not available from the data base used in obtaining the soil related input parameter to 

the model. The PTFs selected were those that could be determined using data available 

from the secondary data base used in the research. 

 

2.4.2  Effective hydraulic conductivity (Ke) 
 
Closely related to saturated hydraulic conductivity is the effective hydraulic conductivity 

which is a key parameter important as an input to hydrologic models e.g. Soil Water 

Assessment Tool (SWAT). Its prediction is based on accurate determination of saturated 

hydraulic conductivity. The effective hydraulic conductivity (Ke) may be approximated 

as half the saturated hydraulic conductivity (Neistch, 2002 (b)) i.e.  

sKeK
2

1


            (2.28)
 

 Neistch et al. (2002)(b) reports that an equation had been developed to calculate the 

effective hydraulic conductivity which can be expressed as a function of saturated 

hydraulic conductivity and curve number. This equation incorporates the effect of land 

cover impacts into the calculated effective hydraulic conductivity. The equation is 

expressed as, 

2
).62.0exp(051.01

286.0
82.56





CN

satK
eK

       
                    (2.29)

 

where Ksat = Saturated hydraulic conductivity (mm/hr) 

              CN= Curve Number . 

 

The effective conductivity is evidently a function of saturated hydraulic conductivity 

whose determination is key to the prediction of this parameter. This study evaluated the 

role of selected pedotransfer functions in estimating the hydraulic conductivity as an 

input parameter in the SWAT model. The equations selected were those that could be 

determined using the soil properties available from the data source used in the study 

which did not have measured values of Ks and which therefore had to be estimated using 

a program known as “soil water characteristics” that is based on the use of pedotransfer 

functions indicated as Saxton2006. The purpose of the evaluation was to help establish if 
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the output from the calibration and validation of surface flow simulation using the SWAT 

model is dependent on the pedotransfer function used.  

 

 

2.4.3 Development of pedotransfer functions for saturated hydraulic conductivity 
 

Pedotransfer functions are predictor functions that relate soil hydraulic characteristics to 

the basic soil properties. The main reason for developing pedotransfer functions arises 

from the fact that soil hydraulic characteristics like saturated hydraulic conductivity are 

difficult to measure accurately and are also tedious and time consuming and expensive to 

measure making it an expensive venture. In this study, pedotransfer functions were 

developed to predict saturated hydraulic conductivity (Ks), being a significant input 

parameter in hydrologic modeling and yet measured data in this property are not usually 

readily available in many local data bases.  

 

Approaches to predicting saturated hydraulic conductivity, Ks 

Two techniques can be used to predict saturated hydraulic conductivity from readily 

available data on soil properties using pedotransfer functions. Where data on saturated 

soil hydraulic conductivity is available, Ks can be directly related to the basic soil 

properties as has been illustrated in the previous section (Table 2.1). Saturated hydraulic 

conductivity can also be indirectly predicted from soil properties using moisture retention 

characteristics equations like Van Genuchten, Brooks Corey etc. where data on moisture 

characteristic curves is available. In this case, the parameters associated with moisture 

retention equations are related to the basic soil properties using pedotransfer functions. 

Observed values of the parameters are determined by fitting the measured moisture 

retention characteristics curve to the prediction equation based on the aforesaid moisture 

retention equation. The latter technique was used in this study owing to the availability of 

the moisture retention characteristics data and corresponding basic soil data from the 

international soils data base that was accessible. Readily available data on Ks is rare and 

characterized with doubt on their accuracy as different methods in different environments 

yield varied results as observed by Rasoulzadeh (2011) who pointed out that the relative 

accuracy varies significantly among soil types and field conditions. The author further 
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states that no single method has ever been developed that can be regarded as being able to 

perform well in a wide range of circumstances and for all soils, hence the need to use 

indirect methods from easy to measure soil properties from texture, carbon content etc. 

 

Types and methods of developing  pedotransfer functions for Ks 

Three types of pedotransfer functions are recognized (W  sten et al., 2001) that be 

developed. One category predicts soil moisture retention from particle size distribution, 

bulk density and particle density and requires at least one point of measured hydraulic 

conductivity characteristic. The other is based on point prediction of water retention 

characteristic in which regression equations that predict specific points of interest on the 

moisture retention curves are developed. The method has been used by Fooladmand 

(2011) to predict points along the moisture retention curve on Iranian soil based on 

pedotransfer functions using readily available soil properties. Regression equations were 

developed for nine points along the moisture retention curve. This approach is considered 

accurate and predicts specific points along the moisture retention curve e.g. θ(h), at 

1500kPa and θ(h) at -10kPa. The method reportedly has disadvantage in that it requires a 

large number of regression equations required to quantify complete moisture retention 

characteristics. Another category involves prediction of parameters used to describe 

hydraulic characteristics and relies on models that give sufficiently accurate description 

of Ks. This method predicts parameters in models describing the θ-h-K relationship. The 

latter  method is credited as being more straight forward than point prediction procedure 

due to the fact that the results are directly applied in simulation models. Hence the 

approach was used in the first instance in this study. The study however involves 

prediction of the moisture retention model parameters using the pedotransfer functions 

that relates simple and easy to measure soil properties to these parameters, a notable gap 

in the science of development of pedotransfer functions. 

 

In developing pedotransfer functions, statistical regression is commonly used. Most of 

the available and well established pedotransfer functions for predicting soil hydraulic 

characteristics from continuous soil properties are based on statistical regression 

(Vereecken and Herbst, 2004), which is concerned with analysis and construction of 
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dependence (response) variables like parameters describing moisture retention curve and 

independent (predictor) variables like soil texture and bulk density. In regression 

analysis, an attempt is made to obtain the best possible relationship that can be used to 

estimate the response variable. In predicting the response variable from a number of n 

predictor variables, xi the statistical multiple linear regression tool is expressed as 

(Vereecken and Herbst, 2004): 

 

       
 
                                (2.30) 

 

In which “a” is the intercept, bi is the regression coefficient and ε is the error. The 

multiple linear regression technique was used in this study to develop pedotransfer 

functions that relate parameters in the soil moisture retention equation and basic soil 

properties. 

 

The three main groups of pedotranfer functions are; class pedotranfer functions, 

continuous pedotransfer functions, and neural networks some of which have been 

incorporated into stand alone computer programmes that are able to fit the moisture 

retention curves to predict moisture retention functions. The purpose is to determine the 

parameters of the moisture retention characteristic equation. This study involved the use 

of one such programme to fit observed moisture retention curve to Van Genuchten 

moisture retention equation to estimate the Van Genuchten model parameters which were 

then related to basic properties using developed pedotransfer functions. 

 

The procedure to develop a pedotransfer function involves some steps which include; 

 

Assessing normality of distribution of selected response variable 

This first step of statistical analysis is intended to test if each parameter distribution may 

be considered as normal distribution (Walczak et al., 2006). It involves examining 

distribution of the sample data for a given response variable with a view to obtaining 

information about transformations that yield distribution more similar to the normal 

distribution, a requirement in statistical regression. The normality of a distribution is 
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tested by certain statistics like the Shapiro-Wilk (W-value), Skewness coefficient, 

Kurtosis, etc. The shape of the distribution is determined by a measure of its Skewness  

given by the equation, 

 

   
 

          
  

        

  
 
                        (2.31) 

 

Where 

 

S = Skewness coefficient 

xi = observation value 

  =mean value 

n= number of observations 

s = standard deviation 

 

For a normally distributed data, the skewness =0, hence the closer the skewness 

coefficient is to zero (0), the better is the normality of the distribution. The level of 

Kurtosis also provides information about the shape of the distribution and the extent of 

the normality of the distribution and is given by, 

 

 

   
      

               
   

        

          

          
 

 
                               (2.32) 

 

The measure of Kurtosis is zero (o) for a normally distributed population. Graphical aids 

are also used as alternative to check the normality of the distribution of response 

variables and includes the normality probability plot. 

 

Selection of predictor variables using correlation matrix 

It is important to check the mathematical relationship between potential predictor 

variables with respect to the response variables and by detecting exponential logarithms, 
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or square root tendencies. This is to enable response variables or their transformations to 

be related to predictor variable transformations for which the best possible fit can be 

determined. It is also of utmost importance to eliminate the problem of redundant 

information in the predictor set brought about by linear dependence between predictor 

variables (Vereecken and Herbst, 2004). This problem of multicollinearity can be 

examined by means of correlation matrix to help establish possible correlation between 

any pair of selected predictor variables. The correlation matrix helps choose predictor 

variables to be used in the multiple linear regression equation. 

 

Multiple linear regression 

After selecting the response variables and corresponding predictor variables, a multiple 

linear regression analysis is done to determine the appropriate relationship. 

 

Evaluation of the pedotranfer functions 

 A number of statistical parameters may be used to evaluate the pedotransfer functions. 

The purpose is to asses correspondence between the predicted value of the response 

variable estimated using the pedotransfer function with the measured value obtained from 

a data base. Evaluation of the pedotrasfer functions involve testing them for accuracy and 

reliability in which a response variable estimated using the peotransfer function is 

compared with measured value obtained from a data base. The accuracy of an equation is 

evaluated if the measured values are used to develop the equation. The reliability is 

evaluated when measured values are different from the ones used to develop the equation. 

The evaluation statistic used is the same in assessing accuracy or reliability. Hence a 

dataset is usually split into two parts with one portion being used for testing accuracy 

while the other for evaluating reliability. 

 

The most common statistics used in evaluating pedotransfer functions include the 

following (W  sten, et al. 2001): 

 

(i) Multiple determination coefficient given by  

     
         

  
 

          
 

                      (2.33) 
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(ii) Root mean square error given by 

               
 

 
                                                          (2.34) 

 

(iii) Mean Error given by  

    
       

 

 
                                 (2.35) 

 

(iv) Mean Absolute Error given by  

    
        

 

 
                       (2.36) 

 

Where yi denotes the actual value,     the predicted value, and    the average of the actual 

value and N is the total number of observations.  

 

Tomasellah and Hodnet (2004), evaluated performance of different pedotransfer 

functions for estimating certain soil hydraulic properties that include available water 

capacity (AWC) using R
2
, RMSE and ME. Schaap and Leij (1998) used only RMSE in 

assessing pedotransfer functions developed for predicting hydraulic conductivity and 

water retention based on the use of neural networks. 

 

2.5. Theoretical equations used in developing pedotransfer functions for Ks  

The pedotransfer functions for saturated hydraulic conductivity developed in this study 

were based on the use of Van Genutchen water retention equation. The equation relates 

moisture content (θ) to the soil matric suction (h) (section 2.4.1). Based on this equation, 

the matric pressure head expressed as a function of soil moisture content is written as 

follows when h is made subject of the formula: 

 

     
 

 
   

      
 

                                (2.37) 
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The above equation enables one to calculate h for a given value of θ. To determine 

saturated hydraulic conductivity, Ks, the hydraulic conductivity function is used and is 

expressed as (section 2.4.1), 






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






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2)))(1(1)(1(
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m
nh

mnhnh
sKhK





        (2.38) 

In order to determine Ks using the above equation, a relationship between hydraulic 

conductivity and matric suction, h is required. Such an equation can be obtained through 

equations that relate hydraulic conductivity to permeability (Obiero, 1996). The equation 

is expressed as: 

 

  
   

 
                                                                                                                       ( 2.39) 

Where K = hydraulic conductivity (m/s) 

 ρ  = density of water (kg/m
3
) 

 g = acceleration due to gravity (m/s
2
) 

 k = permeability (m
2
) 

 η = viscosity of water (kg m
-1

 s
-1

) 

Intrinsic permeability k is related to porosity according to the equation  

     
   

 
                                                                                                                                                 

in which ε is the porosity and r the pore radius (Marshal and Holmes, 1988). The 

effective pore radius can be estimated from a simplified equation relating it to the soil 

matric suction expressed as; 

 

  
  

    
           (2.41) 

 

Where s is the suction, γ is the surface tension of water and rt the effective radius of the 

pores. Based on the above equations, it is thus possible to calculate hydraulic 

conductivity from the matric sunction hence K(h) can be computed. Knowing the values 

of α, n, θs, θr, it is possible to determine h(θ) from the moisture retention equation of Van 
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Genutchen if the soil moisture content is known and by extension, terms in the aforesaid 

hydraulic conductivity function can be determined, thereby enabling the saturated 

hydraulic conductivity Ks to be determined. Data on soil moisture characteristic curve is 

not usually readily available in many national soil data bases to enable determination of 

the Van Genutchen moisture retention parameters. Its direct measurement is also costly 

and time consuming (Fooladmand, 2011). There is need to predict these parameters from 

basic soil properties like bulk density, organic carbon and texture is essential, an area of 

study that has not received much attention in the recent past. Development of 

pedotransfer functions that relate these parameters to basic soil properties would ease the 

determination of Ks based on moisture retention equations thereby contributing to the 

knowledge base in determining soil hydraulic properties. The study used this approach in 

determination of the moisture retention equation parameters to determine Ks as an input 

parameter in a watershed scale model for surface flow simulation.  

Based on the PTFs indicated earlier (Table 2.1), the list of basic soil parameters used in 

the pedotransfer functions as summarized by Sobieraj et al., (2001; Table 3) are 

highlighted below (Table 2.2).  

 
Table 2.2 : Soil parameters used in pedotransfer functions (Based on Sobieraj et al., 
2001).  
________________________________________________________________________ 
Pedotransfer Function  Soil Parameters 
________________________________________________________________________ 

Brakensiek     %sand, %silt, %clay, bulk density (g/cm
3
)  

Campbell and Shiozawa   %silt, %clay   

Jabro      %silt, %clay, bulk density (g/cm
3
) 

Puckett     %clay 

Dane and Puckett    %clay 

Saxton     %sand, %clay, 

Young and Gowing (1996)  %sand, %clay, bulk density(g/cm
3
), %CEC,     

                                                             %Organic matter content .  

________________________________________________________________________ 

 

From Table 2.2, the basic soil parameters (soil properties) that affect the saturated 

hydraulic conductivity include sand, silt, clay, organic carbon, cation exchange capacity 

and bulk density. The properties used in this study to develop pedotransfer functions were 
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bulk density, sand content, silt content, clay content and organic carbon being physical 

soil properties common in most soil data bases. These properties are also most common 

for use in the development of pedotransfer functions. The actual properties, used in 

predicting the moisture retention parameters in this study depended on results from 

statistical regression that identified the strength of their correlations with the selected 

transformations of the response variable and also in minimizing multicollinearity among 

the predictor variables.  

 

2.6  The SWAT Model Review  

2.6.1 Brief Description of the SWAT Model  
 

SWAT model is a process based, continuous physically based distributed parameter river 

basin model that simulates water, sediment and pollutant yields developed in the early 

1990’s to assist water resources managers asses impact of land use management on water, 

and diffuse pollution for large ungauged catchments with different soil types, land use 

and management practices (Levesque et al., 2008). Model components include weather, 

hydrology, erosion, soil, temperature, plant growth, nutrients, pesticides, land 

management, channel and reservoir routing (Rostamian et al., 2008). The first step in 

creating a SWAT model involves delineation of the sub-watersheds in the basin each of 

which is treated as an individual unit. The sub basins are further divided into hydrologic 

response units (HRU’s). These units are composed of homogeneous land use, soil 

characteristics and management practices. Relevant hydrologic components like surface 

runoff, ground water flow and sediment yield are estimated for each HRU unit. Two 

methods are used for surface runoff estimation in SWAT i.e. the SCS curve number and 

Green-Ampt infiltration. This study is based on the use of curve number for surface 

runoff and hence stream flow simulation. A SWAT model can be built using the Arc-

View interface called AVSWAT which provides suitable means to enter data into the 

SWAT code.  
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2.6.2 SWAT Model Origin and Applications 
  
The historical development and applications of the SWAT model is well documented in 

Gassman et al.(2007) in which it is reported that early origins of SWAT is traced to 

models previously developed by the United States Department of Agriculture, 

Agricultural Research Service (USDA-ARS) models that included the Chemicals, Runoff 

and Erosion from Agricultural Management Systems (CREAMS) model, Ground Water 

Loading Effects on Agricultural Management Systems (GLEAMS) model and the 

Environmental Impact Policy Climate (EPIC) model originally called Erosion 

Productivity Impact Calculator. The authors further note that the current SWAT model 

evolved from the Simulator for Water Resources in Rural Basins (SWRRB) model whose 

development commenced in the early 1980’s and through modifications that incorporated 

inputs from other models, the SWAT model finally developed when SWRRB was 

eventually merged with Routing Outputs Outlet (ROTO) model to overcome their 

limitations. Since its creation in the early 1990’s, the model has undergone continuous 

review and expansion of its capabilities. The model has been applied worldwide for 

purposes that include simulation of sediment flow (Ndomba, 2010), modeling hydrologic 

balance (Setegen et al., 2008), Evaluation of the impact of land use and land cover 

changes on the hydrology of catchments (Odira et al., 2010). It has also been used to 

assess the effect of certain interventions on river and sediment flows (Tripathi et al., 

2005). The model has registered good performance and also limited success. Limited 

success has been reported in SWAT simulation for stream flow in South African 

catchments (Govender and Everson, 2005). Over estimation of flows between 1 and 3 

mm was reported while flows between 4 and 7 mm were overestimated. The model 

performance was notably better in the dry than in the wet years. Discrepancies between 

the observed and predicted flow for the two catchments considered was attributed to their 

small drainage basins. The model was developed to simulate large catchments, a 

limitation which may affect model performance.  
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3. METHODOLOGY 

 

3.1 The Study Catchment 

3.1.1 Description of the study area. 

The study area is Naro Moru river catchment. The catchment covers an area of 172 km
2
.  

The catchment lies at the North Western slopes of Mt. Kenya. The river originates from 

the peak of Mount Kenya and is tributary to the Ewaso Ng’iro River. The catchment lies 

between latitudes 0
o
 03’ and 0

o
 11’ South and longitudes 36

o
 55’ and 37

o
 15’ East. The 

altitude of the Naro Moru catchment ranges from 5200m at the peak of the mountain to 

1800m above mean sea level at its confluence with Ewaso Ng’iro river. The catchment 

lies on the leeward side of Mt Kenya and therefore is characterized by low amount of 

rainfall as presented by Ngigi (2006) who also reported that the mean annual rainfall 

within the catchment increases from 650mm at the outlet to 1500mm at 3300m altitude 

and drops to 500mm in the moorland. On average the annual potential evaporation is 

above 2500mm. The climatic conditions that prevail in the catchment and Agro-

ecological zones are documented by Thomas et al. (1993) varying from the glaciated 

peaks of Mount Kenya (5200m) to the semi- arid Laikipia plateau (1800m) above mean 

sea level. The catchment has five different ecological zones being peak, moorland, forest, 

foot zone and savannah and so has diversity of vegetation/land use and soil types. 

Location of the study area in Kenya is shown in Figure 3.1. The drainage basin has 

several river gauging stations from the top of Mount Kenya to the point where the river  

joins the Ewaso N’giro river. It is reported by Gathenya et al. (1993) that these stations 

were installed in 1982 and had been maintained by the Laikipia Research Programme 

since then. Some of these are shown in Figure 3.2 alongside the river drainage network. 

The Kenya Meteorological Department and the Ministry of Water and Irrigation, Kenya 

also has collected weather data and river flow data respectively on some gauging stations 

in the catchment. The land-use types and major soil types based on the FAO-UNESCO 

system of classification of 1990 and predominant in the catchment are shown on Figures 

3.3 and 3.4 respectively. 
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 Figure 3.1. Location of the study area 
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Figure 3.2. Drainage network and gauging stations in the Naro Moru catchment 

 

Key 

Gpspts – location of gauging stations 

Bndcln – catchment boundary 

Rvcln – drainage network 
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Figure 3.3.  Land use types covering the study area 
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3.1.2 Available Data 

A summary of raw data found to be available for the above described test catchment is 

presented as shown in Table 3.1. This data base consisted of hydro meteorological data 

and other information relevant for the purposes of this study. 
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_______________________________________________________________________ 

Table 3.1: Summary of raw data available for the catchment under investigation 

________________________________________________________________________ 

Data Type   Period    Comment 

1. Rainfall 

(i) Hourly rainfall  1995-2001   Available on selected dates 

(ii) Daily rainfall  1992-2000   Continuous daily data from  

         stations in catchment vicinity. 

(iii) Weather data                     1992-2001   Continuous daily data    on     

                                                                                                 temp., wind speed, etc 

2. Stream flow 

(i) Daily flow   1985-2000   Available from station 5BC2   

                                                                                               from Ministry of water  

                                                                                                development. 

 

(ii) Gauge heights   1995-2001   Hourly records of 4-9hrs each  

                                                                                                day. 

 

2.  Topographic maps   -   Scale 1:50,000 

 

3. Aerial photographs  1988    scale 1:70,000 

________________________________________________________________________ 

 

3.2 Data Acquisition and Preliminary Analysis. 

 

3.2.1 Catchment Characterization (Topographical maps acquisition and processing) 

 

Topographic maps at the scale of 1:50,000 were acquired from Survey of Kenya, 

Ruaraka, Nairobi, Kenya. Approval from the Department of Defence, Kenya was a 

required to collect the data. Three topographical sheets adequately captured the area of 

research interest. This data was utilized in digitizing and clipping of the various essential 

features and characteristics of the study area. Using the topographical sheets, the Kenya 
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Soil Survey department, Nairobi, Kenya, attempted to manually delineate the catchment 

boundary and thereafter digitized such features as contours, river networks, roads, sub 

catchment boundaries, markets centres, schools etc. and these were presented as 

themes/layers in the Arc-View GIS software. Similarly, important catchment 

characteristics that influence the rainfall-runoff processes were digitized and clipped to 

provide these essential characteristics for the Naro Moru river catchment. These included 

soil types, rooting depths, Agro ecological zones, land-use types, slope classes, etc. These 

were likewise made available in soft copy in Arc-View so as to feature as themes/layers 

that can be shown separately or overlaid as required in an analysis. Data on land cover 

types, an important parameter required as an input to relevant watershed models was 

downloaded from the FAO Africover data base after permission was granted from the 

relevant authorities. This data, available for the whole country, was considered together 

with other data sources for the study area in preparation for relevant analysis. 

