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Summary of Contents

The inspection of individual members of a 

large population is an expensive and tedious process. 

Often when testing the results of manufacture, the 

work can be reduced greatly by examining only a 

sample of the population and rejecting the whole if 

the proportion of defectives in the sample is unduly 

large. In many inspections however, the objective 

is to eliminate all the defective members of the 

population. This situation arises in manufacturing 

processes where the defect being tested for can 

result in disastrous failures. It also arises in 

certain inspections of human populations with say 

infectious diseases.

Where the objective is to weed out individual 

defective units, a sample inspection will not suffice. 

In this case, we need designs which will classify
m

all the items in the population as defective or 

non-defective. Such designs are known as screening 

designs. Earlier work in this area was done by 

Dorfman [ 3 ] and Sterret [26]. Connor [ 1 ],

Watson [28] and Patel [13], [ 14 ] have approached

the problem from the point of view of designs of 

experiments and called these designs "Group 

screening designs". This thesis is along the lines 

of Sterret's paper [26], The problem has been 

approached from the point of view of design of 

experiments.
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Chapter I defines the concept of group
v

screening designs and describes briefly the work 

done in this and related areas by several authors 

in the past. The chapter also lays down the 

assumptions which are used in this thesis.

In chapter II, step-wise group screening 

designs have been introduced and are studied 

assuming that all factors have the same a-priori 

probability of being defective. Optimum group sizes 

in the initial step have been determined considering 

only the expected total number of runs. A comparison 

of two-stage group screening design with step-wise 

group screening design is presented.

Chapter III extends the results of chapter 

II to the case where factors are defective with 

unequal a-priori probabilities. It is shown that 

under certain conditions, the minimum expected 

number of runs when’ screening is done under the 

assumption that factors are defective with unequal 

a-priori probabilities is smaller than the minimum 

expected number of runs when screening is done 

under the assumption that all factors are defective 

with the same a-priori probability.

In Chapter IV, the optimum sizes of the 

group-factors for both the cases when we screen 

with equal and with unequal a-priori probabilities 

have been determined taking into consideration both
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the expected number of incorrect decisions and the 

expected number of runs. To balance the apparently 

opposite trends of the expected number of runs and 

the expected number of incorrect decisions, a cost 

function has been defined and optimum sizes of the 

group-factors determined by minimizing the cost 

function.

At the end, are given a series of tables 

which show some group screening plans resulting 

from the work that has been done in chapters II 

through IV. This appears in appendices I, II and 

III.

Throughout this thesis, it is assumed that

the value of ’p ’, i.e., the a-priori probability
«

of a factor to be defective is known heuristically. 

Thus no attempt is made to estimate ’p ’ in this 

thesis. The work has been extended to the case 

with more than one value of ’p ’. For example in a 

manufacturing plant turning out hundreds of items 

every day, the probability of the plant producing 

defective items will vary from time to time due to 

assignable causes of variation which affect the 

production. Thus in such a case; it is reasonable 

to assume that items will be defective with unequal 

a-priori probabilities. Again we shall assume that 

the values of these a-priori probabilities are 

known heuristica1ly. However, the optimum sizes of
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the group-factors will depend on the expected 

number of runs and the expected number of incorrect 

decisions.

Familiar calculus methods have been used to 

solve most of the problems in this thesis. The 

methods used include Newton - Raphson iterative 

method, the method of Lagrange’s multipliers and 

ordinary differentiation.
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CHAPTER I
»

INTRODUCTION

1.1 BASIC IDEAS IN GROUP-SCREENING DESIGNS

The problem of detecting defective factors in a large 

population consisting of defective and non-defective factors 

has been tackled in various ways. Designs used in this kind 

of investigation have been called screeriigg designs. One such 

class of designs is the group-screening designs.

In group-screening designs, the factors or members of 

the population are divided into groups called group-factors.

The group-factors are then tested for significance and 

classified as either defective or non-defective. If a group- 

factor is classified as non-defective, then it is dropped from 

further investigation since it is qssumed that all the factors 

within that group-factor are non-defective, If, however a 

group-factor is classified as defective, individual factors 

from that group-factor are investigated further.

