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SUMMARY OF CONTENTS
In general the set-up o f the research work has a logical intention. That is the chapters 

and their respective sections are logically arranged so that one can read and arrive at the 

results inductively or deductively.

Chapter one gives a preliminary background on the important research questions, 

namely, the schematic discernment o f statistical and probabilistic research works and method 

of approach at University of Nairobi, and the characterization of normal distribution in 

Hilbert Space.

Chapter two focuses on the historio-philosophic development of probability and 

statistical thoughts and theories. As a concluding remark on this chapter, a tentative 

conclusion on the historio-philosophic approach of the Statistical Section of Mathematics at 

University of Nairobi on the mathematical probability and statistics is given.

In chapter three first we come across the historical context of normal distribution and 

its philosophic applications. Furthermore, different approaches in defining and analyzing the 

unique properties of normal distribution are given: modem and classical approaches. In 

addition, different models of investigations, like De Moivre-Laplace method, Adrians 

method, Hegen’s hypothesis and so on, are studied in deriving the normal distribution. Also, 

The central importance of normal distribution in probabilistic and statistical studies is 

illustrated by the relationship between normal distribution with discrete and continuous 

distribution as well as properties of pure and applied mathematics; normal distribution is 

analyzed using the number theory and Maxwell’s distribution of velocities and law of error. 

The highly developed mathematical methodologies, theorems and techniques of the 

characterization o f normal distribution are elaborated. Using these techniques the theory of 

normal distribution in Hilbert space is studied.

Chapter four  develops the central issue of the statement of problem logically. That is, 

first after a brief historical analysis, the fundamental definitions and properties of Hilbert 

space are described. Then the geometry of Hilbert space with operator theory are presented. 

Finally, the necessary properties and theorems of normal distribution in Hilbert space are 

clarified.
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Chapter One

INTRODUCTION

1.1 General Introduction

I lie present study lias two important research questions, namely, (i) the schematic 

discernment of statistical and probabilistic research works and method ol approach at 

I Inivcrsiti of Nairobi, and (ii > the characterization of normal distribution in llilhcrt Space.

I he first question comes to light as a logical consequence of historio-philosophic 

development of thoughts, as well as discussion and analysis of probability theory, 

statistics and comparative description and exploration of different approaches to 

probability and corresponding schools. Generally speaking, following their respective 

approaches to mathematical statistics and probability theory, there are four approaches to 

probability (a) the classical approach, which adheres to the notion of equally probable 

cas ’s by reason of symmetry, or probability is defined as the ratio of the favourable to the 

possible cases, (b) the empirical approach, in which by virtue of the so called empirical 

law of chance, based on the notion of repeatable events whose frequency on a large 

number of trials gi\cs the probability almost certainly and exactly, (c) ihe asymptotic 

appronch(frequency theory), by considering an infinite sequence of trials defines 

probability as the limiting value of the frequency, and (d) the svbjec1ivistic{degree of 

belief) approach, considers probability as a measure of the degree of belief of a given 

subject in the occurrence of an event.

In chapter two. using some specific oiler in, we will pose to answer the question 

that sa\s is there any nllinity of University of Nairobi to a specific school of probability 

and statistics?.” I fence, as historical fact and dialectic progtess of schools we will try to 

identify the Statistical Section of Mathematics Department at University of Nairobi with 

a school of statistics it belongs lo.
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I lie heart of the present synthetic research is the comparative analysis of 

staiistical entities with pure mathematical properties. In other words. \vc will study the 

characterization of normal distribution in Hilbert Space, as well as the Normal l aw in 

Number I hertry.

Normal distribution possesses \er\ rich properties, especially for the Applied 

Statistician Many scholars, starting from l)e Moivre-I.aplace up to l.indebcrg-Feller, 

attributed jurat importance to the properties of normal law Contemporary scholars too 

adhere to this affirmation. and due to the rapid progress and application o( probability 

thcotv and statistical principles in different fields of science, this dominant lactor is 

v ivid In line with this we will try to identify the rharactetization of normal law in the 

well I nown and rapidly expanding branch of pure mathematics, namely Hilbert Space

Hilbert Space, named after a German mathematician - David Hilbert! 1862-1943), 

pla\s an important role in the functional analysis. Hilbert space theory is a useful 

language for applied mathematics, engineers and scientists who apply mathematics. In 

general Hilbert space theory deals with a wide ranee of topics. We will concentrate on 

the properties that expose our characterization of normal law.t

1.7 Statement of tbo problem

Hie research problem is slated in question format.

M ajo r questions

• I Ion can ue nrialv zo the normal distribution in historio-philosophic context?

• How can we present "a characterization of normal distribution in I lilbcrt space?"

( j  H iding quest inns:

• What are the important probabilistic and stastistical historical periods, and 

philosophical importance of probability theory'?

• Can \vc classify the different approaches to probability theory' and corresponding

schools'?
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• With respect to the historic al development of schools of statistics and probability, and 

comprehensive framework ol the applications ol normal law, using certain criteria, 

can we say that the University of Nairobi belongs to one specific school or many

• lCa!r°we compare probabilistic and statistical theories of normal distribution with 

properties of number theory and Hilbert space?

• What do we mean by the characterization of normal distribution?

• Is there anv advantage and contribution in statistical mathematics when we study the 

characterization of normal distribution in Hilbert Space and number theory'*

• What are the prominent properties of Hilbert space that fit Normal distribution9

1.3 Objectives of the study

I he objects es of the present study ntc:

• lo explore the characterization of Normal distribution in Hilbert space.

- lo investigate the relationship between statistical principles and pure mathematical 

properties

• I o assess if the Statistical Section of Mathematics at I Iniversity of Nairobi has affinity 

with specific schools of probability and statistics in historio-philosophic context, 

hence, to give a tentative conclusion

1.4 Brief literature review

Hie present literature review examines (i) the efforts that have been made over 

time to explore the theory of characterization of normal distribution, and (ii) the 

characterization of normal distribution in Hilbert space, as well as (iii) the statistical 

research works done at I Iniversitv of Nairobi

! hi’ characterization ol a disiiibution is the investigation of those unique 

properties enjoyed by that distribution Mathai and Pederz.nli ( I(>77) have compiled and 

put together their studies with recent research papers and published then in a form of a
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monograph In their monograph entitled haracterization o f the Normal Probability 

Law" (1977). they deal thoroughly with the highly mathematical topic of characterization 

and ti\ to motivate students to undertake research work in this area thus the material is 

dc\eloped from the very elementary level to the research level.

There arc properties that will uniquely determine a normal distribution, that is to 

say. the normal law is the only distribution to enjoy such properties. Investigation of such 

properties and the determination of the resulting distributions are known as 

characterizations of distributions.

I here are two distinct methods developed one following the other: (i) the 

functional equation method, and (ii) the axiomatic approach

The functional equation method is developed to its present format by Kagan.

I.innik and Rao (1973) In their method they developed techniques in characterization

problems as follows: (a) Use tlm properties and derive a functional equation. Then solve

the functional equation for a unique solution by imposing additional conditions if

necessary (h) Use the properties to derive a difference, differential or difference-

differential equation, and then seek a unique solution for it (c) Use the properties and
«

analyze some general structures to classify or separate certain distributions, for more 

details sec Mathai and l’ederzoli( 1977)
The axiomatic approach is advanced by Mathai and Rathie (1975). The axiomatic 

approach to characterization of normal law proceeds as following: An axiomatic 

definition is provided for a basic concept itself such as variance, correlation, entropy, 

affinity, information and the like. In problems of this nature a few postulates are put 

forward and the resulting concepts arc uniquely determined, thus providing axiomatic 

definitions for these measures. The main techniques used in the characterization of basic 

concepts are also the same as the techniques used in the characterizations of probability 

laws Mathai and Pedcrz.oli( 1977) remark that historically, the basic concepts are 

introduced mainly on the basis ol intuitive or heuristic considerations.
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As a result of the alvwe methods. normal distribution is characterized through 

linear independence |l)nrtnnis | (,5I; Hasn.1951; I .innik. 1952; Skitovich.l954|. linear 

and quadratic independence] I aha. 1956,1957;Chanda, 1955; I .innik, 1956. ( Jordon.1968; 

(Jordon and Mathai. 1972 Mathai.I977|, regression properries]Laha and I ukacs.1960; 

/inecr and I innik. 1964; Mathai. 1067; (Jordon,1968; Gordon and Mathai, 1972], by 

solution* of certain functional equations |Rao. 1967; I.innik, I960; Zinger and I,innik.

19551. front the Student’s law [Marrldon, 1956; Kotlarski. 1966). structural set-up 

|M'»thni, 1967; Patil and Seshadri. In63.l96d|. maximization principlelMathai, |977| 

and other miscellaneous techniques | Mathai and ( Jordon. 19721

lire Characterization of Normal Distribution in Hilbert Space was initiated hv 

Prohorov and 1’isz (1957). hr (heir article they came up with a theorem of random 

elements in Hilbert space, aird the theorem is stated as follows;

Consider random element with values in a real separable Hilbert space II (that is 

measurable mapping £(u) of a fundamental probability Held iirto the space ll| l et the 

probability distribution and characteristic function he derroted respectively as.

I'£ and <f(/.a j„ c /all.

l et — r  ’ be denoted as £ - rj and let I I £ 11 be the linear functional (/.£), Je ll, 

stochastic variables lire mathematical expectation of the random clement £, is such air 

clement M£eH such that for every f  ell, 1 f(f£) ~ (f,M£). Consider the conditions, («): 

\t "£" ' t  ; (g); M<f£) -> 0 for nay f e l l , f*0\ (y): M£~0 where 0 is the null element in 

II. and let -  £  ' - , be random element in I f  subject to (rr). ((1) and (y) and let

(6) p'"  and 1 be independent and (c) A I;1’. where A is a (A 1) linear, (A2)

bounded. (A5) self conjugate. (AD positive operator in If Then the distribution P of 

each of the random elements •*"’ is normal and A where F, is a unitary operator.

Additional explanation ol Characterization of Normal Distribution will be given in 

chapter four
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I hen, Eaton and Pnthak (1969) picked up the topic and studied it more 

comprehensively I uithermnre. Pnthak( 1970) made another study on this topic and gave 

additional results Parallel to these research studies, we will continue to ponder upon the 

characterization of normal law in Hilbert space, and present some propositions which can 

enable us to give an analogy ol inner product.

Normal l aw in Number theory is advanced mainly by Kac in 1949 in his article 

“Probability methods in some problems of analysis and number theory," and in 1959 in 

his monograph entitled Statistical Independence in Probability, Analysis and Number 

Theory Other prominent scholars who laboured on this research area are like 

Horcl( 1999). Hardy and Ramanujan! 1917). Champerno\vne( 1933). Kac and 

I:.rd0s( 19.19). R£nyi( 1955). Kuhilus( 1956). and Rcnyi and Turrtn( 1958)

The history of probability theory and mathematical statistics has been studied, 

though not in a thorough manner, by prominent scholars, namely, mathematical 

historians Among the authoritative works on the history of probability and statistics the 

following are prominent, in English: Isaac lodhunter, A History o f Mathematical Iheorv 

of Probability from the Time of Pascal to that o f Laplace, 1 865,1965, covers 1654-1812; 

(' (' I ley de and E. Seneta, Studies in the History o f Probability and statistics, Vol. 2„ 

1975; n  R Owen (cd ). On the History of Statistics and Probability, 1976, prepared by 

selected famous American scholars; E. E. Maistrov, Probability Iheory: A Historical 

Sketch. 1974 | Translated by Samuel Kolz|. well documented but based on an economic 

theory; Ian Hacking. The Emergence o f  Probability: A Philosophical Study o f Early 

Ideas About Probability Induction and Statistical Inference, 1975, philosophical 

analysis of the development of probabilistic areas in mathematics; .1 Koren (ed ), Ihe 

History of Statistics, 1918. 1979, contains the development and progress of Statistics in 

Trance; E. S. Pearson and M (J Kendall (eds), Studies in the Histoiy o f  Statistics and 

Probability, 1970.
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In line with this observation, we can give a brief review about historical note and 

discernment on the original statistical work done at University of Nairobi. I he pioneers 

or the initiators of the Statistical Section of Mathematics Department at University of 

Nairobi ate Professor M S Patel and his colleagues, in late I960's.

Hasing our observation on the articles published as concrete documents and 

dissertations as further confirmative wotks. we note that the model techniques or design 

theory has gained ground at University ofNairohi. Furthermore, categorizing broadly, it 

can be said that four research groups are emerging: gravy screening, educational and 

manpower planning. hinlogiral population modelling, and .11DS modelling 

(I pidemiological modelling).

The group screening technique was developed during World War It In Dorlman 

<I°U) and studies by Stench l°57) It was improved by introducing more than two 

stages b\ Sohel and (?roll( 1959), Watson (1961), I,i(l962). Patch 1902). and 

I ino<;;m( 1964)

I be first and second published works, as outcome of research wotks at I Jniversily 

ot Nairobi, arc “Two stage g roup  screening designs with unequal a-priori probabilities." 

and ( ’ptimum two-stage group screening designs,” by M S. Patel and .1 A M. Ottieno, 

both publications occuring in 1984. I he third one is “Three-stage group screening with 

error in observations.” by.I W Ddhiarnbo and M S. Patel in 1985.

I he subsequent published articles followed the same pattern, except a few, 

namolv. stiessing on ‘gtoup set ceiling": Odhiambo and ()wino( 1985). “A stochastic 

model for estimating academic survival in an education system"; Patel and M. 

( >ltieno( 1°85). “Optimum I wo stage group-screening designs w ith unequal a-priori 

probabilities and with error in decisions, paper presented at the joint statistical meetings 

of A S A . F N A R„ WNAR IMS at I as Vegas. I ISA 5th - 8th August, 1985; Odhiambo 

and Patch 1986). “r>n multiple group screening designs”; Odhiambo( 1986). “The 

performance of multistage group screening designs”; Odhiambo and Kliogalit 1986). “A 

transition model for estimating academic survival through cohort analvsis"; Patel and
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(>ttieno( 10S?). “Optimum Two stage group-screening with unequal group sizes and 

errors in decisions”; Odhiambo and l’atel( 1987). “ Three-stage group screening with 

unequal group sizes and with errors in observations”; Patel and Manene( 198 7). “Step- 

wise group screening with equal prior probabilities and no errors in observations”; 

Odhiambo. and Manene(1987), “Step-wise group screening designs with errors in 

observations”; Owino and Philips! 1988), “A comparison of retention properties of the 

Kenya primary education system before and alter 1970”; Adhikary and Chaudluiri(1989), 

“A note on handling linear randomized response,”; Adhikary and Chaudhuri( 1989), “On 

Two properties of an unequal probability sampling scheme”; Adhikary and 

Chaudhuri! 1990), “A note on interpreting subsamples of unequal sizes drawn with and 

without replacement”; Adhikary! 1991). “On the performance of the nearest proportional 

to size sampling design"

Recently in the conference of the Kenya Mathematical Society further review of 

the works done at University of Nairobi arc exposed again: Odhiambo! 1993) presented a 

paper on “A review of the factor screening method"; Ottieno(1993presented a statistical 

analysis on “Mortality levels and determinants in Kenya”; Owino! 1993) presented a 

paper on ' A mathematical model for comparison of educational characteristics of males 

and females”; Wekef 1993) presented a paper on “IBNR claims reserving and (?I<IM”.

Other more recent publication, also are of great help to discern more closely into 

the research progress at the University: Owino and Odhiambo(1994), “A statistical 

method for planning an educational system”; (ietao and Odhiambo! 1996). “ 1 he potential 

of information technology in the management of an African crisis Computers and 

AIDS" In particular the f ifth Scientific Conference o f  the Fast Central <■? Southern 

Africa NPI work o f  the International Biometric Society, 22n<l -25,h September 1997 held in 

Mombasa-Kenya shows a great achievement in the research work done at University of 

Nairobi (Tachii and Odhianibo(|nq7)> “Deletion designs in estimation of low order 

interactions”; Luboobi and Simwa(l997), “IIIV/AIDS epidemic curves for Kenya and
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IJganda A paramenia statistienl approach ; l.uboobi and Sirnyva(l997). IIIV/AIDS 

epidemic wives lot Kenya and Uganda A nonpaiametric slalislieal apptoach ; M M. 

Mancne(l997), “On two-type stepwise group screening designs ", Mwambi. Odhiainbo 

and !)uchntcrfu(1997). “ A mnlriple matrix model to study the population dynamics of R. 

appendicnlatns in Zimbabwe": Odhiainbo and <5ctao( I997), “ Ibe potential of group 

screening method in the management of AIDS crisis in Africa"; Owino and 

(>nioln( 1997), “Optimal barvesting in poultry farming".

I bus. focusing our analysis on these published articles, research projects and 

dissertations, we will asses the original statistical work done at University ol Nairobi, 

and come up with a tentative conclusions.

1.5 Significance of Ihe study

Mesides the written reference, as indicated in the literature review, formal and 

informal discussions with the prominent scholars in the Departments of Mathematics at 

the I loiversity of Nairobi have been held. Ihe actual protagonists on the research area of 

probability and statistics arc the main source of discernment on the historical and 

philosophical contextrrali7ation of statistionl and probabilistic research fields at the 

University of Nairobi.

lire result of this sludv "ill give iise loan interest in three rcsearelr areas, namely 

the philosophical assessment on the foundation of mathematical statistics and 

probability, discernment on normal law <m number theory and the characterization of the 

theory of normal distribution in Hilbert space.

I he histotio philosophical outlook on mathematical probability and statistics can 

open a real interest on philosophy of randomness, inductive reasoning, inductive 

behaviour and other related topics, hr other words, one can venture into the deep 

knowledge of philosophy of logo* and language of mathematical probability and statistics
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in diversified perspective F'or instance a statement of research problem can be sinter! as 

what is Nairobi Studies on Philosophy o f Mathematical Probability and Statistics ?

I he relationship between the properties of normal distribution and number theory 

nn<l the characterization of normal distribution in Hilbert space is amazing Since in 

probability theory we study mathematics, statistical data or measurements, theory of 

nature and theory ol k n o w led g e  itself, we can say that normal law, a phrase preferred by 

pure mathematicians, is either the law of nature or a mathematical theorem I litis, many 

properties and fascinating relationships between normal law and number theory, and the 

character izat ion of normal distribution in Hilbert space can be re-discovered
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Chapter Two

HISTORICAL NOTE ON PROBABILITY 
THEORY AND STATISTICS

UNIVERSITY OP NAIROE.
2.1 INTRODUCTION Cumnun /. irpmpr

The prehistory of probability Iheoiy and tlie origins of probability theory as a 

science is not thnronglih investigated Nonetheless, the hnsic stimuli in tlie rise of 

probability theory can be stated as processing numerical data and results of observations 

in various sciences the practical requirements of insurance companies and abstract 

problems connected with games of chance, calculating the number of various possible 

outcomes in throwing several dice. I he origins of probability theory was generally 

attributed to investigations bv the renowned fieivh mathematician Fcnnatf I601-I665) 

ol problems posed In a gambling contemporary to Pascalf 1623-1662) Now this 

conviction have been pushed back a century earlier to the Italian mathematicians 

('ardonof 1501-76) and farlnglinf Mb*M557) about 1570. Cardano (ahoitl I 5.26) is 

considered to be the author of the first Look oft probability theory, lie is also the author 

of remarkable text of algebra f»« «t 1<if>na{ 1545), whereby causing disputes as to the real 

authorship of certain phases ol mathematical development. Ars Magna contains the 

works of Scipione del Fermf about 1500). Tadaglin and I .odovico Ferrari! I 572-1565).

According to F. N Oavidf l°55). a probability theory histotiau. with regard to the

beginner of modern prohahilits theory, we have the following, observation

I do not think that the fact that Cardano did not quite see the 
mathematical abstraction clearly can detract from the fact that he did. 
on paper at any rate, ns far as we know, calculate the first probability 
bv theoretical argument, and in so doing he is the real begcttor|sic | 
of modern probability theory. It is true that Galileo wrote on one 
problem only and fairlv hr icily at that, but it is difficult to see why 
Pascal and Fermat should be preferred as the originators of 
probability theory before Galileo or Cardano.[David, 11 - 131
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2.2 Important Probabilistic anrt Statistical Historical Periods
Using the criteria ol'(i) time- chronological aspect, (ii) the method of approach to

statistics and probability, and (iii) great influence or impact on the study of statistics and 

probability, we can say that the historical development of Probability and Statistics is 

classified in the following periods: (i > the completion of the emergence ol Probability 

with Rernonlli (171.1). (2) I be initiation and development of Statistical and Probabilistic 

I hcorv with I aplacc ( 1812), ( inoss ( I8 I A), Poisson ( 1837) and Chebyshev ( I 8M) in the 

nineteenth centniy. ( t) I he Advent ot piominent twentieth century ptohnbilistic philo­

sophers and mathematical statisticians, and Modem Schools of Probability and Statistics.

2.2.1 The completion of the emergence o f Probability with Rernonlli (1712),

1.2.1.1 E tym olog ica l m ean in g  o f P ro b a b ility

r >f the precise meaning ol probability there are conflicting views among experts, 

philosophers, mathematicians, statisticians As Copi and Cohenf 1990). and von 

Wright! 1**77) observed the reason for this may be partly grasped from a survey of the 

various channels through which a scientific concept of probability has emerged

I rymolngicallv the I at in word Pmbahilis (probable), is a lerm applied generally 

to am belief that is reasonable wit trout being certain The vagueness of this formulation 

permits a w ide variety of uses, especially in modern times I he first broad distinction 

that must be made is that between the degree o f credibility attaching to a proposition and 

mathematical probability which belongs to propositional functions or related 

propositions, the first ol these is the common sense view - the maxim, "one who sleeps 

intentionally, can not be awakened by an elephant." is accepted by many people The 

second is a well defined part of general mathematical theory. Durbin (1%7) says that the 

basic distinction with respect to mathematical probability is between the abstract theory 

and its applications and interpretations lire latter have tire same general subdivision: I ) 

Classical apprnch (equally probable cases), 2)Empirical nr statistical (repeatable

events- empirical law of chanceV 3)lhe Assnvpiotic approach (limiting value of the
«

frequency). I)Logical (degree ol evidence theory) or ruhjectirist nr Personal (degree of
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belief theory). I his classification and the notion of method of approach will be dealt with 

in detail in connection to the school o f statistics.

Though these broad categories can represent irreducible differences in individual 

interpretations, it seems ditlicnlt to do without this basic division furthermore, there is 

the notion of probability that was common to the Greeks and medieval scholastics; for 

them probability meant any argument that gave rise merely to opinion and not to 

demonstrative certitude, finally, thcie is the notion of inductive probability - the 

possible utilisation of mathematical probability for induction in science, cither as its 

justification or as an aid in developing a logic of discovery.

In depicting the historical note on probability, statistics and normal distribution, it 

is hard to come up with a complete picture in few pages. Nonetheless, the intention of 

the present work is not just for the sake of history, but primarily, for the verification and 

identification o f schools o f statistics and to illuminate the role of normal distribution in 

statistical mathematics, and to classify the University of Nairobi, if it is possible, as a 

school with respect to the historical development of schools of statistics and probability.

2.2.1.2 nonnis«snr»ce

In the period of Renaissance we note flic presence of mathematics of randomness. 

About 1660 probability, as we know now it. started to emerge with dual factors; as stated 

earlier, on the degree ol belief and with devices tending to produce stable long-run 

frequencies.

( ommercial insurance against risks was developed in the Italian cities of the early 

Renaissance. I he theoretical foundations of life insurance were laid in tire I 7th century, 

lire I nglish statistician John * haunt in 1662 drew attention to the stability of statistical 

scries obtained from registers of deaths. Soon allcr. the fnglish astronomer f.dmund 

Halley showed how to calculate annuities from mortality tables.

13
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chances but able to apprehend the fact that evidence and causation are in different 

categories, could perfectly v eil start measuring epistenric probability. He developed 

combinatorial methods primarily for the purpose of logical deductions, which is closely 

connected with investigations aimed at the construction of the ‘ universal C haracteristic.'’

I odluintcr( 1865), in his monumental work on History o f the Mathematical theory o f 

Pr obability, points out that the mathematical treatment of the subject of combinations as 

given by LeibnizJ 1880) is far inferior to that given by Pascal 1623-1662 (l% 3). In the 

first printed textbook of probability, Christiaan Huygens (1629-1605), Calculating in 

(iamrs o f Clrance{ He ratiociniis in ludo alcac - 1657), we come across an important 

term expectatio (expectation): his perception of his work is also interesting: “I would like 

to hHieve that in considering these matters closely, the reader will observe that we are 

dealing not only with games hut rather with the foundations of a new theory, both deep 

and interesting" 11695|; this is a foreword, a letter from Huygens to van Scbooten. dated 

27 April 1657. Huygens’ work is published as an appendix in Latin to a volume entitled 

Kxerciiationes Mafhemnticae (Mathematical Studies) by Francis van Scbooten, which 

appeared in 1657.

2.2.1.3 Political Arithmetic

Statistics began as the svstematic study of quantitative facts about the state. John
I

Hraunt -1662 tells us in the preface to his Natural and Political Observations upon 

selfsame hills He and William Petty - whose various essays on “political Arithmetic” 

make him the founder of economics - seem to have been the first people to make good 

use of these population statistics Petty was a man who wanted to put statistics to the 

service of the state and saw real importance of collecting statistics for testing a wide 

ranee of hypotheses even the ones about medical efficacy.

2.2.1.4 Annuities

Annuity as opposed to loans, was a secured income for an assigned period, where

a standard way to raise public money, partly because it was possible for a government to
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chances hut able to apprehend the fact that evidence and causation are in different 

categories, could perfectly well start measuring epistemic probability. He developed 

combinatorial methods primarily for the purpose of logical deductions, which is closely 

connected with investigations aimed at the construction of the “universal Characteristic.” 

Todhuntcr(l865). in his monumental work on History o f  the Mathematical theory o f 

Probability>, points out that the mathematical treatment of the subject of combinations as 

given by Leibniz( 1880) is far inferior to that given by Pascal 1623-1662 (1963). In the 

first printed textbook of probability, Christiaan Huygens (1629-1695), Calculating in 

Games o f Chance{ De ratiociniis in ludo aleae - 1657), we come across an important 

term expectatio (expectation); his perception of his work is also interesting: “I would like 

to believe that in considering these matters closely, the reader will observe that we are 

dealing not only with games but rather with the foundations of a new theory, both deep 

and interesting” [1695]; this is a foreword, a letter from Huygens to van Schooten, dated 

27 April 1657. Huygens’ work is published as an appendix in Latin to a volume entitled 

Exercitationes Mathematicae (Mathematical Studies) by Prancis van Schooten, which 

appeared in 1657.

2.2.1.3 Political Arithmetic

Statistics began as the systematic study of quantitative facts about the state. John 

Graunt -1662 tells us in the preface to his Natural and Political Observations upon 

selfsame bills He and William Petty - whose various essays on “political Arithmetic” 

make him the founder of economics - seem to have been the first people to make good 

use of these population statistics. Petty was a man who wanted to put statistics to the 

service of the state and saw real importance of collecting statistics for testing a wide 

range ol hypotheses even the ones about medical efficacy.

2.2.1.4 Annuities

Annuity as opposed to loans, was a secured income for an assigned period, where

a standard way to raise public money, partly because it was possible for a government to
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mathematician of Ihe Renaissance I lx- snlij<*ct was developed into a “geometry of the 

die" ( llrnr geomrtrio) In lllnhe Pasc.nl. Pierre dc Fermat, and Christiaan I luygcns in the 

I7ih century Pcrnral treated the problems within a general theory of combinations, 

which was further developed In the S\\ iss mathematician Jakob Bernoulli I he latter can 

he regarded as the foundci o f prohnhilily theory as a branch of mathematics: his 

posthumously published Ars Conjectandi of 1713 can be said to aim at a fusion of the a 

priori methods of combinatoric probability and the a posteriori methods of early 

statistical theory.

2.2.l/» The art of Conjecturing- Ars conjectnndi

Jacques Bernoulli's i n  conjectnndi presents the most derisive conceptual

innovations in the early history of probability. I he author died in 1705 lie had been

writing the book off and on for twenty years. Although the chief theorem was proved in

Ibua. he was never satisfied and he never published Ian Hacking(l975) in his book

entitled The Emergence o f I'rohabrlity sums up the historical fact, probabilistic and

philosophical importance as follows:

I he work was finally given to the printer by his nephew Nicholas, 
and appeared in Basle in 1713 In,that year probability came before 
the public with a brilliant portent of all the things we know' about it 
now: its mathematical profundity, its invitation for philosophizing. 
Probability had fully emerged. 11 lacking. 143],

I he A n conjectnndi comes in four parts; the first is an improved version of 

Huygen s book on games of chance. I he second is a general essay on the theory of 

combinations flic third application of the theory of combination to a sequence of 

further exercises on games of chance. I he fourth part of the hook revolutionazed the 

probability theory lor the first time a subjective conception of probability is explicitly 

avowed and the lirst limit theorem is proved. In this part it is intended to show the 

application of probability mathematics to matters of economics, morality and politics. It 

is this part that justifies the very tittle. A n conjecfnndi(\he Art of Conjecturing).
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f urthermore, on this port Bernoulli announces that ‘Probability is degree of certainty and 

difl'cis Horn absolute ccrtninl\ as the pari differs from the whole.' I’m liter detailed 

analysis is given by Hacking! 1971) in Jacques Bernoulli’s Art of Conjecturing ”

I he first mathematical contribution of the work is the formalization of the first 

limit theorem in probability Secondly, he has been regarded as father of the first 

subjective conception ol probability or Bernoulli became father ol different schools: 

frequentist (Richard von Misrs - | 9 S|) inductivist (Rudolf Carnap - P. M. Boudot 

1967), inference via confidence intervals ( Jerzy Neyman 1957, Dempster 1966).

Bernoulli introduced the term subjective into probability and through the 

subsequent centuries, and in particular in the twentieth century it gave rise to different 

meaning and schools: (i) the most extreme subjectivism- personalism, probabilities are 

unknown - Bruno dc Finctti. I. .1 Savage; (ii) the theories of logical or inductive 

probability, which can not be detached from evidence, one may fail to know only through 

failure to do probabilistic logic - J M. Keynes and others; (iii) the concept of subjectivity 

prominent among current philosophers of quantum physics.

2.2.1.7 I he first limit theorem

The first limit theorem known as “the weak law of large numbers is a theorem of 

pure probability theory, and holds under any interpretation of calculus.

Bayes'(1763) paper published half a century after the appearance of the Ars 

conjectandi is the first systematic attempt to compute values for conditional probability

(/> is in s„ + r./sn)

I he brief description of the historical note on the emergence of probability comes 

to an end with the publication of Ars Conjectandi. Meanwhile, Abraham dc Moivre 

11667-17541 published He mrmura sort is (1711), which soon was to culminate in The 

Doctrine of Chances, oi a Method of Calculating the frohahilitv o f  liven! s in 

77or,( 1718.1738,1756)\\ here the mathematics of probabilitv was recognized as an 

independent discipline in its n»vn right, and although not in clear words, it is claimed that
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a statistical law is the course of nature Furthermore, a curious pre-Bcmoullian paper of 

1710. by John Arbuthnot(!667-l735). is said to be the first published test of significance 

of a statistical hypothesis and conti ibuted to the work of a group of nien who 

endeavoured.to relate Newtonian science to natural religion, like John Wilkins In brief 

the remarks of Karl Pearson( 1857-1936) can fittingly express the historical fact of this 

period.

Newton's idea of an Omnipresent deity, who maintains mean 
statistical values, formed the foundation of statistical development 
through Dcrham, Susmilch. Niewentyt. price to Quetlct and Florence 
Nightingale De Moivre expanded the Newtonian theology and 
directed statistics into the new channel down which it flowed for 
nearly a century' The causes which led Dc Moivre to his 
‘Approximatin’ or Mayes to his theorem were more theological and 
sociological than purely mathematical, and until one recognizes that 
the post Newtonian I nglish mathematicians were more influenced bv 
Newton’s theology than by his mathematics, the history of science in 
the 18th century - in particular that of the scientists who w'ere mem­
bers of the Royal Society - must remain obscure (1926, 551-2)

David Hume(l711-1776), in his work A Treali.se o f Human Nature, being an

attempt to introduce the experimental method of reasoning into moral subjects, in 1739
•

poses for sceptical problem about the future, the problem of induction He doubts that 

any known facts about past objects or events give any reason for beliefs about future 

objects or events. A similar problem arises also for inference about unremembered past 

events, and unobserved present ones. This basic sceptical problem is expressed and 

negated as follows: “An expectation that the future will be like the past must be either 

knowledge or opinion. But all reasoning concerning the future must he based on causes 

and effects. Reasoning concerning causes and effect is not knowledge. Therefore it must 

be opinion, or probability. But all probable reasoning is founded on the supposition that 

the future will resemble the past, so opinion cannot be justified without circularity. 

Knowledge and probability are exhaustive alternatives. Hence expectation about the 

future is unjustified.” Probability emerged from the Renaissance transformation in



20

opinio Although the emergence of probability is a transformation in opinion, the 

emergence o f ‘probability-and-induction’ is a more complete event depending on parallel 

transformations in high science and low science.

It is good to note that by a widening of the aim of decisions, obtained in 1738 by 

Daniel Bcrnoulli( I 700-1 782), in 1738 through the introduction, under the name o f moral 

especial ion(ax utility) and a widening of the domain of probabilities, initiated by James 

Bernoulli! 1713) and more profoundly by Bayes( 1763) by relating them to statistical 

observation “inductive reasoning” is established.
4

2.2.2 The initiation and development of Statistical and Probahlistic Theory 
with Laplace (1812), Gattss(ISI6), Poisson (1337) and Cliebyshev (isro) in the

nineteenth century
Some of the basic concepts of statistical theory were initiated during the first 

quarter of the nineteenth century by Laplace in his fundamental Thiorie Analvtique des 

Prohahilites (Paris. 1812). and by Gauss in his papers on the method of least squares, 

and his monumental work Thenria Mot us cotpornm coelestium in sectionihns conicis 

solem amhientium, (Hamburg. 1809).

UWVEPS'TY nr
2.2.2.1 Pierre-Simon de Laplace GHIROtfO LIBRARY

Picrre-Simon de l,aplace ( 1749-1827) introduces the purely subjective criterion of

equal possibility of events, considering that two events are equally possible if there is no 

reason to believe one of them will occur rather than the other. Assuming that our 

knowledge is incomplete concerning many objects and events, Laplace proposes 

applying probability theory to all problems of the natural sciences and society, such as 

moral sciences. Laplace believed that phenomena and the actual nature of things do not 

coincide and the purpose of science is to correct the illusions and deceptions of our 

senses, by perceiving true objects in their deceptive appearance and manifestations. 

Nature should be approached by comparing various factors; the phenomena should be 

examined from various points of view in their development; a collection of facts is not 

sufficient; one should compare and experiment.
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Mis first papers in probability theory are dated at the middle seventies of the 

eighteenth century: the first one being Memoire stir la Probability des causes par les 

evctteittenis in 1774 In 1810 l.nplace obtained his most important result in probability 

thcorv. presently known as l.nplace's theorem The essence of this theorem is that the 

binomial probability distribution under suitable normalization and unlimited increase in 

the number of trials approaches the normal probability distribution After this Laplace 

published his classical treatise “ Ihcorie analvtique des Probability-' in 1812. In this 

volume Laplace presented all his basic results in probability theory; laid the foundations 

for study of various statistical regularities, successfully applied probability theory to 

estimations of errors in observations and so on.

Lehmannf 1958,1959) suggest that Laplace was the first to produce a general 

solution to what sometimes is called Bernoulli's problem Picrrc-Simon de 

l.aplacef I ft\2)J1ieorie Analvtique des Probabili/es, appears to compute estimators Ffi 

with property that

Probability { p is in Fs (s„V, = I - 8 , for all p  in [0,1]: (2.1)

Ibis is the universal quantification of an expression like probability {p is in s„ ± dp). 

furthermore, it is expressing that regardless h f the true value of p. the probability of 

making a right estimate is l-fv T his is the exact security level But there is a suggestion 

that (2.1) is not obtained by Laplace. The reason is that at one moment he has to 

substitute the observed s„ for the unknown p. and hence the solution is only 

asymptotically correct Perhaps W. S. (Josset’s famous statistic ‘f  (1908) was the first 

device to overcome this kind or inexactness. However, if we ignore this kind of 

inexactness we can regard the theory of ‘probable errors’ produced by (iauss in 1816 as 

using interval estimators with a security level of 0.5.

I aplace in his classical work solved several problems. One of them is to “find the 

best combination of observations for the determination of an unknown quantity under the 

condition that positive and negative errors are equally probable and the number of
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observations is indefinitely large." Without any assumptions on the distribution law of 

the errors, Laplace obtains that the method of least squares yields the best possible 

combination of observations, lie also gives a new proof for James Bernoulli's theorem.

I le obtains the asymptotic formula for the probability of the sum of independent random 

variables each one of which admits only all the integer values between -a and ta. In his 

derivation he actually employs the basic ideas of the theory o f characteristic functions.

furthermore, Laplace in Oeuvres completes, Vll( 1878-1912), investigated the 

problem of credibility of estimates made after observations, and presented a straight 

forward Bayesian analysis Although Laplace found an estimator which at least 

asymptotically has an exact security level, it is not unique. Hence other desires are 

required to choose among the estimators of given security level. The best known solution 

is due to Jcr7y Ncyman( 1057). His theory explains that in many interesting situations 

there exists a unique estimator of given security level that for every false value of p  

minimizes the chance of including p in the interval estimate. An interval estimate got 

from such an estimator is a confidence interval. Ncyman advocates inductive behaviour 

rather than inductive inference We can behave in a way that is usually right, but we 

cannot measure the credibility of our doing tf̂ e right thing on any individual occasion. 