 

3.2.2 Photogrammetric Mapping (Aerial photo acquisition and processing) 

Another set of data acquired for this research were aerial photographs that adequately 

covered the study area. The relevant air photographs were identified with the assistance 

of the Survey of Kenya personnel using the transparent diapositive overlaid on a 

topographical map and showing the flight paths. The identified photographs were 

purchased from the Survey of Kenya. Processing of the aerial photographs through 

photogrammetric mapping was carried out at the Department of Surveying, University of 

Nairobi. Processing of the photographs involved an elaborate procedure of mapping to 

plot the contours at a shorter interval (higher resolution) for use in catchment delineation 

after digitization. The river networks were also plotted and so were other features e.g. 

roads, town centres, railway lines etc. The detailed mapping procedure is appended 

(Appendix 1). The Digital Elevation Model (DEM) was then derived from the digitized 

contours since readily available data on DEM was not available.  

 

3.2.3 Digitizing of the contours and drainage networks. 

The process of digitizing began initially with registration in which the topographical 

sheet is mounted onto the digitizing plate and four georeferenced points lying on a 
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rectangular grid marked. These are designated 1, 2, 3, and 4 in a clockwise mode.  Using 

Arc-view software with the appropriate extension, these points with their coordinates are 

registered on the screen. Other details were also recorded and checks made accordingly 

until registration is achieved within the limits of acceptable error. The process of 

digitizing is then set to commence.  Alternatively the mapped topographic sheets are 

scanned to obtain a raster image which is then retrieved on the screen in Arc-view or 

other appropriate software and then followed by screen digitizing of the contour and 

other desired features and river networks. The ultimate procedure chosen for digitizing 

the test catchment as discussed by Siriba (2004) is appended (Appendix 2) and 

summarized in Figure 3.5 

 

 

 

Figure 3.5. Flow diagram showing sequence of events followed to obtain digital map 

of the test catchment 

 

The main aim of digitization of the catchment was to produce a digital map of contours 

and stream networks for use in preparing input data for hydrological modeling. The 
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Digitization/vectorization 

  Photogrammetric mapping 

  Preparation/planning 



40 

 

procedure for input data preparation is described in more detail in the subsequent 

sections.  

 

3.2.4 Hydro meteorological data acquisition and processing  

 

Rainfall data acquisition. 

A list of all the rainfall stations reportedly located in the Ewaso Ng’iro River Basin and 

within which the study area lies and their geographic coordinates was provided by the 

Meteorological department. Details of the rainfall station names, geographic coordinates, 

elevations, etc, were recorded in excel software and retrieved into arc-view using an 

appropriate format so that a theme for the stations was created to feature as a layer in arc-

view. The list of rainfall stations identified to be inside or in the vicinity of the test 

catchment are shown in Table 3.2. Only two stations were observed to lie within the 

catchment. These were the Naro Moru gate and Meteorological Station Lodge. The data 

reportedly available for these stations is daily rainfall. A third station used together with 

the above mentioned two stations to obtain daily rainfall data was the Sirimon Gate 

station also near to the catchment. Out of the stations provided by the meteorological 

department, only two stations were reported to be full meteorological stations from which 

all the meteorological variables could be obtained apart from daily rainfall. These are the 

Laikipia Air Base (Nanyuki) and the Nyeri Meteorological Station. These stations are the 

ones that were used for obtaining such information as solar radiation, temperature, wind 

speed, etc. required as input in the model intended for this research work. Only the Nyeri 

meteorological station had continuous data over the nine year period during when the 

analysis was done and so was used in the analysis. The stations are show in Figure 3.6. 
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_______________________________________________________________________ 

Table 3.2: List of rainfall stations inside and in the vicinity of the test catchment___ 

Station Name Latitude Longitude Altitude 

Laikipia Air base (Nanyuki) 0 03N 37 02E 6200FT 

Sweet Waters Tented Camp 0 00S  36 56E 1780FT 

Karemeno School of Agriculture 0 08S 36 46E 6800FT 

Ngobit Suguroi Estate 0 2S 36 39E 6666FT 

Lamuria Met Site 0 08S 36 52E 6100FT 

UasoNyiro Lawrence Mwangasi 

Farm 0 17S 36 51E 6800FT 

Riunge Hill 0 24S 36 43E 10400FT 

Kurase Hill Aberdare Park 0 20S 36 40E 11200FT 

Ark Gate Aberdare Park 0 20S 36 51E 7000FT 

Ngobit Police Post 0 3S 36 47E 6500FT 

Ol Pejeta Ranch Ltd Loideni 0 2S 36 52E 6000FT 

Mugunda Primary School 0 10S 36 42E 7500FT 

Ndunyu Gwathi Market 0 16S 36 51E 6800FT 

Rhino Gate National Park 0 20S 36 36E 8600FT 

Matanya LRP Station 0 02S 36 04E 1800FT 

Watuka Met Station 0 16S 36 45E 2400FT 

Kangaita Forest Station 0 0S 37 9E 6800FT 

Gathiru Forest Station 0 5S 37 7E 7500FT 

Burguret Forest Guard Post 0 06S 37 02E 6400FT 

Naro Moru Gate 0 10S 37 9E 7200FT 

Sirimon Gate, Mt Kenya Park 0 2S 37 17E 8500FT 

Meteorological Station Lodge 0 10S 37 2E 10,000FT 

Ol Pejeta Sweet Water Dip 0 2N 36 58E 6000FT 

Ontulili Forest Station 0 01N 37 11E 7400FT 

Nanyuki WDD 0 01N 37 05E 6300FT 

Nanyuki Ministry of Water 

Development 0 01N 37 05E 6500E 
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 Acquisition of River flow data 

The above data were acquired from the NRM
3
 data base at Nanyuki, Kenya. The data 

was in the form of daily stream gauge heights recorded for the period 1995-2000. 

This provided the stage graphs for the aforementioned period. The stage graph data 

was collected for each of the gauging stations at the main outlet and of the sub 

catchments within the Naro-Moru river basin. These were designated as A3, A4 and 

A5 and A6. Daily river flow data recorded in m
3
/s were also collected for the four 

gauging stations. The river flow data was also acquired for the station at the outlet of 

the catchment designated 5BC2 from the Ministry of Water Development, Nairobi, 

Kenya  for the period 1985-1998 for which the data is available. This station 

corresponded to that of A5 and was the one used in the analysis of model evaluation. 

Together with the river flow data, rating equations to convert the stage graphs to 

discharge were also acquired from the NRM
3
 data base. These were as follows for the 

Naro Moru river basin. 

 

Stage Station Rating Eqn  Error  Period  Application 

H>0  A1 Q=0.8239(H-0058)
1.0181

 0.004698  27/7/82-11/1/91 1981 to date 

 

H>0  A2 Q=1.6304(H-0.078)
4.863

 0.03965  23/11/81-24/11/94 1981 to date 

 

H>0  A3 Q=18.1176(H+0.079)
3.6485

 0.07838  25/5/81-18/10/95 1981 to date 

 

H>0  A4 Q=6.1291(H-0.05)2.6446 0.05105  8/11/84-18/10/95 1981 to date 

 

H>0  A5 Q=15.973(H+0.012)
1.762

 0.06869  30/4/48-12/11/82 30/4/48-18/4/83 

                                         Q= 36.4200(H-0.0)
2.374

 -  18/5/83-8/4/94 26/4/83-17/5/95 

 

0.1≤H≤0.3  Q=19.8976(H-0.033)
1.8001

 - 

H>0.3  Q=14.3615(H-0.07)
1.4035

 

 

H≥0   Q=8.1040(H-0.039)
2.5616

 0.03125  5/10/95-28/10/95 18/5/95 to date 

 

H≥0  A6 Q=2.3292(H+0.076)
1.6767

 0.15707  3/3/82-3/11/95 3/3/82 to date 
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3.3  Data Analysis 

 

3.3.1. Model Selection 

The Soil Water Assessment Tool (SWAT) was chosen for hydrological modeling in the 

watershed under study using the Arc-view SWAT (AVSWAT2003). SWAT is a 

watershed scale model developed to predict the impact of land management practices on 

water, sediment and agricultural chemical yields with varying soils, land use and 

management conditions over long periods of time (Neistch et al., 2005). One basis for 

model selection was due to its worldwide use for variety of applications. The model has 

in the recent past gained significant publicity having been used widely for various 

applications world over with notable success (Ndomba and Birhanu, 2008) with recent 

applications in the Nilotic catchments that include Kenya, Tanzania, Ethiopia, Uganda, 

among others. SWAT has gained international acceptance as a robust interdisciplinary 

watershed modeling tool as evidenced by international SWAT conferences, hundreds of 

SWAT related papers presented at numerous scientific meetings, and many articles 

published in peer reviewed journals. The model has been used for a wide range of 

applications for reasons that include its computational efficiency and flexibility on input 

data requirements (Stehr et al., 2008). The available data for the catchment under study 

could be used in hydrological modeling using SWAT. SWAT is capable of modeling 

changes in land use and management practices, can model variety of catchment areas 

ranging from a few hectares to thousands of square kilometers and performs long term 

simulations. Besides, the model is freely available and can be downloaded from the 

internet. The model website has a well developed system for support to model users. The 

model is in the public domain and therefore available without many restrictions. The 

model has options for daily, monthly and yearly time step simulations that can be carried 

out without altering the input data. Model predictions are spatially distributed thereby 

providing spatial information regarding upstream sources of modeled quantities 

(Andualem and Yonas, 2008). 
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3.3.2 Data Preparation for Hydrological Modelling Using SWAT 

Summary of model input data. 

The input parameters required to run the model included; 

• Daily precipitation 

• Digital elevation Model (DEM) 

• Weather data (Solar Radiation). 

• Soils information. 

• Land use data. 

• Drainage data (optional). 

 

Digital elevation model (DEM) 

The DEM was created from the contours previously digitized and converted to a shape 

file and covering the area under study. The DEM created, based on the digitized contours 

had a resolution of 55 in metres. Figures 3.7 and 3.8 shows the digitized contour 

network and the corresponding DEM derived from it.  

 

Land use input data preparation 

The land use data was extracted for the rectangular grid covering the selected study area. 

The shape file land use map was compiled from the Kenya Soil Survey. The SWAT 

model requires that these land use types be re-classified to the corresponding SWAT land 

uses for the model to successfully load the land use classes that the model recognizes. 

Hence, for each of the land uses observed in the study area, a corresponding SWAT land 

use was identified and used in the reclassification. A land use look up table (dbf) was 

thus prepared showing the SWAT land use types and corresponding abbreviations. The 

land use look up table (Table 3.4) is also an essential input to the SWAT model which 

links the table to the land use map. The land uses and abbreviations are shown in Table 

3.3. Then numbers in the value column in Table 3.4 above correspond to the numbers in 

the field named LUNUM of the land use attribute table that correspond to the indicated 

land use types that have been re-classified into SWAT land use. 
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Figure 3.7. Contour network derived for the study area   

 

Contours 
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Figure 3.8 Digital elevation model  derived from contour network 
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Table 3.3:  Reclassification of observed land uses to SWAT land types 

Kenya Land Use 

 

SWAT land use 

 

SWAT land use code 

 

Plantation 

 

Mixed forest Land 

 

FRST 

 

Agriculture (sparse) 

 

Cropland and pasture 

 

AGRL 

 

Woodland 

 

Evergreen Forest Land 

 

FRSE 

 

Forest 

 

Deciduous Forest Land 

 

FRSD 

 

Barren Land Strip Mines SWRN 

 

 

Table 3.4: Land use look up table 

Value 

 

Land use (SWAT) 

 

1 

 

FRST 

 

2 

 

AGRL 

 

3 

 

FRSE 

 

4 

 

FRSD 

 

5 

 

SWRN 
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Soils input data preparation 

The input data for soil included the shape file soil map extracted from the soil of Kenya 

obtained from the data base of the Kenya Soil Survey (KSS). The map provided 

information on the major soil types classified based on the FAO classification and some 

of the soil attributes e.g. proportion of main soil type in the soil unit. For each of the soil 

mapping units occurring in the study area, the soil physical and chemical properties 

relevant as input data to SWAT were determined from the corresponding soil unit 

identified from the table of the soil properties (KENSOTER table). These properties 

included the proportions of sand, silt, clay and coarse fragments (i.e. % sand, %clay, 

%silt), bulk density, Cation exchange Capacity (CEC), Electrical Conductivity, Total 

Carbon, etc. The soil properties were then used in editing the SWAT data base accessed 

though the arc-view interface AVSWATX. The soil units were added as new soil unit in 

the data base. Some of the soil properties required as input to the soils database could not 

be obtained directly from the table of soil properties and included saturated hydraulic 

conductivity (Ksat) and Soil Erodibility (USLE_K). To determine Ksat, the programme 

known as Soil Water Characteristics was used. This software predicts Ksat and other soil 

properties using information on soil texture and organic matter content. Soil texture 

information was obtained from the table of properties in the KENSOTER soils data base. 

The organic matter content (O.M) was determined from its relationship with Total 

Carbon (C) shown in the equation below (Neistch, et al., 2002(a)) . 

O.M=1.72C 

Where O. M. = organic matter content (%)  

C = organic carbon content (%). 

The level of compaction was assumed normal needed also as input to the Soil Water 

Characteristics programme. Figure 3.9 shows the major soil units found in the study area. 

The soil properties of the units are shown in Table 3.5 indicating the relevant soil input 

information for SWAT. The USDA texture based nomographs were then used to estimate 

the soil erodibility (USLE_K). The nomographs required information on texture, O.M. 

soil structure and permeability. The structure and permeability were predicted from the 

soil texture. The use of KENSOTER soils data base to estimate the soil properties is well 

documented in Bartes and Gicheru (2004). A user soil data base in the form of a dbf table  
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Figure 3.9 Major soil units in the study area 

Soil units 
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(excel) was also prepared to assist in re-classifying the user soils to be consistent with the 

SWAT classification. The soils look up table is shown in Table 3.6. The table is linked to 

the arc-view shape file of soil map through the attribute table of the shape file in which 

the fields (columns) similar to those in the soils look up table is added. 

Table 3.5 Soil properties for the major soil units in the study catchment. 

soil 

 

%sand 

 

%silt 

 

%clay 

 

Bulk 

density 

g/cm3 

CEC 

% 

Ksat 

mm/h 

ELCO 

mmhos/cm 

TAWC  

% 

TOTC 

g/kg 

USLE_K 

 

HSs 

 

30 

 

56 

 

14 

 

0.36 

 

15 

 

7.8 

 

0 

 

35 

 

80.0 

 

0.28 

LVf 

 

26 

 

22 

 

52 

 

1.48 

 

18 

 

0.03 

 

0 

 

12.3 

 

9.3 

 

0.15 

 

VRe 

 

30 

 

30 

 

40 

 

1.49 

 

40 

 

0.11 

 

0 

 

12 

 

15 

 

0.17 

 

PHI 

 

24 

 

17 

 

59 

 

1.10 

 

14 

 

0.02 

 

0 

 

11 

 

14.8 

 

0.19 

 

ANm 

 

59 

 

20 

 

21 

 

1.13 

 

33 

 

0.84 

 

0 

 

17 

 

23.5 

 

0.05 

 

 

Table 3.6: Soil look up table 

VALUE NAME 

1 VRE 

2 PHI 

3 ANM 

4 LVF 

5 HSS 

6 PLE 
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Weather data input preparation 

The location of the meteorological station with the weather data based on its UTM co-

ordinates and elevation was required. The X-coordinate (Easting) and Y-coordinate 

(Northing) based on the Universal Transfer Mercator (UTM) co-ordinate system for the 

Nyeri meteorological station which was chosen to provide weather input data were 

273695 and 992078 respectively. The station elevation was 1817m above sea level. The 

weather input variables required included; Solar radiation, wind speed, relative humidity, 

precipitation, dew point temperature, minimum and maximum temperatures. Based on 

the data available at the Kenya Meteorological Station, it was possible to acquire the data 

for all the above weather variables for 9 years daily data during the period 1992-2000 

based on three rainfall stations in the vicinity of the study catchment. Data for 

precipitation, however was obtained from three (3) rainfall stations in the vicinity of the 

study catchment. Two of the stations lie inside the catchment while one is outside. The 

co-ordinates and elevation of the stations were then included in the precipitation station 

location and input data tables. 

 

The weather generator 

The weather generator provides input data to SWAT being parameters derived from the 

weather information. The weather generator data was derived from the nine years daily 

data (1992-2000) on rainfall, minimum temperature, maximum temperature, relative 

humidity, windspeed, solar radiation and dewpoint temperature. The data output included 

the following for precipitation: 

• Average monthly precipitation (PCP_MM). 

• Standard deviation for precipitation (PCPSTD). 

• Skew coefficient (PCPSKW). 

• Probability of a wet day following a dry day (PR_W1). 

• Probability of a wet day following a wet day (PR_W2) 

• Average number of days of precipitation in month (PCPD). 

The data was provided on a monthly basis for each month. The same information as 

indicated in the aforementioned list for precipitation was also determined for the other 

variables i.e temperature, solar radiation, etc. To determine the indicated weather input 
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data, a programme (pcpSTAT) was used to compute the weather input data from the daily 

data of the weather variables. The programme required the following input information to 

determine the weather generator data. 

•    Input file name i.e. file containing all the daily data for the period in question  

(text file) arranged as a column. 

•    The number of years of record. 

•    The year of commencement of data which has to be 1
st
 January in this case 1/1/1992. 

•    Output file name. 

 

Once the above information is provided as input to the programme, as required for each 

weather variable, the output will be in excel file format containing all the weather 

generator input data required for running the SWAT model. Table 3.7 shows the output 

data in the tabular form showing the input data for SWAT weather generator for each of 

the months of the year computed for precipitation. A similar table was generated from the 

programme for solar radiation, wind speed, etc. From the SWAT arc-view interface, the 

SWAT data base was then edited through addition of weather station containing the 

weather generator parameters i.e. Nyeri Meteorological Station. Other information 

required in the template for weather input data included the co-ordinates and elevation of 

the chosen weather station and then the weather generator data (Table 3.7). 

 

Drainage Data 

Drainage data input into SWAT was provided in the form of digitized stream network. 

The digitized stream network was made available as shape file. The stream network used 

as input to SWAT together with the DEM was used in the catchment delineation using a 

selected watershed outlet. The location of gauging stations also available as shape file 

were used in the location of the watershed outlets.  
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_______________________________________________________________________ 

Table 3.7: Statistical analysis of daily precipitation data (1992-2000) 

__________________________________________________________________________________ 

Statistical Analysis of Daily Precipitation Data (1992 - 2000) 

  

Number of Years =   9 

Number of Leap Years =  3 

Number of Records =     3288 

Number of No Data values =      488 

   ________________________________________________________________________________ 

Month    PCP_MM    PCPSTD    PCPSKW       PR_W1  PR_W2       PCPD 

  _________________________________________________________________________________ 

  

 Jan.    81.53       6.1107       4.0802      0.1867       0.6991      12.56 

 Feb.    41.86       3.9803       4.2765       0.1326       0.6486       8.22 

 Mar.     88.84       5.9178       4.0596      0.3262       0.6304      15.33 

 Apr.     182.99       9.7280       2.8104     0.4828       0.7486      20.33 

 May.     106.46       6.2821       3.2343     0.2444       0.7083      16.00 

 Jun.      55.50       4.2508       4.4372     0.2484       0.6055      12.11 

 Jul.      36.07       2.8174       4.1589       0.1244       0.6410       8.67 

 Aug.     65.67       4.1635       3.6610      0.1783       0.7541      13.56 

 Sep.      50.42       3.0005       3.3155      0.2053       0.6891      13.22 

 Oct.     16.93       6.2111       3.6169      0.4634       0.7766      21.89 

 Nov.     194.61       8.3931       2.5351      0.5682       0.8540      25.11 

 Dec.     101.79       6.7759       4.4150      0.2741       0.7014      16.00 

 _________________________________________________________________________________ 

 PCP_MM = average monthly precipitation [mm] 

 PCPSTD = standard deviation 

 PCPSKW = skew coefficient 

 PR_W1  = probability of a wet day following a dry day 

 PR_W2  = probability of a wet day following a wet day 

 PCPD   = average number of days of precipitation in month 
 

 

Loading the SWAT input data. 

The SWAT model was able to successfully load and process the input data described 

earlier. In loading the DEM, the DEM properties had to be defined based on the selected 

projection (Transverse Mercator) and other parameters required for the projection were 

specified. Having successfully loaded the DEM, the digitized stream network was next 

input and processed together with the DEM to yield the drainage outlets of the various 

possible sub-watersheds. On the selection of the main watershed outlet and further 

processing, the watershed was delineated and likewise the sub-watersheds within the 

selected drainage basin and sub-basin parameters calculated. The next input data to be 

loaded was the land-use data which successfully loaded as shape file and also the land 
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use look up table. These were then re-classified into SWAT land-uses. The soil data, was 

next loaded as shape file earlier mentioned and followed by the soils look up table and 

again re-classified. The land use and soils data were then overlayed to produce the 

hydrologic response units. The weather data was next input. This involved the selection 

and loading of the location tables, and input data for precipitation, solar radiation, wind 

speed, relative humidity, weather generator data and dewpoint temperatures etc. Having 

successfully loaded the indicated data and provided estimations on other data (not major 

inputs data) as required, the model was able to accept and load all the input data acquired 

for the catchment in question and hence ready to run and produce the necessary output 

information on stream flow, soil moisture, chemical pollutants levels, on a daily, monthly 

or yearly basis during the selected period. 