Group screening experiments can be carried out in 

several stages. In a two stage group screening design, the 

group-factors formed are tested in the first stage and factors 

from defective group-factors only are tested in the second stage 

In a three stage group screening design, the first stage 

consists of dividing the factors into group-factors, known as 

first order group-factors, which are then tested and classifies 

as defective or non-defective. In the second stage of the 

experiment, each first order group-factor classified as 

defective in the first stage is further divided into smaller
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group-factors called second order group-factors which are then
t

tested and classified as defective or non-defective. Finally, 

in the third stage all the factors belonging to the second 

order group-factors found to be defective in the second stage 

are tested individually and classified as aefective or non

defective. The three stage group-screening design can be 

extended to s-stage group-screening design (s>3).

In a step-wise group-screening design, the analysis is 

carried out as follows:- In the initial step, the factors are 

divided into group-factors. The group-factors are then tested 

for their significance. Those that are found to be ncn-defective 

are set aside. In step two, we start with any defective 

group-factor and test the factors within it one by one till we 

find a defective factor. We set aside the factors which are 

found to be non-defective, keeping the defective factor separate. 

The remaining factors are then grouped into a group-factor. In 

step three, we test the group-factor obtained after step two
m

is performed, If the group-factor is non-defective, we 

terminate the test procedure, If the group-factor is defective, 

we continue with step four. In step four, factors within a 

group-factor found to be defective in step three are testea one 

by one till a defective factor is found. Factors which are 

found to be non-defective are again set aside keeping the 

defective factor separate. The remaining factors are grouped 

into a group-factor, In step five, the group-factor cotained in 

step four is tested. The test procedure is repeatec until 

the analysis terminates with a test on a non-defective group- 

factor. Steps two onwards are carried out for all the
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group-factors found to be defective in step one. .In brief,
i

the test procedure consists of testing the group-factors and 

the factors within the group-factors found to be defective, 

one by one till a defective factor is detected by several steps 

alternately.

The main objective of group-screening is to reduce 

the number of tests or observations by eliminating a large 

number of non-defective factors in a bunch, thus reducing the 

cost of the experiment,

1,2 BRIEF REVIEW OF LITERATURE ON GROUP SCREENING DESIGNS

The concept of testing items in groups and testing 

individual items only if the group test is positive was first 

introduced by Dorfman j~3^] in 1943 as an economical method 

of testing blood samples of army inductees in order to detect 

the presence of infection. Dorfman proposed that rather than 

test each blood sample individually, portions of each of the 

samples could tie pooled together and the pooled sample tested 

first. If the pooled sample was free of infection, all the 

inductees in the sample could be passed with no further tests. 

Otherwise the remaining portion of each of the blood samples 

would be tested individually. If the prevalence of infection 

were low, the expected total number of tests and thus the 

expected total cost of inspection, would be reduced,

The work of Dorfman was carried further by Sterret 

[ > ]  in 1957. In Sterret's screening plan, inaividual iterms 

from a defective pooled sample were tested one at a time 

until a defective item was found. The remaining items from
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the result was negative, then the work was complete for that 

pooled sample. Otherwise testing items individually was 

continued until another defective item was found. The 

remaining items-were again tested in a pool. The process 

was continued until all the defective items in the cefective 

pooled - sample were weeded out. The basic argument behind 

Sterret’s plan was that since Dorfman’s plan workeo well for 

low prevalence rate of defective items, this low prevalence 

of defective items makes the chance of exactly one cefective 

in a defective pooled sample high enough to warrant a pooled 

test once a defective item has been found. Sterret's plan 

reduced the number of runs obtained using Gorfman's plan by 

as much as eight per-cent for a prevalence rate of five per-cent.

Graff L.F. and Roeloffs, R. 6 in 1972 extended 

the work done by Dorfman Q 3 3  to the case when a test error 

was present. They defined the cost as a linear function of
m

the number of runs, the number of defective factors 

classified as non-defective and the number of non-defective 

factors classified as defective.

Sobel and Groll [[24[[] in 1959 devised a sequential 

sampling scheme which minimized the expected number of tests 

required to classify all the factors in a population as 

defective or non-defective. They discussed group-testing 

procedures which could be used efficiently for smaller 

populations. They assumed that factors represent the items 

in a sequence of indipendent Bernoulli trials with 

probability q and p = 1 - q of being .non-defective-and

the defective pooled sample were again tested in a pool. If
t
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defective respectively . In another paper Q25 "3 > they 

extended the Binomial sequential group testing to the case 

when the prevalence rate of defectives 'p’ is unknown To 

estimate p, they used the maximum likelihood estimation 

procedure and the Baye’s procedure ,

Connor was the first person to approach the

group-testing problem from the point of view of designs of 

experiments. This was later followed by Watson O H  in 

1961. Watson studied two-stage group screening designs with 

and without errors in observations using equal size groups.