According to llacking(|975) t his is one o f the chief bones o f  contention in contemporary 

philosophy o f statistics The Bayesian school, for example, has quite the opposite 

opinion. The logic of the confidence interval approach was made clear in the 1930s by J. f  

Ncyman and F,. S. Pearson

One of the applications of probability theory of special interest to Laplace is in the 

field of demography Me discusses methods of indirect population counts, and estimates 

of precision in such counts, he also develops the theory of sampling census and other 

problems. This result is supported by his study conducted in 1802 ahout a sampling 

population census of France I Inis he played a significant role in the development of 

statistics, in particular he contributed greatly to the application of probability theory to 

demography.
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I lie classical definition of probability is given in his book “ I lu'orie analytique dcs 

Probability. 18 12”: the probability P(A) o f  event A is equal in the ratio o f  the number o f 

possible outcomes o f a trial which are favourable to event A to the number o f all 

possible outcomes o f the trial I lere equi-probability is assumed.

If we consider the expansion (x + x2 + x1 + x4 + x' + xr> )n, then the value of the 

coefficient of Xs is equal to the number of outcomes with n dice, giving the sum of points 

equal to s. laplace generalizes this method of calculation to the method of generating 

functions widely used at present. A function f(t) = L'„=o O" = lit + fit + f?t̂  + ... + fntn + 

is called the generating function of the sequence fj,, f(, f2 , ..., f„ , ... . Generating 

functions arc used not only in probability theory, hut also in algebra and other branches 

of mathematics

2.2.2.2 Cart Friedrich Canss
However, if we ignore I aplacc lor his inexactness, vve can regard the theory of 

probable errors’ produced by Gauss in 1816 as using interval estimators with a security 

level of 0.5. Carl Friedrich Gauss (1777-1855). a German scientist and mathematician, 

first work related to probability theory was the famous Theoria Mot us corporum 

coelestium in sectionibus conic is solent ambietitium, (I lamburg, 1809) In the last part of 

this work Gauss for the first time presented his theory of errors in observations. Two 

other papers arc related to this topic “Disquisitio de elementis cllipticis Palladis," 

Comment. (Gottingen) I (1808 -1811) and “Rcstimmung dcr Genauigkcit dcr 

Rcobachttmgen " (7 fin Astro// (1816). pp 185-197) These woiks were generalized and 

supplemented in his treatise “ Ihenria combinationis observationum erroribus minimis 

obnoxiae." Comment. (Gottingen) V (1819 -1822). which appeared in 1823. In 1828 a 

supplement of this work: Supplemcntum thcoriac combinationis observationum

erroribus minimis obnoxiae.” ( onunent. (Gottingen) VI (1823 -1827) was published. In 

1845-1851 Gauss wrote “Application of probability theory for determination of the 

balances of widows’ pension funds’’ and also computed “Tables for determination of the
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time periods for various types of obligatory incomes for survivors.” Gauss's notes and 

letters are also of great value and interest from the point of view of probability theory.

Adrien-Marie !.egendre(!806) in his treatise “New methods for the determination 

of the or bits.of comets” developed tire method of least squares in the appendix entitled 

“On the method of least squares”, lie writes “Among all the principles, which may be 

suggested for this purpose, there is none simpler than the one we utilized in the previous 

discussion the method is to minimize the sum of squares of the errors ” Me formulates 

this principle in a clear manner and observes that it should be very useful in various 

problems of physics and astronomy, where the derivation of the most precise results 

possible from observations is required.

Gauss presented his method for the first time in 1809. However, he observes that 

“Our principle, which we have made use of since the year 1795, has lately been 

published by Legendre in the work Nonvelles methodes pour la determination des 

orbites des comites, Paris, 1806 ". Me also gives this date in his letter to Laplace of 30 

January 1812. In a letter to II M. W Olbcrns in 1802 he mentions, however, that 

“starting from 1794. I have been utilizing the method ... which has also been applied in 

Legendre's work .” Gauss mentions twp dates, 1794 and 1795. Contemporary 

authorities are inclined to accept 1794 as the correct one. For more details on this 

controversy between Legendre and Gauss we can see the work of Bell (1937), “Men of 

Mathematics,” Simon and Schuster

The normal distribution was considered a universal law for a long period of time.

I his state of alTairs resulted in a delay in the development of quantitative methods for 

discarding some observations, since the normal law admits the possibility of errors of 

any magnitude. Hence it was assumed that all the observations should be retained Only 

in the middle of the nineteenth century did the first probabilistic criteria for rejecting 

observations begin to appear Gauss in 1816 investigated the estimation of h based on 

results of observations | where the normal law is given by 

<p(A)= li (n) exp/-It2A2/. (2.2)
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lie introduces the error function

0(t) = 2(n) h  exp (-i')dt (2 3)

and presents a small table ol the values of this function I he value of the argument r such 

that Ofp) 0.5 is specially singled out. I his value is p  = 0.4769363. The quantity p h  = r 

is called the probable error for the function Ofht). The first table of a normal curve 

appeared in I) Bernoulli’s treatise of 1771

I he most complete exposition of the theory of errors is contained in Gauss's 

paper “theoria combinationis ohservationum erroribus minimis obnoxiae.” lie assumes 

that there are two t\pcs of errors, namely, random errors and prediction errors. Mis 

results in the theory of errors are presented almost without modification even nowadays 

in manv textbooks on statistics. It is worthy to note that Gauss contributed to the 

development of probability theory as well as to ditferent branches of mathematics and 

science.

2.2.2.3 Simeon l>enis Pnbsnn

During this period we come across another prominent mathematician Simeon 

Denis Poisson (1781-1840). Mis works are mahy with respect to the probability theory: 

On the probability o f  mean results o f  ohseivations, 1827: Continuation of the memoir 

on mean results o f  observations. 1832.: Stir I'avantage du Hanquier an feu de Pharaon 

11832? 1837?); On the probability o f  births o f hoys and girls, and several others. All 

these papers were included in various forms in Toisson’s main work on probability 

theory. “ Rccherchcs sur la probability des jugements en mature criminelle ct cn matiere 

civile" published in 1837 Mis celebrated theorem is also contained in this volume. In his 

book he first presents a brief survey of previous results in probability theory, and in 

particular I aplace’s and Condorcefs contributions on moral probability, lie himself also 

believes that the analytic theorv of probabilities is applicable to the evaluation of the



correctness of court decisions. For this purpose he deduced “the law of large numbers”, 

which is different from Bernoulli's theorem In mathematical notation it is formulated as 

lim (| jr | < s ) - i , (2.4)

where n is number of independent trials, p  arithmetic mean, m/n relative frequency of the 

occurrence of event A If the probability of the occurrences of events remains constant 

from trial to trial, then p r />, and the Poisson theorem in this case reduces to Bernoulli's 

theorem.

For Poisson, all events of a moral as well as of a physical nature are subject to this 

universal law. He viewed this theorem not only as mathematical fact, but also as a 

philosophical truism. It served as ground for his investigations concerning the 

correctness of court decisions and phenomena of a moral nature. He believes that by 

means of this principle the probability of any human decision may be determined

regardless of the reasons for these decisions. UNIVERSITY OT NAtRvL.
CHIRCHO LIBRARY

In his hook he also derived the so-called “law of small numbers”. As the deviation 

of the value of/? from the value 14 increases, the asymptotic representation of Pmn in the 

form (2 n )12 expt-x2/?) becomes less and less accurate. In order for Laplace’s theorem to 

give a reasonably accurate approximation to Pmn, the number of observations must be 

substantially increased, which is not always convenient or even possible. I he problem 

arises of obtaining an asymptotic formula which will he particularly suitable for small p. 

This problem was solved by Poisson He obtains that, as p„ -> 0 with n , the 

probability that an event will occur m times approaches

Pm„ = (V” c 2)/ ml. where Xrnp„. (2.5)

This formula of Poisson can he utilized as an approximating expression for Pm„ for a 

fixed but small p  and large n. I)avid(1955) and others credit this discovery of “Poisson’s 

binomial exponential limit " to do Moivre(l 718).



The Polish statistician I,. Bortkiewicz (1868-1931) renamed the Poisson 

distribution the law o f  small numbers. He also applied this distribution to rare events, 

such as deaths by horse-kick in the Prussian Army, births of triplets, and so on

Commenting on the stale of probability theory at that period of time, 

(incdcnko( 1948) writes that:

In spite of the fact that Laplace and Poisson concluded an important 
and fruitful initial period in the development of probability theory, a 
period of philosophical cementation of the basis of this science, this 
period resulted in an indifferent attitude toward probability thcorv in 
the West and in a definite rejection of the possibilities of utilizing its 
methods in studying natural phenomena. This led to the beginning of 
a long period of stagnation in probability in the West. [Gnedenko,
394; Maistrov, 1601

In this connection the scientific works of a famous Belgian statistician Adolphe 

Quetelct (1794-1874) are indicative. Quetelet( 1842), who attended Laplace's lectures[in 

I823-4|, proposed that the rules of probability theory are those that govern and direct the 

activities of human society. The degrees of inclination to crime, marriage, etc., are 

according to Quetelet, nothing but mathematical probabilities. He describes the average 

man as everlasting and invariable, the absolute perfect type, while separate individuals 

are a distorted representation of this type

2.2.2.4 Probability theory in Russia and the St. Petersburg’s school
Next it is worthwhile to pose for a moment, and ponder through the “Probability

theory in Russia and the St. Petersburg's school”.

The teaching of probability in Russia started in 1829-30, by Revkovskit, at 

Vilnus University, and somehow he follows the footsteps of Bernoulli and Laplace, and 

favoured and recommended in 1830 by M V. Ostrogradski t (1801-1862). In Moscow 

University the first courses in probability theory were given starting from 1850 by A. Yu. 

Davidov (1823-1885). Davidov published several papers on this subject in the years 

1854-7; “An application of probability theory to statistics(l855).” The first course in
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probability theory at the Uni\crsity of St Petersburg was offered in 1837 by V. A. 

Ankudovich.

Among the first important works on probability theory in Russian were the works 

of Nikolai Ivanovich Lobachevskii, in which through his experiment arrived at the 

problem of determining the distribution law of a sum of a given number of mutually 

independent identically distributed random variables. The problem is solved in the “new 

elements of geometry'’, “probability of the average results obtained from repeated 

observations”. This paper is published in Crclle’s Journal, 1842. According to 

Maistrov(1974), he rigorously derived accurate and convenient practical formulas, like 

obtaining the distribution of the arithmetic mean, the distribution of the sum or mutually 

independent varibles, and defined probability in accordance with the definition given by 

faplacc

I he first works on probability theory carried out in Moscow University were N. 

I) Brashman’s paper “Solutions of problems in the calculus of probabilities” (1835) and 

N C. Zcrnov’s( 1843) long Memoir (Probability Theory, Moscow). Zernov, following 

Bernoulli and l aplace, in his book is portrayed as representative of the deterministic 

approach which was prevalent at that tjme; and applies probability theory to 

demographic statistics, insurance, the theory of errors and legal procedures. Zernov 

asserts that hardly any other science can be found, except for probability theory, which 

hears a “direct relation” to so many and such diversified disciplines Maistrov(1974) 

observes that another Russian mathematician V. Ya Bunyakovskii (1804-1889), using 

l.aplace’s works and by translating to and compiling in Russian, disseminated the 

knowledge of probability theory in Russia It is believed that Bunyakovskii’s paper on 

self-calculators( 1867) prompted C'hebyshev to construct his arithmometer. Also another 

prominent representative of the Russian school of probability theory was M V. 

Ostrogradskii (1801-1862). His contributions to probability theory were prompted 

mainly by practical considerations, and were influenced by faplace.

I
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2.2.2.5 PafnutM Lvovich Chebyshev
The above mathematicians gave way for the establishment of the St. Petersburg 

School, and to the advent of Pafmitii Ivovich Chebyshev (1821-1894), who is the 

creator and ideological leader of the pre-revolutionary mathematical school in Russia 

Chebyshev, as well as many other mathematicians, was influenced by the works of 

Ostrogradski i and Bunyakovskii. Chebyshev contributed a lot to the development of 

mathematics; his investigations span the theory of approximating functions of 

polynomials, theory of numbers, theory of mechanisms, probability theory and other 

areas The mathematical school guided by him, in 1860-1883, played an important role 

in the advancement of mathematics in Russia. The most prominent representatives of 

this school were A N. Korkin( 1837-1908), R. I. 7.olotarev(1847-1878), A A. 

Markov(l856-l922), Ci. F. Voronoi (1868-1908), A. M. Lyapunov (1857-1918), l). A. 

Grave (1863-1939), V. A Steklov (1864-1926).

Maistrov(l974) exaplains that the school was united in common interest and

problems, method of discussion of problems and formulation of inquires and

materialistic approach to science and mathematics Chebyshev believed that the harder

the problem, the more productive the methods for its solution and the wider the scope of
•

its possible applications The close relationship between theory and practice was the 

determining factor in his mathematical activities. According to him an approximate 

solution is accurate if it is possible to determine bounds for the errors The pedagogical 

activities of Chebyshev were expressed in his students, like Lyapunov and Markov; i.e. 

he was a remarkable lecturer and instructor, thus he was able to lay dawn the 

establishment of the Russian mathematical school: the majority of P L. Chchyshev’s 

woiks and that of his followers tended toward a detailed investigation of problems 

important from the point of view of applications and which at the same time present 

special theoretical difficulties and require the construction of new methods, the results 

being extended into a general theory.
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Chcbyshcv investigated at a great length in probability theory the limit theorems, 

lie wrote only lour papers in probability theory, but their influence on the future 

development of this science was immense. In his first work, which constituted his 

Master's dissertation, “An essay on elementary analysis of probability theory,"(at

accurate bounds on approximating expressions. In his thesis he proved Bernoulli’s 

theorem and also presented corresponding bounds on obtaining approximations; he 

proves Poisson's theorem for a finite number of different probabilities and also a general 

elementary proof of this theorem with corresponding bounds on the errors Next, he 

worked on the theorems that he calls the basic theorem of probability theory: the addition 

rule, multiplication rule, and Theorem about conditional probability.

On 17 December I860, Chcbyshcv presented at a session of the Academy of 

Science, his paper “On mean values"|I)es Valeurs moyennes) This is published in 1867 

in the journal Matemnlicheskii Shornik, II, pp. 1-9, as well as in Uouville’s Journal de 

Mathfmaiiques Pure* cl Appliqudes, pp 177-184 Here Chcbyshcv proved an important 

inequality known nowadays as the C'hebyshev inequality. Using this inequality, he 

obtains a theorem known as Chebyshev’s theorem or Chebyshev’s form of the law of 

large numbers from which Poisson's and Bernoulli's theorems follow as particular cases. 

The theorem can be written mathematically ns follows:

that is, approaching the limit with n-> we obtain the law of large numbers.

According to llayde and Senetaf 1972) here we should note that the basic proof of 

this inequality was contained in I J. Bicnayme’sf 1796-1878) paper the method of least

that we associate this remarkable and simple inequality with the two names, Bienaym^ 

and C'hebyshev. because C'hebyshev was the first to clearly express and prove it, while

Moscow University in 1846) he introduced and utilized his basic premise of deriving

(2.6)

squares Hence, it is called the Bienaymd - C'hebyshev inequality. Markov(l924) states
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the basic idea of the proof was pointed out much earlier by Bicnaymc in a memoir 

containing the inequality itself, albeit in a not particularly obvious form

I he second basic piohlem that occupied ( hchyshev's attention was the central 

limit theoiem lie devoted his attention to this problem in his paper in 1887 in the 

Proceedings o f the Academy of Sciences The paper is entitled “On two theorems 

concerning probabilities”: i) the law of large numbers and ii) the limit theorem for the 

sum of independent random variables, and the construction of the method of moments in 

probability theory. And in his paper “Sur les valcurs limitccs dcs ihtcgrales”,1874, |On 

integral residual which yield approximate values of the integrals] constructed the 

moments of order k These moments can be rewitten in the form

w here/fly) is i ntegrahle in the Riemann seme.

As a concluding remark we can quote Kolmogorov’s(1947) observation:

P. I. C’hebvshev impelled Russian probability theory into first place 
in the world from the methodological point of view the basic 
change, due to Chebyshev, is not the fact that he was the Hrst who 
strongly insisted on complete rigour in proving theorems, but mainly 
that he always strove to obtain exact estimates on deviations from the 
limiting laws in the form of inequalities applicable for any number of 
trials.” | Kolmogorov, 56]

2.2.2.6 A. A. Markov and A. M. Lyapunov
The two prominent figures and advocates of this school are Andrei Andreevich

Maikov (1856-1922), who replaced Chebyshev in 1883 till 1905 to guide the school of

St Petersburg, and A M. Lyapunov (1857-1918). The principal works of Markovin

probability theory' are minted to the limit theorem for the sum of independent variables,

in particular those connected in a chain lie was also the originator of a very important

blanch of probability- the study of dependent random variables, lie was interested in the

following two problems: the applicability of the law of large numbers and of the central

limit theorem to sums of dependent variables Markov’s investigation on a sequence of

random variables which form a chain has far reaching applications. These chains of

(2.7)
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dependent random variables are now referred to as Markov chains. I he study of Markov 

processes and Markov chains has become a large branch of probability theory with an 

enormous literature, and is of great significance in the application of probability theory to 

various branches of the natural sciences and engineering I he model ol an atom proposed 

bv Hohr is an example of such a system .. . .. -

I vapunov in his two papers proves the limit theorem with weaker restrictions, 

that is. by using the method ol characteristic function which overcomes the problem of 

moments; that is the mathematical expectation of the powers of the random variables, 

may not exist in all cases, while the characteristic functions exist for any random 

variable I his method originated in the works of Laplace and Lagrange, and it was used 

in 1892 by I Sleshinkii of the University of Odessa This fact is mentioned in 

Lyapunov's 1900 paper “Sur line proposition dc la th^orie des probability,” (On a 

theorem in the calculas of probabilities) Mis second paper is “Nouvelle forme du 

Iheoreme sur la limite de probability,” (A new form of a theorem on the limit of 

proahliitics). I his method is adhered by many prominent scholars of probability theory, 

like Oncdenko and Kolmogomv(l°68). This method became the basic method for 

solution of problems on sums of random variables, mainly due to the following properly: 

the characteristic function of sums of independent umdom vaiiables equals (lie pioduct 

of their characteristic functions, i.e.,

'I \.d 1 )-T  (thM t) (2.8)

Urns the method of characteristic function is more general than the method of 

moments Characteristic functions exist for any random variable and determine 

completely the moments of the distribution, provided the latter exist lire characteristic 

function determines uniquely the distribution function, independently of whether the 

moments exist or not. lie also obtained an upper bound on the error committed in 

replacing the exact distribution of the sum by its limiting distribution 1 lis theorem is 

called the central limit theorem of probability theory'. It explains why so many random



variables obey the normal law. It follows from Tyapunov’s theorem that, if the random 

variable X is a sum of a large number of independent random variables, each one of 

which has only an insignificant contribution lo the sum. then the distribution of X will be 

close to normal Mis result is improved alter 20 years by Y. W. Linderberg in 1922 by 

obtaining a new sufficient conditon, and in 1935 by W. Feller by showing the necessary 

condition.

I his necessary and sufficient condition of Finderberg and Feller is stated as

follows:

If I „(x) is the distribution function ofX n, and h is a fixed positive number, then, as n->oo 

7 JxJd I : iFi(x ) -* 0. (2.9)
|af>fc

This condition is necessary and sufficient for the convergence of the distribution of 

nL,n-,X, to the normal distribution. Thus, the central limit theorems, in the case of 

independent random variables, starting with the De Noivre-faplace version culminated 

with that of the l.inderberg-Feller,

In the 19,h century there were many scientists who applied probability theory and 

statistical methods to advance their researches, especially in physics, namely, Robert 

Brown(177-1858), James Clerk Maxwell(183l-1879), Rudolf Clausius( 1822-1888), 

I.udwig Boltzmann! 1844-1906), Josiah Willard Gibbs (1839-1903) There is a recent 

advancement on the application of probability theory on “Brownian motion” by 

l.oeve(l978) In particular Boltzmann and Gibbs worked hard so that probabilistic 

theories and statistical methods may be applied in physical sciences. Bolt7.mann( 1964) is 

primarily connected with the initiation and development of statistical physics. Ilis main 

contribution was the molecular-kinetic interpretation of the second law of 

thermodynamics and the demotion of the statistical interpretation of entropy. Gibbs in 

his book “Basic Principles of Statistical Mechanics” (1902) achieved a logical 

conclusion of the classical statistical physics. The following remark by Frankfurt and 

Frank(l964) can express the historical scene in the 19th century: “Gibbs lives, because
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profound scholar, matchless analyst that he was, he did for statistical mechanics and for 

thermodynamics what I aplacc did for celestial mechanics and Maxwell did for 

electrodynamics, namely, made his field a well-nigh finished theoretical structure."

Francis Galton(1889), a biologist, revealed the usefulness of statistical methods in 

biological research and explored what we call regression analysis by introducing the 

concepts of regression line and correlation coefficient His research on regression 

analysis originated from the study of the correlation between characteristics of parents 

and children, hut he failed to realize the difference between population characteristics 

and sample characteristics. Following Galton. K. Pearson(l857-1936) developed the 

theory or regression and correlation, with which he succeeded in establishing the basis of 

biometrics lie arrived at the concept of population in statistics: a statistical population is 

a collective consisting of observable individuals, while a sample is a set of individuals 

drawn out of the population and containing something telling us about characteristics of 

the population. Here de Finettit 1975) states that the idea that all natural characteristics 

have to be normally distributed is one that can no longer be sustained: it is a question 

that must be settled empirically.

2.2.3 1 he Advent ojprominent twentieth century Probabilistic Philosophers nnd 

Mathematical Statisticians, and Modern Schools o f  Probability and Statistics.

2.2.3.1 I he axiomatic foundations of probability theory
Towards the beginning of the twentieth century, probability theory developed

enormously as a result of the contributions of the Russian school, application to physics, 

and the advent of prominent probabilistic philosophers and mathematical statisticians. 

I he necessity of re-evaluating the logical foundations of probability theory in order to 

secure its position as a genuine mathematical discipline, and to construct rigorously and 

to develop probability theory became more and more evident

A direct predecessor o f the founders of axiomatization in probability theory was 

Henri Poincar6 (1854-1912), mathematician, philosopher, and physicist lie  wrote the
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hook “Culcul dcs Probability" (1912), which is one of the most rigorous and interesting 

books on probability theory written at the beginning of the twentieth century. As 

Maistrov( 1974) noted he made remarkable contributions to the fields of differential 

equations, integral equations, algebra, theory of number, geometry, theory of electricity, 

thermostatics, theory of Hertz’s waves, the kinetic theory of gases, and wrote a number 

of books and articles of philosophical nature in which he sometimes discusses 

philosophical and methodological problems of probability theory as well. 

Poincar6(l9l2), following faplace’s deterministic approach, defines random events in a 

deterministic way, and he says:

If we had an exact knowledge of the laws of nature and the position 
of the universe at the initial moment, we could predict exactly the 
position of the same universe in a succeeding moment. ... It may 
happen that small differences in the initial conditions produce very' 
great ones in the final phenomena. A small error in the former will 
produce an enormous error in the latter. Prediction becomes 
impossible, and we have a fortuitous phenomenon. ... We do 
not[know| to what ore due accidental errors, and precisely because 
we do not know, we are aware they obey the law of Gauss. Such is 
the paradox ( banco is only the measure of our ignorance. 
Fortuitous phenomena are, by definition, those laws we are ignorant 
of. | Poincare, 1-5,511 • UWVtZSlTY NA&CBi

CHIROMO LIBRARY

As a conclusion of the classical definition of probability, he makes his remarks 

saving How can we determine that all the cases are equally probable? Mathematical 

determination is not possible in this case; in each application we must put conditions and 

stipulate that we shall consider these particular cases as equiprobable. These 

assumptions are not completely arbittaiy, but they may escape the mathematician, if he 

docs not analyze them after they have been made. From his remarks we can observe the 

necessity of more rigorous approach to the concepts of the foundations of probability 

theory.

I here are also other probabilistic philosophers and pure mathematicians who 

paved the way on the axiomatization of probability theory. For the establishment of a
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logical order and consistency for any kind of inference, rules of inference, and to show 

the absence of contradiction in all the results obtained by an axiomatic method, the 

totality of objects studied by a given mathematical theory is necessary. In other words, 

propositions are set as the basis of the theory and all the subsequent proportions are 

deduced from these axioms, and the rules of deduction are distinctly formulated

2.2.3.1.1 Formal axiomatic method
t'opleston (1985a) on his philosophical note on G. W. I,eibniz( 1646-1716), 

mathematician and philosopher, observes that a deductive system of logic or of 

mathematics is an illustration or example of the general truth that the universe is a 

system Furthermore, he distinguishes two types of truth: truths of reason and truths of 

facts Truths of reason are analytic propositions and embrace the sphere of the possible, 

while of truths of facts are synthetic propositions and embrace the spare of the 

existential. F.xistential propositions are truths of act not of reason. Among truths of 

reason are those primitive truths which Leibniz calls ‘identicals,’ which are known by 

intuition, their truth being self-evident. A true proposition asserts existence of a subject, 

it is a truth of fact, a contingent proposition, and not truth of reason, ('opleston (1985a) 

affirms that there is a philosophical and epistemological approach to mathematical 

proposition mathematical propositions do not give us factual information about the 

world, they slate, as Ilurnc| I7I1-I776| put it, relations between ideas, for factual 

information about the world indeed about reality in general, we have to turn to 

experience, to sense perception and to introspection. If we wish for factual information 

about the world, we must content ourselves with probabilities, which is all that 

inductively-based generalization can give us. With this concept in mind, now we can 

give analysis of the formal axiomatic approach to mathematical truth.

l owards the end of nineteenth and the beginning of the twentieth century, the 

axiomatic method penetrated various branches of mathematics. This fact followed after 

the discoveries, independently, by .ldnos Bolyai (Hungarian, 1825) and Nikolay I.
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I ohachcvsky (Russian, 1826), that there is a possibility of constructing geometry on 

axioms different from Tuclid’s, that is. by assuming that for some plane, some line ( in 

the plane, and some point f- in the plane and not on f. there exist at least two distinct lines 

in the plane passing through point f  and not intersecting line ( In pure mathematics the 

systems of axioms for geometry was carried out bv Mortiz Pasch(( lerinan, 1882), David 

Hilbert ((amidlayen der Geometric, I8W; The Foundations o f  Geometry, 1902)., 

(iuiseppe I’eano and V l;. Kagan; axiomatization for arithmetic were initiated by 

Peano( I 880) and Hilbcrt( 1807)

I he postulational method when tire undefined terms are treated as meaningless is 

called the formal postulational method, or formal axiomatic method Thus, axiom and 

postulate are often synonymous The deduction of such a theory independent of any 

interpretation makes it a mathematical tool prepared in advance for diverse applications, 

furthermore, transcending the mathematical branches, it is a method for discovering new 

facts in general.

In the beginning of the twentieth century the inadequacy of the classical 

foundation of probability stemming from Laplace was noted; especially the highly 

restrictive nature of its applicability to problems of physics, statistics, biology and the 

technical sciences. Hence, new logical foundation Tor probability theory, in line with the 

other branches of mathematics, on the axiomatic method were needed.

2.2.3.1.2 Promoters of tho axiomatic foundations of probability theory
I he first works in this appioaeh are due to S N. Bernstein (18X0-1968).

Bernstein’s book “Probability Theory” (I9d6). served as a text book for mathematicians, 

physicists and other disciplines, and presents a detailed axiomatization of probability

theory.

Bernstcin( 1917) introduced three axioms, namely,

i) The o.rimn o f comparability o f probabilities: If a is a particular 
rase of A in the strict sense, then P(a) < P(A): conversely, if for 
events a} and A the inequality P(ay ) '  P(A) holds, then P(a\ )
P(a). wheie a is a ceitain pailicular case of A in the strict sense.
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ii) The axiom of incompatible (disjoint) events I f  it is  k n o w n  th a t  

e v e n t s  A a n d  A,  a r e  in c o m p a t ib l e ,  a n d .  m o r e o v e r ,  th a t  e v e n ts  /? a n d  

/?, a r e  a l s o  in c o m p a t ib le ,  w h i l e  P(A)P(R)  a n d  P(A \ )  -  P(R\ ), th e n  

th e  p r o b a b i l i ty  o f  e v e n t  C ,  w h ic h  c o n s is t s  in  th e  o c c u r r e n c e  o f  e v e n t  

A o r  e v e n t  A \ , is e q u a l  to  t h e  p ro b a b i l i ty  o f  e v e n t  C i c o n s i s t i n g  in  tb e  

o c c u r r e n c e  o f  /? o r  Py. i .c . P(A or Ay) P(R or /?,).

iii)  The axiom o f  combination o f events I f  rx is a p a r t i c u la r  e a s e  o f  

e v e n t  A, th en  th e  p r o b a b i l i t y  o f  «  u n d e r  g i v e n  c o n d i t io n s  d e p e n d s  

o n ly  o n  th e  p ro b a b i l i ty  o f  e v e n t s  A u n d e r  th e  s a m e  c o n d i t io n s  a n d  on  

th e  p r o b a b i l i ty  a c q u i r e d  b y  rx in  th e  c a s e  w h e n  e v e n t  A o c c u rs .

T w o  c o r o l l a r i e s  are d e d u c e d  f r o m  a x io m (i) :  a )  t h e  p ro b a b i l i ty  o f  a  c e r t a i n  e v e n t  is 

larger th a n  th e  p r o b a b i l i ty  o f  a  p o s s i b l e  ev e n t ,  a n d  b ) t b e  p ro b a b i l i ty  o f  a  p o s s i b l e  e v e n t  

is la rge r than  th a t  o f  an  im p o s s ib le  o n e .  l;u r lh rm o re .  T h e  a x i o m  o f  c o m b i n a t i o n  o f  e v e n ts  

can  b e  fo rm u la te d  a lso  as fo l low s:  T h e  p ro b a b i l i ty  o f  c o m b i n a t i o n  o f  A a n d  ft  ( u n d e r  

g iven c o n d i t io n s )  d e p e n d s  o n ly  o n  t b e  p ro b a b i l i ty  o f  A ( u n d e r  the  s a m e  c o n d i t i o n s )  a n d  

on the p ro b a b i l i ty  a c q u ir e d  b y  H a f te r  t h e  o c c u r r e n c e  o f  A.

O n  the  b a s i s  o f  t h e s e  a x i o m s  B e rn s te in  c o n s t r u c t e d  th e  w h o le  s t ru c tu re  o f  

p ro b ab il i ty  th eo ry .  K o 1 m o g o ro v ( 1 9 4 7 )  s ay s  t h a t  th e  f irs t  s y s t e m a t i c a l ly  d e v e lo p e d  

a x io m a t i /a t io n  o f  p ro b a b i l i ty  th e o ry ,  b a s e d  on t h e  n o t i o n  o f  q u a l i t a t iv e  c o m p a r i s o n  o f  

( ra n d o m )  e v e n ts  a c c o rd in g  to  th e i r  ( la r g e r  o r  s m a l l e r )  p ro b a b i l i ty  is d u e  to  S. N. 

B ern s te in  T h e  n u m e r i c a l  v a lu e  o f  t h e  p ro b a b i l i ty  a p p e a r s  in  th is  c o n c e p t i o n  as  a d e r iv e d  

ra ther as  a p r i m a r y  n o t io n  ( i l i v e n k o (  1 9 3 9 )  s h o w e d  t h e  e q u iv a l e n c e  o f  B e r n s t e i n ' s  

a x io m a tiza t io n  w i t h  K o lm o g o r o v ’s  s e t - th e o r e t ic a l  a x i o m s  a n d  B e r n s t e i n ’s  idea  w a s  

further d e \ e l o p e d  b y  K o o p m a n (  1 9 40) .  H is  ideas  o f  a x i o m a t i z a t i o n  a n d  th e  a p p l i c a t io n  o f  

p robab il i ty  theory ' to  problems in t h e  n a tu ra l  s c i e n c e s  s e rv e d  a s  th e  b a s i s  o f  h is  

P ro b ab i l i ty  T h e o t y , "  w h ic h  is o n e  o f  t h e  c la ss ica l  w o r k s  o n  p ro b a b i l i ty  th e o ry .

l o r  th e  s a k e  o f  c o m p le t io n  o f  t h e  s tu d y  o f  a x io m a t i z a t io n  o f  p r o b a b i l i t y  th eo ry ,  

before  s ta t in g  t h e  c la s s ic a l  w o rk  o f  K o lm o g o ro v ,  w e  n e e d  to  m e n t io n  o th e r  s c h o la r s  w h o  

w o rk ed  on  th is  f ie ld  a n d  c o r r e s p o n d i n g  p u b l ic a t io n  y e a r  o f  th e i r  w o rk s :  \ 1 i s e s (  1919,1931, 

1936). K e y n e s  (1 9 2 1 ) ,  l.<ivy( 19 2 8 ) .  C a n te l l i (1 9 3 2 . l9 3 9 ) ,  K a m k c ( l 9 3 2 ) .  R e ic h c n b a c h
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(1935). Jeffreys*1935,1936.1937,1938), de Finetti (1937), Castclnuovo* 1937), Wald 

(1938), Borel(l939), and Predict*1939-43). Their respective stands with respect to the 

foundation of probability will be explained in detail on the sub-section entitled “on 

different approaches of probability.”

Richard von Mises(l883-1953), German-Americnn - the founder of the school of 

“the frequency approach in probability theory.” who was advocating that probability 

theorv is a science investigating phenomena of real world rather than a mathematical 

discipline, points out the shortcomings of the classical definition of probability and tried 

to amend it by defining probability as the limiting value of the relative frequency. Von 

Mises'* 1964) conditions or axioms are two: (i)Thcre must exist limits of the relative 

frequencies of events with particular attributes within the collective, (ii) These limits are 

invariant with respect to the choice of any subsequence of the collective which is 

arbitrary (except that it must not he based on distinguishing the elements of the collective 

in their relation to the attribute under consideration). I (is approach is a conceptual 

approach of axiomatizntion for the limiting-frequency theory.

Another attempt to axiomatizc a conceptual approach for the subjectivistic theory 

is due to Keynes* 1921) and de Finetti* 1937). fater Jeffreys (1939) developed the notion 

of probability as the degree of likelihood.

I)e Finetti( 1972) in his analysis on “the axiomatic foundations of probability 

theory" discusses both from the formal point of view and with reference to the different 

conceptions about the meaning and role of probability. 1 limself is an ardent adherent of a 

subjectivist or persnnalist school o f  probability. Following Frank Plumpton Ramsey, in 

1937, he made a systematic attempt to base the mathematical theory’ of probability on the 

notion of partial belief.

2.2.3.1.3 I he axioms of Kolmogorov* 1 ‘>33)
For its clarity and conciseness we will follow de Finetti’s* 1972) description of

the axioms of Kolmogorov. Hut a good descriptive analysis and its influence on statistics
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is given hy J L. l)oob(l976) on ‘Axiomatic approach of Kolmogorov’ in his article 

entitled “Foundations of Probability theory and its influence on the theory of statistics.” 

Kolmogorov, a prominent figure of the Moscow school of probability theory, was 

able to construct an axiomatization of probability theory which is a decisive stage in its 

further development He and his colleagues, like Khinchin(l956,l961) and 

(Jnedenkof 1948), were greatly influenced by the concepts o f  set theory and the metric 

theory of functions In 1920s he was engaged in the logical formulation of the ideas of 

the metric theory of functions in probability theory. His research resulted in the 

publication of “Grundbegrifl'e der Wahrscheinlichkeitsrechnung” in 1933. In his book 

the analogies between the notions of the measure of a set and the probability of an event, 

between the integral and the mathematical expectation, orthogonality of functions and 

the independence of random variables, and others were established.

Thus, probability theory attained an equitable position among other mathematical

disciplines

In Kolmogorov’s approach, probability theory is the study of probability domains 

(£.P) (Wahrscheinlichkeitsfelder) which are defined ns follows:

a) A class ( of primitive elements, called elementary cases is given;

b) sets of elementary cases, that is, subclasses of are called events;

c) finally, one considers a class of events £  and a function P satisfying the following

Axioms:
I £  is a/ie/r/ of sets of (! (i c. the union, intersection and difference 
of sets in F, belong to £);

II £  contains C (i.e. the “sure events”, the set of all elementary 
cases, must be included among the events in £);

III A real-valued, non-negative function is defined on £  This 
function assigns to any set F in £  a number P(F), the probability of H 

(but wc could also use such terms as measure or mass in order to 
avoid, even in the terminology, any reference to controversial 
notions);
IV P(C) = I (this is a convention concerning the value o f the 
probability of the sure event);
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V If R, and f\? arc disjoint events (have no elements in common), 
then,

(R ,u R 2) -p (E ,)  + p(K2);
VI If I-,. I‘2......V.„. is a se(|iicncc of events in £ . such that each
event is contained in the preceding one and that their logical 
product is null (i e. there is no elementary case belonging to all the 
K„), then, !’(!%,) >0 as n ><®.
Finally, the conditional probability of F, given II, written P(f’7ll), 
where H and 11 are events in £ , is defined by Kolmogorov, 
according to the compound probability theorem, as follows:

P(R/U) ~ P(KII)/ P(H), assuming that P (ll)^0 .
The compatibility of these axioms is proved by Kolmogorov by 
considering an £  consisting of only two events, the sure and

impossible events, with corresponding probabilities equal to one and 
zero.

We should note that Axiom VI, a “continuity postulate," is equivalent to “complete 

additivity".

Although the axioms of Kolmogorov help to define chance they are no enough. As 

Koopman(1940) and Ilacking(l974) have shown they do not determine, for instance, an 

hypothesis about chances, a statistical hypothesis, which is well supported by statistical 

data I heir central point is the logic of comparative support, i.e.. it is concerned with the 

assertions that one proposition is better or w'orse supported by one piece of evidence, 

than another proposition is by other or the same evidence.

2.2.3.2 On Different Approaches to Probability and Corresponding Schools
I he issue on the approaches of scholars to probability theory is open-ended.

Specifically, after Ihe lleisenberg’s( 1927) uncertainty principle, the whole of science 

was recognised as ultimately based philosophically, on the concepts of experimental 

probability. Thus from late I92()’s on wards, since probability theory covers a 

combination of mathematics, measurements or statistical data, theory of nature and 

theory of knowledge itself, activity in philosophical probability has been intensive. I he 

principle o f uncertainty, in quantum mechanics, states that the position and
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momentum^velocity) of a given particle can not he exactly measured simultaneously with 

complete accuracy. The amount of uncertainty is specified by the formulas 

Ax*Apx > h.

