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SUMMARY OF CONTENTS

In general the set-up of the research work has a logical intention. That is the chapters
and their respective sections are logically arranged so that one can read and arrive at the
results inductively or deductively.

Chapter one gives a preliminary background on the important research questions,
namely, the schematic discernment of statistical and probabilistic research works and method
of approach at University of Nairobi, and the characterization of normal distribution in
Hilbert Space.

Chapter two focuses on the historio-philosophic development of probability and
statistical thoughts and theories. As a concluding remark on this chapter, a tentative
conclusion on the historio-philosophic approach of the Statistical Section of Mathematics at
University of Nairobi on the mathematical probability and statistics is given.

In chapter three first we come across the historical context of normal distribution and
its philosophic applications. Furthermore, different approaches in defining and analyzing the
unique properties of normal distribution are given: modem and classical approaches. In
addition, different models of investigations, like De Moivre-Laplace method, Adrians
method, Hegen’s hypothesis and so on, are studied in deriving the normal distribution. Also,
The central importance of normal distribution in probabilistic and statistical studies is
illustrated by the relationship between normal distribution with discrete and continuous
distribution as well as properties of pure and applied mathematics; normal distribution is
analyzed using the number theory and Maxwell’s distribution of velocities and law of error.
The highly developed mathematical methodologies, theorems and techniques of the
characterization of normal distribution are elaborated. Using these techniques the theory of
normal distribution in Hilbert space is studied.

Chapterfour develops the central issue of the statement of problem logically. That is,
first after a brief historical analysis, the fundamental definitions and properties of Hilbert
space are described. Then the geometry of Hilbert space with operator theory are presented.

Finally, the necessary properties and theorems of normal distribution in Hilbert space are

clarified.
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Chapter One
INTRODUCTION

1.1 General Introduction

I lie present study lias two important research questions, namely, (i) the schematic
discernment of statistical and probabilistic research works and method ol approach at
I'mivcrsiti of Nairobi, and (ii >the characterization of normal distribution in llilhcrt Space.

I'he first question comes to light as a logical consequence of historio-philosophic
development of thoughts, as well as discussion and analysis of probability theory,
statistics and comparative description and exploration of different approaches to
probability and corresponding schools. Generally speaking, following their respective
approaches to mathematical statistics and probability theory, there are four approaches to
probability (a) the classical approach, which adheres to the notion of equally probable
cas ’s by reason of symmetry, or probability is defined as the ratio of the favourable to the
possible cases, (b) the empirical approach, in which by virtue of the so called empirical
law of chance, based on the notion of repeatable events whose frequency on a large

number of trials gi\cs the probability almost certainly and exactly, (c) ihe asymptotic

appronch(frequency theory), by considering an infinite sequence of trials defines
probability as the limiting value of the frequency, and (d) the svbjeclivistic{degree of
belief) approach, considers probability as a measure of the degree of belief of a given
subject in the occurrence of an event.

In chapter two. using some specific oiler in, we will pose to answer the question
that sa\s is there any nllinity of University of Nairobi to a specific school of probability
and statistics?.” Ifence, as historical fact and dialectic progtess of schools we will try to
identify the Statistical Section of Mathematics Department at University of Nairobi with

a school of statistics it belongs lo.



Ilie heart of the present synthetic research is the comparative analysis of
staiistical entities with pure mathematical properties. In other words. \vc will study the
characterization of normal distribution in Hilbert Space, as well as the Normal 1aw in
Number [ hertry.

Normal distribution possesses \er\ rich properties, especially for the Applied
Statistician Many scholars, starting from l)e Moivre-l.aplace up to l.indebcrg-Feller,
attributed jurat importance to the properties of normal law Contemporary scholars too
adhere to this affirmation. and due to the rapid progress and application o( probability
thcotv and statistical principles in different fields of science, this dominant lactor is
vivid In line with this we will try to identify the rharactetization of normal law in the

well I nown and rapidly expanding branch of pure mathematics, namely Hilbert Space

Hilbert Space, named after a German mathematician - David Hilbert! 1862-1943),
pla\s an important role in the functional analysis. Hilbert space theory is a useful
language for applied mathematics, engineers and scientists who apply mathematics. In
general Hilbert space theory deals with a wide ranee of topics. We will concentrate on

the properties that expose our characterization 9f normal law.

1.7 Statement of tbo problem

Hie research problem is slated in question format.
Major questions

* [lon can ue nrialv zo the normal distribution in historio-philosophic context?

» How can we present "a characterization of normal distribution in I lilocrt space?"
(jHiding questinns:
 What are the important probabilistic and stastistical historical periods, and

philosophical importance of probability theory'?

* Can \vc classify the different approaches to probability theory' and corresponding

schools'?



» With respect to the historic al development of schools of statistics and probability, and
comprehensive framework ol the applications ol normal law, using certain criteria,

can we say that the University of Nairobi belongs to one specific school or many
* |@!r°we compare probabilistic and statistical theories of normal distribution with

properties of number theory and Hilbert space?

» What do we mean by the characterization of normal distribution?

 Is there anv advantage and contribution in statistical mathematics when we study the

characterization of normal distribution in Hilbert Space and number theory*

What are the prominent properties of Hilbert space that fit Normal distribution9

1.3 Objectives of the study
I he objects es of the present study ntc:
» lo explore the characterization of Normal distribution in Hilbert space.
- lo investigate the relationship between statistical principles and pure mathematical
properties
» loassess ifthe Statistical Section of Mathematics at | Iniversity of Nairobi has affinity

with specific schools of probability and statistics in historio-philosophic context,

hence, to give a tentative conclusion

1.4 Brief literature review

Hie present literature review examines (i) the efforts that have been made over
time to explore the theory of characterization of normal distribution, and (ii) the
characterization of normal distribution in Hilbert space, as well as (iii) the statistical
research works done at I Iniversitv of Nairobi

Thi’ characterization ol a disiiibution is the investigation of those unique
properties enjoyed by that distribution Mathai and Pederz.nli (1&77) have compiled and

put together their studies with recent research papers and published then in a form of a
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monograph In their monograph entitled  haracterization of the Normal Probability
Law" (1977). they deal thoroughly with the highly mathematical topic of characterization
and ti\ to motivate students to undertake research work in this area thus the material is
dc\eloped from the very elementary level to the research level.

There arc properties that will uniquely determine a normal distribution, that is to
say. the normal law is the only distribution to enjoy such properties. Investigation of such
properties and the determination of the resulting distributions are known as

characterizations of distributions.

Ihere are two distinct methods developed one following the other: (i) the

functional equation method, and (ii) the axiomatic approach

The functional equation method is developed to its present format by Kagan.
l.innik and Rao (1973) In their method they developed techniques in characterization
problems as follows: (a) Use tim properties and derive a functional equation. Then solve
the functional equation for a unique solution by imposing additional conditions if
necessary (h) Use the properties to derive a difference, differential or difference-
differential equation, and then seek a unique s«olution for it (c) Use the properties and
analyze some general structures to classify or separate certain distributions, for more

details sec Mathai and I’ederzoli( 1977)
The axiomatic approach is advanced by Mathai and Rathie (1975). The axiomatic

approach to characterization of normal law proceeds as following: An axiomatic
definition is provided for a basic concept itself such as variance, correlation, entropy,
affinity, information and the like. In problems of this nature a few postulates are put
forward and the resulting concepts arc uniquely determined, thus providing axiomatic
definitions for these measures. The main techniques used in the characterization of basic
concepts are also the same as the techniques used in the characterizations of probability
laws Mathai and Pedcrz.oli( 1977) remark that historically, the basic concepts are

introduced mainly on the basis ol intuitive or heuristic considerations.



As a result of the alvwe methods. normal distribution is characterized through
linear independence |l)nrtnnis |(,51; Hasn.1951; l.innik. 1952; Skitovich.1954|. linear
and quadratic independence] | aha. 1956,1957;Chanda, 1955; I.innik, 1956. (Jordon.1968;
(Jordon and Mathai. 1972 Mathai.l977|, regression properries]Laha and | ukacs.1960;
/inecr and 1 innik. 1964; Mathai. 1067; (Jordon,1968; Gordon and Mathai, 1972], by
solution* of certain functional equations |Rao. 1967; l.innik, 1960; Zinger and I,innik.
19551 front the Students law [Marrldon, 1956; Kotlarski. 1966). structural set-up
[M'»thni, 1967; Patil and Seshadri. In63.196d|. maximization principlelMathai, |977|
and other miscellaneous techniques | Mathai and (Jordon. 19721

lire Characterization of Normal Distribution in Hilbert Space was initiated hv
Prohorov and Tisz (1957). hr (heir article they came up with a theorem of random

elements in Hilbert space, aird the theorem is stated as follows;

Consider random element with values in a real separable Hilbert space Il (that is
measurable mapping £(u) of a fundamental probability Held iirto the space Il| let the
probability distribution and characteristic function he derroted respectively as.

I'Eand <f(/a ], cC /all.
let —r "’ be denoted as £ - rj and let I1£ ILbe the linear functional (/.£), Jell,
stochastic variables lire mathematical expectation of the random clement £ is such air
clement M£eH such that for every fell, 1f(f€) ~ (f,M£). Consider the conditions, («):
\t "£" "t ;(g); M<f£) =0 for nayfe Il,f*0\ (y): ME~O where O is the null element in
Il. and let -£ ' - , be random element in If subject to (rr). (1) and (y) and let
(6) p" and 1 be independent and (c) A l;L. where A isa (A1) linear, (A2)
bounded. (A5) self conjugate. (AD positive operator in If Then the distribution P of
each of the random elements «*” is normal and A where F, is a unitary operator.

Additional explanation ol Characterization of Normal Distribution will be given in

chapter four
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Ihen, Eaton and Pnthak (1969) picked up the topic and studied it more
comprehensively | uithermnre. Pnthak( 1970) made another study on this topic and gave
additional results Parallel to these research studies, we will continue to ponder upon the
characterization of normal law in Hilbert space, and present some propositions which can
enable us to give an analogy ol inner product.

Normal | aw in Number theory is advanced mainly by Kac in 1949 in his article
“Probability methods in some problems of analysis and number theory,” and in 1959 in
his monograph entitled Statistical Independence in Probability, Analysis and Number
Theory Other prominent scholars who laboured on this research area are like

Horcl( 1999). Hardy and Ramanujan! 1917). Champerno\vne(1933). Kac and
1.rd0s( 19.19). REnyi( 1955). Kuhilus(1956). and Rcnyi and Turrtn( 1958)

The history of probability theory and mathematical statistics has been studied,
though not in a thorough manner, by prominent scholars, namely, mathematical
historians Among the authoritative works on the history of probability and statistics the
following are prominent, in English: Isaac lodhunter, A History of Mathematical lheorv
of Probabilityfrom the Time of Pascal to that of Laplace, 1865,1965, covers 1654-1812;
(" (" lleyde and E. Seneta, Studies in the History of Probability and statistics, Vol. 2,
1975; N R Owen (cd ). On the History of Statistics and Probability, 1976, prepared by
selected famous American scholars; E. E Maistrov, Probability lheory: A Historical
Sketch. 1974 | Translated by Samuel Kolz|. well documented but based on an economic
theory; lan Hacking. The Emergence of Probability: A Philosophical Study of Early
Ideas About Probability Induction and Statistical Inference, 1975, philosophical
analysis of the development of probabilistic areas in mathematics; 1 Koren (ed ), lhe
History of Statistics, 1918. 1979, contains the development and progress of Statistics in

Trance; E. S. Pearson and M (J Kendall (eds), Studies in the Histoiy of Statistics and
Probability, 1970.
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In line with this observation, we can give a brief review about historical note and
discernment on the original statistical work done at University of Nairobi. |he pioneers
or the initiators of the Statistical Section of Mathematics Department at University of
Nairobi ate Professor M S Patel and his colleagues, in late 1960's.

Hasing our observation on the articles published as concrete documents and
dissertations as further confirmative wotks. we note that the model techniques or design
theory has gained ground at University ofNairohi. Furthermore, categorizing broadly, it
can be said that four research groups are emerging: gravy screening, educational and
manpower planning. hinlogiral population modelling, and .11DS modelling
(I pidemiological modelling).

The group screening technique was developed during World War It In Dorlman
<l°U) and studies by Stench I°57) It was improved by introducing more than two
stages b\ Sohel and (?roll( 1959), Watson (1961), 1,i(I1962). Patch 1902). and
| ino<;;m( 1964)

I be first and second published works, as outcome of research wotks at lJniversily
ot Nairobi, arc “Two stage group screening designs with unequal a-priori probabilities.”
and (’ptimum two-stage group screening designs,” by M S. Patel and 1 A M. Ottieno,
both publications occuring in 1984. Ihe third one is “Three-stage group screening with
error in observations.” byl W Ddhiarnbo and M S. Patel in 1985.

Ihe subsequent published articles followed the same pattern, except a few,
namolv. stiessing on ‘gtoup setceiling": Odhiambo and ()wino( 1985). “A stochastic
model for estimating academic survival in an education system"; Patel and M.
(>ltieno( 1°85). “Optimum 1wo stage group-screening designs with unequal a-priori
probabilities and with error in decisions, paper presented at the joint statistical meetings
of ASA.FNAR, WNAR IMS at | as Vegas. | ISA 5th - 8th August, 1985; Odhiambo
and Patch 1986). “r>n multiple group screening designs”; Odhiambo( 1986). “The
performance of multistage group screening designs”; Odhiambo and Kliogalit 1986). “A

transition model for estimating academic survival through cohort analvsis”; Patel and
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(>ttieno( 10S?). “Optimum Two stage group-screening with unequal group sizes and
errors in decisions”; Odhiambo and I’atel( 1987). “Three-stage group screening with
unequal group sizes and with errors in observations”; Patel and Manene( 198 7). “Step-
wise group screening with equal prior probabilities and no errors in observations”;
Odhiambo. and Manene(1987), “Step-wise group screening designs with errors in
observations”; Owino and Philips! 1988), “A comparison of retention properties of the
Kenya primary education system before and alter 1970”; Adhikary and Chaudluiri(1989),
“A note on handling linear randomized response,”; Adhikary and Chaudhuri( 1989), “On
Two properties of an unequal probability sampling scheme”; Adhikary and
Chaudhuri! 1990), “A note on interpreting subsamples of unequal sizes drawn with and
without replacement”; Adhikary! 1991). “On the performance of the nearest proportional
to size sampling design™

Recently in the conference of the Kenya Mathematical Society further review of
the works done at University of Nairobi arc exposed again: Odhiambo! 1993) presented a
paper on “A review of the factor screening method"; Ottieno(1993presented a statistical
analysis on “Mortality levels and determinants in Kenya”; Owino! 1993) presented a
paper on ' A mathematical model for comparison of educational characteristics of males

and females”; Wekef 1993) presented a paper on “IBNR claims reserving and (?I<IM”.

Other more recent publication, also are of great help to discern more closely into
the research progress at the University: Owino and Odhiambo(1994), “A statistical
method for planning an educational system”; (ietao and Odhiambo! 1996). “ 1he potential
of information technology in the management of an African crisis Computers and
AIDS" In particular the fifth Scientific Conference of the Fast Central <« Southern
Africa NPIwork ofthe International Biometric Society, 22nt-25h September 1997 held in
Mombasa-Kenya shows a great achievement in the research work done at University of
Nairobi (Tachii and Odhianibo(|nq7)>“Deletion designs in estimation of low order

interactions”; Luboobi and Simwa(1997), “lIIV/AIDS epidemic curves for Kenya and



IJganda A paramenia statistienl approach ; l.uboobi and Sirnyva(l1997). 1IV/AIDS
epidemic wives lot Kenya and Uganda A nonpaiametric slalislieal apptoach ; M M.
Mancne(1997), “On two-type stepwise group screening designs ", Mwambi. Odhiainbo
and Nuchntcrfu(1997). *“ A mnlriple matrix model to study the population dynamics of R.
appendicnlatns in Zimbabwe": Odhiainbo and <bctao( 1997), “lIbe potential of group
screening method in the management of AIDS crisis in Africa”; Owino and
(>nioln( 1997), “Optimal barvesting in poultry farming".

Ibus. focusing our analysis on these published articles, research projects and
dissertations, we will asses the original statistical work done at University ol Nairobi,

and come up with a tentative conclusions.

1.5 Significance of Ihe study

Mesides the written reference, as indicated in the literature review, formal and
informal discussions with the prominent scholars in the Departments of Mathematics at
the Iloiversity of Nairobi have been held. Ihe actual protagonists on the research area of
probability and statistics arc the main source of discernment on the historical and
philosophical contextrrali7ation of statistionl and probabilistic research fields at the
University of Nairobi.

lire result of this sludv "ill give iise loan interest in three rcsearelr areas, namely
the philosophical assessment on the foundation of mathematical statistics and
probability, discernment on normal law <mnumber theory and the characterization of the

theory of normal distribution in Hilbert space.

I he histotio philosophical outlook on mathematical probability and statistics can
open a real interest on philosophy of randomness, inductive reasoning, inductive
behaviour and other related topics, hr other words, one can venture into the deep

knowledge of philosophy of logo* and language of mathematical probability and statistics
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in diversified perspective For instance a statement of research problem can be sinter! as
what is Nairobi Studies on Philosophy of Mathematical Probability and Statistics ?

I'he relationship between the properties of normal distribution and number theory
m< the characterization of normal distribution in Hilbert space is amazing Since in
probability theory we study mathematics, statistical data or measurements, theory of
nature and theory ol knowledge itself, we can say that normal law, a phrase preferred by
pure mathematicians, is either the law of nature or a mathematical theorem Ilitis, many
properties and fascinating relationships between normal law and number theory, and the

characterization of normal distribution in Hilbert space can be re-discovered



Chapter Two

HISTORICAL NOTE ON PROBABILITY
THEORY AND STATISTICS

UNIVERSITY (P NAIROE.
2.1 INTRODUCTION Cumnun /. irpmpr

The prehistory of probability Iheoiy and tlie origins of probability theory as a

science is not thnronglih investigated Nonetheless, the hnsic stimuli in tlie rise of

probability theory can be stated as processing numerical data and results of observations
in various sciences the practical requirements of insurance companies and abstract
problems connected with games of chance, calculating the number of various possible
outcomes in throwing several dice. Ihe origins of probability theory was generally
attributed to investigations bv the renowned fieivh mathematician Fcnnatf 1601-1665)
ol problems posed In a gambling contemporary to Pascalf 1623-1662) Now this
conviction have been pushed back a century earlier to the Italian mathematicians
(‘ardonof 1501-76) and faringlinf Mb*M557) about 1570. Cardano (ahoitl 15.26) is
considered to be the author of the first Look oft probability theory, lie is also the author
of remarkable text of algebra fx ¢1<if>ne{ 1545), whereby causing disputes as to the real
authorship of certain phases ol mathematical development. Ars Magna contains the
works of Scipione del Fermfabout 1500). Tadaglin and 1.odovico Ferrari! 1572-1565).

According to F. N Oavidf 1°55). a probability theory histotiau. with regard to the
beginner of modern prohahilits theory, we have the following, observation

I do not think that the fact that Cardano did not quite see the
mathematical abstraction clearly can detract from the fact that he did.
on paper at any rate, ns far as we know, calculate the first probability
bv theoretical argument, and in so doing he is the real begcttor|sic |
of modern probability theory. It is true that Galileo wrote on one
problem only and fairlv hricily at that, but it is difficult to see why
Pascal and Fermat should be preferred as the originators of
probability theory before Galileo or Cardano.[David, 11-131



12

2.2 Important Probabilistic anrt Statistical Historical Periods
Using the criteria ol'(i) time- chronological aspect, (ii) the method of approach to

statistics and probability, and (iii) great influence or impact on the study of statistics and
probability, we can say that the historical development of Probability and Statistics is
classified in the following periods: (i > the completion of the emergence ol Probability
with Rernonlli (171.1). (2) Ibe initiation and development of Statistical and Probabilistic
Ihcorv with 1 aplacc (1812), (inoss (18 1A), Poisson (1837) and Chebyshev (18M) in the
nineteenth centniy. (t) lhe Advent ot piominent twentieth century ptohnbilistic philo-

sophers and mathematical statisticians, and Modem Schools of Probability and Statistics.

2.2.1 The completion of the emergence of Probability with Rernonlli (1712),

1.2.1.1 Etymological meaning of Probability

r>f the precise meaning ol probability there are conflicting views among experts,
philosophers, mathematicians, statisticians As Copi and Cohenf 1990). and von
Wright! 1**77) observed the reason for this may be partly grasped from a survey of the
various channels through which a scientific concept of probability has emerged

I rymolngicallv the Iatin word Pmbahilis (probable), is a lerm applied generally
to am belief that is reasonable wittrout being certain The vagueness of this formulation
permits a wide variety of uses, especially in modern times Ihe first broad distinction
that must be made is that between the degree ofcredibility attaching to a proposition and
mathematical probability which belongs to propositional functions or related
propositions, the first ol these is the common sense view - the maxim, "one who sleeps
intentionally, can not be awakened by an elephant.” is accepted by many people The
second is a well defined part of general mathematical theory. Durbin (1%7) says that the
basic distinction with respect to mathematical probability is between the abstract theory
and its applications and interpretations lire latter have tire same general subdivision: 1)
Classical apprnch (equally probable cases), 2)Empirical nr statistical (repeatable
events- empirical «Iaw of chanceV 3)lhe Assnvpiotic approach (limiting value of the

frequency). I)Logical (degree ol evidence theory) or ruhjectirist nr Personal (degree of
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belief theory). 1his classification and the notion of method of approach will be dealt with
in detail in connection to the school of statistics.

Though these broad categories can represent irreducible differences in individual
interpretations, it seems ditlicnlt to do without this basic division furthermore, there is
the notion of probability that was common to the Greeks and medieval scholastics; for
them probability meant any argument that gave rise merely to opinion and not to
demonstrative certitude, finally, thcie is the notion of inductive probability - the
possible utilisation of mathematical probability for induction in science, cither as its
justification or as an aid in developing a logic of discovery.

In depicting the historical note on probability, statistics and normal distribution, it
is hard to come up with a complete picture in few pages. Nonetheless, the intention of
the present work is not just for the sake of history, but primarily, for the verification and
identification of schools of statistics and to illuminate the role of normal distribution in
statistical mathematics, and to classify the University of Nairobi, if it is possible, as a

school with respect to the historical development of schools of statistics and probability.

2.2.1.2 nonnis«snr»ce

In the period of Renaissance we note flic presence of mathematics of randomness.
About 1660 probability, as we know now it. started to emerge with dual factors; as stated
earlier, on the degree ol belief and with devices tending to produce stable long-run
frequencies.

( ommercial insurance against risks was developed in the Italian cities of the early
Renaissance. Ihe theoretical foundations of life insurance were laid in tire 17th century,
lire I nglish statistician John *haunt in 1662 drew attention to the stability of statistical
scries obtained from registers of deaths. Soon allcr. the fnglish astronomer f.dmund

Halley showed how to calculate annuities from mortality tables.
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chances but able to apprehend the fact that evidence and causation are in different
categories, could perfectly veil start measuring epistenric probability. He developed
combinatorial methods primarily for the purpose of logical deductions, which is closely
connected with investigations aimed at the construction of the “universal Characteristic.”
lodluintcr( 1865), in his monumental work on History of the Mathematical theory of
Probability, points out that the mathematical treatment of the subject of combinations as
given by LeibnizJ 1880) is far inferior to that given by Pascal 1623-1662 (1%3). In the
first printed textbook of probability, Christiaan Huygens (1629-1605), Calculating in
(iamrs of Clrance{ He ratiociniis in ludo alcac - 1657), we come across an important
term expectatio (expectation): his perception of his work is also interesting: “I would like
to hHieve that in considering these matters closely, the reader will observe that we are
dealing not only with games hut rather with the foundations of a new theory, both deep
and interesting™" 11695|; this is a foreword, a letter from Huygens to van Scbooten. dated
27 April 1657. Huygens’ work is published as an appendix in Latin to a volume entitled
Kxerciiationes Mafhemnticae (Mathematical Studies) by Francis van Scbooten, which

appeared in 1657.

2.2.1.3 Political Arithmetic

Statistics began as the svstematic studly of quantitative facts about the state. John
Hraunt -1662 tells us in the preface to his Natural and Political Observations upon
selfsame hills He and William Petty - whose various essays on “political Arithmetic”
make him the founder of economics - seem to have been the first people to make good
use of these population statistics Petty was a man who wanted to put statistics to the

service of the state and saw real importance of collecting statistics for testing a wide

ranee of hypotheses even the ones about medical efficacy.

2.2.1.4 Annuities
Annuity as opposed to loans, was a secured income for an assigned period, where

a standard way to raise public money, partly because it was possible for a government to
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chances hut able to apprehend the fact that evidence and causation are in different
categories, could perfectly well start measuring epistemic probability. He developed
combinatorial methods primarily for the purpose of logical deductions, which is closely
connected with investigations aimed at the construction of the “universal Characteristic.”
Todhuntcr(I865). in his monumental work on History of the Mathematical theory of
Probability> points out that the mathematical treatment of the subject of combinations as
given by Leibniz(1880) is far inferior to that given by Pascal 1623-1662 (1963). In the
first printed textbook of probability, Christiaan Huygens (1629-1695), Calculating in
Games of Chance{ De ratiociniis in ludo aleae - 1657), we come across an important
term expectatio (expectation); his perception of his work is also interesting: “I would like
to believe that in considering these matters closely, the reader will observe that we are
dealing not only with games but rather with the foundations of a new theory, both deep
and interesting” [1695]; this is a foreword, a letter from Huygens to van Schooten, dated
27 April 1657. Huygens’ work is published as an appendix in Latin to a volume entitled

Exercitationes Mathematicae (Mathematical Studies) by Prancis van Schooten, which

appeared in 1657.

2.2.1.3 Political Arithmetic

Statistics began as the systematic study of quantitative facts about the state. John
Graunt -1662 tells us in the preface to his Natural and Political Observations upon
selfsame bills He and William Petty - whose various essays on “political Arithmetic”
make him the founder of economics - seem to have been the first people to make good
use of these population statistics. Petty was a man who wanted to put statistics to the

service of the state and saw real importance of collecting statistics for testing a wide

range ol hypotheses even the ones about medical efficacy.

2.2.1.4 Annuities
Annuity as opposed to loans, was a secured income for an assigned period, where

a standard way to raise public money, partly because it was possible for a government to
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mathematician of Ihe Renaissance |Ix- snlij<*ct was developed into a “geometry of the
die” ( llrnr geomrtrio) In Illinhe Pasc.nl. Pierre dc Fermat, and Christiaan Iluygcens in the
I7ih century Pcrnral treated the problems within a general theory of combinations,
which was further developed In the S\\ iss mathematician Jakob Bernoulli 1he latter can
he regarded as the foundci of prohnhilily theory as a branch of mathematics: his
posthumously published Ars Conjectandi of 1713 can be said to aim at a fusion of the a
priori methods of combinatoric probability and the a posteriori methods of early

statistical theory.

2.2.1/» The art of Conjecturing- Ars conjectnndi

Jacques Bernoulli's in conjectnndi presents the most derisive conceptual
innovations in the early history of probability. 1he author died in 1705 lie had been
writing the book off and on for twenty years. Although the chief theorem was proved in
Ibua. he was never satisfied and he never published lan Hacking(l975) in his book
entitled The Emergence of I'rohabrlity sums up the historical fact, probabilistic and
philosophical importance as follows:

Ihe work was finally given to the printer by his nephew Nicholas,
and appeared in Basle in 1713 In,that year probability came before
the public with a brilliant portent of all the things we know' about it
now: its mathematical profundity, its invitation for philosophizing.
Probability had fully emerged. 1llacking. 143],

Ihe An conjectnndi comes in four parts; the first is an improved version of
Huygen s book on games of chance. lhe second is a general essay on the theory of
combinations flic third application of the theory of combination to a sequence of
further exercises on games of chance. lhe fourth part of the hook revolutionazed the
probability theory lor the first time a subjective conception of probability is explicitly
avowed and the lirst limit theorem is proved. In this part it is intended to show the

application of probability mathematics to matters of economics, morality and politics. It

is this part that justifies the very tittle. An conjecfnndi(\ne Art of Conjecturing).
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furthermore, on this port Bernoulli announces that ‘Probability is degree of certainty and
difl'cis Horn absolute ccrtninl\ as the pari differs from the whole." I'mliter detailed
analysis is given by Hacking! 1971) in Jacques Bernoulli’s Art of Conjecturing ”

I'he first mathematical contribution of the work is the formalization of the first
limit theorem in probability Secondly, he has been regarded as father of the first
subjective conception ol probability or Bernoulli became father ol different schools:
frequentist (Richard von Misrs - |9S]|) inductivist (Rudolf Carnap - P. M. Boudot
1967), inference via confidence intervals (Jerzy Neyman 1957, Dempster 1966).

Bernoulli introduced the term subjective into probability and through the
subsequent centuries, and in particular in the twentieth century it gave rise to different
meaning and schools: (i) the most extreme subjectivism- personalism, probabilities are
unknown - Bruno dc Finctti. 1. 1 Savage; (ii) the theories of logical or inductive
probability, which can not be detached from evidence, one may fail to know only through
failure to do probabilistic logic - J M. Keynes and others; (iii) the concept of subjectivity

prominent among current philosophers of quantum physics.

2.2.1.7 | he first limit theorem

The first limit theorem known as “the weak law of large numbers is a theorem of
pure probability theory, and holds under any interpretation of calculus.

Bayes'(1763) paper published half a century after the appearance of the Ars
conjectandi is the first systematic attempt to compute values for conditional probability
(Fisins, +r./sn)

I he brief description of the historical note on the emergence of probability comes
to an end with the publication of Ars Conjectandi. Meanwhile, Abraham dc Moivre
11667-17541 published He mrmura sortis (1711), which soon was to culminate in The
Doctrine of Chances, oi a Method of Calculating the frohahilitv of liven!s in
77or,(1718.1738,1756)\\here the mathematics of probabilitv was recognized as an

independent discipline in its n»n right, and although not in clear words, it is claimed that
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a statistical law is the course of nature Furthermore, a curious pre-Bcmoullian paper of
1710. by John Arbuthnot(1667-1735). is said to be the first published test of significance
of a statistical hypothesis and contiibuted to the work of a group of nien who
endeavoured.to relate Newtonian science to natural religion, like John Wilkins In brief
the remarks of Karl Pearson( 1857-1936) can fittingly express the historical fact of this

period.

Newton's idea of an Omnipresent deity, who maintains mean
statistical values, formed the foundation of statistical development
through Dcrham, Susmilch. Niewentyt. price to Quetlct and Florence
Nightingale De Moivre expanded the Newtonian theology and
directed statistics into the new channel down which it flowed for
nearly a century’ The causes which led Dc Moivre to his
‘Approximatin’ or Mayes to his theorem were more theological and
sociological than purely mathematical, and until one recognizes that
the post Newtonian | nglish mathematicians were more influenced bv
Newton’s theology than by his mathematics, the history of science in
the 18th century - in particular that of the scientists who were mem-
bers of the Royal Society - must remain obscure (1926, 551-2)

David Hume(1711-1776), in his work A Treali.se of Human Nature, being an
attempt to introduce the experimental method of reasoning into moral subjects, in 1739
poses for sceptical problem about the future, ‘the problem of induction He doubts that
any known facts about past objects or events give any reason for beliefs about future
objects or events. A similar problem arises also for inference about unremembered past
events, and unobserved present ones. This basic sceptical problem is expressed and
negated as follows: “An expectation that the future will be like the past must be either
knowledge or opinion. But all reasoning concerning the future must he based on causes
and effects. Reasoning concerning causes and effect is not knowledge. Therefore it must
be opinion, or probability. But all probable reasoning is founded on the supposition that
the future will resemble the past, so opinion cannot be justified without circularity.

Knowledge and probability are exhaustive alternatives. Hence expectation about the

future is unjustified.” Probability emerged from the Renaissance transformation in
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opinio Although the emergence of probability is a transformation in opinion, the
emergence o f‘probability-and-induction’ is a more complete event depending on parallel
transformations in high science and low science.

It is good to note that by a widening of the aim of decisions, obtained in 1738 by
Daniel Bcrnoulli( 1700-1 782), in 1738 through the introduction, under the name of moral
especialion(ax utility) and a widening of the domain of probabilities, initiated by James
Bernoulli! 1713) and more profoundly by Bayes(1763) by relating them to statistical

observation “inductive reasoning” is established.

4

2.2.2 The initiation and development ofStatistical and Probahlistic Theory
with Laplace (1812), Gattss(IS16), Poisson (1337) and Cliebyshev (isro) in the
nineteenth century

Some of the basic concepts of statistical theory were initiated during the first
quarter of the nineteenth century by Laplace in his fundamental Thiorie Analvtique des
Prohahilites (Paris. 1812). and by Gauss in his papers on the method of least squares,
and his monumental work Thenria Motus cotpornm coelestium in sectionihns conicis

solem amhientium, (Hamburg. 1809).

UWVEPS'TY nr
2.2.2.1 Pierre-Simon de Laplace GHIRO(fO LIBRARY

Picrre-Simon de l,aplace (1749-1827) introduces the purely subjective criterion of
equal possibility of events, considering that two events are equally possible if there is no
reason to believe one of them will occur rather than the other. Assuming that our
knowledge is incomplete concerning many objects and events, Laplace proposes
applying probability theory to all problems of the natural sciences and society, such as
moral sciences. Laplace believed that phenomena and the actual nature of things do not
coincide and the purpose of science is to correct the illusions and deceptions of our
senses, by perceiving true objects in their deceptive appearance and manifestations.
Nature should be approached by comparing various factors; the phenomena should be
examined from various points of view in their development; a collection of facts is not

sufficient; one should compare and experiment.
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Mis first papers in probability theory are dated at the middle seventies of the
eighteenth century: the first one being Memoire stir la Probability des causes par les
evctteittenis in 1774 In 1810 l.nplace obtained his most important result in probability
thcorv. presently known as l.nplace's theorem The essence of this theorem is that the
binomial probability distribution under suitable normalization and unlimited increase in
the number of trials approaches the normal probability distribution After this Laplace
published his classical treatise “lhcorie analvtique des Probability- in 1812. In this
volume Laplace presented all his basic results in probability theory; laid the foundations
for study of various statistical regularities, successfully applied probability theory to
estimations oferrors in observations and so on.