For the case where there were errors in observations, he 

obtained expressions for the power of the tests in the two

stages. Assuming continuous variations in group-sizes, he
*

obtained the optimum group-sizes by minimizing the total 

expected number of runs (tests) with respect to the group-sizes 

using ordinary calculus techniques. He also worked out 

expressions for the expected number of defective factors 

declared non-defective and for the expected number of non

defective factors declared defective.

In a technical report submitted to the Research triangle 

institute in 1962, Patel maximized the expected number

of correct decisions by a proper choice of the sizes of the 

critical regions in a two stage group screening design and 

compared the value with that obtained by maximizing the same 

in a single stage design. In a note on Watson's paper, Patel 

D O  proved that the expected number of defective factors 

declared defective is a non-decreasing function of the level 

of significance in the first stage; thus removing the doubt
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which Watson had. Patel [[ 14^] in another paper, extended
• . .  t

the two-stage group screening procedure to multistage group 

screening procedure when responses are observed with 

negligible error. He restricted his work to the case when 

all the factors were defective with the same a-priori 

probability. In the same paper, he discussed the question 

of the choice of the number of stages which should be used.

He showed that the optimum number of stages depended on 

the prevalence rate of defective factors. In yet another 

paper, Patel L l 6̂  has shown that the factors to be included 

in an experiment before it is carried out should have a-priori 

probability of being defective different from 5. Patel [_18_|, 

has worked out the condition under which the expected 

number of correct decisions in a two-stage experiment is at 

least equal to that in a single stage experiment while at the 

same time keeping the expected number of runs in the former 

experiment fev̂ er than the expected number of runs in the 

latter experiment. In paper ^17^]* Patel gives caution 

on when a two stage group screening method should not be 

used.

Li £ 8 ]̂ in 1962, developed multi-stage designs for 

screening experimental variables and obtained results 

similar to those obtained by Patel ■ Considering the

likely case where at each stage, a defective group-factor 

contains only one defective factor, he showed that for 

maximum screening efficiency, each stage in a multi-stage 

experiment must have the same number of tests.
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In 1962, Thompson £ 27J used, the group screening 

method and the method of maximum likelihood to estimate the 

proportion 'p' of vectors capable of transmitting auster - 

yellow virus in a natural population of macrosteles 

fascifrons (Stal) - the six spotted leafhopper. William,

G. Hunter and Reiji Mezaki Q29 J in 1964 used a group screen

ing method to select the best catalyst from a list of 

possible catalysts for the oxidation of methane. They stated 

that by arranging possible catalysts for a reaction in 

logical groups and testing each group in a single run, the 

less active catalysts can be weeded out and the total number 

of runs reduced.

Finucan Q 4 j  in 1964 considered a multi-stage 

group screening design without errors in observations and in 

which all factors are defective with the same a-priori 

probability. He suggested the method of finite'differences 

in solving for*the optimum group-sizes in a two-stage 

group-screening design.

Curnow 2 J in a note on G.S. Watson's paper
s •

points out an error in derivation of some probabilities by 

G.S. Watson. Kleijnen [_ 7 has compared group screening 

designs with other types of factor screening designs. He 

investigates the assumptions made by Watson [^28^] anc' 

derives some new results on two-stage group-screening by 

allowing the possibility of two factor interactions.

Samuels' [^23^] states that the expected number of runs 

in a two-stage group-screening design is not a unimoaal 

function of group size. He however confirms Dorfman's results.
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In 1974, Garey and Hwang [ 5 ] obtained the optimal group- 

testing procedure for isolating a single defective in a 

finite set of n items containing at least one defective.

They considered the case when the probability of each item 

to be defective is known and used a binary testing tree,

Patel and Ottieno [ 20. in 1984 approached two 

stage group-screening designs with equal prior probabilities 

of factors to be defective and with .no errors in observations 

from the point of view of discontinuous variation in the 

sizes of group-factors. They used the method of finite 

differences to obtain optimum group sizes and compared 

their results with Watson's results obtained hy assuming 

continuous variation in the sizes of group-factors. In 

another paper, Patel and Ottieno [ 21 have extended 

Watson's paper [” 28 ] to the case when items have unequal 

a-priori probabilities of being defective. They have '
m

considered the case where there are no errors in observations. 