Ayv\p% > h. (2.10)

Az-Ap, > h.

where /tr is the uncertainty in the value of.t, etc., and /; is Plank’s constant, about 6x1027 

erg-sec. beside the position-momentum uncertainty relation there is the energy-time 

uncertainty relation: AF.At > /;. but the verbal interpretation is quite different in 

nonrelativistic quantum mechanics. Now we can pose a question of enquiry: “do 

probability philosophers admit the presence of subjective and ontological knowledge of 

nature or randomness?” To get a satisfactory answer an intrinsic and extrinsic 

discernment on authoritative research works on probability theory must be done.

But in this section we shall confine our selves, in view of variations among 

scholars, on four approaches to probability, i.e. we can list schools by their respective 

approaches to mathematical statistics and probability.

a) 7/ie classical approach

I he classical approach, based on the notion of equally probable cases by reasons 

of symmetry, and on the consequent definition of probability as the ratio of the 

favourable to the possible cases. As the name indicates, this approach is utilized by the 

first scholars on probability theory like Bernoulli, l.aplace and their followers.

b) The empirical approach

I he empirical approach, based on the notion of repeatable events whose 

frequency on a large number of trials, by virtue of the so-called empirical law o f chance, 

gives the probability almost certainly and exactly. Among the modern scholars, the 

positions of Castelnuovo. Cantelli, frechet, and Levy can be classified under the 

empirical approach Borel too, could be included in this group, although his position is 

not far from the subjectivists’.

c) The asymptotic approach( frequency theory)
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I he asymptotic approach which, with some idealization, makes the preceding 

definition more precise by considering an infinite sequence o f  trials, von Mises’ 

collective, and defines probability as the limiting value o f  the relative frequency. Both in 

its basic formulation and in its applications, seems geared mostly to statistical inference. 

A very similar approach is used in work on the statistical design of experiments, 

especially by fisher The scholars which adhere the asymptotic approach are like von 

Mises, Kamke and Reichenbach; also Kolmogorov declares himself in favour of the 

asymptotic approach

d) The suhjectivisticf Degree o f Belief) approach

I he subjectivistic approach considers probability a measure of the degree of 

belief of a given subject in the occurrence of an event (proposition). There is the so 

called the logical theory (degree o f  evidence), fostered by Keynes, Carnap and Jeffreys, is 

largely deductivists in approach, and seems closes to the pure theoretical formulation of 

mathematical probability While de Finetti, Ramsey and Savage agree with the logical 

theory' in making probability a logical relation between a statement and a body of 

evidence; it disagrees in allowing the evidence to vary in terms of the knowledge 

available at a given time.

Generally, we note that the positions even of scholars classilied in the same group 

can differ somewhat in terminology, omissions or additions, in strict form or weaker 

form etc for further discernment on different approaches to probability refer to the 

original works of the authors cited on the bibliographical list.

2 .2,3.2.1 F u rth e r  clarifications
I o discern more on the unifying and diversifying factors of the different 

approaches to probability more clarification and elaboration arc required. Let us sec the 

positive and negative comments of the respective approaches.

The classical approach is reviewed by the subsequent schools. As De 

I inetti( I (>72) points out “the disputed pointed alluded to originate from certain
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tendencies to limit the domain of the theory of probability to narrow zones where notions 

of s\mmctry(as for a dice) or of statistical regularities(as for the sex of a future birth) 

facilities evaluations or probability and agreement about them on the part of diverse 

individuals.".In plain words discrimination between the total field of uncertain facts and 

those subfields to which a privilege role has been assigned is not justified The term 

equipossibility is more elaborated, by von Mises(195l) and more recently by 

Houdot(l%7), as the epistemic concept of probability corresponds to an cpistemie 

concept of possibility, while the aleatory concept of probability corresponds to a concept 

of physical possibility or it possesses the de re and de dido  modality; That is de re if it 

pertains to things, and do ditto if it applies to what is said or can be staled. But this kind 

of elaboration and equipossibility definitions of probability are not fully convincing for 

modern logicians The concept of equipossibility is explained using the case of 

exchangeability or symmetry with respect to order This approach applies directly onto to 

special cases, so it is not adequate. According to de finetti( 1972), from the critical 

viewpoint, this approach can give at best, only an incentive to reduce the axioms of 

quantitative probability - as a direct numerical assignment of probability - to axioms of a 

purely quantitative nature - in the form of. inequalities among probabilities. Some 

scholars use the principle of indifference and the range theory of probability to describe 

the classical approach.

In other words, those in favour of empirical approach, like De (iroot( 1970) 

based on what is experienced or seen rather than on theory, maintain that probability is 

a logical concept which can be applied to parameters in a much wider class o f  

problems; and in each such problem there is a uniquely defined distribution which is 

appropriate for a particular parameter and most necessarily he assigned to that 

parameter I he critique of the this approach say that for this school an event can be 

assigned a probability under hypotheses of ‘stability of the frequency’ which it is 

difficult to make precise. Thus it is impossible to base a rigorous analysis of such a 

foundation.
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I he influence on von Miscs’ approach on probability, directly or indirectly, stems 

from the theory of empiricism The real father of the classical empiricism is John 

I ockef 16.^2-1704). This philosophy, by vigorously attacking on the theory of innate 

ideas, propagates that all our ideas come from the elementary data of experience, from 

sense-percept ion and from introspection.

As staled above, the basic notion in von Miscs’ frequency theory of probability 

theory is the concept of a collective. A collective is an infinite sequence K of similar 

observations, each of which determines a certain point belonging to a given finite- 

dimensional space R. i.e probability is a limiting value of the frequency, or a 

disli ih tit inn is appropriate only when values o f the parameter clearly have relative 

frequencies According to von Mises the events do not possess probabilities prior to the 

experiment: the probability is not an objective property of the phenomenon. 

Phenomenology is the study of objects and events as they appear in experience or 

immediate object of awareness in experience. Thus, phenomenon is a thing as it appears 

m mind or thing-in-itsclf Probabilities of events arise only as a result of an experiment. 

In von Mises' view we do not determine the existing objective properties by means of an 

experiment, but rather attribute them to the phenomena. Thus probability is deprived of 

its meaning as an objective numerical characteristic of real-world phenomena. Even 

Kolmogorov( 1956), who is in favour of the approach, shows reservation for the extreme 

stand and says:

The assumption concerning the probable nature of trials, i.e., 
concerning (he tendency of frequencies to group around a fixed value 
may be valid on its own only if certain conditions arc presented 
which cannot be retained for an indefinitely long time and with 
indefinite precision I herefore, the limiting transition m 'n—> p cannot 
have real meaning Moreover, the formulation of the stability of 
frequencies principle using this limiting process requires the 
availability of admissible methods for determining infinite sequences 
of trials which can he a mere mathematical fiction [Kolmogorov, 
274-2751
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In the asymptotic approach, the imprecise condition of stability of the

frequency is replace by the condition of existence of a limiting frequency. In de

Finetti) 1972) words the defect of this school is also pinpointed as follows:

probability cannot be assumed to be defined for every event, and 
those events for which a probability exists do not form a filed ... 
assuming that events A and I) have been assigned some probabilities, 
it may nonetheless [be) the[sic| impossible to attach a probability to 
their logical product AB.[de Finetti, 74-7]

As von Wright( 1977) noted it is a great merit of von Mises to have stressed the 

importance of the idea of random distribution to a frequency theory of probability. The 

demand of randomness is relevant to the question of the adequacy of the frequency view 

as a proposed analysis of the meaning of probability. But randomness is not relevant to 

the question of the mathematical correctness of interpreting abstract probability in terms 

of frequencies. Nevertheless, some form of frequency theory is thought by many writers 

to ofTcr the best account, for a large category of cases, of the relation between abstract 

probability and empirical reality.

I he primary incentive for this approach seems to be that conviction of David 

llume( 1738-40): We ought to start with a 9lose observation of man’s psychological 

processes and of his moral behaviour and endeavour to ascertain their principles and 

causes. Our method must be inductive rather than deductive. And where experiments of 

this kind are judiciously collected and compared, we may hope to establish on them a 

science which will not be inferior in certainty, and will be much superior in utility, to any 

other of human comprehension. This approach is also influenced by Kantian) 1724- 

1804), Hegelian)1770-1831) and I.eibnizean(1646-I716) philosophical thoughts and 

Bayes’ theorem, the acceptance of a-priori, existing in the mind prior to and independent 

of experience, from cause to effect, and a-posteriori, based upon actual observation or 

upon experimental data, from effect to cause.

In subjective approach a distinction between events to which a probability can 

be assigned and those to which it cannot, docs not seem acceptable. In other words, the
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probability of the logical product of events A and It cannot be deduced from the 

probabilities of the single events. In simple terms in this theory not only the notion of 

probability but other basic notions such as dependence, independence, equipdssibility 

and others are defined subjectively; even the relationship between probability and 

frequency is subjective In simple terms, probability distributions are subjective and that 

whenever anyone carries out a statistical investigation involving a parameter, he can 

represent his uncertainty pertaining to the values of that parameter by suitable 

probability distribution.

As von Wright(1977) states, it is true that the combination of probabilistic ideas

with the value-theory notions of preference and utility has had fruitful applications to the

mathematical study of economic and related forms of human behaviour. Support of this

fact docs not exclude taking a somewhat critical view of the epistemological and logical

basis of the belief theory of probability UNIVERSITY PR NAfprr
CHIRDMO LIBRARY

Ibis approach bases its assumptions on the inductive reasoning, or bases the 

mathematical theory of probability on the notion of partial belief, taking the point of 

departure on the measuring a person’s belief by proposing a bet and observing the lowest 

odds that he will accept. That is the laws, of probability may be called rules for 

consislent(cohcrent) sets of degrees of belief. I.evy(l953) says that one who wants to get 

to a certain point must first see it with his eyes(intuition) before he reaches it with his 

feet(logic). which expresses the range of the Held of application of inductive reasoning. 

A distribution of partial belief contrary to the laws of probability, Ramsey(l931) says 

that would be inconsistent in the sense that it violated the laws of preference between 

options, such as that preferability is a transitive asymmetrical relation. In brief this 

school stresses the role of mathematics in inductive reasoning, i.e., in the theoretical and 

exact formulation of inductive reasoning.

l o  s e e  t h e  d i s t in c t io n  o f  in te rp re ta t io n s  w e  c a n  l a k e  as  a n  e x a m p le  

K o lm o g o ro v ’s  f if th  a x io m  o n  f in i t e  a d d i t iv i ty .”  F o r  th e  c la s s ic a l ,  e m p i r i c a l  a n d  

a s y m p to t ic  a p p r o a c h e s  the a x i o m  is a  p u re ly  a r i t h m e t i c a l  c o n s e q u e n c e  o f  t h e  d e f in i t io n ,
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since the number of “favourable cases" as well as the “frequency" and “limiting 

frequency” are naturally additive; for the subjectivistic approach, the axiom is a 

necessary condition for the mutual consistency of the assessments of different 

probabilities.

2.2.3.2.2 Special Remarks

At this preliminary exploration of the different schools of statistics to give a 

critical examination of controversial aspects of the different approaches may be 

immature. But as we arc dealing with identification of school, it is good to assess their 

respective deficiencies and novelties.

Already a critical, philosophical and historical survey about this issue has been

done by de Finetti( 1972), Ilacking(l975), Maislrov(l974), von Wrightf 1977) and others.

The most appealing question is “/.? probability subjective or objective'?" Subjectivism, in

philosophy, stresses the doctrine that all knowledge is limited to experiences by the self,

and that transcendent knowledge is impossible. This stresses the role of consciousness or

thought While, objectivism is used to stress the apartness of thing knowu|the object]

from the person who knows it. or the things external to the mind or external elements of
•

cognition. A typical objectivist would conceive his role as that of discovering an 

order] that pre-existed his mind] in reality. The subjectivist conception of probability as a 

degree ol belief is often contrasted w ith the objectivist conception of the notion as either 

a relative frequency or a ratio of measures of ranges. It is questionable, however, whether 

a sharp contrast can be maintained between objectivism and subjectivism in the 

philosophy, particularly the epistemology, or probability. Among the various 

objectivistic schools, the root seems to be identifiable as the antithesis between 

inductive reasoning and inductive behaviour (up-held by Neyman-1957). New 

developments in the theory of inductive behaviour arise only in so far as the decision, 

unlike the opinions, arc made by groups rather than individuals. There are two distinct 

aspect of all approaches, namely conceptual questions and mathematical questions.
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Let us, following l)c Finctti(l972), present in table form the five points about 

inductive reasoning and five points about the passage to inductive behaviour or decision

theo ry .

In d u c tiv e  R easo n in g T h e  p assa g e  to in d u c tiv e  b e h a v io u r  o r  
Decision T heory

1 O f an event, that is, o f  any verifiable 
proposition in the domain o f  the logic of 
certainty, we can only say whether it is certain, 
impossible, or possible - that is. whether the 
answer is either demonstrably “yes" or “no”, or 
one cannot prove either “yes" or “no” - and. in 
the domain o f probabilistic logic, we can only 
evaluate the probability according to our 
judgement.

6. Optimal behaviour in the face o f  uncertainty for a 
given individual consist in choosing a decision that 
maximizes the expected utility. If  information can 
he obtained free o f cost and the choice can be made 
afterward, one simply has a widening o f  the field o f 
possible decisions. An optimal decision is obtained 
by choosing appropriately the partition about which 
to request information and then choosing the 
decision optimal for each of its elements. If the 
information does entail cost, this cost must be 
included. If utility and cost can be expressed in 
monetary terms, one need only subtract the cost of 
investigation from the expected gain.

2 . Nothing can be derived from the ostensible 
concept o f “not knowing anything." Hotter said, 
this is an expression that means nothing precise 
though it corresponds ineffectively and 
ambiguously to certain ideas.

7 . A collective decision by several individuals, who 
agree on their evaluations o f  utility but not on those 
o f the probabilities, must he optimal for a 
hypothetical individual whose opinion arc convcxly 
comprised among those o f  the real individuals 
concerned.

3 . Any assertion concerning probabilities o f 
events is merely tbc expression som ebody’s 
opinion and not itself an event. Iherc is no 
meaning, therefore, in asking whether such an 
assertion is true or false or more or less 
probable.

8 . A factor that can be important here is the 
tendency o f  opinions, as information increases, to 
agree with each other.

•

4 . If we speak o f  a conditional probability 
l’(l 'l 1). wc must repeat for F as well as for H 
what has been said o f  F with respect to P( 1 •’) 
Namely, the expression has meaning if and only 
if 1 and II arc events. Also II must express the 
assumed or acquired information in its entirety.

9 . A different, and independent, mechanism for 
agreement on action may apply when a collective 
decision is envisaged that may prove to he a bad 
one for a certain member hut only in cases that the 
member concerned initially considers unlikely.

5 . Inductive reasoning is nothing other than 
reckoning P(ll/R), the probability o f l l  after the 
observation o f F., in accordance with Hayes’ 
theorem - or, equivalently, according to  the 
theorem or compound probability, o f  which 
Haves' theorem is corollary.

1 0 . Cheater complications arc encountered with 
more widely differing attitudes and interests o f  the 
individuals. But no new criterion is called for: One 
has hut to apply the criterion o f  the maximal 
expected utility in different circumstances.

De Finetti, in defensive mood, tries to justify the subjective approach by 

presenting the above important points and also gives the opposing views.

Supporters of the frequency view found that an adequate analysis of probability 

requires them to combine their definition of the concept with the idea of a random
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distribution of events on a series of occasions. Supporters of the range theory or classical 

approach have had recourse to some form of a principle of indifference for the 

determination of^impossibility in certain unit alternatives. The objection raised is that 

whether randomness and equipossibility can be satisfactorily accounted for without 

reference to states of knowledge or ignorance.

Now it is good to use von Wright(l977) terminologies in our description of 

subjective approach to probability as a degree of belief. The belief theory does not 

necessarily entail an identification of probability with belief as a psychological 

phenomenon. The attitudes in option between goods may be said to reveal subjective 

estimations of probability. Rut the derivation of the laws of probability within the belief 

theory does not confer on them the status of psychological laws of believing. It rather 

makes them standards of rationality (consistency) in the distribution of beliefs or in 

preferences So we cannot regard belief theory as an account of probability in purely 

subjectivist, i.e., psychological terms. In other words, according to Durbinf 1967), the 

personal probabilities of the subject-matter experts in the domain in qucstion[can 

furnish | us with an estimate of probability in the sense of degree-of rational belief.

As a concluding remark we can agree with the following Durbin’s(1967) 

observations:

Probability theory is a pure mathematical model and as such abstracts 
from its applications in the real world. Nonetheless, probabilistic 
models are highly useful in explaining the real world, especially 
where statistical laws prevail. Finally, there are valid methods for 
arriving at these probabilistic models from observed data. [Durbin,
8I6J

2.2.3.3 I ho development of statistical mathematics in the twentieth century

I he translbimation of (he status of probability theory in contemporary study of 

science is due to the advent of prominent twentieth century probabilistic philosophers 

and mathematical statisticians Synthetically, we can give historical analysis of the
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development of statistical mathematics using two approaches, namely, the parametric 

thesis and chronological approach

2.2.3.3.1 I he Param etric I hesis

The parametric thesis proposed by van Dantzig, Danish, with his colleague 

I Icrnelrijk. in 1954, divides the development of mathematical statistics into four stages 

characterized by the use of one. two. many and no parameters, respectively.

According to van Dantzig, the first stage of development began with the 

discovery of regularities of certain statistical ratios. In the area of demography where 

sample surveys were first used, and the English merchant John Graunfs famous 

work( 1662), William Petty, Edmund Halley, Per Wargentin of Sweden, and Johann Peter 

Susmilch of Germany arc good examples of this stage of development. In modern 

terminology, this stage of knowledge about demographic phenomena is characterized by 

one param eter, i e , the mean of the population under investigation.

I he second stage is marked by the growing awareness of variability. Various 

laws ot error were suggested by the eighteenth century astronomers, culminating in the 

works of Laplace and Gauss on the normal law of error. Mathematically speaking, the 

population was characterised at this sate by two parameters, i.e., the mean and the 

precision constant(standard deviation), and in the more general case of multivariate 

distributions, by the first two moments. Consequently, all statistical theories based on the 

normal law or error belong to this stage, including the least-squares method, theories of 

correlation and regression, and the analysis ol variance and covariance.

I he works of Laplace and Gauss generated excessive reliance on the normal law, 

especially by such Quctclet, Airy and Gallon. However, toward the end of the ninetieth 

century, empirical investigations gradually demonstrated normality to be the exception 

rather than the rule I his led to the development of Karl Pearson’s system of skew curves 

and the development of the Gram-Charlier series, the theory of curve-fitting by the
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method of moments, and Pearson’s x goodness-of-fit test This third stage is therefore 

characterized mathematically by the use ol many parameters in frequency distributions.

The large sample theory developed during the second and third stages gave way to 

a more realistic small sample theory in the twentieth century. 'I hc search for new 

foundations of statistics in the 1920s and 1930s led to the replacement of the inverse 

approach by those of Fisher (the principle of randomazition) in agricultural surveys, and 

the Neyman-Pearson (confidence interval) in social surveys. This desire of logical rigour, 

according to van Dantzig, was responsible for the increased interest in the non- 

parametric or distribution-free approach, which characterizes the fourth stage of 

development.

Furthermore, Wei-Ching ( ’hnng( 1976). in elaborating van Danl/ig’s thesis, 

emphasises the importance of the works of three prominent scholars in the history of 

theory of probability and mathematical statistics, namely, Laplace, Fisher and Neyman. 

And in line to the history of sampling survey, he suggests that to complement van 

Dantzig's thesis, adherence to the inferential procedures which is used by different 

schools of thought should be emphasized.

•

2.2.3.3.2 Development of Statistical M athem atics - C hronologically

As l,chmann( 1959) observed a period of intensive development of statistical 

method and a systematic use of hypothesis testing began towards the end of the century 

with the work of Karl Pearson, his x? paper of 1900- Chi-square test for goodness of fit, 

and this attitude towards scientific investigation can be seen from his article:

"No scientific investigation is final; it merely represents the most 
probable conclusion which can be drawn from the data at the disposal 
of the writer A wide range of facts, or more refined analysis, 
experiment, and observation will lend to new formulas and new 
theories This is the essence of scientific progress ”[ 1899,169-2441

In connection with his system of curves, Karl Pearson developed a method of point 

estimation known as the method of moments



5 3

Ncyman(1976) as well as other scholars stress that in the late 19th and early 20th 

centuries mathematical statistics emphasized the Kollccktivmasslehrc, a mathematical 

discipline concerned with collective characteristics o f populations. In other words, 

statisticians at this period thought of a population as a collective having infinitely many 

individuals, which led to the idea that the larger the size of a sample the more precisely 

could the sample give information about the population The term descriptive statistics 

was introduced to mean the use of a variety of methods for describing such 

characteristics of populations. An important method of descriptive statistics is to 

consider a family of flexible curves or surfaces that can be used to approximate the 

empirical frequency distribution. A number of such families were developed, all 

representing interpolation formulas. The most successful sysiom^y^g^ty 

to Karl Pearson. CHIR0H0 LIBRARY

In the 1920s the Hungarian-American mathematician George Polya constructed a 

system of chance mechanisms that can generate almost all the distributions of Karl 

Pearson’s system. Thus mathematical statistics shifted from Kollcktivmasslehrc to the 

construction ol chance mechanisms or the so called stochastic models of phenomena. 

Ibis idea was explicitly stated hy I'mile Morel of France : The basic problem o f 

mathematical statistics is to invent a system of simple chance mechanisms, such as 

throws o f a coin, so that the probabilities determined by this system agree with the 

observed relative frequencies o f the various details o f the phenomena studied. Morel’s 

definition was good but it does not allow mathematical statistics to stand as a field of its 

own Depending on the attitudes of given research workers, stochastic models belong to 

the relevant substantive fields or the theory of probability.

Following the footsteps of K Pearson, F. Y. Fdgcworth of I nglaiul. in 1908, 

found that consistent use of the method of moments must yield an excessive frequency of 

large errors of estimation and proposed a new method of estimation, conjectured to be 

much better. In 1922 R. Fisher discussed the same ground more rigorously and 

intensively, lie introduced the term method of maximum likelihood The Fnglish
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mathematician Student(l908), pen name of William Scaly Cosset- by his discovery of 

the exact distribution of / opened the new epoch of exact sampling theory or 

distribution, and I isher developed a number of tests of particular hypotheses: he 

introduced the concepts of null hypothesis and significance test, and added the concepts 

of consistency, efficiency and sufficiency to the list of possible properties o f estimators. 

I.chmann(l959) noted that problems of testing hypotheses and of estimation got 

recognition as an independent field for systematic study when Fisher in 1922 gave a new 

definition of statistics, and J. Ncyman’s(1928,1933,l935,l938) and E. S. 

l’earson’s(l928) principal ideas came to light. Stating that the object o f statistical 

methods is the reduction of bulky data, Fisher distinguished three basic problems: those 

of specification of the kind of population from which the data come - Koflektivniass, of 

estimation and o f distribution - probabilistic problems connected with point estimation. 

In these papers, that is, Fisher( 1920, 1922,1925) and Nayman(l935), the concept of 

sufficiency is developed, principally in connection with the theory of point estimation.

I lie factorization theorem is given in a form which is formally weaker but essentially 

equivalent to

l>\(-r) ~ g*/T(x)/h(x). , (2.11)

I he above definition can be clarified using the descriptive definition of Herman

C'hcmofTf 1976):

I he word statistic applies to a number that summarizes aspects of the 
data and is typically assumed to behave randomly according to some 
law of probability or probability distribution determined by 0. The 
relationship between 0 and the inferences with regard to 0. Thus, the 
statistician must cope with random variation, and the mathematical 
statistician is concerned with the probability distribution of 
possibility complicated functions of the data These arc called 
sampling distribution [Chernoff, 208-9|

Hansen and Madow(l976) confirm that In India, during the World War II, P C. 

Mahalanobis (died 1971) has contributed a lot in the development of statistical 

mathematics, independent of other schools, namely, by creating and directing the work of
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the Indian Statistical Institute, developing a strong program o f sample-surveys. Among 

the numerous contributions made by him and his colleagues is the extensive use of 

interpenetrating samples from initial sample selection through the successive stages of 

data collection, data processing and analysis. I he Indian Statistical Institute, under the 

direction ol C. R. Rao, alter 1971, has continued to be a major source of contributions to 

statistical theory and practice. And another who contributed for the statistical application 

in agricultural area is P. V. Sukhatme, who lead the Indian Council for Agricultural 

Research.

According to Lehmann,(1959) a formal unification o f the theories of estimation 

and hypothesis testing, which also contains the possibility o f many other specialization, 

was achieved by Wald(1939,l950,l958), who gave a single comprehensive formulation 

i n his general theory of decision procedures.

Kiyosi Ito( 1987) states that after the publication of Savage’s book in 1954, there 

was a revival of the Bayesian approach, that is, one based on the concept of subjective 

probability, and now the group of those statisticians who accept the Bayesian approach 

are called Bayesians or nco-Baycsians

•

2.2.3.4 Different B ranches o f S tatistics
Broadly speaking, the branches of Statistics can be classified or listed as: i) 

'Statistical Inference - Theory of Estimation and testing of hypothesis, ii) Probability and 

distribution Theory, and iii) Design of Experiments 

')  Statistical Inference - Theory' o f  Estimation and testing o f  hypothesis

The most authoritative books on this branch arc mainly Lehmann s(l959) and 

^acks’(1971). Lehmann in presenting competently the “ Iesting Statistical Hypothesis 

Sives also the historical development of theory of estimation and test of hypothesis. The 

^ain contributors to this development are mainly Neyman( 1928-38) and 

'carson(l928,!933), Pishcr( 1922), Savagc(l962) and A. Wald( 1950,1971). Zacks, using 

•̂c measure-probabilistic approaches, gives a special impetus to the theory ol estimation,
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others who worked on this area are Dc Groot(1970), Lehmann. Bayesian method can be 

seen in the light o f statistical inference - there is a standard text by Raiffa( 1968). 

ii) Probability and Distribution Theory

This branch has a long history It is already dealt with at length We note that the 

standard works on this field are done by Kolmogorov(l933), Gnedenko and Kolmogorov 

(1968), Saks(1937), Halmos(1950), Doob(1953), Lodve(1962), Chow and

Tcicher(1978), f;cller( 1965, 1968), de Finetti (1972,1975) etc. Stochastic processes can 

be affiliated to applied probability theory - the standard texts arc those o f Doob and 

Feller. —

hi) Design o f Experiments

The design of experiments consists of two parts: a) the analysis and b) the 

constructions and combinatorial problems. The analysis of design o f experiments has its 

origin principally in the work o f R A. Fisher, much o f it contained in his books 

(1925,1935). A comprehensive treatment is given by Kem pthorne(l952), Cochran and 

Cox (1957), SchcfTc( 1959), Rao(1973). W hile the constructions and combinatorial 

problems is treated elegantly by Bosc(I9 3 8 ,I9 3 9 ,I9 4 7 , 1963), John(1971), Raghavarao 

(1971), R aktocetal (19 8 1 )etc

Currently statistical mathematics is progressing rapidly and has a vast branches, 

in which as part of applied mathematics, applicable to different fields o f  science. The 

structure in data” embraces embraces many fields in statistical branches: multivariate 

analysis, time series analysis, sample survey, quality control, information theory, 

sequential analysis, nan-parametric statistics, mathematical population. One of 

interesting new application of statistics is to genetics- in which Kempthome’s(1957) 

book An Introduction to the Genetic Statistics is a good example. Many scholars have 

produced standard texts in their respective fields, like Andcrson(1958), Rao(1952) and 

Kendal(1957), and Mardia(1979) in multivariate analysis; A nderson(l97 l) Grenander 

(1957), and Wold(1954) in time series analysis; Cochran (1992) in sampling survey; 

Kullback(l968) in information theory and coding; Wald in sequential analysis, Hollander



5 7

and Wolfe(I973) in non-parametric statistics; Keyfitz( 1968) in mathematics o f 

population or demography.

2.3. Schematic Discernment on Statistical and Probabilistic 
Research Works and Method of Approach at Nairobi University

2.3.1 Historical Background
The analysis o f  our historical background consists o f  identification o f the 

initiators of the Statistical Section of M athematics at University o f Nairobi and the 

background of methodological approach to probability theory with respect to modality of 

lectures and research works. The following are guiding questions: '‘who initiated 

Statistical Section o f Mathematics at University of Nairobi, when and how was it started, 

which one o f the different approaches to probability theory is adhered to as a background 

of methodological approach?” The reliable answers to the above interesting questions 

can be deducted from the first protagonists of the period o f initiation o f Statistical 

Mathematics at University of Nairobi, as well as from the original research done by 

probability mathematicians.

Professor M.S. Patel w ith  som e of his first Kenyan students
From Left: C. Achola(Mathematics), Prof. J.W. Odhiambo,

Prof. M. S. Patel, Dr. Ebi Kimanani, Prof. J.A.M. Ottieno
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The Statistical Section o f Mathematics at University o f  Nairobi started with the

“Unit-Course-Work” system in 1975. The first group to follow this system are Dr M M

Manene, Dr. F. Njui, Mr. Kinya and other student colleagues. The main players in this

sparking insight and future focus as a successful statistical research centre in the whole

country are Professor M. S. Patel and his colleague lecturers. The initial foundation o f

research approach, basing our observation on the dissertations, was firmly established on

the emphasis of making new research works on group screening. In 1984-1985 we see a

slight shill to the question o f “Rotatable Designs.” A new direction o f study is also

opened by 1991 with a doctoral dissertation entitled “A stochastic Model for Stocks and

Flows of Students in an Education System.” in 1993 and 1995 we see again a new

research work on Designs. Finally, the 1997 dissertations affirm an interest in a new area

of research, i.e., biological population and epidemiological modelling. Meanwhile, it

must be noted that many research works have been done at M. Sc level since the

initiation o f the Section of Statistical Mathematics at University o f Nairobi in all these

areas. As a special remark, it can be said that the period 1984-1987 is an era o f

publishing a bulk o f  articles on the four emerging research groups, namely group

screening, educational and manpower planning, biological population modelling and
UNI VEFSITY OF WA IROB.

AIDS modelling (Epidemiological modelling). CHIRONU LIBRARY

R. C. Bose was a man o f  reputation and a main factor of Patel’s appreciation o f 

Statistical Mathematics. Ilis works, contributions and intlucnce in design o f experiments 

can be easily seen from Raghavarao’s book. Raghavarao( 1971) through out his work 

“Constructions and Combinatorial Problems in Design o f  Experiments” implicitly and 

explicitly confirms that he is presenting in more orderly way Bose’s method and 

scholarly studies. Particularly, in chapter 9, “Graph Theory and Partial Geometries,” the 

works ot Bose, Bruck and Hoffman are discussed With respect to partial geometry 

(r,k,t), Bose(1963), following Bruck(1951,1963), alter giving its definition, like 

Kolmogorov who axiomatized probability theory, axiomatizes partial geometry for the 

purpose o f designs o f  experiment Raghavarao (1966) extended the scope o f partial
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geometry to include three-associate geometric designs. The contribution of 

HofTman(l963, 1965) is the characterization o f projective planes, alTinc planes, and 

symmetrical BIB designs, in which the characteristic roots and their multiplicities o f the 

adjacency matrices of their line graphs determine the corresponding configurations up to 

isomorphisms, excepting the ease o f  the symmetrical BIB design with the parameters 

v=b=4, r=k=3,1=2.

We should also note that Patel, while he was in Kenya, 1968-1993, contributed a 

lot in the research of group-screening with more than two stages and in collaboration 

with his students put to light many academic research works on different areas of 

statistics.

2.3.2 Doctoral Dissertations

Nam es T itle Y ear C o m m e n t on th e  m e th o d  
o f  A pp roach

J A. M Ottictio Two Stage Group Screening 
Designs

1081 Analysis o f optimality o f group 
testing designs

J. W. Odhiambo Three Stage Group Screening 
Designs

1982 Analysis o f optimality of factorial 
designs

J K. Arap Koskc Fourth .Order Rotatable Designs 1084 Matrix algebraic approach

F. Njui Fifth Order Rotatable Designs 1085 Non-linear and linear regression, 
matrices

M M. Manene Further Investigations o f Group- 
Screening Designs: Step-wise 
Designs

1085 Analysis o f optimality o f group 
testing designs

J. Owino A Stochastical Model for Stocks 
and Flows of Students in an 
Education System

1991 Matrix algebraic approach

K. N Gacii On the Construction o f Deletion 
Designs

1093 Geometric approach

F. Onyango On t heory o f Random Search 1995 t he methods used arc PG(2.s) & 
EG(2,s)

II G. Mwambi Generalized Matrix and 
Compartimenta! Population 
Models

1097 Analytic - geometric approach

R 0. Simwa Mathematical and Statistical 
Analysis o f 1IIV/AIDS 
Epidemic with reference to 
Kenya and Uganda

1007 A parametric and non parametric 
statistical approach
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Name of 
Researchers

P u b lish ed  A rtic le s : t it le ,  n a m e  o f  p eriod ical, date

Adhikaiy, A. K. 
& Chaudhuri, A.

“ A note on handling linear randomized response,” J o u r n a l  o f  s ta tis tic a l p la n n in g  
a n d  In fe re n ce , Vol. 22(1989), p. 263.
“On Two properties o f an unequal probability sampling scheme,”  M ctika , 
36(1989), p. 161
“ Variance estimation with randomized response.” C a n u n . S ta tist. -T h e o ry  M c th ., 
19(3), (1980), p.1119.
“ A note on interpreting subsamples o f unequal sizes drawn with and without 
replacement,”  Comm. Statist. -T h e o ry  M c th ., 19(4), (1990), p. 1475.

Adhikaiy, A. K. “On the performance o f the nearest proportional to size sampling design,”  
C om m . S ta tist. -T heory M eth ., 20(21), (1991), pp. 3933 -3941.

Gachii, K. M. & 
Odhiambo, J. W.

“ Deletion designs in estimation o f low order interactions,” The F ifth  S c ie n tific  
C o n feren ce  o f  the F a s t C en tra l & S o u th ern  A fr ic a  N e tw o rk  o f  th e  In te rn a tio n a l  
B io m etr ic  Society , 22nd-25lh September 1997(Kcnya), pp. 20-22.

Getao, J. L. and 
Odhiambo. J. W.

______________

“The potential of information technology in the management o f an African crisis: 
Computers and AIDS,” C lo h a l In fo rm a tio n  T ec h n o lo g y  a n d  S o c io -E c o n o m ic  
D e ve lo p m en t, (Ivy League Publishing, 1996), pp. 53-59.

Koske. J. K. A.

.

“ Response Surface Designs with missing observations,”  B io m e try  f o r  
D eve lo p m e n t P roceed ings o f  th e  F irst S c ien tific  M e e tin g  o f  the B io m e tr ic  
Society , K e n y a  C ro u p  a n d  E a s t/C e n lra l A fr ica n  N e tw o rk  , April 2-6,
1990(Nairobi: 1CIPE Science Press), pp. 51-54.
“The variance function o f the difference between two estimated fourth order 
response surface,”  J. S. P. I. (1989), pp. 263-266.

Luboobi, L. S. &  
Simwa, R. O.

“ HIV/A1DS epidemic curves for Kenya and Uganda: A parametric statistical 
approach,”  T he F ifth  S c ien tific  C o n feren ce  o f  the E a s t  C en tra l <?• S o u th e rn  
A frica  N e tw o rk  o f  th e  In tern a tio n a l B iom etric  Socie ty , 22nd -25lh September 
1997(Kcnya), pp. 39-43.
“ HIV/AIDS epidemic curves for Kenya and Uganda: A nonparamctric statistical 
approach,”  T he F ifth  S c ien tific  C o n feren ce  o f  the E a s t C en tra l <?- S o u th e rn  
A fr ica  N e tw o rk  o f  th e  In tern a tio n a l B io m etric  Socie ty , 22nd -25,h September

Mancnc, M. M.
1997(Kenya), pp. 44-50.
“ On two-type stepwise group screening designs,”  T h e  F ifth  Sc ien tific  C cinference  
o f  the E a s t  C en tra l d  S o u th ern  A fr ica  N etw ork o f  th e  In tern a tio n a l B io m e tr ic  
Society , 22nd -25,h September 1997 (Kenya), pp. 57-62.

Mwambi, H. G., 
Odhiambo. J. W. 
& Duchateau, L.

“ A multiple matrix model to study the population dynamics o f R. appendiculatus 
in Zimbabwe,”  The F ifth  S c ie n tific  C on ference  o f  th e  E a st C en tra l S o u th e rn  
A frica  N e tw o rk  o f  th e  In tern a tio n a l B iom etric  Socie ty , 22nd - 25lh September 
1997(Kcnya), pp. 65-71.

Munyinyi, D. & 
Nokoe, S.

“ Estimation probability distribution function for female ticks on unimproved 
Zebu Cattle,”  B iom etry  f o r  D e ve lo p m e n t P ro ceed in g s  o f  the h ir s t  S c ien tific  
M e e tin g  o f  the  B iom etric  Socie ty , K enya  C ro u p  a n d  E a st/C en tra l A fr ica n  
N etw ork, April 2-6, 1990 (Nairobi: ICIPE Science Press), pp. 93-98.

Palel, M. S. “ Group-screening with more than two stages,”  T echnom etrics, 4(2), (1962), pp. 
209-217.
“ A critical look at two stage group-screening method.”  K enya J o u rn a l o f  S c ien ce  
a n d  T echno logy , Vol. 4, No. 2(1983).
“ Group screening for isolating defective factors o f a population,”  B io m e try  f o r  
D e ve lo p m e n t P roceedings o f  th e  F irst S c ien tific  M e e tin g  o f  the B io m etr ic  
Society , K en ya  C ro u p  a n d  E a st/C e n tra l A fr ica n  N etw ork, April 2-6, 1990 
(Nairobi: ICIPE Science Press), pp. 84-92.
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Patel. M. S. & 
\rap Koske. J K

“Conditions for fourth order ratatability in k  dimensions,”  ( 'om m . S ta tist. - 
Theory M a l i  114X6), (1985), pp. 1343-1351.