Lehmannf 1958,1959) suggest that Laplace was the first to produce a general
solution to what sometimes is called Bernoulli's problem Picrrc-Simon de
l.aplacef 1ft\2)J1lieorie Analvtique des Probabili/es, appears to compute estimators Fii
with property that

Probability {p isinFs(s,V, = 1-8,  forallpin [0,1]: (2.1)
Ibis is the universal quantification of an expression like probability {p is in s, + dp).
furthermore, it is expressing that regardless hf the true value of p. the probability of
making a right estimate is I-fv This is the exact security level But there is a suggestion
that (2.1) is not obtained by Laplace. The reason is that at one moment he has to
substitute the observed s, for the unknown p. and hence the solution is only
asymptotically correct Perhaps W. S. (Josset’s famous statistic ‘f (1908) was the first
device to overcome this kind or inexactness. However, if we ignore this kind of

inexactness we can regard the theory of ‘probable errors’ produced by (iauss in 1816 as
using interval estimators with a security level of 0.5.

| aplace in his classical work solved several problems. One of them is to “find the
best combination of observations for the determination of an unknown quantity under the

condition that positive and negative errors are equally probable and the number of
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observations is indefinitely large." Without any assumptions on the distribution law of
the errors, Laplace obtains that the method of least squares yields the best possible
combination of observations, lie also gives a new proof for James Bernoulli's theorem.
Ile obtains the asymptotic formula for the probability of the sum of independent random
variables each one of which admits only all the integer values between -a and ta. In his
derivation he actually employs the basic ideas of the theory ofcharacteristic functions.
furthermore, Laplace in Oeuvres completes, VII(1878-1912), investigated the
problem of credibility of estimates made after observations, and presented a straight
forward Bayesian analysis Although Laplace found an estimator which at least
asymptotically has an exact security level, it is not unique. Hence other desires are
required to choose among the estimators of given security level. The best known solution
is due to Jer7y Ncyman( 1057). His theory explains that in many interesting situations
there exists a unique estimator of given security level that for every false value of p
minimizes the chance of including p in the interval estimate. An interval estimate got
from such an estimator is a confidence interval. Ncyman advocates inductive behaviour
rather than inductive inference We can behave in a way that is usually right, but we
cannot measure the credibility of our doing tfe right thing on any individual occasion.
According to llacking(|975) this is one ofthe chiefbones ofcontention in contemporary
philosophy of statistics The Bayesian school, for example, has quite the opposite
opinion. The logic of the confidence interval approach was made clear in the 1930s by J.

Ncyman and F. S. Pearson

One of the applications of probability theory of special interest to Laplace is in the
field of demography Me discusses methods of indirect population counts, and estimates
of precision in such counts, he also develops the theory of sampling census and other
problems. This result is supported by his study conducted in 1802 ahout a sampling
population census of France IInis he played a significant role in the development of

statistics, in particular he contributed greatly to the application of probability theory to

demography.
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I'lie classical definition of probability is given in his book “ Ilu‘'orie analytique dcs
Probability. 1812”:the probability P(A) ofevent A is equal in the ratio ofthe number of
possible outcomes of a trial which are favourable to event A to the number of all
possible outcomes ofthe trial Ilere equi-probability is assumed.

If we consider the expansion (x + x2+ x1+ x4+ x' + xp)n, then the value of the
coefficient of X6 is equal to the number of outcomes with n dice, giving the sum of points
equal to s. laplace generalizes this method of calculation to the method of generating
functions widely used at present. A function f(t) = L,=0 0" = lit+ fit + fA" + ... + frin+

is called the generatingfunction of the sequence fj,, f(, f2, ..., f,, ... . Generating

functions arc used not only in probability theory, hut also in algebra and other branches

of mathematics

2.2.2.2 Cart Friedrich Canss
However, if we ignore | aplacc lor his inexactness, we can regard the theory of

probable errors’ produced by Gauss in 1816 as using interval estimators with a security
level of 0.5. Carl Friedrich Gauss (1777-1855). a German scientist and mathematician,
first work related to probability theory was the famous Theoria Motus corporum
coelestium in sectionibus conicis solent ambietitium, (I lamburg, 1809) In the last part of
this work Gauss for the first time presented his theory of errors in observations. Two
other papers arc related to this topic “Disquisitio de elementis cllipticis Palladis,"
Comment. (Gottingen) | (1808 -1811) and “Rcstimmung dcr Genauigkcit dcr
Rcobachttmgen " (7 fin Astro// (1816). pp 185-197) These woiks were generalized and
supplemented in his treatise “ Ihenria combinationis observationum erroribus minimis
obnoxiae." Comment. (Gottingen) V (1819 -1822). which appeared in 1823. In 1828 a
supplement of this work:  Supplemcntum thcoriac combinationis observationum
erroribus minimis obnoxiae.” ( onunent. (Gottingen) VI (1823 -1827) was published. In
1845-1851 Gauss wrote “Application of probability theory for determination of the

balances of widows’ pension funds” and also computed “Tables for determination of the
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time periods for various types of obligatory incomes for survivors.” Gauss's notes and
letters are also of great value and interest from the point of view of probability theory.

Adrien-Marie !.egendre(!806) in his treatise “New methods for the determination
of the orbits.of comets” developed tire method of least squares in the appendix entitled
“On the method of least squares”, lie writes “Among all the principles, which may be
suggested for this purpose, there is none simpler than the one we utilized in the previous
discussion the method is to minimize the sum of squares of the errors ” Me formulates
this principle in a clear manner and observes that it should be very useful in various
problems of physics and astronomy, where the derivation of the most precise results
possible from observations is required.

Gauss presented his method for the first time in 1809. However, he observes that
“Our principle, which we have made use of since the year 1795, has lately been
published by Legendre in the work Nonvelles methodes pour la determination des
orbites des comites, Paris, 1806 " Me also gives this date in his letter to Laplace of 30
January 1812. In a letter to I M. W Olbcrns in 1802 he mentions, however, that
“starting from 1794. | have been utilizing the method ... which has also been applied in
Legendre's work . Gauss mentions twp dates, 1794 and 1795. Contemporary
authorities are inclined to accept 1794 as the correct one. For more details on this
controversy between Legendre and Gauss we can see the work of Bell (1937), “Men of
Mathematics,” Simon and Schuster

The normal distribution was considered a universal law for a long period of time.
I his state of alTairs resulted in a delay in the development of quantitative methods for
discarding some observations, since the normal law admits the possibility of errors of
any magnitude. Hence it was assumed that all the observations should be retained Only
in the middle of the nineteenth century did the first probabilistic criteria for rejecting
observations begin to appear Gauss in 1816 investigated the estimation of h based on
results of observations |where the normal law is given by

<PpA)=1i (n) exp/-1t2AZ. (2.2)
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lie introduces the error function
0(t)=2(n) h exp (-i"dt (23
and presents a small table ol the values of this function Ihe value of the argument r such
that Ofp) 0.5 is specially singled out. 1his value isp =0.4769363. The quantity ph =r
is called the probable error for the function Ofht). The first table of a normal curve
appeared in 1) Bernoulli’s treatise of 1771
Ihe most complete exposition of the theory of errors is contained in Gauss's
paper “theoria combinationis ohservationum erroribus minimis obnoxiae.” lie assumes
that there are two t\pcs of errors, namely, random errors and prediction errors. Mis
results in the theory of errors are presented almost without modification even nowadays
in manv textbooks on statistics. It is worthy to note that Gauss contributed to the
development of probability theory as well as to ditferent branches of mathematics and

science.

2.2.2.3 Simeon I>enis Pnbsnn
During this period we come across another prominent mathematician Simeon

Denis Poisson (1781-1840). Mis works are mahy with respect to the probability theory:
On the probability of mean results o f ohseivations, 1827: Continuation of the memoir
on mean results of observations. 1832.: Stir I'avantage du Hanquier anfeu de Pharaon
11832? 1837?); On the probability of births of hoys and girls, and several others. All
these papers were included in various forms in Toisson’s main work on probability
theory. *“ Rccherchcs sur la probability des jugements en mature criminelle ct cn matiere
civile" published in 1837 Mis celebrated theorem is also contained in this volume. In his
book he first presents a brief survey of previous results in probability theory, and in
particular 1 aplace’s and Condorcefs contributions on moral probability, lie himself also

believes that the analytic theorv of probabilities is applicable to the evaluation of the



correctness of court decisions. For this purpose he deduced “the law of large numbers”,
which is different from Bernoulli's theorem In mathematical notation it is formulated as

lim (| jri<s)-i, (2.4)
where n is number of independent trials, p arithmetic mean, m/n relative frequency of the
occurrence of event A If the probability of the occurrences of events remains constant
from trial to trial, then p r /> and the Poisson theorem in this case reduces to Bernoulli's
theorem.

For Poisson, all events of a moral as well as of a physical nature are subject to this
universal law. He viewed this theorem not only as mathematical fact, but also as a
philosophical truism. It served as ground for his investigations concerning the
correctness of court decisions and phenomena of a moral nature. He believes that by

means of this principle the probability of any human decision may be determined
regardless of the reasons for these decisions. UNIVERSITY OT NAtRVL.
CHIRCHO LIBRARY
In his hook he also derived the so-called “law of small numbers”. As the deviation
of the value of/? from the value 14 increases, the asymptotic representation of Pmm in the
form (2n)12 expt-x2?) becomes less and less accurate. In order for Laplace’s theorem to
give a reasonably accurate approximation to Prn, the number of observations must be
substantially increased, which is not always convenient or even possible. lhe problem
arises of obtaining an asymptotic formula which will he particularly suitable for small p.
This problem was solved by Poisson He obtains that, as p,, -> 0 with n , the
probability that an event will occur m times approaches
Pm,= (V”c2)/ ml. where Xrnp,,. (2.5)
This formula of Poisson can he utilized as an approximating expression for Pm, for a
fixed but small p and large n. l)avid(1955) and others credit this discovery of “Poisson’s

binomial exponential limit "to do Moivre(l 718).



The Polish statistician 1, Bortkiewicz (1868-1931) renamed the Poisson
distribution the law ofsmall numbers. He also applied this distribution to rare events,
such as deaths by horse-kick in the Prussian Army, births of triplets, and so on

Commenting on the stale of probability theory at that period of time,

(incdcnko( 1948) writes that:

In spite of the fact that Laplace and Poisson concluded an important
and fruitful initial period in the development of probability theory, a
period of philosophical cementation of the basis of this science, this
period resulted in an indifferent attitude toward probability thcorv in
the West and in a definite rejection of the possibilities of utilizing its
methods in studying natural phenomena. This led to the beginning of
a long period of stagnation in probability in the West. [Gnedenko,
394; Maistrov, 1601

In this connection the scientific works of a famous Belgian statistician Adolphe
Quetelct (1794-1874) are indicative. Quetelet(1842), who attended Laplace's lectures[in
1823-4|, proposed that the rules of probability theory are those that govern and direct the
activities of human society. The degrees of inclination to crime, marriage, etc., are
according to Quetelet, nothing but mathematical probabilities. He describes the average

man as everlasting and invariable, the absolute perfect type, while separate individuals

are a distorted representation of this type

2.2.2.4 Probability theory in Russia and the St. Petersburg’s school
Next it is worthwhile to pose for a moment, and ponder through the *“Probability

theory in Russia and the St. Petersburg's school”.

The teaching of probability in Russia started in 1829-30, by Revkovskit, at
Vilnus University, and somehow he follows the footsteps of Bernoulli and Laplace, and
favoured and recommended in 1830 by M V. Ostrogradskit (1801-1862). In Moscow
University the first courses in probability theory were given starting from 1850 by A Yu.
Davidov (1823-1885). Davidov published several papers on this subject in the years

1854-7; “An application of probability theory to statistics(1855).” The first course in
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probability theory at the Uni\crsity of St Petersburg was offered in 1837 by V. A
Ankudovich.

Among the first important works on probability theory in Russian were the works
of Nikolai Ivanovich Lobachevskii, in which through his experiment arrived at the
problem of determining the distribution law of a sum of a given number of mutually
independent identically distributed random variables. The problem is solved in the “new
elements of geometry”, “probability of the average results obtained from repeated
observations”. This paper is published in Crclle’s Journal, 1842. According to
Maistrov(1974), he rigorously derived accurate and convenient practical formulas, like
obtaining the distribution of the arithmetic mean, the distribution of the sum or mutually
independent varibles, and defined probability in accordance with the definition given by
faplacc

I he first works on probability theory carried out in Moscow University were N.
I) Brashman’s paper “Solutions of problems in the calculus of probabilities” (1835) and
N C. Zcrnov’s(1843) long Memoir (Probability Theory, Moscow). Zernov, following
Bernoulli and | aplace, in his book is portrayed as representative of the deterministic
approach which was prevalent at that tjme; and applies probability theory to
demographic statistics, insurance, the theory of errors and legal procedures. Zernov
asserts that hardly any other science can be found, except for probability theory, which
hears a “direct relation” to so many and such diversified disciplines Maistrov(1974)
observes that another Russian mathematician V. Ya Bunyakovskii (1804-1889), using
l.aplace’s works and by translating to and compiling in Russian, disseminated the
knowledge of probability theory in Russia It is believed that Bunyakovskii’s paper on
self-calculators( 1867) prompted C'hebyshev to construct his arithmometer. Also another
prominent representative of the Russian school of probability theory was M V.
Ostrogradskii  (1801-1862). His contributions to probability theory were prompted

mainly by practical considerations, and were influenced by faplace.
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2.2.2.5 PafnutM Lvovich Chebyshev
The above mathematicians gave way for the establishment of the St. Petersburg

School, and to the advent of Pafmitii Ivovich Chebyshev (1821-1894), who is the
creator and ideological leader of the pre-revolutionary mathematical school in Russia
Chebyshev, as well as many other mathematicians, was influenced by the works of
Ostrogradski i and Bunyakovskii. Chebyshev contributed a lot to the development of
mathematics; his investigations span the theory of approximating functions of
polynomials, theory of numbers, theory of mechanisms, probability theory and other
areas The mathematical school guided by him, in 1860-1883, played an important role
in the advancement of mathematics in Russia. The most prominent representatives of
this school were A N. Korkin( 1837-1908), R |I. 7.olotarev(1847-1878), A A
Markov(1856-1922), G. F. Voronoi (1868-1908), A. M. Lyapunov (1857-1918), 1). A
Grave (1863-1939), V. A Steklov (1864-1926).

Maistrov(1974) exaplains that the school was united in common interest and
problems, method of discussion of problems and formulation of inquires and
materialistic approach to science and mathematics Chebyshev believed that the harder
the problem, the more productive the methods for its solution and the wider the scope of
its possible applications The close relationship between theory and practice was the
determining factor in his mathematical activities. According to him an approximate
solution is accurate if it is possible to determine bounds for the errors The pedagogical
activities of Chebyshev were expressed in his students, like Lyapunov and Markov; i.e.
he was a remarkable lecturer and instructor, thus he was able to lay dawn the
establishment of the Russian mathematical school: the majority of P L. Chchyshev’s
woiks and that of his followers tended toward a detailed investigation of problems
important from the point of view of applications and which at the same time present
special theoretical difficulties and require the construction of new methods, the results

being extended into a general theory.
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Chcbyshcv investigated at a great length in probability theory the limit theorems,
lie wrote only lour papers in probability theory, but their influence on the future
development of this science was immense. In his first work, which constituted his
Master's dissertation, “An essay on elementary analysis of probability theory,"(at
Moscow University in 1846) he introduced and utilized his basic premise of deriving
accurate bounds on approximating expressions. In his thesis he proved Bernoulli’s
theorem and also presented corresponding bounds on obtaining approximations; he
proves Poisson's theorem for a finite number of different probabilities and also a general
elementary proof of this theorem with corresponding bounds on the errors Next, he
worked on the theorems that he calls the basic theorem of probability theory: the addition
rule, multiplication rule, and Theorem about conditional probability.

On 17 December 1860, Chcbyshcv presented at a session of the Academy of
Science, his paper “On mean values"|l)es Valeurs moyennes) This is published in 1867
in the journal Matemnlicheskii Shornik, 11, pp. 1-9, as well as in Uouville’s Journal de
Mathfmaiiques Pure* cl Appliqudes, pp 177-184 Here Chcbyshcv proved an important
inequality known nowadays as the C'hebyshev inequality. Using this inequality, he
obtains a theorem known as Chebyshev’s theorem or Chebyshev’s form of the law of
large numbers from which Poisson's and Bernoulli's theorems follow as particular cases.

The theorem can be written mathematically ns follows:

(2.6)

that is, approaching the limit with n->  we obtain the law of large numbers.

According to llayde and Senetaf 1972) here we should note that the basic proof of
this inequality was contained in | J. Bicnayme’sf 1796-1878) paper the method of least
squares Hence, it is called the Bienaymd - Chebyshev inequality. Markov(1924) states
that we associate this remarkable and simple inequality with the two names, Bienaym”

and C'hebyshev. because C'hebyshev was the first to clearly express and prove it, while



31

the basic idea of the proof was pointed out much earlier by Bicnaymc in a memoir
containing the inequality itself, albeit in a not particularly obvious form

Ihe second basic piohlem that occupied ( hchyshev's attention was the central
limit theoiem lie devoted his attention to this problem in his paper in 1887 in the
Proceedings of the Academy of Sciences The paper is entitled “On two theorems
concerning probabilities”: 1) the law of large numbers and ii) the limit theorem for the
sum of independent random variables, and the construction of the method of moments in
probability theory. And in his paper “Sur les valcurs limitccs dcs ihtcgrales”, 1874, |On
integral residual which yield approximate values of the integrals] constructed the

moments of order k These moments can be rewitten in the form

2.7)
where/fly) is integrahle in the Riemann seme.
As aconcluding remark we can quote Kolmogorov’s(1947) observation:

P. I. Chebvshev impelled Russian probability theory into first place
in the world from the methodological point of view the basic
change, due to Chebyshev, is not the fact that he was the Hrst who
strongly insisted on complete rigour in proving theorems, but mainly
that he always strove to obtain exact estimates on deviations from the
limiting laws in the form of inequalities applicable for any number of
trials.” | Kolmogorov, 56]

2226 A. A Markov and A. M. Lyapunov
The two prominent figures and advocates of this school are Andrei Andreevich

Maikov (1856-1922), who replaced Chebyshev in 1883 till 1905 to guide the school of
St Petersburg, and A M. Lyapunov (1857-1918). The principal works of Markovin
probability theory' are minted to the limit theorem for the sum of independent variables,
in particular those connected in a chain lie was also the originator of a very important
blanch of probability- the study of dependent random variables, lie was interested in the
following two problems: the applicability of the law of large numbers and of the central
limit theorem to sums of dependent variables Markov’s investigation on a sequence of

random variables which form a chain has far reaching applications. These chains of
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dependent random variables are now referred to as Markov chains. 1he study of Markov
processes and Markov chains has become a large branch of probability theory with an
enormous literature, and is of great significance in the application of probability theory to
various branches of the natural sciences and engineering |he model ol an atom proposed
bv Hohr is an example of such a system

I vapunov in his two papers proves the limit theorem with weaker restrictions,
that is. by using the method ol characteristicfunction which overcomes the problem of
moments; that is the mathematical expectation of the powers of the random variables,
may not exist in all cases, while the characteristic functions exist for any random
variable Ihis method originated in the works of Laplace and Lagrange, and it was used
in 1892 by | Sleshinkii of the University of Odessa This fact is mentioned in
Lyapunov's 1900 paper “Sur line proposition dc la th™orie des probability,” (On a
theorem in the calculas of probabilities) Mis second paper is “Nouvelle forme du
Iheoreme sur la limite de probability,” (A new form of a theorem on the limit of
proahliitics). Ihis method is adhered by many prominent scholars of probability theory,
like Oncdenko and Kolmogomv(l°68). This method became the basic method for
solution of problems on sums of random variables, mainly due to the following properly:
the characteristic function of sums of independent umdom vaiiables equals (lie pioduct

of their characteristic functions, i.e.,
‘N.d1)-T (thMt) (2.8)
Urns the method of characteristic function is more general than the method of
moments Characteristic functions exist for any random variable and determine
completely the moments of the distribution, provided the latter exist lire characteristic
function determines uniquely the distribution function, independently of whether the
moments exist or not. lie also obtained an upper bound on the error committed in
replacing the exact distribution of the sum by its limiting distribution 1lis theorem is

called the central limit theorem of probability theory'. It explains why so many random



variables obey the normal law. It follows from Tyapunov’s theorem that, if the random
variable X is a sum of a large number of independent random variables, each one of
which has only an insignificant contribution lo the sum. then the distribution of X will be
close to normal Mis result is improved alter 20 years by Y. W. Linderberg in 1922 by
obtaining a new sufficient conditon, and in 1935 by W. Feller by showing the necessary
condition.

I'his necessary and sufficient condition of Finderberg and Feller is stated as
follows:
If 1,,(x) is the distribution function ofXn and h is a fixed positive number, then, as n->00

7 JxJd I :iR(x)-*0. (2.9)

jaflc
This condition is necessary and sufficient for the convergence of the distribution of
nL,r,X, to the normal distribution. Thus, the central limit theorems, in the case of
independent random variables, starting with the De Noivre-faplace version culminated
with that of the l.inderberg-Feller,

In the 19h century there were many scientists who applied probability theory and
statistical methods to advance their researches, especially in physics, namely, Robert
Brown(177-1858), James Clerk Maxwell(1831-1879), Rudolf Clausius(1822-1888),
l.udwig Boltzmann! 1844-1906), Josiah Willard Gibbs (1839-1903) There is a recent
advancement on the application of probability theory on “Brownian motion” by
l.oeve(1978) In particular Boltzmann and Gibbs worked hard so that probabilistic
theories and statistical methods may be applied in physical sciences. Bolt7.mann( 1964) is
primarily connected with the initiation and development of statistical physics. Ilis main
contribution was the molecular-kinetic interpretation of the second law of
thermodynamics and the demotion of the statistical interpretation of entropy. Gibbs in
his book “Basic Principles of Statistical Mechanics” (1902) achieved a logical
conclusion of the classical statistical physics. The following remark by Frankfurt and

Frank(1964) can express the historical scene in the 19th century: “Gibbs lives, because
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profound scholar, matchless analyst that he was, he did for statistical mechanics and for
thermodynamics what laplacc did for celestial mechanics and Maxwell did for
electrodynamics, namely, made his field a well-nigh finished theoretical structure.”

Francis Galton(1889), a biologist, revealed the usefulness of statistical methods in
biological research and explored what we call regression analysis by introducing the
concepts of regression line and correlation coefficient His research on regression
analysis originated from the study of the correlation between characteristics of parents
and children, hut he failed to realize the difference between population characteristics
and sample characteristics. Following Galton. K Pearson(1857-1936) developed the
theory or regression and correlation, with which he succeeded in establishing the basis of
biometrics lie arrived at the concept of population in statistics: a statistical population is
a collective consisting of observable individuals, while a sample is a set of individuals
drawn out of the population and containing something telling us about characteristics of
the population. Here de Finettit 1975) states that the idea that all natural characteristics
have to be normally distributed is one that can no longer be sustained: it is a question

that must be settled empirically.

2.2.3 1lhe Advent ojprominent twentieth century Probabilistic Philosophers nnd

Mathematical Statisticians, and Modern Schools o f Probability and Statistics.

2.2.3.1 lhe axiomatic foundations of probability theory
Towards the beginning of the twentieth century, probability theory developed

enormously as a result of the contributions of the Russian school, application to physics,
and the advent of prominent probabilistic philosophers and mathematical statisticians.
Ihe necessity of re-evaluating the logical foundations of probability theory in order to
secure its position as a genuine mathematical discipline, and to construct rigorously and
to develop probability theory became more and more evident

A direct predecessor of the founders of axiomatization in probability theory was

Henri Poincar6 (1854-1912), mathematician, philosopher, and physicist lie wrote the
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hook “Culcul dcs Probability™ (1912), which is one of the most rigorous and interesting
books on probability theory written at the beginning of the twentieth century. As
Maistrov( 1974) noted he made remarkable contributions to the fields of differential
equations, integral equations, algebra, theory of number, geometry, theory of electricity,
thermostatics, theory of Hertz’s waves, the kinetic theory of gases, and wrote a number
of books and articles of philosophical nature in which he sometimes discusses
philosophical and methodological problems of probability theory as well.
Poincar6(1912), following faplace’s deterministic approach, defines random events in a
deterministic way, and he says:

If we had an exact knowledge of the laws of nature and the position
of the universe at the initial moment, we could predict exactly the
position of the same universe in a succeeding moment. .. It may
happen that small differences in the initial conditions produce very
great ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes
impossible, and we have a fortuitous phenomenon. .. We do
not[know| to what ore due accidental errors, and precisely because
we do not know, we are aware they obey the law of Gauss. Such is

the paradox ( banco is only the measure of our ignorance.
Fortuitous phenomena are, by definition, those laws we are ignorant
of. |Poincare, 1-5,511 . UWVLZSITY NA&CBi

CHIROMO LIBRARY

As a conclusion of the classical definition of probability, he makes his remarks
saving How can we determine that all the cases are equally probable? Mathematical
determination is not possible in this case; in each application we must put conditions and
stipulate that we shall consider these particular cases as equiprobable. These
assumptions are not completely arbittaiy, but they may escape the mathematician, if he
docs not analyze them after they have been made. From his remarks we can observe the
necessity of more rigorous approach to the concepts of the foundations of probability
theory.

Ihere are also other probabilistic philosophers and pure mathematicians who

paved the way on the axiomatization of probability theory. For the establishment of a
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logical order and consistency for any kind of inference, rules of inference, and to show
the absence of contradiction in all the results obtained by an axiomatic method, the
totality of objects studied by a given mathematical theory is necessary. In other words,
propositions are set as the basis of the theory and all the subsequent proportions are

deduced from these axioms, and the rules of deduction are distinctly formulated

2.2.3.11 Formal axiomatic method
t'opleston (1985a) on his philosophical note on G. W. l.eibniz( 1646-1716),

mathematician and philosopher, observes that a deductive system of logic or of
mathematics is an illustration or example of the general truth that the universe is a
system Furthermore, he distinguishes two types of truth: truths of reason and truths of
facts Truths of reason are analytic propositions and embrace the sphere of the possible,
while of truths of facts are synthetic propositions and embrace the spare of the
existential. F.xistential propositions are truths of act not of reason. Among truths of
reason are those primitive truths which Leibniz calls ‘identicals,” which are known by
intuition, their truth being self-evident. A true proposition asserts existence of a subject,
it is a truth of fact, a contingent proposition, and not truth of reason, (‘opleston (1985a)
affirms that there is a philosophical and epistemological approach to mathematical
proposition mathematical propositions do not give us factual information about the
world, they slate, as llurnc| I711-1776| put it, relations between ideas, for factual
information about the world indeed about reality in general, we have to turn to
experience, to sense perception and to introspection. If we wish for factual information
about the world, we must content ourselves with probabilities, which is all that
inductively-based generalization can give us. With this concept in mind, now we can
give analysis of the formal axiomatic approach to mathematical truth.

lowards the end of nineteenth and the beginning of the twentieth century, the
axiomatic method penetrated various branches of mathematics. This fact followed after

the discoveries, independently, by .ldnos Bolyai (Hungarian, 1825) and Nikolay |I.
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| ohachcvsky (Russian, 1826), that there is a possibility of constructing geometry on
axioms different from Tuclid’s, that is. by assuming that for some plane, some line ( in
the plane, and some point f- in the plane and not on f. there exist at least two distinct lines
in the plane passing through point f and not intersecting line ( In pure mathematics the
systems of axioms for geometry was carried out bv Mortiz Pasch(( lerinan, 1882), David
Hilbert ((amidlayen der Geometric, 18W; The Foundations of Geometry, 1902).,
(iuiseppe leano and V I;. Kagan; axiomatization for arithmetic were initiated by
Peano( 1880) and Hilbcrt( 1807)

I he postulational method when tire undefined terms are treated as meaningless is
called the formal postulational method, or formal axiomatic method Thus, axiom and
postulate are often synonymous The deduction of such a theory independent of any
interpretation makes it a mathematical tool prepared in advance for diverse applications,
furthermore, transcending the mathematical branches, it is a method for discovering new
facts in general.

In the beginning of the twentieth century the inadequacy of the classical
foundation of probability stemming from Laplace was noted; especially the highly
restrictive nature of its applicability to problems of physics, statistics, biology and the
technical sciences. Hence, new logical foundation Tor probability theory, in line with the

other branches of mathematics, on the axiomatic method were needed.

2.2.3.1.2 Promoters of tho axiomatic foundations of probability theory
Ihe first works in this appioaeh are due to S N. Bernstein (18X0-1968).

Bernstein’s book “Probability Theory” (19d6). served as a text book for mathematicians,
physicists and other disciplines, and presents a detailed axiomatization of probability
theory.

Bernstcin( 1917) introduced three axioms, namely,

i) The o.rimn of comparability of probabilities: If a is a particular
rase of A in the strict sense, then P(a) < P(A): conversely, if for
events a} and A the inequality P(ay) ' P(A) holds, then P(a\ )
P(a). wheie a is a ceitain pailicular case of A in the strict sense.
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i) The axiom of incompatible (disjoint) events 1f it is known that
events A and A, are incompatible, and. moreover, that events /? and
I?, are also incompatible, while P(A)P(R) and P(A\) - P(R\), then
the probability of event C, which consists in the occurrence of event
Aor event A\, is equal to the probability of event Ciconsisting in tbe
occurrence of /2or Py.i.c. P(AOrAy) P(Ror 12,).

iii) The axiom of combination ofevents If rx is a particular ease of
event A, then the probability of « under given conditions depends
only on the probability of events Aunder the same conditions and on

the probability acquired by rx in the case when event A occurs.

Two corollaries are deduced from axiom(i): a) the probability of a certain event is
larger than the probability of a possible event, and b) tbe probability of a possible event
is larger than that of an impossible one. l;urlhrmore. The axiom ofcombination of events
can be formulated also as follows: The probability of combination of A and ft (under
given conditions) depends only on tbe probability of A (under the same conditions) and
on the probability acquired by Hafter the occurrence ofA.

On the basis of these axioms Bernstein constructed the whole structure of
probability theory. Kolmogorov(1947) says that the first systematically developed
axiomati/ation of probability theory, based on the notion of qualitative comparison of
(random) events according to their (larger or smaller) probability is due to S. N.
Bernstein The numerical value of the probability appears in this conception as a derived
rather as a primary notion (ilivenko( 1939) showed the equivalence of Bernstein's
axiomatization with Kolmogorov’s set-theoretical axioms and Bernstein’s idea was
further de\eloped by Koopman( 1940). His ideas of axiomatization and the application of
probability theory' to problems in the natural sciences served as the basis of his
Probability Theoty," which is one of the classical works on probability theory.

lor the sake of completion of the study of axiomatization of probability theory,
before stating the classical work of Kolmogorov, we need to mention other scholars who
worked on this field and corresponding publication year of their works: \lises( 1919,1931,

1936). Keynes (1921), Il<ivy(1928). Cantelli(1932.1939), Kamkc(1932). Reichcnbach
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(1935). Jeffreys*1935,1936.1937,1938), de Finetti (1937), Castclnuovo* 1937), Wald
(1938), Borel(1939), and Predict*1939-43). Their respective stands with respect to the
foundation of probability will be explained in detail on the sub-section entitled *“on
different approaches of probability.”

Richard von Mises(1883-1953), German-Americnn - the founder of the school of
“the frequency approach in probability theory.” who was advocating that probability
theorv is a science investigating phenomena of real world rather than a mathematical
discipline, points out the shortcomings of the classical definition of probability and tried
to amend it by defining probability as the limiting value of the relative frequency. Von
Mises™ 1964) conditions or axioms are two: (i)Thcre must exist limits of the relative
frequencies of events with particular attributes within the collective, (ii) These limits are
invariant with respect to the choice of any subsequence of the collective which is
arbitrary (except that it must not he based on distinguishing the elements of the collective
in their relation to the attribute under consideration). I(is approach is a conceptual
approach of axiomatizntion for the limiting-frequency theory.

Another attempt to axiomatizc a conceptual approach for the subjectivistic theory
is due to Keynes* 1921) and de Finetti* 1937). fater Jeffreys (1939) developed the notion
of probability as the degree of likelihood.

e Finetti( 1972) in his analysis on “the axiomatic foundations of probability
theory" discusses both from the formal point of view and with reference to the different
conceptions about the meaning and role of probability. 1limself is an ardent adherent of a
subjectivist or persnnalist school ofprobability. Following Frank Plumpton Ramsey, in

1937, he made a systematic attempt to base the mathematical theory’ of probability on the

notion of partial belief.

2.2.3.1.3 Ihe axioms of Kolmogorov* 1°83)
For its clarity and conciseness we will follow de Finetti’s*1972) description of

the axioms of Kolmogorov. Hut a good descriptive analysis and its influence on statistics
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is given hy J L. 1)oob(I976) on ‘Axiomatic approach of Kolmogorov’ in his article
entitled “Foundations of Probability theory and its influence on the theory of statistics.”

Kolmogorov, a prominent figure of the Moscow school of probability theory, was
able to construct an axiomatization of probability theory which is a decisive stage in its
further development He and his colleagues, like Khinchin(1956,1961) and
(Jnedenkof 1948), were greatly influenced by the concepts ofset theory and the metric
theory offunctions In 1920s he was engaged in the logical formulation of the ideas of
the metric theory of functions in probability theory. His research resulted in the
publication of “Grundbegrifl'e der Wahrscheinlichkeitsrechnung” in 1933. In his book
the analogies between the notions of the measure of a set and the probability of an event,
between the integral and the mathematical expectation, orthogonality of functions and

the independence of random variables, and others were established.

Thus, probability theory attained an equitable position among other mathematical

disciplines

In Kolmogorov’s approach, probability theory is the study of probability domains

(E.P) (Wahrscheinlichkeitsfelder) which are defined ns follows:

a) Aclass ( of primitive elements, called elementary cases is given;
b) sets of elementary cases, that is, subclasses of  are called events;

c) finally, one considers a class of events £ and a function P satisfying the following

Axioms:
I £ s alie/r/ of sets of (! (i c. the union, intersection and difference
of sets in F, belong to £);

I £ contains C (i.e. the “sure events”, the set of all elementary
cases, must be included among the events in £);

Il A real-valued, non-negative function is defined on £ This
function assigns to any set F in £ a number P(F), the probability of H

(but wc could also use such terms as measure or mass in order to
avoid, even in the terminology, any reference to controversial
notions);

IV P(C) = 1 (this is a convention concerning the value of the
probability of the sure event);
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V If R, and f\? arc disjoint events (have no elements in common),
then,

(R,URD-p(E,) + p(K2);
VI If 1-. 1°2.....V,, is a se(Jiicnce of events in £. such that each

event is contained in the preceding one and that their logical
product is null (i e. there is no elementary case belonging to all the
K., then, r(1%) >0as n >®

Finally, the conditional probability of F given IlI, written P(f71l),
where H and 11 are events in £, is defined by Kolmogorov,

according to the compound probability theorem, as follows:

P(R/U) ~ P(KI11)/ P(H), assuming that P (11)"0.
The compatibility of these axioms is proved by Kolmogorov by
considering an £ consisting of only two events, the sure and

impossible events, with corresponding probabilities equal to one and
zero.

We should note that Axiom VI, a “continuity postulate,” is equivalent to “complete
additivity".

Although the axioms of Kolmogorov help to define chance they are no enough. As
Koopman(1940) and Ilacking(1974) have shown they do not determine, for instance, an
hypothesis about chances, a statistical hypothesis, which is well supported by statistical
data Iheir central point is the logic of comparative support, i.e.. it is concerned with the
assertions that one proposition is better or w'orse supported by one piece of evidence,

than another proposition is by other or the same evidence.

2.2.3.2 On Different Approaches to Probability and Corresponding Schools
Ihe issue on the approaches of scholars to probability theory is open-ended.

Specifically, after Ihe lleisenberg’s(1927) uncertainty principle, the whole of science
was recognised as ultimately based philosophically, on the concepts of experimental
probability. Thus from late 192()’s on wards, since probability theory covers a
combination of mathematics, measurements or statistical data, theory of nature and
theory of knowledge itself, activity in philosophical probability has been intensive. Ihe

principle of uncertainty, in quantum mechanics, states that the position and



42
momentum”velocity) of a given particle can not he exactly measured simultaneously with
complete accuracy. The amount of uncertainty is specified by the formulas

Ax*Apx> h.