 

3.3.3 Model Evaluation 

Graphical and statistical techniques were used for evaluating model performance. One of 

the evaluation statistics used was the Nash-Sutcliffe efficiency (NSE) being the most 

widely used evaluation criterion for testing the goodness of fit between the observed and 

simulated values.  It indicates how well the plots of observed and simulated data fits the 

1:1 line and is expressed as 

NSE = 1- 
    

      
      

   

    
            

   

                       (3.1) 

Where Yi
obs 

is the ith observation
 
for the constituent being evaluated, Yi

sim
 is the ith 

simulated value for the constituent being evaluated, Y
mean

 is the mean of observed data 

for the constituent being evaluated, and n is the total number of observations. 

The Pearson’s correlation coefficient (r) and coefficient of determination (r
2
) is another 

goodness of fit criterion used in this model evaluation to describe the degree of co 

linearity between simulated and observed data.  The Pearson’s correlation coefficient is 

expressed as: 



56 

 

r = 
                

   

                    
   

 
   

          (3.2) 

Where    is the ith observed value,    is the mean of the observed values,    is the ith 

predicted value,     is the mean of the predicted values and n is the number of 

observations. 

The deviation of volume (DV) was also used in the model evaluation to asses over 

estimation or underestimation of the stream flow.  The equation that represents this 

method of evaluation is indicated as:  

      
         

  
             (3.3) 

 

Where: 

  = simulated stream flow. 

Q= observed value of stream flow. 

 

3.3.4 Manual calibration 

Detailed manual calibration was carried in order to improve model performance. The 

process of manual calibration was carried out for average annual conditions in which  

calibration was done for base flow, surface runoff and total stream flow. To obtain the 

observed annual base flow and surface flow, the base flow filter program (Arnold, 1995) 

was used to separate the base flow and surface runoff using available daily stream flow 

data 

 

Separation of base flow and surface runoff 

The stream flow was separated into base flow and surface runoff using the base flow 

filter program. The programme uses the daily flow data to perform the separation. Hence 

the base flow separation was carried out for the period 1/1/1992 to 31/12/2000 using the 

available stream flow records for the gauging station at the outlet of the sub catchment in 

question. The base flow is considered the ground water contribution to stream flow 

(Arnold et al. 1995). The programme receives as input the name of the file containing the 
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daily stream flow data for the selected period in a prescribed format. Several streamflow 

data files can be processed simultaneously. As an output, the types of information 

obtained for each stream flow input are as follows: 

 

1. Name of stream flow data file (gauge file) 

2. Fraction of stream flow contributed by base flow estimated in the first pass 

(Baseflow Fr1) 

3. Fraction of stream flow contributed by base flow estimated in the second pass 

(Baseflow Fr2) 

4. Fraction of stream flow contributed by base flow estimated in the third pass 

(Baseflow Fr3) 

5. Number of individual base flow recessions used to calculate the master recession 

curve (NPR) 

6. Base flow recession constant (Alpha Factor). 

7. The number of days for base flow recession to decline through one log cycle 

(Base flow days). 

 

Process of manual calibration 

The process was begun by determining the average annual observed and predicted water 

yields. The initial simulated flow was based on the default values of the input parameters 

in the SWAT model prediction. The average daily flow for each year was estimated by 

first calculating the average daily flow for each month of the year, using the program 

pcpSTAT with observed daily flows as input to the program. The average daily flow for 

each month is computed automatically by the program. The annual daily average is then 

obtained by determining the mean of the average monthly values. The annual flows are 

then converted to depth (mm) to obtainable  the annual water yields. The simulated water 

yield is determined from an output file in SWAT simulation that gives the simulated 

flow. The variable FLOW_OUT which gives the simulated flow is used. In SWAT 

simulation, options are provided for daily, monthly and annual simulation. When 

simulation is carried on an annual basis, the FLOW_OUT variable will give the annual 

average daily flows for each year covered in the simulation and the average values for the 
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years in question.  The contributions made by base flow and surface runoff are estimated 

using the average annual values for the SWAT  simulation outputs GWQ, SURQ, and 

WLD representing ground water flow, surface runoff and total water yield respectively. 

The average annual values for surface flow and base flow are converted into fractions by 

dividing by the total water yield. The fractions are then multiplied by the total water yield 

obtained from FLOW_OUT variable to obtain the actual average annual values for base 

flow, surface flow and Total Water Yield. These values of base flow, surface flow and 

total water yield are converted to depth in mm using the catchment area. If d is the annual 

average daily flow in m
3
/s, then the annual water yield, W (mm) is determined as 

follows: 

  
                 

                            (3.4) 

Where A is the catchment area in km
2
. 

Adjustments were made appropriately on the input parameters while observing the 

changes in the predicted surface flow, baseflow and total flow to examine how they 

compare with the observed values. This is continued until reasonable correspondence 

between observed and simulated annual values is achieved. 

 

3.3.5 Selection and evaluation of pedotransfer functions for estimating Ks 

The saturated hydraulic conductivity is one of the input parameters for surface flow 

simulation using the SWAT model. This soil property is highly variable spatially as well 

as over time and therefore very unpredictable. Its determination has remained a challenge 

to scientists. Ks is usually predicted by relating it to other measurable soil properties 

using pedotransfer functions. Measured values of saturated hydraulic conductivity was 

not available from the soils data base used in this study. The parameter was therefore 

estimated using the a program known as “Soil Water Characteristics” that estimates Ks 

from soil texture and other properties such as organic matter content, percentage course 

fragments and density of compaction. The pedotransfer function option used in the Soil 

Water Characteristics program is indicated as Saxton2006 in the programme menu and is 

bases on PTFs developed by Saxton and Rawls (2006). An option of indicated as 

Saxton1986 in the menu is also available. Measured data on saturated soil hydraulic 

conductivity was not available from the data base used in this research. Other soil 
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properties were, however available and include texture, soil bulk density, total carbon, 

porosity among others. The pedrotransfer functions used were those that could be used to 

calculate the saturated hydraulic conductivity using the available soil physical inputs 

indicated. The computations were done for each soil layer of 20cm thickness to a depth 

ranging from 0.6m to 1.0m depending on data available for each soil unit from the data 

base. The pedotransfer functions used are well documented (Lorentz et al., 2001, Gowing 

and Young, 1996 and Sobieraj et al., 2001). 

 

3.3.6 Development of pedotransfer functions 

Saturated hydraulic conductivity can be predicted by relating it to the basic soil properties 

using pedotransfer functions. To develop these functions, measured data on saturated 

hydraulic conductivity obtained alongside corresponding measured basic soil properties 

like texture, bulk density, organic carbon content etc may be used. In existing soil data 

bases, it is rare to find measured values of saturated hydraulic conductivity. Besides, the 

methods of measurement differ from region to region. Different methods also differ in 

their accuracy and reliability thereby rendering the measured values uncertain. An 

alternative approach to predicting hydraulic conductivity is by the use of moisture 

retention and hydraulic conductivity functions. The moisture retention equations have 

parameters that are obtained by fitting the observed data on moisture retention curve to 

the moisture retention equations. This technique was used in this study and based on the 

Van Genuchten moisture retention equation. W  sten et al. (2001) noted that data from 

existing international soil data bases having measured soil data can be analysed to enable 

prediction of hydraulic characteristics from measured soil data and points out that good 

approximations may be accurate enough for many applications that include being used as 

inputs to hydrologic models. Availability of measured soil hydraulic characteristics for 

wide range of soils and from a large and reliable international data bases are considered 

perequisite for development of pedotransfer functions. 

 

In this research, the International Soil Reference and Information Centre (ISRIC) soils 

database was used to obtain measured data on soil hydraulic characteristics and basic soil 

properties. It was possible to obtain all the required measured data on 457 soil samples 
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from various parts of the world. The data contained measured moisture retention curves 

as well as data on texture (percent sand, percent clay, and percent silt). The observed 

moisture retention curve obtained from measured data on moisture retention 

characteristics was fitted to the Van Genuchten moisture retention equation using a 

computer programme to determine parameters of the Van Genuchten equation. The 

parameters were the saturated soil moisture content (θs), residual soil moisture content 

(θr), air entry parameter, α and pore size distribution, n. The pedotransfer functions were 

then developed to estimate these parameters from readily available measured basic soil 

properties. Relating the moisture retention parameters to the basic soil properties then 

makes it possible to predict the moisture retention characteristics from the basic soil 

properties and hence enabling prediction of the saturated hydraulic conductivity. It would 

therefore not be necessary to have measured data on moisture retention characteristics to 

determine saturated hydraulic conductivity but instead, the basic soil properties would be 

used in determining the equations for moisture retention which can then be used to 

estimate Ks. Measurement of moisture retention characteristics is quite elaborate, tedious 

and time consuming and also expensive especially if a large number of sites is involved.  

From the sample data set of 457 samples, a sub dataset consisting of 342 (75%) samples 

was randomly selected for use in calibration of the pedotransfer functions to be 

developed while the remainder portion of 115 samples (25%) of the data was used in the 

validation process. In development of the pedotransfer functions, the following processes 

were undertaken: 

 

Evaluation of the distribution of the moisture retention parameters 

A requirement in developing pedotransfer functions is that the response (dependent) 

variables should be normally distributed. As a result, the moisture retention parameter of 

the Van Genuchten equation and their possible transformations were evaluated to 

establish which would best reflect the normal distribution.  To check the extent to which 

the response variables would be normally distributed, statistical measures of Shapiro 

Wilk (W-value), Skewness Coefficient, and measures of Kurtosis were used in the 

assessment. 
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Statistical regression analysis 

Statistical regression was performed between each transformed response variable and 

each of the basic properties and their transformations so as to establish the goodness of fit 

in each case based on the measure of the coefficient of determination (r
2
). The purpose of 

this was to determine, for each response variable, the predictor variable or its 

transformation form that gives the best quality of fit between the two when a regression is 

performed. This would give an indication of which predictor variable or its 

transformation correlates best with the response variable or it transformation. 

Analysis of cross correlations  

To establish the level of dependence between the selected predictor variables for each 

response variable best correlated to them, a cross correlation was performed between the 

independent variables by determining the correlation coefficient (r) between each pair of 

the variables. This kind of analysis is performed to determine if there is any correlation 

between any two predictor variable among the set chosen for determining the multiple 

regression equations. It is preferable that the independent variables in a multiple linear 

regression equation be independent among themselves. 

Multiple linear regression and validation of developed equations 

This was carried out between each selected transformed response variables and selected 

combination of predictor variables/transformation consisting of the independent variables 

for which the response variable best correlated as determined by the measure of 

coefficients of determination. The multiple coefficient of determination was determined 

for each equation developed to assess the accuracy of the equation. The multiple 

regression was carried out between response variables and the predictor variables or 

transformations consisting of independent variables that are not themselves significantly 

correlated (r<0.5). After development of the pedotransfer functions using the given data 

set, their reliability is then tested by comparing the values of predicted parameters using 

the developed equations with the observed data using an independent data set. An 
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independent data set consisting of 115 samples was used in the validation process. The 

evaluation statistic used included was the correlation coefficient among others. 

3.4 Verification of developed pedotransfer functions for saturated hydraulic 
conductivity in surface flow prediction.   

The developed equations relating parameters in the Van Genutchen moisture retention 

equation were used to determine saturated hydraulic conductivity for the catchment under 

study in the prediction of surface runoff. The relevant basic soil properties for each soil 

type in the study area was used to calculate the parameters. The calculated parameters 

were then used to determine the moisture retention characteristics for moisture contents 

within the range 0 to 1. i.e for each moisture content selected, say 10% (0.1), the 

corresponding suction was calculated based on the Van Genutchen moisture retention 

equation using the relationship indicated below: 

  
 

 
   

      
 

             (3.5) 

where  Se= 












rs

r





            (3.6)
 

 

The above indicated equation was used to determine the matric suction at various 

moisture contents in each of the soil types covering the catchment area. 

 

To determine saturated hydraulic conductivity, the equation relating k(h) to the Van 

Genutchen parameters is used i.e. 
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To determine K(h) from moisture retention characteristic, an equation that relates 

hydraulic conductivity to suction head is required so as to obtain K(h) from h(θ). The 

equations relating hydraulic conductivity to permeability (Obiero, 1996; Marshal and 

Holmes, 1958) used to determine K(h) from h when combined may be expressed as: 

 

     
           

                    (3.8) 
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Where ρb is the soil bulk density and ρs the soil particle density. 

Using typical values of γ, η, ρs, and  , K(h) values was computed for each value of 

moisture suction. Also for each moisture suction, the expression adjacent to Ks on the 

RHS of the hydraulic conductivity equation was computed. Since Ks is constant, K(h) 

was plotted against the expression adjacent to Ks on right hand side of the hydraulic 

conductivity equation (eqn. 3.7) and a straight line passing through the origin obtained. 

The slope of this line would then give the saturated hydraulic conductivity. Hence for 

each hydrologic response unit in the catchment, the saturated hydraulic conductivity was 

determined depending on the dormant soil type. These values of saturated hydraulic 

conductivity then served as input to the SWAT model for simulation of surface runoff. 

The surface runoff was thus determined at the main catchment outlet. The surface runoff 

simulated using the developed pedotransfer functions was evaluated based on comparison 

with the observed surface runoff to assess its performance in surface flow simulation. The 

performance was also compared to that of other selected existing pedotransfer functions 

previously assessed in surface flow simulation to examine its performance relative to 

existing pedotransfer functions. 
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4 RESULTS AND DISCUSSION 

 

4.1 Preliminary assessment of Model Performance 

Daily simulations 

The model was initially run for a warm-up period of six months in which a daily 

simulation was carried out during the period 1/1/92 to 30/6/92. The warm up period 

was chosen to fall before the calibration period which commenced from 1/7/92 and 

being a period when continuous data on observed flow was available without gaps 

(missing data). Daily and monthly stream flow simulations were then performed in the 

period 1/7/92 to 30/6/95 representing three years. Model evaluation was begun with 

simulation based on a daily time step. Figure 4.1 shows the trend of stream flow 

hydrographs for the observed and simulated flows (m
3
/s) during the three year period 

based on the first modeling run.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Hydrographs of observed and simulated daily flows during the period 

1/7/92 to 31/6/95 

The model over predicted flow during certain periods and under predicted in others 

while in some periods, the observed and simulated flows were in agreement. In 

general, the model under predicted high flows while simulating low flows fairly.  
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Comparisons based on daily time step are likely to be misleading due to the manner in 

which the model computes the daily flows which differ from that used in recording 

observed flows and this affects the values of peak flows. The observed flows are based 

on instantaneous readings taken at a certain time of day (e.g. 9.00am) in the morning 

while the simulated flows are based on the daily average. If heavy rainfall occurs close 

to the time when the observation is about to be read say 7am in the morning the 

resulting peak flow is likely to be reflected in the observed record. However if the 

rainfall occurs much earlier e.g. the previous day, then it is likely that the resulting 

runoff will have passed the catchment outlet before a reading is taken so the peak flow 

would not be reflected in the daily flow reading. The surface runoff may, however, be 

captured by the flow simulation especially if the daily flow is reasonably high so that 

the daily average of the runoff will have a high value. For storm events that occur 

closer to the time of observation, the peak flows are captured by both the observed and 

simulated flows. Figure 4.2 shows a comparison of observed and simulated flows 

based on linear regression with values of the y-intercept and coefficient of 

determination (r
2
) also indicated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. A comparison of simulated and observed daily flow during the period 

1/7/92 to 31/6/95 

 

y  = 0.9451x + 1.6007 

r2 = 0.1436 
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The value of r
2
 was found to be 0.144 while Nash-Sutcliffe efficiency (NSE)=0.01 

reflecting a poor linear relationship between the observed and predicted values based 

on daily simulation. This poor performance, which is often misleading, may be 

attributed to differences in the timing of observed and simulated hydrographs likely to 

occur when using daily rainfall data. Daily simulations do not provide values that are 

expected to compare reasonably well with the predicted ones. This is partly due to the 

poor prediction procedure for peak flows. As a result therefore, detailed evaluation of 

the model performance including model calibration was done based on monthly time 

step. This is in consideration of the fact that monthly values are likely to be more 

representative than the daily values since with daily values cumulated over the month, 

the daily errors are likely to be cancelled out. Hence the subsequent calibration process 

was considered on the basis of monthly simulations. 

 

Monthly simulations 

Simulation was done based on monthly basis to observe the performance of the model 

based on a monthly time step. Figure 4.3 shows the hydrographs of the average daily 

flows for each month for observed and predicted flows during the period 1/7/92 to 

30/6/95 during the first modeling run. From the figure, it can be observed that the 

model performance has improved compared to that based on a daily time step. A 

similar observation was made by Githui et al. (2009) while evaluating performance of 

SWAT model in the Nzoia catchment in western Kenya in which the author noted that 

the agreement between observed and simulated flows was stronger with monthly than 

with daily flows during calibration. During the period July 1992 to around April 1994, 

the model predictions of stream flow seem to agree with the observed values except 

for a few instances where there was over prediction of flow like in December 1994. 

For the period April 1994 to June 1995, the model generally under predicted the flows. 

The model is a therefore a poor simulator of high flows but fairly simulates low flows. 

Figure 4.4 shows a plot of observed and predicted flows based on the linear 

regression. The values of the coefficient of determination and regression equation 

expressing the linear relationship are as well indicated.  
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Figure 4.3. Hydrographs of simulated and observed mean daily flows in month for 

the period July 1992 to June 1995 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.4. Comparison of observed and predicted mean daily flows in the month 

for the period 1/7/1992 to 30/6/1995 

 

 
 

y = 2.917x -0.2439 

r2 = 0.4812 
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The value of the coefficient of determination (r
2
) of about 0.5 indicates acceptable 

performance. The correlation coefficient r = 0.7 showing that the predicted and 

observed flows exhibit linear relationship. The Nash-Sutcliffe efficiency, however 

registered a low value of 5% indicating poor simulation performance. The low value of 

NSE can be attributed to a strong deviation volume (Dv) of 61.7% as noted by 

Levesque et al. (2008). The high positive value of Dv indicates the average tendency of 

the simulated flows to under estimate the flows. The process of model calibration was 

carried out to further assess model performance and to examine possibilities of 

domesticating the model for application in the local catchment.  

 

4.2 Sensitivity Analysis and Model Calibration 

 

Sensitivity analysis was carried out to find the order of sensitivity of stream flow to the 

input parameters. The sensitivity analysis process was carried out automatically by the 

model. The model produced the output indicating the order of sensitivity of the model 

input parameters. Table 4.1 shows an extract of the summary of the output format from 

sensitivity analysis. Interpretation of the results indicate that the curve number (CN2) is 

the most sensitive parameter. The ranking of the parameters is indicated in the row 

labeled “out”. 

 

An auto calibration process was the carried out based on a selection of the three most 

sensitive parameters. These were the Curve number (CN2), Soil Evaporation 

compensation factor (ESCO), and the Threshold water depth in the shallow aquifer for 

“revap” (QWQMN). After the auto calibration process, the best values of the selected 

parameters for which the model prediction closely agreed with the observed were 

determined and produced in the auto calibration results. The model was again rerun based 

on these values. Not much change was noted in the hydrographs of observed and 

simulated flows after the auto calibration process. 
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________________________________________________________________________ 

Table 4.1: Sensitivity analysis results showing the order of sensitivity of input 

parameters 

 

                                  

         SFMX    SMFMN   ALPHA_BF   GWQMN   GW_ REAP 

Of   1     28        28         3                   1             28 

Out  1     28                     28                   12                          3                       28 

________________________________________________________________________ 

        REVAPMN  ESCO   SLOPE  SLSUBBSN  TLAPS  CH_K2  

Of   1      28            5            8               28                12          2 

Out  1                 28             2                       6               19                28          15 

________________________________________________________________________ 

         CN2   SOL_AW  surlag   SFTMP   SMTMP   TIMP 

Of  1                    2          4                     11           28                     28               28 

Out 1                   1          4                     14           28                     28               28 

________________________________________________________________________ 

          GW_DELAY    Rchrg_dp    canmx    sol_k     sol_z   

Of   1                         13                             6                  28                    7                      9 

Out  1                        18                             18                  8                    7                      5 

________________________________________________________________________ 

         Sol_alb      epco      ch_n     blai      BIOMIX 

Of   1                   28                 10                    28                   28               14 

Out  1                  16                  13                    17                   11               19 

________________________________________________________________________ 

A comparison of observed and predicted monthly flows yield a coefficient of 

determination slightly above 0.50 with minimal change in the value of NSE which still 

remained low at 6% and a small reduction in deviation volume to 61.3%. This indicated 

acceptable but modest performance of the model for the catchment in question. An 

attempt was made to perform a manual calibration of the model. This was done by 

varying each of the three most sensitive parameters by 10% from their default values, but 
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within the allowable range, and selecting the value that provides the best possible 

agreement between observed and simulated flows. The parameters were varied one at a 

time while keeping the others constant until an optimal value is obtained. A slight, but 

insignificant improvement was observed in the values of the evaluation statistics with r 

=0.72 (r
2
=0.51) and NSE of 5%, with the deviation volume rising to 64%. Table 4.2 

shows the calibration results. The seemingly poor performance of the model could be 

associated with input data deficiencies also observed by Jayakrishnan et al. (2005). Daily 

rainfall data in the vicinity of the catchment was available from three rainfall stations in 

which only two were located within the catchment and near the outlet. The third station 

was located outside the catchment near the upstream end. Hence the rainfall may not 

have been representative. Only one full meteorological station was available with 

adequate weather data for use in the modeling but was located well outside the 

catchment. The weather data may therefore, also not have been adequately representative. 

Besides, there were also cases of missing data during certain periods for the stations used. 