Patel. M. S. & 
Oitieno. J. A. M.

“Two stage group-screening designs with unequal a-priori probabilities.”  C om m . 
Statist. -T h e o ry  M e th ., 13(6). (1984), pp. 761- 779.
“Optimum Two-stage group-screening designs.”  ( 'om m . Statist. -T h e o ry  M e th .. 
1.3(21), (1984), pp. 2649-2663.
“Optimum I wo-stage group-screening with unequal group sizes and errors in 
decisions.”  < 'omm Sta tist. T h eo ry  M eth .. 14. (1987). pp. 799-820.
“Optimum Two-stage group-screening designs with unequal a-priori 
probabilities and with error in decisions.”  paper presented at the joint statistical 
meetings o f A S.A.. I\ N.A.R.. WNAR. IMS at l.as Vegas. USA 5th - 8th 
August, 1985

Patel. M. S. & 
Mancnc. M. M.

“ Step-wise group screening with equal prior probabilities and no errors in 
observations.”  ( 'omm. Slat. -S im u la tio n  ( ' om p tita . { 1987).

Odhiambo, J. W. “ !lie pei formancc o f multistage group screening des •us.”  < O m m  S ta tist. - 
T heory  M e th .. 15 (1986).pp.2467-24R!.
“ A review o f the factor s ", method.”  P ro ceed in g s  o f  the I ' 1 ( 'o n fe ren ce  o f 
the K e n y a  M a th em a tic a l S o c ie ty , 19-21 August, 1007,(1003), pp. 5-1 -57.

Odhiambo. J. W. 
X Kimannni. F..

“ A logistic model for the sterile male technique,” B io m e try  J a r  D e ve lo p m e n t  
P ro ceed in g s o f the T'irst S c ien tific  M ee tin g  o j  the B io m etric  Society . K en ya  
C ro u p  a n d  E ast C en tra ! A fr ica n  N etw ork, April 2-6, 1990(Nairobi: IC'IPK 
Science Press), pp. 176-186.

Odhiambo, J. W 
& Patel. M. S.

“ 'Three-stage group screening with error in observations,”  ( 'om m  S ta tis t -T h eo ry  
M eth .. 14,(1085), pp. 647-666.
“ On multiple group screening designs.”  ( 'omm. S ta tis t. - Theory M eth .. 15(5). 
(1986). pp. 1627-1645.
“Three-stage group screening with unequal group sizes and with errors in 
observations.” C om m . Statist. -T h eo ry  M e th .. 16(10). (1987), pp. 2957-2979.

(hlhiarnbn, J. W. 
^  Cictao. K. W.

“ ihc potential oTgronp screening method in the management o f AIRS crisis in 
Africa.”  T he T'ifth Scien tific  ( 'on ference o f  the P a st ( ’en tra l A'- S o u th e rn  A fr ic a  
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h) Current Research Interests
(iacii. K. N. Designs o f  experiments. Deletion designs
Manenc, M. .M. Group-screening designs mathematical modelling
Mwanibi, A. H. Matrix modelling for population dynamics. Matrix modelling

i Njui. F. Designs o f  experiments with emphasis on rotnhle designs, regression analysis, 
response surface designs

Odhiambo. J. W. Mathematical Modelling induction and man power planning; theoretical ecology; 
group screening designs, factor screening

CWicno. J. A. M. Statistical demography and quality control theory
Owino. J. Stochastic mode! of educational planning, mathematical modelling o f social 

processes
Simwa, R. 0. AIDS modelling or epidemiological modelling with a parametric and non 

parametric statistical approach

2.3.4 R eference Books /  T e x t  Books
C o u rs e s /U n its R e f e r e n c e / T e x t  IB o o k s

Measure Theory and
Probability

Chow, Y S. and Teicher, K. Probability Theory:independence. 
Interchangeability, M artingales, 1978.
Loeve, M. Probability Theory, 1953, 1978,
Kingman, J. F and Taylor, S. .1 Introduction to  Measure a n d  Probability  
Theory, 1966
Halmos, P. R. Measure Ih e o n ’, 1950.

Tests ofllypothcsis Ferguson. T. N. M athem atical Statistics: A D ecision Theoretic Approach, 
1967
Lehmann.F I . Testing Statistical Hypothesis, 1959 
Wald, A Statistical D erision Functions, 1950, 1971 
Savage,!.. J. The Foundations o f  Statistical Inference, 1962.
Vorober, N N. Came 'Iheon,’. 1977.

T’ncorv of Rsiimat ion 7. acks, A The 'Theory o f  Statistical Inference, 1971. 
DeGroot, M. H. O ptim al Statistical Decisions, 1970.
Cox, D R and Hinklev, D. V. Theoretical Statistics, 1974

l Multivariate Analysis Anderson, T. W. An Inlrotjuclion to M ultivariate Statistical Analysis. 1958 
Mardia, K. V., Kent, J T. and Bibby, J M M ultivariate Analysis. 1979 
Khirsagar, A. Vf. M ultivariate Analysis. 1972.
Morrison, D. F. M ultivariate Statistical M ethods, 1976.
Kendall, M G. M ultivariate Analysis, 1975.

Analysis of Variance Scheftc. H. 'The A nalysis o f  Variance, 1959.
Kempthornc, 0 . The D esign ant! Analysis o f  Experiments, 1952. 
Cochran , W. G. & Cox, G. M. Experimental Designs, 1957.

Design of experiment John, P W. M.. Statistical Design a n d  Analysis o f  Fxperiments, 197 i. 
Raghavarao, D. ConstructionsatrJ Com binatorial Problems in  Design o f  
experiments, 1971.
Raktoc. P<. L. et al., Factorial Designs, 198!

Probability and Stochastic
Processes

Feller, W Introduction to Probability Theory a n d  Its Applications, Vol. 1 and 
11 . 1993
Medhi, J Stochastic Processes. 1982 
Doob, J. L. Stochastic Processes, 1953.
Taylor. IT M. and Karlin. S A First Course in Stachoastic Processes, 1975. 
Bhat. U N . Clements o f  Applied Stochastic Processes, 1984.
Cox, f) R. The Theory o f Stochastic Process. 1°65

Tirne Series Analysis Anderson, T W The Statistical Analysis o f  Time Series, 1971 
Wold, It. O, A A Study in the Analysis o f  Stationary Time Series, 1954. 
Chatfield, C. 'The Analysis o f  Time Series, 1987.
Kendall, M G Time-Series, ! 976.
Wold, 1! O A. A Stud)’ in the Analysis o f  Station, t v  Time Series, 1954.

Sample Surveys Cochran, W. G. Sampling Techniques, 1992.
Muthy, M N. Sampling Theory and M ethods, 1967.
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2* 5 Tentative conclusion

T h e  p,oncers or .he inhiators of .he statist,ca, section o f mathematics a, Nairobi

' ‘" V° rS' ty nrC ‘>r0rCS50r M S ,,“te,<, ’ 68> —  ■* colleagues. Basing our n e r v a t io n  on 

“  art'C!eS PUbi‘Sh0d “  COnCrC:°  doCumCTts -XI dissertations as further confirmative 
works, we note the model techn ique  or deign,henry has gained ground at University ol

Nairobi. Furtherm ore, categorizing broadly, it can he said that four research groups arc 

emerging: (i) group  screening, (ii) educational and manpower planning, (iii) biological 

population modelling, and (iv) AIDS modelling (Epidemiological modelling).

Since th e  p re sen t w ork is the first survey o f its kind, it is better to be frank  with 

respect to  the d ec is iv e  achievem ent The prim ary impulse is that, it calls to reflection  and 

have a c ritica l ph ilo so p h ica l assessm ent o f  on e’s approach and m ethodology in statistics 

and p ro b ab ility ; and  i f  possib le , to invite for the study o f logic and philosophical history 

o f m a th em atics , p ro b ab ility  and statistics

W e can  note tw o  trends in making . ; tentative conclusions about possib ility  of 

iden tification  o f  S ta tis tica l Section o f  University of Nairobi with a specific school or 

many sch o o ls  o f  s ta tis tic s  and probability; impediments and plausibilities, t h e  two 

aspects o f  o b se rv a tio n s , for the sake o f conciseness and clarity, can be prescr

summary form.

T he following observations arc deduced 

outcome o f  informal inquiry;

fit Im pedim ents  .

.  The absence o f  a strong conviction or attachment to a specific method 

school o f  philosophy o f  probability.

through the formal discussions and as a-
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• The trend to accept randomness as it is and absence o f any venture on the 

epistemological meaning of the term in probability and statistics

• T he lack o f a course o f  mathematical philosophy or systematic philosophical and 

historical analysis o f probability theory and statistical mathematics.

• The absence of clear philosophical training policy of mathematics, in particular of 

probability theory and statistical mathematics, at Public Universities; focusing mainly 

on job orientation courses or stressing on the income generating policy. Generally, 

there is a pragmatic approach to training policy.

fii) Plausibilities

• The presence o f philosophical and personal reflection on research works - individual 

conviction.

• The background o f founders and their method of approach to probability theory and 

statistical mathematics.

• The courses offered in relation to the foundation o f  probability and related topics, 

especially Measure Theory and Probability, Statistical Inference.

From the criteria used above, namely, trying to identify the Statistical Section of 

Mathematics at University o f Nairobi, if it is possible, as a school with respect to the 

historical development and dialectic progress o f  schools o f statistics and probability 

using the criteria: (i) The background of the founders, (ii) Text books, reference books 

and hand-outs used in the units or courses offered, (iii) Research papers and 

dissertations, wc can give a tentative conclusion.

The affinity is much more expressed through the methodology o f research works 

and frequently books used. This relation is apparent with respect to the subjectivistic or 

degree o f belief approach. A concrete example can be quoted for clarity: DeGroot( 1970), 

in his book “Optimal Statistical Decisions”, states that “Subjective, or Bayesian, 

statistical decision theory is applicable to those problems in which the information and 

uncertainty about the parameters can, at any time, be summarized by a probability
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distribution o f their possible values. Therefore, this book will deal only with those 

statistical decision problems which meet the following two requirements: (1) The 

conditions can be formulated in terms o f a manageable number parameters. (2) Although 

the values of these parameters are not known exactly, any uncertainty about the values 

can be represented by a  suitable probability distribution. ... It will be assumed in all 

problems in this book that each parameter can be assigned a particular probability 

distribution.”! DeGroot, 4]

The other supportive motivation for this deduction, with the conviction among the 

current scholars present at the university, is a tendency that the degree o f  belief theory 

answers a lot of vague ideas and can be justified using conceptual and mathematical 

questions. Ib is  influence can be seen in the studies o f probability theory related to the 

Bavesian statistics decision theory. The definition of statistical theory itself gives a clue:

i.i modern formulation of statistical theory it is generally held that Statistic is a science 

which deals with decision making in the ease o f uncertainty.

But, also the preference o f asymptotic approach is cited from research work as 

well as from applications o f  some probabilistic and statistical principles. Chow and 

leicherf 1078) in their book “Probability Theory: Independence, Interchangeability, 

Martingales”, after describing the two important approaches o f  probability th eo ry , give 

I'Cir concern and method ot study o f probability theory': “The concern o f this book is 

w.th the measure-theoretic foundations of probability theory and the body of laws and 

theorems that emerge thcreform.” They believe that “the frequency approach appears to 

have lost out to the measure-theoretic.” This possibility is accepted by the prominent 

scholars and there is high esteem for Kolmogorov’s work too.

i he results of the external criticism, deducted using the above criteria, may not lead to 

me actual situation at the ground. We should note that complete certainty have never been the 

trade mark m a scientific fact, although it is the primary' duty o f  scientific endeavour to 

minimise the uncertainty as much as possible As Prof. J. W. Odhiambo said now lecturers 

t ir e  n m r e  p r e o c c u p ie d  w i th  th e  is su e  o f  s u r v iv a l  r a th e r  th a n  o n  h o w  to  th in k .
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Chanter Three
k

3.1 Historical Perspective of Normal Distribution

XL l Beginners

3.1.1.1 De Moivrc - Laplace

The investigations by Rggenbergcr( 1894), Pearson( 1924,1925,1926,1929), 

Archibald (1926), and Sheynin (1966,1968,1970a, 1970b) reveal that Abraham de 

Moivrc( 1667-1754) was the first to derive the norma! law. Do Moivrc’s thcorcm(l 730) 

or limit of Bionomial and his contribution to the development of normal distribution is 

dealt with in detail in chapter 3, section 3.2.2.!. Laplace (1749-1827) is mainly 

remembered in probability theory' by his proof of one of the most important limit 

theorems. This theorem deals with the distribution of deviations of the frequency of 

occurrence of an event in a sequence of independent trials from its probability. This 

theorem is called de Moivre-l^iplace theorem, since the particular case of p = Zz was 

ohtaincd by dc Moivre.

I.aplace( 1812) states the theorem as follows:

I.ct the probability of the occurrence of a given event E in n 
independent trials be equal to p ( 0 < p < !) and let m be the number 
of trials in which event R actually occurred; then the probability of 
the inequality z\ < (m-np) /  (npq) r' r 2 ( q l -p ) .  differ by an

arbitrarily small amount from (2n)~  ̂J cxp(-/2/3) ciz, provided n is

sufficiently large |the integral theorem of I,aplace, or global Laplace 
theorem]. The probability of exactly m occurrences of event L in n 
trials is approximately equal to (2rmpq) ' ’ exp (-/."Vi ), where 
r  (m-np) /  (npq / (Local 1 .aplace Theorem).
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I a place attributed great importance to lus theorem, i le believed that his law 

.\plaincd completely the behaviour of random mass schemes to which, according to 

i aplace. the majority of reai-worid phenomena belong, that is the model based on his law 

a almost universal Maistrov(1974) believes that only after this work of Laplace did the 

'.vide spread applications o f p ro b ab ility  theory become feasible a s  a sc ien tif ic a lly  justified 

method It is Laplace’s( 1952) view that all the regularities of any field o f mass 

phenomena arc reducible to the unique normal law, as the celestial phenomena are 

reduced to the unique iaw of universal gravitation. Based on this point of view he 

attempts to apply probability theory to court procedures, decisions at gatherings, and so 

an This is misinterpretation of the far-reaching conclusions of his contributions to 

probability theory. His logical deduction is that he considers the history of human society 

as a field governed by pure chance and therefore assumes that probability theory' is the 

science capable of rendering a complete analysis and explanation of this history, so that 

the analysis of social phenomena falls within the realm of probability theory. This law 

was termed no rm a l law  by Henri Poincare( I 854-1912) a mathematician and phvsicist, 

accepted as a direct predecessor of the founders of ax Somatization in probability theory.

•

T 1.2 Advancement

3.1.2.1 A d r i a n - G a u s s

We observe that random errors occur in the course of observations of any kind, 

‘he problem of how to avoid them or at least to cope with them has attracted the 

attention of scientists since early times. However, this can be solved satisfactorily only 

h\ means of probabilistic methods. This problem was considered in detail in the early 

nineteenth century. Two mathematicians, Robert Adrian( 1775-1843). American and Carl 

Iricdrieh Gauss (1777-1855), German, independently and almost simultaneously 

obtained the basic result, the derivation of the normal “law for the distribution of random 

errors.' the so-called “law of errors". They reached their result using different methods.
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Adrian deduced independently and published in 1808, before Gauss, the famous 

law of errors,” which was published in 1808 in The Analyst, or Mathematical Museum, 

■•J serves as the foundation of present-day classical probability and statistics. He was 

■oiving a particular problem and, when generalizing it, obtained the distribution law of 

random errors. The interesting parts of this paper are two derivations of the normal law 

lor the distribution of random errors in observations:

i; 1 sing the a certain distance measure:

The resulting function is

IJ = exp (<7| + mx~/2a),

which is called by Adrian “the general equation of the curve of probability,” for m < 0. 

ui) Considering the measurements of a segment AB with equally probable errors in the 

length and in the azimuth:

! he result that of the probabilities of errors are cxp(c + Yznx1) and exp(r + 'Any2). 

l or detailed description refer to section 3.2.2, of chapter 3.

Gauss on the other hand, was investigating the general theory of errors in 

observations and the normal distribution of random errors became a necessary and most 

important part of this theory. The derivation of the distribution of random errors as given 

b\ Gauss served as a basis lor further development of the theory of errors.

Gauss published his derivation of the normal law' of distribution of random errors

in observation in 1X00 in his famous work Thcoria inotus corporum coelen/ium in

sectionihus conicis sol cm amhientium. The derivation of the normal law followed the

following assumptions: given equidistant observations of a certain quantity, let the

random errors posses the differential density of probability distribution <p(A). It is

required to determine <p(A) under the assumption that the most probable value of the

quantity under consideration is equal to the arithmetic mean of the observed values.

Gauss obtains that the function (p(A) is given by
<p(A) = h (jx) '' exp (-if A2 ).



ic denotes the value /; as the measure of'precision of the observations." According to 

this law. errors of any magnitude arc possible.

The main stimuli for his result is his occupation with problems of astronomy and 

.’.codesy and was able to develop methods of processing results of observations. The 

results oh these observations are not immune of errors. Thus the problem of determining 

ti e most probable value of the observed quantity arises. These problems led Gauss to 

develop the theory of errors, which is directly connected with the ideas and notions of 

probability theory.

3.1.2.2 ( hchyshcv and his followers

Chebyshev in his paper “On integral residua which yield approximate values of

the integrals." 1874. obtained the l.ap!acc-de Moivre distribution using the moment of

the function approach. Kolmogorov(1948) remarks that the results of Chebyshcv’s

\cstigntions on the problem of moments are applied here to the determination of the

form of the probability distribution law of a sum of a large number of independent

random variables and it is established that, under certain very genera! conditions, this

distribution law, with the increase in the number of summands, approaches in the limit
«

the normal distribution law of do Moivrc-Laplace jlhc so-called basic limit theorem of 

probability theory); moreover the possibility of a further refinement of its result is 

pointed out in this paper, although without a rigorous proof. In his last paper on 

probability theory “On two theorems concerning probabilities” (1887). Chebyshev 

actually summarizes all his reascarch in this field. First he states the first of his theorems 

• the law ol large numbers. In the second theorem, one of his most important results, he 

established that under certain very general conditions the distribution law of probabilities 

of the sum of a Targe number of independent random variables approaches the normal 

distribution in the limit as the number of summands increases. Markov and his 

companion, like Lyapunov, advanced the understanding of normal law by using the
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method o f moments and especially by the method o f characteristic functions. Further 

clarification is given in section 3.4 2. chapter 3.

.i. 1.3 Solidification and Applications

Soon alter the derivation of the normal distribution, we observe that, it some how 

became the focal point of the study of probability theory and for application of statistical 

methods in several branches of physical science, and even for social sciences.

Its central importance in statistics stems from three facts: (i) many actual 

populations approximate closely to normal forms, (ii) It forms the limiting distribution of 

many widely used statistics, (iii) Under general conditions, the role of normal 

distribution as a limit, the asymptotic behaviour, of distribution functions of normalized 

sums oI random variables is widely accepted (Central Limit Theorems).

3.1.3.1 I indeberg-Fcllcr

1 .yaptinov’s( 1901) central limit theorem of probability theory is improved by Y. 

W Lindeberg in 1922 in which he obtained a new sufficient condition, and in 1935 by 

W feller who showed the necessity of this condition. In his celebrated investigation of 

normal convergence, l..yapunov( 1948) examined not only conditions for, but also the 

speed of this convergence. If is results were greatly improved by Berry(l941), and 

independently by Ksseen( 1945). Bemstcin( 1939), commenting on Lyapunov’s 

achicvcmnt, says a classical result which constitutes a culmination point of Lyapunov’s 

investigation in probability theory.

This necessary and sufficient condition of Lindchcrg( 1922) and Fcllcr(|935) is stated as 

follows: If (x) is the distribution function of A'„, and /? is a fixed positive number, then, as //-»oo

Î|x|>h x d Xi Ft (x) —> 0.

ibis condition is necessary- and sufficient for the convergence of the distribution 

°l ( l/n)Xi" V, to the normal distribution.
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As a final remark we can use Locvc’s(1963) words:

The real liberation which gave birth to the Central Limit Problem 
came with a new approach due to P. I.evy. lie stated and solved the 
following problem: Find the family of all possible limit laws of 
normed sums of independent and identically distributed random 
variables. ... Find conditions for convergence to any s p e c i f i e d  law o f  
th i s  family The solution oft he problem is due to the introduction 
, by de Finetli, o f the ‘infinitely decomposable’ family of laws and to 
the discovery of their explicit representation by Kolmogorov in the 
ease of finite second moments and by P. Levy in the general ease. ...
The final form is essentially due to Gnedenko. [Loeve, 289-90]

3.1.3.2 S ev e ra l A p p lica tio n s

Given that the normal distribution is widely used, and somewhat abused, in 

statistics, it is natural that the most familiar problems of inference are those which 

involve this distribution. But our present interest is to ponder through the applications of 

normal law or distribution in different fields.

The observation that in complicated situations where some kind of disorder 

prevails that something having the appearance of order often emerges gave rise to the 

applications or assumption of normal distribution in several fields. This phenomena 

order out o f  chaos draws a lot of attention and is expressed when considering the 

distribution of velocities in the kinetic theory of gases, the same variance corresponds to 

kinetic energy being constant, which suggests a connection with Maxwell’s conclusions - 

see chapter three section 3.2.2.5 Francis Galton’s( 1889) observations about regression 

a n a ly s is  also give tendency to the presence of the normal distribution in natural 

inheritance. At one moment, around 1900, Poincare made an observation that everyone 

believes in normal law, and said that experimentalists believe that the normal 

distribution is a mathematical theorem, while mathematicians believe that it is an 

empirical fact. F.ven though it-is an exaggerated view, it expresses the wide range of 

application of normal distribution in scientific investigations. The different methods 

utilized to derive the normal distribution themselves indicate the importance of the law.
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The roic of normal distribution in the various brandies of statistics is widely 

recognized and appreciated. As Andcrson(1958) points out in his book An Introduction 

to Multivariate Statistical Analysis, normal distribution is used as a model for analysing 

sampling theory, factor analysis. In these eases, as well as a host of others in agrieultural 

experiments, in engineering problems, in certain economic problems, and other fields, 

the multivariate normal distributions have been found to be sufficiently close 

approximations to the populations so that statistical analyses based on these models are 

justified Furthermore, as the central limit theorem leads to the univariate norma! 

distribution for single variables, so does the general central limit theorem for several 

variables lead to the multivariate normal distribution.

Another basic reason that the application of normal distribution is accepted 

mathematically is that normal theory is amenable to exact mathematical treatment. The 

multivariate methods, which deal with the variety of problems, based on the normal 

distribution arc extensively developed and can be studied in a rather organized and 

systematic way. The suitable methods of analysis are mainly based on standard 

operations of matrix algebra: the distributions of many statistics involved can be 

obtained exactly or at least characterized by moments; and in some eases optimum 

properties of procedures can be deduced.

It is worthy to use Maistrov’s(1974) observation for the explanation of the role of 

normal distribution in science: the feasibility of replacing the exact distribution by its 

limit follows from the so-called central limit theorem. The essence of this theorem is 

establishing the conditions under which the distribution function of the sum of 

independent random variables approaches the normal distribution as the number of 

summands increases. There arc in nature a vast number of phenomena subject to the 

action of a large number of causes where each individual cause acts independently and



exerts only a very small influence on the course of the phenomenon. That is why this 

theorem is of such importance for the science.

3.2 D efin itions and D eriva tions o f N o rm a l D is trib u tio n

3.2.1 Definitions
There arc two approaches that arc used to define a normal distribution: i) classical 

;ind ii) modem. In the classical perspective Normal Distribution is depicted through the 

density function. While in Modern approach the distribution is characterized in such a 

way that the concept involved can be extended into more complex random variables with 

countable and uncountable dimensions. Furthermore, Rao(1973) in his monumental hook 

Linear Statistical Inference and Its Applications gives further explanations and 

defintions on normal distribution.

3.2.1.1 Classical Definition of Normal Distribution

The Univariate normal distribution function can be written as

£ c :"<x P)1 _ j. c 2(x P)“fx P)

where a  is positive and k is chosen so that the integral of F(x) = Pr {X < x}, over the 

entire x-axis is unity. The cumulative distributioh function defined for every pair of real 

number x. where F(x) is absolutely continuous, implying that d F(x)/dx - f(x), exists 

almost everywhere. It is assumed that F(x) has the following properties: (i) F(x) is 

nondecreasing, (ii)F(-oo)-0, F(cn) I, and (iii) F(x) is continuous at least from the left 

defines a random variable of which F is the distribution function.

The density function of a multivariate normal distribnt ion of xt, ..., x,„ following 

Anderson(1958) we can say that has an analogous form. The scalar variable x is replaced 

by a vector x = (x(, ..., xp) ';  the scalar constant /? is replaced by vector £  = (P,, ..., [).,)' 

nnd the positive constant a  is replaced by a positive definite (symmetric) matrix
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(2L-&)' A ( x - B ) =  £  a,j (x ,-p j) (x j - p,).

Thus the density function of a ^-variate normal distribution is 

f(x,..... xp) = K e -l/2 (x -  b)’ A (x -b ),

where K >0 is chosen so that the integral over the entire ^-dimensional Euclidean space 

of x,.... Xp is unity.

3.2.1.2 Modern Definition of Normal Distribution

Next we shall deal with the modem approach in defining the multivariate normal 

distribution, and present two different definitions. It must be noted that the distribution 

is not defined by probability density function. It is characterized by the property that 

every linear function of the p-variables has a univariate normal distribution. Such 

characterization is exploited in deriving the distributions o f sample statistics. We can 

note that corresponding to any known result in the univariate theory, the generalization 

to the multivariate theory can be written down with a little or no further analysis.

For example knowing the joint distribution of the sample mean and sample 

variance in the univariate theory we can write down the joint distribution of the sample 

means of multiple measurements and sampfe variances and covariances. The entire 

theory of multivariate tests of significance by analysis of dispersion is obtained as a 

generalization of the univariate analysis of variance. Through this method we can 

encounter a number of characterizations of the multivariate normal distribution which 

will be useful to study the theory of normal distributions in Hilbert and other more 

general spaces, like Banach space. It is worthy to note that multivariate normal 

distribution plays an important role in statistical inference involving multiple 

measurements.

Next, in our definition, wc will follow Rao’s method(1973) of presentation and 

explanation of the properties of normal distribution.
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Definition - I: A /^-dimensional random variable u, that is, a random vector u taking 

values in F,p (Ruclidean space of ^-dimensions) is said to have a p-variatc normal 

distribution Np if and only if every linear function of u has a univariate normal

distribution. •

This definition of multivariate normal distribution is inspired by the result due to 

(Tamer( 1937) and Wold(l938), which states that “the distribution of a /^-dimensional 

random variable is completely determined by the one-dimensional distributions of linear 

functions t '  u, for every fixed real vector t.”

This result is indicating that if a random vector u exists satisfying definition-1, 

then its distribution is uniquely determined. According to Rao(1973) this definition ofNp 

can be extended to the definition of a normal probability measure on more general spaces 

such as Hilbert or Banach spaces by demanding that the induced distribution of every 

linear functional is univariate normal.

following the definition-1, the following properties of normal distribution can be listed:

a) Iixpected value, F.(u) and dispersion matrix, D(u) exist which we denote by p and Z 

respectively. Further for a fixed vector t, t ' u ~ N ^t' p, t ' Zt), that is univariate 

normal with mean t ' p and variance t ' Zt. 

h) The characteristic function of u is cxp(it' u - Vi t ' Zt).

c) The /^-variate norma! distribution is completely spccillcd by the mean vector p and the 

dispersion matrix X of the random variable, since the characteristic function 

involves only p and £. We may therefore, denote a p-variate normal distribution 

hy N,,(p, il), involving ji and X as parameters.

• If there exits a vector and matrix such that for every t, t ' u ~ Nj(l' p, t ' Zt). then

u ~ Np(p,Z).

• If Z -  A (a diagonal matrix), the components u,, ..., up are independent and each is 

univariate normal.

• l et U| and u2 be two subsets of variable u. We can write
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J .2l Ej2J“ U « v ((/,,f /2) /)(//,)  , (3.1)

where X|2 and Z 12 are the dispersion matrices of ut, u% and Z 12 is covariance 

matrix of ,u„ u2. The random variables u„ u2 arc independently distributed if and only

if £,;>-().

• lfu„ u2, u k of u are independent pairewisc, they are mutually independent.

• I he lunction cxp(il'u - XA l ' 531) is indeed a characteristic function so that Np of 

dcfinition-I exists

• u N,,(p, Z) with rank k ifand only if,

u = p + b g, b b ' = Z

where h is (p x k) matrix of rank k and g ~ Nk(0, |), that is, the components g ,,g2.....gv

are independent and each is distributed as N|(0,1).

d) l! u - Np. the marginal distribution of any subset of q components of u is N(|.

e) '1 he joint distribution ol'q linear functions of u is N,,. If y = c u, where c is (<y x /;), 

represents the q linear functions, then

y -  Nq(cp, c 21c/ ).

Oefinition-2: A /^-dimensional random variable u is said to have a normal distribution Nk 

il it can be expressed in the form ii = p + b g, where b is p x m matrix oT rank m and g is a m r 1 

sector of independent N| (univariate normal) variables, each with mean zero and unit variance. 

Observations:

a) 1 he relationship u = p + b g shows that the random vector u e M(\\.:Z). the linear 

manifold generated by the columns of jx and Z, with probability 1.

b) I.ct ii, ~ N,„ (pj, Z;), i= I ,2..... k, be independent and T be a function of u ,....... uk.

I Jsing the representation

u, = p, + b,g„

we have



T ( u .......... uu ) =  T(n, +  b |g ,........Hk +  bkgO

l(gl 1 •••! gk ).
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Then the study of T. a statistic based on u,. uk , reduces to the study of

function of independent univariate normal variables g,......g,.. Such a reduction helps, as

the known results in the univariate theory can be immediately applied or deduce the 

results in the multivariate theory.

c) It is possible to note that u = p + b g , with u, =g; +b;g as in definition-2 and u=j.i+c f 

where c is p  x q matrix and f is a ^-vector of independent N(OJ) variables, have the 

same distribution if b b ' = c c ' , so that no restriction on q or R(c) need be imposed. 

But a representation with restriction on b as in dcfinition-2 is useful in practical

applications.

hollowing the dcfinition-2. the following properties of normal distribution can be listed:

a) Let u ' , =(u i, u2.....u r), u, 2= (u rf„ .....up) be two subsets of u and Zn, Zl2,

I 22 be the partitions ol Z as defined in (3 .1). Then the conditional distribution of u 2

given u | is

|̂*-r(P2 T Z2| Z II (u I - P ) , Z22 - S2| Z || Zl2) 

v\here h.(Uj) = p„ i= l, 2, and Z ,, is a generalized inverse o fZ M .

b ) The reproductive property of Np . Let u ,~  Np(p,, zp, i= l ,.... n be all independent.

Then for fixed constants ai..... an ,

y = a ,u  + . . .  + anu n ~ N p( Z a i p i. I a i2Zi ).

c) Let tij. i=1,2..... n. be independent and identically distributed as. Then,

( l/n )Z u ,=  0  ~ Np(p, 1/nZ).

d) Let u ~ Np(p, Z). Then a necessary and sufficient condition that

0=(u -p)'a(u-fi)~x2(k) 

is Z(a Za - a) Z = 0 in which case k -  trace (a Z)
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3.2.2 Derivations of Normal Distribution

In Ihc present section we will investigate the different methods or models used to

derive the normal distribution function. One striking factor in the derivation of normal 

distribution is the fact that many scholars independently using different approaches 

arrived at the same conclusion As Poincare said, there must be something mysterious 

about the normal law, since mathematicians think it is a law of nature, whereas 

physicists are convinced that it is a mathematical theorem.

Some general pattern for the “derivation of Normal Law” are dealt with by prominent 

scholars, like Kac( 1959), Parratt( 1961), Rao( 1973), Maistrov( 1974) and Mathait 1977).

3.2.2.1.1)e Moivre’s Theorem - I.imit of Binomial

Abraham I)e Moivrc (1667 - 1754). a French-English mathematician, is best

known for his investigation of the concepts of normal distribution and probable error, for

his generalization of Cotes’ theorem [exp iO = cos 0 + i sin O'], and anticipation of

Siirling’s approximation [n! * (27m) e" n”]. lie was a friend of Edmund IIalley( 1656-

1742) and Isaac Ncwton( 1642-1727). and corresponded with Jean Bernoulli. His major

works arc Philosophical Transactions^from 1695 to 1715), Doctrine o f  Chances( 1718),
♦

Annuities Upon Lives( 1725), and Miscellanea Ana!ytica( 1 730 - a compilation of his 

researches in trigonometry and calculus). I lis pamphlets on Stirling’s approximation and 

the normal curve appeared in 1730 and 1733, respectively.

Let k be a number of successes in a sequence of Bernoulli trials with probability 0 

for success and define the random variable

v _ k - nO
^  ~ r 11 2 i\n 0 ( \-0 ) \

then the limit distribution function is normal.

The characteristic function of k is

E (c"k) = ( 1 - 0 + 0  c " ) \  

and the characteristic function o f /’(t) of x is
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H ( c " x) =  F.(ei' (k- n0,/,n0<1 0)144 )

c  -II nil / |n 11(1 0)1 y, | ; ( c " k /  |n (HI <*)| V t yi 

_  c  -i* nO /  |n 0(1 < >>] W j _ q  | () c “ 7 l " 0*1 °>1 v‘ )" '

_  | (  j _ ()) c -ilnO / | n O ( l - ° ) l ‘/I +  Q c it/ |nO(J 0)1 % j.i (3.2)

We note that

o ' =  1 f  (iz) + . . .  + (iz)r / r! + ( ) ( / / ,  

and expanding the exponential inside (3.2), we find

.A (0= I • - r /2 n  + 0 (r /n) ]n -> ex p [-t" /2 ], a s n —» qo 

which is the characteristic function oi'N (O J). Hence by the continuity theorem, the limit 

of distribution function of X is normal. In effect the result means that for large /?, the 

distribution function o f the binomial variable k can be approximated by the distribution 

function o f normal variable with mean nO and variance nO (1-0).

3.2.2.2 Adrian’s Methods

Robert Adrian (1775-1843), an American, published his results in 1808 in The 

Analyst. or Mathematical Museum. As Maistrov( 1974) noted the most interesting parts 

of this paper arc two derivations o f the normal law for the distribution o f random errors 

in observations.

l et AB bo the true value o f  any quantity, for example o f a certain distance. The 

measure o f this quantity is A/?, the error being />B (fig. 1).

I ct AB, BC, ... be several successive distances of which the value by measure arc 

A/>, he, .. , the whole error being Cc; now suppose the measures Ah, he, arc given and 

also the whole error Cc (fig. I) Adrian Assumes ‘as an evident principle’ that the errors 

in measurements o f AB, BC arc proportional to their lengths. Introducing the notation 

Ah = a, he -  h, (Ac =  C; and denoting the errors of the measures Ah, be by x, y, 

respectively, we obtain for the ‘greatest probability’ the equation x/a -  y /h . I,ct X and Y
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he the probability of the mutual occurrence o f  these errors in equal to XY. It is required 

to find X and Y under the condition that the probability Xy will be maximal

A  b B
I___________ I_______ i

A  b  B  c  C  
I_______ i— I_______ LL

figure i :Measure ofdistanec

Introducing the notation

flx) ~ In X, cp(y) = In Y

I hen the maximum o f XY corresponds to the relation

f(x) t <p(y) =  max.

Differentiating the last relation, we obtain

f ' (x) x ' + (p' (y) y ' -  0 <=> P  (x) x ' = - <p' (y) y ' .

As we can observe, and is also noted by Maistrov(!974), Adrian does not indicate 

with respect to which argument tthe derivative is taken. lie  docs not even mention the 

arguments ol the function. Ail this respects, of course, a certain defect in his work.

Hut for the maximal probability

x + y =  const

and

x' i y ' =0 <=> x ' = - y'

i );\ iding the equations we obtain

r, (x) = <p'(y).

Now this equation ought to he equivalent to

x/a “  y/b.

I his is satisfied in the simplest form if

f '(x )  m\hi

and

-tp' (v) y ' = /ny/a.
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Consider the first relation

!'(x) mx/a or df(x)r (mxh\) dx;

jdf(x) -  j(/?7.x/a)dx

fix) = a| + mx2 / 2a

fix) -  In X ~ a | + mx2 / 2a

X exp (ai I mx2 / 2a).

The function

IJ = exp (ai + m x' / 2a)

is called by Adrian "the general equation o f  the curve o f probability." Next he proves that

m < 0.

In the same paper Adrian presents a second derivation o f the distribution law for 

random errors in observations In this derivation he considers the measurements of a 

segment AB with equally probable errors in the length and in the azimuth. Adrian 

assumes that the locus o f the equal probability of the location o f point B. determined by 

the measurements of the length o f  AB, is the simplest curve, i.e. a circle with the centre 

at point B. Under these conditions he obtains that the probabilities o f errors are 

exp(c + Z2 nx ) and exp (c h V.j ny ) correspondingly, where a- and y  arc the errors, 

B»» ~ v. mn = v, and c -  const(llg. 2)

In the same article by Adrain the derivation o f the least-squares principle is given 

as well as the derivation o f the principle o f  the arithmetic mean, and a method “to correct 

the dead reckoning at sea by an observation o f the latitude” are presented.

. 4

figure 2: Measurement o f length
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3.2.2.3 Theory of F.rror - Hagen's Hypothesis

Hagen based his proof of the normal law of error under the following

assumptions:

(i) An error is the sum of a large number of infinitesimal errors, all of equal magnitude,

due to different causes.

(ii) The different components of errors arc independent.

Ini) 1'ach component of error has an equal chance of being positive or negative.

By assumption (iii), each component of error takes the value ±c with probability 

Vi for each, so that the mean is zero and the variance is e2. If

X = C | +  ... +  c,,

is the total error due to n independent components, then

E (x)=  E(e,) + ... + E (cn) = 0 

V(x) = X V(r.|) = nc: = o ' .

bet us find the limiting distribution of x as n -> m and c —> 0 in such away that a 2 is 

finite and fixed. The characteristic function of Sj is

1  ( e + c ),2
%

and that of x = c, + ... + r.n is

+ i * r. t
4 !