Ayv\p% h. (2.10)

Az-Ap, > h.
where /tr is the uncertainty in the value of.t, etc., and /; is Plank’s constant, about 6x102
erg-sec. beside the position-momentum uncertainty relation there is the energy-time
uncertainty relation: AF.At > /. but the verbal interpretation is quite different in
nonrelativistic quantum mechanics. Now we can pose a question of enquiry: “do
probability philosophers admit the presence of subjective and ontological knowledge of
nature or randomness?” To get a satisfactory answer an intrinsic and extrinsic
discernment on authoritative research works on probability theory must be done.

But in this section we shall confine our selves, in view of variations among
scholars, on four approaches to probability, i.e. we can list schools by their respective
approaches to mathematical statistics and probability.

a) T7lie classical approach

I he classical approach, based on the notion of equally probable cases by reasons
of symmetry, and on the consequent definition of probability as the ratio of the
favourable to the possible cases. As the name indicates, this approach is utilized by the
first scholars on probability theory like Bernoulli, l.aplace and their followers.

b) The empirical approach

Ihe empirical approach, based on the notion of repeatable events whose
frequency on a large number of trials, by virtue of the so-called empirical law ofchance,
gives the probability almost certainly and exactly. Among the modern scholars, the
positions of Castelnuovo. Cantelli, frechet, and Levy can be classified under the
empirical approach Borel too, could be included in this group, although his position is

not far from the subjectivists’.

c) The asymptotic approach(frequency theory)
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Ihe asymptotic approach which, with some idealization, makes the preceding
definition more precise by considering an infinite sequence of trials, von Mises’
collective, and defines probability as the limiting value ofthe relative frequency. Both in
its basic formulation and in its applications, seems geared mostly to statistical inference.
A very similar approach is used in work on the statistical design of experiments,
especially by fisher The scholars which adhere the asymptotic approach are like von
Mises, Kamke and Reichenbach; also Kolmogorov declares himself in favour of the
asymptotic approach
d) The suhjectivisticfDegree ofBelief) approach

Ihe subjectivistic approach considers probability a measure of the degree of
belief of a given subject in the occurrence of an event (proposition). There is the so
called the logical theory(degree ofevidence), fostered by Keynes, Carnap and Jeffreys, is
largely deductivists in approach, and seems closes to the pure theoretical formulation of
mathematical probability While de Finetti, Ramsey and Savage agree with the logical
theory’ in making probability a logical relation between a statement and a body of
evidence; it disagrees in allowing the evidence to vary in terms of the knowledge
available at a given time.

Generally, we note that the positions even of scholars classilied in the same group
can differ somewhat in terminology, omissions or additions, in strict form or weaker
form etc for further discernment on different approaches to probability refer to the

original works of the authors cited on the bibliographical list.

2.2,3.2.1 Further clarifications
lo discern more on the unifying and diversifying factors of the different

approaches to probability more clarification and elaboration arc required. Let us sec the
positive and negative comments of the respective approaches.
The classical approach is reviewed by the subsequent schools. As De

linetti( 1(>72) points out “the disputed pointed alluded to originate from certain
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tendencies to limit the domain of the theory of probability to narrow zones where notions
of s\mmctry(as for a dice) or of statistical regularities(as for the sex of a future birth)
facilities evaluations or probability and agreement about them on the part of diverse
individuals.”.In plain words discrimination between the total field of uncertain facts and
those subfields to which a privilege role has been assigned is not justified The term
equipossibility is more elaborated, by von Mises(1951) and more recently by
Houdot(1%7), as the epistemic concept of probability corresponds to an cpistemie
concept of possibility, while the aleatory concept of probability corresponds to a concept
of physical possibility or it possesses the de re and de dido modality; That is de re if it
pertains to things, and do ditto if it applies to what is said or can be staled. But this kind
of elaboration and equipossibility definitions of probability are not fully convincing for
modern logicians The concept of equipossibility is explained using the case of
exchangeability or symmetry with respect to order This approach applies directly onto to
special cases, so it is not adequate. According to de finetti( 1972), from the critical
viewpoint, this approach can give at best, only an incentive to reduce the axioms of
quantitative probability - as a direct numerical assignment of probability - to axioms of a
purely quantitative nature - in the form of. inequalities among probabilities. Some
scholars use the principle of indifference and the range theory of probability to describe
the classical approach.

In other words, those in favour of empirical approach, like De (iroot( 1970)
based on what is experienced or seen rather than on theory, maintain that probability is
a logical concept which can be applied to parameters in a much wider class of
problems; and in each such problem there is a uniquely defined distribution which is
appropriate for a particular parameter and most necessarily he assigned to that
parameter lhe critique of the this approach say that for this school an event can be
assigned a probability under hypotheses of ‘stability of the frequency’ which it is
difficult to make precise. Thus it is impossible to base a rigorous analysis of such a

foundation.
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I he influence on von Miscs’ approach on probability, directly or indirectly, stems
from the theory of empiricism The real father of the classical empiricism is John
I ockef 16./2-1704). This philosophy, by vigorously attacking on the theory of innate
ideas, propagates that all our ideas come from the elementary data of experience, from
sense-perception and from introspection.

As staled above, the basic notion in von Miscs’ frequency theory of probability
theory is the concept of a collective. A collective is an infinite sequence K of similar
observations, each of which determines a certain point belonging to a given finite-
dimensional space R. i.e probability is a limiting value of the frequency, or a
disli ihtitinn is appropriate only when values of the parameter clearly have relative
frequencies According to von Mises the events do not possess probabilities prior to the
experiment: the probability is not an objective property of the phenomenon.
Phenomenology is the study of objects and events as they appear in experience or
immediate object of awareness in experience. Thus, phenomenon is a thing as it appears
m mind or thing-in-itsclf Probabilities of events arise only as a result of an experiment.
In von Mises' view we do not determine the existing objective properties by means of an
experiment, but rather attribute them to the phenomena. Thus probability is deprived of
its meaning as an objective numerical characteristic of real-world phenomena. Even
Kolmogorov( 1956), who is in favour of the approach, shows reservation for the extreme

stand and says:

The assumption concerning the probable nature of trials, i.e.,
concerning (he tendency of frequencies to group around a fixed value
may be valid on its own only if certain conditions arc presented
which cannot be retained for an indefinitely long time and with
indefinite precision lherefore, the limiting transition m 'n—p cannot
have real meaning Moreover, the formulation of the stability of
frequencies principle using this limiting process requires the
availability of admissible methods for determining infinite sequences

of trials which can he a mere mathematical fiction [Kolmogorov,
274-2751
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In the asymptotic approach, the imprecise condition of stability of the
frequency is replace by the condition of existence of a limiting frequency. In de
Finetti) 1972) words the defect of this school is also pinpointed as follows:

probability cannot be assumed to be defined for every event, and
those events for which a probability exists do not form a filed ...
assuming that events A and I) have been assigned some probabilities,
it may nonetheless [be) the[sic| impossible to attach a probability to
their logical product AB.[de Finetti, 74-7]

As von Wright(1977) noted it is a great merit of von Mises to have stressed the
importance of the idea of random distribution to a frequency theory of probability. The
demand of randomness is relevant to the question of the adequacy of the frequency view
as a proposed analysis of the meaning of probability. But randomness is not relevant to
the question of the mathematical correctness of interpreting abstract probability in terms
of frequencies. Nevertheless, some form of frequency theory is thought by many writers
to of Tcr the best account, for a large category of cases, of the relation between abstract
probability and empirical reality.

Ihe primary incentive for this approach seems to be that conviction of David
llume( 1738-40): We ought to start with a 9lose observation of man’s psychological
processes and of his moral behaviour and endeavour to ascertain their principles and
causes. Our method must be inductive rather than deductive. And where experiments of
this kind are judiciously collected and compared, we may hope to establish on them a
science which will not be inferior in certainty, and will be much superior in utility, to any
other of human comprehension. This approach is also influenced by Kantian)1724-
1804), Hegelian)1770-1831) and I.eibnizean(1646-1716) philosophical thoughts and
Bayes’ theorem, the acceptance of a-priori, existing in the mind prior to and independent
of experience, from cause to effect, and a-posteriori, based upon actual observation or
upon experimental data, from effect to cause.

In subjective approach a distinction between events to which a probability can

be assigned and those to which it cannot, docs not seem acceptable. In other words, the
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probability of the logical product of events A and It cannot be deduced from the
probabilities of the single events. In simple terms in this theory not only the notion of
probability but other basic notions such as dependence, independence, equipdssibility
and others are defined subjectively; even the relationship between probability and
frequency is subjective In simple terms, probability distributions are subjective and that
whenever anyone carries out a statistical investigation involving a parameter, he can
represent his uncertainty pertaining to the values of that parameter by suitable
probability distribution.

As von Wright(1977) states, it is true that the combination of probabilistic ideas
with the value-theory notions of preference and utility has had fruitful applications to the
mathematical study of economic and related forms of human behaviour. Support of this

fact docs not exclude taking a somewhat critical view of the epistemological and logical

basis of the belief theory of probability UNIVERSITY PR NAfprr
CHIRDMO LIBRARY

Ibis approach bases its assumptions on the inductive reasoning, or bases the
mathematical theory of probability on the notion of partial belief, taking the point of
departure on the measuring a person’s belief by proposing a bet and observing the lowest
odds that he will accept. That is the laws, of probability may be called rules for
consislent(cohcrent) sets of degrees of belief. 1.evy(1953) says that one who wants to get
to a certain point must first see it with his eyes(intuition) before he reaches it with his
feet(logic). which expresses the range of the Held of application of inductive reasoning.
A distribution of partial belief contrary to the laws of probability, Ramsey(1931) says
that would be inconsistent in the sense that it violated the laws of preference between
options, such as that preferability is a transitive asymmetrical relation. In brief this
school stresses the role of mathematics in inductive reasoning, i.e., in the theoretical and
exact formulation of inductive reasoning.

lo see the distinction of interpretations we can lake as an example

Kolmogorov’s fifth axiom on finite additivity.” For the classical, empirical and

asymptotic approaches the axiom is a purely arithmetical consequence of the definition,



48
since the number of “favourable cases" as well as the “frequency" and “limiting
frequency” are naturally additive; for the subjectivistic approach, the axiom is a
necessary condition for the mutual consistency of the assessments of different

probabilities.

2.2.3.2.2 Special Remarks

At this preliminary exploration of the different schools of statistics to give a
critical examination of controversial aspects of the different approaches may be
immature. But as we arc dealing with identification of school, it is good to assess their
respective deficiencies and novelties.

Already a critical, philosophical and historical survey about this issue has been
done by de Finetti( 1972), llacking(1975), Maislrov(1974), von Wrightf 1977) and others.
The most appealing question is “/?probability subjective or objective'?" Subjectivism, in
philosophy, stresses the doctrine that all knowledge is limited to experiences by the self,
and that transcendent knowledge is impossible. This stresses the role of consciousness or
thought While, objectivism is used to stress the apartness of thing knowu|the object]
from the person who knows it. or the things external to the mind or external elements of
cognition. A typical objectivist would conceive his role as that of discovering an
order] that pre-existed his mind] in reality. The subjectivist conception of probability as a
degree ol belief is often contrasted with the objectivist conception of the notion as either
arelative frequency or aratio of measures of ranges. It is questionable, however, whether
a sharp contrast can be maintained between objectivism and subjectivism in the
philosophy, particularly the epistemology, or probability. Among the various
objectivistic schools, the root seems to be identifiable as the antithesis between
inductive reasoning and inductive behaviour (up-held by Neyman-1957). New
developments in the theory of inductive behaviour arise only in so far as the decision,
unlike the opinions, arc made by groups rather than individuals. There are two distinct

aspect of all approaches, namely conceptual questions and mathematical questions.
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Let us, following I)c Finctti(1972), present in table form the five points about

inductive reasoning and five points about the passage to inductive behaviour or decision

theory.

Inductive Reasoning

1 Of an event, that is, of any verifiable
proposition in the domain of the logic of
certainty, we can only say whether it is certain,
impossible, or possible - that is. whether the
answer is either demonstrably “yes" or “no”, or
one cannot prove either “yes" or “no” - and. in
the domain of probabilistic logic, we can only
evaluate the probability according to our
judgement.

2. Nothing can be derived from the ostensible
concept of “not knowing anything." Hotter said,
this is an expression that means nothing precise
though it corresponds ineffectively and
ambiguously to certain ideas.

3. Any assertion concerning probabilities of
events is merely tbc expression somebody’s
opinion and not itself an event. lherc is no
meaning, therefore, in asking whether such an
assertion is true or false or more or less
probable.

4. If we speak of a conditional probability
I’(1 'l ). we must repeat for F as well as for H
what has been said of F with respect to P(13)
Namely, the expression has meaning if and only
if 1 and Il arc events. Also Il must express the
assumed or acquired information in its entirety.

5. Inductive reasoning is nothing other than
reckoning P(Il/R), the probability ofll after the
observation of F, in accordance with Hayes’
theorem - or, equivalently, according to the
theorem or compound probability, of which
Haves' theorem is corollary.

The passage to inductive behaviour or
Decision Theory

6. Optimal behaviour in the face of uncertainty for a
given individual consist in choosing a decision that
maximizes the expected utility. If information can
he obtained free of cost and the choice can be made
afterward, one simply has a widening of the field of
possible decisions. An optimal decision is obtained
by choosing appropriately the partition about which
to request information and then choosing the
decision optimal for each of its elements. If the
information does entail cost, this cost must be
included. If utility and cost can be expressed in
monetary terms, one need only subtract the cost of
investigation from the expected gain.

7. A collective decision by several individuals, who
agree on their evaluations of utility but not on those
of the probabilities, must he optimal for a
hypothetical individual whose opinion arc convexly
comprised among those of the real individuals
concerned.

8. A factor that can be important here is the
tendency of opinions, as information increases, to
agree with each other.

9. A different, and independent, mechanism for
agreement on action may apply when a collective
decision is envisaged that may prove to he a bad
one for a certain member hut only in cases that the
member concerned initially considers unlikely.

10. Cheater complications arc encountered with
more widely differing attitudes and interests of the
individuals. But no new criterion is called for: One
has hut to apply the criterion of the maximal
expected utility in different circumstances.

De Finetti, in defensive mood, tries to justify the subjective approach by

presenting the above important points and also gives the opposing views.

Supporters of the frequency view found that an adequate analysis of probability

requires them to combine their definition of the concept with the idea of a random
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distribution of events on a series of occasions. Supporters of the range theory or classical
approach have had recourse to some form of a principle of indifference for the
determination of*impossibility in certain unit alternatives. The objection raised is that
whether randomness and equipossibility can be satisfactorily accounted for without
reference to states of knowledge or ignorance.

Now it is good to use von Wright(I1977) terminologies in our description of
subjective approach to probability as a degree of belief. The belief theory does not
necessarily entail an identification of probability with belief as a psychological
phenomenon. The attitudes in option between goods may be said to reveal subjective
estimations of probability. Rut the derivation of the laws of probability within the belief
theory does not confer on them the status of psychological laws of believing. It rather
makes them standards of rationality (consistency) in the distribution of beliefs or in
preferences So we cannot regard belief theory as an account of probability in purely
subjectivist, i.e., psychological terms. In other words, according to Durbinf 1967), the
personal probabilities of the subject-matter experts in the domain in qucstion[can
furnish | us with an estimate of probability in the sense of degree-of rational belief.

As a concluding remark we can agree with the following Durbin’s(1967)

observations:

Probability theory is a pure mathematical model and as such abstracts
from its applications in the real world. Nonetheless, probabilistic
models are highly useful in explaining the real world, especially
where statistical laws prevail. Finally, there are valid methods for

arriving at these probabilistic models from observed data. [Durbin,
816J

2.2.3.3 Iho development of statistical mathematics in the twentieth century
I'he translbimation of (he status of probability theory in contemporary study of
science is due to the advent of prominent twentieth century probabilistic philosophers

and mathematical statisticians Synthetically, we can give historical analysis of the
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development of statistical mathematics using two approaches, namely, the parametric

thesis and chronological approach

2.2.3.3.1 lhe Parametric Ihesis

The parametric thesis proposed by van Dantzig, Danish, with his colleague
Ilcrnelrijk. in 1954, divides the development of mathematical statistics intofour stages
characterized by the use of one. two. many and no parameters, respectively.

According to van Dantzig, the first stage of development began with the
discovery of regularities of certain statistical ratios. In the area of demography where
sample surveys were first used, and the English merchant John Graunfs famous
work( 1662), William Petty, Edmund Halley, Per Wargentin of Sweden, and Johann Peter
Susmilch of Germany arc good examples of this stage of development. In modern
terminology, this stage of knowledge about demographic phenomena is characterized by
one parameter, i€, the mean of the population under investigation.

Ihe second stage is marked by the growing awareness of variability. Various
laws ot error were suggested by the eighteenth century astronomers, culminating in the
works of Laplace and Gauss on the normal law of error. Mathematically speaking, the
population was characterised at this sate by two parameters, i.e., the mean and the
precision constant(standard deviation), and in the more general case of multivariate
distributions, by thefirst two moments. Consequently, all statistical theories based on the
normal law or error belong to this stage, including the least-squares method, theories of
correlation and regression, and the analysis ol variance and covariance.

I he works of Laplace and Gauss generated excessive reliance on the normal law,
especially by such Quctclet, Airy and Gallon. However, toward the end of the ninetieth
century, empirical investigations gradually demonstrated normality to be the exception
rather than the rule This led to the development of Karl Pearson’s system of skew curves

and the development of the Gram-Charlier series, the theory of curve-fitting by the
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method of moments, and Pearson’s x goodness-of-fit test This third stage is therefore
characterized mathematically by the use ol many parameters in frequency distributions.

The large sample theory developed during the second and third stages gave way to
a more realistic small sample theory in the twentieth century. 'l hc search for new
foundations of statistics in the 1920s and 1930s led to the replacement of the inverse
approach by those of Fisher (the principle of randomazition) in agricultural surveys, and
the Neyman-Pearson (confidence interval) in social surveys. This desire of logical rigour,
according to van Dantzig, was responsible for the increased interest in the non-
parametric or distribution-free approach, which characterizes the fourth stage of
development.

Furthermore, Wei-Ching (’hnng( 1976). in elaborating van Danl/ig’s thesis,
emphasises the importance of the works of three prominent scholars in the history of
theory of probability and mathematical statistics, namely, Laplace, Fisher and Neyman.
And in line to the history of sampling survey, he suggests that to complement van
Dantzig's thesis, adherence to the inferential procedures which is used by different

schools of thought should be emphasized.

2.2.3.3.2 Development of Statistical Mathematics - Chronologically

As |,chmann( 1959) observed a period of intensive development of statistical
method and a systematic use of hypothesis testing began towards the end of the century
with the work of Karl Pearson, his x? paper of 1900- Chi-square test for goodness of fit,
and this attitude towards scientific investigation can be seen from his article:

"No scientific investigation is final; it merely represents the most
probable conclusion which can be drawn from the data at the disposal
of the writer A wide range of facts, or more refined analysis,
experiment, and observation will lend to new formulas and new
theories This is the essence of scientific progress ”[1899,169-2441

In connection with his system of curves, Karl Pearson developed a method of point

estimation known as the method of moments
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Ncyman(1976) as well as other scholars stress that in the late 19th and early 20th
centuries mathematical statistics emphasized the Kollccktivmasslehrc, a mathematical
discipline concerned with collective characteristics of populations. In other words,
statisticians at this period thought of a population as a collective having infinitely many
individuals, which led to the idea that the larger the size of a sample the more precisely
could the sample give information about the population The term descriptive statistics
was introduced to mean the use of a variety of methods for describing such
characteristics of populations. An important method of descriptive statistics is to
consider a family of flexible curves or surfaces that can be used to approximate the
empirical frequency distribution. A number of such families were developed, all
representing interpolation formulas. The most successful sysiom”~y”~g”ity
to Karl Pearson. CHIROHO LIBRARY

In the 1920s the Hungarian-American mathematician George Polya constructed a
system of chance mechanisms that can generate almost all the distributions of Karl
Pearson’s system. Thus mathematical statistics shifted from Kollcktivmasslehrc to the
construction ol chance mechanisms or the so called stochastic models of phenomena.
Ibis idea was explicitly stated hy I'mile Morel of France : The basic problem of
mathematical statistics is to invent a system of simple chance mechanisms, such as
throws of a coin, so that the probabilities determined by this system agree with the
observed relative frequencies ofthe various details of the phenomena studied. Morel’s
definition was good but it does not allow mathematical statistics to stand as a field of its
own Depending on the attitudes of given research workers, stochastic models belong to
the relevant substantive fields or the theory of probability.

Following the footsteps of K Pearson, F. Y. Fdgcworth of I nglaiul. in 1908,
found that consistent use of the method of moments must yield an excessive frequency of
large errors of estimation and proposed a new method of estimation, conjectured to be
much better. In 1922 R Fisher discussed the same ground more rigorously and

intensively, lie introduced the term method of maximum likelihood The Fnglish
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mathematician Student(1908), pen name of William Scaly Cosset- by his discovery of
the exact distribution of / opened the new epoch of exact sampling theory or
distribution, and |Iisher developed a number of tests of particular hypotheses: he
introduced the concepts of null hypothesis and significance test, and added the concepts
of consistency, efficiency and sufficiency to the list of possible properties of estimators.
I.chmann(l1959) noted that problems of testing hypotheses and of estimation got
recognition as an independent field for systematic study when Fisher in 1922 gave a new
definition of statistics, and J. Ncyman’s(1928,1933,1935,I1938) and E S
I’earson’s(1928) principal ideas came to light. Stating that the object of statistical
methods is the reduction of bulky data, Fisher distinguished three basic problems: those
of specification of the kind of population from which the data come - Koflektivniass, of
estimation and of distribution - probabilistic problems connected with point estimation.
In these papers, that is, Fisher(1920, 1922,1925) and Nayman(l935), the concept of
sufficiency is developed, principally in connection with the theory of point estimation.
Ilie factorization theorem is given in a form which is formally weaker but essentially
equivalent to

IS\(-r) ~g*/T(X)/h(x). (2.11)
Ihe above definition can be clarified using the descriptive definition of Herman

C'hcmofTf 1976):

Ihe word statistic applies to a number that summarizes aspects of the
data and is typically assumed to behave randomly according to some
law of probability or probability distribution determined by 0. The
relationship between 0 and the inferences with regard to 0. Thus, the
statistician must cope with random variation, and the mathematical
statistician is concerned with the probability distribution of
possibility complicated functions of the data These arc called
sampling distribution [Chernoff, 208-9|

Hansen and Madow(1976) confirm that In India, during the World War II, P C.
Mahalanobis (died 1971) has contributed a lot in the development of statistical

mathematics, independent of other schools, namely, by creating and directing the work of
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the Indian Statistical Institute, developing a strong program of sample-surveys. Among

the numerous contributions made by him and his colleagues is the extensive use of
interpenetrating samples from initial sample selection through the successive stages of
data collection, data processing and analysis. lhe Indian Statistical Institute, under the
direction ol C. R. Rao, alter 1971, has continued to be a major source of contributions to
statistical theory and practice. And another who contributed for the statistical application
in agricultural area is P. V. Sukhatme, who lead the Indian Council for Agricultural
Research.

According to Lehmann,(1959) a formal unification of the theories of estimation
and hypothesis testing, which also contains the possibility of many other specialization,
was achieved by Wald(1939,1950,1958), who gave a single comprehensive formulation
i nhis general theory of decision procedures.

Kiyosi 1to( 1987) states that after the publication of Savage’s book in 1954, there
was arevival of the Bayesian approach, that is, one based on the concept of subjective
probability, and now the group of those statisticians who accept the Bayesian approach

are called Bayesians or nco-Baycsians

2.2.3.4 Different Branches of Statistics
Broadly speaking, the branches of Statistics can be classified or listed as: i)

‘Statistical Inference - Theory of Estimation and testing of hypothesis, ii) Probability and
distribution Theory, and iii) Design of Experiments
") Statistical Inference - Theory' o f Estimation and testing o fhypothesis

The most authoritative books on this branch arc mainly Lehmann s(1959) and
MNacks’(1971). Lehmann in presenting competently the “lesting Statistical Hypothesis
Sives also the historical development of theory of estimation and test of hypothesis. The
Aain - contributors  to  this development are mainly Neyman(1928-38) and
‘carson(1928,1933), Pishcr( 1922), Savagc(1962) and A. Wald( 1950,1971). Zacks, using

"¢ measure-probabilistic approaches, gives a special impetus to the theory ol estimation,
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others who worked on this area are Dc Groot(1970), Lehmann. Bayesian method can be
seen in the light of statistical inference - there is a standard text by Raiffa( 1968).
i) Probability and Distribution Theory

This branch has a long history It is already dealt with at length We note that the
standard works on this field are done by Kolmogorov(l1933), Gnedenko and Kolmogorov
(1968), Saks(1937), Halmos(1950), Doob(1953), Lodve(1962), Chow and
Tcicher(1978), f;cller( 1965, 1968), de Finetti (1972,1975) etc. Stochastic processes can

be affiliated to applied probability theory - the standard texts arc those of Doob and

Feller. —
hi) Design ofExperiments

The design of experiments consists of two parts: a) the analysis and b) the
constructions and combinatorial problems. The analysis of design of experiments has its
origin principally in the work of R A. Fisher, much of it contained in his books
(1925,1935). A comprehensive treatment is given by Kempthorne(1952), Cochran and
Cox (1957), SchcfTc(1959), Rao(1973). While the constructions and combinatorial
problems is treated elegantly by Bosc(1938,1939,1947, 1963), John(1971), Raghavarao
(1971), Raktocetal (1981)etc

Currently statistical mathematics is progressing rapidly and has a vast branches,
in which as part of applied mathematics, applicable to different fields of science. The
structure in data” embraces embraces many fields in statistical branches: multivariate
analysis, time series analysis, sample survey, quality control, information theory,
sequential analysis, nan-parametric statistics, mathematical population. One of
interesting new application of statistics is to genetics- in which Kempthome’s(1957)
book An Introduction to the Genetic Statistics is a good example. Many scholars have
produced standard texts in their respective fields, like Andcrson(1958), Rao(1952) and
Kendal(1957), and Mardia(1979) in multivariate analysis; Anderson(1971) Grenander
(1957), and Wold(1954) in time series analysis; Cochran (1992) in sampling survey;

Kullback(1968) in information theory and coding; Wald in sequential analysis, Hollander
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and Wolfe(1973) in non-parametric statistics; Keyfitz(1968) in mathematics of

population or demography.

2.3. Schematic Discernment on Statistical and Probabilistic
Research Works and Method of Approach at Nairobi University

2.3.1 Historical Background
The analysis of our historical background consists of identification of the

initiators of the Statistical Section of Mathematics at University of Nairobi and the
background of methodological approach to probability theory with respect to modality of
lectures and research works. The following are guiding questions: '‘who initiated
Statistical Section of Mathematics at University of Nairobi, when and how was it started,
which one of the different approaches to probability theory is adhered to as a background
of methodological approach?” The reliable answers to the above interesting questions
can be deducted from the first protagonists of the period of initiation of Statistical
Mathematics at University of Nairobi, as well as from the original research done by

probability mathematicians.

Professor M.S. Patel with some of his first Kenyan students
From Left: C. Achola(Mathematics), Prof. J.W. Odhiambo,
Prof. M. S. Patel, Dr. Ebi Kimanani, Prof. J.A.M. Ottieno
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The Statistical Section of Mathematics at University of Nairobi started with the
“Unit-Course-Work” system in 1975. The first group to follow this system are Dr M M
Manene, Dr. F. Njui, Mr. Kinya and other student colleagues. The main players in this
sparking insight and future focus as a successful statistical research centre in the whole
country are Professor M. S. Patel and his colleague lecturers. The initial foundation of
research approach, basing our observation on the dissertations, was firmly established on
the emphasis of making new research works on group screening. In 1984-1985 we see a
slight shill to the question of “Rotatable Designs.” A new direction of study is also
opened by 1991 with a doctoral dissertation entitled “A stochastic Model for Stocks and
Flows of Students in an Education System.” in 1993 and 1995 we see again a new
research work on Designs. Finally, the 1997 dissertations affirm an interest in a new area
of research, i.e., biological population and epidemiological modelling. Meanwhile, it
must be noted that many research works have been done at M. Sc level since the
initiation of the Section of Statistical Mathematics at University of Nairobi in all these
areas. As a special remark, it can be said that the period 1984-1987 is an era of
publishing a bulk of articles on the four emerging research groups, namely group
screening, educational and manpower planning, biological population modelling and

UNIVEFSITY OF WAIROB.
AIDS modelling (Epidemiological modelling). CHIRONU LIBRARY

R. C. Bose was a man of reputation and a main factor of Patel’s appreciation of
Statistical Mathematics. Ilis works, contributions and intlucnce in design of experiments
can be easily seen from Raghavarao’s book. Raghavarao( 1971) through out his work
“Constructions and Combinatorial Problems in Design of Experiments” implicitly and
explicitly confirms that he is presenting in more orderly way Bose’s method and
scholarly studies. Particularly, in chapter 9, “Graph Theory and Partial Geometries,” the
works ot Bose, Bruck and Hoffman are discussed With respect to partial geometry
(r.k,t), Bose(1963), following Bruck(1951,1963), alter giving its definition, like
Kolmogorov who axiomatized probability theory, axiomatizes partial geometry for the

purpose of designs of experiment Raghavarao (1966) extended the scope of partial
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geometry to include three-associate geometric designs. The contribution of

HofTman(1963, 1965) is the characterization of projective planes, alTinc planes, and
symmetrical BIB designs, in which the characteristic roots and their multiplicities of the
adjacency matrices of their line graphs determine the corresponding configurations up to
isomorphisms, excepting the ease of the symmetrical BIB design with the parameters
v=b=4, r=k=3,1=2.

We should also note that Patel, while he was in Kenya, 1968-1993, contributed a
lot in the research of group-screening with more than two stages and in collaboration

with his students put to light many academic research works on different areas of

statistics.

2.3.2 Doctoral Dissertations

Names

Title Year Comment on the method
of Approach

J A M Ottictio  Two Stage Group Screening 1081  Analysis of optimality of group
Designs testing designs

J W. Odhiambo  Three Stage Group Screening 1982  Analysis of optimality of factorial
Designs designs

J K. Arap Koskc  Fourth.Order Rotatable Designs 1084 Matrix algebraic approach

F Njui Fifth Order Rotatable Designs 1085  Non-linear and linear regression,

matrices

M M. Manene Further Investigations of Group- 1085  Analysis of optimality of group
Screening Designs: Step-wise testing designs
Designs

J. Owino A Stochastical Model for Stocks 1991 Matrix algebraic approach
and Flows of Students in an
Education System

K N Gacii On the Construction of Deletion 1093  Geometric approach
Designs

F. Onyango On theory of Random Search 1995 the methods used arc PG(2.s) &

EG(2,s)

I G. Mwambi Generalized Matrix and 1097  Analytic - geometric approach
Compartimenta! Population
Models

R 0. Simwa Mathematical and Statistical 1007 A parametric and non parametric

Analysis of UIV/AIDS
Epidemic with reference to
Kenya and Uganda

statistical approach
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2.3.3 Research Papers and Current Research Interests
a) Research Papers

Name of
Researchers

Adhikaiy, A. K.
& Chaudhuri, A.

Adhikaiy, A. K.

Gachii, K. M. &
Odhiambo, J. W.

Getao, J. L. and
Odhiambo. J. W.

Koske. J. K. A.

Luboobi, L. S. &
Simwa, R. O.

Mancnc, M. M.

Mwambi, H. G.,
Odhiambo. J. W.
& Duchateau, L.

Munyinyi, D. &
Nokoe, S.

Palel, M. S.

Published Articles: title, name of periodical, date

“A note on handling linear randomized response,” Journal o fstatistical planning
and Inference, Vol. 22(1989), p. 263.

“On Two properties of an unequal probability sampling scheme,” Mctika,
36(1989), p. 161

“Variance estimation with randomized response.” Canun. Statist. -Theory Mcth.,
19(3), (1980), p.1119.

“A note on interpreting subsamples o f unequal sizes drawn with and without
replacement,” Comm. Statist. -Theory Mcth., 19(4), (1990), p. 1475.

“On the performance of the nearest proportional to size sampling design,”
Comm. Statist. -Theory Meth., 20(21), (1991), pp. 3933 -3941.

“Deletion designs in estimation of low order interactions,” The Fifth Scientific
Conference o fthe Fast Central & Southern Africa Network ofthe International
Biometric Society, 22nd-25lh September 1997(Kcnya), pp. 20-22.

“The potential of information technology in the management of an African crisis:
Computers and AIDS,” Clohal Information Technology and Socio-Economic
Development, (Ilvy League Publishing, 1996), pp. 53-59.

“ Response Surface Designs with missing observations,” Biometryfor
Development Proceedings o fthe First Scientific Meeting o fthe Biometric
Society, Kenya Croup and East/Cenlral African Network , April 2-6,
1990(Nairobi: 1CIPE Science Press), pp. 51-54.

“The variance function of the difference between two estimated fourth order
response surface,” J. S. P. I. (1989), pp. 263-266.

“HIV/A1DS epidemic curves for Kenya and Uganda: A parametric statistical
approach,” The Fifth Scientific Conference o fthe East Central ¥ Southern
Africa Network o fthe International Biometric Society, 22rd-25Ih September
1997(Kcnya), pp. 39-43.

“HIV/AIDS epidemic curves for Kenya and Uganda: A nonparamctric statistical
approach,” The Fifth Scientific Conference o fthe East Central <3 Southern
Africa Network ofthe International Biometric Society, 22rd-25h September
1997(Kenya), pp. 44-50.

“On two-type stepwise group screening designs,” The Fifth Scientific Ccinference
ofthe East Central d Southern Africa Network o fthe International Biometric
Society, 22rd-25hSeptember 1997 (Kenya), pp. 57-62.

“ A multiple matrix model to study the population dynamics of R. appendiculatus
in Zimbabwe,” The Fifth Scientific Conference o fthe East Central Southern
Africa Network o fthe International Biometric Society, 22rd- 25lh September
1997(Kcnya), pp. 65-71.

“ Estimation probability distribution function for female ticks on unimproved
Zebu Cattle,” Biometryfor Development Proceedings o fthe hirst Scientific
Meeting o fthe Biometric Society, Kenya Croup and East/Central African
Network, April 2-6, 1990 (Nairobi: ICIPE Science Press), pp. 93-98.
“Group-screening with more than two stages,” Technometrics, 4(2), (1962), pp.
209-217.

“A critical look at two stage group-screening method.” Kenya Journal o fScience
and Technology, Vol. 4, No. 2(1983).

“Group screening for isolating defective factors of a population,” Biometryfor
Development Proceedings o fthe First Scientific Meeting o fthe Biometric
Society, Kenya Croup and East/Central African Network, April 2-6, 1990
(Nairobi: ICIPE Science Press), pp. 84-92.
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Owino. J. (). <
Philips. (*. M.
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“Conditions for fourth order ratatability in k dimensions,” (‘omm. Statist. -
Theory M ali 114X6), (1985), pp. 1343-1351.

“Two stage group-screening designs with unequal a-priori probabilities.” Comm.
Statist. -Theory Meth., 13(6). (1984), pp. 761- 779.

“Optimum Two-stage group-screening designs.” (‘omm. Statist. -Theory Meth..
1.3(21), (1984), pp. 2649-2663.