They have shown that in the case of group screening from a 

population with unequal a-priori probabilities, the number 

of observations needed on the qverage is considerably smaller 

than that required in the case of a population with factors 

having the same a-priori probability of being defective. In 

another paper £ 19 ] , they obtained optimum two-stage group 

screening designs with errors in observations by considering 

both the expected total number of runs and the expected 

total number of incorrect decisions. Optimum group



9

sizes were obtained by minimizing the expected total 

number of runs for a fixed value of the expected total 

number of incorrect decisions and vice versa. As an 

alternative method of obtaining optimum two stage group 

screening designs, they defined the expected total cost of 

screening as a linear function of the expected total number 

of incorrect decisions and the expected total number of runs 

and obtained the group size that minimizes the expected total 

cost.

Qdhiambo Q l 2 3  in 1981 studied group screening 

designs with three stages. He assumed that different factors 

were defective with (i) the same a-priori probabilities and

(ii) unequal a-priori probabilities. For each of these cases, 

he considered screening with and without errors in 

observations. For the case when there are errors in 

observations, he used orthogonal fractional factorial designs 

of the type obtained by Plackett and Bumnan 2 2 to derivem

theoretical results. He also studied multi-stage group- 

screening designs without errors in observations and 

assuming that the factors have unequal a-priori probabilities 

of being defective.

Mauro and Smith Q 9 J in 1982 have examined the 

performance of two stage group screening designs when the 

assumption that the direction of possible effects are known 

or are correctly assumed a-priori is relaxed. The case of 

zero error variance is considered. They assumed that for all 

defective factors, the magnitude of the effect is the same 

but the direction of the effects could be different. To gauge
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the effect of cancellation, they define a percentage -easure
i

of efficiency of a screening stratefy for detecting tu= active 

factors. They also define the relative testing cost as 

another measure of screening efficiency. Mauro QlC_; in 

1984 extended this work to the case when there are errors in 

observations. In their paper D O .  Mauro and Burns have 

compared random balance screening strategy with two srsge 

group screening designs. A screening model in which aha 

effects of defective factors are additive is assumed. They 

found that the optimal group-screening strategy is generally 

better than the optimal random balance strategy at low type 

I error rates but begins to lose its advantage at highar type 

I error rates.
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1.3. ASSUMPTIONS

The assumptions made in this thesis are essentially 

those made by Watson Q28^], later modified by Patel and 

Ottieno ^19^]> and C^ll] • When screening with equal

a-priori probabilities, the assumptions are as follows

(1) All factors have, indipendently, the same a-priori 

probability 'p' of being defective.

(2) Defective factors have the same positive effect A.

(3) None of the factors interact.

(4) The required designs exist.

(5) The directions of possible effects are known.

(6) The errors of all observations are independently
2normal with a constant known variance, a .

(7) The total number of factors is ’f = kg', where

’g ’ is the number of group-factors in the initial 

step and 'k’ is the number of factors in each of
m
the group-factors.

When screening with unequal a-priori probabilities, the 

assumptions have been modified as follows:-

(i) The f factors can be divided into a fixed number 

’g ’ of group-factors in the initial step such
g

that f = Z k. , where k- is the size of the 
i=l 1 1

ith group-factor in the initial step.

(ii) p >̂0 > i=l,2,..,g, is taken as the probability

that a factor in the i *̂1 group-factor in the

initial step is defective.
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(iii) A >̂0 , i=l,2,...,g, is the effect of a factor

within the i^h group-factor in the initial step.

(iv) None of the factors interact.

(v) The directions of possible effects are known.

(vi) The required designs exist.

(vii) The errors of all observations ere independently
2normal with a constant known variance a .

(viii) ctĵ  is the level of significance for testing the

ith group-factor in the initial step and a .b X

is the level of significance fcr testing the 

factors within the i^h group-factor which is 

declared defective in the initial step (i=l,2,..

g) •

(ix) probability that a group-factor

consisting of factors from the step group- 

-factor is declared defective but on testing the 

individual factors, no factor is declared 

defective due to errors in observations.