)"= | 1 - r  o2/ 2n + 0 (r /n) jn -> e 1 11, as n -> <x>,

which is tlie characteristic function ofN (0,cr? )

3.2.2.4 Ifcrschcl’s Hypothesis -Hitting the Bull’s eye

Consider a distribution of shots fired at a target and let (x,y) he the co-ordinates 

(random variables) representing the deviation(errors) of a shot with respect to two 

orthogonal axes through the target point. Let the following hypotheses be true:

(i) The marginal density functions p(x), q(y) of the errors X and Y are continuous.
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(u) The probability density at (x.y) depends only on the distance r = J x  2 + y 2 from 

the origin (radial symmetry).

(in) The errors in x and y directions are independent. Then the probability density 

function of the deviation 7 in any direction is the normal density 

exp [-7. 2 / 2 n 2} / a  -v/20 .

Using (ii) and (iii) the density at (x.y) is

/'(xk/(y) x(r), r7 = x + y\ (3.3)

Putting, x -  0, we ilnd that the functions .v and q arc proportional to each other, while 

putting y = 0, we find that s and p arc proportional to each other. Therefore, the 

functional equation (3.3) reduces to. writing

J{xH og[ i- (x ) ,
/  i> < c i

Rx)+ f(y) = f(r), r2 = x7 + y \  (3.4)

Further.

A *)= A -x)= A \*\l

obtained by putting y=0, x = -x in (3.4). Thus, if

x2= x ,2 + x22,
4

A r ) - A y ) +A*\ ) + /lx2), r7 = y x2 = y2 + x,2 + x22,

and so in general

.Ar) = /* i  ) + -  + / x k), I  x,2 = r2. 

( hoosing k = n2 and putting x = x, = . .  . = x2, we see that

/n x )  = n2/ x )

or

/ n )  = n2/ 1 )  forx=1. 

for x =  m/n where m is an integer,

n /m /n ) = /(nm/n) = /m )  = m3 /{1) 

or

/m /n ) = r(m /n)\
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where c~ f{ 1), so that /(x) = ex for all rational x, and because of continuity the relation is 

true for all x. I lencc

Ms) =/>(0) cxp|cx2|. " (3.5)

lor (3.5) to be a probability density, c must be negative and may be written as -l/2cr. 

Integrating from -co to oo and equating the result to unity we find

M 0)=  l/(V27ia2),

so that

p { \ )  = 2 CTV * 2
71 CT

(3.6)

which is the well celebrated normal distribution, N(0,a2) with r-(x) = 0 and v(x) — cr 

I he joint probability density of the errors X, Y is

/? (* )  q ( y )  = - * b 2^ 2)
4 i Tea

Ll£

I he error in any dircction(cos 0. sin 0 ) is

X = X cos 0 + Y cos 0.

I o find the probability density of Z, we consider the transformation

z  = x cos q + y co $ q ,

/. = x cos q - y cos q .

I he Jacobian of the transformation r)(z,u) / Mx.y)= 1. The density transforms to

cxpf(-(z“ + u2) / 2cy )] / (27i<72),

which shows that U and /. are independent and p.d of Z is

cxp|-/.2 / 2cr | ,

which is the required result

3.2.2.5 Maxwell’s Hypothesis

Maxwell arrived at the normal distribution in deriving the distribution of 

velocities of molecules under the following assumptions:

(i) I he components of velocity u, v, w in three orthogonal directions are
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independently distributed.

(ii) The marginal distributions of ti. v, ware the same 

(in) The phase space is isotropic, that is. the density of molecules with given 

. velocity components is a function of total velocity and not the direction.

If /(.) denotes the probability density of any component of velocity, the 

assumptions (i) to (iii) lead to the functional equation

/(u ) /(v ) /(w ) = g(V ), V2 = u2 + v2 + w2. 

thus, / ( u) is of the form (3.6) which is normal distribution for any single 

component of velocity and

g(V) = const. cxp[-a(u2 t v' t w2) |.

3.2.2.6 Markoffs |Markov’s) Method

Attempts to generalize the result of De Moivre provided one of the strongest 

motivations for developing analytical tools of probability theory. A powerful method was 

proposed by MarkofT( 1912), but he was unable to make it rigorous. Some twenty years

lay ter. the method was justified by Paul Levy.

I lie attempted conclusion is. let g(x) ~ 1. for co( < x < o)2. and g(x) = 0 otherwise, then

,. , r, ( t ) + . . . +  rn(t)
I tmpjoi  < ----------j=-------- < oi2 ■ - ± J

<V c “”2k' _ CK0IV
IV d v ^ ' f c  >!«dy

C'«>2V _ C'«>IV
I he main problem is that the function ------—----- is not absolutely integrablc taking the

limit n ko, since the limits of integration are - <x> and +co.

Markov unable to overcome this difficulty abandoned the method. The 

justification of Markov’s method was given by introduction of

g(x) = g'(x)-g'(x),

where

and either

g'(x) = max (g(x).O). g'(x) = max (-g(x). 0).
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E[g'(x)| <00 or E[g‘(x)] < oo.

then.

E[g(x)] = E[g '(x)] - F.[g (x)].

This implies-g(x) is absolutely intcgrable function of v in (-co.ee). T hus the argument can 

be proved rigorously.

A close inspection of the method of the derivation indicates that the following 

affirmation is true. Let /„(l), 0 < t < 1, be a sequence of measurable functions such that 

for every v

3.3 Principles of Convergence and The Relation of Normal 
Distribution With Other Theoretical Distributions

3.3.1 P rinc ip les o f Convergence

3.3.1.1 C e n tra l  L im it T h eo rem

A thorough investigation is done by Lo6ve( I%3), Rao(1973), Chow and Teicher 

; 1978) and particularly by Gnedenko and Kolmogorov(l968) in their book entitled Limit 

Distributions for Sums o f Independent Random Variables. Primarily the Central Limit 

Problem ol probability theory is the problem of convergence of laws of sequences of 

sums of random variables. T he general Central Limit Problem was solved using the 

characteristic function tools, and the truncation and symmetrization methods. The 

Central Limit Problem can be stated as follows:

Then.

lim p{«, < /„ (t)< © 2} ~~pr - c - y /2dy.
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be sums of uniformly asymptotically negligible independent summands Xnk. that is 

Xnk ——-» 0 uniformly in k, with ktx -»no .

(i) find the family of all possible limit laws of these sums.

(ti) Find conditions for convergence to any specified law of this family, 

following historical development of the problem, there arc three limit theorems and 

corresponding limit laws at the heart of the classical problem. In turn the three limit laws 

give rise to the three limit types.

The first theorem (Bernoulli’s) of probability theory, published in 1713, says 

that Sn /n —p—» p. where, S„ is the number of occurrences of an event of probability p  in 

n independent and identical trials, K(Xk)=7?, V(Xk)=n/;(1-/>), k= 1. 2 ... —

convergence in probability. The result is achieved by direct analysis of the asymptotic 

behaviour of the binomial probabilities.

Developing the analysis, A De Moivrc( 1732), as indicated before, obtained the 

second limit theorem which, in the integral form due to l.aplacc( 1801), says that

F [(Sn - n p) /{n  p (\ -p))  < x]—> (1 /V2tt) I exp (-'/2y: ) dy, - co < x < oo.
oc

«
The third theorem was obtained by Poisson(l 832), who modified the Bernoulli 

case by assuming that the probability p = p n depends upon the total number n o f trials in 

such a manner that npu —>7, > 0. Therefore, writing now X„k and Snn instead of Xk and

S„, the Poisson ease corresponds to sequences of sums Sn„ = Xc-i" Xnk. , n=l ,2......where,

for every fixed //, the summands Xnk are independent and identically distributed 

indicators with

P | X„k = 11 = X/n + o (1/n).

By direct analysis of the asymptotic behaviour of the binomial probabilities, Poisson 

proved that

P f Xnn = k| Xk c x /  k!, k = 0,1,2, . . .  .

Hence, the corresponding three basic laws of probability are deduced.
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I lie degenerate law AO ) of random variables degenerate at 0 with distribution

function having one point of increase at x=0 and characteristic function reduced to I .

I he normal law N(0,1) of normal random variables with density function defined by

f(x) = 75-  1 e >‘ /2dy.-
— <ac

and characteristic function given by tj> (t) -  exp (-Cl 2 ).

The P o is s o n  la w  7 \ k )  of Poisson random variables with density function defined by

F(x) = e_x I  4t,
uo

and the characteristic function is given by e ^ cxplu} ‘ l | .

In brief the three theorems can be summarized as: in the Bernoulli ease

A  l(S„ - Ii(S„)) / n ] -> AO ), and A  [(S„ - r*(S„)) / a  S„ | -> N(0,1),

while in the Poisson ease

^ ( S 1U1 ) - ± A k ) .

As a conclusion we note that there are three limit types following the three limit 

laws (i) file degenerate type of the degenerate laws J(n) with f(t) -  e 

(ii) The normal type of normal laws N(a,bJ ) with f(t) -  exp { ita - b‘ r  / 2|

(in) 1 he Poisson type of Poisson laws a,b) with f(l) = exp | ita + A.(e'“’ - I ) |

As a remark it can be said that the prominent players in handling and 

reformulating and finally solving the problem aie kolmogorov(1937) and l.dvy( 1937). 

And there arc also other scholars like Linderbergt 1922), l ellci(1937), Docblin( 1939), 

and (inedenko(l950).

3.3.1.2 Laws of Large Numbers

A thorough investigation is done by L.oeve( 1963), Rao(!973), Chow and Teicher 

(1978), Gnedenko and Kolmogorov( 1968), and particularly by Sheynin( 1968) in his 

article entitled “On the early history of the law of large numbers.” for Kingman and



89

TavIor(l966) laws of large numbers arc precise formulations of the rough interpretation 

of the expectation of a random variable as the average of its values in a large number of 

independent trials Beside the Uvo well known (Borrl-1 ()()9) strong Imv o f  large numbers 

and the (Bernoulli 1713) weak laws o f large numbers, there arc other laws which depict 

the behaviour of large numbers, like Kolmogorov inequalities, symmetrization 

inequalities, I.<Svy inequalities.

There arc a class of probability distributions called sym m etr ic  s ta b le  la w s  These 

arc distributions whose characteristic functions arc o f the form exp (-c 1 1 1 "), where c > 0. 

Such distributions exist ii and only if 0 < a £ 2. The C a u ch y  d istr ibu tion  has a  =1; 

when a  2 the distributions are norm al d is tr ib u tio n s  If Xn have characteristic function 

exp (-c ; 11 ), it is easy to verify that, for any /?, S„ / nIA' has the same distribution as X„.

3.3.2 i he Relation with the other Theoretical Distributions

The central importance of normal distribution in statistics stems from three facts: 

(i) many actual populations approximate closely to normal forms: (ii) it forms the 

lim iting distribution of many widely used statistics and (iii) under general conditions, 

the means of many distributions tend to be normally distributed in large samples.

3.3.2.1 Discrete Distributions

following Pelicr(1993), we can say that a sample space is called discrete if it 

contains only finitely m a n y  points o r  infinitely many points which can be arranged into a 

simple sequence E ,, Tv,,... . Given a discrete sample space G with sample points R ,, E2 

, . it is assumed that with each point E, there is associated a number, called the 

probability of f., and denoted by PIE,}. It is non negative and P{E|} + P{ }  + ... = 1 .

• *1C probability PJAJto any event A is the sum of the probabilities of all sample points in it.

In more elegant way a discrete distribution function can be defined as follows: a 

distribution function G on R is called discrete if

G(x)= Z  Pj
j: \j < \

X  6  R,



where p, > 0 for all j. , p,=l, and S = j < n £ >*>!

associated function
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is a subset of (-<», ~). The

ftx) = p, for x “ xj, f|x) = 0 for x = x j, 1 < j < n <

is termed a probability density fundion(p d f.) on S ~ | x, I j £ n •" wj . A p.d.f. is 

totally determined by S and Jp, , I j £ n < «■}; and S is the set of positive or 

nonnegativc integers or some finite subset thereof. The probability space (£2, F, P) and 

random variable X on it whose I:(x) with discrete d.f. G, can be constructed if we choose 

£2=S. F-class of all subsets of£2.

Also Rao(1973). presenting (he discrete distribution function as step function,

depicts the distribution in a measure-probabilistic approach and derives and explains

distribution function as a Borcl field B generated by the interval [0,11. £2 = [0,1 ], and P

the l.ebesguc measure so that P([0,o>)) -  o>, 0 < «•> £ I .
«

i) Prom Bernoulli Trials to Binomial Distribution

Repeated independent trials arc called Bernoulli trials if there are only two

possible outcomes for each trial and their probabilities remain the same throughout the 

trials, l.et b(k;n,0) be the probability that n Bernoulli trials with probabilities 0 for 

success and I - 0 for failure result in k successes and n-k failures. Then we have

and

X(o>) -ti>;P(© . X((o) = x,| = p, , 1 < j < n ^ «,

where X ’lV, = I

Again let

b(k:n,0) = P{S=k},
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where S„is the number of successes in n trials as a random variable. Then b(k;n,0) is our 

binomial distribution The term binomial refers to the fact that b(k,n,0) represents the k"' 

term of the binomial expansion of (1 - 0 + 0)n

Whert n is large and 0 is small and X = nO of moderate magnitude it is preferable 

to use the approximation to b(k;n,0) which is due to Poisson. Simeon D. Poisson (1781 - 

1840). a French mathematician deduced this relation in 1832 and his main work is 

published as “Recherches sur la probability des jugements en matiere crimineUe et en 

malic re civile, piece dees des regies gene rales du calcul des probabilities" in 1837. The 

following derivation will help us to have insight in the relation between the two types of 

density function.

For k=0

b(0 ;n.G) ~ ( 1 - 0)n = ( 1- 0/n)n .

I fsing Taylor expansion rule and logarithms we get

log b(();n.O) = n log( 1 - X/n) = - X -  X2/2n -...

so that for large n

b(0 .n,0 ) * e ' \

For fixed k and sufficiently large n

h(k; n ,0)  2 - (k - l  )0 l
b(k -  l;n ,0.) ~ k(1 - 0 ) * k '

Next, using recurrence method we get

b(l ;n,0) * X . b(0;n,0) « X c \

b(2 ;n,0) »X/2 . b(l;n,0) * X2 e 'V  2

and hence by induction

c
b(k;n,0=Vn) * — — = 7\k\X).

K.

this is the classical Poisson approximation to the binomial distribution. An alternate 

method is used to deduce this result by Chow and Teicher( 1978).
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As \vc can observe from research works and statistical applications the normal 

approximation to the binomial distribution is of considerable theoretical and practical 

values Fcllcr’s(1993) approach can be used for alternative method to the approximation 

of binomial distribution by normal distribut i ion. Furthermore, as it noted the be  Moivre- 

laplacc limit theorem above, it played an important role in the development of 

probability theory because it lead to the first limit theorem.

In generalized form the approximation formula can be written as:

For fixed z, and z2 as n -»co

P{nO + z,(n0(l-0)/'<  Sn < n() + z2(n0(I-0 )‘/ :} -> N(z,) - N(z,).

That is for

P { a < S n<[i}=  !> (* ;« ,/? ) » N(« - nO) - N(p -nO),
l - n

where [«,[f] is a fixed real interval, 

ii) Poisson Distribution

For large values of A. it is possible to approximate the Poisson distribution by the 

normal distribution. The deduction is simple. If n is large and 0 small, then b(k;n.O) will 

he found to be near the Poisson probabilities P(k; A,) with A, = nO. For small A. only the 

Poisson approximation can be used, but for lafge A. wc can use either the norma! or the 

Poisson approximation.

In general using the Stirling’s formula normal approximation to the Poisson 

distribution can be presented as follows:

If A —>oo . then for fixed «  < ff,

-> N(a) -N(P).
/ ♦ » i \  X<k<X ♦ fl JA

iii) Jlypcrgcomctric Distribution

I lypcrgcomctric distribution, mainly used for combinatorial problems, is defined us
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Pk

r n - r

77$

where r < n (both integers), n, < n ( integer), k = max((), + r)......min (/•,«,). The

probabilities pv arc defined only for k not exceeding r or /?,, and if cither k > r or k > /i,

then pk= 0 .

The name is explained by the fact that the generating function of {pkj can be 

expressed in terms of 1 lypcrgcometric functions. It can be approximated by binomial and 

Poisson distributions. If n is large and n jn  ” 0, then the probability pk is close to

V
,k.

More precisely

0-
k"'( r-k f*

(1-0 - J <Pk<
IV \  n

f /d -o r  i -

And if n -> co and /• —> qo so  that the average number a. = r/n then pr -•> 7%k).

The normal approximation to the I lypcrgcometric distribution goes like this. Let 

n.m.k be positive integers and suppose that they tend to infinity in such a way that

->(1-0), h{k - rf)} —> x
n + m n i m

-»0 , n i in

where h =
V( n + m)O(l-0Xl-t)

furthermore, using the normal approximation to the binomial distribution we get the 

following result:

m
^r-k

[n i in
hN(x)

3.3.2.2 Absolutely Continuous Distributions:

A. distribution function is called absolutely continuous if there exists a Borel

function £ on R = [- co ,oo | such that
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in which g(t) is said to he the probability density and necessarily satisfies g  > 0 almost 

even, where (a c ),

If.efO is continuous at /, (»(/) = g(r).

I'or dilTcrcnt definitions of absolute continuous distribution we can see the works of 

Chow and Teichcrf 1978), Rao( 1973), and I'cllerf 1991).

flic following distributions fall in this category of absolutely continuous, and we 

are going to assess the relationship between them and normal distribution.

/)Student's t -Distribution.

The history of /-distribution is interesting. The English mathematician Student - 

pen name of William Scaly (lossct discovered the exact distribution of / in 1908 , and 

opened the new epoch of exact sampling theory or distribution. This work of Student 

made it possible to perform statistical inference by means of small samples and 

consequently changed statistical research from the study of collectives to that of 

uncertain phenomena. The concept of population was once again related to a probability 

space with a probability distribution containing unknown parameters. Thus it began to be 

emphasised that a sample has to be drawn at random from the population if wc arc to 

make an inference about a parameter based on the sample.

In order to define /-distribution let us follow Students'(1908) definition and Rao’s 

method:

a) 1 .ety  -  A;(0 , 1 ) and .v JT(k) be independent variables. Then,

which is the ratio of a normal variable to the square root of an independent T  variable 

divided by the degrees of freedom.

I he joint distribution of y and x is

t —y !  (x/k) 1/2

c.cxp l-y? /2] exp |-x3/2 | x,k/2)' 1 dy dx. (3.7)



b> making the transformation to polar co-ordinates (0< r < oo , -7t/2 < 0 < 7i/2 ),

y = r sin 0, x = r2 cos2 0, 

d.x dy ~ 2r2 cos 0 dr dO

transforms to

c exp|-r2 / 2 |  rk (cos 0 )k 1 dr dO. (3.8)

The distribution off) alone, which is seen to he independent ofr, is

c . (cos 0)k‘‘ dO = (P O/2 , k/2 )]1 (cos 0 )k‘‘ dO, (3.9)

thus, supplying the constant to make the total integral unity. The statistic whose 

distribution is to be found is

t = Vk y / Vx = k tan 0 , (- 00 < t < 00), 

dt = k sec2 0 dO = k (1 + t 2/k)d0.

I he expression (3.9) transforms to

S(t/k) dt = [ >/k () (14 , k/2 ) ] 1 ( I + t2/k) (k + l)/2 dt, (3.10)

which is called Student's t distribution on k degrees of freedom and is represented by S(k).

b) Let y ~ N(p ,n‘) and (x/tr2) ~ %2(k) be independent.

•hen, since (y - m )/ s ~ N(0, 1) and applying (3.10) to the ratio of

|(y -n ) /r r  | to (x / ko2) '/2
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we get

(y -p )/(x /k ) '/! ~ S(k).

c) Let y ~ N (p ,o 2) and (x/0 2) ~ 2 ,2(k) be independent. 

T he probability density of t = y / (x/k)'/5 is

k U2

(3.11)

- « , /2

S(t/k, S) = — I'!V(ktl) (k +t7y l , ')'2 s 0

where 5 = p/cr, which is called the non-central t distribution, 

ii) Hotelling T  2 - statistic.

s 1 1̂ 1 V 2!f 2t'  1
V 2 ) LvlJU + t2J

The multivariate analogue of the square of Student’s t -distribution is
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T7 N (7-n)’S ' (r-n),

where r is the mean vector of a sample o f N and S is the sample covariance matrix.

I Intel ling (1031) in his paper “The generalization o f  Student's ratio, ’’ proposed the T - 

statistic for two samples and derived the distribution under the null hypothesis. But the 

representation of T2 as the ratio of independent X ’s leading to an elegant derivation of 

its distribution is due to Wijsman(1957). for detailed and scholarly presentation we can 

sec I lotelling( 1931) and Anderson( 1958). 

iii)(bimma Distribution

fhe general gamma distribution has the p.d

(i(x/«,p) ~ fup/(](p) lc "s xp \  a  >0 , p>0, 0<x < on. 

fhe r'h raw moment is seen to he

T(p»r)/uT(p)

so that

I*-(x) p/a and V(x) = pAx 2.

I et \, -  (i(<x.p,), i= l , ..., k be all independent. Then,

x,+ ... + xk~C»((x, p-Xp,),

that is, the gamma distribution has the reproductive property like the normal distribution

hut not for variations in both the parameters

le ts  (i((x,pi) and y ~ (i(a,p?). Then, p.d. o fg  = x/(x+y) is

[IXP1+P2) /  T(P,)T(p2)l g,vl (l-g ),v \  0<g< I,

which is called the beta distribution, B(p,,p: ). The beta distribution involving two 

parameters y, 8 has the probability density

B(x/y,8) -  [ b(g.dy| -I x g-1(l-x)d-1, 0< x < I, 

where b(y,8) is the beta function

r(y)T(5) / T(y+8).



97

iv) 7 Distribution

The special case of the gamma distribution with (x=l/2 and p—k/2, where k is an 

ntegcr is called the 7  ? distribution on k degrees of freedom. The density function is

7  '(x/k) = 1/ (2 k/21 '(k/2 ) c'*n x(k/2)' ' .

Following the property of gamma distribution, we observe if x, ~ TXk,), i—1, ..., 

m, are independent, then Xx, ~ T^Xk,).

\ ) Wishart Distribution.

John Wishart( 1928) in his article entitled ‘The Generalized product moment 

distribution in samples from a normal multivariate population" came up with Wishart 

Distribution. The sample covariance matrix,

S = —~  Xa(x,« - x )( x„- x)‘
N - I

is an estimate of the population covariance matrix X. When X=I, this distribution is in a 

sense a generalisation of the ^-distribution. The distribution of S, often called the 

Wishart distribution, is fundamental to multivariate statistical analysis, 

vi) Cauchy Distribution

flic Cauchy density centred at the origin is defined by

C(x/p,x) = (l/rc) (x/x2 +x2), -co< x <  co, p = 0,

where x > 0 is a scale parameter, the Corresponding distribution function is 7r 1 arc tan 

(x/t) T he graph of C(x/p,x)rcsembles that of the normal density but approaches the axis 

so slowly that an expectation does not exist. T he importance of the Cauchy densities is 

due to the convolution formula

Cs* C( = C,4|. (3.12)

It states.that the family of Cauchy densities is closed under convolutions.

The convolution formula has the amazing consequence that for independent 

variables X ,,..., X„ with the common density, the average (X| + ... + X„) / n has the same 

density as the X,. It has the curious property that if X has density C, then 2X has density
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( =  C,* C, Thus 2X = X + X is the sum of two dependent variables, but its density is 

given by the convolution formula. Moreover, iflJ and V arc two independent variables 

with common density C, and X-  all + bV, Y = cl) +■ dV. then X+Y has density 

which is the convolution of the densities n,„ of X and C„ i,i„ of Y; nevertheless, X and 

Y are not independent.

The Cauchy density corresponds to the special case n=l of the family of Student’s 

t densities. In other words. If X and Y are independent random variables with the normal 

density N, then X / I Y I has the Cauchy density with t=l. The convolution property of 

the gamma densities looks exactly like (3.12) but there is an important difference in that 

the parameter a  of the gamma densities is essential whereas (3.12) contains only a scale 

parameter. With the Cauchy density the type is stable. This stability under convolutions 

is shared by the normal and Cauchy densities; the difference is that the scale parameters 

compose according to the rules cr" = a ,: + a ?2 and a  - a,+ a (, respectively. There exist 

other stable densities with similar properties, and with a systematic terminology, the 

normal and Cauchy densities are called “symmetric, stable of index 2 and 1.” We note 

that the law of large numbers describing the behaviour of the mean as the number of 

observations increases docs not hold in the cask of the Cauchy distribution.

3.4 The Relation with Pure and Applied Mathematics

3.4.1 M a x w e l l ’s D i s t r i b u t i o n  o f  V e l o c i t i e s

James Clerk Maxwell(l83l-I879), an immediate predecessor o f f .  Boltzmann 

(1844-1906) - who is known as the initiator and developer of statistical physics as well as 

one of the founders of modern physics and theoretical physicist - thought of molecules as 

elastic solids. Starting from this premise, Maxwell constructed a theory' of gases that was 

related to the works of Clausius In his paper, 1875, by stating special contribution of 

ClausiuS. in the development of methods for investigating systems consisting of 

infinitely many molecules in motion, “opened up a new field of mathematical physics.”
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Maxwell states that “By following this method, which is the only one available either 

experimentally or mathematically, we pass from the methods of strict dynamics to those of 

statistics and probability. When an encounter takes place between two molecules, they arc 

transferred from one pair of groups to another, hut by the time that a great many encounters 

have taken place, the number which enter each group is, on an average, neither more nor less 

than the number which leave it during the same time. When the system has reached this state, 

the numbers in each group must be distributed according to some definite law."

This distribution law of the velocities of molecules was derived by Maxwell. For 

this purpose, he proceeds form the following consideration:

l et <pfx)dx be the probability that the projection of the velocity of a molecule on 

die x axis is contained between .t and x + dx, and let the corresponding definitions be 

given lor (p(y)dv and <7t(z)dz. The probability that the vector from the origin representing 

the velocity will be contained between .r. v, 2  and v 1 dx, y  1 dy. z  1 dz. is equal to

F = <p( x )<p(y)<p( z)dxdydz.

This probability, on the other hand, should be a function of the distance from the

origin, i c..

(|>(.\)<p(y)<p(z) = fix2 + y2 + 72).

I aking logarithms on both sides, we obtain:

In <p(x) + In <p(y) + In <p(/.) = In f(x2 + y2 + z2).

Differentiating with respect to .v yields:

<P'(x) 2\fj[xi_ V2 1 z2) or (p'M -  2 fYx2 1 V2 1 z2) . 
ip(x) /  (x2 1 y 2 1 z2) x <p(x) J  (x2 1 y 2 1 z2)

Analogously,

<p'(yL <p'(yl 2 f ( x 2 \ y2 1 z2) .
x <r(x) ■ y  <p(y) z tp(z) f ( x 2 1 /  1 z2)

faking into account certain additional physical considerations, we easily 

determine a function that satisfies this relation:



<p(x) exp (-k x2)\ <p(x)<p(y)<p(:) - f(x2 ■ y2 i z2) = exp [-k:(.x2 ■ y2 \ z2)].

This formula represents the Maxwell law o f  velocities.

3.4.2 Gaussian Distribution and the Law of Errors

Gauss published his derivation of the normal law of distribution of random errors 

in observations in 1809 in his famous work “Theoria motus corporurn coclestium.” 

\long with the unusually wide scope of Gauss’s activities, a characteristic feature of his 

investigations in a deep interrelation between theoretical and applied problems, lie often 

discovered general mathematical ideas as a result of solving specific problems. This is 

particularly relevant to his work in the field of probability theory.

After deriving the “normal law of the distribution of random errors”
UNIVERSITY nr  NAlFCf

I<P(A) = lm' l/2 exp(-h? A )], CHIROMO LIBRARY

Gauss points out a certain defect in this law. According to this law, errors of any 

magnitude arc possible. It should be emphasised that in deriving the normal distribution 

Gauss made extensive use of the principle o f the arithmetic mean.

The most complete exposition of the theory of errors is contained in 

Gauss’s(1828) paper “Theoria combinations observationum erroribus minimis 

obnoxiae.' Gauss writes in this memoir that no matter how carefully the observations arc 

carried out, errors are unavoidable. Some errors may be random, others may be predicted 

and evaluated since these are cither constant or vary in a regular manner. The latter type of 

error is referred to as a systematic error. Gauss, however, points out that such a division of 

errors into two kinds is relative, and in many cases depends upon the problem at hand.

This paper of Gauss’s is devoted to the study of laws governing the distribution of 

random errors. Gauss proceeds with the most general assumptions concerning the 

probability density of the errors <p(x). Since positive and negative errors appear equally 

often. <p(-x)=(p(x). Next small errors occur more often than the large ones, hence the value 

of <|)(x) wjH be maximal at x 0 and diminishes constantly with the increase of x. Clearly, the 

value of the integral |<p(x)dx in the limits form x ~ -co up to x = +°o always equals I.

100
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ITie basic problem considered by Gauss is actually as follows: Let the variables y, Xj, 

\-. . l>c linearly related, i c v V", ( â x.., while the a., arc unknown. To deteimine these 

unknowns, the values of y, X"s i asxsr, r 1,2, ..., N, arc obtained from the experimental

data

Hut the experimental determination ofyr is subject to error. Thus, we actually obtain,

instead the value y„ the value //, y, i A, Given xM and the obtained values of tj„ it is

required to determine the best possible approximate values a. of the quantities as. According

to Gauss, these ought to be determined from the condition

I Nr=i ( n, - X"s=i a sxsr)2 = min. (3.13)

r/. arc then uniquely determined form the system of equations derived form condition (3.13).

The equation arc called normal equations and are of the form:

I " ,  I « s  I N, I X*. xir -  I Nr--i xi r , i 1,2...... n.

C ondition (3 .1 3 ) is m in im ised  if  the exp ression  in each o f  the sq u are  brackets van ishes, i.e.

/̂i iL s i a sxsr,

and the values of //, (r 1,2..... N) satisfy the system of the normal equations. The obtained

approximations cc* of the values of as arc free from systematic bias, that is, the mathematical 

expectation of a a, is equal to a,.

3.4.3 The Normal Taw in Number Theory

I he normal law in number theory, in comparison to pure mathematics, is 

studied by many scholars, namely, Erdos and Kac(1939), Kac( 1949,1959). Rcnyi(1955), 

Renyi and Turan( 1958), Kubilus( 1956), and others.

In order to analyze the properties of normal law in number theory we need preliminary 

definitions on basic concepts.

3.4.3.1 From Victa to the Notion of Statistical Independence

l ivery real num ber /, 0 < t < 1, can be w ritten uniquely in tire form

(3.14)
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where each r. is cither 0 or I. This is the familiar binary expansion of /. 

Since the digits r., are functions of /, and thus (3.14) can be written as

r.,(t) r.2 (t) e,(t)
1= z +— —  + — — + ...

2 ’ 22 *>3
(3.15)

With the conven tion  about te rm in atin g  expansions, the g raphs o f  r.((t), c2( t) ,  E j( t ) , . . . 

are as follows:

0  ---------------%..............  I 0 -------- 'A ........Vi-------Va........ 1

1 et the functions r,(t), introduced and studied by Radcmachcr( 1922) or known as Radcmachcr 

functions, be defined by the equations

r,(t) 1-2r.i(t), k= 1,2,3,... (3.16)
whose graphs look as follow s:

0

Now we can write (3.15) in the form of

Next, w e n o te  that

k i 2 k
(3.17)

and

Now'

J eix< ,-2l>dt =
sin  .v

.r

(D ,
i r  dt = cos tt

s'n r A  x 
I I cos - r  , 

*  k i

whose special case when x ji/2 is the classic al formula of Vida, that is,

2 ®
— ~ FI COS ■—rr ,
X n -l 2

assumes the form
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= lc l' " ' ,"d l -  }c xp (ix£  ^ ) d t -  n  COS 4 - =  n )c x p [ ix ™ - '- ld t -
•r o „  V k I 2 k /  k I 2 k lo ^ 2 k /

l
1
ok I ->k) I I cxp| i . a ‘ ‘ 1 |dt f [ ) cxpf ix ]dlfltcxpfix

k lo V

I his implies that

i i
v r

\n integral of a product is a product of integrals!

Using the above formulae the Vieta’s formula is connected to binary digits.

Let us consider the set o f/’s for which

r,(t) i 1, r2(t) -1, r,(t) - - 1.

The graphs of r,, r2 and r, indicate that the set, except possible for end points, is simply the

interval { |  - i!)

The length or measure of this interval is clearly j ,  and

j  = Vi • Vi• Vi .

This observation can lie written in the form

p jri(t)- 1 I, r2(l) -I, r^t) — 1 } = m{r,(t) - 1 1 ) p (r2(t) - 1 ) p{r,(t) -  - 1 )

where p stands for measurc(length) of the set defined inside the braces.

In general if 8|, 82 ......8„ is a sequence of +- I's and - l ’s then

M !ri(t) = -----r„(l) -  8„) M ir,(t) - 8,} p{r2(t) = 82) . . p{r„(t) - 8,,}

This may seem to be merely a complicated way of writing

(V2)" Vi x 'A x . . .  x V2 (n times),

but it expresses a deep property of the functions r,(t), and hence binary digits.

Now using this property we can prove that “an integral of a product is a product of integrals.”

} ( n
Jexn iZ c krk(t)
O v k i /

( ndt Z  exp'i Z c k8k(t)
8,. ,Sn v k-l

p {cj(t ) = 8, , . . . ,cn(t) = 5 „ }

Z ric-A {I p {rk(t) = 8k J = z  r ic iciRl p{rk(t) = 8k}
8, k I k-l 8, „..,8n k I

11 Z c iĉ  p{rk(t) = 8k) = H 
k I5, „ j5n k=l

f| dt.
0
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\ftcr this initial connection between I’icfa’s formula and binary digits next we turn to the 

theory of coin tossing The elementary theory of coin tossing starts with two assumptions: 

i) the coin is “fail” and (ii) the successive tosses are independent

I he first assumption helps iis to have cquiprabability[/> V-\. while the second is used 

to justifv the rulcol multiplication ol probabilities. That is if events A|,...,An are independent, 

then the probability of their joint occurrence is the product of (he probabilities of their 

individual occurrences. Thus, the functions q.0) can be used as mode! for coin tossing.

Next let us have a glossary for our model.

Probability 't heoretic Number-Theoretic

symbol II (Head) +

symbol T (Tail) -

kthtoss(k 1, 2 ,...) rt(t)(k 1 ,2,...)
event set of fis

probability of an event measure of the corresponding set of fis

probability theoretic r. v.'s number theoretic functions - f(n)

expectation of r.v.’s mean value of a function

M{/ (t )} = lim yp ] /(t)dt
n->Tr _ j

I he analogue of probability and number terminologies can be clarified through the 

following example

• find the probability that in n independent tosses of a fair coin, exactly l will be heads.

• find the measure of the set o ffs  such that exactly ^of the // numbers rj( t), r2(t)..... rn(l) arc

equal to i I.

I he condition that exactly t  among rt(t), r2(t), .... rn(t) arc equal to 1 is equivalent to 

the condition that

r,(t> i r2(t) i ... t r„(t) 71-n

Next we note that, for in an integer we have

2 71 %1 I imx dx =
1, m = (> 
0, in * 0,

<3. IS)
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After this initial connection between Virtu's formula and binary i/iyits next we turn to the 

thcorx of coin tossing The elementary theory of coin tossing starts with two assumptions: 

i) the coin is “fair” and (ii) the successive losses arc independent.

t he first assumption helps us to have equiprababilily|/» '/4|, while the second is used

to justify the rule of multiplication of probabilities. That is if events At....A„ are independent,

then the probability of their joint occurrence is the product of the probabilities of their 

indiv idual occurrences, t hus, the functions q,(t) can be used as model for coin tossing.

Next let us have a glossary for our model.

Probability Theoretic Number-Theoretic

symbol II (Head) i

symbol T (Tail) -

kthtoss(k 1, 2 ,...) b(t)(k 1,2,...)
event set o fl’s

probability of an event measure of the corresponding set of t’s

probability theoretic r. v.'s number theoretic functions - f(n)
expectation of r.v.'s mean value ofa function

M{/ (t )} = lim y f  J / (t )dt
n > *  . -j*

I he analogue of probability and number terminologies can be clarified through the 

following example:

• find the probability that in n independent tosses ofa fair coin, exactly ( will be heads.

• I ind the measure of the set of/’s such that exactly C of the n numbers r|(l). r (̂t). ..., r„(t) arc 

equal to +1 .

I hc condition that exactly l  among r((t), r.(t), ..., r„(t) are equal to I is equivalent to 

the condition that

r,(t) i r,(t) i ... I r„(t) = 2f - n. (3.18)

Next we note that, for m an integer we have

2* [
A  =o l

1, m = 0 

0, m * 0,
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Wm r |( l ) ' - 0 ,II von n

and is equivalent to saying that, for almost every t,

|jm g|(0 +  ••• + gn(Q _ i  
n von n

In other words, almost every number t has, asymptotically, the same number of /.cros and 

ones in its binary expansion. This is the arithmetical content of Borcl’s theorem.

Ifg is an integer greater than I, we can write

t = (t) mn{t)

8 g
where each digit ®(t) can now assume the values 0, I , ..., g - 1. 

For almost every t (0 < t < I)

F<k)(t) 1

()< t<  I,

nm
n * • e

where F*1,1 ( t) denotes the number of times the digit k, 0 < k < g - 1, occurs among the first n

n s.

From the fact that a denumerable union of sets of measure 0 is of measure 0, it follows 

that almost every number /,()< /<  1 , is such that in every system of notation, that is, for every 

g I, each allowable digit appears with proper and just frequency. In other words, almost 

every number is normal. A simple example by Champernownet 1933) is the number written in 

decimal notation

0 1234567891011121314151617181920212223242 . . .,

where after the decimal point we write out all positive integers in succession.