“Optimum | wo-stage group-screening with unequal group sizes and errors in
decisions.” <'omm Statist. Theory Meth.. 14. (1987). pp. 799-820.

“Optimum Two-stage group-screening designs with unequal a-priori
probabilities and with error in decisions.” paper presented at the joint statistical
meetings of A S.A.. N N.A.R.. WNAR. IMS at |l.as Vegas. USA 5th - 8th
August, 1985

“ Step-wise group screening with equal prior probabilities and no errors in
observations.” (‘omm. Slat. -Simulation (‘omptita. {1987).

“llie pei formancc o f multistage group screening des eus.” <Omm Statist. -
Theory Meth.. 15(1986).pp.2467-24R!.

“Areview of the factor s", method.” Proceedings ofthe 1'1('onference of
the Kenya Mathematical Society, 19-21 August, 1007,(1003), pp. 51 -57.

“ A logistic model for the sterile male technique,” BiometryJar Development
Proceedings of the T'irst Scientific Meeting oj the Biometric Society. Kenya
Croup and East Centra! African Network, April 2-6, 1990(Nairobi: IC'IPK
Science Press), pp. 176-186.

“'Three-stage group screening with error in observations,” (‘omm Statist -Theory
Meth.. 14,(1085), pp. 647-666.

“On multiple group screening designs.” ('omm. Statist. - Theory Meth.. 15(5).
(1986). pp. 1627-1645.

“Three-stage group screening with unequal group sizes and with errors in
observations.” Comm. Statist. -Theory Meth.. 16(10). (1987), pp. 2957-2979.
“ihc potential oTgronp screening method in the management of AIRS crisis in
Africa.” The T'ifth Scientific ('onference o fthe Past (entral A Southern Africa
Network o fthe Internationa! Biometric Society, 22" - 25th September
1097(Kenya), pp. 81-84.

“ Step-wise group screening designs with errors in observations.” ( omm. Statist. -
Theory Meth.. 16{10), (1087). p.' 3095ff.

“ A transition mode! for estimating academic survival through cohort analysis,”
Ini. J. Sci. Technol., 17(1986), pp. 339-346.

“ A stochastic model for estimating academic survii.. in an education system.”
Kenya./. Sci. Techno/., A6(l), (1985), pp. 59-67.

“Mortality levels and determinants in Kenya,” Proceedings ofthe f ('onference
ofthe Kenya Mathematical Society, 19-21 August, ' 992, (1093), p 73 [abstract].
“ A comparison of retention properties ofihc Kenya primary education system
before and after 1070,” Kenya./. Set. Techno/., A9, (1088). pp. 5-10.

“ A mathematical mode! for comparison ofcducationai characteristics of males
and females,” Proceedings o fthe p 1( 'onference o fthe Kenya Mathematical
Society, 10-21 August. 1992. (1993), pn. 61-63.

"A statistical method for planning au educational system.” Discovery and
Innovation, 6(2), (1994), pp. 140-144.

“Optimal harvesting in poultry' fanning.” The Fifth Scientific (‘onference o fthe
East ('entral X Southern Africa Network o fthe Internationa! Biometric Society,
22H-25" September 1997(Kenya), pp. 103-107.

“IBNR claims reserving and (51 IM.” 'Proceedings of the 1" <'onference of the
Kenya Mathematical Society. 10-2! August, 1902, (1093). pp. 67-60.
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h) Current Research Interests

(iacii. K. N. Designs of experiments. Deletion designs
Manenc, M. .M. Group-screening designs mathematical modelling
Mwanibi, A. H. Matrix modelling for population dynamics. Matrix modelling
i Njui. F. Designs o f experiments with emphasis on rotnhle designs, regression analysis,

response surface designs

Odhiambo. J. W.  Mathematical Modelling induction and man power planning; theoretical ecology;
group screening designs, factor screening

OANiap.J. A. M. Statistical demography and quality control theory

Owino. J. Stochastic mode! of educational planning, mathematical modelling of social
processes
Smwa, R 0. AIDS modelling or epidemiological modelling with a parametric and non

parametric statistical approach

2.3.4 Reference Books / Text Books

Courses/Units

Measure Theory and
Probability

Tests ofllypothcsis

Theorv of Rsiimation

| Multivariate Analysis

Analysis of Variance

Design of experiment

Probability and Stochastic
Processes

Time Series Analysis

Sample Surveys

Reference/Text IBooks

Chow, Y S. and Teicher, K. Probability Theory:independence.
Interchangeability, Martingales, 1978.
Loeve, M. Probability Theory, 1953, 1978,

Kingman, J. F and Taylor, S. 1 Introduction to Measure and Probability
Theory, 1966

Halmos, P. R. Measure lheon’, 1950.

Ferguson. T. N. Mathematical Statistics: A Decision Theoretic Approach,
1967

Lehmann.F |. Testing Statistical Hypothesis, 1959

Wald, A Statistical Derision Functions, 1950, 1971

Savage,!l.. J. The Foundations o fStatistical Inference, 1962.

Vorober, N N. Came 'lheon,’ 1977.

7.acks, A The 'Theory o f Statistical Inference, 1971.

DeGroot, M. H. Optimal Statistical Decisions, 1970.

Cox, D R and Hinklev, D. V. Theoretical Statistics, 1974

Anderson, T. W. An Inlrotjuclion to Multivariate Statistical Analysis. 1958
Mardia, K. V., Kent,J T. and Bibby, J M Multivariate Analysis. 1979
Khirsagar, A. . Multivariate Analysis. 1972.

Morrison, D. F. Multivariate Statistical Methods, 1976.

Kendall, M G. Multivariate Analysis, 1975.

Scheftc. H. 'The Analysis of Variance, 1959.

Kempthornc, 0. The Design ant! Analysis of Experiments, 1952.

Cochran , W. G. & Cox, G. M. Experimental Designs, 1957.

John, P W. M..Statistical Design and Analysis o f Fxperiments, 197i.
Raghavarao, D. ConstructionsatrJ Combinatorial Problems in Design of
experiments, 1971

Raktoc. < L. et al., Factorial Designs, 198!

Feller, W Introduction to Probability Theory and Its Applications, Vol. land
1. 1993

Medhi, J Stochastic Processes. 1982

Doob, J. L. Stochastic Processes, 1953.

Taylor. IT M. and Karlin. S A First Course in Stachoastic Processes, 1975.
Bhat. UN. Clements o f Applied Stochastic Processes, 1984.

Cox, f) R. The Theory of Stochastic Process. 1°65

Anderson, T W The Statistical Analysis of Time Series, 1971

Wold, It. O, A A Study in the Analysis ofStationary Time Series, 1954.
Chatfield, C. 'The Analysis of Time Series, 1987.

Kendall, M G Time-Series, 1976.

Wold, 1! O A A Stud)’in the Analysis o fStation, tv Time Series, 1954.
Cochran, W. G. Sampling Techniques, 1992.

Muthy, M N. Sampling Theory and Methods, 1967.
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2 5 Tentative conclusion

The p,oncers or .he inhiators of .he statist,ca, section of mathematics a, Nairobi

"V Sty nrC >rOrCS50r M S ) “te,<,” 68>— m* colleagues. Basing our nervation on

“ art'CleS PUDbiI‘Sh0d “ COnCrC:° doCumCTts -X1 dissertations as further confirmative
works, we note the model technique or ghenry

Nairobi. Furthermore, categorizing broadly, it can he said that four research groups arc
emerging: (i) group screening, (ii) educational and manpower planning, (iii) biological
population modelling, and (iv) AIDS modelling (Epidemiological modelling).

Since the present work is the first survey of its kind, it is better to be frank with
respect to the decisive achievement The primary impulse is that, it calls to reflection and
have a critical philosophical assessment of one’s approach and methodology in statistics
and probability; and if possible, to invite for the study of logic and philosophical history

of mathematics, probability and statistics

We can note two trends in making . ; tentative conclusions about possibility of
identification of Statistical Section of University of Nairobi with a specific school or
many schools of statistics and probability; impediments and plausibilities, the two

aspects of observations, for the sake of conciseness and clarity, can be prescr

summary form.

The following observations arc deduced through the formal discussions and as &

outcome of informal inquiry;

fit Impediments

The absence ofa strong conviction or attachment to a specific method

school of philosophy of probability.
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* The trend to accept randomness as it is and absence of any venture on the
epistemological meaning of the term in probability and statistics

* The lack of a course of mathematical philosophy or systematic philosophical and
historical analysis of probability theory and statistical mathematics.

» The absence of clear philosophical training policy of mathematics, in particular of
probability theory and statistical mathematics, at Public Universities; focusing mainly
on job orientation courses or stressing on the income generating policy. Generally,
there is a pragmatic approach to training policy.

fii) Plausibilities

» The presence of philosophical and personal reflection on research works - individual
conviction.

» The background of founders and their method of approach to probability theory and
statistical mathematics.

» The courses offered in relation to the foundation of probability and related topics,
especially Measure Theory and Probability, Statistical Inference.

From the criteria used above, namely, trying to identify the Statistical Section of
Mathematics at University of Nairobi, if it is possible, as a school with respect to the
historical development and dialectic progress of schools of statistics and probability
using the criteria: (i) The background of the founders, (ii) Text books, reference books
and hand-outs used in the units or courses offered, (iii) Research papers and
dissertations, wc can give a tentative conclusion.

The affinity is much more expressed through the methodology of research works
and frequently books used. This relation is apparent with respect to the subjectivistic or
degree of belief approach. A concrete example can be quoted for clarity: DeGroot( 1970),
in his book “Optimal Statistical Decisions”, states that “Subjective, or Bayesian,
statistical decision theory is applicable to those problems in which the information and

uncertainty about the parameters can, at any time, be summarized by a probability
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distribution of their possible values. Therefore, this book will deal only with those
statistical decision problems which meet the following two requirements: (1) The
conditions can be formulated in terms ofa manageable number parameters. (2) Although
the values of these parameters are not known exactly, any uncertainty about the values
can be represented by a suitable probability distribution. ... It will be assumed in all
problems in this book that each parameter can be assigned a particular probability
distribution.”! DeGroot, 4]

The other supportive motivation for this deduction, with the conviction among the
current scholars present at the university, is a tendency that the degree of belief theory
answers a lot of vague ideas and can be justified using conceptual and mathematical
guestions. Ibis influence can be seen in the studies of probability theory related to the
Bavesian statistics decision theory. The definition of statistical theory itself gives a clue:
ii modern formulation of statistical theory it is generally held that Statistic is a science
which deals with decision making in the ease of uncertainty.

But, also the preference of asymptotic approach is cited from research work as
well as from applications of some probabilistic and statistical principles. Chow and
leicherf 1078) in their book “Probability Theory: Independence, Interchangeability,
Martingales”, after describing the two important approaches of probability theory, give
I'Cir concern and method ot study of probability theory: “The concern of this book is
w.th the measure-theoretic foundations of probability theory and the body of laws and
theorems that emerge thcreform.” They believe that “the frequency approach appears to
have lost out to the measure-theoretic.” This possibility is accepted by the prominent
scholars and there is high esteem for Kolmogorov’s work too.

i he results of the external criticism, deducted using the above criteria, may not lead to
me actual situation at the ground. We should note that complete certainty have never been the
trade mark m a scientific fact, although it is the primary' duty of scientific endeavour to
minimise the uncertainty as much as possible As Prof. J. W. Odhiambo said now lecturers

tire nmre preoccupied with the issue o fsurvival rather than on how to think.
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Chanter Three

31 Historical Perspective of Normal Distribution

XL Beginners
3.111 De Moivrc - Laplace

The investigations by Rggenbergcr(1894), Pearson(1924,1925,1926,1929),
Archibald (1926), and Sheynin (1966,1968,1970a, 1970b) reveal that Abraham de
Moivrc(1667-1754) was the first to derive the norma! law. Do Moivrc’s thcorcm(l 730)
or limit of Bionomial and his contribution to the development of normal distribution is
dealt with in detail in chapter 3, section 3.2.2.!. Laplace (1749-1827) is mainly
remembered in probability theory' by his proof of one of the most important limit
theorems. This theorem deals with the distribution of deviations of the frequency of
occurrence of an event in a sequence of independent trials from its probability. This
theorem is called de Moivre-I"iplace theorem, since the particular case of p = Z was
ohtaincd by dc Moivre.

l.aplace( 1812) states the theorem as follows:

l.ct the probability of the occurrence of a given event E in n
independent trials be equal top (0 <p <!) and let m be the number
oftrials in which event Ractually occurred; then the probability of
the inequality z\ < (m-np) / (npq) r' r2 (ql-p). differ by an

arbitrarily small amount from (2n)~ *J cxp(-/23 ciz, provided n is

sufficiently large |the integral theorem of I,aplace, or global Laplace
theorem]. The probability of exactly m occurrences of event L in n
trials is approximately equal to (2rmpqg) ' ’ exp (™M ), where
r (m-np)/ (npq/ (Local Laplace Theorem).
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laplace attributed great importance to lus theorem, ile believed that his law
Aplaincd completely the behaviour of random mass schemes to which, according to
i aplace. the majority of reai-worid phenomena belong, that is the model based on his law
aalmost universal Maistrov(1974) believes that only after this work of Laplace did the
"vide spread applications of probability theory become feasible as a scientifically justified
method It is Laplace’s(1952) view that all the regularities of any field of mass
phenomena arc reducible to the unique normal law, as the celestial phenomena are
reduced to the unique iaw of universal gravitation. Based on this point of view he
attempts to apply probability theory to court procedures, decisions at gatherings, and so
an This is misinterpretation of the far-reaching conclusions of his contributions to
probability theory. His logical deduction is that he considers the history of human society
& a field governed by pure chance and therefore assumes that probability theory' is the
science capable of rendering a complete analysis and explanation of this history, so that
the analysis of social phenomena falls within the realm of probability theory. This law
wes termed normal law by Henri Poincare( 1854-1912) a mathematician and phvsicist,

accepted as a direct predecessor of the founders of ax Somatization in probability theory.

T12 Advancement

3.12.1 Adrian-Gauss
We observe that random errors occur in the course of observations of any kind,

‘he problem of how to avoid them or at least to cope with them has attracted the
attention of scientists since early times. However, this can be solved satisfactorily only
h\ means of probabilistic methods. This problem was considered in detail in the early
nineteenth century. Two mathematicians, Robert Adrian( 1775-1843). American and Carl
Iricdrieh  Gauss (1777-1855), German, independently and almost simultaneously
obtained the basic result, the derivation of the normal “law for the distribution of random

errors.' the so-called “law of errors”. They reached their result using different methods.
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Adrian deduced independently and published in 1808, before Gauss, the famous
law of errors,” which was published in 1808 in The Analyst, or Mathematical Museum,
®] serves as the foundation of present-day classical probability and statistics. He was
moiving a particular problem and, when generalizing it, obtained the distribution law of

random errors. The interesting parts of this paper are two derivations of the normal law

lor the distribution of random errors in observations:

I; 1sing the a certain distance measure:
The resulting function is
IJ =exp (< + mx~/2a),
which is called by Adrian “the general equation of the curve of probability,” for m <O.

ui) Considering the measurements of a segment AB with equally probable errors in the

length and in the azimuth:

I'he result that of the probabilities of errors are cxp(c + Yznx1) and exp(r + 'Any2).
| or detailed description refer to section 3.2.2, of chapter 3.

Gauss on the other hand, was investigating the general theory of errors in
observations and the normal distribution of random errors became a necessary and most
important part of this theory. The derivation of the distribution of random errors as given

b\ Gauss served as a basis lor further development of the theory of errors.

Gauss published his derivation of the normal law of distribution of random errors
in observation in 1X00 in his famous work Thcoria inotus corporum coelen/ium in
sectionihus conicis solcm amhientium. The derivation of the normal law followed the
following assumptions: given equidistant observations of a certain quantity, let the
random errors posses the differential density of probability distribution <p(A). It is
required to determine <p(A) under the assumption that the most probable value of the
quantity under consideration is equal to the arithmetic mean of the observed values.

Gauss obtains that the function (p(A) is given by

A =h(R" exp (-if A2).



ic denotes the value /; as the measure of'precision of the observations.” According to

this law. errors of any magnitude arc possible.

The main stimuli for his result is his occupation with problems of astronomy and
.codesy and was able to develop methods of processing results of observations. The
results oh these observations are not immune of errors. Thus the problem of determining
tie most probable value of the observed quantity arises. These problems led Gauss to
develop the theory of errors, which is directly connected with the ideas and notions of

probability theory.

3.122 ( hchyshcv and his followers

Chebyshev in his paper “On integral residua which yield approximate values of
the integrals.” 1874. obtained the l.ap'acc-de Moivre distribution using the moment of
the function approach. Kolmogorov(1948) remarks that the results of Chebyshcv’s

\cstigntions on the problem of moments are applied here to the determination of the
form of the probability distribution law of a sum of a large number of independent
random variables and it is established that, under certain very genera! conditions, this
distribution law, with the increase in the numbe([ of summands, approaches in the limit
the normal distribution law of do Moivrc-Laplace jlhc so-called basic limit theorem of
probability theory); moreover the possibility of a further refinement of its result is
pointed out in this paper, although without a rigorous proof. In his last paper on
probability theory “On two theorems concerning probabilities” (1887). Chebyshev
actually summarizes all his reascarch in this field. First he states the first of his theorems
* the law ol large numbers. In the second theorem, one of his most important results, he
established that under certain very general conditions the distribution law of probabilities
of the sum of a Targe number of independent random variables approaches the normal
distribution in the limit as the number of summands increases. Markov and his

companion, like Lyapunov, advanced the understanding of normal law by using the
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method o f moments and especially by the method of characteristic functions. Further

clarification is given in section 3.4 2. chapter 3.

1. 1.3 Solidification and Applications

Soon alter the derivation of the normal distribution, we observe that, it some how
became the focal point of the study of probability theory and for application of statistical
methods in several branches of physical science, and even for social sciences.

Its central importance in statistics stems from three facts: (i) many actual
populations approximate closely to normal forms, (ii) It forms the limiting distribution of
many widely used statistics, (iii) Under general conditions, the role of normal
distribution as a limit, the asymptotic behaviour, of distribution functions of normalized

sums ol random variables is widely accepted (Central Limit Theorems).

3131 I indeberg-Fcllcr

Lyaptinov’s(1901) central limit theorem of probability theory is improved by Y.
W Lindeberg in 1922 in which he obtained a new sufficient condition, and in 1935 by
W feller who showed the necessity of this condition. In his celebrated investigation of
normal convergence, l..yapunov(1948) examined not only conditions for, but also the
speed of this convergence. Ifis results were greatly improved by Berry(1941), and
independently by Ksseen(1945). Bemstcin(1939), commenting on Lyapunov’s
achicvemnt, says a classical result which constitutes a culmination point of Lyapunov’s
investigation in probability theory.

This necessary and sufficient condition of Lindchcrg( 1922) and Fcllcr(|935) is stated as
follows: If  (X) is the distribution function of A,,, and /? is a fixed positive number, then, as //-»®

A>hx d Xi Ft (x) —=0.
ibis condition is necessary- and sufficient for the convergence of the distribution

°l (/n)Xi" \/ to the normal distribution.
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As a final remark we can use Locvc’s(1963) words:

The real liberation which gave birth to the Central Limit Problem
came with a new approach due to P. l.evy. lie stated and solved the
following problem: Find the family of all possible limit laws of
normed sums of independent and identically distributed random
variables. ... Find conditions for convergence to any specified law of
this family The solution ofthe problem is due to the introduction
, by de Finetli, of the “infinitely decomposable’ family of laws and to
the discovery of their explicit representation by Kolmogorov in the
ease of finite second moments and by P. Levy in the general ease. ...
The final form is essentially due to Gnedenko. [Loeve, 289-90]

3.1.3.2 Several Applications

Given that the normal distribution is widely used, and somewhat abused, in
statistics, it is natural that the most familiar problems of inference are those which
involve this distribution. But our present interest is to ponder through the applications of
normal law or distribution in different fields.

The observation that in complicated situations where some kind of disorder
prevails that something having the appearance of order often emerges gave rise to the
applications or assumption of normal distribution in several fields. This phenomena
order out of chaos draws a lot of attention and is expressed when considering the
distribution of velocities in the Kinetic theory of gases, the same variance corresponds to
kinetic energy being constant, which suggests a connection with Maxwell’s conclusions -
see chapter three section 3.2.2.5 Francis Galton’s(1889) observations about regression
analysis also give tendency to the presence of the normal distribution in natural
inheritance. At one moment, around 1900, Poincare made an observation that everyone
believes in normal law, and said that experimentalists believe that the normal
distribution is a mathematical theorem, while mathematicians believe that it is an
empirical fact. F.ven though it-is an exaggerated view, it expresses the wide range of
application of normal distribution in scientific investigations. The different methods

utilized to derive the normal distribution themselves indicate the importance of the law.
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The roic of normal distribution in the various brandies of statistics is widely
recognized and appreciated. As Andcrson(1958) points out in his book An Introduction
to Multivariate Statistical Analysis, normal distribution is used as a model for analysing
sampling theory, factor analysis. In these eases, as well as a host of others in agrieultural
experiments, in engineering problems, in certain economic problems, and other fields,
the multivariate normal distributions have been found to be sufficiently close
approximations to the populations so that statistical analyses based on these models are
justified Furthermore, as the central limit theorem leads to the univariate normal
distribution for single variables, so does the general central limit theorem for several

variables lead to the multivariate normal distribution.

Another basic reason that the application of normal distribution is accepted
mathematically is that normal theory is amenable to exact mathematical treatment. The
multivariate methods, which deal with the variety of problems, based on the normal
distribution arc extensively developed and can be studied in a rather organized and
systematic way. The suitable methods of analysis are mainly based on standard
operations of matrix algebra: the distributions of many statistics involved can be
obtained exactly or at least characterized by moments; and in some eases optimum

properties of procedures can be deduced.

It is worthy to use Maistrov’s(1974) observation for the explanation of the role of
normal distribution in science: the feasibility of replacing the exact distribution by its
limit follows from the so-called central limit theorem. The essence of this theorem is
establishing the conditions under which the distribution function of the sum of
independent random variables approaches the normal distribution as the number of
summands increases. There arc in nature a vast number of phenomena subject to the

action of a large number of causes where each individual cause acts independently and



exerts only a very small influence on the course of the phenomenon. That is why this

theorem is of such importance for the science.

3.2 Definitions and Derivations of Normal Distribution

3.2.1 Definitions
There arc two approaches that arc used to define a normal distribution: i) classical

;ind ii) modem. In the classical perspective Normal Distribution is depicted through the
density function. While in Modern approach the distribution is characterized in such a
way that the concept involved can be extended into more complex random variables with

countable and uncountable dimensions. Furthermore, Rao(1973) in his monumental hook
Linear Statistical Inference and Its Applications gives further explanations and

defintions on normal distribution.

3211 Classical Definition of Normal Distribution
The Univariate normal distribution function can be written as
£c "X P1_jc 2Ax P*fx P
where a is positive and k is chosen so that the integral of F(x) = Pr {X < x}, over the
entire x-axis is unity. The cumulative distributioh function defined for every pair of real
number x. where F(x) is absolutely continuous, implying that d F(x)/dx - f(x), exists
almost everywhere. It is assumed that F(x) has the following properties: (i) F(X) is
nondecreasing, (ii)F(-00)-0, Fcn) I, and (iii) F(x) is continuous at least from the left

defines a random variable of which F is the distribution function.

The density function of a multivariate normal distribntion of xt, ..., x,, following
Anderson(1958) we can say that has an analogous form. The scalar variable x is replaced

by avector x = (X ..., Xp)"; the scalar constant /? is replaced by vector £ = (P,, ..., [).,)

nnd the positive constant a is replaced by a positive definite (Symmetric) matrix
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(2L-&)" A(x-B)= £ aj(x,-pj) (X]- p.).

Thus the density function of a”-variate normal distribution is
f(X,....xp = Ke-1/2(x- b)” A(x-b),
where K >0 is chosen so that the integral over the entire A-dimensional Euclidean space

of X,.... Ypis unity.

3.2.1.2 Modern Definition of Normal Distribution

Next we shall deal with the modem approach in defining the multivariate normal
distribution, and present two different definitions. It must be noted that the distribution
is not defined by probability density function. It is characterized by the property that
every linear function of the p-variables has a univariate normal distribution. Such
characterization is exploited in deriving the distributions of sample statistics. We can
note that corresponding to any known result in the univariate theory, the generalization
to the multivariate theory can be written down with a little or no further analysis.

For example knowing the joint distribution of the sample mean and sample
variance in the univariate theory we can write down the joint distribution of the sample
means of multiple measurements and sampfe variances and covariances. The entire
theory of multivariate tests of significance by analysis of dispersion is obtained as a
generalization of the univariate analysis of variance. Through this method we can
encounter a number of characterizations of the multivariate normal distribution which
will be useful to study the theory of normal distributions in Hilbert and other more
general spaces, like Banach space. It is worthy to note that multivariate normal
distribution plays an important role in statistical inference involving multiple
measurements.

Next, in our definition, wc will follow Rao’s method(1973) of presentation and

explanation of the properties of normal distribution.
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Definition - 1: A /*-dimensional random variable u, that is, a random vector u taking

values in Fp (Ruclidean space of ~-dimensions) is said to have a p-variatc normal

distribution Np if and only if every linear function of u has a univariate normal
distribution. e

This definition of multivariate normal distribution is inspired by the result due to

(Tamer(1937) and Wold(1938), which states that “the distribution of a /~-dimensional

random variable is completely determined by the one-dimensional distributions of linear

functions t' u, for every fixed real vector t.”

This result is indicating that if a random vector u exists satisfying definition-1,
then its distribution is uniquely determined. According to Rao(1973) this definition ofNp
can be extended to the definition of a normal probability measure on more general spaces
such as Hilbert or Banach spaces by demanding that the induced distribution of every
linear functional is univariate normal.
following the definition-1, the following properties of normal distribution can be listed:
a) lixpected value, F.(u) and dispersion matrix, D(u) exist which we denote by p and Z

respectively. Further for a fixed vector t, t' u~ N/t' p, t' Zt), that is univariate

normal with mean t' p and variance t' Zt.

h) The characteristic function of u is cxp(it' u- vit' Zt).

c) The /~-variate norma! distribution is completely spccillcd by the mean vector p and the
dispersion matrix X of the random variable, since the characteristic function
involves only p and £. We may therefore, denote a p-variate normal distribution
hy N,,(p, il), involving ji and Xas parameters.

» Ifthere exits a vector and matrix such that for every t, t' u ~ Nj(I' p, t' Zt). then

u~ Np(p,2).

* If Z- A(a diagonal matrix), the components u,, ..., up are independent and each is

univariate normal.

* let U and u2be two subsets of variable u. We can write
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3.4 EjacU«v((/,.f2)  NHUl) (3.1)

where X|2 and Z12 are the dispersion matrices of ut, uwoand Z12 is covariance
matrix of ,u,, u2 The random variables u,, u2arc independently distributed if and only
if £,;>-().

* Ifu,, u2, u kofu are independent pairewisc, they are mutually independent.

* lhe lunction cxp(il'u - X 1" 330 is indeed a characteristic function so that Np of
dcfinition-I exists

* u N,(p, Z) with rank k ifand only if,

u=p+bg bb'=Z

where his (p x k) matrix of rank k and g ~ Nk(0, |), that is, the components g,,92....gv
are independent and each is distributed as NJ|(0,1).

d) I' u- Np. the marginal distribution ofany subset of g components of u is N(.
e) Lhe joint distribution ol'q linear functions of uis N,,. If y = ¢ u, where c is (¥ x/;),
represents the g linear functions, then
y - No(cp, ¢ 21d/).
Oefinition-2: A /~-dimensional random variable u is said to have a normal distribution Nk
il it can be expressed in the formii = p + b g, where bisp x m matrix oTrank mand g isamr 1
sector of independent N| (univariate normal) variables, each with mean zero and unit variance.
Observations:
a) lhe relationship u = p + b g shows that the random vector u e M(\.:Z). the linear
manifold generated by the columns of jxand Z, with probability 1
b) L.ctii,~ N,, (pj, Z), i=1,2.....Kk, be independent and T be a function of u,....... uk
1Jsing the representation

u=p,+Dbg,

we have
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T (U .uu)=T(n, + blg,...... H<+ blgO
I(gl 1eee! gk ).

Then the study of T. a statistic based on u,. uk , reduces to the study of
function of independent univariate normal variables g,......g,.. Such a reduction helps, as
the known results in the univariate theory can be immediately applied or deduce the
results in the multivariate theory.

c) Itis possible to note that u=p + b g, with u, =g; +b;g as in definition-2 and u=j.i+c f
where ¢ isp x g matrix and f is a *-vector of independent N(OJ) variables, have the
same distribution if b b* = cc ', so that no restriction on q or R(c) need be imposed.
But a representation with restriction on b as in dcfinition-2 is useful in practical
applications.

hollowing the dcfinition-2. the following properties of normal distribution can be listed:

a) Letu',=(ui,u2...unu,2=(urf, ... up) be two subsets of u and Zn, ZI2
| 2 be the partitions ol Z as defined in (3.1). Then the conditional distribution ofu?2
given u| is

N*1(P2T Z2Z N (ul-P), Z2- S2Z | ZI?)
V\here h.(Uj) =p,, i= 1,2, and Z ,, isa generalized inverse ofZM.

b) The reproductive property of Np. Letu,~ Np(p,, zp, i=1,.... n be all independent.
Then for fixed constants ai.....an,

y =a,u+ ... +anun~Np(ZaipilaiZi).
c) Let tij. i=1,2..... n. be independent and identically distributed as. Then,
(I/n)Zu,= 0 ~ Np(p, 1/nZ).
d) Let u~ Np(p, 2). Then a necessary and sufficient condition that
0=(u -p)'a(u-fi)~x2Ak)

isZ(a Za- a) Z=0 in which case k - trace (a 2)
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3.2.2 Derivations of Normal Distribution

In Inc present section we will investigate the different methods or models used to
derive the normal distribution function. One striking factor in the derivation of normal
distribution is the fact that many scholars independently using different approaches
arrived at the same conclusion As Poincare said, there must be something mysterious
about the normal law, since mathematicians think it is a law of nature, whereas
physicists are convinced that it is a mathematical theorem.

Some general pattern for the “derivation of Normal Law” are dealt with by prominent

scholars, like Kac( 1959), Parratt( 1961), Rao( 1973), Maistrov( 1974) and Mathait 1977).

3.2.2.1.1e Moivre’s Theorem - L.imit of Binomial

Abraham l)e Moivrc (1667 - 1754). a French-English mathematician, is best
known for his investigation of the concepts of normal distribution and probable error, for
his generalization of Cotes’ theorem [exp IO = cos 0 + i sin J], and anticipation of
Siirling’s approximation [n! * (27m) e" n”]. lie was a friend of Edmund llalley( 1656-
1742) and Isaac Ncwton( 1642-1727). and corresponded with Jean Bernoulli. His major
works arc Philosophical Transactionsfrom 1695 to 1715), Doctrine of Chances(1718),
Annuities Upon Lives( 1725), and Miscellanea Analytica( 1730 - a compilation of his
researches in trigonometry and calculus). [lis pamphlets on Stirling’s approximation and
the normal curve appeared in 1730 and 1733, respectively.

Let k be a number of successes in a sequence of Bernoulli trials with probability 0
for success and define the random variable

v k- nO
v_ .
{no-oyt?!

then the limit distribution function is normal.
The characteristic function ofk is
E(c"k)= (1-0+0 c™)\

and the characteristic function of/’(t) of x is
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H(c"x)= F.(ei'(k-n0/n0<1 014 )
c Hlnil /In1Q O)ly, |;(c"k/|n(H <9 vtryi
_c-*n0/|In0(1 <IW i_a | Qc*7I"0*1 >y )"

(i _0) ¢ -iln0 /no(-°)IN + Q cit/[nO@ OL% j.i (3.2)

We note that
o' = 1f(iz) +... +(ix)r /1t +()(//,
and expanding the exponential inside (3.2), we find
AO=1e-r/2n + 0(r/n) In -> exp[-t"/2], asn—» o
which is the characteristic function 0i'N(OJ). Hence by the continuity theorem, the limit
of distribution function of X is normal. In effect the result means that for large /?, the
distribution function of the binomial variable k can be approximated by the distribution

function of normal variable with mean nO and variance nO (1-0).

3.2.2.2 Adrian’s Methods

Robert Adrian (1775-1843), an American, published his results in 1808 in The
Analyst. or Mathematical Museum. As Maistrov( 1974) noted the most interesting parts
of this paper arc two derivations of the normal law for the distribution of random errors
in observations.

|l et AB bo the true value of any quantity, for example of a certain distance. The
measure of this quantity is A/?, the error being /B (fig. 1).

I ct AB, BC, ... be several successive distances of which the value by measure arc
A> he, .., the whole error being Cc; now suppose the measures Ah, he, arc given and
also the whole error Cc (fig. 1) Adrian Assumes ‘as an evident principle’ that the errors
in measurements of AB, BC arc proportional to their lengths. Introducing the notation
Ah = a, he - h, (Ac = C; and denoting the errors of the measures Ah, be by x, v,

respectively, we obtain for the ‘greatest probability’ the equation x/a - y/h. I,ct X and Y
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he the probability of the mutual occurrence of these errors in equal to XY. It is required

to find Xand Y under the condition that the probability Xy will be maximal

A b B
I I i

A b B c C
| i— | LL

figure i:Measure ofdistanec
Introducing the notation
fIxX) ~In X, cply) = InY
Ihen the maximum of XY corresponds to the relation
f(x) t <p(y) = max.
Differentiating the last relation, we obtain
FOX +@ W)Y -0 <>PX)Xx =-<y)y"

As we can observe, and is also noted by Maistrov(!1974), Adrian does not indicate
with respect to which argument tthe derivative is taken. lie docs not even mention the
arguments ol the function. Ail this respects, of course, a certain defect in his work.

Hut for the maximal probability

X +y = const

and

X"ly'=0 <> x' =-y
i);\iding the equations we obtain

r, () =<pY)-
Now this equation ought to he equivalent to

xfa *“ y/b.
I'his is satisfied in the simplest form if

f'(x) m\hi

and

-tp' (V) y' =/ny/a.
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Consider the first relation

I'(x) mx/a or df(x)r (mxh\) dx;

jaf(x) - j(/?7.x/a)dx

fix) = al +mx2/2a

fix) - InX-~a|+mx2/2a

X exp (ai 1 mx2/ 2a).
The function

IJ=exp (@i + mx'/ 2a)
is called by Adrian "the general equation of the curve of probability.” Next he proves that
m<0.

In the same paper Adrian presents a second derivation of the distribution law for
random errors in observations In this derivation he considers the measurements of a
segment AB with equally probable errors in the length and in the azimuth. Adrian
assumes that the locus of the equal probability of the location of point B. determined by
the measurements of the length of AB, is the simplest curve, i.e. a circle with the centre
at point B. Under these conditions he obtains that the probabilities of errors are
exp(c + Z2nx )and exp (c h Vj ny ) correspondingly, where aand y arc the errors,

Bw»~v.mn =v,and ¢ - const(llg. 2)

figure 2: Measurement of length
In the same article by Adrain the derivation of the least-squares principle is given
as well as the derivation ofthe principle of the arithmetic mean, and a method “to correct

the dead reckoning at sea by an observation of the latitude” are presented.
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3.22.3 Theory of F.rror - Hagen's Hypothesis
Hagen based his proof of the normal law of error under the following
assumptions:
(i) An error is the sum of a large number of infinitesimal errors, all of equal magnitude,
due to different causes.
(i) The different components of errors arc independent.
Ini) 1'ach component of error has an equal chance of being positive or negative.
By assumption (iii), each component of error takes the value £c with probability
M for each, so that the mean is zero and the variance is e2 If
X=C| + ... + ¢,
is the total error due to n independent components, then
E(x)= E(e,) + ... +tE(cn =0
V(X)= XV(r])= nc:=0".
bet us find the limiting distribution of x as n->m and ¢ —0 in such away that a 2is

finite and fixed. The characteristic function of § is

L (e +c )

%
and that of x=c¢, + ... +rnis

t

+ i’;“‘ )'=| 1-r 02 2n + 0(r/n) jn-> e 1l asn-> s

which is tlie characteristic function ofN(0,cr?)