 

4.3 Model Validation 

Based on the optimized parameters obtained during the calibration period, a further 

simulation was carried out to assess the model performance during the period 1/1/98 to 

31/12/2000 which is outside the period when the model was calibrated. Figure 4.5 shows 

the graphical representation of the observed and simulated flows during this validation 

period. Visual observation of the hydrographs shows a fairly close fit, an indication of 

improved model performance. Figure 4.6 shows a plot of validation results of simulated 

against observed monthly flows. 
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Figure 4.5 Hydrographs of simulated and observed mean daily flows in month for 

the validation period 1/1/98 to 31/12/2000 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.6. Comparison of observed and predicted mean daily flows in the month 

for the period 1/1/1998 to 31/12/2000 

 

 

y = 1.1602 + 0.1478 

r2 = 0.5775 
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There is evidently improved performance of the model with the coefficient of 

determination, r
2
=0.58 (r=0.76). The NSE value significantly improved to 0.51 while the 

deviation volume reduced to 24.7%. This reflects acceptable model performance (Moriasi 

et al., 2007) which can be considered satisfactory and therefore promising for 

applicability in the catchment. A summary of calibration and validation results are 

indicated in Table 4.2 

________________________________________________________________________ 

Table 4.2 Evaluation of model results for first flow simulation runs, calibration and 

validation 

  

                                  First Simulation Run    calibration   Validation                   

________________________________________________________________________ 

Evaluation Statistic     Daily     monthly       Monthly      Monthly 

________________________________________________________________________ 

Nash-Sutcliffe  

efficiency (NSE)        0.01     0.05          0.05         0.51           

________________________________________________________________________  

Correlation  

Coefficient ( r )         0.30      0.69          0.72         0.76 

________________________________________________________________________ 

Coefficient of 

Determination (R
2
)     0.09      0.48           0.51        0.58 

________________________________________________________________________ 

Deviation  

Volume (Dv)           22.57     61.7          64.06       24.66 

________________________________________________________________________ 
 

4.4  General Assessment of Model Performance 

The results obtained in this study are not unique. Applications of SWAT worldwide has 

yielded diverse results some encouraging while in some instances, the success in the use 

of the model has been limited. This may be attributed to strengths and weaknesses 

associated with the use of SWAT across the world spectrum. A few studies involving 

SWAT supports this observation. Good model performance has been reported by 

Schmalz et al. (2008) while modeling water balance with SWAT on three catchment 

areas in northern Germany. However, the first model runs failed to represent the stream 

flow correctly (also observed in this study) showing underestimation of observed high 

winter discharge peak and over estimation of base flow. Success in model prediction was 
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attributed to repeated attempts to improve the model performance. The challenges of 

modeling with SWAT in lowland areas is mentioned and which had to be taken into 

account in model parameterization. Stehr et al. (2008) evaluated the performance of the 

SWAT model in several sub basins in Chile. The model performance was not uniform in 

all the sub catchments studied. The NSE index ranged from satisfactory to good for the 

calibration period depending on the sub basin. The model was observed to have under 

estimated peak flows, a similar observation to this study. An explanation for this was 

given as inadequate description of rainfall input field due to the limited number of 

available meteorological stations and poor representation in higher areas due to 

orographic effects. This scenario is similar to this study. Only one rainfall station was 

available to represent the rainfall near the higher elevations of Naro Moru catchment. The 

station was also outside of the catchment but was the nearest available for use. The 

standard interpolation method used in AVSWAT for estimating rainfall (Thiesen 

polygons) was notably a limitation as its reliability is yet to be tested if discrete 

improvements in model performance is to be expected.   

 

4.5  Manual calibration and Model improvement 

Preliminary assessment indicated a modest SWAT model performance for this catchment 

under study (Obiero et al. 2011). An elaborate manual model calibration was carried out 

to improve model performance yielded results discussed as follows: 

 

4.5.1 Separation of base flow and surface runoff 

Separation of daily stream flow into base flow and surface runoff yielded as output a 

daily file containing the data, stream flow and Bflow pass 1, Bflow pass2, and Bflow 

Pass3 representing the Baseflow value that is estimated in the first , second and third 

passes respectively. The daily output data file for the gauging station and period in 

question is illustrated in Table 4.3. The base flow was determined as the average value of 

the average value of BaseFlow Fr1 and Baseflow Fr2 since the fraction of water yield 

contributed by baseflow is expected to fall somewhere between the two passes. The 

primary output file is illustrated in Table 4.4 showing a summary of the output. 
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________________________________________________________________________ 

Table 4.3 An illustration of the daily output file for the month of January 1992 

showing daily baseflow filter values_________________________________________ 

YEAR MNDY Streamflow Bflow Pass1 Bflow Pass2 Bflow Pass3 

1992 1 1 1.14E-01 5.70E-02 0.00E+00 5.70E-02 

1992 1 2 5.40E-02 5.40E-02 0.00E+00 0.00E+00 

1992 1 3 7.70E-02 5.49E-02 0.00E+00 0.00E+00 

1992 1 4 1.09E-01 5.77E-02 0.00E+00 0.00E+00 

1992 1 5 1.42E-01 6.28E-02 0.00E+00 0.00E+00 

1992 1 6 1.74E-01 6.99E-02 0.00E+00 0.00E+00 

1992 1 7 4.39E-01 8.77E-02 0.00E+00 0.00E+00 

1992 1 8 4.39E-01 1.14E-01 0.00E+00 0.00E+00 

1992 1 9 3.07E-01 1.33E-01 0.00E+00 0.00E+00 

1992 110 1.74E-01 1.41E-01 0.00E+00 0.00E+00 

1992 111 1.68E-01 1.44E-01 0.00E+00 0.00E+00 

1992 112 1.61E-01 1.45E-01 0.00E+00 0.00E+00 

1992 113 1.55E-01 1.46E-01 0.00E+00 0.00E+00 

1992 114 1.05E-01 1.05E-01 0.00E+00 0.00E+00 

1992 115 1.21E-01 1.06E-01 0.00E+00 0.00E+00 

1992 116 1.55E-01 1.08E-01 0.00E+00 0.00E+00 

1992 117 1.74E-01 1.12E-01 0.00E+00 0.00E+00 

1992 118 1.74E-01 1.17E-01 0.00E+00 0.00E+00 

1992 119 1.74E-01 1.21E-01 0.00E+00 0.00E+00 

1992 120 1.74E-01 1.25E-01 0.00E+00 0.00E+00 

1992 121 1.74E-01 1.29E-01 0.00E+00 0.00E+00 

1992 122 1.05E-01 1.05E-01 0.00E+00 0.00E+00 

1992 123 7.10E-02 7.10E-02 0.00E+00 0.00E+00 

1992 124 3.60E-02 3.60E-02 0.00E+00 0.00E+00 

1992 125 7.60E-02 3.75E-02 0.00E+00 0.00E+00 

1992 126 1.15E-01 4.19E-02 0.00E+00 0.00E+00 

1992 127 1.55E-01 4.88E-02 0.00E+00 0.00E+00 

1992 128 1.39E-01 5.62E-02 0.00E+00 0.00E+00 

1992 129 1.37E-01 6.23E-02 0.00E+00 0.00E+00 

1992 130 1.05E-01 6.67E-02 0.00E+00 0.00E+00 

1992 131 2.72E-01 7.59E-02 0.00E+00 0.00E+00 
________________________________________________________________________ 

Table 4.4 Summary of the fraction of stream flow contributed by base flow for each 

of the 3 passes made by the base flow filter programme for the period 1992 to 1995 

Gage file         BaseflowFr1   Baseflow Fr2   Baseflow Fr3  NPR  Alpha Factor  Baseflow Days 

0929500.prn          0.68             0.52                  0.43          3       0.0458               50.2652. 

________________________________________________________________________ 
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4.5.2 Manual Calibration Results 
 
Table 4.5 Illustrates the computations of simulated and observed water yields for the 

calibration period 1/7/1992 to 30/6/1995 based on default values of the SWAT input 

parameters after first annual simulation run. Based on the above indicated computations, 

the initial average annual observed and simulated results are summarized as shown in 

Table 4.6 for the indicated period. 

________________________________________________________________________ 

Table 4.5:  Estimation of observed and simulated annual water yield, base flow and 

surface flow (mm) for annual calibration 

DATE Simulated 
Surface 
flow 
(SURQ) 

Simulated  
Ground 
water 
flow 
(GW_Q) 

Simulated 
water 
yield 
(WYLD) 

 

 
    

    
 

 

 

 

 
    

    
 

Observed 
annual 
water 
yield(mm) 

Observed 
annual 
base flow 
(mm) 

Observed 
Annual 
surface 
flow (mm) 

Simulated 
total flow 
(mm) 

Simulated 
surface 
flow 
(mm) 

Simulated 
base flow 
(mm) 

Col 1 Col 2 Col 3  Col4 Col5  

 

Col 6 

 

Col  7 Col  8 Col  9 

 

Col  10 

 

Col  11  

=col 5x 

col10 

Col  12 

=col10-

col 11 

 
1992 

 
26.353 

 
263.560 

 
291.437 

 

0.090 

 

0.904 

 

375.06 

 

165.098 

 

209.958 

 
121.231 

 
10.962 

 
110.269 

 

 

1993 

 
77.865 

 
623.419 

 
704.703 

 

0.110 

 

0.885 

 

213.27 

 

127.593 

 

85.675 

 
334.462 

 
36.956 

 
297.506 

 

 

1994 

 

 
81.214 
 

 
758.152 

 
843.003 

 

0.096 

 

0.899 

 

1919.41 

 

1169.29 

 

750.113 476.175 
 

45.874 
 

430.300 
 

 

1995 
 
12.313 
 

 
192.465 

 
206.146 

 

0.060 

 

0.934 

 

985.44 

 

620.68 

 

364.761 403.737 
 

24.115 
 

379.622 
 

 

Ave 

 

 
65.975 
 

 
613.092 

 
682.386 

 

0.097 

 

0.898 

 

873.29 

 

520.666 

 

352.627 445.655 
 

43.087 
 

402.568 
 

 

________________________________________________________________________ 

Table: 4.6 Summary of annual observed and simulated water yield (mm) 

 Total Water Yield 

(mm) 

Baseflow 

(mm) 

Surface Flow (mm) 

Actual 873 521 352 

SWAT(simulated) 446 403 43 

 

Evidently from Table 4.6, the observed annual total water yield, base flow and surface 

flow are all higher than the simulated flow values hence the need for appropriate 

adjustment of the appropriate input parameters through the manual calibration process. 

 

4.5.2.1 Water balance and Total Flow Calibration 

As observed by Neistch et al. (2002)(c) calibration for the water balance and stream flow 
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is to be carried out based on annual conditions before shifting to monthly records for fine 

tuning. Therefore adjustments were made on selected SWAT input parameters with a 

view to bringing the simulated flow values closer to the observed stream flow values. The 

process went as follows: 

 

 Calibration of annual surface, subsurface and total stream flows 

In an attempt to raise the surface flow to an acceptable level, the curve number was 

adjusted for each of the 27 sub basins based on vegetation cover and hydrologic soil 

group initially assuming fair hydrologic cover conditions. Values of curve numbers for 

various land uses and hydrologic soil groups are tabulated  for agricultural land and urban 

areas (see Tables A 3.1 and A3.2 appended). The curve number values selected for each 

sub basin was based on the cover type that closely described the land cover in the sub 

basin. 

 

 The area around the peak of the mountain consisting mainly of rocks was assumed to be 

equivalent to pavements in the urban areas with a curve number of 98. The curve number 

was adjusted initially assuming good hydrologic condition, as a result of which there was 

no significant change in the value of average annual surface runoff which changed from 

43mm to 40mm. The value of base flow was however significantly increased from a 

value of 403mm to 454mm. Further adjustment of the curve number was carried out 

based on fair conditions. In this case the annual average surface flow increased to a value 

of 96mm while the base flow increased further to a value of 564mm. The resulting value 

of surface flow still fell far below the observed which is 352mm. In order to increase the 

surface flow further, the curve number values were adjusted to those associated with the 

poor conditions. In this case there was a significant increase in the simulated surface flow 

to a value of 427mm up from the value of 96mm associated with fair conditions. The 

base flow was however drastically reduced from 564mm to 245mm. It therefore emerged 

that an appropriate value would fall somewhere between the poor and fair conditions.  

 

The curve numbers based on average values for the fair and poor conditions was then 

used in adjusting the curve numbers further. An annual simulation was again performed. 
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The average value of surface runoff was reduced to 219mm nearly reflecting half the 

previous value. The base flow was reduced to 446mm. The surface flow value obtained 

was still not acceptable compared to the observed surface flow. The base flow was 

however falling within 15% of the observed base flow. In order to increase the surface 

flow further, the mean value was determined between the poor conditions and the 

previously computed average values between the fair and poor conditions. This yielded 

an average annual surface flow of 308mm while the base flow was further reduced to 

360mm when an annual simulation was done. This resulting value of surface flow is 

acceptable falling within 15% of the observed. Table 4.7 Shows the estimated curve 

number values assigned to each sub basin during the adjustment process based on the 

predominant land use type in the basin and the hydrologic soil group associated with the 

soil predominant in the basin. The value of base flow was, however, still very low 

compared to the observed.  

 

In an attempt to raise both the surface flow and base flow, the value of soil evaporation 

compensation factor (ESCO) was adjusted to the maximum possible value of 1.0. on 

running the annual simulation, the value of surface runoff was increased to 324mm while 

the base flow increased to 418 reflecting a significant increase bringing the simulated 

base flow closer to the observed. The SWAT model provides various options of 

estimating the evapotranspiration. The default method of estimating the evapotraspiration 

is the Priestly Taylor. When the method of evapotranspiration was then changed to 

Penman in an attempt to observe the response of surface and subsurface flow, it was 

observed that the surface flow increased further to a value of 350mm per annum drawing 

much closer to the observed value of 352. However the base flow was slightly reduced to 

a value of 406mm per annum. Further adjustments were made on various input 

parameters including the threshold depth of water in the shallow aquifer for “revap” to 

occur (REVAPMN), Deep aquifer  percolation fraction (RCHRG_DP), among others in 

an attempt to bring the observed and predicted average total surface and subsurface flows 

closer. Table 4.8 illustrates the adjustments with the adjusted values of the parameters 

indicated in italics enclosed in the brackets.  
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________________________________________________________________________ 

Table 4.7:  Curve number values for various land use types in the sub basins used in 

the calibration. 

________________________________________________________________________ 

 
Reach  

(sub basin) 

Land use type Hydrologic 

soil group 

Curve Number 

Default Poor 

Conditions 

Fair 

conditions 

Good 

cover 

Average 

(fair & 

poor) 

Ave  

(Poor 

& 

Fair&Poor)  

1 Barren Land D 80 98 98 98 98 98 

2 Barren Land D 80 98 98 98 98 98 

3 Barren Land D 80 98 98 98 98 98 

4 Barren Land D 61 98 98 98 98 98 

5 Forest D 77 83 79 77 81 82 

6 Forest D 77 83 79 77 81 82 

7 Barren Land D 80 98 98 98 98 98 

8 Barren Land D 80 98 98 98 98 98 

9 Forest C 66 77 73 70 75 76 

10 Barren Land D 61 98 98 98 98 98 

11 Forest C 66 77 73 70 75 76 

12 Forest C 66 77 73 70 75 76 

13 Forest C 66 77 73 70 75 76 

14 Forest C 66 77 73 70 75 76 

15 Forest D 77 83 79 77 81 82 

16 Forest C 66 77 73 70 75 76 

17 Woodland D 73 86 82 79 84 85 

18 Forest C 77 83 73 70 78 81 

19 Forest C 66 77 73 70 75 76 

20 Forest C 77 83 79 70 81 82 

21 Woodland D 73 83 79 79 81 82 

22 Forest C 77 77 73 70 75 76 

23 Woodland C 60 86 76 72 81 84 

24 Woodland D 79 86 82 79 84 85 

25 Forest C 66 83 73 70 78 81 

26 Barren Land D 61 98 98 98 98 98 

27 Woodland B 60 86 65 58 76 81 
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________________________________________________________________________ 

Table 4.8: Summary of annual observed and simulated flows following parameter 

adjustments during manual calibration. 

________________________________________________________________________ 
 

 Input parameter values Total 

Water 

Yield 

Baseflow Surface 

Flow 

r NSE 

Actual  873 521 352   

SWAT(simulated)  (DEFAULT SWAT Input 

values) 

446 403 43 0.69 0.05 

CN-GOOD 

CONDITIONS 

 494 454 40 0.65 0.06 

CN-POOR 

CONDITIONS 

DEFAULT VALUES 672 245 427 0.56 0.15 

CN-FAIR 

CONDITIONS 

DEFAULT VALUES 660 564 96 0.58 0.14 

CN–AVE-

FAIR&POOR 

DEFAULT VALUES 664 446 219 0.57 0.14 

 

 

 

 

 

 

 

 

 
 

 

CN-[AVE- 

(FAIR&POOR) 

&(POOR)] 

DEFAULT VALUES 668 

 

360 308   

 (esco=1) 742 

 

418 324 0.58 0.19 

 (esco=1, PENMAN) 756 

 

406 350 0.58 0.20 

 (esco=1,PENMAN, REVAPMN 

=5O   

767 423 345 0.58 0.20 

 (esco=1,PENMAN, REVAPMN 

=100) 

767 423 345 0.58 0.20 

 (esco=1,PENMAN, 

REVAPMN=100,  

RCHRG_DP=0 ) 

774 436 339 0.58 0.20 

 (esco=1,PENMAN, 

REVAPMN=100,  

RCHRG_DP=0, 

GWDELAY = 100) 

767 422 346 0.55 0.18 

 (esco=1,REVAPMN=100,  

RCHRG_DP=0, 

GWDELAY=31, 

HARGREAVES) 

752 432 320 0.62 0.22 

(esco=1, , REVAPMN =100,  

RCHRG_DP=0 ,  

GWDELAY = 31, 

HARGREAVES, surlag=2) 

751 432 319 0.62 0.22 

(esco=1, , REVAPMN =100,  

RCHRG_DP=0 , 
GWDELAY = 31, 

HARGREAVES, surlag=2,  

k100%increase) 

762 454 309 0.60 0.22 

DEFAULT VALUES: REVAPMN =1.0, ESCO=0, Priestly Taylor, GWQMN=0, RCHRG_DP=0.05, 

ALPHA_BF=0.048, CH_K1=0.500, GW_DELAY =31. 
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Acceptable values of base flow and surface runoff were obtained when the following 

adjusted values of input parameters were used: Esco=1, REVAPMN=50, RCHRG_DP=O 

and using the penman method of evapotranspiration. The difference between the 

observed and simulated values were within 15%. Any attempt to improve the simulation 

values did not yield further improvement e.g. when the GW_DELAY was adjusted to 

100, the surface flow increased from 339 to 346 improving the surface flow simulation, 

however the simulated base flow was slightly reduced from 436mm to 422mm. After 

each parameter adjustment, monthly simulations were also done and the observed and 

predicted monthly flow compared. The correlation coefficient changed from a value of 

0.67 to 0.58 while the coefficient of efficiency increased from 0.05 to 0.20 signifying 

improved model performance. To examine the effect of change in the method of 

evapotranspiration estimation from Penman to Hargreaves, the annual simulation was 

carried out using the Hargreaves option for estimating evapotranspiration while 

GW_DELAY was reverted to the default value of 31. This resulted into an increase in the 

value of base flow to 432 mm, surface flow was reduced to 320mm while the total flow 

was 752mm which could still be regarded as acceptable. The difference between the 

observed and simulated baseflow was however increased slightly to 17% of the observed 

flow. The correlation coefficient between observed and simulated monthly flows 

however improved significantly to 0.62 while the coefficient of efficiency increased 

slightly to 0.22 indicating that the use of Hargreaves improved model performance for 

monthly simulations. To smoothen the hydrographs, the value of surlag was reduced from 

the default value of 4 to 2. This resulted into a slight decrease in the average annual 

surface flow from 320mm to 319mm. The value of simulated base flow did not change 

but was still considerably lower than the observed one. A parameter that was used to 

increase the baseflow was the hydraulic conductivity. The saturated hydraulic 

conductivity value was then raised by 100% in each layer for every sub basin. This raised 

the value of simulated base flow significantly to 454mm up from 432 hence the simulated 

base flow fell within 10-15% of the observed base flow. The surface runoff was however 

reduced to 309mm from the previous value of 319mm. This value was still falling within 

10-15% of the observed value of 352mm. The total flow became 762mm also falling 
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within 10-15% of the observed total flow; hence the annual calibration process was 

concluded at this stage. Table 4.9 illustrates the change in simulated surface flow, base 

flow and total flow after the annual flow was concluded when comparison of the flows 

indicated that the surface, base flow and total flow fell within 10-15% of the observed 

values. 

________________________________________________________________________ 

Table: 4.9 Summary of observed and simulated average annual yield before and 

after annual flow calibration 

 

After the annual calibration of water yields, a monthly simulation was then carried out to 

examine the model performance based on monthly simulations. Figure 4.7 shows the 

hydrograph of observed and simulated total stream flows after the completion of the 

annual calibration. The low flows are favourably predicted with flow peaks being slightly 

overpedicted. However high flows are generally underpredicted with the peak flows 

grossly underpredicted. Figure 4.8 shows a comparison of observed and simulated 

average daily total flows in month after the calibration. The correlation coefficient is 0.6 

considered favourable still while the coefficient of efficiency (Nash-Sutcliffe) is 0.22, a 

significant improvement from a value of 0.05 before the annual calibration exercise. 

Table 4.10 shows model performance after manual calibration compared to previous auto 

calibration. It is evident that the manual calibration based on annual flows resulted into 

an improvement in model performance compared to the auto calibration process. The 

purpose of manual calibration was to improve model model performance and establish 

the extent to which the model could be improved. 

 

 

 

 Total Water 

Yield (mm) 

Base flow (mm) Surface Flow (mm) 

Actual 873 521 352 

 

SWAT 

(simulated) 

Before 

calibration 

 

446 

 

403 

 

43 

After 

calibration 

 

762 

 

454 

 

309 
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Figure 4.7.  Hydrograph of observed and simulated monthly total flows after annual 

flow calibration 

 

 
 

Figure 4.8 Comparison of simulated and observed average daily flow in month after 

calibration of average annual water yields 
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________________________________________________________________________ 

Table 4.10 Comparison of model performance for monthly simulation based on auto 

calibration and annual flow calibration processes. 