3.4J.3 A law of nature or a mathematical theorem?

In the study of the normal law in number there is a striking question of inquiry. Is 

Normal l aw a law of nature or a mathematical theorem? In order to have satisfactory answer 

let us define three important phrases, namely, the relative measure, the mean value of a 

function and linear independence of real numbers.

• The relative measure - I,ct A be a set of real numbers, and consider the subset of A which 

lies in (-T,T), i.c., A n(-T,T). The relative measure (A) of A is defined as the limit
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{A} = Jim —— n{A fl(-T ,T )} ,r-»« 1 I

if the limit exists The relative measure is not completely additive, for if A, (i. it I ),

i ±0, ±1, ±2 ,.... then

U A , } = 1,v I - )

while

X H„ (A, | = 0 .I

• The mean value o fa function - the mean value M{ l'(t)| of the function f(t), - oo < t < °o, is 

defined as the limit

M{f(t)}= lim -!-  J f(t)dt,
i ->® 2 1 . r

if the limit exists.

• l  inear intleperulence o f real numbers - Real numbers A.|, A.2, ... arc called linearly

independent or independent over the field o f rationals if the only solution (k|, k2, ...) in

integers o f the equation

k|A.| t k2A.2 + ... ~ 0 is k| = kj = kj = ... ~ 0.

Next let Xu A.!, ... be linearly independent, and consider the function

r- cos A..t + ...+  c o s l l  
f 2 -----

Let An(roi,o>2) be the set on which

ft). <

Vn

*— cos A., t +...+ cos A. „t
V2 -----

(3.19)

Vn'
< 0), . (3.20)

theorem HR{A(1(o>i,rt>2)} is defined and moreover that

iim pK {A„((!), ,(o2 )}=-4 = ( ” e v?/2 dy. 
" V271 '

I‘roof: Using similar notations used in Markov’s method we have

i f ( r-cosA.,t -K..+ cosA...t ^
Tr Jg, V2 ------ !----- -=-------- 2-  dt

t v Vn 2

. j
" -T ' Vn
, f r cosA.,f +...h

s w  Jg; J i — i— r
-T V Vn

(3.21)

(3.22)

+ cosA.nt
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w here ijH x) < g( x) < g,:' (x).

Furthermore,

i T <f n cos^ \ l *■•••+ cosXnl
—

dt

(3 23)

^  2T M o t )  2T I c x p  ( C0S- X |-t- +- / L
rr> L T X V n

+ cosX.nt
dl d£

where both (i r’(£) and (ir.'(4) are absolutely intcgrablc in (-co, oo). 

Now we prove that

lim 4f  lexp f i£,V2r >® . j  v
cosA.|t + ...+  cosA.nl

d t ^ v ( y f t - r )  (3.24) 
Vn/

where J„ is the familiar liesscl Function.

I.et us prove the theorem for n 2 since the proof for arbitrary n is exactly the same.

I.cttinu

and recalling that

n= V2 4 .V vn /

= Tg,' (x) e'^x dx.

we have

J _  1 in(cosX|t t cosX,t) , v  ( ,'r l) ( , r l)  1 [ k 1 , t■»T Jc * dt = 2-4 ---- — ---- rr Jcos A,it cos *•-
r k.tr-o kW t

t dt. (3.25)

Now. vve must find that

lim jc o sk X.,t cos^ dt = Nljcosk X.jt cos  ̂X7ti. 
T >or “ “ ' ’

It is known that

cosk X,t cos* X2i = (e,>,t+e

1 I k
-V - 7 1  z  ;2k V  r-n s-oWVs,

l) .i[(2r k)>.,-f(2s-0>.2]l

Mjeia,)=  lim ^r Je ial dt = 1 ’’
T-»or ~ t [ 0,

I, ra = 0

a * 0.

and



Because of linear independence,

(2 r-k)X.) + (2s - 1 )>./>

can be zero only if 2r = k and 2s = l. and thus it follows almost immediately that

( k t  ) • I fOM|cosk X,t cos A.2t = - 7- U 7 7  e\
2  \ 2 /2  \2  /

it both k and l are even and 0 in all other cases. We can write (3.26) in the form

(3.26)

(3.27)

(3.28)

(3.29)

M{cosk A.,I cos  ̂A.?t} = M{cosk A|t} m |cos  ̂A2tj, 

and combining this with (3.25) we obtain

M jc in(cos>.,t .cos>.2l) j  =  M jc incos>.,tJ M je "icos>.2l j

It is clear that

m (c"1cos,j } = 27 j c ir,cos0dO =J„(ti) 
o

and hence from (3.28) we get

.cosX2l)J _  | ( 2(n )

Thus we can consider (3.24) as having been proved. Letting T —> co in (3.22) and using 

(3.23) and (3.24) we obtain

.. . „ i f f  ,-co.sA.t +...+ cosAnt ^
< lim inf jy  Jg V 2 -------!------= --------- 2- dt

T-v» _t '  vn /
.. . f f  r- cos Alt +...+5 lint sup3Y jg V2----------- t—

T - * < * >  _7 V. v  n

v n /

...+ cos Ant
(3.30)

dt

It is well knowm that as r| —> + *>

J„(n) = 0
VM7

and consequently, for n > 3,
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is absolutely integrablc in This implies that lor n > 3

l i m i  Jg e (^)J0n(V2 -S-]d^ = l i m i  l < ^ ) v { V 2 ^ W
c >o .f. ' v n / r. >0 rt. '  v n /

and hence that

i f f  / - cosA..t + ...+ cosA.„t 'I , , ,
Itm 3t Js v 2 ------------7=-----------dt = M-r {An(c«>,,c«)2 )}
T-mo t v Vn /

exists Next (3.30) can be written in the form

2n ^(ir ^ ) Jo" f V 2 - i  d£ < M, {An(ro, ,co2)}
y v V n /

_j. v V n /

and one verifies easily that

lim W V ’f v ^ V  c ? 12.n -m v v n )

Hie proof of (3.21) can now be completed exactly as in Markov’s method.

If we look upon

q„(t)= V I— 1— r ------- s-
V n

;is a result ol superposition of vibrations wilh incommensurable frequencies, the theorem 

embodied in (3.21) gives precise information‘about the relative time q„(t) spends 

between o>, and (Ov That we are led here to the normal law

1 ©H
. 4 -  f = v * dy

nsiiallv associated with random phenomena is perhaps an indication that the 

deterministic and probabilistic point of view are not as irreconcilable ns they may appear 

at first sight

T4.3.4 I heorems of Normal Law in Number Theory

It is good to note that a number theoretic function /(n) is a function defined on the

positive integers I. 2. 3....; and the mean M{f(n)j o f/is  defined as the limit (if it exists)

M|f(n)J = lim K:Z f(n ) . n > '• N i. I
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If \ is a set of positive integers, we denote by A(N) the number of its elements among 

the first N integers.

if

. A(N)
lim .. =D !A |n-»« N

exists. it is called the density of A. The density is analogous to the relative measure, and 

like relative measure it is not completely additive. Consider the integers divisible by a 

prime p. The density of the set of these integers is clearly Up. Take now the set of 

integers divisible by both p  and q {q another prime). To be divisible by p and q is 

equivalent to being divisible by pq. and consequently the density of the new set is Upq. 

Nou Upq = Up - |/<y, and we can interpret this by saying that the “events” of being 

divisible by p  and q arc independent. T his holds, of course, for any number of primes, 

and we can say, using a picturesque but not a precise language, that the primes play a 

game of chance! This simple, nearly trivial, observation is the beginning of a new 

development which links in a significant way number theory on the one hand and 

probability theory on the other.

The fact that \-(m), the number of prime divisors of ///, is the sum

I P Pv(»0 (3.31)

of independent functions suggests that, in some sense, the distribution of values of v(m)

may be given by the normal law. This is indeed the case, and in 1939 ErdOs and Kac 

proved the following theorem;

Eet Kn(o)|,o>2) be the number of integers m, i < m < n, for which

log log n + or, J\og log n < v(m) < log log n + o>2 J\ag log n (3.32)

then.

f  ii ( « |  , ( ’A ) 1 f">.' -v’ /2 iI'm ----- -------= -/= = L  c y dy.n >'n n 4Yn~
(3.33)

Because of the slowness with which log log n changes the result (3.33) is equivalent to 

the statement:
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1081

there arc several difTcrcnt proofs of this result, hut all of them are long and not

elementary in their approach Next we will follow classical result of Landau

ll ~.(n) denotes the number of integers not exceeding n having exactly k prime divisors,

then

| );log log n I c>, Tiog log n '  iin) < log log n I r», t. c ' ?dy. (3.34)

*k(n)~ (log log n)k 1 . |known as Landau’s theorem] (3.35)(k -  I)! log n

For k I, this is the familiar prime number theorem; for k >1, (3.35) can be derived from the 

prime number-theorem by entirely elementary considerations.

Now

K,>(0)1,(O n )  S  7lk(n),
log  log n  ̂ o)| ^/Fog log n <  k < log  log n f  ro2 ^/iog log n

and hence one might expect that

kn(0)|.0>, )

(3.36)

n l°R n /L __ (log log n) (3.37)
1°S l°C *' 1 ">| / o g  log n ”■ k log toy n i cij /lo g  log n (k-l)l

'sing Markov’s method, i.c. by proving Laplace’s formula, namely,

lim c
N -Vr*

I x k
\lo,n/\ k <\IWn\/\k! -J27T 0|

I? 2 e_yZ/2dy

and setting

we can obtain
x = log log n ( c * = 1  /log n), (3.38)

1 K  -v>/2 , o o ,----- ------ j =  J e dy or (3.33).
n -J2n -■

furthermore, let's prove (3 .16) by letting Kn(o>,,o)2) he the number of integers ///, 1 < m 

< n, for which

\'(m) < log log n + y]log log n ,

and setting

<r„(o>)= K„(o))/n.

ll ,s clear the is a distribution fund ion. and

(3.39)
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l
n log log n

If wc use the precise estimate

X(v(m) - log log n)̂  -  J"(i)2dcrn(ro). (3.40)

I
L  -  = log log n + C + n„. r.n -> 0 ,

V '  M |> P
(3.41)

then the argument that says .almost every integer m has approximately log log m prime 

divisors gives

l im f > 2clan(<o)= 1 = —7= £ y 2e v' /2dy (3.42)

We have also

and hence

n
Iim ==■;■■ = -  Z (  v ( m) - log log n) 0, 

log log n m*l

lim £m  dcrn(oi) = 0 = —i = £ y V >?,2dy.
-yJlK

(3.43)

Hue could prove that for every integer k >2

it would follow that

for every ^ and hence that

Iim fV d a „  (o) = —y—  £ y ke ' ’ :dy.
n-v« yJ2n

lim.(„ci5mdan((o) = e ‘,'/2

(3.44)

lim an(«») = -<==--£c v' 3dy. (3.45)

I his. in view of (3.39), is nothing hut the theorem. Proving (3 .44) is, of course, 

equivalent to proving that

“ 2 ^  iog „)w ? ,(wm) ■ 108108 n)l ■ y b J :v ‘c ’’ ’dy- (3 4fi)

<ind this in turn depends on asymptotic evaluations of sums

pi, n ." 11 Pi, •••P i,

I his. remarkably enough, is not at all easy, but I lalberstam succeeded in carrying out the 

proof along these lines. This approach, without doubt, is the most straightforward and
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closest in spirit to the traditional lines of probability theory. The ultimate triumph of the 

probabilistic method in number theory came with the proof by Renyi and Turan that the

error term

K (or) 
n ■JTjt

fcc *' Mv

is of the order of

1

J\og log n

Ihat error is of order (log log n) was conjectured by I.c Vcque by analogy with similar 

estimates in probability theory - the primes, indeed, play a game of chance! for 

references to the work of Davenport, Erdos, Erdos and Kac, llalberstam. and Schoenberg 

and furan we can confer to articles of Kac(1949), Kubilus(l956), and Retivi and

Tur&n( 1958).

1 he above theorem can be re-written in the following format:

Using (3.34) and from the fact that M|o>(n)-v(n)} < oo, deducing first that the 

density ol the set of integers for which ro(n) -  v(n) > g,„ gn—> oo, is 0, we can get the 

result that

I), 2 >"P|nP'' + w, 7^8 log n < ^ n ) < 2 Iop 1op n + /̂log log n , _  _ J _ J »
G V

'shore d(n) denotes the number of divisors of n.

3.5 Some Characterizations of the Normal Probability Law

I he characterization ol a distribution is the investigation of those unique 

properties enjoyed by that distribution. Mathai and Pederzoli (1977) have compiled and 

pm together their studies with recent research papers and published in a form of a 

Monograph. In their monograph entitled “Characterization o f  the Normal Probability 

, (>v- dealt thoroughly with the highly mathematical topic of characterization and 

,n> 10 mot'vatc students to undertake research work in this area. Thus the material is
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developed from the very elementary level to the research level. Indeed, they work is 

interesting; through presenting different levels of exercises invites us to undertake 

serious research works.

There are properties that will uniquely determine a normal distribution, that is to 

say. the normal law is the only distribution to enjoy such properties. Investigation of such 

properties and the determination of the resulting distributions arc known as 

characterizations o f distributions.

There arc two distinct methods developed one following the other: (i) the 

functional equation method, and (ii) the axiomatic approach.

The functional equation method is developed to its present format by Kagan,

I innik and Rao (1973). In their method they developed techniques in characterization 

problems as follows: (a) Use the properties and derive a functional equation. Then solve 

the functional equation for a unique solution by imposing additional conditions if 

necessary, (b) Use the properties to derive a difference or difference-differential 

equation, and then seek a unique solution for it. (c) Use the properties and analyze some 

general structures to classify or separate certain distributions.

I he axiomatic approach is advanced by Mathai and Rathie (1975,1976). The 

axiomatic approach to characterization of normal law proceeds as follows: An axiomatic 

definition is provided for a basic concept itself such as variance, correlation, entropy, 

affinity, information and the like. In problems of this nature a few postulates arc put 

forward and the resulting concepts arc uniquely determined, thus providing axiomatic 

definitions for these measures. The main techniques used in the characterization of basic 

concepts arc also the same as the techniques used in the characterizations of probability 

laws. Generally, moment generating function- A7x(t)- and characteristic function- ^x (t)- 

play a great role, i.e under certain conditions these determine the corresponding 

distributions uniquely through the uniqueness of properties of Laplace and Fourier
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transforms respectively. Matluii and Pcdcrzoli(1977) remark that historically, the basic 

concepts are introduced mainly on the basis ol intuitive or heuristic considerations.

As a result of the above methods, normal distribution is charactcri/ed through 

linear independence (Darmois.1951; Basil. 1951; I.innik,l952; Skitovich,l954), linear 

and quadratic independence (I.aha, 1956,1957; Chanda,1955; I .innik, 1956;

(inrdon.1968; Gordon and Mathai, 1972; Mathai,1977), regression properties (l.aha and 

I ukacs.1960; Zinger and I.innik,l964; Mathai, 1967; Gordon,1968; (Jordon and Mathai, 

1972), by solutions o f  certain functional equations (Rao, 1967; I .mink, 1960, Zinger and 

l.innik, 1955), from the Student's law (Mauldon, 1956; Kotlarski, 1966), structural set­

up l Mathai. 1967; Palil and V. Scshadri 1963,1964), maximization principle and other 

miscellaneous techniques (Mathai, 1977; Mathai and Gordon, 1972).

3.5.1 I he Functional Kquation Method

3.5.1.1 Characterisation through structural set-up

Characterisation through structural set-up depends mainly on the conditional

densities, that is. if (X.Y) is a stochastic vector and if f(x,y) is the joint density then 

= g(*/y) h(y) where g(\/y) is the conditional density of X given Y and h(y) is the 

marginal density of Y. F.vcn though in general, by knowing the conditional density of X 

the marginal densities of X and Y can not be determined, but in certain cases if we know 

the conditional density has a certain structural set-up then the marginal densities arc 

uniquely determined by this structural property.

Before giving the general characterisation theorem for the linear exponential

family of distributions let us see the basic definition: 

It a stochastic variable X has the probability function

f(x)
a(.\)c°N 

' g(0)
0

for x g S, g(0) > 0, 0 g 

, clesewhcrc

where S is a subset of the set of real numbers and g(0) is the normalising factor, that is,

g(0) -  fs a(x) e A



where S denotes the integral or summation depending upon X is continuous or discrete 

and i l  is some parameter space, then \f(x), OeQ} is said to be a linear exponential 

family o f  distributions. Binomial, Poisson, logarithmic, normal with location parameter, 

negative exponential, gamma with one parameter Ixdong to the linear exponential family 

of distributions.

Next follows a general characterisation theorem for the linear exponential family 

of distributions:

l-ct X, X|........ X„ be independent non-degenerate continuous real stochastic

variables whose probability functions do not vanish at the origin. Let the conditional 

distribution of X given

x,......Xn.| , X + X| f  ... + X„ have the structural form C(x,z) where Z = X +X, L..+ Xn.

l-ct the conditional distributions of X, have the structural forms C,(x„ /.) for all i and for

every subset. lfC(x,z) is such that,

C(x,z) C(x, ,z) ... C(xn,z) C(0,z) _ h(x) h(x,)... h(xn)
C(0,z)C(0,z)... C(z,z)C(z,z.) = h(z)

for some non-negative function h(x) then X, X|, ... , X„ all belong to the linear

exponential family and further X|, ... , Xn arc identically distributed. As a corollary to

this result a characterisation for the normal distribution can be derived. Let X, X|, ... , Xn

he as defined in the above theorem. Let C(x,z) = const. expf-(x-z/2)2/ 2a 2]. Then X, X,,

,X„ are identically normally distributed.

3.5.L2 C haracterisation through independence of linear forms

Characterisation of normal distribution through independence of linear forms is 

advanced mainly by Darmois( 1951), I3a.su (1951), Linnik (1952). Skitovich( 1954) and 

others. Next wc will state the two important theorems of characterisation of normal 

distribution through independence of linear forms.

• let X|, ... , Xk be a set of independent, but need not be identically distributed, 

stochastic variables and let U = a,X, + ... + akXk and V = b,X,+ ... + bkXk where

117
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the a s and b's arc constant. If U and V arc independently distributed then X, for 

which a,b, *0 is normally distributed.

• let the linear forms X '^ x ,  and ,b Jx| converge with probability one to the 

stochastic "variables U and V respectively. Let U and V be independent. Let the 

sequences \o/ht, «,/>,*()| and \h /nr «/>, ^0}be both bounded. Then for every j for 

which a,/?, *0, X, is normally distributed.

3.5.1.3 Characterisation through independence of linear and quadratic forms

It is clear that if we have a simple random sample of size n from a normal

population, then the sample mean and the sample variance arc independently distributed. 

With respect to the characteristic property of normal distribution the following theorems 

depict the behaviour of sample mean and sample variance.

• let (X,. ..., X„) be a simple random sample from a population with distribution 

lunction F(x) and characteristic function <j>(l). Then the sample mean X and the 

sample variance S2 are independently distributed if and only if the population is 

normal. This theorem was first proved by Gcary(1936) and later by I.ukacs(1942)

• A necessary and sufficient condition for the independence of a linear statistic L and a
quadratic statistic Q, where I. a,X, f  ... i a„Xn and Q 'X L x f - L 2 with X i',a 2 = l 
and with (X |......X„) a simple random sample of size n from some population with

distribution function F(x), is that the population is normal.

• Let (X |,..., X„) be a simple random sample from a population where the second moment 
exists. Let L X,i ...iXn and Q -  ZT=|X Jn=1a jjXi Xj. Let B, Z |V ii  * °  and

’*2 X"-|X"^i a,j = 0.
Ihen, Land Q are independently distributed if and only if the population is normal.

3.5.1.4 Characterisation through regression

IF X and V have a joint bivariate normal distribution then the regression of X on 

Y. that is, the conditional expectation of X given Y, is linear in Y. Next, we can note that 

linear regression with some properties of conditional variance implies normality. This 

result is verified in the following theorems.
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• l,ct (X!..... X„) be a simple random sample from a population with finite variance o2.

l=Xl+...+Xn a n d Q = I 1" lZ ln 1a ilXi Xk < Z " ,b jXj .

and lei B, I * ,a s * 0 , B, I " , Z" , a jk = 0 and It, Z " , b, = 0  

Then the population is normal if and only if () has a constant regression on /..

• let X | , X n be independent stochastic variables with finite variances. Consider the linear

forms 1.1 — a|X| • *  a„X„ l ,2 bfX(t ... • b„X,i with a,b, -* 0 for j I, ... n. Then

l-(l.,/l.i) a  i |!l.i and var(l.|/l.2) a „ (coslant) if and only if

(a) the x, for which b, * (5a, arc normal and

(b ) p = (Z 'a , bj a 2,) /(Z ' a2j a 2j), a 20 = Z ' (b, - b a ,)2a 2,

where a 2j - var (X,) and Z' indicates that the summation is taken over all j for which 
bj * Pa,.

3.5.1.5 Characterisation by solutions of certain functional equations

As introductory clue and guiding results there are, among the many theorems, two 

important theorems, which use this approach for the characterisation of normal law, 

namely, Darmois-Skitovich(1951,1954) and Rao(l967). The former imposes a stronger 

condition of independence of linear forms, and states that if two linear forms, 

a:X|+...+a„Xn and b|X|+...+bnXn where a,bj *0, i= I, ..., n of independent stochastic 

variables X u ..., X„ are independently distributed then X|, ..., X„ arc normally 

distributed. While the later applies a weaker condition that the regression of one linear 

form on the other is zero, i.c., K(a|X,+...-t a„Xn / b|X,+..+bnXn)=0.

Furthermore the following theorems vividly represent the characterisation of 

normal law by solutions of certain functional equations deduced by Rao( 1967):

• l et XN X2 he two independently and identically distributed stochastic variables such 

that F.(X|) ~ 0. Let there exist linear functions a,X| + a2X2 and b,X| + b2X2 where 

a,.b,* 0 , i=l ,2 . such that

E (a ,X , 4 a 2X / b , X ,  4 b2X J  = 0

and | b2/b ,| < I . Then,

( i)  lf |a2/a j< l or if Ia2/a J ~I and I b2/b|| < 1, then X(,X2 have degenerate distributions.

(ii) If F(X|2) <oo, a|h| t a2h2 0, and I b2/ bj <1, then X(, X2 are normally distributed.
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• l et X,...... Xn he independently and identically distributed stochastic variables such

that RX,) = 0.

le t.

U  a ,X ,  l ... t a„X„

and

V- h,X, i ... i h„X„

such that H(U/V) 0, | bj > max ( I b j , .... I bn.J ) and a„ *0. I.ct H(X|2) <on, £ a,b, = 0 

(or E(X|‘) * 0 ) and (a,h,/ a„bn)<0 for i I,..., n-l, then the Xj arc normally distributed.

• Consider the following conditions

(i) a, *  0, i= l,2 ......n,

(ii) b, and c, are not simultaneously zero for each i,

(iii) b, * b, for i and j such that b„ b,, Cj, Cj are all different from zero,

(iv) all a, defined arc of the same sign and all ft, defined arc of the same sign.

Ihen i:(U,/U|.l)1) = 0 implies that X|..... X„ are all normally distributed.

3.5.I.6 Characterisation from the student's law

This procedure is mainly advanced by Kotlarski (1966).

 ̂(X0.X1.....X„) (n>l) is a random sample o f size n 1 / from a normal population N(0,a2)

then it is well-known that

Xp/i

M
• Y2 =- X,V2

Vx«,2 >x,2 'Y' J x j T x f T x J ... ■" Vx02 + X,2+...+Xn ,2

are independently distributed as student-t variates with 1 ,2 , ..., n degree of freedom

respectively.

X,V3
Y =*•••» 1 n

X„Vn (3.30)

Kotlarski(1966) showed that, when n>2 , the above independent student variates

characterise the normal variates X„.X|..... X„ under some conditions on the distributions

ol X„.X...... X„. It is good to note that if a stochastic variable X is symmetric about the

origin, the distribution of X is uniquely determined by the distribution of l J~X\ That is, 

•here is a unique correspondence between the distributions of IJ and X when X is 

symmetric about the origin. Furthermore, if X„, X |, ..., Xk are normal variates with zero
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mean and with the common variance o then evidently IJ, = X, , i-O.I, ..., A have the 

gamma density function.

f(u)--
u 1/2

Cfy/2n
0

e'(,l/2<1 ) for u > 0

clesewhcrc, for all i^  0, 1, .... k.

// is theorem is as follows:

• let Xu.Xj......  X„ be n+l real independent stochastic variables (n>2) such that

P(X|H)) =0 , k~(),I..... n and having distribution symmetric about zero, then the

necessary and sufficient condition for X<>,X|, Xn to be identically normally 

distributed as N(0,o~) is that Y|,...,Y„ of (3.30) are independently distributed as 

student-l with 1,2, ..., n degree of freedom respectively. This theorem can be stated in 

terms of U,..... t J„ as follows:

l et U,„ IJ|, Un be n  ̂ 1 real independent positive stochastic variables (n>2). Let

V|=U,/U,b V2= IJ2 /  U„+U,, Vv= U, /  U0+U,+U2.......V,= Un /  U„+U,+... +Un.,.

Ihen a necessary and sufficient condition for Uk, k = 0, I, n to be identically 

distributed according to the density

f „->'2
e ’*" 2"’' for u >0

f( u) = 1 ay[2n)
(o , clesewhcrc, for all i= 0, 1, ..., k.

is that V,, ...Vn arc independently distributed according to

'k + 0

v 1,2 (1 i v)"k'" 'z for v > 0<k • I)/2

P | ,
« - v L

0 , clesewhcrc,

correspondingly.

It must be noted that there are other methods for the characterszation of the 

nonnal distribution Maximum likelihood characterization, characterization through 

admissibility of estimators, characterization through sample variance and so on. We note 

that since the variables Yk, A^l.2,..., n in (3.30) arc symmetric about the origin the 

distributions of Yk arc uniquely determined by the distributions of Vk=Yk2/A
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i/M.2,.. .n). When Yk is student-t with k degrees of freedom then Yk lias an F- 

distribution with 1 and k degrees of freedom and further, Vk = Yk2/ k has the density

1/2 (I i v) ^ " 1'1 for v > 0

3.5.I.7 Characterisations of the multivariate normal law

As Mathai and Pcdcr7.oli( 1977) and Rao (1973) verify most of the above results 

(section 3.5.1.1 up to 3.5.1.6) can be extended to cover the multivariate normal 

distribution. There is also one basic result which allows us to transform a 

characterisation problem on the multivariate normal to one on a univariate normal. That 

is, with the help of this result, which is due to Cramer(1937) and Wo!d(1938), many 

results of univariate normal can be generalised to the ease of the multivariate normal and 

vice-versa: The result states that the distribution of a /^-dimensional random(stochastic) 

variable x is completely determined by the <we-dimcnsional distributions of linear 

functions t' x, for every fixed real vector t.

This result in the case of normal distribution can be stated as follows. For an 

arbitrary' real px 1 vector of constants t if t ' x has a univariate normal distribution, then x 

has a/7-variate normal distribution.

The following theorem is a generalisation of the theorem in section 3.5.1.1, 

characterisation through structural set-up, on the independence o f  linear forms(statistics) 

m scalar variables.

Let XN ..., Xk be mutually independent vector stochastic variables each of order/?. 

1 hat is if we have X| then its transpose form X ,' = (X n,X i2, .., X)p) where Xlj, j = l , ..., p 

are scalar stochastic variables. Let A ,,..., Ak and B |,..., Bk be pxp non-singular matrices. 

Let us consider L, = £}., AjX, and L2 = Z,k-, B,X,.



■

• If the linear statisties L| and l ,2 are independently distributed, then each vector 

X,( -  I,..., k) has ap-variate normal distribution

The following theorem corresponds to the characterisation of the univariate normal 

th rough  regression, and is helpful in extending a number of results on the univariate 

normal to the case of multivariate normal.

• I et X, Xu X„ be n+1 symmetric stochastic matrices of the same finite order. Let
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<WT.T„.....

where T, T,, ..., T„ arc square matrices of the real constants. Let P(X,.... Xn) and

(XX,....X„) be polynomials in X u ..., Xn of degrees p and q respectively.

Further let

P(«X..... iXn)= ir' ,P(X1,...,Xn)

and

let

Q(iX, —  iXn)= irQ(X,, ..., X„) for some r> l. 

b(X, X,r' ....X,r") for r,+...+ rn< p

and

F.(Xi‘ '....X„‘") for S| +...+s„ < q exist.

I hen the necessary and sufficient condition for the regression of X on X|,...,X„ to be 

of the form

R(X/ X!.....Xn) P(X,....... X„) = Q (X ,,..., X„)

for all given X|..... X„ is that

• A p( —
0 '

_f7rrIflT, - ’5Tn>

. d  D<P
where —  q>=-----  and

cfT r7T

<I>(T,T, ,...,Tn)

( a Y

= Q
-J r=o

\3T, .....6T J *(0,T „....T .)

i r j  ‘ w ; for i 1......a



I he following two characterisation theorems can help us to obtain a number of similar 

characterisation theorems

• let X,. .... X„ he a set of n independently and identically distributed stochastic 1 xp 

vectors, each with Unite l\(X). I (X'  X). and I (XX' X) Suppose that.

npr A|=0, n(iH-|)3,-2A|Ai 0. n(n’-nH j|l, - A, - A2- A, -A,=0. C’-n[*,=a(iV(l, -A, - 

A:)*0 where o = X1’ , o M. Then, in the class of populations whose characteristic

functions arc pseudo-analytic of type I of the vector variable T, a necessary and 

sufficient condition for S  to have cubic regression on /, is that the pupulation be 

multivariate normal with characteristic function,

<l>( I ) exp | ipT’ - T( l/p)(crl)T] 

where S = 2 j,k,nia|lniXjXk'X„, + Z;_, CjX, and l,= Z"_, c,Xj.

• let X,, ..., Xn be a set of /? independently and identically distributed stochastic \xp 

valors, each with finite I(X). I (X' X), and i:(XX' X). Suppose that,

n|h-Af 0, n'f^-A.-Aj-O, n(nJ-nH )flr Ar A2-Ar A,=0, (C-n|J,)l=n(n+l )pr 2Ar A ,)I  *0.

ihen, in the class of populations whose characteristic functions arc pseudo-analytic of type II

0 the vector variable I , a necessary and sufficient conditon for S to have cubic regression on

1 is that the pupulation be multivariate normal with the characteristic function.

(I>(T) = exp [ ip 'F  -(I/2)T Z T ' | 

where X is a constant multiple of the identity.

3.5.2 Other Types of Characterizations

1 he above methods follow the first type of characterization, that is, the main 

technique used in this kind ol characterisations is to employ the property so as to arrive 

al somc differential equations, functional equations or some structural forms then obtain 

unique solutions of them.

Hie second type of characterization problems in statistics are characterisations of 

hasio concepts such as varaincc, covariance, correlation, entropy, affinity etc. These
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characterisations lead to axiomatic or mathematical definitons of these basic concepts. In 

order to use this method first it is required to define tire various information and 

statistical measures, and then to list their general and particular properties, respectively, 

then we can discuss the solutions of some functional equations which are useful for the 

characterisation of the various information and statistical measures, namely, functional 

equations in one variable, and two or more varaibles.

Characterization Theorems

There are many characterization theorems for information and statistical concepts. 

Ictus define the concept of entropy: The entropy o f the distribution P, in information 

measure, is defined as HII(p,,...,p„)= -X ", p, log p, . An important special ease of this 

definition for n=2  is defined as entropy function, ll2(p, 1- p) = - p log p - (l-p) log ( 1-p) 

forpe[0,l|. The following are some of them deduced by Mathai and Rathic (1975,1976):

• Shannon’s noiseless coding theorem states that the minimum of Zp,n, is the entropy

Hn(Pi....p„) with equality iffn,=-log p, for all i. Here p i , ..., pn are the probabilities of n

input symbols x , , ..., xn where X; is represented by a sequence of n, characters from the 

binary alphabet. Also it is assumed that n,’s satisfy the inequality 1 2"’ < 1.

• If the function /•*„ satisfying the postulates

(•) 1 n(Pi* • Pn) is a continuous function of its variables,

hi) 1*n ( bn ......1/n) is a monotonic increasing function o f n,

(iii) F2(Vi ,'/i) =1, normalization principle,

,iv)Fn(Pi,.... Pn) Fn(Pai, -,pan), for every arbitrary permutation |a lv..,an! for {l,...,n),and

Til Pi. ..., Pm i. p,„q i, Pmq?, .... Pmiln m11) 11ni( pi, ..., p,i,) i Pm f iurnm (qi. q?......qn-m*■ I)

where X", p, = I and X"-f " q, = U then it is uniquely determined by the definition of 

entropy, in infonnation measure, that is,

' I UP.....Pn)* -X ", P, log Pi-

• The postulates (i)Fn(Pl..... pn) Fn (P;il.......p,„), (ii)Fn(p,.......pn) - Fn., (p,+p2, p,......p„) +

^Pi. P:) F2(P, /(pi, p,), p2/(p,, p2)| with A(pNp2) = pi i p2, (iii)F2(p, I- p) - I.ebesgue
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mtcgrability in |0 ,1 |, and (iv) F2( ,/2, ,/2)~I, normalization principle, imply 

I Up,. .p„) - Z " , p, l«>f. P. and conversely.

• li the functions l „:Sn —>R, (n 2,3....) satisfy the set of independent properties 

(|) I'ntPl......Pn) f'n ( Pa I..... P.J,

(II) Fn(pi.....pn) l'nM( p i , P,„ 0), expansibility or zero-indilTerent,

ni) for P, R, UeS„ and Q, S, V eSm, Fmn( p ,q ,» p mqn) -  Fn(p ,,.... p,„) + Fm(q,..... qm),

the principle of additivity,

(iv) forp,> ZT, Z-^p,, = I, n. m >2, Fmn(p ,...... ........p„,i , ..., pmn) < Fm(Z " , Pij......

Z", p,„j) -> Pn( Z r ,  p,i, • ,Z,"'| Pin), rule o f sub-additivity, and

(v) Vi(V2,Vi) I, normalization principle, and lim F2(p, 1 -  p) = F2 (0,1)p-»0* *
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then, Fn is uniquely given by

 ̂ Pi*** -,p„) - Z m  p, log Pi.

UfflVFPSfTY or NA!?r 
CHIROMU LIBRARY

• l.ct /»|... ,«N satisfy the inequalityZ,\2 < I, then

I ' log(Z,N|P, 2'"' > H „.„(P i , - - - ,p N), where a  -  ( l+ t)'1, 0 <  t < oo.
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Chapter Four
THEORY OF NORMAL DISTRIBUTION 

IN HILBERT SPACE
4.1 DAVID HILBERT: Brief Life History, Works and Contributions

4.1.1 Brief Life History

David Hilbert was bom January 23, 1862 in KOnigsberg, Hast Prussia- Germany, 

lie attended KOnigsberg from 1882 to 1885, when lie received his doctoral degree with a 

thesis on the theory of invariants. It was there that he established a life-long friendship 

with II. Minkowski He was l.ecturer(Assi. Prof) 1886-1892, associate professor 1892/3; 

and in 1892 he became a professor at the University. lie married to Kathe Jerosch in 

1892 and got a child named Franz, and in 1895 he was appointed to a professorship at 

the University of Gottingen, a position lie held until his death, February 14, 1943. 

Incidentally, we note that Gauss( 1777-1855), f>irichlet( 1805-1859) and Riemann(l 826- 

1856) arc all associated with the University of Gottingen. The authoritative biography of 

D Hilbert is written by Constance Reid, student and life long colleague; he wrote two 

biographical sketches: the first appeared in the 1922 Natunvissenschqften and the second 

at the end of the collected works( 1970).

4.1.2 His works and Contributions

lie obtained his basic theorem on invariant between 1890 and 1893 - that all 

invariant can be expressed in terms of a finite number, and hence he modified the 

mathematics of invariants; and next began research on the foundations of geometry and 

the theory of algebraic number fields. Concerning the former, he published Gnmlogen 

(hr Geometric (first edition 1899), in which he gave the complete axioms of Euclidean 

geometry and a logical examination of them. Concerning the latter, he systematised all 

the important known results of algebraic number theory in his monumental Zahlbericht



1 2 8

! S97). In Number theory, he enunciated his significant conjecture on class field theory. 

\ substantial part of Hilbert’s fame rests on a list of 23 research problems he enunciated 

at the international congress of mathematicians held in Paris in 1900. In his address,

I he Problems of Mathematics,” he surveyed nearly all the mathematics of his day and 

endeavoured to set forth the problems he thought would be significant for 

mathematicians in the 20 th century.

Between 1904 and 1906 he conducted research on the Dirichlet principle of 

potential theory and on the direct method in the calculus of variation. Around 1909 he 

established the foundations of the theory o f  llilbert spaces - infinite-dimensional space; 

a concept that is useful in mathematical analysis, quantum mechanics and relativity 

theory. Mis works in the integral equations about 1909 led directly to 20th century 

research in functional analysis- the branch of mathematics in which functions arc studied 

collectively. Also lie proved in 1909 the conjecture in number theory that for any //, all 

positive integers arc sums of a certain fixed number of n '  powers -  e g. 5 = 2 2 + 12, in 

which rr= 2.

After 1910 he was chiefly involved in research on the foundations of 

mathematics, and he advocated the standpoint.of formalism Making use of his results on 

integral equations, Hilbert contributed to the development of mathematical physics by 

his important memoirs on kinetic gas theory and the theory of radiations, lie addressed 

the citizens of the city of Konigsberg in 1930, after receiving his honorary citizenship, 

entitled by “The understanding of Nature and Logic”; and his last six words “we must 

know, we shall know” sum up his enthusiasm for mathematics and the devoted life he 

spent raising it to a new level. Indeed, by founding the formalist school of mathematical 

philosophy, contributing to many branches of mathematics, and presenting many 

illuminating mathematical papers. I le is one of the greatest mathematicians on the first 

half of the 20 th century.
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The Gesammelte Abhandhmgen, 3 Vo!s., 1932-5 (reprinted 1965, second edition 

1971). contains almost all of Hilbert’s papers, ineluding Zahlbericht, there arc also 

assessments of his works by other mathematicians. His Biography is written by his 

student and life long colleague Constance Reid(l996), first appearing in 1922 

Satunvissenschaflen and the second the collected works. Herman Weyl, Hilbert’s 

leading student, in his article “Obituary Notice,” Bull Am. Math. Soc. 50(1944), pp.612- 

654. gives a definite assessment of Hilbert. Also Gedenkband{ 1971), edited by Kurt 

Rcidemcistcr, contains some previously unpublished papers of Hilbert and the recording 

of his 1930 speech.