3.2.2.4 Ifcrschel’s Hypothesis -Hitting the Bull’s eye

Consider a distribution of shots fired at a target and let (x,y) he the co-ordinates
(random variables) representing the deviation(errors) of a shot with respect to two
orthogonal axes through the target point. Let the following hypotheses be true:

(i) The marginal density functions p(x), q(y) of the errors X and Y are continuous.
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(u) The probability density at (x.y) depends only on the distance r = Jx 2 +y 2 from

the origin (radial symmetry).

(in) The errors in x and y directions are independent. Then the probability density
function of the deviation 7 in any direction is the normal density
exp [-7.2/2n 2}/ a -vi20 .

Using (ii) and (iii) the density at (x.y) is

I'(xk/(y) x(r), r7=x +y\ (3.3

Putting, X - 0, we ilnd that the functions vand q arc proportional to each other, while

putting y = 0, we find that s and p arc proportional to each other. Therefore, the

functional equation (3.3) reduces to. writing

J{xHog[ F(x) ,
[ P<cI

Rx)+ f(y) = f(r), r2=x7 + y\ (3.4)
Further.

A*)=A-x)=A\*\|
obtained by putting y=0, X =-x in (3.4). Thus, if

X2=X,2+ X2,

Ar)-Ay)+A*\ ) +/Ix2), MM=yx2=y2+ x,2+ x2
and SO in general
Ar)=/*i )+- +/xK), | x2= r2.

(‘hoosing k = n2and puttingx=x, = .. . = x2 we see that

Inx) =n2x)
or

In) =n21l) forx=1.
for x= m/n where m is an integer,

n/m/n) =/(nm/n)=/m) =m3/{1)

or

/m/n) =r(m/n)\
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where c~ f{ 1), so that /(x) = ex for all rational x, and because of continuity the relation is
true for all x. Ilencc

Ms) =/>(0) cxp|cx2). " (3.5
lor (3.5) to be a probability density, ¢ must be negative and may be written as -1/2cr.
Integrating from -coto oo and equating the result to unity we find

Mb)= 1/(v27ia2),
so that

*2
p{\) = 2f (3.6)
71CT
which is the well celebrated normal distribution, N(0,a2) with r-(x) = 0 and v(x) —cr

Ihe joint probability density of the errors X Y is

PEYAW) = i 02D

Ihe error in any dircction(cos 0. sin 0 ) is

X=Xcos0 + Y cosO. LIE

lo find the probability density of Z, we consider the transformation
z=xcosq +yco$q,
/.=xcosqQ - ycosq.
I he Jacobian of the transformation r)(z,u) / Mx.y)= 1 The density transforms to
expf(-(z“+u2)/ 2cy )]/ (2n<r)),
which shows that U and /. are independent and p.d ofZ is
cxpl-.2  2cr |,

which is the required result

3.2.2.5 Maxwell’s Hypothesis

Maxwell arrived at the normal distribution in deriving the distribution of
velocities of molecules under the following assumptions:

(1) The components of velocity u, v, w in three orthogonal directions are
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independently distributed.
(i) The marginal distributions of ti. v, ware the same
(in) The phase space is isotropic, that is. the density of molecules with given
. velocity components is a function of total velocity and not the direction.

If /(.) denotes the probability density of any component of velocity, the

assumptions (i) to (iii) lead to the functional equation
[(u)/(v)l(w)=g(V), V2= u2+ v2+ w2.

thus, /(u) is of the form (3.6) which is normal distribution for any single

component of velocity and

g(V) = const. cxp[-a(u2t Vv t w2) |

3.2.2.6 Markoffs [Markov’s) Method

Attempts to generalize the result of De Moivre provided one of the strongest
motivations for developing analytical tools of probability theory. A powerful method was
proposed by MarkofT( 1912), but he was unable to make it rigorous. Some twenty years

layter. the method was justified by Paul Levy.

I lie attempted conclusion is. let g(x) ~ 1. for co(< x < 0)2. and g(x) = 0 otherwise, then

W . n(D+. .+ mE) ¥c*x_ CKaV
Itmpjoi < -=-+-%---- j=-mmmmr <02 g4y v dvarfe Sy
Ce/_Celv
Ihe main problem is that the function ------—---- is not absolutely integrablc taking the

limt n ko, since the limits of integration are - <tand +co.
Markov unable to overcome this difficulty abandoned the method. The
justification of Markov’s method was given by introduction of
9(x) = 9'(x)-9'(x),
where

g'(x) = max (9(x).0). g'(x) = max (-g(x). 0).

and either
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E[g'(x)| <00 or E[g‘(X)] < oo
then.
E[9()] = E[g ‘()] - FIg ()].
This implies-g(x) is absolutely intcgrable function of v in (-co.ee). Thus the argument can
be proved rigorously.
A close inspection of the method of the derivation indicates that the following
affirmation is true. Let /,,(I), 0 <t < 1, be a sequence of measurable functions such that

for every v

Then.

lim p{«, </,,(1)<©2} ~~pr - c-y /2dy.

3.3 Principles of Convergence and The Relation of Normal
Distribution With Other Theoretical Distributions

3.3.1 Principles of Convergence

3.3.1.1 Central Limit Theorem

A thorough investigation is done by Lo6ve(1%3), Rao(1973), Chow and Teicher
; 1978) and particularly by Gnedenko and Kolmogorov(1968) in their book entitled Limit
Distributions for Sums of Independent Random Variables. Primarily the Central Limit
Problem ol probability theory is the problem of convergence of laws of sequences of
sums of random variables. The general Central Limit Problem was solved using the
characteristic function tools, and the truncation and symmetrization methods. The

Central Limit Problem can be stated as follows:
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be sums of uniformly asymptotically negligible independent summands Xnk. that is

Xrk

» 0 uniformly in k, with kix-»no .

(1) find the family of all possible limit laws of these sums.

(ti) Find conditions for convergence to any specified law of this family,
following historical development of the problem, there arc three limit theorems and
corresponding limit laws at the heart of the classical problem. In turn the three limit laws
give rise to the three limit types.

Thefirst theorem (Bernoulli’s) of probability theory, published in 1713, says
that Sn/n —p—» p. where, S,, is the number of occurrences of an event of probability p in

n independent and identical trials, K(Xk)=72, V(XK=n/;(1-/>), k= 1L 2 .. —
convergence in probability. The result is achieved by direct analysis of the asymptotic
behaviour of the binomial probabilities.

Developing the analysis, A De Moivrc(1732), as indicated before, obtained the

second limit theorem which, in the integral form due to l.aplacc( 1801), says that

FISn- np)/{np (\-p)) <x]—=(1/NV2uw I exp (-/2y:)dy, -m<Xx < m
@

«

The third theorem was obtained by Poisson(l 832), who modified the Bernoulli

case by assuming that the probability p = pndepends upon the total number n of trials in
such a manner that npu—7, > 0. Therefore, writing now X, kand Sm instead of Xk and
S, the Poisson ease corresponds to sequences of sums Sn,= Xc-i"Xrk, n=Il ,2......where,

for every fixed //, the summands Xrk are independent and identically distributed
indicators with
P| Xk= 1= X/n+o(ln).
By direct analysis of the asymptotic behaviour of the binomial probabilities, Poisson
proved that
PfXm=k| Xkc x/ k!, k=0,1,2,...

Hence, the corresponding three basic laws of probability are deduced.



88
Ilie degenerate law AO) of random variables degenerate at 0 with distribution

function having one point of increase at x=0 and characteristic function reduced to 1.

Ihe normal law N(0,1) of normal random variables with density function defined by
f(x) =75- 1 e >"/2dy.-
—<

and characteristic function given by §(t) - exp (-Cl 2 ).

The Poisson law 7\k) 0f Poisson random variables with density function defined by
F(x) = e x| 4t
uo

and the characteristic function is given by e ~oxplu} ‘1.
In brief the three theorems can be summarized as: in the Bernoulli ease
A IS, - 1i(S,))/n]->A0), andA [(S, - r*(S,))/a S, |-> N(0,1),
while in the Poisson ease
AN(SIL)-+AK).

As a conclusion we note that there are three limit types following the three limit

laws (i) file degenerate type of the degenerate laws J(n) with f(t) - e

(i1) The normal type of normal laws N(a,bJ) with f(t) - exp {ita-b‘r /2|

(in) 1he Poisson type of Poisson laws a,b) with f(l) = exp |ita+ AE“- 1) |

As a remark it can be said that the prominent players in handling and
reformulating and finally solving the problem aie kolmogorov(1937) and l.dvy( 1937).
And there arc also other scholars like Linderbergt 1922), lellci(1937), Docblin( 1939),
and (inedenko(1950).

3.3.1.2 Laws of Large Numbers
A thorough investigation is done by L.oeve( 1963), Rao(!973), Chow and Teicher

(1978), Gnedenko and Kolmogorov( 1968), and particularly by Sheynin( 1968) in his

article entitled “On the early history of the law of large numbers.” for Kingman and
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Tavlor(1966) laws of large numbers arc precise formulations of the rough interpretation
of the expectation of a random variable as the average of its values in a large number of
independent trials Beside the Uvo well known (Borrl-1{()9) strong Imv o flarge numbers
and the (Bernoulli 1713) weak laws oflarge numbers, there arc other laws which depict
the Dbehaviour of large numbers, like Kolmogorov inequalities, symmetrization
inequalities, 1.<8w inequalities.

There arc a class of probability distributions called symmetric stable laws These
arc distributions whose characteristic functions arc of the form exp (-c111"), where ¢ > 0.
Such distributions exist ii and only if 0 < a £ 2 The Cauchy distribution has a =1;
when a 2 the distributions are normal distributions 1f Xnhave characteristic function

exp (-c;11 ), it is easy to verify that, for any /2, S,,/ nlA has the same distribution as X,

3.3.2 ihe Relation with the other Theoretical Distributions

The central importance of normal distribution in statistics stems from three facts:
(i) many actual populations approximate closely to normal forms: (ii) it forms the
limiting distribution of many widely used statistics and (iii) under general conditions,

the means of many distributions tend to be normally distributed in large samples.

3.3.2.1 Discrete Distributions

following Pelicr(1993), we can say that a sample space is called discrete if it
contains only finitely many points or infinitely many points which can be arranged into a
simple sequence E,, Tv,,... . Given a discrete sample space G with sample points R,, E2
: it is assumed that with each point E, there is associated a number, called the
probability of f., and denoted by PIE,}. It is non negative and P{E[} + P{} + .. =1.
**Cprobability PJAJto any event A is the sum of the probabilities of all sample points in it.

In more elegant way a discrete distribution function can be defined as follows: a

distribution function G on R is called discrete if

GX)=_.2Z P x 6 R,
<\
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where p,> 0 for all j. , p,=Il,and S = j <n£ > isasubset of (~<» ~). The

associated function

ftx) = p, for x “ xj, f|x) =0 for x= x|, l<j<nc<
is termed a probability density fundion(pd f)on S~ |x | j £ n ¢ wj. Apdf. is
totally determined by Sand Jpo,, I j £ n < <« and S is the set of positive or

nonnegativc integers or some finite subset thereof. The probability space (£2, F, P) and

random variable X on it whose I:(x) with discrete d.f. G, can be constructed if we choose

£=S. F-class ofall subsets of£2.

and
X(>) -ti>;P(© . X((0)=x,| =p,, 1<j < n " «,
where X1V, = |
Also Rao(1973). presenting (he discrete distribution function as step function,
depicts the distribution in a measure-probabilistic approach and derives and explains
distribution function as a Borcl field B generated by the interval [0,11 £2=[0,1], and P
the l.ebesguc measure so that P([0,0>)) - o>, 9 <ef |.

i) Prom Bernoulli Trials to Binomial Distribution

Repeated independent trials arc called Bernoulli trials if there are only two
possible outcomes for each trial and their probabilities remain the same throughout the

trials, l.et b(k;n,0) be the probability that n Bernoulli trials with probabilities 0 for

success and |- 0 for failure result in k successes and n-k failures. Then we have

Again let
b(k:n,0) = P{S=k},
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where S,,is the number of successes in n trials as a random variable. Then b(k;n,0) is our
binomial distribution The term binomial refers to the fact that b(k,n,0) represents the k™
term of the binomial expansion of (1 -0 + 0)n

Whert n is large and 0 is small and X =nO of moderate magnitude it is preferable
to use the approximation to b(k;n,0) which is due to Poisson. Simeon D. Poisson (1781 -
1840). a French mathematician deduced this relation in 1832 and his main work is
published as “Recherches sur la probability desjugements en matiere crimineUe et en
malicre civile, piecedees des regies generales du calcul des probabilities” in 1837. The
following derivation will help us to have insight in the relation between the two types of
density function.
For k=0

b(0;n.G) ~ (1- 0)n=(1- 0/n)n.
Ifsing Taylor expansion rule and logarithms we get
log b(();n.0) =n log( 1- X/n) =-X- X22n -...
so that for large n
b(0.n,0) * e\

For fixed k and sufficiently large n

htn0)  2-(k-1)0 |
bk- I:n,0)~ k(t-0) * k

Next, using recurrence method we get
b(l;n,0) * X.b(0;n,0) « Xc \
b(2;n,0) »X/2 . b(l;n,0) * X2e 'V 2
and hence by induction

b(k:n,0=Vn) * C—K— = 7\K\X).

this is the classical Poisson approximation to the binomial distribution. An alternate

method is used to deduce this result by Chow and Teicher( 1978).
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As \vc can observe from research works and statistical applications the normal
approximation to the binomial distribution is of considerable theoretical and practical
values Fcllcr’s(1993) approach can be used for alternative method to the approximation
of binomial distribution by normal distributiion. Furthermore, as it noted the be Moivre-
laplacc limit theorem above, it played an important role in the development of
probability theory because it lead to the first limit theorem.

In generalized form the approximation formula can be written as:
For fixed z, and z2as n -»co
P{nO + z,(n0(1-0)/'< Sn< n() + zAn0(I1-0)7:}-> N(z,) - N(z)).
That is for
P{a<Sn<]Ji}= I!_>n(*;«,/’?) » N(« -n0O)- N(p -nO),

where [«,[f] is a fixed real interval,

i) Poisson Distribution

For large values of A it is possible to approximate the Poisson distribution by the
normal distribution. The deduction is simple. If nis large and 0 small, then b(k;n.O) will
he found to be near the Poisson probabilities P(k; A) with A= nO. For small A only the
Poisson approximation can be used, but for lafge A wc can use either the norma! or the
Poisson approximation.

In general using the Stirling’s formula normal approximation to the Poisson
distribution can be presented as follows:

If A—00. then for fixed « < ff,

> N(a) -N(P).

7v»i\ X<k<X . fl JA

iii) Jlypcrgcomctric Distribution

I lypcrgcomctric distribution, mainly used for combinatorial problems, is defined us
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where r <n (both integers), n, < n ( integer), k = max((), +r)...min (/o,«,). The
probabilities pv arc defined only for k not exceeding r or /?,, and if cither k >r or k >/,
then pk=0.

The name is explained by the fact that the generating function of {pkj can be
expressed in terms of 1llypcrgcometric functions. It can be approximated by binomial and

Poisson distributions. 1fn is large and njn 0, then the probability pkis close to

\%
k.

More precisely

K" r-k f* .
0- ((1-0- J <Pk< f/d-or i-
v\ n

And ifn ->co and /e—>qo so that the average number a. = r/n then pr ->7%Kk).

The normal approximation to the Ilypcrgcometric distribution goes like this. Let

n.m.k be positive integers and suppose that they tend to infinity in such a way that

-»0, niin ->(1-0), h{k-rf)}—=x

n+m nim

where h=
V(n+m)O(I-0XI-t)

furthermore, using the normal approximation to the binomial distribution we get the
following result:
m [niin
Ar-k

hNX)

3.3.2.2 Absolutely Continuous Distributions:

A distribution function is called absolutely continuous if there exists a Borel

function £ on R = [- co ,00 | such that
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in which g(t) is said to he the probability density and necessarily satisfies g > 0 almost

even, where (a ¢ ),

If.efO is continuous at /, (»(/) = g(r).
l'or dilTcrent definitions of absolute continuous distribution we can see the works of
Chow and Teichcrf 1978), Rao( 1973), and I'cllerf 1991).

flic following distributions fall in this category of absolutely continuous, and we
are going to assess the relationship between them and normal distribution.
NStudent's t -Distribution.

The history of /-distribution is interesting. The English mathematician Student -
pen name of William Scaly (lossct discovered the exact distribution of / in 1908 , and
opened the new epoch of exact sampling theory or distribution. This work of Student
made it possible to perform statistical inference by means of small samples and
consequently changed statistical research from the study of collectives to that of
uncertain phenomena. The concept of population was once again related to a probability
space with a probability distribution containing unknown parameters. Thus it began to be
emphasised that a sample has to be drawn at random from the population if wc arc to
make an inference about a parameter based on the sample.

In order to define /-distribution let us follow Students'(1908) definition and Rao’s
method:

a) lety - A(0,1)and v JT(K) be independent variables. Then,

t—y ! (xk)12
which is the ratio of a normal variable to the square root of an independent T variable
divided by the degrees of freedom.

Ihe joint distribution of y and x is

c.cxp 1-y?/2] exp |-x3/2| xk2) 1dy dx. (3.7)
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b> making the transformation to polar co-ordinates (0<r< 0o, -1/2 <0 < 4/2),
y=rsin0, X=r2co0s20,
dxdy ~ 2r2cos 0 dr dO
transforms to
c exp|-r2/2| rk(cos 0)k 1dr dO. (3.8)
The distribution off) alone, which is seen to he independent ofr, is
c.(cos0)k* dO = (P O2,k/2)]1 (cos 0)k** dO, (3.9
thus, supplying the constant to make the total integral unity. The statistic whose
distribution is to be found is
t =Wy/ W =ktan0, (- 00<t <00),
dt = k sec20 dO = k (1 +t2k)dO.
Ihe expression (3.9) transforms to
S(t/k) dt=[>k () (14, k/2)]L (I +t2k) (k+1)/2 dt, (3.10)
which is called Student's t distribution on k degrees of freedom and is represented by S(K).
b) Let y~ N(p ,n*)and (x/trd) ~ %2Kk) be independent.
*hen, since (y -m)/s ~ N(0, 1) and applying (3.10) to the ratio of
[(y-n)/rr | to (x / ko2) R
we get
(y-p)/(x/k)'N ~ S(k). (3.11)
C) Let y~N(p,02 and (x/02) ~2,Xk) be independent.

The probability density oft=y/ (x/k)5 is

kP L2 ' s 1 MV 2
S(t/k, S) = — 1
( ) V(ktl) (k +t7yl,'y2 o!v 2 ) LvIJDZII'é

where 5 = p/cr, which is called the non-central t distribution,
ii) Hotelling T 2- statistic.

The multivariate analogue of the square of Student’s t -distribution is
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T7 N(7-n)’S"' (r-n),
where r is the mean vector of a sample of N and S is the sample covariance matrix.
lintel ling (1031) in his paper “The generalization ofStudent's ratio, ” proposed the T -
statistic for two samples and derived the distribution under the null hypothesis. But the
representation of T2 as the ratio of independent X ’s leading to an elegant derivation of
its distribution is due to Wijsman(1957). for detailed and scholarly presentation we can
sec llotelling( 1931) and Anderson( 1958).
iii)(bimma Distribution
fhe general gamma distribution has the p.d
(i(x/«,p) ~ fup/(J(p) Ic "sxp\ a >0, p>0, 0<x <m

fhe r'hraw moment is seen to he

T(p»n)/uT(p)
so that

) p/aand V(X) = pAx 2
let\, - (i(<x.p,), i=1,..., k be all independent. Then,

X, .+ XK~Cx»((X, p-Xp,),
that is, the gamma distribution has the reproductive property like the normal distribution
hut not for variations in both the parameters
lets (i((x,pi) and y ~ (i(a,p?). Then, p.d. ofg = x/(x+y) is

[IXP+P2)/ T(P,)T(p2I g,vl (I-g),v\ 0<g< I,
which is called the beta distribution, B(p,,p:). The beta distribution involving two
parameters y, 8 has the probability density

B(x/y,8) - [b(g.dy| -l xg-1(I-x)d-1, 0<x< I,
where b(y,8) is the beta function

r(y)T(5) / T(y+8).
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iv) 7 Distribution

The special case of the gamma distribution with (x=1/2 and p—/2, where Kk is an
nteger is called the 7 ? distribution on k degrees of freedom. The density function is

7 '(x/k) = 1/ (2k/i21'(k/2) c*n x(k2)".

Following the property of gamma distribution, we observe if x, ~ TXk,), i, ...,
m, are independent, then Xx, ~ TAXKk,).
\)Wishart Distribution.

John Wishart( 1928) in his article entitled ‘The Generalized product moment

distribution in samples from a normal multivariate population” came up with Wishart

Distribution. The sample covariance matrix,
S= N Xa(x,« - X )( X,,- X)*

is an estimate of the population covariance matrix X When X=I, this distribution is in a
sense a generalisation of the ~-distribution. The distribution of S, often called the
Wishart distribution, is fundamental to multivariate statistical analysis,
vi) Cauchy Distribution

flic Cauchy density centred at the origin is defined by

C(x/p,x) = (I/rc) (x/x2+x2), -Cco< X< ¢o, p =0,
where x> 0 is a scale parameter, the Corresponding distribution function is 7 1 arc tan
(x/t) The graph of C(x/p,x)rcsembles that of the normal density but approaches the axis
so slowly that an expectation does not exist. The importance of the Cauchy densities is
due to the convolution formula
Cs*C(=C4. (3.12)

It states.that the family of Cauchy densities is closed under convolutions.

The convolution formula has the amazing consequence that for independent
variables X ,,..., X, with the common density, the average (X| + ... + X,,) / n has the same

density as the X. It has the curious property that if X has density C, then 2X has density
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(= C*C, Thus 2X = X + X is the sum of two dependent variables, but its density is
given by the convolution formula. Moreover, iflJ and V arc two independent variables
with common density C, and X- all + bV, Y = cl) =dV. then X+Y has density
which is the convolution of the densities  n,, of Xand C,, i,i,, of Y; nevertheless, X and
Y are not independent.

The Cauchy density corresponds to the special case n=1 ofthe family of Student’s
t densities. In other words. If X and Y are independent random variables with the normal
density N, then X/ 1Y Ihas the Cauchy density with t=I. The convolution property of
the gamma densities looks exactly like (3.12) but there is an important difference in that
the parameter a of the gamma densities is essential whereas (3.12) contains only a scale
parameter. With the Cauchy density the type is stable. This stability under convolutions
is shared by the normal and Cauchy densities; the difference is that the scale parameters
compose according to the rules o = a,: + a2and a -a,+ a (, respectively. There exist
other stable densities with similar properties, and with a systematic terminology, the
normal and Cauchy densities are called “symmetric, stable of index 2 and 1.” We note
that the law of large numbers describing the behaviour of the mean as the number of

observations increases docs not hold in the cask of the Cauchy distribution.

3.4 The Relation with Pure and Applied Mathematics

3.4.1 Maxwell’s Distribution of Velocities

James Clerk Maxwell(1831-1879), an immediate predecessor o ff. Boltzmann
(1844-1906) - who is known as the initiator and developer of statistical physics as well as
one of the founders of modern physics and theoretical physicist - thought of molecules as
elastic solids. Starting from this premise, Maxwell constructed a theory' of gases that was
related to the works of Clausius In his paper, 1875, by stating special contribution of
ClausiuS. in the development of methods for investigating systems consisting of

infinitely many molecules in motion, “opened up a new field of mathematical physics.”
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Maxwell states that “By following this method, which is the only one available either
experimentally or mathematically, we pass from the methods of strict dynamics to those of
statistics and probability. When an encounter takes place between two molecules, they arc
transferred from one pair of groups to another, hut by the time that a great many encounters
have taken place, the number which enter each group is, on an average, neither more nor less
than the number which leave it during the same time. When the system has reached this state,
the numbers in each group must be distributed according to some definite law."

This distribution law of the velocities of molecules was derived by Maxwell. For
this purpose, he proceeds form the following consideration:

| et <pfx)dx be the probability that the projection of the velocity of a molecule on
die x axis is contained between .t and x + dx, and let the corresponding definitions be
given lor (p(y)dv and t(z)dz. The probability that the vector from the origin representing
the velocity will be contained betweenr.v,2and v 1dx, y 1dy. z 1dz isequal to

F = 9(xX)<p(y)<(z)dxdydz.

This probability, on the other hand, should be a function of the distance from the

origin, ic..
(P()<PY)<P(@) = fix2+y2+ 72).
laking logarithms on both sides, we obtain:
In <p(X) + In <py) + In () = In f(x2+y2+ z2).

Differentiating with respect to vyields:

PR 2\fj[xi_ V2122 or (PM - 2fYx21\V21z2 .
ip(x) [ (x21y2 122 X <) J(x21y21z)

Analogously,

<p'(yL M 2f(x2\y21122 .
X <) my <) Z tp(2) f(x21/ 129

faking into account certain additional physical considerations, we easily

determine a function that satisfies this relation:
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M exp (-kx2\  <PR<PO)PC) - f(x2 my2 i zd =exp [-k:(x2 my2\ z7].

This formula represents the Maxwell law o fvelocities.

3.4.2 Gaussian Distribution and the Law of Errors

Gauss published his derivation of the normal law of distribution of random errors
in observations in 1809 in his famous work “Theoria motus corporurn coclestium.”
\long with the unusually wide scope of Gauss’s activities, a characteristic feature of his
investigations in a deep interrelation between theoretical and applied problems, lie often
discovered general mathematical ideas as a result of solving specific problems. This is
particularly relevant to his work in the field of probability theory.

After deriving the “normal law of the distribution of random errors”

UNIVERSITY nr NAIFCf
I<P(A) = Im'12 exp(-h? A )], CHIROMO LIBRARY
Gauss points out a certain defect in this law. According to this law, errors of any
magnitude arc possible. It should be emphasised that in deriving the normal distribution
Gauss made extensive use of the principle of the arithmetic mean.

The most complete exposition of the theory of errors is contained in
Gauss’s(1828) paper “Theoria combinations observationum erroribus minimis
obnoxiae." Gauss writes in this memoir that no matter how carefully the observations arc

carried out, errors are unavoidable. Some errors may be random, others may be predicted
and evaluated since these are cither constant or vary in a regular manner. The latter type of
error is referred to as a systematic error. Gauss, however, points out that such a division of
errors into two kinds is relative, and in many cases depends upon the problem at hand.

This paper of Gauss’s is devoted to the study of laws governing the distribution of
random errors. Gauss proceeds with the most general assumptions concerning the
probability density of the errors <p(x). Since positive and negative errors appear equally
often. <p(-xX)=(p(x). Next small errors occur more often than the large ones, hence the value
of )9 wjH be maximal at x 0 and diminishes constantly with the increase of x Clearly, the

value of the integral |<p(x)dx in the limits form x ~ -co up to x = +°0 always equals 1.
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ITie basic problem considered by Gauss is actually as follows: Let the variables y, X,
\-. . Pelinearly related, ic v V", (&%., while the a, arc unknown. To deteimine these
unknowns, the values ofy, X'siasxs, r 12 .., N, arc obtained from the experimental
data

Hut the experimental determination ofyr is subject to error. Thus, we actually obtain,
instead the value y,, the value /, vy, i A Given xMand the obtained values of tj,, it is
required to determine the best possible approximate values a. of the quantities as. According
to Gauss, these ought to be determined from the condition

I NS (n, - X's=1 asxsr)2=min. (3.13)
r/. arc then uniquely determined form the system of equations derived form condition (3.13).

The equation arc called normal equations and are of the form:

1", T«s I N | X< xir - | Nr—i xir, i 1,2....n.

Condition (3.13) is minimised if the expression in each ofthe square brackets vanishes, i.e.

M ILsiaxs,
and the values of //, (r 1,2..... N) satisfy the system of the normal equations. The obtained

approximations «* of the values of as arc free from systematic bias, that is, the mathematical
expectation of a a, isequal to a.

3.4.3 The Normal Taw in Number Theory

Ihe normal law in number theory, in comparison to pure mathematics, is
studied by many scholars, namely, Erdos and Kac(1939), Kac(1949,1959). Rcnyi(1955),
Renyi and Turan( 1958), Kubilus( 1956), and others.

In order to analyze the properties of normal law in number theory we need preliminary
definitions on basic concepts.

3.4.3.1 From Victa to the Notion of Statistical Independence

livery real number /, 0 <t< 1, can be written uniquely in tire form

(3.14)
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where each r. is cither O or 1. This is the familiar binary expansion of /.

Since the digits r,, are functions of/, and thus (3.14) can be written as

= 0, 2O et (3.15)
5 722 TTa

With the convention about terminating expansions, the graphs of r.((t), c2(t), Ej(t),. . .

are as follows:

let the functions r,(t), introduced and studied by Radcmachcr( 1922) or known as Radcmachcr

functions, be defined by the equations

n  1-2ri), k=1,2,3,.. (3.16)

whose graphs look as follows:

Now we can write (3.15) in the form of

3.17
kiz2k (317)
Next, we note that
Jei-2ldt = sin v
and
D
gr dt = cos tt
Now'
s'nr A X
I1cos -1 ,
* kK i

whose special case when x ji/2 is the classical formula of Vida, that is,

2 ®
—~ FH 4T,
X n-1 2

assumes the form
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=lcl"',"dl - }cxp(ixE ~)d t- n COS4-= n)cxp[ix™-'-lIdt-
o o] . V kIl 2k / k | 2 klo ~ 2k /

Ihis implies that
I

())kl II cxp|V| cay 1|dt Izl[tlgmmf\llm ]di
\n integral of a product is a product of integrals!
Using the above formulae the Vieta’s formula is connected to binary digits.
Let us consider the set o f/’s for which
@ i1, rAt) -1, r(t) --1.
The graphs of r,, r2and r, indicate that the set, except possible for end points, is simply the
interval {| -i!)
The length or measure of this interval is clearly j, and
j =MeVie M.
This observation can lie written in the form
pri(t)- 11, rl) -1, ") —13=m{r,(t) - 11) p(rAt) -1) p{r.(t) - -1)
where p stands for measurc(length) of the set defined inside the braces.
Ingeneral if8|, 82......8,,is a sequence of + I's and -1’s then
Mri(t) = ----- r()- 8,) Mir,(t) -8} p{rAt)=82) .. p{r.(t) - 8,}
This may seem to be merely a complicated way of writing

(V)" M x 'Ax ... x \2(ntimes),
but it expresses a deep property of the functions r,(t), and hence binary digits.

Now using this property we can prove that “an integral of a product is a product of integrals.”

(n
iexnvilgg:krk(t)/ dt ZShexpf/ik%C ksk(t) p {cj(t)=8,,....cn(t)=5,}

8,Z krllc;-A k{l p {ik(t) =8kJ = . ZSnkrilciciRI p{rk(t) = 8k}

11 Zcicd p{rk(t)=8k) = H dt.
k 15,,j5n k=l ,
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\ftcr this initial connection between Iicfas formula and binary digits next we turn to the
theory of coin tossing The elementary theory of coin tossing starts with two assumptions:
i) the coin is “fail” and (ii) the successive tosses are independent
Ihe first assumption helps iis to have cquiprabability[/> V-\. while the second is used
tojustifv the rulcol multiplication ol probabilities. That is if events A|,...,Anare independent,
then the probability of their joint occurrence is the product of (he probabilities of their
individual occurrences. Thus, the functions ¢.0) can be used as mode! for coin tossing.

Next let us have a glossary for our model.

Probability 't heoretic Number-Theoretic

symbol 1l (Head) +

symbol T (Tail) -

kthtoss(k 1,2,...) rt(t)(k 1.2,...)

event set of fis

probability of an event measure of the corresponding set of fis

probability theoretic r. v.'s  number theoretic functions - f(n)

expectation of r.v.’s mean value of a function

M (U} = fimyp 1/(D)dt

Ihe analogue of probability and number terminologies can be clarified through the
following example
+ find the probability that in n independent tosses ofa fair coin, exactly | will be heads.
* find the measure of the set o ffs such that exactly ~of the // numbers rj(t), rQt)..... rn(l) arc

equal to i I.

I'he condition that exactly t among rt(t), r2(t), .... m(t) arc equal to 1 is equivalent to

the condition that
i )i .. tr,t) 71-n ]S

Next we note that, for in an integer we have

1, m=¢

1 0 imxdX —
2 % 0, in* 0,
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After this initial connection between Virtu's formula and binary i/iyits next we turn to the
thcorx of coin tossing The elementary theory of coin tossing starts with two assumptions:
i) the coin is “fair” and (ii) the successive losses arc independent.

the first assumption helps us to have equiprababilily|/» '/4|, while the second is used
to justify the rule of multiplication of probabilities. That is if events At.... A, are independent,
then the probability of their joint occurrence is the product of the probabilities of their
indiv idual occurrences, thus, the functions g,(t) can be used as model for coin tossing.

Next let us have a glossary for our model.
Probability Theoretic Number-Theoretic

symbol 1l (Head) i
symbol T (Tail) -

kthtoss(k 1,2,...) b(t)(k 1.2,...)
event setofl’s
probability of an event measure of the corresponding set oft’s

probability theoretic . v.'s  number theoretic functions - f(n)

expectation of r.v.'s mean value ofa function

MY (0} = limyt 3 (Ot

Ihe analogue of probability and number terminologies can be clarified through the
following example:
 find the probability that in n independent tosses ofa fair coin, exactly (will be heads.
 lind the measure of the set of/’s such that exactly Gof the n numbers r|(l). r\{). ..., r,,(t) arc

equal to +1.

Ihc condition that exactly | among r((t), r.(t), ..., r,,(t) are equal to 1 is equivalent to

the condition that
)i )i .. lr@t=2f-n (3.18)

Next we note that, for m an integer we have

2* [1, m=0
A, =10, m*0,
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Wn r|(l)’ -0
[lVe)| (D n '
and is equivalent to saying that, for almost every t,

im g[(0+ e +gn(@Q _i

n wn n

In other words, almost every number t has, asymptotically, the same number of /.cros and
ones in its binary expansion. This is the arithmetical content of Borcl’s theorem.

Ifg is an integer greater than 1, we can write

(t) mn{p)

t= O<t< I,
8 9
where each digit ®(t) can now assume the values 0, I,...,g - 1.
Foralmost every t (0O <t < 1)
Fk)(t) 1
n *e e

where F*,1(t) denotes the number of times the digit k, 0 <k < g -1, occurs among the first n
ns.