 

                                  First Simulation Run    Monthly simulation                       

________________________________________________________________________ 

        Calibration 

Evaluation Statistic     Daily     monthly      Auto         Manual 

________________________________________________________________________ 

Nash-Sutcliffe  

efficiency (NSE)        0.01     0.05         0.05          0.22           

________________________________________________________________________  

Correlation  

Coefficient ( r )         0.30      0.69         0.72          0.60 

________________________________________________________________________ 

Coefficient of 

Determination (r
2
)     0.09      0.48          0.51         0.36 

________________________________________________________________________ 

Deviation  

Volume (Dv)           22.57     61.7         61.30        36.86 

________________________________________________________________________ 

 

4.5.2.2 Model Performance in surface flow and base flow simulation after annual 

flow calibration 

An assessment was carried out to evaluate how the model performed in monthly surface 

and base flow simulations after the annual calibration was completed. A comparison was 

made between the observed and simulated base flow and surface flow as follows. 

 

Surface flow simulation 

Figure 4.9 shows a comparison of the hydrographs of observed and simulated monthly 

surface runoff after the annual flow calibration. The low flows are reasonably well 

predicted even though there are instances when there is overprediction of the same in the 

months of april and may 1993 and in November and December 1993. The high peak 

flows are underpredicted. There is however better performance in the prediction of 

surface flows and the total stream flow. Figure 4.10 shows the comparison of observed 

and simulated surface flows. The correlation coefficient is 0.61 while the coefficient of 

efficiency (NSE) showed an improvement compared to comparisons based on total flow 

yielding a value of 0.34 compared to 0.22 observed in the case of total flow. 
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Baseflow simulation  

The model was also assesed to examine its performance on base flow simulation after the 

annual flow calibration. Figure 4.11 shows the hydrographs of simulated and observed 

base flows after the annual flow calibration. The low base flows are comparable while the 

high base flows are underpredicted. In general model performance in simulation of base 

flow is very poor with the coefficient of efficiency being 0.08. The correlation coefficient 

maintained a reasonable value of 0.52 as illusrated in Figure 4.12. 

 

It can be concluded that the relatively poor simulation of the total streamflow 

(NSE=0.22) after the annual flow calibration may be attributed mainly to the poor 

simulation of the baseflow (NSE =0.08). The simulation of surface flow is however much 

better with an improved value of the Nash-Sutcliffe Efficiency (NSE=0.34). A graphical 

plot of the simulated Total flow, baseflow and surface flow is illustrated in Figure 4.13.   

 

 
 

 

Figure 4.9.Hydrograph of observed and simulated monthly surface flows after 

annual flow calibration 
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Figure 4.10. Comparison of simulated and observed average daily surface flow in 

month after calibration of average annual water yields 

 

Figure 4.11 Hydrograph of observed and simulated monthly base flows after annual 

flow calibration 
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Figure 4.12 Comparison of simulated and observed daily base flow in month after 

calibration of average annual water yields 

 

Figure 4.13 Hydrographs of simulated monthly total flow, base flow and surface 

flow after annual flow calibration. 
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4.5.2.3 Monthly flow calibration for improved simulation of surface runoff 
 

After performing the annual calibration, it was noted that the model is a poor simulator of 

base flow; however the simulation of the surface flow was favourable. In order to fine 

tune the calibration for surface flow prediction, further adjustment of selected input 

parameters was carried out. In order to further increase the surface runoff, the soil 

available water capacity (SOL_AWC) was adjusted by reducing it while the curve 

number was further adjusted upwards while comparing the observed and simulated 

surface runoff. By so doing there is a significant increase in surface runoff thereby 

improving the surface runoff simulation. On adjustment of the SOL_AWC downwards by 

0.03mm/mm from the default value and slightly raising the curve number, there was an 

improvement on the surface flow simulation with value coefficient of efficiency rising to 

about 0.4 while the correlation coefficient still maintaining a value of 0.62 which is 

acceptable. The deviation volume was significantly reduced to a value of 5.47% with 

percentage bias being 5.49, while the difference between the means of the surface flows 

was within 5% of the observed surface flow with the average observed daily surface flow 

in month being 1.02m
3
/s and the simulated surface flow 0.96m

3
/s. The root mean square 

error (RMSE) was 6.76 while the RSR value was 0.79. These values of evaluation 

statistics indicate good model performance in predicting surface runoff for the catchment. 

 

Model validation for surface runoff prediction 

After calibrating the model for monthly surface flow, monthly simulation was performed 

during the period 1/1/1998 to 31/12/2000 which is outside the calibration period to 

establish the performance of the model in predicting surface runoff after the calibration 

exercise. The model input parameters were the same as during the calibration period. 

Figure 4.14 illustrates the monthly time series for modeled and observed surface flow 

during the validation period. There is an improvement in the simulation of the surface 

flow. The model simulates the flow patterns reasonably well. The peaks and recessions 

are reasonably well presented with isolated tendencies of the model to overpredict a few 

peak flows during this low flow period while under predicting the surface flows in some 

instances, however these levels of under prediction or overprediction does not appear 

very significant based on visual analysis. During some periods, the simulated and 
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observed flows fitted perfectly well. Regression analysis yielded a correlation coefficient 

value  (r) of 0.8 i.e. (r
2
=0.64) with the mean daily flows in month of measured and 

simulated surface flows of 0.958m
3
/s  and 0.905m

3
/s (within 6% of measured surface 

flow). Figure 4.15 shows the regression analysis results in which the value of Nash 

Sutcliffe Coefficient is also indicated being 0.62 reflecting good model performance. 

 

Figure 4.14. Monthly time series of simulated and observed surface flows in the Naro Moru 

river catchment in the period 1/1/1998 to 31/12/2000 

 

 

Figure 4.15. Regression of simulated average daily surface flow in month and 

observed surface flows during validation 
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The results of model performance for surface flow simulation is summarized in Table 

4.11 indicating values of various evaluation statistics during calibration and validation 

periods.  

Table 4.11:  Comparison of model performance in monthly surface flow simulation 

after total flow calibration, monthly surface flow calibration and validation 

 

                                  Monthly simulated surface flow compared to measured values                     

_____________________________________________________________________________________ 
    

   After average annual   After Monthly surface After 

Evaluation Statistic Streamflow Calibration  flow calibration  Validation 

 

Nash-Sutcliffe  

efficiency (NSE)        0.34    0.37   0.62        

______________________________________________________________________________________  

Correlation        

Coefficient ( r )     0.38    0.61   0.8        

______________________________________________________________________________________ 

Coefficient of 
Determination (R2)   0.61    0.38   0.64   

______________________________________________________________________________________ 

Deviation        

Volume (Dv)        25.19    5.80   5.58     

_____________________________________________________________________________________ 

Percentage bias       

(PBIAS)   25.30    5.85   7.04 

______________________________________________________________________________________ 

RSR   0.81    0.79   0.61 

__________________________________________________________________________________ 

RMSE   6.91    6.88   4.44 

________________________________________________________________________ 

 

4.5.3 Summary of model performance assessment during manual calibration. 
 
Model simulation during the manual calibration showed modest performance after 

surface flow calibration. Low values of R
2
 were observed during the calibration period. 

Various reasons can be attributed to this dismal performance. It may be attributed partly 

to the model and partly to the input data. High flows observed during part of the 

calibration period indicated that the peak flows were grossly underpredicted thereby 

contributing to the overall low value of R
2 

obtained (Figures 4.5 to 4.11). In some cases, 

the peak observed flow was nearly double the simulated value (May and November 

1994). This may be partly attributed to the poor simulation of the base flow processes by 
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the model. The base flow pattern of the hydrograph does not follow the general pattern of 

flow in this month (Figure 4.13). Ks is an input parameter that influences the ground 

water flow processes especially flow in acquifers. This parameter has to be estimated 

from a programme (Soil Water Characteristics) which may underestimate or overestimate 

the values thereby grossly misrepresenting the actual baseflow and the subsequent flow 

prediction. The manner in which the model estimates peak flows also differs from the 

observations. It is possible that the observed data consistently captured the peak flow 

during the month especially where the high flows occurred close to the time when the 

gauge reading was taken. This would yield relative higher observed peak flow than 

simulated. Another possible reason is that of the unrepresentative input rainfall data. The 

input rainfall used in the simulations are approximations of the actual rainfall which may 

be overestimated or underestimated. The model uses the thiesen polygon method in 

rainfall estimation which is based on weighting of the stations used according to their 

assumed areas of influence. This method does not account for relief effects and is also 

approximate. If the rainfall if overpredicted, then the resulting flow would be higher that 

what would be observed and vice versa explaining the decrepancies between observed 

and predicted flows. Slope is an input parameter in the model being one among the 

parameters to which the model is sensitive ranking 7 in position out of the input 28 

parameters. The Digital Elevation Model input in the model set up is representative of the 

slope. The DEM was derived from digitized contours which uses interpolation between 

contours to derive the DEM. This approximation may also affect the model predictions 

and hence low r
2
. The curve number to which the model is most sensitive relies on land 

use information for its determination. The tabulated land uses for determining the curve 

numbers may not necessarily have same descriptions are those for the catchment and so 

are approximations to the actual land use types. This may results into model under 

predictions or over predictions of surface flows compared to the simulations yielding low 

r
2
 values. The model also requires the observed landuses to be classified according to the 

SWAT landuses before the model load the data. The corresponding land use in SWAT is 

an approximation of the actual observed land use and may yield runoff that could over 

predict or underpredict the flow causing some discrepancy and therefore low r
2
 value 

when observed and predicted flow values are compared. Limitation in data availability 
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for model inputs may also contribute. In some instances, the observed meteorological and 

flow data available may be characterised with gaps which are filled by statistical 

approximations hence in overall, the data are approximations. This is inevitable 

considering data deficiency in developing countries like Kenya. In brief, the poor 

performance of model performances is contributed both by the model limitations and 

input data deficiencies. 

 

 

4.6 Evaluation of selected pedotransfer functions in estimating saturated hydraulic 

conductivity (Ks) based on model performance in surface runoff prediction. 

 

The Soil Characteristics Program used in the computation of saturated hydraulic 

conductivity has an inbuilt pedrotransfer function designated as Saxton86 and Saxton 

2006 which was used in the model set up, trial run, calibration and validation. The input 

data required in the calculation of PTFs depended on the pedotransfer function in 

question and ranged from simple texture data on % sand, % silt and % clay for some 

functions while other required additional data that included bulk density, porosity, 

organic matter, etc. Some of the pedotransfer functions required parameters derived from 

the soil moisture characteristic functions that could be estimated using available texture 

data. Table 4.12 shows the values calculated for Ks using the selected pedotrasfer 

functions. 
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Table 4.12 Calculated values of saturated hydraulic conductivity (Ks) based on pedotransfer functions evaluated in the 

study 

Soil TopDep BotDep SDTO STPC CLPC BULK AWC       CEC       OM saxton06 Pucket Dane Saxton86 
   
Brakensiek 

       
Campbell  Jabro    Young 

NTu 0 20 32 46 22 1.28 12.00 42.10 32.72 41.95 2.04 12.79 65.43 4.82 63.86 42.99 8.01 

NTu 20 40 32 48 20 1.30 12.00 38.88 28.12 48.43 3.02 17.06 80.47 4.52 76.46 33.54 7.70 

NTu 40 60 30 48 22 1.30 9.00 37.60 19.80 42.96 2.04 12.79 68.15 4.09 55.52 35.99 4.84 

NTu 60 80 32 56 12 1.35 9.00 49.10 12.92 81.69 14.67 53.97 203.11 4.16 157.08 17.35 4.83 

NTu 80 100 32 56 12 1.35 12.00 42.90 9.64 81.69 14.67 53.97 203.11 4.16 157.08 17.35 3.66 

HSs 0 20 -1 -1 -1 0.36 35.00 15.00 137.76 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 

HSs 20 40 -1 -1 -1 0.26 39.00 11.25 86.10 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 

HSs 40 60 -1 -1 -1 0.18 43.00 10.00 68.88 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 

PHl 0 20 28 16 56 1.10 11.00 22.00 25.83 0.76 0.00 0.10 10.78 10.88 2.26 800.31 5.08 

PHl 20 40 24 14 62 1.20 10.00 23.00 21.53 9.55 0.00 0.04 11.68 2.89 1.00 362.41 1.88 

PHl 40 60 18 12 70 1.30 13.00 24.25 12.66 12.83 0.00 0.01 13.58 0.34 0.32 193.03 0.35 

PHl 60 70 16 12 72 1.30 13.00 24.50 8.09 14.07 0.00 0.01 14.28 0.27 0.23 219.47 0.15 

PHl 0 20 34 24 42 1.10 11.00 26.60 33.75 5.40 0.04 0.72 14.15 12.78 12.14 466.36 9.97 

PHl 20 40 32 26 42 1.10 10.00 26.60 27.69 6.11 0.04 0.72 14.82 11.81 10.56 466.94 7.99 

PHl 40 60 32 18 50 1.20 9.00 28.20 12.57 1.64 0.01 0.23 10.99 5.32 5.14 216.08 1.10 

PHl 60 80 36 17 47 1.20 12.00 25.75 6.03 1.46 0.01 0.35 7.49 6.73 8.91 199.05 0.40 

PHl 80 100 44 16 40 1.20 12.00 25.60 7.23 3.54 0.06 0.96 10.89 10.11 29.28 168.00 0.78 

VRe 0 20 28 22 50 1.30 12.00 35.15 23.87 2.54 0.01 0.23 12.09 1.53 3.88 72.99 1.36 

VRe 20 40 22 12 66 1.40 13.00 25.80 12.56 4.41 0.00 0.02 12.28 0.08 0.60 53.29 0.21 

VRe 40 60 22 12 66 1.40 13.00 25.80 12.56 4.41 0.00 0.02 12.28 0.08 0.60 53.29 0.21 

VRe 60 80 22 15 63 1.40 14.00 27.67 6.36 3.33 0.00 0.03 10.26 0.11 0.79 44.48 0.07 

VRe 80 100 22 16 62 1.40 15.00 24.90 3.87 1.97 0.00 0.04 5.28 0.12 0.87 42.21 0.03 

PHl 0 20 20 29 51 1.20 11.00 29.00 63.71 4.62 0.01 0.20 7.68 2.92 2.03 245.10 6.69 

PHl 20 40 20 20 60 1.33 11.00 20.00 17.22 1.22 0.00 0.05 12.86 0.40 0.90 82.57 0.87 

PHl 40 60 20 20 60 1.29 13.00 20.00 12.92 1.22 0.00 0.05 12.86 0.73 0.90 126.60 0.69 

PHl 60 75 20 20 60 1.37 13.00 20.00 8.61 1.22 0.00 0.05 12.86 0.21 0.90 53.86 0.24 

LVf 0 20 26 22 52 1.48 6.00 17.50 15.93 2.25 0.01 0.17 12.1 0.11 2.82 11.56 0.56 

LVf 20 40 29 15 56 1.51 8.00 10.00 11.19 0.63 0.00 0.10 10.56 0.05 2.43 10.16 0.43 

LVf 40 60 25 15 60 1.51 7.00 10.00 8.61 0.49 0.00 0.05 11.39 0.02 1.28 11.95 0.25 

LVf 60 70 25 15 60 1.56 10.00 10.00 8.61 0.49 0.00 0.05 11.39 0.01 1.28 7.00 0.19 

CMx 0 20 57 18 25 1.28 10.00 16.25 22.82 18.99 1.13 8.30 28.61 9.34 280.55 48.99 8.73 

CMx 20 40 50 10 40 1.34 12.00 20.00 13.78 1.63 0.06 0.96 9.59 5.03 44.56 47.92 1.44 

CMx 40 60 50 10 40 1.36 11.00 20.00 13.78 1.63 0.06 0.96 9.59 4.29 44.56 38.70 1.31 
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4.6.1 Model output in Surface flow simulation 
 
 
On completing the surface flow calibration exercise, the role of various pedotransfer 

functions in estimating hydraulic conductivity was evaluated to examine the effect on 

surface flow simulation and therefore establish if indeed the pedotransfer functions used 

in estimating hydraulic conductivity affects surface flow simulation results during 

calibration and validation periods. For each pedotransfer function, the calculated value of  

saturated hydraulic conductivity for each layer for the soil unit in each sub basin was 

input into the model for all the 27 sub basins into which the catchment was divided into. 

Other model input parameters were kept constant at the values derived after conclusion of 

the surface flow calibration process. Based on the saturated hydraulic conductivity values 

obtained from each pedotransfer function, model simulation was performed and 

thereafter a comparison made between the observed and simulated surface flows. Table 

4.13 shows the evaluation results during calibration and validation periods for the various 

pedotransfer functions when used in simulating surface runoff in which the observed and 

predicted surface runoff were compared for each pedotransfer function for the said 

periods. 

 

4.6.2 Performance of the PTFs in surface flow prediction 
 
 
From Tables 4.13, it is shows that the values of the performance parameters was different 

for each pedotransfer function used in estimating saturated hydraulic conductivity (Ks) 

model input when observed and simulated surface flows were compared. Table 4.14 

shows the performance ratings in surface runoff simulation based on estimation of 

hydraulic conductivity using various pedotransfer functions. The measures of 

performance ratings are appended (Appendix 5)  
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Table 4.13 Values of selected performance measures in model surface flow simulation based on various pedotransfer 

functions used in estimating Ks 

 CALIBRATION VALIDATION 

SAX86 PUCKETT jabro DANE Brakensiek Campbell Young SAX86 PUCKETT jabr

o 

DANE Brakensiek Campbell Young 

NSE 0.36 0.41 

 

0.35 0.36 0.35 0.36 0.37 0.63 0.59 0.63 0.62 0.61 0.63 0.62 

r 0.61 0.67 0.60 

 

0.62 0.60 0.60 0.61 0.8 0.80 0.80 0.80 0.79 0.80 0.79 

Oav 1.02 1.02 1.022 1.022 

 

1.02 1.02 1.02 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

Pave 1.01 1.25 1.023 1.09 

 

0.96 0.98 0.99 0.90 1.13 0.90 0.97 0.84 0.86 0.87 

Dv 0.83 -22.39 -0.26 -6.87 

 

6.19 4.07 3.48 6.20 -17.81 5.80 -1.13 12.12 9.99 9.63 

PBIAS 0.84 -22.57 -0.26 -6.92 

 

6.24 4.11 3.51 7.82 -22.48 7.32 -1.43 15.29 12.61 12.16 

RMSE 6.93 6.69 6.99 6.95 6.98 

 

6.96 6.92 4.42 4.65 4.42 4.46 4.49 4.42 4.46 

RSR 0.80 0.77 0.81 0.80 0.80 

 

0.80 0.80 0.61 0.64 0.61 0.62 0.62 0.61 0.62 

 

Table 4.14 Rating of selected pedotransfer functions in predicting Ks for surface runoff prediction using SWAT model 

during calibration and validation 

 
PTF 

NSE PBIAS RSR 

Calibration Validation Calibration Validation Calibration Validation 
Saxton86 0.36(Unsatisfactory) 

 
0.63 (satisfactory) 0.84 (very good) 7.82 (Very good) 0.80 (unsatisfactory) 0.61 (satisfactory) 

Puckett 0.41  Unsatisfactory) 

 

0.59(satisfactory) -22.57 (Satisfactory) -22.48 (satisfactory) 0.77(unsatisfactory) 0.64 (satisfactory) 

Jabro 0.35 (Unsatisfactory) 

 

0.63(satisfactory) -0.26 (very good) -7.32 (very good) 0.81(unsatisfactory) 0.61(satisfactory) 

Dane 0.36 (Unsatisfactory) 

 

0.63 (satisfactory) -6.92(very good) -1.43 (very good) 0.80 (unsatisfactory) 0.62 (satisfactory) 

Brakensiek 0.35 (Unsatisfactory) 

 

0.61(satisfactory) 6.24 (very good) 15.29 (satisfactory) 0.80 (unsatisfactory) 0.62 (satisfactory) 

Campbel 0.36 (unsatisfactory) 

 

0.63 (satisfactory) 4.11(very good) 12.61 (good) 0.80 (unsatisfactory) 0.61(satisfactory) 

Gowing 0.37 (unsatisfactory) 

 

0.62 (satisfactory) 3.51(very good) 12.16 (good) 0.80 (unsatisfactory) 0.62(satisfactory) 
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Performances during calibration and validation were assessed as follows: 

 

During calibration 

The values of correlation coefficient ranged between 0.6 and 0.67 for all the pedotransfer 

functions which are above the acceptable value of 0.5. The simulation based on Puckett 

yielded the highest value of Nash-Sutcliffe efficiency (NSE=0.41) and also the highest 

value for the correlation coefficient. In general, the values of  NSE returned for all the 

simulation sets indicated unsatisfactory model performance all falling in the range 0.35 to 

0.41. The difference between the measured and observed surface flow was within 22.5% 

of the observed for Puckett. The PBIAS even though satisfactory was highest for Puckett 

compared to the others being -22.57, with the negative value indicating model 

overestimation of surface flow, however being less than 25% indicating satisfactory 

model performance (Dawadi and Ahmad, 2012). The RMSE and RSR also registered the 

lowest values compared to the other PTFs indicating better performance. The next best 

value for NSE was that obtained based on the use of pedotransfer function of Young with 

a value of 0.37. The correlation coefficient was 0.61 (acceptable) while the simulated 

surface flow was within 6% of the observed surface flow indicating good performance. 

The percentage PBIAS was 3.51 implying very good model performance based on the 

use of this pedotransfer function better than what was obtained from Puckett. The RSR 

value was 0.8 indicating unsatisfactory performance though not very far from the value of 

0.7 for which the model performance would be satisfactory. The other pedotransfer 

functions’ performance fell more or less between the two discussed, however more 

excellent results were obtained from Jabro  based on the PBIAS value which was -0.26 

i.e -10%<PBIAS<10% implying very good model performance. The difference between 

the means of observed and predicted surface flows was very minimal being 0.1%. 