4.2. Fundamental Definitions, Properties and Axioms of Abstract
Hilbert Space

4.2.1 General Remarks

I he theory of Hilbert space arose from problems in the theory of integral

equations. Hilbert noticed that a linear integral equation can be transformed into an

infinite system of linear equations for the Fourier coefficients of the unknown function.

He considered the linear spaced  consisting of all sequences o f numbers {.*„} for which
•

i I Yn I is finite, and defined for each pair of elements jt={jrn|, jp={v„} c Z2 their inner 

product as (.r.y;) = 2“ , xn y „ . The space can be regarded as an infinite-dimensional 

extension of the notion of a Euclidean space. In fact, Hilbert space is a direct 

generalisation of Euclidean space; hence, its “geometry” comes closer to Euclidean 

geometry than in the case of any other Banach-space. It possesses a great many of the 

properties of Euclidean space not possessed by Banach-spaces of general type.

A Hilbert Space is a Banach space whose norm has the parallelogram property. 

Any normed linear space over the reals which is complete in the topology determined by 

the norm is called (real) Banach space. From the definition of Hilbert space, it follows
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;hat an> Banach space will be a Hilbert space provided that there is an inner product 

defined satisfying |f |' = (f, f)

The question immediately arises as to whether or not all Banach spaces are 

Ihlhcrt spaces: or is it always possible to define an inner product in a Banach space? We 

can settle this as follows. If there is to be an inner product, then

Thus the relation (4 1) for all/  g  in the space is a necessary condition for the 

Banach space to have an inner product. It can Ik  assumed of the condition (4.1) as a 

generalisation of the F.uclidean theorem that in any parallelogram the sum of the squares 

on the diagonals is twice the sum of the squares on two adjacent sides. If this is not valid 

m the Banach space K. then it is not possible to define an inner product on K. This 

allows us to show that Av is not a Hilbert space for p*2. The Banach space of norincd 

linear functionals on a Banach space is said to be its adjoint; but a Hilbert space is 

adjoint to itself.

Rics/.( 1955) considered the space of functions now termed / r space and 

succeeded in giving a satisfactory answer to the Fourier expansion problem. Abstract 

llilhert spaces were introduced by von Neumann(l929). In his book, von 

Neumann( 1932) established a rigorous foundation of quantum mechanics employing 

Hilbert spaces and the spectral expansion of self-adjoint operators. Wcyl(l944) later 

justified the Dirichlct principle of Riemann by the method of orthogonal projection in a 

Hilbert space, and thus paved the way for the funcitonalytic study of differential 

equations. This has enabled functional analysis to be developed far more widely and 

completely in the context of Hilbert space than in the context of general normed spaces,

llr + g f = (r + IT f + g) = (r f̂)+ 2(f,g> + (g,g) 

If -  g f = (f -  e .f -  g ) = ( f , f ) - 2(r,g)+(g,g)

so that on adding

(4.1)
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that Hilbert space theory has grown to be an important independent branch of 

functional analysis with its own results and methods.

4.2.2 Definition 

a. Fundamentals

Before giving the axiomatic definition of I filbert Space it is preferable and logical 

to deal with the fundamental elementary properties of functional analysis, namely, linear 

spaces, scalar product and some topological concepts.

4.2.2.1 L in ea r  Spaces

A set R of elem ents/ h..... [also called points or vectors] forms a linear space

if (i) there is an operation, called addition and denoted by the symbol +, with respect to 

which R is an abelian group;

(ii) multiplication of elements of R by (real or complex) numbers a. /?, y,... is defined as that 

a (f*g) ~ orf+ ag, (a  +{!)/- a f+  ( i f  a ( 0 J ) = ( a p ) f  \ . f  f  0 / = 0 .

Elements/,. / , . . . , / ,  in R arc linearly independent if the relation

a /i + a/ 2 + ... + a,/, = 0 (4.2)

holds only in the trivial case with ai = a: = ... = a„ = 0; otherw ise/, / ,  ... , / ,  arc linearly 

dependent I he left member ol equation (4.2) is called linear combination of the 

elements

A linear space R is finite dimensional and, moreover, n-dimensional if R contain 

n linearly independent elements and ifany n+ 1 elements of R are linearly dependent. If a 

linear space has arbitrarily many linearly independent elements, then it is infinite 

dimensional.

4.2.2.2 Some Topological Concepts

bet us have a brief introduction to the study of point sets in an arbitrary' metric 

sPacc By denoting a metric space by F. and distance D[x,y] between two elements of E, 

we can recall that If x„ is a fixed element of E, and p  is a positive number, then the set



of ill points jr for which l)|.r, ,t„| < p  is called the sphere in F with centre x„ and radius 

p. such a sphere us a ncighliourhood, more precisely a p  -neighbourhood of the point x„.

A sequence of points .v„ c F (n=l ,2,3_) has the limit point .reF, and is written as

.t*—> x or lim xn -  x when |im n [ x n ,x] (). This implies that lim I>[xm,xn]= 0,
n - w  n >-*? m,n

where m and n tend to infinity independently. If this is true, then the sequence is called 

fundamental. Thus, by the triangle inequality, a fundamental sequence may or may not 

converge to an element of the space. A metric space F is called complete if every 

fundamental sequence in F converges to some clement of the space.

If each neighbourhood of .reF  contains infinitely many points of a set M in F, 

then \ is called a limit point of M If a set contains all its limit points, then it is said to be 

closed. I lie set consisting of M and its limit points is called the closure of M and is 

denoted by M. If the metric space F is the closure of some countable subset of F, then F 

us said to be separable. Thus, in a separable space there exists a countable set N such 

that, tor each point oreE and each s>0, there exists a point yeN such that Df.x. v] < e. 

h. Axiomatic Definition of Hilbert Space

Ihe following axiomatic definition of I lilbert spaces is due to von Neumann(l932).
«

Let K be the Held of complex or real numbers, the elements of which we denote by 

u, b , ... Fct / /  be a linear space over K, and to any pair of elements x, y e II let there 

correspond a number (x ,y ) 6 K satisfying the following five conditions:

(i) (x, x 2 ,y )=  (x, ,y) i <x2 ,y>,

(ii) (ax,  y) =«{x,y>,

(iii) (x .y ) <y.x>,

(iv) (x,x> > 0; and

( v )  <x. x >  0 <-> X 0.

Ihcn we call II a. pre-Hilbert space and (x ,y) the inner product of.v and i\

With the norm
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II is a normal linear space. II// is complete with respect of the distance

l*-y||.i.c. Ik, — y ... || -»0 (m,n —>cn)

implies the existence of lim x„ ~ x. then we call / /a  Hilbert space. According to as K is 

complex or real we call II a complex or real I filbert space. in which case axiom (iii) 

becomes (x, y) = ( \ .y  > for nil x. y  r  II

Hilbert Space can be also defined as follows: “A Hilbert Space II is an infinite 

dimensional inner product space which is a complete metric space with respect to the 

metric generated by the inner product.' This definition has an axiomatic character. 

Various concrete linear spaces satisfy the conditions in the definition. Therefore, II is 

often called an abstract llilbert space, and the concrete spaces mentioned arc called 

examples of this abstract space.

-I.2.2.3 f  sam ple of A bstract Hilbert Space

One of the important examples of II is the space A2. The construction of the 

general theory was begun for this particular space by llilbert in connection with his 

theory ol linear integral equations.

I he elements ol the space A j arc scquchccs of real or complex numbers

f=  {*..}" n tr{yn}»»i» ••••■>

such that

z ;., |x „ r  <*>, £ r.,|y „r •

I he number x u .r2. .v*, ..., arc called components of the vector /  or co-ordinates of the 

point/ I he zero vector is the vector with all components zero, the addition of vectors is 

defined by the formula

fhe relation

./ 1 U , i i'„C,

K  i U. -• y n \ 2<°o
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follows from the inequality

I o multiplication of a vector/ by a number X is defined by

The scalar product -i the space / ,  has the form

I lie series on the right converges absolutely because

U ,| < VsJ .r | 2 + / \  y  | 2.

The inequality

now has the form

and is due to Cauchy.

I he space - /2 is separable A particular countable dense subset o f./, consists of 

all vectors with only finitely many nonzero components and with these components 

rational, i.e., the components arc of the form £ + it] where £and // are rational numbers. 

In addition to this, the space./, is complete. In fact, if the sequence of vectors

is fundamental, then each of the sequences o f numbers

( n - 1,2,3,...)

is fundamental and, lienee, converges to some limit jc„ (// = I, 2 . 3 ,... )

I'rnof

Now. for each r. > 0 there exists an integer N such that for r > N, .s >N

Consequently, for every /;;,



/ S k "  -  x '.-f «■•
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I c! lend to infinity to obtain

Bui because this is uc for every /«,

Hence, it follows that

./ e  j£i ,

and. since e > 0 is arbitrary, / k,- > /  Thus the completeness of the sp aced  is established. 

:n definition of an abstract Hilbert space the requirement of separability is not 

included but completeness is included, since it is essential Tor almost all of our 

considerations.

Ihe spaced, is infinite dimensional because the unit vectors

c, = 11,0,0,...}, e2 {0,1,0,...;, c,= {0,0,1,...},...,

are linearly independent The space is the infinite dimensional analogue of Fm, the 

'complex) ///-dimensional Euclidean space, the, elements of which are finite sequences

/ -  W " ,

and most of the theory which we present consists of generalisations to II of well-known 

facts concerning nm.

4.3 [ he Geometry of Hilbert Space

In this section wc will have a quick introduction to the important results 

Lf) K cming the geometry of Hilbert space. That is to say the subject of discussion is the 

geometry of linear spaces, in which a scalar product is defined in a certain axiomatic way 

• - . c norm is derived Irom this scalar product as in the geometric vector space. We 

observe that the normed spaces thus obtained have richer structure and arc more 

1 i lar to the geometric vector space that those not having this property.
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4J.I Scalar Product

The scalar product of vectors a and h in the gometric vector space is defined by

(a/b): =" ||a || ||h|| cos y

where ||' || is the absolute value of the vector and y is the angle between a and b.

A linear space R is metrizablc if for each pair of elements x, yeR there is a (real 

or complex) number (x, y ) which satisfies the conditons:

(')<x,y) = <y,x>,

(iia) (ar,xl + « ,x 2 ,y )  = a , ( x I, y ) + a 2 (x ?,y),

(iii) (x ,x) > 0 , with equality only for x~ 0.

I he number (x, y ) is called the scalar product or inner product of* and y. Property (ii) 

expresses the linearity ol the scalar product with respect to its first argument. The 

analogous property with respect to the second argument is

(iib) (x, /?,y, + f l 2y 2) = 7? ,<x .y ,) + /y~2(x ,y 2 >.

it a scalar product is defined in a linear space X then X is called a scalar product space 

or pre-lfilbert space.

I his property is derived from (i) above. The positive square root -y/(x,x) is called the 

norm (the absolute value) o f the clemcnt( vector) x and is denoted by the symbol ||x||. The 

nonn is analogous to the length of a line segment. As with line segments, the norm of a 

vector is zero if and anly if it is the zero vector. In addition, it follows that

llax|| = \a | -llxll.

Ihiscan be verified using (iia) and (iib) conditions.

I he norm in a Hilbert space was defined by means of the inner product. In turns 

out that the inner product can be recovered from the norm.

Another very important theorem, associated with the above conditons and 

properties, is the Ca itchy-Sc h wan- II unyakovski Inequality. 

f or any two vectors * and y,

|< x ,y )|s  l|x||- ||y|.
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with equality if and only if x and y arc linearly dependent Furthermore, it is good to 

mension another property of the norm, namely, Triangle inequality

Within the general framework of scalar product the following theorems and 

properties can be described:

(a) INI = ( x ,y ) '“ is a norm;

(b) If xn—>x and yn->y, then <xn,x„ >-> <x,y);

(c) The completion of a scalar product space is a scalar product space with the scalar 

product - a complete scalar product space is called a Hilbert space.

4.3.2 Orthogonality

Inner product spaces allow us to introduce the important notion of orthogonality. 

An inner product space R becomes a metric space, if the distance between two points x, 

ye R is defined as l)[x,y] = ||x - y||. It follows from the properties of the norm that the 

distance function satisfies the usual conditons.

These conditions are:

(i) D[x,y| = l)|y,x]>0 for x * y,

(ii) D[x,x] =0,

(iii) l)|x,y] < D[x,h] + [h,y] (triangular inequality).

1 wo vectors x, y e //  are orthogonal, x 1  y, if (x, y ) =0. Given a set M we write x i W  

il x 1 m for all m eA /.A  set of vectors {x((} is called an orthogonal set if <x„ ,x A ) = 0 

whenever a*  fl. A vector x is normalized if 11 xl I = I . An orthononnal set is defined as 

an orthogonal set of normalized vectors, thus {ex| is an orthononnal set if

Co -c /») — .

4.3.2.I Orthoganal Systems

In the geometric vector space, every vector is the linear combination of fixed sets 

of three orthogonal vectors and any finite-dimensional linear space possesses a Unite
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Kims, ic n fixed vectors such that every vector of the linear space is a linear 

combination of these fixd vectors. In certain infinite-dimensional spaces a fixed infinite 

sequence ofdclmcnls can he found with similar properties.

A sequence JcN | in a scalar product space 11 is called orthogonal if (x „ , x /; > = 0 

if(i*P ll l k  II = 1  for i = I, 2 , ... is also satisfied, then |c k; k=l, 2 , ...} is called 

orihonormal An orthogonal or orthonormed sequence is also called an orthogonal or 

urtlxHinrinnl system

Next, our main object is the construction of an infinite basis in a separable I Iilbert 

space or in a separable scalar product space.

l et Jek jbe an orthonormal system, n a fixed integer, and x  an element of //; then 

wcan determine the scalars yk ; k -  1,2 ,..., n in such a way that the distance

n
X - T r y C i

is minimal.

The solution of a real scalar product space is as following:

'nr the minimum of this quadratic form

: follows that the desired minimum is obtained if and only if

'he ease of complex space //  the solution is the same but a more lengthy calculation is 

equired, since in this ease vyc have to seek the minimum of a quadratic form of 2n real

variables.
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" ,

It can be conclude that the minimum of the distance x -  c,
i-i

if

Xlt=(x,cl ), k = I, 2 ,

is obtained if and only

and then
x - £ ( x , c k) e j  = ||x||2 -  Z|(x,ek)lt«l k = I*

As a remark it can he said that the consideration connected with the Cauchy-Schwarz 

inequality is the special case of this problem when n=l. As a conscquancc of this fact we 

can deduce the following results:

• Ifek is the infinite sequence whose k"1 element is 1 and all other elements arc 0, then 

e' 2 and |ek; k — 1,2, ..} is an orthonormal system in j!2- 

I
I he sequence

and

(2  7 T )
1/2 e'1' ;k -0+1,±2,...r is an orthonormal system i n | 0 , 2 7 t ]

e* = e'k\

(x' ck>=7 r ^ r  ^
ikl

and
(271) o

x(t)c  ,K,dt

Z ( x ,  c k )
k=-n

s *hc rih partial sum of the (complex) Fourier scries of x e  [0,27i|. On the basis of this 

result, the coefficients, k = 1,2, ... can be considered as the generalisation of the Fourier 

coefficients. These coefficients arc therefore called the Fourier coefficients of x with 

respect to the orthogonal system |ek; k = 1,2 ,...}.

• If.re// space can be given in the form of an orthogonal scriess, then

x -  I (x ,  ck)ck (4.3)

• An element .r of the pre-Hilbert space / / can be given in the form (4.3) if and only if

iwi2 =
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4-3.12 Complete Orthonormal Systems

\ sequence |ak; k~\,2 , ... J is called complete if(x ,ak)=  0 for k=\,2 ,... implies x=0 

irthermore, an orthonormal system M is complete in // if M is not contained in a larger 

-onormal system in //, i.c., if there is no nonzero vector in / /  which is orthogonal to 

vector of the system M In this section we shall sec theorems and examples related 

o the complete orthonormal systems, as well as show that any separable Hilbert space 

contains a complete orthonormal system. In I lilbcrt space a complete orthonrmal system 

contains an infinite number of elements, and there arises the problem of the cardinality of 

ch systems. I his problem is solved easily for separable spaces.

• l or every x e I f,

if and only if the orthonormal system {ek} is complete.

A standard method for the construction of orthonormal systems, called the Gram- 

dmtdt process, proceeds as follows. In the Gram-Schmidt process, n linearly 

dependent vectors ak; k = 1 , 2, ..., n are converted into the n elements of an 

ihonormal system {ek; k= 1,2,...}. In this processs C| is the scalar multiple of ai , e2 is a 

. ir combination of a2 and C|, is a linear combination of as , C| and c2 and so on. 

k: computation is organized in terms of the minimal number of vectors and operations. 

'a‘; k=l,2. | be linearly independent The first member of the orthonormal system is

for the second member e2,

z2 = a2 -  A.2|C|

icre the scalar A.2i is determined by the condition

(Z2’Cl)~  (a2’e i) 2̂1 = 0

and hence

(a2>ci) = 4 -



S' ife2 = 7.2I II 7->l I then !c,,c2! is an ortlionormal system with two elements, 

f or the third member, Ci,

/\ a i X.-||C| A.i2c2

where the scalars A.,, and A,2 are determined by the conditions

(z 3 ’c I ) ~ (a 3 ’e t ) “  ^3, =

( /  3 ’ c 2 )  ( a 3 >c 2 ) “  ^32 =  0

[cncc (ai»e i) andA,? (a,,c.,). So if' e, = z, / ll/.JI then {ej,e^,e^J is an 

orthogonal system with three members.

Now il C|, c2, e „  have already been obtained, then for cn, |,

cn
Ai m an 11 S  , | , e ik-l

i re the selars A„, |.k; k = 1 ,2 , arc determined by the condition

(z n ' i ’ c k) '  ^a ” ' 1 ~ »k e k .e k ^ = (a n+i ,c k) — t -  0.

2nd hence
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So if

n.

^ - 1 1  M  ^ 1 1 + 1 ^ 1 1  A l  4 - 1 1 1  >

lcn ' c r* ^=1 , 2 ...... tii I } is an orthonormal system obtained from the linecar space

-derated by the n+1 vectors ak; k+1, k+2 , ..., n+ 1 .

11etmies the above method is called orthogonal izat ton.

' sing the Gram-Schmidt process for I, t, t ..... l", ... in f-l,+ l], a sequence of

'hogonal polynomials known as Legendre polynomials is obtained, the n"' element of 

i' is ol exactly (n -l) th degree; the first four members of this sequence arc

I, t, 'A (3t2 - I), '/2 5(t1 - 3t).
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\ i iplctc orthonormal system is also called an orthonormal (orthogonal) basis since it 

> a Msis for the scalar product space If. Important theoretical conclusions of the above 

are as follows:

• l.very separabble scalar product space contains a (finite or infinite) basis.

• it lie space II is separable, then every orthonormal system of vectors in //consists of 

a finite or countable number of elements.

• An infinite orthonormal sequence C|, e2, e ,̂ ... is complete in // if and only if the 

sequence is closed in //.

• 1 he space H contains a complete orthonormal sequence if and only if it is separable.

• Any two complete orthonorm al systems in a I filbert space have the same cardinal num ber.

I here are interesting results and inequalities about orthogonal sets and orthogonality: 

:\thagorcan theorem, polarization identiy, parallelogram identity, Bessel's inequality etc.

* * cl 'x> an orthogonal set in the inner product space //, then

E x , = 1  |XJ  [Pythagorean theorem]

• I or all x, y in / /  vve have

|Schwarz inequality!

• l or all x, y e II we have

||x i yf < INI + ||y|| [Triangle inequality]

• I or all vectors x, y e //

(x«y) =t | | x + y|| -  ||x -  y|| +i||x + iy|| — i|jx — iy|j j [Polarization identity] 

• 1 or all vectors x, y e II wc have

[Parallelogram idenity]

• l et 1 e,) be any orthonormal set then lor each vector x e / /  we have

[Bessel's inequality]

I he inner product is a continuous function in each of its variables.
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4 i J  The projection principle

The projection principle for finite and infinite-dimensional subspace can be 

explained as follows:

Let M be a linear subspace of the pre-l lilbcrl space M: then ,rme A/ is called the 

;rest vector or the best approximation of.r g  M  if

||x -  x„,|| < ||x — m|| me M.

Let M be a linear subspace of the pre-l lilbcrt space //, then xpe M  is called the 

orthogonal)projection of.re M if, for every m eM ,

I hrough these abstract formulations we have a connection between projection and 

■ j't approximation similar to that in the geometric vector space, 

he following results of Unite and infinite dimensional projeclion principles can be listed

below:
• xr e M is the best approximation of xeM  if and only if it is the orthogonal projection

• II V/is the linear subspace generated by a.?, a„}then the orthogonal projection 

ofoceA/onto M is

"here \yv: k=l,2, n } is the solution of the following system of linear equations:

of Jr in M.

x p =  a kk=l

X ^ a , ) ^  = (x ,a() i=L 2 , n.

' k = 0  il and only if Jyk; k=l,2 , n } is the solution of the system of linear

equations

Z(at ,a,)^t =0 i= l,2 ,.... n.



144

. 1/ is a complete subspacc of a scalar product space M. then there exists a projection

xre M

Projection t heorem

Next we see the Projection Theorem in the light of probability theory. We should

te that Locve(1963) have already dealt with the property of orthogonality and

cction theorem in the light of probability theory'.

Before stating the projection theorem let us define important terms with respect to

I'lohabilily theory. X and Y are orthogonal, and we write XJ_Y, - the bar means

plex<onjugate it P(XY) = 0. In particular, X I Y if and only if F.lxl2 = 0, that is « « •
♦ .

ifnoxt surely, in fact, X~0 almost surely is orthogonal to every' Y. A linear 

l<a, r  is a family of random variables closed under formation of all almost surely 

ii combinations ol its elements. If, also, A  is closed under passages to the limit in 

iiie mean, then it is a dosed linear subspace. A random var iable X is orthogonal 

~ and w write X I i f  X I Y whatever be Yr-j*

Projection Theorem - I et X be a closed linear subspacc. For ever)' X there exists 

lmost surely unique orthogonal decomposition

X = X ' + X " ,  X' Xuf ,  X ' e ^ r .

It is good to note that within a strongly normal family, orthogonality is equivalent 

dependence and projection is equivalent to conditioning.

II we consider sequences, and more generally random functions, formed by 

nm variables whose second moments and hence mixed second moments are finite, 

e; random variables in question can be interpreted as points in a Hilbert space, and 

di spaces are a natural generalization of Euclidean spaces for which all the classical 

!n°ls were developed.
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[Krutoi T This extension is uniquely defined for each operator I The extension by 

vit trinity o f a functional is defined analogously.

4.4.2 O perators

Before dealing with operators, as a bridge, let us see the definition and properties 

' f linear funi fionals.

\ motional d> is said to be linear if: 

is domain I) is a linear manifold and hg) — a <1 >(f) i h (\>(y) 

far/, g e l )  and any complex numbers n and A, 

bthe inequality sup |(b l )| < «:> is satisfied.
w>jm<i

leli member ol this inequality is called the norm of the functional d> and is denoted 

by the symbol M „  or. if F>—11. simply by |]'lfl.

11 and I M) then, by the definition of the norm o f a functional.

"'ill < M „ .

i Icncc for fe I ),
|'Kf)|<M „-llfll. (4.4)

elilion ( I 4) show's that the linear functional d> continuous In fact, by ( I I)

H< n -  <H r„ )| -  h  r -  r01  < IN,, • ||r -  f„|| for f. i;,e d .

1 r°m 11 1 ) it also follows that, i f feDand flf|< I, then |<IKf)|< IHMI,,. 

ithstrict inequality if||f||^ I. Therefore, the norm M n can be defined by

snp I'M l )|
i- nil i

"f equivalently, by

s u p h 'd  ii.iii Slip M  II H„

11.1.1 I in c u r  a n d  Hounded I i n c a r  Operators

An operator I is linear if its domain of definition I) is a linear manifold and if

I (of i fty) -  of I f l |Vlg

’r nn> /  k p D and any complex numbers a  and fi



147

\ linear operator I' is hounded if

sup I’/yjl < oo.
r< i>.ii»-1

• It'll member of Ibis inequality is called the norm of (lie operator T in I) and is 

.•noted by the symbol ! I I or. sometimes, by 1 I 1 1 ,.

he properties ol linear functionals arc also valid for bounded linear operators, namely: 

rhe norm of a bounded linear operator T can be defined equivalently by

| /  | |-  sup |/y | -  sup
M>ii? i r,-i)

\ bounded linear operator is continuous.

I: a linear operator is continuous at one point, then it is bounded.

I lie extension by continuity ol a bounded linear operator T leads to a unique linear 

operator with the same norm as the original operator.

IS and I arc linear Operators, then exS t (VI, where a  and (I are complex numbers, is 

a linear operator with the intersection l)s o  I)| of the domains l)s and l)| as the 

Jomain ol definition bach ol the products ST and TS is also a linear operator. If S and 

arc bounded linear operators defined everywhere in 11, then the operators ST and TS 

!rc nko bounded linear operators defined everywhere in 11, and

11 sr II < 11 s II- Hr II, II s t  II < I lf  II • II s II.

"1.2.2 b i l inear  F unctionals

a bilinear function defined in //. if to each pair of elements f .g e l l  there corresponds 

;definite complex number t i(  f, g ), and

i ) - 1{ a ifi 1 a , f 2,g ) a i l( f | , g  )  i a ; £2{ f?, g  )

iDti( r.i^g, * b i g , ) b , u (  r.g, ) i b , u i r . g , )

Slip If2(r.li)|<«r>
HFI.WHI 1
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example of a bilinear functional is the scalar product ( I. g }. The number

ip <>(r p)| is called the norm of the bilinear functional Q. and is denoted bv | | n  II
vm

*: note that

II nil sup b(r,g)|
irH-Whi

crcfore. for any fg ell.

ij|<r,g>|<lMMIf1iy|.

Fach bilinear functional n (  f , g )  lias a representation of the form

«</* ) - (  A f -X  )■

lis equation A is a bounded linear operator with domain / /  which is uniquely 

determined by f 2 Furthermore, || A ||=  | | n  | | .

4.4.Z.3 Adjoint o p e ra to rs

\ be an arbitrary bounded linear operator defined on //. The expression ( /, /fg 

k's a bilinear functional on / /  with norm II A II. From the above result we note that

vre exists a unique bounded linear operator A* defined on II with norm 11A ’ | | - | |  A II 

>udi that

(./• )=A*( /  Z  ) lor/  g  e l l .

operator A* is called the adjoin! of A. We note that the opcrntoi (A+T A++ is 

valent to the original operator A If A is bounded and A+ A, then A is said to be 

’ ’adjoint A bounded linear operator A, defined on //. is said to be normal if it 

minutes with its adjoint, i e . if A*A = AA*.

\ and B be two bounded linear operators defined on //. Then,

( A B /g  > = ( B //f*g  ) —{ f  B*A*g ),

-h implies that (AB)* -B +A*. Therefore, the product of two self-adjoint operators is 

adjoint if and only if the operators commute. In other words, i f f  is a bounded linear
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;>h« ol a Hilbert space(i.c , the range is also contained in //) then it may happen that 

- T* In this case T is called se lf adjoint or llennilian.

The linear operator T is called positive if ( T.r, .r ) > 0 for every .re11 It is called 

:nctly postivc if ( T.r, .r ) = 0 only if x=0. Tor self-adjoint operators A and It we write 

\<B if R-A is a positive operator. 

t.4.2.4 l inear o p e ra to rs  in a s e p a ra b le  sp ac e

We recall that a Hilbert space II is separable if there exists a countable dense 

:bset in II Or. a Hilbert space II is separable if and only if it has a countable 

orthonormal basis.

bounded operators admit matrix representations completely analogous to the well 

nown matrix representations of operators on finite dimensional spaces. That is. i f f  is a 

mcar operator ol a finite-dimensional Hilbert space, then T can be represented by matrix 

multiplication by means of an orthonormal basis !ek' of//.

iVHnilion- If the operator T is defined everywhere in / /and if its value for any vector

Kgiven by the formulas ,

fr
T x -  S  s^fe,

i i

and

Yi = (Tx.Cj) = i t , l xl .

'enwesay that the operator A admits a matrix representation relative to the orthogonal

the following are examples which can help us to understand how many problems 

fmitc-dimcnsional Hilbert space arc connected with linear mappings may lead to 

matrix problems



ir.o

• Id I he the matrix with entries t,k~( T,.u e, ) and let x. y he column matrices with 

■itries .\i ( x a  ). yk = ( I'x.Ci ). where xel I; then y - l  x (4.5)

• an Operator I . defined everywhere in a separable space //. admits a matrix 

representation with respect to some orthogonal basis, then it is hounded

• border that the matrix (1,0 represent a hounded linear operator delined everywhere in 

II. it is necessary' and sulTicient that, lor some constant M, the inequality

£  t l i Mt .

hold for anv numbers xu x2, x , ,  and yK y2, y , , .

• he mapping I > T IVoin the linear operator of the //-dimensional Hilbert space II 

onto the sct(aigcbra) of am  matrices has the following properties. If Tr -» T, and l\

T, then

(i) I V  T 2 i f  an d  only i f  T ( T 2 ;

( i i )  r/l 11 AT; > < / r ( i AT* where </and A a r c  scalars;

( i i i )  T , T ; —> T , T , ;

(iv) T,* -> T,*.
»

(v) The inverse operator exists if and only if the inverse matrix T 1 exists, and

*4.15 Norm al O p e r a t o r

I he operator T can be represented in an orthonormal basis bv diagonal matrix 

1 only real elements if and only if t is self-adjoint The operator T can be represented 

an orthonormal basis by a diagonal matrix if and only if I * I =TT* I is then called a 

7"rmo/ operator.

I he following theorem clarifies how eigenvectors arc used as basis of II and T is 

'.rented by the previous theorem (4.5) as a diagonal matrix with real elements: In a
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:!c dimensional space I' is n self-adjoint operator if and only if every eigenvalue X o f f  

real and there is an orthonormal basis of II formed of eigenvectors of I. If A is a sclf- 

: oini operator, then the point I is a regular point of A if Aa(X) = II and X is a point o f  

the spectrum if Aa(X) i  II furthermore, it is said that the point X belongs to the 

poini(tliscrete) spectrum of the self-adjoint operator A if A A(X) / II and ) belongs to 

ccontinous spectrum if Aa(X) ^ /\A(X). And vve note that the spectrum of a self-adjoint 

i-oerator is a closed set. X is called a regular value of the operator T if the inverse 

verator (XI-f) 1 exist, and if it is not regular value then it belongs to the spectrum a(T) 

i e., all the other points of the complex plane comprise the spectrum of the operator 

li X belongs to the spectrum o f f ,  then there exists a solution of the equation Xx-Tx=0, 

hat is different from 0 . If there are solution x*(), then X is called an eigenvalue o f f  and 

e solutions are the corresponding eigenvectors. If X is a regular value o f f .  then x=(XI- 

f is the unique solution of the equation Xx-Tx —J\ f e l t

it I is a normal operator, i.e T*T T P , then lx = Xx if and only if I • x ~ Xx. If the 

"Orator I is not normal, then it may happen that there is only a single eigenvalue o f f .

4.4.2.6 t nl*nmuled Id n en rn n d  C losed O perators  •

l et I he a linear map whose domain of definition If  is a linear manifold in a 

!|l*v ,i spate If  and whose range is included in a I lilhert space I f  We define the graph 

I as the set I ( f) of all pairs ||x , fx| |xe l)|}  in 1 1 I* the direct sum ol I I, and II*. 

l>c operator I is called closed if its graph 1 ( f) is a closed linear manifold, that is, a 

' hspacc. of ||,®  ||, .

I quivalently stated I is closed if for any sequence x„ in I f  for which xn- >x and 

~>v we have necessarily xcl) ,  and y-Tx. I "'very bounded linear operator I from II, 

10 ll| is closed.
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•Ve define the resolvent set p(T) and the resolvent function R(X.,T) for unbounded 

lust ;is lor Iroundcd ones I Inis 1 < p( I ) il ;md only if R(X,T) ( Ml ) '  exists os 

: hounded operator, that is. R(?..,T) is bounded and

(M-T)R(A,,T)x=x forx^l l

anj
R(X,T)(A,I-T)x=x for xel)|

! or words, an operator T( not necessarily linear) is closed if the relations

x„€D|, ///;; x„ — x, //'/» Tx„ ”  y imply that x e D t, l x ~ y.

1 Inis, the difference between elosedness and continuity consists of the following: 

c operator T is continuous, then the existence of///;; x„ (x„el)|) implies the existence 

x.. but ifthc operator I is only closed, then the convergence of the sequence

X|, x2, x,, ...(x„ef>,) (4.6)

s not imply the convergence of the sequence

Tx,, Tx,. Tx,. ... (4 7)

It f is closed, then in particular, it has the property that two sequences of the ty pe 

• ) cannot converge to different limits ifthc corresponding sequences (1 6) converge to 

t. same limit. An operator t having the property mentioned in the preceding sentence 

iv not be closed; but it has closed extensions. Among these is the so-called minimal 

•xcil extension, which is contained in every closed extension of the operator I I he 

n'imal closed extension is uniquely defined for each operator T It is denoted In I and 

1 railed the closure of T.

As a concluding rcmatk it can l>c said that, ifthc operator T is closed, then each 

rat or I -?.f- is closed, and ifthc inverse opciatoi 1 1 exists then it is closed

;4-2,7 Compact Operators

A point set is said to be compact if every sequence belonging to it contains a 

'divergent subsequence. Corresponding to the two types of convergence (strong and 

4 ) nre strong (or ordinary ) compactness and weak compactness We sav dial the
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sequence xt< II. (A I, 2, 3, ) converges weakly lo the vector x and we write x, >\

if lim -  (x.//). I'm /»( II The concepts of weakly fundamental sequence ami of 

weak completeness are defined analogously If the sequence! xt ! i i converges lo \ .  i.e., il 

linill \ k-\ll 0, then the sequence converges strongly to x. Strong convergence implies 

weak convergence, hut not conversely. The usual definition of compact operators is as 

Inflows. I lie linear operator I is called compact if the range {T\: xeMJ of am hounded 

set It is pre-compact. Ihe following results follow the above definition

• Iwery bounded point set in // is weakly compact.

• I or the weak convergence o f  tlie sequence o f  vectors {x», { ,  it is necessary and sufficient that:

(i) the numerical sequence (xK,v) (A-l ,2.3, ...) converge for each y of some set M 

which is dense in //; and

(ii) the sequence} lie bounded.i.e., the inequality 11 x j l  < (' < oo(A~1.2.3,...)

• I he compact operators of a I filbert space / /  form a closed subalgcbra of R(ll).

(i) II T|. T_> are compact operators then T (T2 and oT| t h'\\ (a. />cd>) are also 

compact operators.

(ii) II {T„) is a scc|tience of compact linear operators and II fk- l ' | |  >0 then I is 

also compact.

-1.4.2.8 C on jugation O perators

A conjugation operator is an operator / defined on II such that

(') < //. Ik ) -  (f.g) .

( ' ' ) / / = /  fo r /g e / / .

I roin (ii) it follows that the range of the operator / is the whole space II In fact, each 

vector hr I I  can he represented in the form h Ig merely by taking g III Instead of the 

usual linearity, the operator / has the following property, which is sometimes called 

conjugate linearity.

I(af » bg) - a  If i big.
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Indeed, letting g 111 in (i) we get ( \f. h) = (f,lh)

An example of a conjugation operator in is the operation ol‘ transition to the 

complex conjugate function:

! ( p (0  =<p 0 )

I or each conjugation operator in a separable space it is possible to select an orthonormal 

basis |Ci!,", such that if

ao art  
/  = Z x lCl then / /— Z x kek .LI LI

Definition: A symmetric operator A is said to be real with respect to a given conjugation 

operator /, if the operators A and / commute, i.e., if / ‘e /)A implies that If r /.)A and

IM'-AfK

4.4.3. Isomorphic Hilbert space and Isomorphic operators

In three-dimensional l uclidean space the simplest operation after that of 

projection is rotation of the space, which changes neither the lengths ol v ectors nor the 

angles between pairs of them We now consider an analogous operation in I lilhetl space. 

Definition: The operator l ) with domain II (D(j=H) and range II (Au=l I) is unitary i

<lJ/;i)g> = ( f ,g)  for f g e / f .

I he following are some properties of unitary operator:

• I Initary operator has an inverse  opera to r , which is also unitary, i.e , the operator I J 1 

exists, and since Dtr i= A,, and At r i = I)u the operator U 1 is defined in the whole 

space and maps it onto the whole space.

• A unitary operator is necessarily linear, i.e., i f /  o f ,  i a:f\, then I ) / i

• It a linear operator T satisfies the condition ( I Ifl lf) ~ ( l.f) and if I), ~ At- ~ 11. then 

I is unitary.

If there is a unitary operator from If  onto 112, then the Hilbert spaces I f  and If  

are considered to be identical in a certain sense. Due to the existence of an inner product
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the notion of isomorphism can lie specialized. Generally two spaces ll| and IK arc 

isomorphic if there exists an invertible transformation T from II( onto If.

Definition The operator V with domain II, (l)v = II,) and range II, (Av -  112 ) is 

name trie if •

< Vf,Vg) j ( f.g> , ror /. ^eii,;

A unitar}' operator in II is a special case of an isometric opcralot for which If IK II. 

Many properties of unitary operators carry over to arbitrary isometric operators, and 

some list o f these properties follows.