From the fact that a denumerable union of sets of measure 0 is of measure 0, it follows
that almost every number /,()</< 1, is such that in every system of notation, that is, for every
g |, each allowable digit appears with proper and just frequency. In other words, almost
every number is normal. A simple example by Champernownet 1933) is the number written in
decimal notation

0 1234567891011121314151617181920212223242 . . .,

where after the decimal point we write out all positive integers in succession.

3.4J.3 A law of nature or a mathematical theorem?

In the study of the normal law in number there is a striking question of inquiry. Is
Normal law a law of nature or a mathematical theorem? In order to have satisfactory answer
let us define three important phrases, namely, the relative measure, the mean value of a

function and linear independence of real numbers.

» The relative measure - I,ct A be a set of real numbers, and consider the subset of A which
lies in(-T,T), i.c, An(-T,T). The relative measure  (A) of A is defined as the limit
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{A} = gmﬂ n{AfI(-T,T)},

if the limit exists The relative measure is not completely additive, for if A, (i. it 1),

i 10, £1, £ .... then

UA =1

while
X H.(A =0

* The mean value ofafunction - the mean value M{I'(t)] of the function f(t), -0 < t < °0, is

defined as the limit

MERD}= ligs ! 2f(0dt,

if the limit exists.

* linear intleperulence of real numbers - Real numbers Al| A2 .. arc called linearly
independent or independent over the field of rationals if the only solution (k|, k2, ..)in
integers of the equation

KA| t k2R2+ ... ~0 s kl=kj=kj=..~0.

Next let Xu Al ... be linearly independent, and consider the function

r- cosAt +...+ cosll
f2 ——- (3.19)
Vn

Let An(roi,0>2) be the set on which

* cosAt +...+ cos At
ft), < V2 —-—-—A i A <0),. (3.20)

theorem HR{Al(CH,12)} is defined and moreover that

iim pIEA((), (02)}=-4 = (e Vi dy. (3.21)

I'roof: Using similar notations used in Markov’s method we have

(rcosAt K+cosAt’\
Tr Jg V2 dt
t Vv Vn 2
-J'
_T‘

(3.22)

I CCW + hcosAnt

o Ji—
-TgV



where ijH x) < g(x) <g,:" (X).

Furthermore,

i T < n cos™\| *meeet+ cosXnl dt

+ cosX.nt
AN2T M ot) 2T lexp ( Q0S- X |t-+- /L
> L T X Vn

where both (i r’(E) and (ir."(4) are absolutely intcgrablc in (-co, 00).
Now we prove that

CosAt +...+ cosAnl

. . , A
r|l%4f Ijexp {/IE,\/Z dtrv (yft\./rn)/

where J,, is the familiar liesscl Function.

108

(3 23)

(3.24)

l.et us prove the theorem forn 2 since the proof for arbitrary n is exactly the same.

l.cttinu

and recalling that

= Tg, (x) e'*x dx.

we have

T Jein(eosxit teosxp oy, ()G g JEOS Ait cos' * t dt.
r ktr-o kW

Now. we must find that

TI|r>nO|r jcosk Xt cos®  dt = Nljcosk Xjt cos™ Xrti.

It is known that

cosk Xt cos* X2i = (e,> t+e
k 1) i[(2r K>.,f(2s-0>7)l
2‘14 lln &oWVs,

) :_ 0

(3.25)



Because of linear independence,
2rkX) + (2s-1pbH

can be zero only if 2r = kand 2s =1. and thus it follows almost immediately that

Mkosléx,t cost a0 =--u 7HTQ (3.26)
2 \2/2 \2/

it both k and | are even and O in all other cases. We can write (3.26) in the form

M{cosk A,1 cos® A%} = M{cosk At} m|cos" A2t], (3.27)
and combining this with (3.25) we obtain

M jcin(cos>.t .cos>.21)j = M jcincos>.,t] M je"icos>.2l (3 28)

It is clear that

m (c"Icos,j }= 27 j;)C ir,cos0dO =J,,(14) (3.29)

and hence from (3.28) we get

.cosX2)J _ |(2(n)

Thus we can consider (3.24) as having been proved. Letting T —>00 in (3.22) and using

(3.23) and (3.24) we obtain

f At +..+ Ant A
< lim m’f’Jy Jg \/ 225 COSADT ™ 4t
T'V)) Vn /
cos Alt +...+ cos Ant (3:30)
5 Ilnt SUp3YJ7q \}2 ........... rali
vn
vn/
It is well knowm that as 1] —+ *>
J,(n) =0
W

and consequently, for n > 3,
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is absolutely integrablc in ~ This implies that lor n >3
i i A\ Q14N = i i A\ A\
él% i \?ﬁ;e( )Jon(V2 vSn]/d rI|>r61 i ||1< )Wwv{V 2vnW

and hence that

. 3i fJ f /2- COsA..t +..+ COSA.,t { = MIAn(Ge ,
+-rr?0 ttSV \V4 \7n (} - { n(C( ,1(3@2)}

exists Next (3.30) can be written in the form

ppl ’\);ir N)Jo" \f/V 2V-ri /d£ < M{An(ro, ,co2)}

. v Vn/

and one verifies easily that

[IimWV’fv 2 \S c ?12
n-m V. o vn

Hie proofof (3.21) can now be completed exactly as in Markov’s method.

if we look upon

Q) RV [y Sy — s-
q,,(t) Ji

isa result ol superposition of vibrations wilh incommensurable frequencies, the theorem
embodied in (3.21) gives precise information‘about the relative time q,(t) spends

between &> and (Ov That we are led here to the normal law

1 @
4 - f=v*dy

nsiiallv associated with random phenomena is perhaps an indication that the

deterministic and probabilistic point of view are not as irreconcilable ns they may appear

a first sight

T4.34 Iheorems of Normal Law in Number Theory

It is good to note that a number theoretic function /(n) is a function defined on the

positive integers 1. 2. 3....; and the mean M{f(n)j of/is defined as the limit (if it exists)

MIf(n)J = lirg KZ E(n).



If \ is a set of positive integers, we denote by A(N) the number of its elements among
the first N integers.
if

lim
N>«

Aﬂ\') =DIA|
exists. it is called the density of A. The density is analogous to the relative measure, and
like relative measure it is not completely additive. Consider the integers divisible by a
prime p. The density of the set of these integers is clearly Up. Take now the set of
integers divisible by both p and q {q another prime). To be divisible by p and q is
equivalent to being divisible by pg. and consequently the density of the new set is Upg.
Nou Upq = Up - |<y, and we can interpret this by saying that the “events” of being
divisible by p and g arc independent. This holds, of course, for any number of primes,
and we can say, using a picturesque but not a precise language, that the primes play a
game of chance! This simple, nearly trivial, observation is the beginning of a new
development which links in a significant way number theory on the one hand and
probability theory on the other.
The fact that \-(m), the number of prime divisors of ///, is the sum

| PPV(»0 (3.31)
of independent functions suggests that, in some sense, the distribution of values of v(m)
may be given by the normal law. This is indeed the case, and in 1939 ErdOs and Kac
proved the following theorem;

Eet Kn(0)|,0>2) be the number of integers m, i <m < n, for which

log log n +or, J\og log n < v(m) < log log n + o2 J\ag log n (3.32)
then.
H%I__“_E«F']_’_(_’é\_lz ] éﬁlﬁ J.—f e v Ay, (3.33)

Because of the slowness with which log log n changes the result (3.33) is equivalent to

the statement:
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[);loglognlcs Tioglogn ' iin) <loglogn I r», 1081 t. c' Ay.(3.34)

there arc several difTcrent proofs of this result, hut all of them are long and not
elementary intheir approach Next we will follow classical result of Landau
Il ~.(n) denotes the number of integers not exceeding n having exactly k prime divisors,

then

k(n)~ (k- Dl log n (log log n)k1. |known as Landau’s theorem] (3.35)

For k |, this is the familiar prime number theorem; for k >1, (3.35) can be derived from the
prime number-theorem by entirely elementary considerations.

Now

KX0)1,.0n) S 7Kn), (3.36)
log log n ~ 0)| MFog logn < K <log log n f ro2~/iog log n
and hence one might expect that

kn(0)[.0>, )
n 'R n /L - (log log n) (3.37)
1°SI°C* 1">| /og logn wk logtoy n icij /log logn (k-1)I

'sing Markov’s method, i.c. by proving Laplace’s formula, namely,

lim ¢ I x k 122 2
N S Nonn KAk 1§Pe YA

and setting

x =log log n (¢ *=1/log n), (3.38)
We can obtain

........... - jé:n j:e'wzdy or (3.33).

n

furthermore, let's prove (3.16) by letting Kn(0>,,0)2) he the number of integers ///, 1 <m
<n, for which

\'(m) <loglogn+ yjloglogn,
and setting

<r,,(0>)= K,,(0))/n. (3.39)

Il sclear the is a distribution fund ion. and



113

- N "1
 log log n X(v(m) - log log n) J"(i)2dcrn(ro). (3.40)
Ifwe use the precise estimate
I
L - = loglogn+C+n, rn->0, (3.41)
V' MeP

then the argument that says .almost every integer m has approximately log log m prime

divisors gives

lim f>2clan(<o)=1=—~F £ y 2 V/2y (3.42)
We have also
n
lim —mmm= - Z(v(m) - log log n) 0,
log log N m*l
and hence
limEm demn(ol)=0=—i= £y V >22dy. A4
O)=0=—z £y V Sy (3.43)

Hue could prove that for every integer k >2

Inl_\rp«fV da,, (0) =_y}f§1 £y ke ":dy. (3.44)
it would follow that

lim.(,,cBran((c) =e ‘2

forevery N and hence that

liman() =-<==--£c V 3y. (3.45)

lhis. in view of (3.39), is nothing hut the theorem. Proving (3.44) is, of course,

equivalent to proving that

2N iog ,, )W ?,(wm) m108108 n)l my b J:v‘c ’dy- (3 4fi)

<drd this in turn depends on asymptotic evaluations of sums

pi, N." I Pi, eeePj

Ihis. remarkably enough, is not at all easy, but llalberstam succeeded in carrying out the

proof along these lines. This approach, without doubt, is the most straightforward and
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closest in spirit to the traditional lines of probability theory. The ultimate triumph of the

probabilistic method in number theory came with the proof by Renyi and Turan that the

error term
K ()
fcc * Mv
0 it cc
is of the order of
1
J\og log n

Ihat error is of order (log log n)  was conjectured by I.c Vcque by analogy with similar
estimates in probability theory - the primes, indeed, play a game of chance! for
references to the work of Davenport, Erdos, Erdos and Kac, llalberstam. and Schoenberg
ad furan we can confer to articles of Kac(1949), Kubilus(1956), and Retivi and
Tu&n( 1958).
1he above theorem can be re-written in the following format:

Using (3.34) and from the fact that M|o>(n)-v(n)} < oo, deducing first that the
density ol the set of integers for which ro(n) - v(n) > g,,, gn—>o00, is 0, we can get the

result that

), 2=HP"+w 778 log n < *n) < 2lppn+ NMog logn , _ _J_J»

GV

'shore d(n) denotes the number of divisors of n.

35Some Characterizations of the Normal Probability Law

Ihe characterization ol a distribution is the investigation of those unique
properties enjoyed by that distribution. Mathai and Pederzoli (1977) have compiled and
pm together their studies with recent research papers and published in a form of a
Monograph. In their monograph entitled “Characterization of the Normal Probability
(v dealt thoroughly with the highly mathematical topic of characterization and

> 10 mot'vatc students to undertake research work in this area. Thus the material is
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developed from the very elementary level to the research level. Indeed, they work is
interesting; through presenting different levels of exercises invites us to undertake
serious research works.

There are properties that will uniquely determine a normal distribution, that is to
say. the normal law is the only distribution to enjoy such properties. Investigation of such
properties and the determination of the resulting distributions arc known as
characterizations o fdistributions.

There arc two distinct methods developed one following the other: (i) the
functional equation method, and (ii) the axiomatic approach.

The functional equation method is developed to its present format by Kagan,
linnik and Rao (1973). In their method they developed techniques in characterization
problems as follows: (a) Use the properties and derive a functional equation. Then solve
the functional equation for a unique solution by imposing additional conditions if
necessary, (b) Use the properties to derive a difference or difference-differential
equation, and then seek a unique solution for it. (¢) Use the properties and analyze some
general structures to classify or separate certain distributions.

Ihe axiomatic approach is advanced by Mathai and Rathie (1975,1976). The
axiomatic approach to characterization of normal law proceeds as follows: An axiomatic
definition is provided for a basic concept itself such as variance, correlation, entropy,
affinity, information and the like. In problems of this nature a few postulates arc put
forward and the resulting concepts arc uniquely determined, thus providing axiomatic
definitions for these measures. The main techniques used in the characterization of basic
concepts arc also the same as the techniques used in the characterizations of probability
lans. Generally, moment generating function- AX(t)- and characteristic function- *x(t)-
play a great role, i.e under certain conditions these determine the corresponding

distributions uniquely through the uniqueness of properties of Laplace and Fourier
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transforms respectively. Matluii and Pcdcrzoli(1977) remark that historically, the basic
concepts are introduced mainly on the basis ol intuitive or heuristic considerations.

As a result of the above methods, normal distribution is charactcri/ed through
linear independence (Darmois.1951; Basil. 1951; I.innik,1952; Skitovich,I954), linear
and quadratic independence (l.aha, 1956,1957; Chanda,1955; l.innik, 1956;
(inrdon.1968; Gordon and Mathai, 1972; Mathai,1977), regression properties (l.aha and
I ukacs.1960; Zinger and I.innik,1964; Mathai, 1967; Gordon,1968; (Jordon and Mathali,
1972), bysolutions o fcertain functional equations (Rao, 1967; I.mink, 1960, Zinger and
Linnik, 1955),from the Student's law (Mauldon, 1956; Kotlarski, 1966), structural set-
up IMathai. 1967; Palil and V. Scshadri 1963,1964), maximization principle and other

miscellaneous techniques (Mathai, 1977; Mathai and Gordon, 1972).

35.1 Ihe Functional Kquation Method

35.1.1 Characterisation through structural set-up

Characterisation through structural set-up depends mainly on the conditional
densities, that is. if (X.Y) is a stochastic vector and if f(x,y) is the joint density then

= g(*/y) h(y) where g(\/y) is the conditional density of X given Y and h(y) is the
marginal density of Y. F.ven though in general, by knowing the conditional density of X
the marginal densities of X and Y can not be determined, but in certain cases if we know
the conditional density has a certain structural set-up then the marginal densities arc
uniquely determined by this structural property.

Before giving the general characterisation theorem for the linear exponential
family of distributions let us see the basic definition:

It a stochastic variable X has the probability function

a(\\)c°N
0 ' go) for xg S, g0) >0,0g

0 , clesewhcrc

where S is a subset of the set of real numbers and g(0) is the normalisingfactor, that is,

g(0) - fsa(x) e A
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where S denotes the integral or summation depending upon X is continuous or discrete
and il is some parameter space, then \f(x), OeQ} is said to be a linear exponential

family o fdistributions. Binomial, Poisson, logarithmic, normal with location parameter,
negative exponential, gamma with one parameter Ixdong to the linear exponential family
ofdistributions.

Next follows a general characterisation theorem for the linear exponential family
ofdistributions:

I-ct X, X]........ X,, be independent non-degenerate continuous real stochastic
variables whose probability functions do not vanish at the origin. Let the conditional
distribution of X given
X,..Xn|, X+ X| f ..+ X, have the structural form C(x,z) where Z= X +X, L.+ Xn
It the conditional distributions of X, have the structural forms C,(x,, /.) for all i and for
every subset. IfC(x,z) is such that,

C(x,2) C(x,,2) ... C(xn,z) C(0,2) _ h(x) h(x,)... h(xn)

C(0,2)C(0,2)... C(z,2)C(z,z.) = h(z)
for some non-negative function h(x) then X, X|, .. , X, all belong to the linear
exponential family and further X|, ..., Xnarc identically distributed. As a corollary to
this result a characterisation for the normal distribution can be derived. Let X, X|, ..., Xn

he as defined in the above theorem. Let C(x,z) = const. expf-(x-z/2)2/ 2a 2]. Then X, X,,

X, are identically normally distributed.

3.5.L.2 Characterisation through independence of linear forms

Characterisation of normal distribution through independence of linear forms is
advanced mainly by Darmois(1951), I3asu (1951), Linnik (1952). Skitovich(1954) and
others. Next wc will state the two important theorems of characterisation of normal
distribution through independence of linear forms.
o let X|, ... , Xk be a set of independent, but need not be identically distributed,

stochastic variables and let U=2a,X, + ... + akXk and V= Db,X,+ .. + bkXk  where
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the a s and b's arc constant. If U and V arc independently distributed then X, for
which a,b, *0 is normally distributed.
* let the linear forms X 'Ax, and ,bJx| converge with probability one to the

stochastic "variables U and V respectively. Let U and V be independent. Let the

sequences \o/ht, «/>*()| and \h/nr «/> "~0}be both bounded. Then for every j for

which a/?, *0, X is normally distributed.

3.5.1.3 Characterisation through independence of linear and quadratic forms

It is clear that if we have a simple random sample of size n from a normal
population, then the sample mean and the sample variance arc independently distributed.
With respect to the characteristic property of normal distribution the following theorems
depict the behaviour of sample mean and sample variance.

o let (X,. ..., X,) be a simple random sample from a population with distribution

lunction F(x) and characteristic function <gXI). Then the sample mean X and the
sample variance S2 are independently distributed if and only if the population is
normal. This theorem was first proved by Gcary(1936) and later by l.ukacs(1942)

» Anecessary and sufficient condition for the independence of a linear statistic L and a
quadratic statistic Q, where 1. a,X, f .. ia,Xn and Q 'X Lxf-L2 with Xi',a2=1
and with (X]......X,,) a simple random sample of size n from some population with

distribution function F(x), is that the population is normal.

o Let (X],..., X,) be a simple random sample from a population where the second moment
exists. Let L X,i..iXn and Q- ZT9X¥ajjXiXj. Let B, Z|Vii *° and

= X" X" a)=0.
lhen, Land Q are independently distributed if and only if the population is normal.

3.5.1.4 Characterisation through regression
IF Xand V have a joint bivariate normal distribution then the regression of X on
Y. that is, the conditional expectation of X given Y, is linear in Y. Next, we can note that

linear regression with some properties of conditional variance implies normality. This

result is verified in the following theorems.
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o |ct (X!.... X,) be a simple random sample from a population with finite variance 02
I=X1+..+XnandQ =1T1Zh1ailXiXk < Z",bjXj .

andlei B, I*,as*0, B, I",Z",ak=0and It, Z",b, =0
Then the population is normal ifand only if () has a constant regression on /..

» let X |, X nbe independent stochastic variables with finite variances. Consider the linear
forms 11 —|X|** aX, .2 bfX(t..bXi with ab, *0 for j I, ... n. Then
I-(I./Li)) a i|lliand var(l.|/l.2) a ,,(coslant) ifand only if

(@) the x, for which b, * (& arc normal and
(b) p=(Z'a,bhja2)/(Z'a2jaj),ad=2"(b,-ba,)2a?2

where ag - var (X,) and Z' indicates that the summation is taken over all j for which
bj * Pa.,

35.15 Characterisation by solutions of certain functional equations

As introductory clue and guiding results there are, among the many theorems, two
important theorems, which use this approach for the characterisation of normal law,
namely, Darmois-Skitovich(1951,1954) and Rao(1967). The former imposes a stronger
condition of independence of linear forms, and states that if two linear forms,
a:X|+...+a,,Xn and b|X|+...+bnXn where abj *0, i=I, .., n of independent stochastic
variables Xu ..., X, are independently distributed then X|, .., X, arc normally
distributed. While the later applies a weaker condition that the regression of one linear
formon the other is zero, i.c., K(aX,+...-ta,,Xn/ b|X,+..+bnXn)=0.

Furthermore the following theorems vividly represent the characterisation of
normal law by solutions of certain functional equations deduced by Rao( 1967):

» let XN X2 he two independently and identically distributed stochastic variables such
that F.(X]) ~ 0. Let there exist linear functions a,X| + a2X2 and b,X| + b2X2 where
a,.0,* 0, 1=l ,2. such that

E(a,X, 4aX /b, X, 4b2XJ =0
and |bab,| < 1.Then,

(1) If |aZaj<I orif laZ2aJ~I and 1b2b|| <1, then X(,X2have degenerate distributions.
(i) IfF(X|2) <00, alh| tah2 0,and 1b2 bj <1, then X(, X2 are normally distributed.
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e let X,...... Xnhe independently and identically distributed stochastic variables such
that RX,) = 0.

let.

U a,X, | ... ta,X,,

and
V- hX, i .. i hMX,

suchthat HU/N) 0, |bj >max (lbj, ... Ibnd)and a, *0. l.ct H(X]2) <on, £ ab, =0
(or EQ{*)* 0 )and (a,h,/ a,bn)<0 fori 1,..., n-1, then the Xj arc normally distributed.
« Consider the following conditions
M a* o0, i=l2....n,
(i1) b, and c, are not simultaneously zero for each i,
(iii) b, * b, for i and j such that b,, b, G, G are all different from zero,
(iv) all a, defined arc of the same sign and all ft, defined arc of the same sign.

Ihen i:(U,/U|.1)]) = 0 implies that X]..... X, are all normally distributed.
35.1.6 Characterisation from the student's law

This procedure is mainly advanced by Kotlarski (1966).

A (KaXL.... X,,) (n>1) is a random sample of size n1/ from a normal population N(0,a2)

then it is well-known that

Xpli X,V2 X,V3 X,.Vn
Y2 =- 1 . Fooey, Yn = (330)
M V&2>X.2'Y axjTxfTxJ... o VXP+X2+.+Xn 2
are independently distributed as student-t variates with 1,2, ..., n degree of freedom

respectively.

Kotlarski(1966) showed that, when n>2, the above independent student variates
characterise the normal variates X,,.X|..... X,, under some conditions on the distributions
a X, X.... X,. It is good to note that if a stochastic variable X is symmetric about the
origin, the distribution of X is uniquely determined by the distribution of 1J~X\ That is,
here is a unique correspondence between the distributions of IJ and X when X is

symmetric about the origin. Furthermore, if X,,, X|,..., Xkare normal variates with zero
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mean and with the common variance o then evidently IJ, = X, , i-O.l, ..., Ahave the

gamma density function.

1/2

u
f(u)-- Oy

0 clesewhcrc, forall i 0,1, .... k

e'(ll<t) for u >0

/] istheorem is as follows:

o let Xu.X...... X, be n+l real independent stochastic variables (n>2) such that
P(X|H)) =0, k~(),I..... n and having distribution symmetric about zero, then the
necessary and sufficient condition for X<X, Xn to be identically normally
distributed as N(0,0~) is that Y]|,...,Y,, of (3.30) are independently distributed as
student-l with 1,2, ..., n degree of freedom respectively. This theorem can be stated in
terms of U,..... tJ, as follows:
let U,, 1], Un be n* 1 real independent positive stochastic variables (n>2). Let
VI=U/Ub V2=132/ U,+U, W=U, / Uo+tU,+U2...... V,=Un/ U,+U+... +Un,.
Ihen a necessary and sufficient condition for Uk k = 0, I, n to be identically

distributed according to the density

f,>72 .
e*'2"" for 0
f(u) = 1 ay[2n) “
(o , clesewhcre, forall i= 0,1, ..., k

isthat V,, ...Vnarc independently distributed according to
k+0
v 121 iv)"lﬁ’l'y% for v >0

P,
«-vL

0 , clesewhcrec,

correspondingly.

It must be noted that there are other methods for the characterszation of the
nonnal distribution Maximum likelihood characterization, characterization through
admissibility of estimators, characterization through sample variance and so on. We note
that since the variables Yk A”.2,..., n in (3.30) arc symmetric about the origin the

distributions of Yk arc uniquely determined by the distributions of Vk=YIZA
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iI/M.2,.. .n). When Yk is student-t with k degrees of freedom then Yk lias an F-

distribution with 1and k degrees of freedom and further, Vk= YK2/ k has the density

22 ivyr"1r1 for v >0

3.5.1.7 Characterisations of the multivariate normal law

As Mathai and Pcdcr7.0li( 1977) and Rao (1973) verify most of the above results
(section 3.5.1.1 up to 3.5.1.6) can be extended to cover the multivariate normal
distribution. There is also one basic result which allows us to transform a
characterisation problem on the multivariate normal to one on a univariate normal. That
is, with the help of this result, which is due to Cramer(1937) and Wo!d(1938), many
results of univariate normal can be generalised to the ease of the multivariate normal and
vice-versa: The result states that the distribution of a /A-dimensional random(stochastic)
variable x is completely determined by the <we-dimcnsional distributions of linear
functions t' x, for every fixed real vector t.

This result in the case of normal distribution can be stated as follows. For an
Mreal px 1 vector of constants t if t' x has a univariate normal distribution, then x
has a/7-variate normal distribution.

The following theorem is a generalisation of the theorem in section 3.5.1.1,
characterisation through structural set-up, on the independence o f linearforms(statistics)
mscalar variables.

Let XN ..., Xkbe mutually independent vector stochastic variables each of order/?.
lhat is if we have X| then its transpose form X," =(Xn,XiZ2 .., X)p) where Xljj=1,.., p

dBcalar stochastic variables. Let A ., Akand B|,..., Bkbe pxp non-singular matrices.

Let us consider L, =£}., AX and L2= Zk, BX.
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e If the linear statisties L| and 1,2 are independently distributed, then each vector
X(- 1,..., k) has ap-variate normal distribution

The following theorem corresponds to the characterisation of the univariate normal

through regression, and is helpful in extending a number of results on the univariate

normal to the case of multivariate normal.

o let X Xu X, be n+tl symmetric stochastic matrices of the same finite order. Let

where T, T,, ..., T, arc square matrices of the real constants. Let P(X,.... Xn) and

(XX..... X,,) be polynomials in Xu ..., Xnof degrees p and q respectively.

Further let
P(«X..... iXn)= ir ,P(X1...,Xn)
and
Q(iX,— iXn)=1Q(X,, ..., X,) for some r>1.
let
b(X, X,r'... X,r") for r,+..+ m<p
ad

F.OKG LX) for § +...4s,, < g exist.

Ihen the necessary and sufficient condition for the regression of X on Xj,...,X,, to be

ofthe form

R(X/ X1.....Xn) P(X,....... X)) =Q(X,,..., X,,)

forall given X|..... X, is that

*Ap__ _
ekt - st PO TN =Qay oy g

-Jr=o

d D<P (ayYy
where — g>=--—-- and
cfT q rr irj ‘w
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I'he following two characterisation theorems can help us to obtain a number of similar
characterisation theorems
o let X. ... X, he a set of n independently and identically distributed stochastic Ixp
vectors, each with Unite I\(X). 1(X" X). and | (XX' X) Suppose that.
npr A|=0, n(iH-|)3,-2A|Ai 0. n(n-nH j|I, - A, - A2- A, -A,=0. C-n[*,=a(iV(l, -A, -
A)*0 where 0 = X1, oM Then, in the class of populations whose characteristic
functions arc pseudo-analytic of type | of the vector variable T, a necessary and
sufficient condition for S to have cubic regression on /, is that the pupulation be
multivariate normal with characteristic function,
1) exp|ipT’-T(l/p)(cr)T]
where S= 2 jknia|lniXjXk'X,,, + Z;_, X and I,=Z", cX].
e let X, ..., Xnbe a set of /? independently and identically distributed stochastic \xp
valors, each with finite 1(X). I (X' X), and i:(XX"' X). Suppose that,
n|h-Af 0, n'f*-A.-Aj-O, n(nJnH )flr Ar A2-Ar A,=0, (C-n|J,)I=n(n+l)pr 2Ar A,)1 *0.
ihen, in the class of populations whose characteristic functions arc pseudo-analytic of type Il

0 the vector variable |, a necessary and sufficient conditon for S to have cubic regression on

1isthat the pupulation be multivariate normal with the characteristic function.
(>XM=exp [ip'F -(1/2)TZT" |
where X is a constant multiple of the identity.

3.5.2 Other Types of Characterizations

lhe above methods follow the first type of characterization, that is, the main
technique used in this kind ol characterisations is to employ the property so as to arrive
a somc differential equations, functional equations or some structural forms then obtain
unique solutions of them.

Hie second type of characterization problems in statistics are characterisations of

hasio concepts such as varaincc, covariance, correlation, entropy, affinity etc. These
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characterisations lead to axiomatic or mathematical definitons of these basic concepts. In
order to use this method first it is required to define tire various information and
statistical measures, and then to list their general and particular properties, respectively,
then we can discuss the solutions of some functional equations which are useful for the
characterisation of the various information and statistical measures, namely, functional
equations in one variable, and two or more varaibles.
Characterization Theorems
There are many characterization theorems for information and statistical concepts.
Ictus define the concept of entropy: The entropy of the distribution P, in information
measure, is defined as HIp,,...,.p,,)= -X", p, log p, . An important special ease of this
definition for n=2 is defined as entropyfunction, 112p, 1-p) =-plog p - (I-p) log (1-p)
forpe[0,l|. The following are some of them deduced by Mathai and Rathic (1975,1976):
» Shannon’s noiseless coding theorem states that the minimum of Zp,n, is the entropy
H(Pi....p,,) with equality iffn,=-log p, for all i. Here pi,..., pnare the probabilities ofn
input symbols x,, ..., xnwhere X is represented by a sequence of n, characters from the
binary alphabet. Also it is assumed that n,’s satisfy the inequality 1 2"” < 1
* Ifthe function #%,satisfying the postulates
(9 InP*e Pn)isa continuous function of its variables,
hi) n(bn......1/n) is a monotonic increasing function of n,
(i) FAvi,'/i) =1, normalization principle,
JIV)Fn(Pi,.... Pn) Fn(Pai, -,pan), for every arbitrary permutation |alv..,an! for {l,...,n),and
TIPL. ..., Pmi. p,,qi, P, ... Pminmil)  2ni(pi, ..., pi,) 1 Pmfiurmm (gi. g?......gn-nid)
where X", p, =1 and X"-f"q, = Uthen it is uniquely determined by the definition of
entropy, in infonnation measure, that is,
IUP....RY* -X", P, log Pi-
o The postulates (i)Fn(Pl.....pn) Fn (Pil....... P,.), (IFN(p,....... pn) - Fn, (p,+p2 p,......p,) +
APi. P) FAP, /(pi, p,), p2(p,, p2)| with A(pNo2 = piip2 (ii))FAp, I- p) - l.ebesgue
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mtcgrability in  |0,1], and (iv) F2/2/2~Il, normalization principle, imply
IUp,. .p,) -Z", p, ket P.and conversely.

e lithe functions |,:Sn—R, (n 2,3....) satisfy the set of independent properties

() I'ntPL....... Pn) fn(Pal.....P.J,
(1) Fr{pi.....pn) I'nM p i, P.,0), expansibility or zero-indil Terent,

ni) for P, R, UeS,,and Q, S, VeSm Fm(p,q,» p mgn) - F(p,,.... p.,,) + F(Q,.....gm,
the principle of additivity,

(iv) forp,> ZT, Z-"p,, =1, nm>2, FmM(p,.... .. ........ Pl 5 ooey PP <FM(Z ™, Pij......
Z", pnj)=Pn(Zr, p,i, ,Z™ Pin), rule of sub-additivity, and

(V) Vi(\V2 M) |, normalization principle, and FI}i)@,sz(p, 1- p)=F2(0,1)

then, Fnis uniquely given by UFIVEPSTTY or NA!?r

i . CHROMU LIBRARY
N CP*e*-p) -Z m p,log Pi

. I.¢»|... ,«Nsatisfy the inequalityZ,\2 < 1, then

I " log(Z,NP, 2™ > H,,.,(Pi,---,pN), wherea - (l+t)'10 < t < oo.
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Chapter Four

THEORY OF NORMAL DISTRIBUTION
IN HILBERT SPACE

41 DAVID HILBERT: Brief Life History, Works and Contributions
411 Brief Life History

David Hilbert was bom January 23, 1862 in KOnigsberg, Hast Prussia- Germany,
lie attended KOnigsberg from 1882 to 1885, when lie received his doctoral degree with a
thesis on the theory of invariants. It was there that he established a life-long friendship
with 1. Minkowski He was l.ecturer(Assi. Prof) 1886-1892, associate professor 1892/3;
and in 1892 he became a professor at the University. lie married to Kathe Jerosch in
18 and got a child named Franz, and in 1895 he was appointed to a professorship at
the University of Gottingen, a position lie held until his death, February 14, 1943
Incidentally, we note that Gauss( 1777-1855), f>irichlet(1805-1859) and Riemann(l 826-
1856) arc all associated with the University of Gottingen. The authoritative biography of
D Hilbert is written by Constance Reid, student and life long colleague; he wrote two
biographical sketches: the first appeared in the 1922 Natunvissenschgften and the second

a the end of the collected works( 1970).

412 His works and Contributions

lie obtained his basic theorem on invariant between 1890 and 1893 - that all
invariant can be expressed in terms of a finite number, and hence he modified the
mathematics of invariants; and next began research on the foundations of geometry and
the theory of algebraic number fields. Concerning the former, he published Gnmlogen
(hr Geometric (first edition 1899), in which he gave the complete axioms of Euclidean
geometry and a logical examination of them. Concerning the latter, he systematised all

the important known results of algebraic number theory in his monumental Zahlbericht
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1S97). In Number theory, he enunciated his significant conjecture on class field theory.

\ substantial part of Hilbert’s fame rests on a list of 23 research problems he enunciated

at the international congress of mathematicians held in Paris in 1900. In his address,

Ihe Problems of Mathematics,” he surveyed nearly all the mathematics of his day and

endeavoured to set forth the problems he thought would be significant for
mathematicians in the 20th century.

Between 1904 and 1906 he conducted research on the Dirichlet principle of
potential theory and on the direct method in the calculus of variation. Around 1909 he
established the foundations of the theory of llilbert spaces - infinite-dimensional space;
a concept that is useful in mathematical analysis, quantum mechanics and relativity
theory. Mis works in the integral equations about 1909 led directly to 20th century
research in functional analysis- the branch of mathematics in which functions arc studied
collectively. Also lie proved in 1909 the conjecture in number theory that for any //, all
positive integers arc sums of a certain fixed number ofn' powers - e g. 5=22+ 12,in
which m=2.

After 1910 he was chiefly involved in research on the foundations of
mathematics, and he advocated the standpoint.of formalism Making use of his results on
integral equations, Hilbert contributed to the development of mathematical physics by
his important memoirs on kinetic gas theory and the theory of radiations, lie addressed
the citizens of the city of Konigsberg in 1930, after receiving his honorary citizenship,
entitled by “The understanding of Nature and Logic”; and his last six words “we must
know, we shall know” sum up his enthusiasm for mathematics and the devoted life he
spent raising it to a new level. Indeed, by founding the formalist school of mathematical
philosophy, contributing to many branches of mathematics, and presenting many
illuminating mathematical papers. Ile is one of the greatest mathematicians on the first

halfof the 20th century.



129

The Gesammelte Abhandhmgen, 3 Vols., 1932-5 (reprinted 1965, second edition
1971). contains almost all of Hilbert’s papers, ineluding Zahlbericht, there arc also
assessments of his works by other mathematicians. His Biography is written by his
student and life long colleague Constance Reid(1996), first appearing in 1922
Satunvissenschaflen and the second the collected works. Herman Weyl, Hilbert’s
leading student, in his article “Obituary Notice,” Bull Am. Math. Soc. 50(1944), pp.612-
654. gives a definite assessment of Hilbert. Also Gedenkband{1971), edited by Kurt
Rcidemcistcr, contains some previously unpublished papers of Hilbert and the recording

of his 1930 speech.