Non orthogonal fractional factorial designs are usee

i
in this thesis when there are no errors in observations,

whereas orthogonal fractional factorial designs of the type 

given by Plackett and Burman [^22^ are used when errors m  

observations are allowed. In the case of screening with 

errors in observations, the expression for the power of the 

test in the initial step has been obtained. Cptimum group- 

sizes have been obtained using calculus rrsth.ccs.
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CHAPTER II

STEP-WISE GROUP SCREENING DESIGNS WITH EQUAL A-PRIORI
V

PROBABILITIES

2.1. SCREENING WITHOUT ERRORS

Let there be 'f' factors under investigation. The 

problem is to isolate defective factors with minimum number 

of observations (also called runs). With this objective in 

view, we first divide the ’f * factors into ’g ’ group-factors 

in step one. If each group-factor has k factors, then

f = kg (2.1.1).
The group-factors are then tested for their significance by 

an experiment consisting of (g + 1) runs. Those that are 

found to be non-defective are set aside. In step two, we 

start with any defective group-factor and test the factors 

within it one by one till we find a defective factor. We set 

aside the factors which are found to be non defective,m

keeping the defective factor separate. The remaining factors 

are then grouped into a group-factor. In step three, we test 

the group-factor obtained after step two is performed. If the 

group-factor is non-defective, we terminate the test procedure. 

If the group-factor is defective, we continue with step four.

In step four, factors within a group-factor found to be 

defective in step three are tested one by one till a 

defective factor is found. Factors which are found to be 

non-defective are again set aside keeping the defective factor 

separate. The remaining factors are grouped into a group-factor. 

In step five, the group-factor obtained in step four is tested.

i
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The test procedure is repeated until,the analysis 

terminates with a test on a negative (non-defective) group- 

factor . The procedure will certainly terminate in a fi rite 

number of steps. If the probability of a factor to be 

defective is small, the probability of exactly one defective 

factor of a positive (defective) group-factor is high enough 

to warrant a group analysis once a defective factor is 

found. Steps two onwards are carried out for all the group- 

factors found to be defective in step one. This procedure 

differs from the procedure first introduced by Sterret o n  

in that in the first step, the g group-factors are tested 

in a-factorial experiment with (g + 1) runs.
Alternatively, if we use the control run used in 

step one in the subsequent steps, then steps two onwards 

could be performed in a series of experiments as follows:- 

In step two, we take one factor from each group-factor 

found to be defective in step one. The factors are then 

tested for their significance by an experiment .•* If no 

defective factor is observed, we take another set of factors 

one from each group-factor and test their significance . We 

repeat this procedure till at least one defective factor is 

observed. The non-defective factors are set aside, keeping 

the defective factor(s) separate. The remaining-factors 

from a group-factor that contained a defective factor are 

set aside and grouped into a group-factor. This process is 

repeated until one defective factor from each group-factor 

found to be defective in the initial step has been isolated.
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In the third step, the group-factors set aside in step two 

are tested in an experiment using the control test used in step 

one . Again the group-factors found to be non-defective in 

step three are set aside , In the fourth step, we proceed with 

a series of experiments as in step two until we isolate one 

defective factor from each group-factor found to be defective 

in step three. The remaining factors from each of the group- 

factors found to be defective in step three are grouped into a group 

factor after step four is performed. Again the group-factors 

set aside in step four are tested in an experiment in step 

five. This procedure is repeated until the analysis terminates 

with all negative (non-defective) group-factors when all the 

defective factors have been isolated. Both these test 

procedures are equivalent; but when errors in the observations 

are allowed, it is convenient to use the alternative procedure 

to derive theoretical results. In brief, the test procedure 

consists of testing the group-factors and the factors within 

the group-factors found .to be defective, one by one till a 

defective factor is detected by several steps alternately.

2.1,1 The expected number of runs

Let 'p' be the a-priori probability that a factor 

is defective. A group-factor is defective if it contains at 

least one defective factor. Let p* be the probability that 

a group-factor in step one is defective. If j is the number 

of defective factors in such a group-factor, then



£ ( 5) P V - J

(2 . 1 . 2)

P* -

where

q = 1 - p - (2.1.3)

In the initial step, all the g group-factors are 

tested for significance. Thus the number of tests (runs) 

required in the initial step is given by

Rj - g + 1 (2.1.4)

where the one extra test is the control test. This control 

test is used as a control test for the subsequent steps. Let 

r be the number of defective group-factors in the first step. 