• lunch isometric operator has an inverse operator which is also isometric

• II the operator V is linear, and maps all the space 111 onto the space IK and if 

( V(.Vf) 2=( f,f) | fo r /e l l .  then V is an isometric operator

• hvery isometric operator is linear.

Definition I lie Hilbert spaces I f  and I K arc called isom orphic or < onyrucn l if there exists a 

unitary operator II mapping II, onto IK In Other words, let T| and l\ be linear operators 

defined, respectively, in spaces II, and IK. so that Dtl c  II,, Ar, cz I f ,  DiclK. A|. c: IK (In 

particular, the spaces II,, IK may coincide). I he operators T| and T2 are called isom orph ic  or 

nm ftirilv c t /w v t ilc ii l if there exists an isometric operator V. which maps II, onto IK and l)| 

onto D|.. such that V f ,/ ] ,V/ for each_/e= l>,-,. That is, I , and '1\ are un it o n ly  equ iva lent if 

[>,, VO,, and T, = V 'T 2V.

An operator IJ: 11, > IK is called an isom etry if it .satisfies U*l J I, and co isom dry  if IJt J* I 

is satisfied.

We note that the following conditions for an operator T mapping a I lilliert space 11| onto 

another 1 filbert space 112 arc ec|iiivalent:

• f is isomeric, i.c. || T/11 || /1| for every/el l|

• l*T K’| (identity operator in II,)

• ( f/,l«> "  </g> for /.j*ell|

4
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J.4.4 Important Theorems
The following theorems arc prominent in the study of Hilbert space. We will state 

md their respective proves can be conferred on Akhiezer and Gla/.man(196l). Kingman 

hkI Taylorf 1966), l;uhnnnnn( 198I ) and M;itc( 1989).

4.4.4.I Rics/. Representation Theorem for Hilbert Spaces

The following theorem of Ricsz provides a representation for each linear functional in II. 

theorem - Hach linear functional <l> in the Hilbert space II can be expressed in the form 

tfthpfh.x). where x is an element of H which is uniquely determined by the functional <I>; 

furthermore, II <t> 11  ̂11 x 11.

44.4.2 llahn-Banach Theorem for llilhert Spares (Ffxlcnsion theorem) 

theorem - I f / is  a normed linear functional on a linear subspace A of a normed linear 

space, then/can he extended to a normed linear functional on the whole space without 

changing its norm

I he llahn-Banach extension theorem can he stated as follows: Suppose K is a linear

sibspacc of a linear space 1/ T hen any bounded linear functional oil K can be extended

tn a hounded linear functional on II with the same norm Or, suppose K is a linear
•

suhspace of a linear space //. /> is a subadditive functional on //  such that a />(ax)~a/;(x) 

bra> 0, xe//; and / is a linear functional on K such th a t/ /)  < p(x) for all xcK. Then 

there is a linear functional / :  II - R such that / (x) f(x) for x<f K, / (x) < p(x) for x f //. 

4.4.4.J  Riesz-Fisher Theorem

Ibis theorem is formulated and proved in Hilbert space. Since ./-spaces are 

realisations of Hilbert pace, we will deduce the classical theorem about the Fourier 

expansion as a trigonometric series of a function in £-> as a special ease.

Given an orthonormal family (e,), jo:.1 on a Hilbert space II, and any point .veil, 

'')c real numbers e~(x,Cj) (jeJ), are called the Fourier coefficients of .v on the 

’nhonnrmal family and the series X /ty  is called the Fourier series of.r.
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Theorem - l-et 'CjJ (jeJ) be any orthonormal system (not necessarily complete) in a 

lliTvit space II, and let \[f\\ j< .1 be any set of real numbers such that Lb, converges.
irJ

Then there is a point .veil with Fourier cocITicients /?, = (x,e,) such that the Unite partial 

sums.Vi-LbiCj converge to \  in norm.
irl

4.4.5. The 23 Problems of Hilbert

A substantial part of Hilbert's lame rests on a list of 23 research problems he enunciated 

at the international congress o f mathematicians held in Paris in 1900. In his address, 

The Problems of Mathematics,” he surveyed nearly all the mathematics of his day and 

endeavoured to set forth the problems he thought would he significant for 

mathematicians in the 20th century.

I he following table is taken from Encyclopedic Dictionary of Mathematics, Vol. II edited 

by Ito ( 1987,736-7).

1 lo rove the continuum hypothesis

2 I o investigate the consistency of the axioms o f arithmetic.
' lo show that it is impossible to prove the following fact utilizing only congruence 

axioms: Two tetrahedral having the same altitude and base area have the same 
volume. Solved by M Dchn(l900).

4 lo investigate geometries in which the line segment path between any pair of points 
gives the shortest path between the pair.

> lo  obtain the conditions under which a topological group has the structure of l ie 
group. Solved by A M. Gleason and I). Montgomery and I,. Zippin (1952). and II. 
Yamabc(1953).

h To axiomatize those physical sciences in which mathematics plays an important role.

■ I o establish the transcendence of certain numbers. The transcendence of 2 ' \  which 
was one of numbers put for by Hilbert, was shown by A. Fcl’fond (1934) and T. 
Schneider (1935).

x lo investigate problems concerning the distribution of prime numbers; in particular, 
to show the correctness of Ricmann hypothesis. [Unsolved]

9. lo establish a general law of reciprocity Solved by T. Takagi (1921) and H. Artin 
(1927).
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HoTTo establish elTeclive methods lo determine the solvability of Diophantinc 
equations. Solved affirmatively for equations of two unknowns by A Baker. Philos. 
Dews. Roy. Soc. London, (A) 263 (1968); solved negatively for the general case by 
Yu. V. Matiyasevieh (1970).

i I l o investigate the theory ol quadratic forms over an arbitrary algebiaie number Held 
of finite degree.

12 To construct class fields of algebraic number fields.
13. To show the impossibility of the solution of the general algebraic equation of the 

seventh degree by compositions of continuous functions of two variables. Solved 
negatively. In general, V I Arnold proved that every real, continuous function 

/(xiA'.Xi) on |0.l | can be represented in the form | //,(g,(xl.x?).>q). where /;, and 
g, are real, continuous functions, and A. N. Kolmogorov proved that can
be represented in the form Y j  t //, (gj|(X|), gn(xi)), where //, and arc real,

continuous functions and g,, can be chosen once for all independently n\'f\P okl. 
Sauk SSSR. 114(1957), Amcr. Malli. Soc. Trans/., 28(1963)]

It l et A be a Held. \,. . .. x„ be variables, and /,(\|......  x„) given polynomials in
*l*i.... x„| (i=l......  m) Fiuthcrmorc. let It be the ring formed by rational functions J
I ( \ | ,  ... Xm) in A(X|.....X,„) such that I'(f|........I,,,) e k\x ,.......\„ | I he problem is to
determine whether the ring R has a finite set of generators. Solved negativeb by M. 
Nagata,.inter../. Math., 81(1959).

15. I o establish the foundations o f algebraic geometry. Solved by IT I-. van dcr Waeden 
(1938-1940), A. Weil (1950), and others.

15 l o conduct topological studies of algebraic curves and surfaces.
IT l et f{xu .... x„) be a rational function with real coefficients that takes a positive

value Tor any real //-tuple (X|...... xn). the problem is to determine whether the
function / ‘can be written as the sum of squares of rational functions Solved in the 
affirmative by F.. Artin (1927)

'8 I o express Fuclidcan //-space as a disjoint union IJ ? I \ , where each l\ is congruent 
to one of a set of given polyhedra.

ff I o determine whether the solutions of regular problems in the calculus of variations arc 
necessarily analytic. Solved by S N. Bernshte i n, I. G. Petrovski i and others.

2b lo investigate the general boundary value problem
-1 lo show that there always exists a linear differential equations of the fuchsian class with 

given singular points and monodromic group Solved by 11. Rohr! and others ( 1957).
22. |o  uniformi/e complex analytic functions In' means of automorphic functions. 

Solved for the case of one variable by P Koebe (1907).
I o develop the methodology of the calculus o f variations.
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4.5. A Characteristic Property of Normal Distribution in Hilbert Space

As a preliminary remark it can be said that this topic is advanced In statisticians 

who combine pure mathematical theoiics and probabilistic and statistical piiuciplcs. It 

combines theory of operator theory and properties of characteristic functions; and comes 

up with theorems of a characterisation of the normal law in I lilberl space.

I he Characterisation of Normal Distribution in Hilbert Space was initiated bv 

Prohorov and lis / (1957). In their article they came up with a theorem ol random 

elements in Hilbert space, and the theorem.

I hen, baton and I’athnk (1969) picked up (he topic and studied it more 

comprehensively and came op with the theorem of probability measure in Hilbert Space 

furthermore. PatliaM 1970) made another study on this topic and pave additional results.

4.5.1 Prohorov & l is/. Micorem (1957) of Random Element in Hilbert Space 

Theorem 4.1

Consider random element with values in a real separable Hilbert space II [that is 

measurable mapping £.(u) of a fundamental probability field into the space II|. I et the 

probability distribution and characteristic function be denoted respectively as.

/ ’* and <(>(/,£ ) * J„ c" '  f \ / l>c, fe l l .

let V' ~ r n be denoted as u -  // and let II £ 11 be the linear functional (If), f e l l .  

stochastic variables The mathematical expectation of the random element c is such an 

clement //that for every f< II. M ( f f )  Consider the conditions. (") :  M  " f

<r>: (D): M l f u f  > 0 for. any f e l l . f / 0 ; (y): M£-() where 0 is the null element in II. and 

et £ " ~ , be random elements in II. subject to (a). (fH and (y) and let (ft); £<n

and £' • lx: independent and (?:); £<n t ~ A where A is a (At) linear. (A2) 

bounded, (AT) sell conjugate. (Ad) positive operator in II. Then the distribution I’ ol 

each of the random element is normal and A y/2E where l:, is a unitary operator.
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4.5.2 K»ton-PathakTheorcms(l%9) fo r P robability Measures on Hilbert Space

Alter Prohorov & I is/( 1957), we observe that Union anil Pathak (1969) picked up 

:he topic and studied it more comprehensively.

Their* article is divided into four sections, namely, (i)introduction, 

lidprcliminaries, (iii)a characterisation of the normal law. and (iv)scmi-stahle laws in //.

In the infrndiK inry [xu( the importance of the Kao-Ramachandran( 1968) or the 

Pathak-Pillai(1968) theorem on the characterisation of a distribution. The main problem

is presented as follows Let X„. Xt....Xi he independently and identically distributed

k k
1 real-valued random variables, and let Y| = X0 -X cjX j and Y2 -  X „  -  Xhj X j . If we

i-i i t

assume further that l:(Y,/Y:) 0. then, can we characterise the distribution X„‘? This is 

verified by Rao(l%7) with the conditions that

( i )  X,, h a s  f in ite  v a r ia n c e , f A ' ^ r

| <»> N < U  I......k.

(iii) c,/b,> 0 and

(iv) X(c, /b jb f  = I, then the distribution of X„ is normal.i-l

Ihus. it is shown that l£(Y|/Y2) = 0, is equivalent to

k r
lp( t ) — |I  I<p( bj t )I (runclHUKil cipuilion) (4.8)

''.lierc a, = c/b, and <p(t) is the characteristic function of X„.

furthermore, the equation (4.8) is considered in a real separable Hilbert space 

..)). If A and B arc two llermitian or self-adjoint linear operators on II to If. (for 

rciorc clarification sec section 4 4.2.3), it is written as A>B to mean A-B is positive semi- 

TTinite. | he extension of equation (4 8) considered is

M(V)= I l[A(BiV)l (4 9)l-l
here p(|p|*o) is the characteristic function of a probability mcasuie /m >ii II. a, 0, 

il. B, is a bounded operator on II with a bounded inverse, and suppose there exists a
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constant 0 < X,, < I, such that II B, II < 7i<>, i= l, k. With aid of these assumptions 

hey deduced the results in section (iii), the characterisation of the normal law, of their

article.

I he preliminaries deal with some results concerning probability measures on a 

real separable Hilbert space. A detailed discussion on some of these can be found in 

Paithnsarathy's (1967) book. Probability measures on Metric Space*.

I lie third section is the heart of the research and after considering the function 

equation. (4.9). and other assumptions the following results are shown: 

la) |i is infinitely divisible,
k

ih)irXa.B.B, > I then p corresponds to the normal distribution (possible degenerate) on

k
//. and (c) if Xa, < 1. then p corresponds to the distribution degenerate at ()<?//.

i-l

theorem 4.2
l )i eM(//) and p satisfies

p(y) = [p(Bjy)]"

ien p is infinitely divisible, where M(If) is the space of all probability measures on // 

ad M>,{//) be the space of all infinitely divisiblc(i.d.) measures in M(//), for each p in 

'■!(//). p denote the characteristic function of p and (x) the characteristic function of the

distribution degenerate at xc-ll

Proof:

Iteration of (4.9) yields
i" c».i

|dy) 1 I[r«<l ) ».iy)]
1-1

here cn i is of the form a, a, . a and l)„. is of the form It It

let

(4.10)

B;

M,,i<V)'r ^ Dn.jy)-

hucc I I >„, II < V . it follows that jpn|j j I, .... k". n = l,2 ,... is a sequence of infinitesimal 

rohabiljt\ measures. I lie infinite divisibility of p now follows from Corollary, that is, let
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non-vanishing characteristic function on //. then there exists a unique continuous 

return / on //with ?.(()) 0 such that jTt(y) ~e ' this completes the proof

I hrorem 4.3 

I (i satislies (4 *>) and if

X a .in f  > |,
■ i

icn n corresponds to a normal law (possible degenerate).

Proof:

Since ft is i it and satisfies (4.9) we have

log fi(y) -  i(x„,\) - l/?(Sy.v) t f K(x.y) d M(x) 

i i .
=  i X a j(x0 .H jy) j  L a j tB jS B jy .y )  i L a j j K ( x . l f y J d M t x )

j I i I j-i

~ i  (La  jbjXo.y) y(ZajHjSBjy.y) i Z n j I K(Bj\,y)dM(x) 

l Zn j J|K(n. Rjy) K<n'jx,y)]<tM(x)
However,

I [k ( x, ll,y) K(lVx,y)]dM(x)- iJ

diich exists from the conditions on M 

U’ty, e II be such that

(yjVjX) (y.Bj.x)

let

J[K(x. B,y ) - K( l}j\,y)]dM (x) -  i(Yj.y) for all y ^ / /  

no = LajB,'x,i+ ZajYj.

d i i )

r l t l M lx )  (4 12)

(4.13)

hen d l l )  can he written as

•Vy|- 1 -(Sy.y) i jK(x.v)<IM(x) i(x„,y) • !4(ZnjHj,SMjy,y) 1 » ,  f?dx.y)4MMI' > *v) (4 I t) 

since La, 11, SB, is llcnnitinn or self-adjoint with finite trace, it follows Irom the 

''iqueness of the representation for

log fi(y) that dM(x) ~  LajdM((Bj’) 1 x) (1.15)
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■complete the proof, (4.15) togclhei with the assumption that 2n,B, B,

ipx that M=0.

d
S(/)={xl I x 1 < /•}, fo rr> 0 .

f ||xfi dM(x) I ||x|f dM(( 1)j ) 'x)
S) 11 Sill

= I a ,  f |
<H,) 'S(t)

|l3 x|| dM(x)- a, f llfxli dM(x) + Xa; J Il4.xll dM(\)
" (H',> '«»)* " i? (U,» 'S(r)

•ixv. since
S Bj l<A<,< 1,

.: have
(1V) 'S(r)~) S(r)

Netting
C(r)-(l3j’) 'S(r) n  S(r)c,

: then have

j||x|| dM(x) > a, J |R ,x|| dM(x) i 22a, I li ,xjj dM(x)
SI.) l(  I ) S(i>

>a, J ||R, x|| dM(x)+ J ||x!| dM(x)
S« i » S(t)

last inequality follows by noting that

2 t l j h V x | J =  l! l, ( l< iI V ^ ) > ( X . X )

since

' ncc a, > 0, we conclude that

Now.

'■nee

I|B ‘xfdM (x)- 0.
<’< i )

C(r) = ' x| S IVx l<  r} n  {x| I x I

iB j’x | < X„ I x II < lx  I

should

(4.16)

(4.17)

(4 18)



it is easy to sec that i r u ell ,  urO. then there exists rational number 

Hub,setting D U( (i ) whole the union is over positive rational r
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r() such that ueC(r„). 

we see that I) //(()}
However (4 IX) implies that

«»M(x) = 0.

SilKX* I IV* l ? '  0 lor all I). M (l» 0 SO that M(//) = () since M ',()•) o ||,is 

completes the prool

Scmi-stahtc laws in Hilbert space

In scmistnhlc laws in 11 the following functional equation:

p(y)-|p(By)j" (4 19)

is considered, where a is a positive real number, and II is a bounded operator such that 

If exists, is bounded, and I It I < X*, for some positive X<> <1. Characteristic functions 

which satisfy (4 I*)) alfoid one possible gcncialisation of l.cvy’s(1937) semi-stable laws 

on the real line fhesc laws are deall with at length by P. I.evy (1937), in his book 

entitled /Wore dc I  '.U M ilio n  ties V a ria b le s  M ea t ores Hence one can obtain a 

representation lor characteristic functions on //  which satisfy (4.19).

Theorem 4.4
I ct<j >1. then wc have the following theorem: 

let p <= M(If) Then the following are equivalent:

(a) p satisfies (4 19)

lh) log p( y) -  i(y,y) i<Sy,y) i Xn'T(H'y)
r O

i X a'['l,(B'y) + i(xl,,B,y)]
r -I

where.

<4 'l'(y) - l - i ( x , y ) | d M „ ( s )

a„.-n  | x|< i j o  }n1 I o n ' *  I > 1'
and M„ is a finite measure defined on Borel sets of A,, sue



lii) Xo € / /  is defined by (x0,y)= J(x,y)dM,,(x) for all ye //.
An

nii)the vector y e //  is such that (I -  oB')y x(l,

;iv) S is a non-negative llcnnitian operator with finite trace such that S -  ali' SB

''roof.

Suppose that p satisfies (4 I1)), t hen p is i. cl and we have

log fi(y) ~ i(y,,y) '/2(Sy.y) * fK(x,y)dM(x) (4.20)

from the uniqueness of the above representation and equation (4.10). it follows, as in 

theorem 4.3, that

S -  f/B’SB (4 21)

or
dM(x) = mlM((IV) x).

Now. let

A, = {x| |(B ’)T x |< l } n { x | |(FV)r ,x | > 1) Tor /• 0,.+ l.±2. 

It is clear that the sets A, are disjoint and

UA, -  {x| I x I <1 J-|0!

and

Consequently,

UAr = {x| I x I >1}.

.! K(x, v)dM(x)- J K(x,y)dM(x) I jK(x,y)dM(x) 
|M >ii Ihl < M

r f r (x .v  )||x|| dM (x)
J K(x,v)dM(x)= J |e  -  I -  i( x,y)|dM (x) + 1 J ----- „

||il < i] IKIsi) l+ M

I J le1' " ’ I |dM(x) i i \ ~ " A iIM(x)
t«xi > it iM>.)i+ixir

(4.22)

(4.23)

I he existence of the second and fourth integrals is easy to establish. Define by

(V,,y)= \ ~ 3~YT’ dMfx) r \ /  jrp"llM(x) (4 -4 )
|m « it l + M  |m > i| 1 + M |

Now. we write
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I ~ i(x.v)|c'M(x) Z  l |c '(xv’ -  1 -  i(x,y)l<JM(x)
|K| < l| ' °A,

Z  J |e '<(,n — | — i((IV) rx,y)ldM((’) 'x)
' ”A° (4.25)

; £ a  ' f |c i<x ” *v> -  1 -  i(x,B 'y)lclM(x)

Za'M't B’y)
I «»

where T is defined in (i) with M„, the restriction ol'M to A„. A similar analysis yields

f[e'<vv) -  |]dM(x) = Z  J[e’<x v> -  1-)|dM(x) 
im > i) t i a,

V ’x.m _ |_  j((B-) r x,y) l i((B') 1 x,y)|dM(( B’) ’ x) (4.26)
r 1

ZaTW IVv) i i(x0,lVy)l
i -1

where x,, is defined in (ii) Defining y to he yi + Y2, wc obtain the representation for 

logp(y) as given in (h). The assertions in (iii) and (iv) follow immediatelv Itom the

uniqueness of the representation, i.e..

fi(y) = cxp| i(x„.y) - '/2(Sy,y) + |K(x,y) dM(x)]. 

further, it can he verified that

(4 13)

Ixfl dM(x) < I no (4.27)lim f Z a i(BIV)ix, x W ,(x ) .  -
A„Vi t / |M

hv the representation theorem for i d laws.

To prove the converse, we first obtain a cr-finitc measure M on II horn Mo as

follows, for any Borel set A ci / / such 0«A, define M(A) hy

M( A) - Z a 'M (l((B ')'(A f]A r)) (4
r -  • «

where (IV)r (C)= {x (B’) 'x  eC) for any set C. It is not difficult to verify that M is a o- 

fmite measure on //-{()} and M satisfy (4.11). further, since a > I.

M {x 11 x | > l } < rco

and

f ||xl? dM(x) lim \ (Z a j(BB')iv, vldM(x) < (4 2<))
|!xl < 11 ■-** A„VH '

hv(i).
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By proceeding backwards through the argument for (a) implies (h), we conclude that 

log p(y) i(Yi,y) - '//(Sy,y) l jK(x,y)dM(x) (4.30)

.vhcre Yi = Yi - Yz- Y and S are given in (iii) and (iv) respectively, and y2 is defined in 

424) lienee p corresponds to an i d law That |i satisfies (4 I1)) is dear lorm its 

representation in (b) I his completes the proof.

Remarks

When alt' I. then x„ defined in (ii) is necessarily 0 and y can be arbitrary. II !! H 1 < a, 

then the series

Xa'(x„ .I f  y) (4.31)

converges absolutely and in this case p admits the representation

log p(y) - Vz (Sy,y) ' L a 'll'(lVy) (4.32)

when p s a t i s f ie s  (4 .1 9 ) .

In the particular ease when II is the real line, it follows from theorem I I that it 

ah '>1, then p corresponds to the normal distribution (degenerate when ah I ). 

However, when ah' <1. p has the representation

log p(y) - iyv I S a rM'(B'y) ' Za'f'ITb 'y) i ib'x„y| (4.33)
r O V -I

since the normal component must vanish. Also, in this case, the condition

limn * «n (nb2y x 2 dM„(x) <  I CO (4.34)

s automatically satisfied since ab2 < I.

Moreover, if a I b | > I. then the corresponding semi-stable law has the form 

(4.32) with S~(). and the distribution possesses a finite first moment.

4.5.3 Pntliak-Theorems( 1970) for Probability Measures on ’filbert S pare

furthermore, Pathak( 1970), after the establishment of the theorem for probability 

measures on Hilbert space, made another study on this topic and gave additional results



r
his note P. K. Pathak attempts lo generalise the theorem ofRao-Ramachandian(l968) 

itaeease when the a,'s in -'1.9,

V ai
r«<y> .1-̂1

:re not all positive. Under certain restriction on the li,’s in (4.9). he showed that the 

rnMnn ol characterisation normality on llilhril space through (4 9 )  reduces to an 

tssentiall} univariate problem ol characterising normality on the real line 

To establish the theorem preliminary expositions are required.

le t (//.(.,.)) be a real separable Hilbert space and let x, y etc. stand lor generic 

ements of / /  l.et M(If) he the space of probability measures on //  I'or each peM (//),
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Id it denote the characteristic function ol p. A ptohahilily measure p* Ml/A i'; railed 

i"rmal iT its characteristic function is given as follows:

p(y) = !i(x„.y) -  Vi (Sy,y)J (4.35)

\shcre x„e// and S is a non-negative I lermilian operator with finite trace

Subsequently, the following theorem concerning the spectral representation ol 

I lermilian operators with discrete spectrum is needed:

I et li,..... Rt be bounded I lermilian operators with discrete spectrum and suppose that

BjRj H,H, for all i, j “ l 

I lien there exists a complete orlhonormal sequence !

...... k.

e„! of vectors such that. lot each i.

m

n I

"here l\, denotes the projection operator on the subspace spanned by the vector e„. 

Next let us establish necessary and sufficient conditions under v.lmh p.

(1.36)

given

under ( 1 .9 ) corresponds to a normal law

l et us select a system of co-ordinates in II. that is. a complete orlhonoima! 

sequcncc {e,,} of vectors in //such that, I’or each i,

u-1

is is given by (4.36). I et v„ be the //-tb co-ordinate ofy. i.e.. v„ (y,e„).
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II is. then, isomor phic with the sequence t, of all real sosequences

" I vory |ic  M(//) now induces ;<> measure p in A through

ism corresponding to the basis Jcn|.

<t>n(yi. .... y„) =  m(yiei + ... + y„ Cn). 

n\v that < M yu . Y„) is a c h a ra c te r i s t ic  (unc tion  ol the fin ite  

>n ol | i  i n d u c e d  h \  th e  p r o jc c l io n :

\  -  (x,. X., ...)-> (X,...... XM).

that <t>„(v i. ., y„) satisfies the following equation.

<t\. ( y ,  —  y j 11 ['l'(̂ ,iy,,.. A„,y11)]' (437)i-1

lain necessary and sufficient conditions under which ......y„),

•spends to a normal law. Normality of |i can then he established 

jorem.

:c orthonormal sequence in II for pe=M(//) und n 1-2..... f t

4>„(y,..........y „ )  = A(y.c, + ...+ y n c „ )

tch it, +..(y........ y.) corresponds to a finite dimensional normal

is normal

e  . D efin ite  a p ro bab il i ty
u ib s p a c e  spanned by the vectors ct, 

follows:

pn(A) = lhn)(A 

to projection ol |< on //„

f .vnl if V V. I •• 1 X (l V it 
j cxp |i(x ,y )ld ti|l0 CNpl '•

jitx.v, t . ts..y.. * -

bn (v)
(5.40)
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-her since <J>„(y,, y„) corresponds to a normal law, wc have

An(y) =  exp fi(yn,y, + ... +y imyn- i/2(y, + ... +  y „ ) S n( y i , ..., y „ )’ |

= exp Ii(y,„y) - iA (S„y,y)| (say) (-I'll)

lore S„ is a positive definite operator with Unite trace. Consequently p„ is normal for 

.ach/r. It is easy to sec from (4.40) that

\n argument similar to that theorem of I’arthasarthyf 067) shows that the sequence ol

Since pn is normal for each //, p must be normal This completes the proof 

Ihrorcni 4.6:

let he p„ a probability measure on an n-dimcnsional Euclidean space. Suppose that p„ 

has moments of all order and fi,„ the characteristic function of p„. satisfies the following 

functional equation

Since p„ has moments of all order, p„ possesses derivatives ol all order. ( onsequenlly

lim p„ (y ) = p( y )

(4.42)

'\hcrc b.J < I . Then p„ is normal (possibly degenerate). 

i'raqf:

H can lx.' seen that p„ has no zeros so that (4.42) can be written as

log p„(y,......y j  ~ X a, log p.AiiYn..., A iny n ) . (4,42)

n
(4.44)

... *  * t 1
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3y?-3yn"
logft,, (y i......y„)

o

y i = 0
V n = (>

(4.45)

Therefore log p„(y,, v„) is a polynomial of some degree in v(.......y„. Hence p„ must he

normal This completes the proof.

The following theorem is the main note in the Pathak’s article! 1970) 

t heorem 4.7
let g eM (//) and suppose that p satisfies (4.9). I.et {enJ be a complete orlhonormnl 

■system in If such that, for each i,

n*l

where P„ denotes the projection operator on the subspace spanned by the vector e„. I hen

the following two assertions are equivalent.

(a) The probability measure p is normal.

(b) l or each n, the functional equation

vi»„(yn) n k ( ^ y  (446>i=l

where q/n(yn) p(yncn). implies that «|/M(y„)corresponds to a normal law on the leal line 

I'roof:

It sufliecs to establish that (a)—> (h). Suppose that (b) holds, bet p„ denote the probability 

measure on //-dimensional fuclidcan space that corresponds to the characteristic lunction

<t*„(Vi..... y„) = p„(yie„+ ... + y„c„).

It is easy to show that«)»,.(y■......v„) satisfies the functional equation:

<h„fy,...... y„) II [+ n (^ y ........ ..)] (4 47)1=1

A little consideration will now show that (4.46) implies that the probability measure 

corresponding to <|)n has moments of all order. Consequently by theorem I 6. it follows 

that, lot each //, p„ is normal lienee by virtue of theorem 1.5, p is noimnl Ibis 

completes the proof.



CONCLUDING REMARKS
The intrinsic beauty and day-to-day application o f normal distribution or normal 

law is amazing, and has generated trem endous philosophical curiosity. Many scholars, 

since its derivation in 1730. which is accredited to Abraham de Moivre (1667-1754), a 

French mathematician, are struck by its versatility and fascinating depicting character of 

natural phenomena. It is a focus of study from different angles, namely, pure, applied and 

statistical mathematics. Thus, in this perspective, we can see the advantage o f studying 

probabilistic theories in the light of norm al distribution in histono-philosophic 

contextual ization.

Its historical aspect with respect to the study of probability theory gives us a 

truth-in-life interpretation o f mathematical probability. That is. the history o f  normal 

distribution, as dealt with in chapter three, clarifies its central importance in the progress 

ot probabilistic and statistical thoughts. It is widely used, and somehow abused, in 

interential problems. Its amenability to exact mathematical treatment has generated 

highly sophisticated mathematical methods, and enabled scholars to study a variety ot 

problems in a rather organized and systematic way.

The philosophical interpretation w ith respect to the general contextualization ot 

mathematical theorems or laws o f nature is still a baffling question to mathematicians. 

K.ac(I959) poses the question several tim es and tries to give his scientific observation. 

Nonetheless, we need further investigations to verify and accept normal distribution as 

law of nature. Parallel to this we note that Poisson(1832) believed that all events ot a 

moral as well as of physical nature are subject to his formula - Poisson distribution. This 

tendency invites us to go deep into the relation between the mathematical discoveries 

and natural order. A serious scholar can venture into this realm and come up with 

satisfactory explanations. As a primary' clue it can be said that there is a possibility of 

presenting natural phenomena or order w ith mathematical probability with admissible 

minimum error.
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These possibilities are the primary stim uli for the diversifying factors o f the 

different approaches to mathematical probability theory and rise o f  conflicting schools of 

probability. M athematics, since the inspiring studies o f  Janos Bolyai (Hungarian, 1825) 

and Lobachevski \ (Russian, 1826), that there is a possibility o f  constructing geometry 

on axioms different from Euclid’s - non-Euclidean geometry, is considered to be a highly 

abstract science having both pure or speculative, and practical or applied aspects. The 

promotion of the axiomatic foundation  o f  probability theory can be seen in this 

viewpoint. The most successful scholar in th is research field is Kolmogorov(1933), even 

though his axioms are not sufficient for all aspects o f  probabilistic studies - they do not 

give room to the theory o f chances. In other words, they do not determine which of a 

pair of hypotheses about a distribution is better supported by a given data. Thus, further 

improvements o f  his measure-probabilistic axioms are required.

Next, after these preparatory comments, we can deepen our knowledge on the 

Nairobi studies in philosophy o f  mathematical probability and  statistics. This issue is 

addressed in section 2.3 in detail. Nonetheless, further clarification can purify the air for 

the curious on lookers. The method of analysis is mainly based on the external criticism, 

that is, the background o f the founders, the method o f teaching and books o f  references, 

the research papers and dissertations. But this method, without a thorough internal 

criticism, is not enough to reach a solid conclusion. In the process o f  internal criticism 

we are able to investigate the deep meaning o f the mathematical probability discoveries. 

In this way we can go beyond the symbolic reading o f formulae or what the author 

intended and what they typify, and arrive at convincing philosophical interpretations of 

the new contributions and stand o f outlook. All in all the measure-theoretic approach has 

a high esteem among the scholars and as Prof. Odhiambo says hitherto the priority of 

scholars is mainly determined by survival factor rather than with philosophical thought 

of one’s conviction. So at this stage it is difficult to give a specific standpoint in a 

scholarly manner. But with extensive internal and external cnticism o f the research 

works and related topics it is possible to give a clear picture o f the philosophical works
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on the mathematical probability and statistics at the University o f  Nairobi. In other 

words. Nairobi studies on philosophy o f  mathematical probability and statistics can be 

explored effectively using the external criticism  o f  the over all background, methodology 

and books o f reference, and internal criticism  on the research works in general, and 

philosophical analysis o f ten mathematical probabilistic and statistical dissertations 

(1981-1997) in particular.

A fare criticism on the presentations and analyses of historical facts can guide us 

to a com prehensive study on histono-philosophic study on the development of 

mathematical probabilistic and statistical thoughts. The authoritative works on these 

fields sometimes start with their own point o f  view and tend to conclude accordingly. To 

mention but a few, like Maistrov( 1974), w ith an economic theory. Hacking! 1975), with 

philosophical point of view, and Owen(1976), with geographical limitation. These show 

that historical presentations and analyses o f mathematical probability theories are 

dependent on the availability o f raw materials, mainly on the work done by the 

prominent scholars in that specified field, the subjective interpretation or personal 

impressions and preferences. So in the process o f acceptance o f the historio-philosophic 

analysis a critical eye and substantial study on the essence o f the subject itself are 

unavoidable factors.

The general subject o f probability at present covers mathematics, measurements 

or statistical data, theory of nature and theory of knowledge it self, hence, probabilistic  

philosophers venture on the methodological and epistemological issues. Good means of 

comparison o f discernment is that of Heisenberg's! 1927) uncertainty principle - to 

formulate other similar or different observations; since philosophy as such is a reflected 

knowledge or experienced insight on being, nature, or essence and accidents of things.

Nevman(1957) advocates inductive behaviour as the sole means o f foundation o f 

science, while de Finettif 1972) and his colleagues ardently claim that inductive 

reasoning  is the true ladder of knowledge. These two points o f view are the chief bones 

of contention in contemporary philosophy o f probability and statistics. There are two
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distinct aspect o f  all approaches, namely, conceptual and mathematical questions. 

Nonetheless, we can 't work out philosophy o f science in general and mathematical 

probability and statistics in particular w ithout inductive reasoning and inductive 

behaviour. They com plem ent each other.

The concept of randomness, generally in science, propagated by Fisher( 1922)and 

his colleagues, is intrinsically an open-ended concept. W e should note that it is 

misleading to give a rigorous operational definition o f randomness, but its subjective 

meaning can be grasped easily. It refers to the chance happening o f  a future event, 

always about the unknown. This property o f  randomness, that is past versus future has 

fascinating philosophical connotation. Prediction o f nature or a generalized description 

of the behaviour o f nature, is an important goal o f science in general, and of probability 

theory in particular, but the degree of reliability o f  the prediction is not absolutely 

perfect. This degree o f  uncertainty can be determined by using the methods o f 

probability and statistical theories. Analysis o f scientific facts, including their intrinsic 

uncertainties, enrich the philosophical intuition and scientific facts can no longer be seen 

as probable. They, if the probable error o r random error is known and determined, are 

the most reliable knowledges acquired by human means, because they include a realistic 

self-appraisal.

The diversity o f the definitions and derivations o f  normal distribution indicate 

that it attracted wide range o f spectrum. Consequently, we observe that the principles ot 

convergence, namely the central lim it theorem  and laws o f large numbers are associated 

with normal distribution. The relationship with the other theoretical distributions is 

equally amazing. The discrete and continuous distributions can be approximated easily 

by normal distribution. Its relation with pure and applied mathematics is appealing. 

Especially normal law  in number theory  can be further investigated and enrich 

mathematical probability. Here we have an attractive central question o f a probabilistic 

philosopher, that is, “ Is normal law a mathematical theorem or law o f nature?”



The following rem arks reflect som e already explained properties o f  the 

characterisation o f  normal distribution in Hilbert space and future problems for 

research.

• The proof o f the above theorem 4.7 mainly depend on the assumption that the B’s in 

(4.9) are commuting Hermitian operators w ith discrete spectrum. In finite dimensional 

Euclidean spaces this assumption is satisfied if the B’s are commuting symmetric 

matrices. In finite dimensional separable Hilbert space the assumption is satisfied 

when the B’s are com m uting compact Hermitian operators.

• An interesting question that can be raised now is whether an analogous theorem is 

valid w'hen the B’s are not commuting and/or do not have a discrete spectrum. This 

problem is not yet solved and a satisfactory answer in this case would be extremely 

interesting.

• In the above proof the assumption that B ’s are bounded operators with I B, I < 1 tor 

all i is used. This assumption can be relaxed slightly. Consider a functional equation 

of the form

f l  [ £ ( B „ y ) ] a ' -  1

and suppose that there exists a complete orthonormal sequence {en} of vectors such 

that, for each /',

Bi = I  Xm Pn and IXm I < lx.ln i for all n.

Then p is normal if and only if the equation

n [v„a,ny„)r = 1i«l

where u/n(vn) p (ynen), implies that vpn(yn) corresponds to a normal law on the 

real line.

• An immediate consequence o f theorem 4.7 is that to assert the normality of p. whose 

characteristic function satisfies (4.9), it suffices to establish that, for each n. the 

characteristic function M/n(yn) corresponds to a normal law . The verification o f this last
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assertion is m uch sim pler in practice. The theorem ot Rao and Ramachandran (1968) 

can now be directly applied to (4.46) to establish that \|/n(yn) corresponds to a normal 

law.

• Theorem 4.7 strengthens the Eaton-Pathak theorems! 1969). In Eaton-Pathak theorems 

it is proved only for invertible operators, but in Theorem 4.7 there is no such 

assumption for the operators B’s. Indeed, Eaton(1970) affirms that the Eaton-Pathak 

theorem can be proved for non invertible operators.

Parallel to these research studies, w e can ponder upon the characterisation ot 

normal law in Hilbert space, and present som e propositions w hich can enable us to give 

an analogy o f  inner product with the covariance o f  two random variables with zero

expectations is manifested.

W ith the help o f the definition and properties of H ilbert space, we note that the

inner product!u,v) of two functions defined by

(u, v)2 = t *  U(x) v(x) dx.

the inner product J ,  becomes a Hilbert space.

Then, after Feller’s( 1991) assessment, we can arrive at the required proposition.
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