4.2. Fundamental Definitions, Properties and Axioms of Abstract
Hilbert Space

421 General Remarks

Ihe theory of Hilbert space arose from problems in the theory of integral
equations. Hilbert noticed that a linear integral equation can be transformed into an
infinite system of linear equations for the Fourier coefficients of the unknown function.
He considered the linear spaced consisting of all sequences of numbers {*} for which

i1 is finite, and defined for each pair of elements jt={jrn|, jp={v,.} ¢ Z2their inner
product as (ry;) = 2“ ,xny,,. The space  can be regarded as an infinite-dimensional
extension of the notion of a Euclidean space. In fact, Hilbert space is a direct
generalisation of Euclidean space; hence, its “geometry” comes closer to Euclidean
geometry than in the case of any other Banach-space. It possesses a great many of the
properties of Euclidean space not possessed by Banach-spaces of general type.

A Hilbert Space is a Banach space whose norm has the parallelogram property.
Any normed linear space over the reals which is complete in the topology determined by

the norm is called (real) Banach space. From the definition of Hilbert space, it follows
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;hat an> Banach space will be a Hilbert space provided that there is an inner product
defined satisfying |f|" = (f, f)

The question immediately arises as to whether or not all Banach spaces are

Ihlhcrt spaces: or is it always possible to define an inner product in a Banach space? We

can settle this as follows. Ifthere is to be an inner product, then

llr +gf = (r +ITf+q) = (r"f)+ 2(f,g>+ (9,9)

If-gf =(f-e.f-g)=(f.f)-2(r,9)+(9.9)
so that on adding

(4.1)

Thus the relation (4 1) for all/ g in the space is a necessary condition for the
Banach space to have an inner product. It can Ik assumed of the condition (4.1) as a
generalisation of the F.uclidean theorem that in any parallelogram the sum of the squares
on the diagonals is twice the sum of the squares on two adjacent sides. If this is not valid
m the Banach space K. then it is not possible to define an inner product on K. This
allows us to show that Av is not a Hilbert space for p*2. The Banach space of norincd
linear functionals on a Banach space is said to be its adjoint; but a Hilbert space is
adjoint to itself.

Rics/.(1955) considered the space of functions now termed / r space and
succeeded in giving a satisfactory answer to the Fourier expansion problem. Abstract
llilnert spaces were introduced by von Neumann(1929). In his book, von
Neumann( 1932) established a rigorous foundation of quantum mechanics employing
Hilbert spaces and the spectral expansion of self-adjoint operators. Wcyl(1944) later
justified the Dirichlct principle of Riemann by the method of orthogonal projection in a
Hilbert space, and thus paved the way for the funcitonalytic study of differential
equations. This has enabled functional analysis to be developed far more widely and

completely in the context of Hilbert space than in the context of general normed spaces,
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that Hilbert space theory has grown to be an important independent branch of

functional analysis with its own results and methods.

4.2.2 Definition

a. Fundamentals

Before giving the axiomatic definition of Ifilbert Space it is preferable and logical
to deal with the fundamental elementary properties of functional analysis, namely, linear
spaces, scalar product and some topological concepts.
4221 Linear Spaces

A set R ofelements/ h.....[also called points or vectors] forms a linear space
if (i) there is an operation, called addition and denoted by the symbol +, with respect to
which R isan abelian group;
(i) multiplication of elements of R by (real or complex) numbers a. /2, y,... is defined as that

a(f*g) ~ orf+ ag, (a +{!)/- af+ (if a(0J)=(ap)f \.f f 0/=0.

Elements/,. /,...,/, in Rarc linearly independent if the relation
ali +a/2+ .. +a/, =0 (4.2)
holds only in the trivial case with ai = a: = ... = a,=0; otherwise/, /, .. ,/, arc linearly

dependent Ihe left member ol equation (4.2) is called linear combination of the
elements

A linear space R isfinite dimensional and, moreover, n-dimensional if R contain
n linearly independent elements and ifany n+ 1elements of R are linearly dependent. Ifa
linear space has arbitrarily many linearly independent elements, then it is infinite
dimensional.

4.2.2.2 Some Topological Concepts
bet us have a brief introduction to the study of point sets in an arbitrary’ metric
sPacc By denoting a metric space by F and distance D[x,y] between two elements of E,

we can recall that If x,, is a fixed element of E, and p is a positive number, then the set



of ill points jr for which 1)|.r, ,t,,| <p is called the sphere in F with centre x,, and radius
p. such a sphere us a ncighliourhood, more precisely ap -neighbourhood of the point x,,
A sequence of points v, ¢ F (n=1,2,3 ) has the limit point .reF, and is written as

rP==x or limxn - x when |im n[xn,x] (). This implies that lim I>xm,xn]= 0,
n-w n >% m,n

where m and n tend to infinity independently. If this is true, then the sequence is called
fundamental. Thus, by the triangle inequality, a fundamental sequence may or may not
converge to an element of the space. A metric space F is called complete if every
fundamental sequence in F converges to some clement of the space.

If each neighbourhood of.reF contains infinitely many points of a set M in F,
then \ is called a limit point of M Ifa set contains all its limit points, then it is said to be
closed. llie set consisting of M and its limit points is called the closure of M and is
denoted by M. If the metric space F is the closure of some countable subset of F, then F
us said to be separable. Thus, in a separable space there exists a countable set N such
that, tor each point oreE and each s>0, there exists a point yeN such that Dfx. v] <e.

h. Axiomatic Definition of Hilbert Space
Ihe following axiomatic definition of Ililbert spaces is due to von Neumann(1932).
Let K be the Held of complex or real numbers, the elements of which we denote by
u, b,.. Fct// be a linear space over K and to any pair of elements x, y e Il let there
correspond a number (x,y) 6 Ksatisfying the following five conditions:
M (x, x2,¥y)= (x,,y) 1 <x2,y>,
(i) (ax, y) =«{x,y>,

(i) (x.y) <y.x>,
(iv) (x,x> >0; and
(v) X x> 0<>x 0.

Ihcn we call 11 apre-Hilbert space and (x,y) the inner product of.v and i\

With the norm
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Il isa normal linear space. 11// is complete with respect of the distance
I*-y]].i.c. Ik, —y .. | -»0 (M,n —=cn)

implies the existence of lim x,, ~ x. then we call //a Hilbert space. According to as K is
complex or real we call 11 a complex or real Ifilbert space. in which case axiom (iii)
becomes (x,y) = (\.y >fornilx.y r Il

Hilbert Space can be also defined as follows: “A Hilbert Space Il is an infinite
dimensional inner product space which is a complete metric space with respect to the
metric generated by the inner product.’ This definition has an axiomatic character.
Various concrete linear spaces satisfy the conditions in the definition. Therefore, Il is
often called an abstract llilbert space, and the concrete spaces mentioned arc called

examples of this abstract space.

-1.2.2.3 f sample of Abstract Hilbert Space

One of the important examples of Il is the space A2 The construction of the
general theory was begun for this particular space by llilbert in connection with his
theory ol linear integral equations.

Ihe elements ol the space A j arc scquchccs of real or complex numbers

f= {~}'n  tr{ynp»i» ==
such that
Z;.,|X,,r <> Erly,r .

Ihe number xu .r2 V% ..., arc called components of the vector/ or co-ordinates of the

point/ Ihe zero vector is the vector with all components zero, the addition of vectors is

defined by the formula

fhe relation
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follows from the inequality

I omultiplication ofa vector/ by a number X is defined by

The scalar product 4 the space/, has the form

Ilie series on the right converges absolutely because

U,| <\&r|2+/\y|2

The inequality

now has the form

and is due to Cauchy.

Ihe space -/2 is separable A particular countable dense subset of./, consists of
al vectors with only finitely many nonzero components and with these components
rational, i.e., the components arc of the form £ + it] where £and // are rational numbers.

Inaddition to this, the space./, iscomplete. In fact, if the sequence of vectors

is fundamental, then each of the sequences of numbers
(n-1,23,.)

is fundamental and, lienee, converges to some limitjg, (/= 1,2.3,... )

I'rnof

Now. for each r. >0 there exists an integer N such that for r >N, s>N

Consequently, for every /;;,
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ISK"™ - X'.-f «ae

Ic! lend to infinity to obtain

Bui because this is uc for every /«,

Hence, it follows that
N e jfi,

and. since e> 0 is arbitrary,/ k->/ Thus the completeness of the spaced is established.
n definition of an abstract Hilbert space the requirement of separability is not
included but completeness is included, since it is essential Tor almost all of our
considerations.
Ihe spaced, is infinite dimensional because the unit vectors

c, =11,00,..} e2 {01,0,..;, c,= {0,0,1,..},...,
are linearly independent The space is the infinite dimensional analogue of Fm the

‘complex) ///-dimensional Euclidean space, the, elements of which are finite sequences
/- W ™,

and most of the theory which we present consists of generalisations to Il of well-known

facts concerning nm

4.3 [he Geometry of Hilbert Space
In this section wc will have a quick introduction to the important results
Lf) Kecming the geometry of Hilbert space. That is to say the subject of discussion is the
geometry of linear spaces, in which a scalar product is defined in a certain axiomatic way
e - . cnorm is derived Irom this scalar product as in the geometric vector space. We
observe that the normed spaces thus obtained have richer structure and arc more

1 i lar to the geometric vector space that those not having this property.
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4].1 Scalar Product

The scalar product of vectors a and h in the gometric vector space is defined by

(@/b): ='lja|l [l cosy
where || || is the absolute value of the vector and y is the angle between a and b.

A linear space R is metrizablc if for each pair of elements x, yeR there is a (real
or complex) number (x,y) which satisfies the conditons:

()<x)y) = <y.x>,

(iia) (ar,xl+«,x2,y) =a,(xl,y)+a2(x?)y),

(i) (x,x) > 0, with equality only for x~ 0.
Ihe number (X, y) is called the scalar product or inner product of* and y. Property (ii)
expresses the linearity ol the scalar product with respect to its first argument. The

analogous property with respect to the second argument is
(iib) (x, 1?)y, + fl2y 2) =77 ,<x.y,) + f2(Xx,y2>

it a scalar product is defined in a linear space X then X is called a scalar product space

orpre-Ifilbert space.

Ihis property is derived from (i) above. The positive square root -y/(x,x) is called the

norm (the absolute value) of the clemcnt(vector) x and is denoted by the symbol ||x||. The
nonn is analogous to the length of a line segment. As with line segments, the norm of a
vector is zero if and anly if it is the zero vector. In addition, it follows that
llax|| = \a | -lIxIl.

Ihiscan be verified using (iia) and (iib) conditions.

Ihe norm in a Hilbert space was defined by means of the inner product. In turns
out that the inner product can be recovered from the norm.

Another very important theorem, associated with the above conditons and
properties, is the Caitchy-Schwan-llunyakovski Inequality.

for any two vectors * and vy,

[<x,y)Is Tix]I-[lyl-
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with equality if and only if x and y arc linearly dependent Furthermore, it is good to

mension another property of the norm, namely, Triangle inequality

Within the general framework of scalar product the following theorems and
properties can be described:
@ INI = (x,y)'“isanorm;
(O If xn—=x and yn>y, then <xn,x,, >-> <X,y);
(c) The completion of a scalar product space is a scalar product space with the scalar
product -a complete scalar product space is called a Hilbert space.

4.3.2 Orthogonality

Inner product spaces allow us to introduce the important notion of orthogonality.
An inner product space R becomes a metric space, ifthe distance between two points X,
ye R is defined as I)[x,y] = |[x - y||. It follows from the properties of the norm that the
distance function satisfies the usual conditons.
These conditions are:

(i) DIx,y| = D]y, x]>0 for x*'y,

(i) D[x,x] =0,

(ii1) DIx,y] < D[x,h] + [hyy] (triangular inequality).
1wo vectors x, y e // are orthogonal, x 1 y, if (x,y) =0. Given a set M we write X iW

il x1 mforalmeA/.A set of vectors {x((} is called an orthogonal set if <x,, , x A) =10

whenever a* fl. A vector x is normalized if 11X | = I. An orthononnal set is defined as
an orthogonal set of normalized vectors, thus {ex] is an orthononnal set if
Co-c/») —
43.2.1 Orthoganal Systems

In the geometric vector space, every vector is the linear combination of fixed sets

of three orthogonal vectors and any finite-dimensional linear space possesses a Unite
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kims, ic n fixed vectors such that every vector of the linear space is a linear
combination Of these fixd vectors. In certain infinite-dimensional spaces a fixed infinite
sequence ofdcimcenls can he found with similar properties.

Asequence JcNin a scalar product space 11 is called orthogonal if (x,,,x/; >=0
ifi™P 1k 11 =1 fori= 1, 2, .. is also satisfied, then |ck k=I, 2, ..} is called
orihonormal An orthogonal or orthonormed sequence is also called an orthogonal or
urthdHnrml system

Next, our main object is the construction of an infinite basis in a separable 1lilbert
geeor in a separable scalar product space.

I et Jekjbe an orthonormal system, n a fixed integer, and x an element of //; then

wcan determine the scalars yk; k- 1,2,..., n in such a way that the distance

n

X-TryCi
isminimal.

Tresolution of a real scalar product space is as following:

"rrthe minimum of this quadratic form

- follows that the desired minimum is obtained ifand only if

'he ease of complex space // the solution is the same but a more lengthy calculation is
equired, since in this ease wc have to seek the minimum of a quadratic form of 2n real

variables.
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It can be conclude that the minimum of the distance x- . . c, Is obtained if and only

At=(x,cl), k=12,

aulan
x-£(x.cKej =[K2- Z|(x.ek)

As a remark it can he said that the consideration connected with the Cauchy-Schwarz
inequality is the special case of this problem when n=I. As a conscquancc of this fact we
can deduce the following results:

» Ifekis the infinite sequence whose k™l element is 1 and all other elements arc O, then

e 2and |ek k—1,2, .} is an orthonormal system in j!2-

I
Ihe sequence (20012 e'l;k -0+1,+2,...r isan orthonormal system in|0,27t]

7T

and
e*=e'k
] —_ t ,%t
(xck>= 0 1 g*(0e
and
Z(x, ck)
k=-n

s* rihpartial sum of the (complex) Fourier scries ofx e [0,27i]. On the basis of this
result, the coefficients, k = 1,2, ... can be considered as the generalisation of the Fourier
coefficients. These coefficients arc therefore called the Fourier coefficients of x with
respect to the orthogonal system |ek k= 1,2,...}.

o If.re// space can be given in the form ofan orthogonal scriess, then

x - I(x, ck)ck 4.3)
* An element.r of the pre-Hilbert space //can be given in the form (4.3) ifand only if

iwi2 =
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43.12 Complete Orthonormal Systems

\ sequence |ak k~\,2,... Jis called complete if(x,ak)= 0 for k=\,2,... implies x=0
irthermore, an orthonormal system M is complete in // if M is not contained in a larger
-onormal system in //, i.c., if there is no nonzero vector in // which is orthogonal to
vector of the system M In this section we shall sec theorems and examples related
othe complete orthonormal systems, as well as show that any separable Hilbert space
contairs a complete orthonormal system. In Ililbcrt space a complete orthonrmal system
contains an infinite number of elements, and there arises the problem of the cardinality of

chsystems. This problem is solved easily for separable spaces.

* loreveryx e lf,

ifand only if the orthonormal system {ek} is complete.

A standard method for the construction of orthonormal systems, called the Gram-
dmtdt process, proceeds as follows. In the Gram-Schmidt process, n linearly
dependent vectors ak k = 1, 2, .., n are converted into the n elements of an
ihonormal system {ek k=1,2,...}. In this processs ( is the scalar multiple ofai , e2 is a
. Ir combination of a2and C|, is a linear combination ofas, ¢ and c2and so on.
K computation is organized in terms of the minimal number of vectors and operations.

'a‘;k=1,2. | be linearly independent The first member of the orthonormal system is

for the second member e2
z2=a2- A|C
icre the scalar A2 is determined by the condition
(22’A)~ (a2’ei) ™ =0
ad hence

(aZei) =4 -
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S'ife2=721 1741 then !Ic,,c2! is an ortlionormal system with two elements,

forthe third member, Ci,

N ai X{g Aix2

where the scalars A,, and A,2 are determined by the conditions

(z3°cl) ~ (a3’et)“ "3, =

(/3°c2) (a3>2)“"32 =0

[oxc (ai»ei) andA,? (a,,c.,). So if e, = z, / W/.Jl then {g,ereN is an
orthogonal system with three members.

Nowil G, c2, e ,, have already been obtained, then for cn,|,

o
Am anit Pd | el

I rethe selars A, |.k k=1,2, arc determined by the condition
(zn'i'ck) ' Ma"'l~ ek.ek™ = (ant,ck) — t - 0.
2d hence
n
Sif
G ittt Al eiins

In' crs”=1, 2.....tii 1}is an orthonormal system obtained from the linecar space
-derated by the n+1 vectors ak; k+1, k+2, ..., n+1.

11etmies the above method is called orthogonalizatton.

' sing the Gram-Schmidt process for I, ¢, t ..... I", ... in  f-1,+1], a sequence of

'hogonal polynomials known as Legendre polynomials is obtained, the n™ element of
I'isol exactly (n-1)th degree; the first four members of this sequence arc

l, t 'A(3t2- 1), '25(tL- 3t).
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\'i iplctc orthonormal system is also called an orthonormal (orthogonal) basis since it
>a Mesis for the scalar product space If. Important theoretical conclusions of the above
are as follows:

* l.very separabble scalar product space contains a (finite or infinite) basis.

it lie space Il is separable, then every orthonormal system of vectors in //consists of
a finite or countable number of elements.

* An infinite orthonormal sequence C|, e2 e®, ... is complete in // ifand only if the
sequence is closed in //.

1he space Hcontains a complete orthonormal sequence ifand only if it is separable.

* Anytwo complete orthonormal systems in a | filbert space have the same cardinal number.
Ihere are interesting results and inequalities about orthogonal sets and orthogonality:

‘\thagorcan theorem, polarization identiy, parallelogram identity, Bessel's inequality etc.

* *cl ‘x> an orthogonal set in the inner product space //, then

Ex, =1 |X [Pythagorean theorem]

lorall x, y in// we have

|Schwarz inequality!

lorall x,y e Il we have

I 1 yf<IN+|y| [Triangle inequality]

lorall vectors x, y e //

()=t ||x+W - Ix- yil +ilx+iy| —ijx—iyi j [Polarization identity]

Lor all vectors x, y e 1l wc have

[Parallelogram idenity]

| et le,) be any orthonormal set then lor each vector x e // we have

[Bessel's inequality]

I'he inner product is a continuous function in each of its variables.
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4iJ The projection principle
The projection principle for finite and infinite-dimensional subspace can be
explained as follows:
Let M be a linear subspace of the pre-I lilbcrl space M: then ,rme A is called the
;rest vector or the best approximation of.r ¢ m if
- Xoull <[x—m[ me M.
Let M be a linear subspace of the pre-I lilbcrt space //, then xpeM s called the

orthogonal)projection of.re M if, for every meM,

I hrough these abstract formulations we have a connection between projection and
W't approximation similar to that in the geometric vector space,

ke following results of Unite and infinite dimensional projeclion principles can be listed

oy

* xre M is the best approximation ofxeM ifand only if it is the orthogonal projection

of¥in M.

* Il V/is the linear subspace generated by a?  a,}then the orthogonal projection

ofoceA/onto M is

xp=|gq ak
"here \yv: k=1,2, n }is the solution of the following system of linear equations:
X NMa, )N =(x,a() i=L 2, n
' k=0 il and only if Jk k=1I,2, n } is the solution of the system of linear
equations

Z(at,a,)*t=0 1i=1,2,..n
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1/ isa complete subspacc of a scalar product space M. then there exists a projection

xe M

Projection t heorem
Next we see the Projection Theorem in the light of probability theory. We should
te that Locve(1963) have already dealt with the property of orthogonality and
cction theorem in the light of probability theory'.

Before stating the projection theorem let us define important terms with respect to
I'lohabilily theory. X and Y are orthogonal, and we write XJ Y, - the bar means
plex<onj<y(ggte it P(XY) = 0. In particular, X 1Y ifand only if F.IxI2= 0, that is

ifnoxt ;Urely, in fact, X~0 almost surely is orthogonal to every' Y. A linear
I<a,r IS @ family of random variables closed under formation of all almost surely
i combinations ol its elements. If, also, A is closed under passages to the limit in

liie mean, then it is a dosed linear subspace. A random var iable X is orthogonal
~andw write X | i f X 1Y whatever be Yr-j*

Projection Theorem - | et X be a closed linear subspacc. For ever)' X there exists
Imost surely unique orthogonal decomposition

X=X"+X", X'Xuf, X'e”r.

It is good to note that within a strongly normal family, orthogonality is equivalent
dependence and projection is equivalent to conditioning.

Il we consider sequences, and more generally random functions, formed by
nm variables whose second moments and hence mixed second moments are finite,

e random variables in question can be interpreted as points in a Hilbert space, and
di spaces are a natural generalization of Euclidean spaces for which all the classical

Irfls were developed.
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[Krutoi T This extension is uniquely defined for each operator I The extension by
wvittrinity o fafunctional is defined analogously.

442 Operators

Before dealing with operators, as a bridge, let us see the definition and properties

"flinearfuni fionals.
\ motional d> is said to be linear if:
isdomain 1) is a linear manifold and hg) —a <Xf) i h (\>(y)
far/, gel) and any complex numbers n and A

bthe inequality su 1) <« issatisfied.
quality W>j.rpn.l(b)I ¢

leli member ol this inequality is called the norm of the functional d>and is denoted

bythe symbol M ,, or. if B&1. simply by [Jfi.

Nand I M then, by the definition of the norm of a functional.

<M,

llliII
ilonce for fe ),
|'Kf)|<M,,-lIfll. (4.4)

elilion (1 4) show's that the linear functional d>continuous In fact, by (1 1)
H<n - <Hr,,)- h r- 0l <IN,, ¢|r- f,|| for f i,e d.

I'm1l 1) it also follows that, iffeDand flf|< I, then |<IKf)|<IHW,.

ithstrict inequality if||f||* 1. Therefore, the norm M n can be defined by

.snp IMI)
iFnil i

"fequivalently, by

1111 I'incur and Hounded I incar Operators

An operator | is linear if its domain of definition 1) is a linear manifold and if
I(of i fty) - ofIf I |Vig

>/ k p D and any complex numbers a and fi
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\ linear operator I' is hounded if

up Iyjl < o
I<'Is>.i»1 Yl

« Itll member of Ibis inequality is called the norm of (lie operator T in I) and is
~noted by the symbol ! I I or. sometimes, by 1 111,
reproperties ol linear functionals arc also valid for bounded linear operators, namely:

rhe norm of a bounded linear operator T can be defined equivalently by

/|- sup |ly]|- su
11- 54 iy 1- sug
\ bounded linear operator is continuous.

I:a linear operator is continuous at one point, then it is bounded.

Ilie extension by continuity ol a bounded linear operator T leads to a unique linear
operator with the same norm as the original operator.
ISand I arc linear Operators, then exS t (M, where a and (I are complex numbers, is

alinear operator with the intersection I)s o 1)| of the domains I)s and 1)| as the
Jomain ol definition bach ol the products ST and TS is also a linear operator. If S and
arc bounded linear operators defined everywhere in 11, then the operators ST and TS

Ircnko bounded linear operators defined everywhere in 11, and

Osru<su-Hrn, nstn< 1fFNNSII.

"1.22 bilinear Functionals

a bilinear function defined in //. ifto each pair of elementsf.gell there corresponds
;definite complex number ti( f, g ), and
i)-1 aifi 1a,f2g ) ail( fl,g ) ia;£{ 2,9 )
iDti( r.i™g, *big,) b,u( rg, ) ib,uir.g,)

Slip  HXr.li)|<«r>
HAVH 1
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example of a bilinear functional is the scalar product ( I. g } The number

ip <{r p)| iscalled the norm of the bilinear functional Q. and is denoted bv ||n |l
MM

*: note that

Inil sup b(r,0)|

crcfore. forany fgell.
ijl<r,g>|<IMMIfliy]|.
Fach bilinear functional n( f,g) lias a representation of the form

«<[* ) ( AfX )
lis equation A is a bounded linear operator with domain // which is uniquely
determined by f2 Furthermore, ||A||=[|n |].
4473 Adjoint operators
\ be an arbitrary bounded linear operator defined on //. The expression ( /, /fg
Ks a bilinear functional on // with norm I A 1l. From the above result we note that

vreexists a unique bounded linear operator A* defined on Il with norm L1A’ ||-|| Al

> that

(/e )=A*(/ Z ) lor/ g ell.

operator A* is called the adjoin! of A. We note that the opcrntoi (A+T A+t is

valent to the original operator A If A is bounded and A+ A, then A is said to be
“’adjoint A bounded linear operator A, defined on //. is said to be normal if it
minutes with its adjoint, ie . if A*A = AA*,

\ and B be two bounded linear operators defined on //. Then,

( AB/g >=( B/lIf*g ) —{f B*A*g),
-himplies that (AB)* -B +A*. Therefore, the product of two self-adjoint operators is

adjoint if and only if the operators commute. In other words, iff is a bounded linear
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Aol a Hilbert space(i.c , the range is also contained in //) then it may happen that

- T Inthis case T is called selfadjoint or llennilian.

The linear operator T is called positive if ( T.r, .r ) > 0 for every .rell It is called
‘ndtly postive if (T, .r ) =0 only if x=0. Tor self-adjoint operators Aand It we write

\<Bif R-A is apositive operator.
t4.24 | inear operators in a separable space

We recall that a Hilbert space Il is separable if there exists a countable dense
=t in 11 Or. a Hilbert space Il is separable if and only if it has a countable
orthonomral basis.

bounded operators admit matrix representations completely analogous to the well
noAn matrix representations of operators on finite dimensional spaces. That is. iff is a
nar operator ol a finite-dimensional Hilbert space, then T can be represented by matrix
multiplication by means of an orthonormal basis !ek' of//.

iVHilion Ifthe operator T is defined everywhere in //and if its value for any vector

Kgiven by the formulas ,

fr
TX - ISis’\fe,

Yi=(TxGC)=it,Ixl.

‘enwesay that the operator A admits a matrix representation relative to the orthogonal

the following are examples which can help us to understand how many problems

fmitc-dimensional Hilbert space arc connected with linear mappings may lead to

narix problems
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* Id | he the matrix with entries tk-( T,.u e, ) and let x. y he column matrices with
mries \i ( xa ). yk=( I'xCi ). where xel I; theny-1 x  (4.5)

e an Operator 1. defined everywhere in a separable space //. admits a matrix
representation with respect to some orthogonal basis, then it is hounded

* border that the matrix (1,0 represent a hounded linear operator delined everywhere in

Il it is necessary' and sulTicient that, lor some constant M, the inequality

£ t |liMt.
hold for anv numbers xu x2, x , , and yKy2,y,,.

« he mapping | >T Moin the linear operator of the //-dimensional Hilbert space Il

onto the sct(aigcbra) of am matrices has the following properties. If Tr-» T, and I\

T, then
(i) 1V T2ifand only if T( T2;
(ii) r/l 11AT; ></r( i AT* where </and Aarc scalars;
(iii) T, T;—T,T,;

(V) T,* > T,*

»

(v) The inverse operator exists if and only if the inverse matrix T 1 exists, and

*4.15 Normal Operator

Ihe operator T can be represented in an orthonormal basis bv diagonal matrix
Lonly real elements ifand only ift is self-adjoint The operator T can be represented
anorthonormal basis by a diagonal matrix ifand only if I*1 =TT* 1 is then called a

7'rmo/ operator.

Ihe following theorem clarifies how eigenvectors arc used as basis of Il and T is

"rented by the previous theorem (4.5) as a diagonal matrix with real elements: In a
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‘Ic dimensional space I' is n self-adjoint operator ifand only ifevery eigenvalue Xo ff

real and there is an orthonormal basis of Il formed of eigenvectors of I. If A is a sclf-

- oini operator, then the point | is a regular point of A if Aa(X) = Il and X is a point of

tre spectrum if Aa(X) i Il furthermore, it is said that the point X belongs to the

poini(tliscrete) spectrum of the self-adjoint operator A if AAXX) / 1l and ) belongs to

ccontinous spectrum if Aa(X)  /AA(X). And we note that the spectrum of a self-adjoint

i-oerator is a closed set. X is called a regular value of the operator T if the inverse

verator (XI-f) Lexist, and if it is not regular value then it belongs to the spectrum a(T)

ie., all the other points of the complex plane comprise the spectrum of the operator

li Xbelongs to the spectrum off, then there exists a solution of the equation Xx-Tx=0,

ket is different from 0. If there are solution x*(), then Xis called an eigenvalue o ff and

esolutions are the corresponding eigenvectors. If X is a regular value o ff. then x=(XI-
f isthe unique solution of the equation Xx-Tx —J\ fe It

it I isa normal operator, i.e T*T TP, then Ix = Xx ifand only if 1ex ~ Xx. If the

"Orator | is not normal, then it may happen that there is only a single eigenvalue off.

4426t nI*nmuled Idnenrnnd Closed Operators e
let 1 he a linear map whose domain of definition If is a linear manifold in a
IIPv,ispate If and whose range is included in a Ililhert space If We define the graph
I asthe set I (f) ofall pairs ||x, fx| |xel)|} in1 1 P*the direct sum ol Il, and II*
Peoperator | is called closed if its graph 1(f) is a closed linear manifold, that is, a

"hspacc. of ||,® ||,.

I quivalently stated 1 is closed if for any sequence x, in If for which xn>x and
~>/ We have necessarily xcl), and y-Tx. I"very bounded linear operator | from II,

01} is closed.



152

*\£ define the resolvent set p(T) and the resolvent function R(X.,T) for unbounded
lust ;is lor Iroundcd ones Ilnis 1<p( 1) il ;md only if R(X,T) (MI)" exists os
-hounded operator, that is. R(?..,T) is bounded and

(M-TR(A, T)x=x forx”lIl

ROX,T)(AI-T)x=x for xel)]
lor words, an operator T(not necessarily linear) is closed if the relations
x,€D|, M;; %, —%,  [I'»Tx,” y implythat xeDt, Ix~y.
linis, the difference between elosedness and continuity consists of the following:
coperator T is continuous, then the existence of///;; x, (x,,el)|) implies the existence
X.. but ifthc operator 1 is only closed, then the convergence of the sequence
X|, X2 X,, ...(x,,ef>)) (4.6)
s not imply the convergence of the sequence
Tx,, TX,. TX,. .. @47
It f is closed, then in particular, it has the property that two sequences of the type
* )cannot converge to different limits ifthc corresponding sequences (1 6) converge to
t same limit. An operator t having the property mentioned in the preceding sentence
iv not be closed; but it has closed extensions. Among these is the so-called minimal
oxcil extension, which is contained in every closed extension of the operator | Ihe
n'imal closed extension is uniquely defined for each operator T It is denoted In | and
1 railed the closure of T.
As a concluding rcmatk it can I>c said that, ifthc operator T is closed, then each

rator 1-2.f- is closed, and ifthc inverse opciatoi 1 lexists then it is closed

;4-2,7 Compact Operators
A point set is said to be compact if every sequence belonging to it contains a
'divergent subsequence. Corresponding to the two types of convergence (strong and

4 ) nre strong (or ordinary ) compactness and weak compactness We sav dial the



153
sequence xt<Il. (A 1, 2, 3, )converges weakly lo the vector x and we write X, >\
if lim - (x/. I'm M Il The concepts of weakly fundamental sequence ami of
weak completeness are defined analogously If the sequence! xt !i i converges lo \. i.e., il
linill \k\Il 0, then the sequence converges strongly to x. Strong convergence implies
weak convergence, hut not conversely. The usual definition of compact operators is as
Inflows. 1lie linear operator | is called compact if the range {T\: xeMJ of am hounded
set It is pre-compact. lhe following results follow the above definition
* Iwery bounded point set in // is weakly compact.

* lor the weak convergence of tlie sequence of vectors P& { , it is necessary and sufficient that:
(i) the numerical sequence (xKv) (A-l,2.3, ...) converge for each y of some set M
which is dense in //; and
(i) the sequence} lie bounded.i.e., the inequality Ixjl <(' <o00(A~1.2.3,...)

» lhe compact operators of a Ifilbert space // form a closed subalgcbra of R(ll).

(1) I T|. T>are compact operators then T(T2and oT| t h'\\ (a. />cd>) are also
compact operators.

(i) I {T,,) is a sccltience of compact linear operators and Il fk1'|| >0then I is
also compact.

-14.2.8 Conjugation Operators

A conjugation operator is an operator / defined on Il such that

() <. k) - (f.9).

('")yr1=1 for/gell.
I'roin (ii) it follows that the range of the operator / is the whole space Il In fact, each
vector hrll can he represented in the form h Ig merely by taking g Il Instead of the
usual linearity, the operator / has the following property, which is sometimes called
conjugate linearity.

I(af »bg) -a If ibig.
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Indeed, letting g  IMin (i) we get (\f. h) = (f,Ih)
An example of a conjugation operator in  is the operation ol‘transition to the
complex conjugate function:
'(p(0 =<pO)
lor each conjugation operator in a separable space it is possible to select an orthonormal

basis |Ci!,", such that if

D an
/= EIXICI then //_I5Xkek'

Definition: A symmetric operator A is said to be real with respect to a given conjugation
operator /, if the operators A and / commute, i.e., if /&/)Aimplies that If r /)A and
IM'-AfK
44.3. Isomorphic Hilbert space and Isomorphic operators
In three-dimensional | uclidean space the simplest operation after that of
projection is rotation of the space, which changes neither the lengths ol vectors nor the
angles between pairs of them We now consider an analogous operation in Ililhetl space.
Definition: The operator |) with domain Il (D(j=H) and range Il (Au=lI) is unitary i
<Wng> = (f,g) forfgel/f.
Ihe following are some properties of unitary operator:
 llInitary operator has an inverse operator, which is also unitary, i.e, the operator 1J1
exists, and since Dtri= A,, and Atri= l)u the operator U 1is defined in the whole
space and maps it onto the whole space.
* Aunitary operator is necessarily linear, i.e., if/ of, i a:f\ then 1)/ i
< It a linear operator T satisfies the condition ( I'Ifl If) —~ (1.f) and ifI), — At~ 1L then
I is unitary.
If there is a unitary operator from If onto 112 then the Hilbert spaces If and If

are considered to be identical in a certain sense. Due to the existence of an inner product
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the notion of isomorphism can lie specialized. Generally two spaces Il| and IK arc
isomorphic if there exists an invertible transformation T from I1(onto If.
Definition The operator V with domain II, (I)v = I1,) and range Il, (Av - 112 ) is
nametrie if

<VvfVvg)j (fg>, ror/ "eii,;
Aunitar} operator in Il is a special case ofan isometric opcralot for which If IK 1l
Many properties of unitary operators carry over to arbitrary isometric operators, and
some list of these properties follows.
* lunch isometric operator has an inverse operator which is also isometric
Il the operator V is linear, and maps all the space 111 onto the space IK and if
(V(.VTf) 2=(f,f) | for/ell. then V is an isometric operator
* hvery isometric operator is linear.
Definition |lie Hilbert spaces If and IKarc called isomorphic or <onyrucnl if there exists a
unitary operator 1l mapping Il, onto IK In Other words, let T| and I\ be linear operators
defined, respectively, in spaces Il, and IK. so that Dtl ¢ II,, Ar,cz If, DiclK. Al. c: IK (In
particular, the spaces Il,, IK may coincide). Ihe operators T| and T2are called isomorphic or
nmftirilv ct/w vtilciil If there exists an isometric operator V. which maps Il, onto IK and )|
onto D|.. such that Vf,/ ],V/ foreach /e=I>-. That is, |, and '1\ are unitonly equivalent if
[>, VO, and T,=V'T2V.