Then the probability distribution of r is given by

Thus

r = 0,1,2,..,g
Otherwise

(2.1.5)

E(r) = gp*

= 1 Cl - qk) (2.1.6)
k

In the subsequent steps, the analysis of the r group- 

factors found to be defective in the initial step is continued 

as'described in the earlier part of section 2.1. Let P^(j)

denote the probability that a group-factor of size k contains 

exactly j defective factors if it is known to contain at 

least one defective factor. Then
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\ t
Pk (j) - (1 - q V 1 0 ) p J ( l  - p )k_J

j=l,2,..,k
(2.1.7).

Let E^(Rj) be the expected number of tests (runs) required 

to analyse a group-factor i.e., classify as defective or 

non-defective all the factors within a group-factor of size k 

which is known to be defective if it contains exactly j 

defective factors. To obtain an expression for E^(Rj), we 

start by considering a sequence of lemmas.
(

Lemma 2.1.1

W  ■ -I * 1 * i  - 1

Proof

It is equally likely that the defective factor is 

found at any trial. Consequently the probability that it is 

found on any one trial is ■j- ■ If the defective factor is 

found at the £ ^  trial; £=1,2,.. ,k-l, then £ tests are needed 
to find it. The other test we need is the group test on a 

group-factor consisting of (k-X) factors. This group-factor 

is non-defective if j=T. If the first (k-1) factors tested 
are non-defective, then the kth factor is the defective one.

We need not test this factor since the initial group-factor of 

size k is known to contain at least one defective factor. Thus

k-i
E.(R1) =f- Z (£+1) +-£(k-l) (2.1.8)*k ! k £=i k

Simplifying (2.1.8) we obtain
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W  " k
1 (k-lHk+2) k-1

- £  + 1 + ± - ~  (2.1.9).2 2 k
This completes the proof of the lemma.

Lemma 2.1,2

c , 2k 2 4
Ek(R2] 3 + 2 + 3 k

Proof

In this case, the approach is to find the first

defective factor and thus reduce the problem to the one in which

the group-factor has only one defective factor. This problem

of a group-factor having only one defective factor was

considered in lemma 2.1.1. The probability that the first
2

factor tested is defective is If the first factor tested

is defective, then on the average we require {1+1+E^_^(R^)}
tests to complete the test procedure. For 1=1,2, ..,k-2,

s tthe probability that the (£+1) factor tested is the first
1 ( k-(w+'l)\ 2defective factor to be found is H — — ;— t~t  and onw=]A k-(w-l)/ k-A

the average, the 'number of runs required to complete the test 

procedure in this case is {(A+D + l+E^^-jj }•

Hence

Ek(R2> - l <l-l.Ek_1(R1)>
k-2 

+ Z 
£=1 w^]t k-(w-l)) k-A {(£+1]+1+Ek-(£+l)(Rl)}

Rewriting (2.1.10) and using (2.1.9), it follows that

(2 .1 .10).
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e , (r j  - 4  4 4  ( 2 * 4 ^  * 4 '- A >W  " k k-1 
k-2 2
k k-1 
k-3 2

2 k-lJ
fn k-2 3 2 ,

2 2 k-2

{4 + k l  + 3 - - L }  
k k-1 2 2 k-3

2 2 /f. .. 2 3 2,
+ k k-1 { k_1 + 2 + 2 " 2}

1 2 , - 1 3 2 , 
+ k k-1 {k + 2 + 2 " 1}

k(k-l)
k-1
E (m+l)(k-m) + 

m=l

k-1

k-1

+ Z (k-m) - j
m=l

2 T(k+l)k(k-l) k(k-1n
yk(k-l) L 6 ‘ 2 J

3 rk'ck-iD n 4

k(k-l) [_ 2 J- k

ktk-l) m=i

4(k-l) 
k(k-l)

Z (k-m)‘

n 1 fk(k-l) (2k-lf|
J + k(k-l) L 6 J

l.B.
2k 2 4

Ek(FV  = 3 + 2 + 3 ~ k ( 2 . 1 . 1 1 )

This proves the lemma. 