 

During Validation   

The validation results generally indicated good performance in surface flow simulation 

for all sets of the pedotransfer functions. The value of NSE varied for each pedotransfer 

function used but the range was within 0.59 to 0.63 reflecting satisfactory model 

performance for all the pedotransfer functions. The highest value obtained was for 
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Campbell, Saxton86 and Jabro while the lowest value was obtained for Puckett. The 

correlation coefficient was about 0.80 for all the functions which is acceptable and 

reflecting good performance. The values of RSR fell in the range 0.6 and 0.7 within 

which the model performance is regarded satisfactory. This was the case with the other 

performance measures. Relative to other pedotranser functions, Puckett registered a 

poorer value of PBIAS (-0.18) followed by Brakensiek, however the values still fell 

within the level of satisfactory performance. The difference between the observed and 

simulated surface flows varied depending on the pedotransfer function used in the 

validation but all fell within the range of 7% and 18% being lowest for saxton86 and 

Jabro while the highest difference occurred when Brakensiek was used in the simulation. 

From Table 4.14, it is observed that the general performance of the model in surface flow 

simulation ranged from satisfactory to very good during validation period for all the 

pedotransfer functions used to predict Ks as input to the SWAT model in predicting the 

surface flow. 

 

4.7 Development of pedotransfer functions 

Processes involved in developing pedotransfer functions yielded results discussed as 

follows; 

 

4.7.1 Evaluation of the distribution of the moisture retention parameters.  

Table 4.15 shows the values of these statistical parameters for the response variables 

being the Van Genuchten moisture retention parameters and their proposed 

transformations for the data set of 457 samples. The transformations of Van Genuchten 

parameters (response variables) that produce the best approximation to normal 

distribution are 
 

  
, e

θr
, √α  and √n. This was based on measures of the Shapiro-Wilk (W-

value), Skewness coefficient and Kurtosis. For illustration, Figure 4.16 shows the 

histogram and normality plot in the normal distribution check for the saturated soil 

moisture content transformation (θs). The statistical parameters associated with the test 

for normality are illustrated in Table 4.16 after analysis using the “analyse it” software 

embedded in microsoft excel. The transformations were then related to the available basic 

soil properties to develop the pedotransfer functions using multiple linear regression.  
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________________________________________________________________________ 

Table 4.15 Normality of distribution check for parameters in the van Genuchten 

water retention characteristic and their transformations:  

______________________________________________________________________________ 

     W-value  Skewness Kurtosis 

________________________________________________________________________ 

θs     0.98   0.53   0.00 

θr     0.99   0.09   -0.21 

α     0.67   4.08   29.47 

n     0.78   2.65   11.13 

ln (θs)     0.99   0.04   -0.39  

√θs     0.99   0.28   -0.29 

 

  
     0.98   0.06   0.06 

e 
θs

     0.96   0.82   0.66 

θs
2
     0.93   1.05   1.25 

ln (θr)     0.75   -4.16   38.54 

√θr
     

0.93   -1.09   1.77 

1/θr     0.03   21.09   444.92 

θr
2
     0.89   1.34   2.29 

e 
θr

     0.99   0.39   0.12 

θr
1/3

     0.83   -2.02   5.78 

ln(α)     0.72   -2.94   11.8 

1/α     0.03   21.17   450.93 

e
α
     0.62   5.01   44.15 

α
2
     0.20   13.89   238.13 

√α     0.95   0.91   2.27 

Log(n)     0.98   0.49   0.94  

√n     0.91   1.45   3.67  

n
2
     0.46   6.23   56.04  

1/n     0.93   1.32   3.93 

e
n
     0.24   12.69   201.48 

________________________________________________________________________
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Figure 4.16. Check for normality of distribution of the saturated soil moisture 

content (θs) showing the histogram and normality plot. 
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_____________________________________________________________________ 

Table 4.16. Statistical parameters obtained on normality check for the saturated 

hydraulic conductivity data 
__________________________________________________________________________________ 

n  457         

            

Mean  0.5254   Median  0.5053   

95% CI  0.5155 to 0.5353 95.1% CI  0.4940 to 0.5206 

SE  0.00504         

      Range  0.620   

Variance  0.0116   IQR  0.1497   

SD  0.1078       
 95% CI  0.1012 to 0.1153 Percentile      

      0th  0.2808  (minimum) 

CV  20.5%   25th  0.4467  (1st quartile) 

      50th  0.5053  (median) 

Skewness  0.53   75th  0.5964  (3rd quartile) 

Kurtosis  0.00   100th  0.9003  (maximum) 

            

Shapiro-Wilk W  0.98         

p  <0.0001         

________________________________________________________________________ 

The plots of normality check for several response variables (moisture retention 

parameters) or their transformation are appended for illustration (Appendix).  

 

4.7.2 Statistical linear regression analysis 

 

Tables A6.1 through A6.5 (Appendix 6) shows the resulting values of r
2
 when a linear 

regression analysis is performed for the corresponding response and predictor variables 

indicated for each of the moisture retention parameters and the transformed basic soil 

properties i.e percent clay, percent silt, percent sand and, percent organic carbon and bulk 

density. 

 

 

4.7.3 Multiple regression analysis and accuracy of the pedotransfer functions 

developed 

 

The quality of fit for the linear regression between each selected transformed dependent 

variables (moisture retention parameters) and the transformed independent variables 

(basic soil properties) was notably different for each transformation. For instance, the 
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linear regression performed between θs and sand yielded a quality of fit, measured by the 

value of r
2
, to be 0.10 while that between θs and e

sand 
 yielded r

2
 = 0.01. The same 

observation was made in the case of regression performed with silt, clay, bulk density and 

organic carbon. Also each selected transformed variable ( i.e ln(θs), e
θr

, √α, etc) produced 

different values of r
2
 when a linear regression between each response variable and a 

transformed predictor variable for each of the variable sand, silt, clay bulk density and 

organic carbon. For example, a regression performed between the independent variable 

sand
2 

and 
 

  
 yielded r

2
 = 0.14 while that between  sand

2 
and e

θr
 produced r

2
 = 0.20, hence 

no particular transformed variable could be said to generally give the best quality of fit 

with all the dependent variables whether it is sand, silt, clay, bulk density or organic 

carbon. Also, there is no particular response variable that could be said to yield the best 

quality of fit compared to others for all the independent variables or transformations to 

which regression was performed. Table A6.1 through A6.5 showed the values of quality 

of fit measured by r
2
 for all the selected response variables and the corresponding 

predictor variable and their transformations. The purpose of this regression analysis was 

to help identify the pair of transformed dependent and independent variables that yield 

the best quality of fit between them as measured by coefficient of determination r
2
. This 

would assist, for each dependent variable, to identify which transformations of each of 

the dependent variables would be used in developing the pedotransfer functions during 

multiple regression to relate each response variable and selected predictor variables and 

appropriate transformations. This would help establish the best possible mathematical 

relationship between the moisture retention parameters (response variables) and selected 

basic soil properties (independent variables) in the pedotransfer function. From the 

Tables A6.1 through Table A6.5, a number of observations on the regression 

relationships can be made for each response variable and how it relates with each of the 

predictor variables and their transformations. The transformed response variable 
 

  
 

yielded the best quality of fit (r
2
=0.14) with the independent variables sand or sand

2
 

compared to the other transformations when a regression analysis was performed. In the 

case of regression with silt, the best possible quality of fit was obtained with the 

transformation 1/silt and so was with bulk density, BD
3
 (r

2
=0.60), √clay or clay

2
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(r
2
=0.12), organic carbon, ln(OrgC) (r

2
=0.27). In general, the linear regression performed 

between 
 

  
 and the bulk density transformations produced best quality of fit as compared 

to those of silt, sand, organic carbon and clay, showing that the best relationship was 

obtained with bulk density followed by organic carbon, sand, clay and silt in that order. 

In the case of residual moisture content, θr the selected transformation e
θr

 related best 

with clay with a quality of fit r
2
=0.32 obtained when regression was performed between 

e
θr

 and √clay. The poorest fit was obtained when the regression was performed with 

transformations of organic carbon e.g. ln(OrgC ) with r
2
=0.01. α yielded the best possible 

quality of fit when a regression was performed with √clay or 1/clay. √α generally showed 

poor quality of fit with most of the independent variables or transformations. The 

transformation 
 

 
 also showed poor quality fit with most of the selected response variables 

when regression analysis was performed. The best quality of fit was obtained with the 

transformation of sand when the linear regression was performed between n
-1

 and sand
3 

(r
2
=0.09). These regression results are shown in Tables A6.1 through A6.5 (Appendix 

6).  Figure 4.17 illustrates the regression between selected transformations of response 

variables and the predictor variables that give the best possible quality fit . 

 

After performing linear regression between two variables involving the selected 

transformed response variables, associated with the moisture retention parameters, and 

the predictor variables associated with the basic soil properties, the following conclusions 

were arrived at. For the transformed response variable 
 

  
 the predictor variables that 

yielded the best possible quality of fit with it when linear regression was performed were 

sand, 1/silt, BD
3
, clay

2
, and ln(OrgC) (Tables A6.1 to A6.5-Appendix 6). The variables 

would then be used in developing the multiple linear regression between the said 

response variable and the predictor variables.  
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Figure 4.17: Response versus predictor variable correlations with corresponding 

transformations that give best possible quality fit. 
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In the case of e
θr

, the best possible fit (measured by the value of r
2
) was obtained from 

linear regression with sand, silt
10

, BD
2
, √clay, and ln(OrgC), while in the case of √α the 

best possible fits were obtained with e
sand

 , silt
-2

, BD, clay
-1

, and ln(OrgC). In the case of 

√n, the best possible quality of fit was obtained with the predictor variables Sand
5
, 

 

    
 , 

ln(clay), OrgC
-2

. The predictor variables indicated above that related best in linear 

regression with the selected response variables were the ones considered in developing 

the pedotransfer functions using multiple linear regression. Table 4.17 shows the quality 

of fit obtained when multiple linear regression was performed between each selected 

response variable and the transformed predictor variables to which it relates best e.g. a 

multiple linear regression performed between the response variable 
 

  
 and sand, 1/silt, 

BD
3
, clay

2
, ln(OrgC), yielded the quality of fit measured by R

2 
= 0.63 which is 

considered to be of acceptable accuracy. The resulting equations are illustrated below. 

 

 

  
 = 1.477 + 0.003045SAND-0.1505 

 

    
 + 0.2126BD

3 
- 9.3857E-006clay

2
 - 0.04542Ln(OrgC) (4.1) 

 

Where: 

θs = saturated soil moisture content (cm
3
/cm

3
)  

silt = percent silt  

sand = percent sand 

BD = bulk density (g/cm
3
) 

Clay = percent clay 

OrgC = Organic carbon content (g/kg) 

  

The qualities of fit for the remaining transformed response variables are illustrated in 

Table 4.17 (column 2) for each of  e
θr

, √α  and √n when the simple linear regression was 

done with the selected predictor variable transformations.  
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Table 4.17: Quality of fit based between response variable transformations and selected predictor variable transformations in       

the multiple linear regression. 

 
 sand+silt

-1
+BD

3
+√clay

 

+ln(OrgC) 

 

sand+e
(BD)

 sand+1/silt+ BD
3
  

√clay+BD
3
+silt

-1
 

sand+BD
3
 

θs
-1 

 

R
2
=0.63 R

2
=0.63 R

2
=0.63 R

2
=0.61 R

2
=0.63 

 sand+ silt
10

+ BD
2
+√clay 

+ ln(OrgC) 

 

sand+√clay √clay +silt
10

+BD
2
 √clay+ silt

10 

+ ln(orgc) 

 

√clay + BD
2
 √clay+ ln(OrgC) 

e
 θr

 

 
R

2
=0.37 R

2
=0.33 R

2
=0.35 R

2
=0.32 R

2
=0.35 R

2
=0.32 

 e 
sand

+silt
-2

+BD 

+clay
-1

)+ ln(OrgC) 

e
sand

+  BD+clay
-1

)  e
sand

+ clay
-1

) 

+ ln(OrgC) 

silt
-2

+BD 

+1/clay)+ 

BD+1/clay) silt
-2

+clay
-1

) 

√α R
2
=0.05 

 

R
2
=0.05 R

2
=0.04 R

2
=0.05 R

2
=0.04 R

2
=0.04 

 sand
5
+1/silt+ ln(clay)+ 

OrgC
-2 

 

sand
5
+1/OrgC

2
 1/silt+ ln(clay)                                   ln(clay)+ 1/OrgC

2
 

√n R
2
=0.24 

 

R
2
=0.21 R

2
=0.23                                           R

2
=0.12 
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Based on the above analysis, the general equations that can be used to determine the 

 Van Genutchen parameters are illustrated below. 

 
 

  
          

 

    
                                                             (4.2 ) 

 

 

e
 θr

 = a + bsand+cSilt
10

+ dBD
2
 + e√clay + fln(OrgC)                                                 (4.3) 

 

 

√α =          
 

           
 

    
                                                        (4.4) 

 

 

√n = a + bsand
5
 + 

 

    
          

 

                                                                      (4.5) 

 

 

Where a, b, c, d e and f are constants. 

 

 

4.7.4 Analysis of cross correlations and correlation matrix 

Cross correlation was done for the independent variables (transformations) used for each 

of the response variables 
 

  
, e

θr
, √α  and √n. Tables A7.1 through A7.4 (Appendix) 

Shows the relationships, based on correlation coefficient, between the various predictor 

variables for each of the response variables or transformations. In the case of  
 

  
  the 

predictor variables sand and √clay appear to be highly negatively correlated with r =-0.71 

while BD
3
 and ln(OrgC) are also fairly correlated in a negative sense (r=-0.59). For the 

dependent variable e
θr

, the response variables BD
3
 and ln(OrgC) are also closely 

correlated in the negative sense with r = -0.62. Other reasonable correlations include that 

between e
sand 

to 
 

     
 
(r =0.89), BD to ln(OrgC) (r=-0.64) in the case of predictor variables 

for √α. The other significant correlations observed is that between sand
5
 to 1/silt (r=0.74) 

and sand
5
 to ln(Clay) (r=-0.69) in the predictor variables for √n.  
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4.7.5 Mutiple linear regression results 

For each of the selected response variables, Table 4.17 showed the various possible 

combinations of the predictor variables that were used in performing the multiple linear 

regression and also indicates the qualities of fit obtained based on the coefficient of 

multiple determination R
2
. The various possible multiple linear regression equations 

obtained for the various independent variables are under listed. The choice of the 

independent variables or their transformations was based on combinations that would 

yield the highest possible quality of fit i.e the predictor variable combinations chosen 

include the variables that relate very well with the response variable, hence the equations 

are the best possible equations that could be obtained using the variables indicated. 

Equations developed involving 
 

  
 are as follows with the measures of accuracy based on 

coefficient of determination (R
2
) indicated: 

 

  
                             (R

2
=0.63)                                                                   (4.6) 

 

 

  
                             (R

2
=0.63)                                                         (4.7) 

 

 

  
                          

 

    
           (R

2
=0.63)                                        (4.8) 

 

 
 

  
                          

 

    
          

                              -0.0452ln(orgC) (R
2
=0.63)                                                    (4.9) 

 

The set of possible multiple linear regression equations developed involving  e
θr

 are listed 

as follows: 

 

      θ                                               (R
2 
=0.35)                (4.10)                    

 

                                          (R2
=0.33)                                             (4.11)                                                                                                                                                                                                                                        

 

                                                             R
2
=0.32)  (4.12)                                                             

 

                                 (R2=0.35)                                                                      (4.13)  
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The set of possible multiple linear regression equations developed involving  √α  are listed 

as follows: 
 

 α                       –
        

     
           

        

    
       

                                  R
2
=0.05)                                                                                (4.14)                                              

 

                                                         
 

    
 (R2

=0.05)  (4.15)           

 

                                      
 

    
                   ( R

2
=0.04) ( 4.16)         

 

The set of possible multiple linear regression equations developed involving √n are listed 

as follows: 

                                                                

                             (R
2
=0.24)                                                                                     (4.17)   

                                                       

                      
 

    
                                                          (4.18) 

 

                                               
 

       (R
2
=0.21)    (4.19)                                                                                                                                           

 

                                    
          

     (R
2
=0.12)                                         (4.20)  

 

    4.7.6 Validation of the developed pedotransfer functions to evaluate reliability 

Table 4.18 shows regression equations developed for each of the selected 

transformations of the moisture retention parameters of the Van Genuchten moisture 

retention equation and measures of their performance in validation based on the statistical 

measures indicated. The transformed model parameter that yielded the best reliability is 

the saturated soil moisture content (
 

  
) considering the measure of correlation coefficient 

of 0.86 (r
2
=0.74). This indicates that θs is well predicted by the pedotransfer function 

developed. Prediction of transformed variable √α yielded the lowest possible value for 

the selected measure for the quality of fit (r=0.25) reflecting the lowest level of reliability 

compared to the other pedotransfer functions developed for moisture retention parameters 

under consideration. The transformed variable for residual moisture content e
θr

 yielded 

modest performance with the best possible value of correlation obtained, r=0.64 

(r
2
=0.41). 



108 

 

____________________________________________________________________________________________________________ 

Table 4.18. Summary of equations for transformations of Van Genuchten parameters and their performance in reliability____ 

Response Variable   Equation    r r
2
 RMSE  RSR NSE ME PBIAS         

 

  
     

 

  
  = 0.8103 + 0.003534sand + 0.3099e

(BD)
                 0.87 0.76 2.09  0.50 0.75 0.001 0.07  

 

  
     

 

  
 = 1.397 + 0.003176sand + 0.2451BD

3
   0.87 0.76 2.12  0.50 0.75 0.004 0.19  

 

  
     

 

  
 =1.477 + 0.003045sand - 0.1505

 

    
  + 0.2126BD

3  
0.86 0.74 2.11  0.51 0.74 0.009 0.44 

        - 9.3857E-006clay^2 - 0.04542ln(OrgC)   
 

  
     

 

  
  = 1.397 + 0.003385sand - 0.1433

 

    
 + 0.246BD

3
  0.87 0.76 2.13  0.51 0.74 0.006 0.31 

  

e
θr

   e
θr

 = 1.083 + 0.0382√clay - 5.0290E-021silt
10

  0.64 0.41 1.10  0.77 0.41 0.011 0.90 

 - 0.0392BD
2
 

e
θr

   e
θr

 = 1.062 - 0.0007465sand + 0.03532√clay                0.60 0.36 1.14  0.80 0.36 0.008 0.63  

e
θr

   e
θr

 = 1.009 + 0.04099vclay - 4.9035E-021silt^10   0.63 0.40 1.11  0.78 0.39 0.007 0.55 

+ 0.004877ln(OrgC)   

e
θr

   e
θr

 = 1.077 + 0.03896√clay - 0.03928BD
2
   0.64 0.41 1.10  0.77 0.40 0.011 0.90 

e
θr

   eθr=1.003+0.0417√clay+0.005286ln(OrgC)                 0.62 0.38 1.12  0.79 0.38 0.007 0.57 

 

√α     √α = 0.18 - 1.0440E-043exp(sand) - 0.07138
 

     
  0.19 0.04 0.85  1.00 0.01 -0.012 -8.82 

     - 0.02068BD - 0.088661/clay + 0.0008447ln(ORGC)  

√α     √α  = 0.1847 - 2.0502E-043exp(sand) - 0.02556BD  0.19 0.04 0.85  0.99 0.01 -0.011 -8.29  

 - 0.093161/clay  
√α     √α = 0.1564 - 2.0817E-043exp(sand) - 0.088771/clay    0.25 0.06 0.85  0.99 0.02 -0.013 -9.39 

 + 0.004372ln(OrgC). 
 

√n   √n = 0.9871 + 4.0051E-011sand
5
 + 0.6231/silt  0.45 0.20 1.89  0.90 0.20 -0.006 -0.62 

 - 0.03977ln(Clay) - 0.00006391/OrgC
2
 

√n   √n = 1.101 + 0.87021/silt - 0.07228ln(Clay)   0.42 0.18 1.91  0.91 0.17 -0.002 -0.17  

√n   √n = 0.8617 + 8.4062E-011sand
5
     0.45 0.20 1.88  0.89 0.20 -0.005 -0.59 

+ 2.2259E-0051/OrgC
2
 

√n    √n = 1.22 - 0.09247ln(Clay) + 0.00011681/OrgC
2
  0.29       0.08 2.02  0.96 0.08 -0.002 0.19 

 
__________________________________________________________________________________________________________________________
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W  sten et al. (2001) notes that continuous pedotransfer functions can be applied in the 

case of more site specific applications, where measured data is available, since they do 

not provide site specific information. The pedotransfer functions predict soil hydraulic 

characteristics for broadly defined textural classes.  Figures 4.18 through 4.21 illustrates 

the performance of the developed pedotrasfer functions for the transformed response 

variables based on analysis by linear regression. 

  

 
 

Figure 4.18 : Predicted value of transformed variable 
 

  
 versus measured by 

correlation for a developed equation that yielded the best possible quality of fit. 
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Figure 4.19 : Predicted value of transformed variable e
θr

 versus measured by 

correlation for a developed equation that yielded the best possible quality of fit. 
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Figure 4.20 : Predicted value of transformed variable √α versus measured by 

correlation for a developed equation that yielded the best possible quality of fit. 
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Figure 4.21: Predicted value of transformed variable √n versus measured by 

correlation for a developed equation that yielded the best possible quality of fit. 

 

Based on the above indicated equations that produced the best possible fit, equations  

relating the moisture retention parameters that are not transformed to the transformed  

basic properties were also compared to the measured (fitted) parameters and yielded the  

values of R
2
 indicated below alongside the equations. 