Anoperator 1J: 11, >IKiscalled anisometry if it .satisfies U*1J I, and coisomdry if IJtJ* |
issatisfied.
We note that the following conditions for an operator T mapping a llilliert space 11| onto
another 1filbert space 112arc ecliiivalent:
» fisisomeric, i.c. | 11 || /1] foreveryl/el ||
o I*T K] (identity operator in 11,)

o ( flle> " </g> for [.j*ell|
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J44 Important Theorems

The following theorems arc prominent in the study of Hilbert space. We will state
natheir respective proves can be conferred on Akhiezer and Gla/.man(1961). Kingman

Hd Taylorf 1966), l;uhnnnnn( 1981)and M;itc( 1989).

4441 Rics/. Representation Theorem for Hilbert Spaces
Trefollowing theorem of Ricsz provides a representation for each linear functional in IlI.

theorem - Hach linear functional <4>in the Hilbert space Il can be expressed in the form
tfthpfh.x). where x is an element of H which is uniquely determined by the functional <>

futhemrore, Il 1L ML AL

4442 llahn-Banach Theorem for llilhert Spares (Ffxlcnsion theorem)

theorem - 1f/is a normed linear functional on a linear subspace A of a normed linear
e then/can he extended to a normed linear functional on the whole space without
changing its norm

Ie llahn-Banach extension theorem can he stated as follows: Suppose K is a linear
sibspacc of a linear space 1/ Then any bounded linear functional oil K can be extended
tha hounded linear functional on Il with th(.e same norm Or, suppose K is a linear
suhspace of a linear space //. /> is a subadditive functional on // such that a />(ax)~a/;(x)
bra> 0, xe//; and / is a linear functional on K such that//) <p(x) for all xcK. Then

treeis a linear functional /: Il - Rsuch that / (x) f(X) for x€K, / (X) < p(x) for x f//.

444) Riesz-Fisher Theorem

Ibis theorem is formulated and proved in Hilbert space. Since ./-spaces are

realisations of Hilbert pace, we will deduce the classical theorem about the Fourier

expansion as a trigonometric series ofa function in £>as a special ease.
Given an orthonormal family (e,), jo:1on a Hilbert space Il, and any point .veil,
" real numbers e~(x,Cj) (jed), are called the Fourier coefficients of v on the

hhonnrmal family and the series X /ty iscalled the Fourier series of.r.
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Theorem - l-et 'CJJ (jeJ) be any orthonormal system (not necessarily complete) in a

IliTvit space I, and let \[\\ j< 1be any set of real numbers such that iIFJb’ converges.

Then there is a point .veil with Fourier coclTicients /2 = (x,e,) such that the Unite partial

sums.Vi-_LIbiCj converge to \ in norm.
Ir

445, The 23 Problems of Hilbert

Asubstantial part of Hilbert's lame rests on a list of 23 research problems he enunciated
a the international congress of mathematicians held in Paris in 1900. In his address,
The Problems of Mathematics,” he surveyed nearly all the mathematics of his day and
endeavoured to set forth the problems he thought would he significant for
mathematicians in the 20th century.

Ihe following table is taken from Encyclopedic Dictionary of Mathematics, Vol. Il edited

by Ito ( 1987,736-7).

1 lo rove the continuum hypothesis

2 lo investigate the consistency of the axioms of arithmetic.

" lo show that it is impossible to prove the following fact utilizing only congruence
axioms: Two tetrahedral having the same altitude and base area have the same
volume. Solved by M Dchn(1900).

4 lo investigate geometries in which the line segment path between any pair of points
gives the shortest path between the pair.

> |o obtain the conditions under which a topological group has the structure of | ie
group. Solved by A M. Gleason and I). Montgomery and I,. Zippin (1952). and II.
Yamabc(1953).

h To axiomatize those physical sciences in Which mathematics plays an important role.

m |0 establish the transcendence of certain numbers. The transcendence of 2 '\ which
was one of numbers put for by Hilbert, was shown by A. Fcl’fond (1934) and T.
Schneider (1935).

X lo investigate problems concerning the distribution of prime numbers; in particular,
to show the correctness of Ricmann hypothesis. [Unsolved]

9. lo establish a general law of reciprocity Solved by T. Takagi (1921) and H Artin
(1927).
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Hol To establish elTeclive methods lo determine the solvability of Diophantinc
equations. Solved affirmatively for equations of two unknowns by A Baker. Philos.
Dews. Roy. Soc. London, (A) 263 (1968); solved negatively for the general case by
Yu. V. Matiyasevieh (1970).

il lo investigate the theory ol quadratic forms over an arbitrary algebiaie number Held
of finite degree.

12 To construct class fields of algebraic number fields.

13 To show the impossibility of the solution of the general algebraic equation of the
seventh degree by compositions of continuous functions of two variables. Solved
negatively. In general, V | Arnold proved that every real, continuous function

/(xiA".Xi) on |0.1 | can be represented in the form | /,(9,(x1.X?).>q). where /;, and
g, are real, continuous functions, and A. N. Kolmogorov proved that can
be represented in the form Yj t //, (gj|(X]), gn(xi)), where //,and  arc real,

continuous functions and g,, can be chosen once for all independently n\'f\P okl.
Sauk SSSR. 114(1957), Amcr. Malli. Soc. Trans/., 28(1963)]

It let Abe a Held. \,. .. x, be variables, and /,(\|...... X,,) given polynomials in
*1*i..0X,| (1= m) Fiuthcrmorc. let It be the ring formed by rational functions J
L\, ... Xmin A(X|..... X,,,) such that I'(f]........ l,,) e k\x,....... \,,| Ihe problem is to

determine whether the ring R has a finite set of generators. Solved negativeb by M.
Nagata,.inter../. Math., 81(1959).

15 lo establish the foundations ofalgebraic geometry. Solved by IT I-. van dcr Waeden
(1938-1940), A. Weil (1950), and others.

15 lo conduct topological studies of algebraic curves and surfaces.

IT let f{xu ... x,) be a rational function with real coefficients that takes a positive
value Tor any real //-tuple (X]...... xn). the problem is to determine whether the
function /“can be written as the sum of squares of rational functions Solved in the
affirmative by F. Artin (1927)

'8 loexpress Fuclidcan //-space as a disjoint union 1J ? I\, where each I\ is congruent
to one of a set of given polyhedra.

ff 1o determine whether the solutions of regular problems in the calculus of variations arc
necessarily analytic. Solved by S N Bernshte i n, I. G. Petrovski i and others.

2 lo investigate the general boundary value problem

-1 lo show that there always exists a linear differential equations of the fuchsian class with
given singular points and monodromic group Solved by 11 Rohr! and others (1957).

2. |o uniformi/e complex analytic functions In" means of automorphic functions.
Solved for the case of one variable by P Koebe (1907).
lo develop the methodology of the calculus of variations.
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45. A Characteristic Property of Normal Distribution in Hilbert Space

As a preliminary remark it can be said that this topic is advanced In statisticians
who combine pure mathematical theoiics and probabilistic and statistical piiuciplcs. I
combines theory of operator theory and properties of characteristic functions; and comes
up with theorems of a characterisation of the normal law in Ililberl space.

Ihe Characterisation of Normal Distribution in Hilbert Space was initiated bv
Prohorov and lis/ (1957). In their article they came up with a theorem ol random
elements in Hilbert space, and the theorem.

Ihen, baton and rlathnk (1969) picked up (he topic and studied it more
comprehensively and came op with the theorem of probability measure in Hilbert Space

furthermore. PatliaM 1970) made another study on this topic and pave additional results.

451 Prohorov & lis/. Micorem (1957) of Random Element in Hilbert Space
Theorem 4.1

Consider random element with values in a real separable Hilbert space Il [that is
measurable mapping £.(u) of a fundamental probability field into the space Il|. let the
probability distribution and characteristic function be denoted respectively as.
[*and <(>(£)*J, c"" f\/I>, fell.

let V' ~ rn be denoted as u - // and let Il £ 1Lbe the linear functional (If), fell.
stochastic variables The mathematical expectation of the random element ¢ is such an
clement /Ithat for every f< Il. M(ff) Consider the conditions. ("): M " f
<> (D): MIfuf >0 for.anyfe ll.f/0; (y): ME-() where O is the null element in 1I. and
ef" ~ , be random elements in Il. subject to (a). (fH and (y) and let (ft); £
and £ < Ix: independent and (?); £ t ~ A where A is a (At) linear. (A2)
bounded, (AT) sell conjugate. (Ad) positive operator in 1. Then the distribution I’ ol

each of the random element is normal and A y/2Ewhere I; is a unitary operator.
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452 Kx»ton-PathakTheorcms(1%9) for Probability Measures on Hilbert Space
Alter Prohorov & Iis/( 1957), we observe that Union anil Pathak (1969) picked up
‘retopic and studied it more comprehensively.
Their* article is divided into four sections, namely, (i)introduction,
lidprcliminaries, (iii)a characterisation of the normal law. and (iv)scmi-stahle laws in //.
In the infrndiK inry [xu( the importance of the Kao-Ramachandran( 1968) or the
Pathak-Pillai(1968) theorem on the characterisation of a distribution. The main problem

ispresented as follows Let X,. Xt...Xi he independently and identically distributed

k k
1 real-valued random variables, and let Y] = X0-XcjXj and vy2- x, - XhjXj. If we
i-i it

assume further that I:(Y,/Y:) 0. then, can we characterise the distribution X,,? This is
verified byRao(1%7) with the conditions that

(i) X, has finite variance, fA '~

<> N<U ..k

(iii) ¢,/b,> 0 and

(iv) I>j(c, /bjbf =1, then the distribution of X,, is normal.

Ihus. it is shown that I1£(Y]/Y2) = 0, is equivalent to

kr
Ip(t)—1 kabjt)l (udHK dpilia) (4.8)
"lierc a, = c/b, and <(t) is the characteristic function of X,
furthermore, the equation (4.8) is considered in a real separable Hilbert space
.)). If A and B arc two llermitian or self-adjoint linear operators on Il to If. (for
rdorc clarification sec section 4 4.2.3), it is written as A>B to mean A-B is positive semi-

TTinite. | he extension ofequation (4 8) considered is

M(V)= | JIABIV) (4 9)

here p(|p|*0) is the characteristic function of a probability mcasuie /m>i Il. 3 0,

il. B, is a bounded operator on Il with a bounded inverse, and suppose there exists a
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costat 0 < X, < I, such that IB I < &5 i=I, k. With aid of these assumptions
hey deduced the results in section (iii), the characterisation of the normal law, of their
atide.

Ihe preliminaries deal with some results concerning probability measures on a
red separable Hilbert space. A detailed discussion on some of these can be found in
Paithnsarathy's (1967) book. Probability measures on Metric Space*.

I'lie third section is the heart of the research and after considering the function
equation. (4.9). and other assumptions the following results are shown:

l8) |i is infinitely divisible,

k
ih)irXa.B.B, >1then p corresponds to the normal distribution (possible degenerate) on

k
/l.and (c) if I)ja, < 1 then p corresponds to the distribution degenerate at ()<?/.

theorem 4.2
DieM(//) and p satisfies

p(y) = [p(Bjy)I"
ien p is infinitely divisible, where M(If) is the space of all probability measures on //
ad M>{//) be the space of all infinitely divisiblc(i.d.) measures in M(//), for each p in
'm(/)). p denote the characteristic function of p and (x) the characteristic function of the

distribution degenerate at xc-II
Proof:

Iteration of (4.9) yields

i" ol

|dy) ]ﬁ[r«<l)».iy)] (4.10)
here cni is of the form a, 3, . a and I),,. isofthe foom It It B
let

M,,i<V)'r A Dn,jy)-
huee 11>, 1 <V . it follows that jpn|jj I, ... K". n=1,2,.. is a sequence of infinitesimal

rohabiljt\ measures. 1lie infinite divisibility of p now follows from Corollary, that is, let
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non-vanishing characteristic function on //. then there exists a unique continuous

return / on //with ?2.(()) 0 such that jTi(y) ~€  this completes the proof

lhrorem 4.3

I( satislies (4 > and if

Xa.inf >|,
mi

in n corresponds to a normal law (possible degenerate).
Proof:

Sneftis i it and satisfies (4.9) we have

log fi(y) - i(X,,,\) - I/?2(Sy.v) t fK(x.y) d M(X)

i i :
= iXIaj(XO.ij) j _LlathjSBjy.y) i LajjK(x.IfyJdMtx)
J I Jt

~i (LajbjXoy) y(ZajHjSBjy.y) i z nj1I K(Bj\y)dM(x)

1Zn JIK(n. Rjy) K<njxy)]<tM(x)

Ik (x 11,y)  KIVX,y)]dM(x)- i) YIVIX) (y'Bj'X)rItIMIx)

diich exists from the conditions on M

Uty, e Il be such that

JIK(x. By) - K(I}j\y)1dM(x) - i(Yjy) forall y~//
let
no = LajB,'x,i+ Z3Y]j.

hend I 1) can he written as

dii)

4 12)

(4.13)

*Vyl|- 1-(Sy.y) 1 JKXV<IM(X) i(X,,y) *'4(ZnjHj,SMjy,y) 1» , f2dx.y)AMMI' >*) (4 1t)

since La, 11, SB, is llcnnitinn or self-adjoint with finite trace, it follows Irom the

"iqueness of the representation for

log fi(y) that dM(x) ~ LajdM((Bj’) )

(1.15)
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mcomplete the proof, (4.15) togclhei with the assumption that 2n,B, B, should

ipx that M=0.
d
S(H={xl Ix 1< /s}, forr>0.
f [ dM(x) I [IXIf dM(( 1)i) 'x)
91 sill
=la, f - ' : . .
a +) 'S(t)”l3 ¥, dM(x)- a, (H,>f«»)’!‘IfXI!' dM(x)+i>§a,M)J'S(r) 41 dM(\) (4.16)
¥ since
SBj I<KA<L< 1,
.. have
(V) 'S(r)~) S(r)
Nttirg
C(r)-(135°) 'S(r) n S(r)c
:then have

j M(x) > R M(x) 122a, | li,y dM
Il AMG9 >a, 3 R dM( 1228, 1 115 dM(3)

>a, J|IR, ¥ dM(x)+ J|)M| dM(X) (4.17)
i » S(t)

last inequality follows by noting that
2tljh V x | 3= 111,(I<ilV 2)> (X .X)

sne

"'ncca, > 0, we conclude that

‘ ; 418
<I<H3 xfdM (x)- 0. (4 18)
Cry="x| SIVx I< 1} n {x| Ix I

iIBp’x | <X, Ix I< Ix |
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r( such that ueC(r,,).
Hi setting D U( (i ) whole the union is over positive rational r we see that 1) //(()}

Hweer (4 1X) implies that

itiseasy to sec that iru ell, urO. then there exists rational number

«M(X) =0.

sikcee [ IV* 12 0 lor all ). M(I» 0 SO that M(//) = () since M",()*) o0 |l,is
copletes the prool

Scmi-stahtc laws in Hilbert space

Inscmistnhlc laws in 11 the following functional equation:

p(Y)-Ip(By)j" (4 19)
isconsidered, where a is a positive real number, and Il is a bounded operator such that
If exists, is bounded, and | It I < X for some positive X><1. Characteristic functions
which satisfy (4 1%)) alfoid one possible gcncialisation of l.cvy’s(1937) semi-stable laws
o the real line fhesc laws are deall with at length by P. levy (1937), in his book
etitld /Wore dc 1'.UMilion ties Variables Meatores Hence one can obtain a
representation lor characteristic functions on // which satisfy (4.19).

Theorem 4.4
Iag >1. then we have the following theorem:

let p <Mm(If) Then the following are equivalent:

(@) p satisfies (4 19)

I lgpty)- ivy) i<Syy) i §gT(Hy) T X aTHEY) +i0d.B.))]
where.

< "I(y) -1-i(x,y)[dM , (s)

a,.-n |X|<ijo }llon'*|>1

and M, is a finite measure defined on Borel sets of A, sue



li) X0€// is defined by (x0,y)= léln(x,y)dM,,(x) for all ye//.

nii)the vector ye// issuch that (I - oB")y x(,

;M) S is a non-negative llcnnitian operator with finite trace such that S - ali' SB

"roof.

Suppose that p satisfies (4 1), then p isi. d and we have
log fi(y) ~ i(y,.y) 7ASy.y) * fK(x,y)dM(x) (4.20)
from the uniqueness of the above representation and equation (4.10). it follows, as in

theorem 4.3, that

S - f/B’SB (4 21)

dM(x) = mIM((IV) X).
Now. let
A={ |[(B)Tx|<I}n{x]| |(FV)r x| > 1) Tor o 0, +1.£2. (4.22)

It is clear that the sets A, are disjoint and

UA, - {4 Ix1<LJ-|0!

and
UAr= {4 Ix1>1}.
Consequently,
TK(X, v)dAM(xX)-  JKX,y)dM(X) | jK(X,y)dM(x
(x, v)dM(x) |M>ii( y)dM(x) |h|J<|\(/|y) (x)
r f . ro (x.v)IX| dM(x)
JKX,V)AM(X)= _Jle - - i(xy)dM(x)+1 J - )
[lil'<i] IKIsi) 1+ M (4.23)
I Jlel”” NIdM(X) ii \  ~"AilM(x)
td >it IM>)i+ixir
Ihe existence of the second and fourth integrals is easy to establish. Define by
V,y)= \ ~ 3T dMx)r \ [ jrp"lIM 4-4
(Vo) Im «it I+ M ) Im >i|1+hﬁ ) (4-4)

Now. we write
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I~ixVCMX)  Z 1 (v’ - 1 i(xy)I<IM(X)
K| < 1] N

ZJle'gn  — (V) rx,y)ldM(() x)
"R (4.25)
; £a ' flc” - 1- 1(x,B 'y)lcIM(X)
FgM t B’y)
where T is defined in (i) with M,,, the restriction olI'M to A, A similar analysis yields

fle'w) - [[dM(x) = Z J[e’xw- 1-)[dM(X)
in>i) tia

\4 >m_ | j((B) rxy) Ti((BY) X,y)[dM((B’) "x) (4.26)
ril

IZ_'iITW IVv) 1i(x0,Ivy)l

where x,, is defined in (ii) Defining y to he yi + Y2, wc obtain the representation for
logp(y) as given in (h). The assertions in (iii) and (iv) follow immediatelv Itom the
uniqueness of the representation, i.e..

fi(y) = cxp| i(x...y) - 7ASy.y) + |[K(x,y) dM(X)]. (4 13)

further, it can he verified that

i i i ] b dM | (4.27)
lim A;\ftal(B|V)IX, x/W,(x). M x) < Im

hv the representation theorem for id laws.
To prove the converse, we first obtain a cr-finitc measure M on Il horn Mo as

follows, for any Borel set A ci //such 0«A, define M(A) hy
M(A) - Za'M (((B")'(Af]AT)) (4

where (IV)r(C)= {x(B’)'x eC) for any set C. It is not difficult to verify that M is a o-
fmite measure on //-{()} and M satisfy (4.11). further, since a > I.
M{ 1L x| > I}<rco
and
f [|x1? dM(X) lim \ (Zaj(BB")iv, vidM(x) < (4 X)
I'xl < 11 B A VH '
hv(i).
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By proceeding backwards through the argument for (a) implies (h), we conclude that
log p(y) i(Yiy)-"//(Sy)y) I jK(x,y)dM(x) (4.30)

MoeM = Yi - Y= Yand S are given in (iii) and (iv) respectively, and y2is defined in
424) lienee p corresponds to an i d law That |i satisfies (4 1)) is dear lorm its

representation in (b) 1his completes the proof.

Remarks
Whnalt'" I then x, defined in (ii) is necessarily 0 and ycan be arbitrary. II TH 1<a,

trenthe series
Xa'(x,, .1fy) (4.31)
converges absolutely and in this case p admits the representation

log p(y) -\e(Syy) ' La'll(ivy) (4.32)

when p satisfies (4.19).
In the particular ease when 11 is the real line, it follows from theorem 1 | that it
ah'>1, then p corresponds to the normal distribution (degenerate when ah 1)

However, when ah' <1. p has the representation
log p(y) - iw | rSg rM'(BYy) ' VZ_Ia‘f'ITb'y) I ib'x,.y| (4.33)
since the normal component must vanish. Also, in this case, the condition
i, (Nb2yx2dM,() < 1 (4.34)

sautomatically satisfied since ab2< 1.
Moreover, if alb| > I. then the corresponding semi-stable law has the form

(4.32) with S~(). and the distribution possesses a finite first moment.

45.3 Pntliak-Theorems(1970) for Probability Measures on ’filbert Spare

furthermore, Pathak(1970), after the establishment of the theorem for probability

measures on Hilbert space, made another study on this topic and gave additional results
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hisnote P. K. Pathak attempts lo generalise the theorem ofRao-Ramachandian(1968)
itacease when the a,'s in -'19,

v ai

“Y> n
r'enat all positive. Under certain restriction on the li,’s in (4.9). he showed that the
mMihn ol characterisation normality on llilhril space through (4 9) reduces to an
tssertiall} univariate problem ol characterising normality on the real line
Toestablish the theorem preliminary expositions are required.
let (//.(.,.)) be a real separable Hilbert space and let x, y etc. stand lor generic
ements of // l.et M(If) he the space of probability measures on // I'or each peM (//),
Id it denote the characteristic function ol p. A ptohahilily measure p* MI/A T'; railed
i"rmal iTits characteristic function is given as follows:
p(y) = li(x,.y) - M (Sy.y) (4.35)
\shere x,,e// and S is a non-negative Ilermilian operator with finite trace
Subsequently, the following theorem concerning the spectral representation ol
Ilermilian operators with discrete spectrum is needed:
let li,..... Rt be bounded Ilermilian operators with discrete spectrum and suppose that
BjRj] HH, forall i,j“I.....k

llien there exists a complete orlhonormal sequence !e,! of vectors such that. lot each i.

m

(1.36)
nl

"here I\, denotes the projection operator on the subspace spanned by the vector e,

Next let us establish necessary and sufficient conditions under v.Imh p. given
under (1.9) corresponds to a normal law

| et us select a system of co-ordinates in Il. that is. a complete orlhonoimal

equcence {e,} of vectors in //such that, lbr each i,

ul

is is given by (4.36). | et v, be the //-tb co-ordinate ofy. ie.. v, (y.e,).
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Il is. then, isomorphic with the sequence t, ofall real so
sequences

" lvory |ic M(//) now induces wmeasure o in Athrough

ism corresponding to the basis Jen|.

<t ... y,,) = m(yiei + ... +y, Q).
n\v that <Myu . Y,) is a characteristic (unction ol the finite

>nol |i induced h\ the projcclion:

Vo (X Xy )= (K e XM

that 5(vi. ., y,,) satisfies the following equation.

4 (y, — YJ r:Ii]- [III(A!iyw- 'A‘my:l:b]| (437)

lain necessary and sufficient conditions under which ... Vi)

espends to a normal law. Normality of |i can then he established

jorem.

:corthonormal sequence in Il for pe=M(//) und n 1-2....ft
4>,,(y, .......... y.,) = A(y.C, + ...Ftynec,)

tch it, +.(y........ y.) corresponds to a finite dimensional normal

is normal

e . Definite a probability
uibspace spanned by the vectors ct,

follows:
pn(A) = Ihn)(A
to projection ol <on //,,
e (LA (5.40)

on() 1 SxPlitxy)ldtillo

jitx.v, t . ts.y.. * -
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-her since <>(y,,  V,,) corresponds to a normal law, wc have
An(y) = exp fifyny, + ... +yinyn- i/2(y, + ...+ y,)Sn(yi,., ¥.)|
= exp li(y,.y) - IA(S,y.y)l (say) (-1
lore S,, is a positive definite operator with Unite trace. Consequently p, is normal for
al. It is easy to sec from (4.40) that
lim p,(y)=p(y)

\nargument similar to that theorem of I'arthasarthyf 067) shows that the sequence ol

Snepnis normal for each //, p must be normal This completes the proof
lhrorcni 4.6:

let he p,, a probability measure on an n-dimcnsional Euclidean space. Suppose that p,,
fesmoments of all order and fi,,, the characteristic function of p,,. satisfies the following

functional equation

(4.42)
\hcrec b.J < I.Then p, is normal (possibly degenerate).
i'raqf:
Hcan Ix' seen that p,, has no zeros so that (4.42) can be written as
log p.(Y,......y j ~ Xa, log p.AiiYn..., Ainyn). (4,42)

Since p,, has moments of all order, p,, possesses derivatives ol all order. ( onsequenlly

n
(4.44)

tl
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0
logft,, (yi......V,,) yi =0 (4.45)

Vn=(>
Therefore log p,,(Y,,  V,) is a polynomial of some degree in v(.......y,. Hence p,, must he

nomal This completes the proof.

The following theorem is the main note in the Pathak’s article! 1970)

theorem 4.7
let g eM (//) and suppose that p satisfies (4.9). let {enJ be a complete orlhonormnl

mydemin If such that, for each i,

™
where P,, denotes the projection operator on the subspace spanned by the vector e,. Ihen
the following two assertions are equivalent.
(@) The probability measure p is normal.

(b) lor each n, the functional equation

Vi»,(yn) iy k(™y (446>
where g/n(yn)  p(yrcn). implies that ¢/Nly,,)corresponds to a normal law on the leal line
I'roof:

It sufliecs to establish that (a)— (h). Suppose that (b) holds, bet p,, denote the probability
measure on //-dimensional fuclidcan space that corresponds to the characteristic lunction
<t M.....¥,) = po(Yie,t .. + V.G

It iseasy to show thataxfym.....v,,) satisfies the functional equation:

<h,fy,.....¥,,) Iﬁ+n(’\y .......... )] (4 47)
A little consideration will now show that (4.46) implies that the probability measure
corresponding to $nhas moments of all order. Consequently by theorem 16. it follows
that, lot each //, p,, is normal lienee by virtue of theorem 15, p is noimnl Ibis

completes the proof.
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CONCLUDING REMARKS

The intrinsic beauty and day-to-day application of normal distribution or normal
law is amazing, and has generated tremendous philosophical curiosity. Many scholars,
since its derivation in 1730. which is accredited to Abraham de Moivre (1667-1754), a
French mathematician, are struck by its versatility and fascinating depicting character of
natural phenomena. It is a focus of study from different angles, namely, pure, applied and
statistical mathematics. Thus, in this perspective, we can see the advantage of studying
probabilistic theories in the light of normal distribution in histono-philosophic
contextual ization.

Its historical aspect with respect to the study of probability theory gives us a
truth-in-life interpretation of mathematical probability. That is. the history of normal
distribution, as dealt with in chapter three, clarifies its central importance in the progress
ot probabilistic and statistical thoughts. It is widely used, and somehow abused, in
interential problems. Its amenability to exact mathematical treatment has generated
highly sophisticated mathematical methods, and enabled scholars to study a variety ot
problems in a rather organized and systematic way.

The philosophical interpretation with respect to the general contextualization ot
mathematical theorems or laws of nature is still a baffling question to mathematicians.
K.ac(1959) poses the question several times and tries to give his scientific observation.
Nonetheless, we need further investigations to verify and accept normal distribution as
law of nature. Parallel to this we note that Poisson(1832) believed that all events ot a
moral as well as of physical nature are subject to his formula - Poisson distribution. This
tendency invites us to go deep into the relation between the mathematical discoveries
and natural order. A serious scholar can venture into this realm and come up with
satisfactory explanations. As a primary' clue it can be said that there is a possibility of

presenting natural phenomena or order with mathematical probability with admissible

minimum error.
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These possibilities are the primary stimuli for the diversifying factors of the
different approaches to mathematical probability theory and rise of conflicting schools of
probability. Mathematics, since the inspiring studies of Janos Bolyai (Hungarian, 1825)
and Lobachevski\ (Russian, 1826), that there is a possibility of constructing geometry
onaxioms different from Euclid’s - non-Euclidean geometry, is considered to be a highly
abstract science having both pure or speculative, and practical or applied aspects. The
promotion of the axiomatic foundation of probability theory can be seen in this
viewpoint. The most successful scholar in this research field is Kolmogorov(1933), even
though his axioms are not sufficient for all aspects of probabilistic studies - they do not
give room to the theory of chances. In other words, they do not determine which of a
pair of hypotheses about a distribution is better supported by a given data. Thus, further
improvements of his measure-probabilistic axioms are required.

Next, after these preparatory comments, we can deepen our knowledge on the
Nairobi studies in philosophy of mathematical probability and statistics. This issue is
addressed in section 2.3 in detail. Nonetheless, further clarification can purify the air for
the curious on lookers. The method of analysis is mainly based on the external criticism,
that is, the background of the founders, the method of teaching and books of references,
the research papers and dissertations. But this method, without a thorough internal
criticism, is not enough to reach a solid conclusion. In the process of internal criticism
we are able to investigate the deep meaning of the mathematical probability discoveries.
In this way we can go beyond the symbolic reading of formulae or what the author
intended and what they typify, and arrive at convincing philosophical interpretations of
the new contributions and stand of outlook. All in all the measure-theoretic approach has
a high esteem among the scholars and as Prof. Odhiambo says hitherto the priority of
scholars is mainly determined by survival factor rather than with philosophical thought
of one’s conviction. So at this stage it is difficult to give a specific standpoint in a
scholarly manner. But with extensive internal and external cnticism of the research

works and related topics it is possible to give a clear picture of the philosophical works
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m the mathematical probability and statistics at the University of Nairobi. In other
words. Nairobi studies on philosophy of mathematical probability and statistics can be
explored effectively using the external criticism of the over all background, methodology
ad books of reference, and internal criticism on the research works in general, and
philosophical analysis of ten mathematical probabilistic and statistical dissertations
(1981-1997) in particular.

A fare criticism on the presentations and analyses of historical facts can guide us
to a comprehensive study on histono-philosophic study on the development of
mathematical probabilistic and statistical thoughts. The authoritative works on these
fields sometimes start with their own point of view and tend to conclude accordingly. To
mention but a few, like Maistrov(1974), with an economic theory. Hacking! 1975), with
philosophical point of view, and Owen(1976), with geographical limitation. These show
that historical presentations and analyses of mathematical probability theories are
dependent on the availability of raw materials, mainly on the work done by the
prominent scholars in that specified field, the subjective interpretation or personal
impressions and preferences. So in the process of acceptance of the historio-philosophic
analysis a critical eye and substantial study on the essence of the subject itself are
unavoidable factors.

The general subject of probability at present covers mathematics, measurements
or statistical data, theory of nature and theory of knowledge it self, hence, probabilistic
philosophers venture on the methodological and epistemological issues. Good means of
comparison of discernment is that of Heisenberg's! 1927) uncertainty principle - to
formulate other similar or different observations; since philosophy as such is a reflected
knowledge or experienced insight on being, nature, or essence and accidents of things.

Nevman(1957) advocates inductive behaviour as the sole means of foundation of
science, while de Finettif1972) and his colleagues ardently claim that inductive
reasoning is the true ladder of knowledge. These two points of view are the chief bones

of contention in contemporary philosophy of probability and statistics. There are two
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distinct aspect of all approaches, namely, conceptual and mathematical questions.
Nonetheless, we can't work out philosophy of science in general and mathematical
probability and statistics in particular without inductive reasoning and inductive
behaviour. They complement each other.

The concept of randomness, generally in science, propagated by Fisher( 1922)and
his colleagues, is intrinsically an open-ended concept. We should note that it is
misleading to give a rigorous operational definition of randomness, but its subjective
meaning can be grasped easily. It refers to the chance happening of a future event,
always about the unknown. This property of randomness, that is past versus future has
fascinating philosophical connotation. Prediction of nature or a generalized description
of the behaviour of nature, is an important goal of science in general, and of probability
theory in particular, but the degree of reliability of the prediction is not absolutely
perfect. This degree of uncertainty can be determined by using the methods of
probability and statistical theories. Analysis of scientific facts, including their intrinsic
uncertainties, enrich the philosophical intuition and scientific facts can no longer be seen
as probable. They, if the probable error or random error is known and determined, are
the most reliable knowledges acquired by human means, because they include a realistic
self-appraisal.

The diversity of the definitions and derivations of normal distribution indicate
that it attracted wide range of spectrum. Consequently, we observe that the principles ot
convergence, namely the central limit theorem and laws of large numbers are associated
with normal distribution. The relationship with the other theoretical distributions is
equally amazing. The discrete and continuous distributions can be approximated easily
by normal distribution. Its relation with pure and applied mathematics is appealing.
Especially normal law in number theory can be further investigated and enrich
mathematical probability. Here we have an attractive central question of a probabilistic

philosopher, that is, “Is normal law a mathematical theorem or law of nature?”
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The following remarks reflect some already explained properties of the
characterisation of normal distribution in Hilbert space and future problems for
research.

* The proofof the above theorem 4.7 mainly depend on the assumption that the B’s in
(4.9) are commuting Hermitian operators with discrete spectrum. In finite dimensional
Euclidean spaces this assumption is satisfied if the B’s are commuting symmetric
matrices. In finite dimensional separable Hilbert space the assumption is satisfied
when the B’s are commuting compact Hermitian operators.

* An interesting question that can be raised now is whether an analogous theorem is
valid w'hen the B’s are not commuting and/or do not have a discrete spectrum. This
problem is not yet solved and a satisfactory answer in this case would be extremely
interesting.

* In the above proof the assumption that B’s are bounded operators with 1B, I < 1 tor

all i is used. This assumption can be relaxed slightly. Consider a functional equation

of the form
fEQE(B,y)]E - 1
and suppose that there exists a complete orthonormal sequence {en} of vectors such

that, for each /,

Bi=1 XmPn and Ddnl< IxIni for all n.

Then p is normal ifand only if the equation

N van) =:

where u/n(vn) p(yren), implies that vpn(yn) corresponds to a normal law on the
real line.

* An immediate consequence of theorem 4.7 is that to assert the normality of p. whose
characteristic function satisfies (4.9), it suffices to establish that, for each n. the

characteristic function Mn(yn) corresponds to a normal law . The verification of this last
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assertion is much simpler in practice. The theorem ot Rao and Ramachandran (1968)
can now be directly applied to (4.46) to establish that \|/n(yn) corresponds to a normal
law.

Theorem 4.7 strengthens the Eaton-Pathak theorems! 1969). In Eaton-Pathak theorems
it is proved only for invertible operators, but in Theorem 4.7 there is no such
assumption for the operators B’s. Indeed, Eaton(1970) affirms that the Eaton-Pathak

theorem can be proved for non invertible operators.

Parallel to these research studies, we can ponder upon the characterisation ot
normal law in Hilbert space, and present some propositions which can enable us to give
an analogy of inner product with the covariance of two random variables with zero

expectations is manifested.
W ith the help of the definition and properties of Hilbert space, we note that the
inner product!u,v) oftwo functions defined by
uv)2 = t* UX v(x) dx.
the inner product J, becomes a Hilbert space.

Then, after Feller’s(1991) assessment, we can arrive at the required proposition.
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