 

θs= 
 

                                  (R
2
= 0.77)                                                      (4.21) 

 

 

θr= ln (1.083 + 0.0382√clay - 5.0290E-021silt
10

-0.0329BD
2
) (R

2
=0.43)       (4.22) 

 

n = (0.8617 + 8.4062E-011sand
5
  + 2.2259E-005 

 

      )
2
 (R

2
= 0.28)                  (4.23) 

 

α = (0.1564 - 2.0817E-043e
sand

 - 0.08877
 

    
 + 0.004372ln(OrgC))

2
 (R

2
=0.04)     (4.24) 
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4.8. Surface runoff simulation using saturated hydraulic conductivity values 
predicted using developed pedotransfer functions. 

 

The simulation was performed during the period 1/1/1998 to 31/12/2012 being also the 

period for model validation from previous analyses of performance of pedotransfer 

functions earlier assessed. Figure 4.22 shows the hydrograph of surface runoff predicted 

using Ks values obtained from developed pedotransfer functions and the observed surface 

runoff for the said period. Figure 4.23 shows the comparison of predicted and observed 

surface flow based on regression plot. 

 

 

Figure 4.22: Hydrographs of simulated and observed surface runoff based on Ks 

values determined using developed pedotransfer functions 
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Figure 4.23: Comparison of simulated and observed surface runoff using linear 

regression based on the value of Ks calculated using developed pedotransfer 

functions. 

 

 From Figure 4.22, it is evident that the predicted flow tends to follow the pattern of the 

observed flow. There are few instances where the simulated flow slightly under predicts 

the observed flow during the period January 1998 to March 1999. During the period 

April 1999 to December 2000, the model either overpredicts the flow or follows well the 

flow pattern. The coefficient of determination (r
2
) yielded a value of about 0.65 (>0.5) 

reflecting acceptable performance of the model. The Nash-Sutcliff efficiency value of 

0.62 reflected satisfactory model performance of the model in predicting the low flows. 

The performance of the model in surface flow simulation using the Ks values based on 

developed pedotransfer functions was compared to the performance of other pedotransfer 

functions earlier discussed (section 4.6) using known performance measures. Table 4.19 

shows the comparison based on the performance measures. The NSE value is comparable 

to the other pedotransfer function. The value is higher than obtained for Jabro, Puckett 

and Brakensiek and lower than for Saxton and Campbell, but equal to that of Young. The 

Ks value from developed PTFs yielded the highest value for the coefficient of 
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determination (r
2
=0.65), however this value was not so much higher than for the other 

PTFs studied. Figure 4.24 illustrates the comparison between the developed pedotransfer 

functions and some selected existing PTFs indicating their performances in surface runoff 

simulation based on the coefficient of determination (r
2
). The difference between means 

of the observed and predicted mean flow based on the Ks value from developed PTFs was 

5% indicating nearly close agreement between observed and simulated average flows and 

hence good performance. The percentage bias (PBIAS) value of 6.88 for the developed 

model was better than for all the other models except for Dane and indicated very good 

performance. The RSR value was also among the lowest possible value compared to the 

other PTFs and showed satisfactory performance. In general the performance of the 

developed PTFs in predicting surface runoff is considered acceptable. The PTFs 

performed better than the others considered while it was comparable to the others. The 

PTFs generally performed better that most of the others considered in surface flow 

prediction. For each of the performance measures, the developed PTFs ranked best or 

second best in surface flow prediction when used in predicting Ks.  

 

Table 4.19: Comparison of performance of developed pedotranfer function for Ks 

(Obiero) and existing PTFs in surface flow simulation. 

 
 SAX86 PUCKET

T 

Jabro DANE Brakensiek Campbell Young Obiero 

NSE 0.63 0.59 0.63 0.62 0.61 0.63 0.62 0.62 

r 0.80 0.80 0.80 0.80 0.79 0.80 0.79 0.81 

r
2
 0.64 0.64 0.64 0.64 0.62 0.64 0.62 0.65 

Oav 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

Pave 0.90 1.13 0.90 0.97 0.84 0.86 0.87 0.91 

Dv 6.20 -17.81 5.80 -1.13 12.12 9.99 9.63 5.46 

PBIAS 7.82 -22.48 7.32 -1.43 15.29 12.61 12.16 6.88 

RMSE 4.42 4.65 4.42 4.46 4.49 4.42 4.46 4.43 

RSR 0.61 0.64 0.61 0.62 0.62 0.61 0.62 0.61 
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Figure 4.24: Comparison of simulated and observed surface flows for the developed 

and some existing PTFs. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Within the range of this study, the following conclusions can be drawn: 

 

1. Parameters used in Pedotransfer Functions (PTFs) for predicting saturated 

hydraulic conductivity (Ks) are based on basic soil properties that can be 

measured and which are can easily be obtained in most soil data bases.  

 

2. Preliminary model assessment, calibration and validation efforts showed that Soil 

Water Assessment Tool (SWAT) model is a good simulator of surface runoff and 

could be used in verification of developed Pedotransfer Functions in surface 

runoff prediction.  

 

3. Performance of the developed Pedotransfer Functions for estimating Van 

Genutchen moisture retention parameters in saturated hydraulic conductivity  

prediction varied for the individual moisture retention paramaters, but in general 

showed acceptable performance.  

 

4. Developed Pedotransfer Functions for saturated hydraulic conductivity showed 

satisfactory performance in flow prediction during verification yielding a 

coefficient of determination value higher than those obtained with existing 

Pedotransfer Functions.   

5.2 Recommendations for further study 

The following are recommendations for further study: 

 

1. In developing PTFs, it is preferable to use soil properties that are available in soil 

data bases. Emphasis should be put in developing PTFs based on the use of 

moisture retention parameters in predicting Ks where little effort have been made; 
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2. Efforts should be made in developing data bases that would provide more 

elaborate and good quality data for use in hydrological modeling;  and  

 

3. Continued effort should be made in developing more pedotransfer functions to 

provide users with more alternative equations and especially those PTFs that use 

the very basic soil properties available in many local soils data bases. 
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APPENDIX 1: PHOTOGRAPHIC MAPPING PROCEDURE FOR NARO MORU 

CATCHMENT  

 

The  procedure used in the photogrammetric mapping of the Naro Moru catchmemt based 

on the use of aerial photographs and the relevant topographical map proceeded as 

follows: 

 

- suitable control points were identified and marked in the topo sheets. These 

included river junctions, road junctions, railway/road junctions, hilltops etc. These 

points were likewise located in the aerial photographs. As many of these points as 

possible are identified and marked. 

 

- The coordinates as well as the spot heights of the above mentioned control points 

were established. Table A1 shows recorded coordinates, heights and descriptions 

of the selected points and serial numbers as marked on the topo sheets and aerial 

photographs. 

 

- The identified control points were then plotted onto a gridded transparent plotting 

sheet prepared to plot the contours to a reduced scale of 1: 20,000. 

 

- The next step involved setting up of the plotting sheet for mapping of the 

described features (e.g. contours). This involved mounting the pairs of 

overlapping aerial photographs (stereo pairs) on plotting equipment known as the 

stereo top appropriately and systematically removing parallax through an iterative 

process to ensure the plotted coordinates and  spot heights for the selected control 

points are correct. 

 

- The parallax removal is accomplished through a standardized computational 

procedure with a special sheet for tabulation. Once the photo pairs have been 

mounted on the stereotype machine, adjustments are made using appropriate 

adjustment screws until a floating mark is observed. 
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Table A1.1 selected control points for mapping using aerial photos and toposheets 

Control point Easting Northing Height(m) Description 

1 267,300 9994342 1795.00 River junction 

2 268360 9994620 1800.00 Road junction 

3 270140 9995660 1821.00 Road junction 

4 267960 9989060 1818.00 Road/river junction 

5 267340 9986460 1850.00 Road/cutline junction 

6 266880 9984780 1882.00 Road/footpath junction 

7 269200 9985140 1830.00 Road/footpath junction 

8 270560 9985620 1885.00 Cutlines junction 

9 272460 9984740 1885.00 Roads junction 

10 272680 9989740 1845.00 Cutlines junction 

11 272060 9995370 1823.00 Roads junction 

12 272560 9993360 1846.00 Road junction 

12A 276240 9995440 1838.00 Road and river junction 

13 275900 9985640 1838.00 River and rail junction 

14 275800 9985560 1895.00 River and rail junction 

15 274780 9984400 1911.00 Cutline and road junction 

16 275800 9985560 1895.00 River and road junction 

17 277430 9984850 1915.00 River junction 

18 279040 9984565 1945.00 River junction 

19 281120 9986140 1981.00 Roads junction 

20 279040 9982050 1975.00 Roads junction 

21 277640 9979980 1970.00 River/road junction 

23A 278040 9977000 1952.00 Footpath junctions 

24 - - 1981.00 River/footpath junction 

25 279940 9979210 1978.00 River junction 

26 283180 9983620 2040.50 River/track junction 

27 - - 1984.30  

28 283100 9979500 2068.00 Road junction 
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29 284700 9978680 2075.00 Road junction 

30 - - 2070.00 Road junction 

31 - - 2073.30 Road junction 

32 285240 9975480 2101.60 Road/track junction 

33 287400 9976440 2118.40 River/track junction 

34 286960 9979960 2103.50 River and footpath junction 

35 285280 9981980 2097.90 River/track junction 

36 287800 9983180 2163.50 River junction 

37 290180 9985440 2254.90 River/road junction 

38 289760 9980460 2193.00 River/road junction 

38A 288760 9980100 2190.00 Roads junction 

39A 292400 9976200 2194.00 Roads junction 

40 292120 9978480 2318.00 Roads junction 

41 291620 9980940 2318 Roads junction 

42 - - 2423 Open ground 

43A 295100 9977330 7895.00  

43 294780 9975140 2377.50 River/\road junction 

44A 299400 9984650 9395.00 River junction 

44 - - 2775.20 Top of hill 

45A 300400 9981550 9600.00 Road corner 

45 299400 9981180 2836.50 Road corner 

46 298060 9979900 2704.50 River junction 

48 298240 9976620 2592.00 River junction 

49 301000 9979680 2835.00 River junction 

50 301900 9982270 3002.30 River junction 

51 300980 9984880 3112.00 Isolated hill 

52 300430 9975920 2804.16 River junction 

53 301120 99874200 2719.0 River junction 

54 303350 9976240 3104.39 River junction 

55 302450 9977640 3075.43 River junction 
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55A 306370 9979520 3834.38 River junction 

56 304640 9984820 3750.56 Peak of mountain 

57 303780 9983530 3689.60 Peak of mountain 

58 308730 9979810 4038.60 River junction 

58A 308700 9978470 4044.70 River junction 

59 309510 9981630 4146.80 River junction 

60 308810 9982740 4212.34 River junction 

61 307150 9983220 3989.83 River junction 

60A - - 4024.88 River junction 

61 307150 9983220 3989.83 River junction 

62 311700 9983450 5199.28 Peak of mountain 

63 310570 9982850 4504.90 Road junction 

63A 309250 9984600 4116.32 River junction 

64 310930 9982740 4352.54 River junction 

65 311870 9982160 4669.54 Road junction 

66 310310 9978370 4020.31 River junction 

67 311880 9977930 3931.92 River junction 

67A 312830 9976.05 3659.12 River junction 

68 312110 9979440 4090.42 River junction 

69 312920 9981840 4325.11 River junction 

70 312200 9984740 4206.24 River junction 

70B 313200 9983850 4593.34 Centre line of pond 

- The marked control points are then rechecked again to confirm if they are correct 

and accurately georeferenced. This involves again some series of adjustments on 

the stereo top machine and cross checking of the points until a good number of 

points are observed to be properly positioned. 

 

- The process of mapping then follows once the setting is completed. The contours 

are then drawn and also the river drainage networks as well as other important 

features like roads, railway lines etc. 

The above described technique of mapping is manual/analogue. 
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APPENDIX 2: PROCEDURE USED IN THE DIGITIZATION OF NARO MORU 

CATCHMENT  

The digitization of Naro Moru River catchment area was done from a topographical map 

of the area at a scale of 1:20,000 mapped by photogrammetric means. The 

photogrammetric mapping was based on aerial photography at a scale of  1:70,000 , with 

a camera having a focal length of  152.822cm and for the year 1988 Photogrammetric 

mapping was manual/analogue and for the same map information to be useful for GIS 

analysis, it had to be converted to digital form. The conversion can result in raster format 

by scanning or in vector format by either vectorizing/digitizing using a digitizing tablet or 

by first scanning and then performing on-screen vectorization. This later alternative was 

the one used for this exercise. The resulting digital map was obtained by digitizing three 

analogue maps. Figure A2.1 shows the outline of the three map sheets. The maps sheets 

had the areal extents of the neat line after georeferencing as indicated in Table A2.1. 

 

Figure A2.1 Outline of map sheets covering Naro-Moru catchment 

 

Table A2.1 Areal extents of map sheets covering the test catchment 

Corner Sheet one Sheet two Sheet three 

 Easting Northing Easting Northing Easting Northing 

Top left 265637.7 9995694.4 274488.7 9988983.7 294747.9 9988949.7 

Top right 279468.7 9995772.8 297586.7 9988948.9 314670.6 9988734.2 

Bottom left 265425.4 9982344.5 274415.1 9975198.1 294640.2 9975035.7 

Bottom 

right 

280158.6 9983182.1 297491.1 9975200.0 314473.1 9974774.6 

 

SHEET 

ONE  

SHEET TWO 

 

SHEET THREE 



133 

 

Scanning 

Scanning is the process of converting an analogue document to digital form in raster 

format, i.e., in pixels. For the purpose of this project, scanning was done at a resolution of 

300 dpi (dots per inch) at Gath Management (A consulting firm). The raster files were 

supplied in TIF format 

 

Georeferencing 

Since scanning and on-screen vectorization was the alternative adopted in this project, 

among the available GIS software packages, ILWIS 3.0 (i.e Integrated Land and Water 

Information System) was chosen, because it has capabilities for georeferencing, on-

screen digitization, and importing and exporting results in different file formats, 

especially the TIF and DXF, the industry raster and vector standards, besides having 

various image processing functionalities. 

 

First and foremost, a folder that is to contain the project files was created, followed by 

importing the scanned topographical maps in TIF format. ILWIS version 3.0 requires 

uncompressed raster files. Before commencing digitization, attention is pay attention to 

the coordinate system in which the map will be digitized. One may for instance use user-

defined co-ordinates, coordinates defined by a national standard or coordinates of a 

certain UTM zone. The information on the map coordinates one uses in a project is 

stored in a coordinate system. A coordinate system defines the possible minimum and 

maximum X’s and Y’s that can be used in one or more maps, along with other 

information on map datum, projection, etc. A coordinate system may include a 

projection, which defines the relationship between map coordinates and geographic 

coordinates in latitude and longitude. 

 

Use of Tie-Points as a coordinate system in ILWIS entails determining relation between 

pixel coordinates and map co-ordinates using a conformal, affine, second order, 

projective, etc. transformation. The tie points/ control points used include grid 

intersections, which have precisely known map co-ordinates. The following Tables 

(A2.2, A2.3, & A2.4)  indicate results of georeferencing each sheet. 
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A2.2 Georeference of map sheet 1 using second order transformation 

Tie Point X Y Row Col Row Col 

1 266000 9994000 1647 843 1.47 -2.13 

2 268000 9984000 7534 2075 1.57 -2.26 

3 272000 9984000 7542 4437 0.98 -1.59 

4 276000 9986000 6375 6802 -1.98 3.05 

5 278000 9992000 2850 7970 1.43 -2.24 

6 270000 9994000 1649 3224 -2.22 3.10 

7 274000 9994000 1658 5595 -0.39 0.79 

8 266000 9986000 6352 896 -3.68 5.44 

9 268000 9988000 5187 2063 2.82 -4.17 

 

A2.3 Georeference of sheet two using Affine transformation 

Tie Point X Y Row Col Row Col 

1 278000 9988000 884 2741 2.54 1.50 

2 286000 9988000 908 7467 -3.16 -0.51 

3 296000 9986000 2126 13376 0.59 -0.90 

4 278000 9976000 7943 2735 -1.19 -0.82 

5 288000 9978000 6805 8645 0.81 -1.44 

6 294000 9976000 8004 12194 0.41 2.17 

A2.4 Georeference of map sheet three using full second order transformation 

Tie Point X Y Row Col Row Col 

1 296000 9986000 2170 1223 0.00 2.11 

2 302000 9986000 2117 4749 -0.01 -3.69 

3 310000 9986000 2048 9479 0.00 1.58 

4 296000 9978000 6862 1298 0.00 -1.11 

5 304000 9980000 5615 6004 0.00 0.00 

6 306000 9978000 6778 7201 0.00 2.95 

7 312000 9978000 6729 10749 0.00 -1.84 
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On-screen digitization/ on-screen vectorization 

Digitization or vectorization in this sense entails following each feature with a mouse. 

The following features were vectorized: 

 Contours 

 Spot heights  

 Rivers 

 Dams 

 Railway 

 Tracks and footpaths  

 Trees/shrubs 

 

During on-screen digitization of contours, the following omissions and commissions 

were encountered, but were rectified: 

 Contours labeled 2300, 2340, 2360 on the lower end of sheet two were wrongly 

labeled, instead they should respectively have been labeled 2340, 2360 and 2370. 

 Contour labeled 2540 was discontinuous about the middle. 

 There was a mix up in contours labeled 2600, 2620, 2640 and 2660. 

 In sheet three, the following contours were incomplete: 2820, 2860, 2900, 2940 

and 3020 

 

Throughout the three sheets, the contour interval was not constant. The contour intervals 

in the topographic sheets were spread (for clarity) in the following ranges 

  Contour interval ranges  Contour interval 

  1790m - 2120m    5m 

  2120m – 2400m    10m 

  2400m – 2800m    20m 

  2800m - 4000m    40m 

  4000m – 4560m    80m 

spot heights were only shown in sheet one and three. 
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APPENDIX 3: RUNOFF CURVE NUMBERS FOR VARIOUS LAND COVER TYPES 

_______________________________________________________________________ 

Table A3.1 Runoff curve numbers for other agricultural watersheds 

_______________________________________________________________________ 

                                                                                             Hydrologic Soil Group 

Hydrologic  

 Cover type    Condition   A B C D____ 
Pasture, grassland, or range— 

continuous forage for grazing1  Poor    68  79  86  89 

Fair    49  69  79  84 

Good    39  61  74  80 

__________________________________________________________________________________ 

Meadow—continuous grass, protected  

from grazing and generally mowed for hay. - - - -    30  58  71  78 

____________________________________________________________________________________ 
Brush—brush-weed-grass mixture  
with brush the major element2   Poor    48  67  77  83 

Fair    35  56  70  77 

Good    30  48  65  73 

___________________________________________________________________________________ 

Woods—grass combination  

(orchard or tree farm)    Poor    57  73  82  86 

Fair    43  65  76  82 

Good    32  58  72  79 

__________________________________________________________________________________ 
Woods3      Poor    45  66  77  83 

Fair    36  60  73  79 

Good    30  55  70  77 

_____________________________________________________________________________________ 
Farmsteads—buildings, lanes, driveways,  

and surrounding lots. - - - -      59  74  82  86 

___________________________________________________________________________________ 
1 Poor: < 50% ground cover or heavily grazed with no mulch 

Fair: 50 to 75% ground cover and not heavily grazed 

Good: > 75% ground cover and lightly or only occasionally grazed 

2 Poor: < 50% ground cover 

Fair: 50 to 75% ground cover 
Good: > 75% ground cover 

3 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning 

Fair: Woods are grazed but not burned, and some forest litter covers the soil. 

Good: Woods are protected from grazing, and litter and brush adequately cover the soil. 

(Adapted from Neitsch et al., 2002(b)) 
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Table A3.2 Runoff curve numbers for urban areas 
______________________________________________________________________ 

     Hydrologic   Hydrologic Soil Condition 

Cover type    Condition  A B C D_____ 

Fully developed Urban Areas_____     

Open spaces (lawns, parks, golf courses, 

cemeteries, etc.)    Poor                       68  79  86  89                  

                Fair    49  69  79  84 

     Good    39  61  74  80 

Impervious areas                                                                                                                                                                   

                                                                                                          
Paved  parking lots, roofs, driveways, etc. 
(excluding right-of-way)    - - - -    98  98  98  98 

_____________________________________________________________________________________ 

Paved streets and roads; curbs and storm 

sewers (excluding right-of-way)   - - - -    98  98  98  98 

______________________________________________________________________________________ 

Paved streets and roads; open ditches 

(including right-of-way)    - - - -    83  89  92  93____ 

Gravel streets and roads (including right- 
of  way)     - - - -    76  85  89  91_____ 

Dirt streets and roads (including right-of way) - - - -    72  82  87  89 

______________________________________________________________________________________ 

 

Urban district:                                                                                                                                                  :                                                                                                                                                                       

Commercial and business                  89  92  94  95 

_____________________________________________________________________________________ 

 

Commercial and business       89  92  94  95_____      

 

Industrial        81  88  91  93_____ 

Residential Districts by average lot size: 
______________________________________________________________________________________ 

1/8 acre (0.05 ha) or less (town houses)      77  85  90  92 

______________________________________________________________________________________ 

1/4 acre (0.10 ha)       61  75  83  87 

______________________________________________________________________________________ 

1/3 acre (0.13 ha)       57  72  81  86 

______________________________________________________________________________________ 

1/2 acre (0.20 ha)        54  70  80  85 

______________________________________________________________________________________ 

1 acre (0.40 ha)         51  68  79  84 

______________________________________________________________________________________ 
2 acres (0.81 ha)         46  65  77  82 

______________________________________________________________________________________ 

Developing urban areas:       
                                                                                                                             

Newly graded areas (pervious areas only, no 

vegetation)        77  86  91  94 
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APPENDIX 4: PLOTS OF NORMALITY CHECK FOR RESPONSE VARIABLES  
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APPENDIX 5: PERFORMANCE RATINGS FOR STATISTICAL  MEASURES  

 

Table A5.1: Performance ratings for recommended statistics in flow prediction for 

monthly time step 

 

Performance      Evaluation Statistic 

Rating   RSR   NSE   PBIAS (%) 

Very Good  0.0≤RSR≤0.50  0.75<NSE<1.00 PBIAS<±10 

Good   0.50<RSR≤0.60 0.65<NSE≤0.75 ±10≤PBIAS<±15 

Satisfactory  0.6<RSR≤0.70 NSE≤0.65  ±15≤ PBIAS≤±25 

Unsatisfactory  RSR>0.70  NSE≤0.50  PBIAS≥±25 

(Adapted from Moriasi et al., 2007). 
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APPENDIX 6: QUALITIES OF FIT BETWEEN VAN GENUCHTEN MOISTURE RETENTION PARAMETERS AND 

BASIC SOIL PROPERTIES IN LINEAR REGRESSION 

Table A6.1. Quality of fit between transformations of moisture retention parameters and sand transformations in the linear 

regression.  
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=0.13 r

2
=0.07 r

2
=0.05 r

2
=0.18 r

2
=0.13 r

2
=0.02 r

2
=0.03 

√α 

 

r
2
=0.01 r

2
=0.01 r

2
=0.02 r

2
=0.02 r

2
=0.01 r

2
=0.01 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.02 

ln (α) r
2
=0.01 

 

r
2
=0.03 r

2
=0.05 r

2
=0.07 r

2
=0.09 r

2
=0.09 r

2
=0.01 r

2
=0.00 r

2
=0.00 r

2
=0.08 

Log(n) r
2
=0.10 r

2
=0.13 r

2
=0.15 r

2
=0.16  r

2
=0.15 r

2
=0.15 

 

r
2
=0.08 r

2
=0.05 r

2
=0.02 r

2
=0.08 

√n r
2
=0.11 

 

r
2
=0.15 r

2
=0.18 r

2
=0.21 r

2
=0.20 r

2
=0.12 r

2
=0.08 r

2
=0.05 r

2
=0.01 r

2
=0.12 

1/n r
2
=0.07 

 

r
2
=0.08 r

2
=0.09 r

2
=0.08 r

2
=0.09 r

2
=0.06 r

2
=0.06 r

2
=0.04 r

2
=0.01 r

2
=0.03 
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Table A6.2. Quality of fit between transformations of the moisture retention parameters and silt transformations in the linear 

regression  

 

 silt 
 

silt2 silt3 silt5 silt10 silt15 √silt (silt)1/3 silt1/5 silt^1/10 silt^1/20 ln(silt) 1/silt 1/silt2 1/silt3 

θs 

 

r2=0.01 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.02 r2=0.02 r2=0.02 r2=0.03 r2=0.03 r2=0.03 r2=0.03 r2=0.02 r2=0.01 

θr 

 

r2=0.00 r2=0.01 r2=0.02 r2=0.03 r2=0.03 r2=0.03 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.02 r2=0.02 r2=0.02 

θs
-1

 

 

r2=0.01 r2=0.00 r2=0.02 r2=0.00 r2=0.00 r2=0.00 r2=0.02 r2=0.02 r2=0.02 r2=0.03 r2=0.03 r2=0.03 r2=0.04 r2=0.02 r2=0.01 

ln (θs) r2=0.01 

 
r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.02 r2=0.02 r2=0.02 r2=0.03 r2=0.03 r2=0.03 r2=0.04 r2=0.02 r2=0.01 

e
 θr

 

 

r2=0.00 r2=0.01 r2=0.02 r2=0.03 r2=0.04 r2=0.03 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.02 r2=0.02 r2=0.02 

√α 

 

r2=0.01 r2=0.01 r2=0.00 r2=0.02 r2=0.02 r2=0.02 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.02 r2=0.02 r2=0.02 

Ln(α) r2=0.00 

 

r2=0.00 r2=0.00 r2=0.00 r2=0.01 r2=0.01 r2=0.00 r2=0.00 r2=0.00 r2=0.01 r2=0.01 r2=0.01 r2=0.07 r2=0.09 r2=0.09 

Log(n) r2=0.02 

 
r2=0.01 r2=0.00 r2=0.00 r2=0.00 r2=0.01 r2=0.04 r2=0.05 r2=0.06 r2=0.08 r2=0.08 r2=0.07 r2=0.13 r2=0.09 r2=0.07 

√n r2=0.03 

 
r2=0.01 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.05 r2=0.06 r2=0.07 r2=0.08 r2=0.08 r2=0.09 r2=0.18 r2=0.14 r2=0.12 

1/n r2=0.02 

 
r2=0.01 r2=0.00 r2=0.00 r2=0.00 r2=0.00 r2=0.03 r2=0.03 r2=0.04 r2=0.04 r2=0.04 r2=0.04 r2=0.06 r2=0.03 r2=0.02 
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Table A6.3. Quality of fit between transformations of the moisture retention parameters and silt transformations in the linear 

regression. 

 

 BD BD
2
 BD

3
 BD

5
 √BD Ln(BD) 1/BD e 

(BD)
 

θs 

 

r
2
=0.56 r

2
=0.56 r

2
=0.53 r

2
=0.43 r

2
=0.54 r

2
=0.51 r

2
=0.38 r

2
=0.55 

θr 

 

r
2
=0.09 r

2
=0.09 r

2
=0.09 r

2
=0.10 r

2
=0.09 r

2
=0.08 r

2
=0.05 r

2
=0.09 

θs
-1

 

 

r
2
=0.54 r

2
=0.59 r

2
=0.60 r

2
=0.56 r

2
=0.49 r

2
=0.44 r

2
=0.28 r

2
=0.59 

ln (θs) r
2
=0.56 

 

r
2
=0.59 r

2
=0.58 r

2
=0.50 r

2
=0.53 r

2
=0.48 r

2
=0.34 r

2
=0.58 

e
 θr

 

 

r
2
=0.09 r

2
=0.10 r

2
=0.09 r

2
=0.08 r

2
=0.09 r

2
=0.08 r

2
=0.06 r

2
=0.10 

√α 

 

r
2
=0.02 r

2
=0.02 r

2
=0.02 r

2
=0.02 r

2
=0.02 r

2
=0.01 r

2
=0.01 r

2
=0.02 

Ln(α) r
2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.01 

Log(n) r
2
=0.00 

 

r
2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 

√n r
2
=0.00 

 

r
2
=0.00 r

2
=0.01 r

2
=0.01 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.01 

1/n r
2
=0.00 

 

r
2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 
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Table A6.4. Quality of fit between transformations of the moisture retention parameters and clay transformation in the linear 

regression analsysis 

 

 clay clay
2
 clay

3
 clay

5
 √clay (clay)

1/3
 ln(clay) 1/clay) 1/clay

2
 e

(clay)
 

θs 

 

r
2
=0.07 r

2
=0.08 r

2
=0.09 r

2
=0.07 r

2
=0.08 r

2
=0.02 r

2
=0.06 r

2
=0.05 r

2
=0.01 r

2
=0.00 

θr 

 

r
2
=0.30 r

2
=0.26 r

2
=0.20 r

2
=0.16 r

2
=0.34 r

2
=0.23 r

2
=0.31 r

2
=0.07 r

2
=0.26 r

2
=0.01 

√α 

 

r
2
=0.02 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.04 r

2
=0.02 r

2
=0.04 r

2
=0.04 r

2
=0.00 r

2
=0.01 

Ln(α) r
2
=0.02 

 

r
2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.03 r

2
=0.02 r

2
=0.04 r

2
=0.03 r

2
=0.03 r

2
=0.00 

θs
-1

 

 

r
2
=0.11 r

2
=0.12 r

2
=0.11 r

2
=0.09 r

2
=0.12 r

2
=0.05 r

2
=0.10 r

2
=0.05 r

2
=0.00 r

2
=0.00 

ln (θs) r
2
=0.09 

 

r
2
=0.11 r

2
=0.10 r

2
=0.08 r

2
=0.12 r

2
=0.04 r

2
=0.08 r

2
=0.08 r

2
=0.00 r

2
=0.00 

e
 θr

 

 

r
2
=0.29 r

2
=0.26 r

2
=0.22 r

2
=0.16 r

2
=0.32 r

2
=0.22 r

2
=0.29 r

2
=0.06 r

2
=0.00 r

2
=0.01 

Log(n) r
2
=0.05 

 

r
2
=0.02 r

2
=0.01 r

2
=0.01 r

2
=0.08 r

2
=0.05 r

2
=0.10 r

2
=0.05 r

2
=0.00 r

2
=0.00 

√n r
2
=0.05 

 

r
2
=0.02 r

2
=0.01 r

2
=0.01 r

2
=0.02 r

2
=0.06 r

2
=0.11 r

2
=0.05 r

2
=0.00 r

2
=0.00 

1/n r
2
=0.03 

 

r
2
=0.02 r

2
=0.01 r

2
=0.00 r

2
=0.06 r

2
=0.04 r

2
=0.07 r

2
=0.03 r

2
=0.00 r

2
=0.00 
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Table A6.5. Quality of fit between the moisture retention parameters and organic carbon transformations in the linear 

regression analysis 

 

 OrgC OrgC
2
 √OrgC OrgC 

1/3
 ln(OrgC) e 

(OrgC)
 1/OrgC 1/OrgC

2
 1/OrgC

3
 

θs 

 

r
2
=0.20 r

2
=0.07 r

2
=0.30 r

2
=0.22 r

2
=0.30 r

2
=0.02 r

2
=0.06 r

2
=0.01 r

2
=0.00 

θr 

 

r
2
=0.00 r

2
=0.00 r

2
=0.01 r

2
=0.00 r

2
=0.01 r

2
=0.00 r

2
=0.01 r

2
=0.01 r

2
=0.00 

√α 

 

r
2
=0.01 r

2
=0.00 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.00 r

2
=0.00 

Ln(α) r
2
=0.01 

 

r
2
=0.00 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.03 r

2
=0.03 r

2
=0.00 

θs
-1

 

 

r
2
=0.14 r

2
=0.04 r

2
=0.24 r

2
=0.19 r

2
=0.27 r

2
=0.01 r

2
=0.06 r

2
=0.01 r

2
=0.00 

ln (θs) r
2
=0.17 

 

r
2
=0.06 r

2
=0.27 r

2
=0.21 r

2
=0.29 r

2
=0.01 r

2
=0.07 r

2
=0.01 r

2
=0.00 

e
 θr

 

 

r
2
=0.00 r

2
=0.00 r

2
=0.01 r

2
=0.00 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.01 r

2
=0.00 

Log(n) r
2
=0.01 

 

r
2
=0.00 r

2
=0.01 r

2
=0.00 r

2
=0.01 r

2
=0.00 r

2
=0.01 r

2
=0.02 r

2
=0.02 

√n r
2
=0.01 

 

r
2
=0.00 r

2
=0.01 r

2
=0.00 r

2
=0.01 r

2
=0.00 r

2
=0.03 r

2
=0.03 r

2
=0.03 

1/n r
2
=0.00 

 

r
2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 r

2
=0.00 
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APPENDIX 7: ANALYSIS OF CROSS CORRELATION RESULTS FOR 

PREDICTOR VARIABLES IN PEDOTRANSFER FUNCTION DEVELOPMENT 

Table A7.1 Cross correlation tests for transformed predictor variables for 
 

  
  

 sand 1/silt BD
3
 √clay LN(OrgC) 

sand  r=1 
r=0.42 

95%Cl (0.32-0.50) 

 t statistic (8.43) 

2-tailed p <0.0001 

r=0.26 

95%Cl (0.16-0.36) 

 t statistic (5.0) 

2-tailed p <0.0001 

r=-0.71 

95%Cl (-0.76 to -

0.65) 

 t statistic (-

18.53) 

2-tailed 

p<0.0001- 

r=-0.10 

95%Cl (-0.20-0.01) 

 t statistic ( -1.81) 

2-tailed p <0.0001 

1/silt r=0.42 

95%Cl (0.32-0.50) 

 t statistic (8.43) 

2-tailed p <0.0001 

r=1 
r=0.19 

95%Cl ( 0.08 to 0.29) 

 t statistic (3.55) 

2-tailed p = 0.0004 

r=-0.13 

95%Cl ( -0.24 to -

0.03) 

 t statistic ( -2.49) 

2-tailed p= 

0.0132 

r=-0.25 

95%Cl (- 0.35 to- 

0.15) 

 t statistic (-4.76) 

2-tailed p <0.0001 

BD
3
 r=0.26 

95%Cl (0.16-0.36) 

 t statistic (5.0) 

2-tailed p <0.0001 

r=0.19 

95%Cl ( 0.08 to 0.29) 

 t statistic (3.55) 

2-tailed p = 0.0004 

r=1 
r=-0.28 

95%Cl ( -0.37 to  

-0.17) 

 t statistic (-5.26 ) 

2-tailed p< 

0.0001 

r=-0.59 

95%Cl ( -0.65 to  -

0.51) 

 t statistic (-13.28) 

2-tailed p <0.0001 

√clay r=-0.71 

95%Cl (-0.76 to -

0.65) 

 t statistic (-18.53) 

2-tailed p<0.0001 

r=-0.13 

95%Cl ( -0.24 to -

0.03) 

 t statistic ( -2.49) 

2-tailed p= 0.0132 

r=-0.28 

95%Cl ( -0.37 to  -0.17) 

 t statistic (-5.26 ) 

2-tailed p< 0.0001 

r=1 r=0.08 

95%Cl (- 0.02 to 

19) 

 t statistic (1.53) 

2-tailed p =0.1271 
ln(OrgC) r=-0.10 

95%Cl (-0.20-

0.01) 

 t statistic ( -1.81) 

2-tailed p <0.0001 

r=-0.25 

95%Cl (- 0.35 to- 

0.15) 

 t statistic (-4.76) 

2-tailed p <0.0001 

r=-0.59 

95%Cl ( -0.65 to  -0.51) 

 t statistic (-13.28) 

2-tailed p <0.0001 

r=0.08 

95%Cl (- 0.02 to 

19) 

 t statistic (1.53) 

2-tailed p 

=0.1271 

r=1 

Table A7.2 Cross correlation tests for transformed predictor variables in e
θr

  

 sand Silt10 BD2 √clay ln(OrgC) 

sand r=1 r=-0.25 

95%Cl (-0.35 to-0. 

16) 

 t statistic ( -4.81) 

2-tailed p <0.0001 

r=0.23 

95%Cl ( 0.13 to 0.33) 

 t statistic (4.41) 

2-tailed p< 0.0001 

r=-0.71 

95%Cl (-0.76 to -

0.65) 

 t statistic (-18.53) 

2-tailed p<0.0001 

r=-0.10 

95%Cl (-0.20-0.01) 

 t statistic ( -1.81) 

2-tailed p <0.0001 

Silt10 r=-0.25 

95%Cl (-0.35 to-0. 

16) 

 t statistic ( -4.81) 

2-tailed p <0.0001 

r=1 r=0.06 

95%Cl (-0.04 to 0.17) 

 t statistic (1.15) 

2-tailed p= 0.2528 

r=-0.21 

95%Cl (-0.31 to 

0.11 ) 

 t statistic (- 4.01) 

2-tailed p< 0.0001 

r=-0.09 

95%Cl ( -0.20 tp 

0.01) 

 t statistic ( -1.71) 

2-tailed = 0.0882 
BD2 r=0.23 

95%Cl ( 0.13 to 0.33) 

 t statistic (4.41) 

2-tailed p< 0.0001 

r=0.06 

95%Cl (-0.04 to 0.17) 

 t statistic (1.15) 

2-tailed p= 0.2528 

r=1 r=-0.24 

95%Cl (- 0.34 to  

-0.13) 

 t statistic (-4.50 ) 

2-tailed p<0.0001 

r=-0.62 

95%Cl (- 0.68 to -

0.55) 

 t statistic ( -14.31) 

2-tailed p<0.0001 
√clay r=-0.71 

95%Cl (-0.76 to -

0.65) 

 t statistic (-18.53) 

2-tailed p<0.0001 

r=-0.21 

95%Cl (-0.31 to 0.11 

) 

 t statistic (- 4.01) 

2-tailed p< 0.0001 

r=-0.24 

95%Cl (- 0.34 to  -

0.13) 

 t statistic (-4.50 ) 

2-tailed p<0.0001 

r=1 r=0.08 

95%Cl (- 0.02 to 19) 

 t statistic (1.53) 

2-tailed p =0.1271 

ln(OrgC) r=-0.10 

95%Cl (-0.20-0.01) 

 t statistic ( -1.81) 

2-tailed p <0.0001 

r=-0.09 

95%Cl ( -0.20 tp 

0.01) 

 t statistic ( -1.71) 

2-tailed = 0.0882 

r=-0.62 

95%Cl (- 0.68 to -

0.55) 

 t statistic ( -14.31) 

2-tailed p<0.0001 

r=0.08 

95%Cl (- 0.02 to 

19) 

 t statistic (1.53) 

2-tailed p =0.1271 

r=1 
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Table A7.3 Cross correlation tests for transformed predictor variables in √α. 

 e 
sand

  silt
-2

 BD clay
-1

 ln(OrgC) 

e 
sand

 r=1 
r=0.89 

95%Cl ( 0.86 to 0.91) 

 t statistic (35.22) 

2-tailed p<0.0001 

r=0.13 

95%Cl ( 0.03 to  0.24 ) 

 t statistic ( ) 

2-tailed p 

r=0.30 

95%Cl ( 0.20 to 0.39) 

 t statistic ( 5.74 ) 

2-tailed p<0.0001 

r=-0.21 

95%Cl ( -0.31 to -

0.11 ) 

 t statistic ( -3.98 ) 

2-tailed p<0.0001 
silt-2 r=0.89 

95%Cl ( 0.86 to 

0.91) 

 t statistic (35.22) 

2-tailed p<0.0001 

r=1 
r=0.14 

95%Cl (0.03 to 0.24 ) 

 t statistic (2.58 ) 

2-tailed p=0.0103 

r=0.23 

95%Cl ( 0.12 to 0.33 

) 

 t statistic (4.32) 

2-tailed p<0.0001 

r=-0.24 

95%Cl (- 0.33 to  -

0.13) 

 t statistic (-4.44 ) 

2-tailed p<0.0001 
BD r=0.13 

95%Cl ( 0.03 to  

0.24 ) 

 t statistic ( ) 

2-tailed p 

r=0.14 

95%Cl (0.03 to 0.24 ) 

 t statistic (2.58 ) 

2-tailed p=0.0103 

r=1 
r=0.22 

95%Cl (0.12 to 0.32 ) 

 t statistic (4.14 ) 

2-tailed p<0.0001 

r=-0.64 

95%Cl ( - 0.70 tp -

0.57) 

 t statistic ( -15.13 ) 

2-tailed p<0.0001 
clay

-1
 r=0.30 

95%Cl ( 0.20 to 

0.39) 

 t statistic ( 5.74 ) 

2-tailed p<0.0001 

r=0.23 

95%Cl ( 0.12 to 0.33 

) 

 t statistic (4.32) 

2-tailed p<0.0001 

r=0.22 

95%Cl (0.12 to 0.32 ) 

 t statistic (4.14 ) 

2-tailed p<0.0001 

r=1 r=0.08 

95%Cl (- 0.02 to 

0.19) 

 t statistic (1.53 ) 

2-tailed p=0.5271 
ln(OrgC) r=-0.21 

95%Cl ( -0.31 to -

0.11 ) 

 t statistic ( -3.98 ) 

2-tailed p<0.0001 

r=-0.24 

95%Cl (- 0.33 to  -

0.13) 

 t statistic (-4.44 ) 

2-tailed p<0.0001 

r=-0.64 

95%Cl ( - 0.70 tp -

0.57) 

 t statistic ( -15.13 ) 

2-tailed p<0.0001 

r=0.08 

95%Cl (- 0.02 to 

0.19) 

 t statistic (1.53 ) 

2-tailed p=0.5271 

 

r=1 

 

Table A7.4. Cross correlation tests for transformed predictor variables in √n  

 Sand
5 

 

silt
-1

 ln(clay) OrgC
-2

 

Sand
5
 r=1 

r=0.74 

95%Cl ( 0.68 to 0.78 ) 

 t statistic ( 20.09) 

2-tailed p<0.0001 

r=-0.69 

95%Cl (-0.74 to -0.63 ) 

 t statistic (-17.60 ) 

2-tailed p<0.0001 

r=0.34 

95%Cl (0.24 to 0.43 ) 

 t statistic (6.64 ) 

2-tailed p<0.0001 
Silt

-1
 r=0.74 

95%Cl ( 0.68 to 0.78 ) 

 t statistic ( 20.09) 

2-tailed p<0.0001 

r=1 

 

r=-0.25 

95%Cl (- 0.35 to -0.15) 

 t statistic (-4.81 ) 

2-tailed p<0.0001 

r=0.52 

95%Cl (0.43 to 0.59 ) 

 t statistic (11.08 ) 

2-tailed p<0.0001 
ln(clay) r=-0.69 

95%Cl (-0.74 to -0.63 ) 

 t statistic (-17.60 ) 

2-tailed p<0.0001 

r=-0.25 

95%Cl (- 0.35 to -0.15) 

 t statistic (-4.81 ) 

2-tailed p<0.0001 

r=1 
r=-0.21 

95%Cl ( -0.31 to  -0.10) 

 t statistic (-3.92 ) 

2-tailed p=0.0001 
OrgC

-2
 r=0.34 

95%Cl (0.24 to 0.43 ) 

 t statistic (6.64 ) 

2-tailed p<0.0001 

r=0.52 

95%Cl (0.43 to 0.59 ) 

 t statistic (11.08 ) 

2-tailed p<0.0001 

r=-0.21 

95%Cl ( -0.31 to  -0.10) 

 t statistic (-3.92 ) 

2-tailed p=0.0001 

r=1 

 