Lemma 2.1.3

Proof

c  fD  1 3 k  •a 3  6E,(Ro) = —  + 3 +  —  - — k 3 4 4 4

After finding one defective factor, the problem

reduces to that considered in lemma 2.1.2. The probability
3

that the first factor tested is defective is anc* the

probability that for £=1,2,...,k-3 the (£.+ l)°^ factor tested
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is the first defective is n
w=l

n (k (w+2)\ 3 t t h e f i r s t
k-(w~l)/k-£

factor tested is defective, then on the average we need

(l + l+E^^F^)} tests to complete the test procedure.

,stHowever, if for £=1,2,3,...,k-3, the (£+1) factor tested is 

the first defective, then on the average we shall need

{(£+1) +1 + E^_ (F y ) runs to complete the test procedure. 

Thus

Ek(R3) E^CR,)}

k-3 
+ .E £=1

(2 . 1 . 12).

Using (2.1.11) we get

3 k-1 k-2 
Ek R3 = k k-1 k-2

2(k-l) 8 4 ,
{2 + “ —  + 3 ' F I  }

3 k-3 k-2 f„ 2(k-2) 8 4 ,+ —  "— - — it {3 + ----—  + —  - 7-nr )k k-1 k-2 3 k-2

3 k-3 k-4 r„ 2(k-3) 8 4 ,+ -  ---- (4 + ---=-- + —  - 7— 5- }k k-1 k-2 3 k-3

+ • • • f • t

3 2 3 ... 2(3) 8 4 .
+ k k-1 k-2 {(k_2) 3 + 3 " 3

+ 3 i 2 ..... 2(2) 8 4.
k k-1 k-2 + 3 + 3 " 2 }*

k(k-l)(k-2)
k-2
E (m+1)(k-m)(k-m-1) 

m=l
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2 k:2,. .2
+ k(k-l)(k-2) mi1Z (k-m) (k-m-1)

R k-2
+ -----------  I (k-m)(k-m-1)k(k-l)(k-2) m=l

12
k(k-l)(k-2) m=i^Z^(k-m-1)

The summations

(2.1.13)

k;2 „ wt ,, (k+l)k(k-l) (k-2)Z m(k-m)(k-m-1) = ---m=l 12

k;2r, .2fl ,, k(k-l) (k-2) (3k-l) Z (k-m) (k-m-1) = ------- ^ --------
m=l

(2.1.14)

and
k-2
Z..(k-m)(k-m-1) = m=l

k(k-l)(k-2)

have been obtained by Sterret 2 6 .

Using these summations in (2.1.13) above, we get

, k+1 . 3k-1 8 6
W  ■ —  * 1 * —  * 3 ' k

3k _ 3 6
-  + 3 + 4 “ k (2.1.15)

This completes the proof of the lemma.

We are now in a position to state and prove a more general 

result.

Theorem 2.1.1
The average number of tests required to analyse a 

defective group-factor of size k assuming that it contains 

exactly j defective factors is given by
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£ (R ) _ ill + j + _i---
V KjJ j+1 J j + 1 K (j=l,2,... ,k).

Proof

The proof follows by mathematical induction. The 

validity of the Theorem has been shown for j=l. We assume 

that the Theorem is true for j=n-l, (l<n-l<k) that is

E,(R ) = + (n-l) + - ^ l l ik n-l n n k , (2.1.16).

We shall show that the Theorem is true for j = n. Now for j=n >

 ̂ t  —  | - |

Ek(Rj T {l + 1+El, 1(R 1)}+ 1K n K k-1 n-l
„ fk-(w+n-l)\ n rfn 
vUk-(w-l) jk^I{U+1)+1

+ E,;-(£+!) (Rn-l)}J
(2.1.17)

The factor in the first term is the probability that the

first factor tested is defective and il + 1 + E, , (R ,)}k -1 n-l

is the average number of runs required to perform the analysis 

if the first factor is defective. The value

n ( k~J-.w.+n.~J-.A is the probability that the first £ factors 
w=l \ k-(w-l) j n
tested are non-defectivej is the probability that the

s t(£+1) factor tested is defective. The term

{(£+l) + l+E , , J R  J) consists of the number of testsk-(£+l) n-l
strequired to find the first defective factor on the (£+1) 

trial, the group test on k-(£+l) factors and the average 

number of tests required to complete the analysis with (n-l) 

defective factors in k-(£+l) factors.

Substituting in (2.1.17) the values given in (2.1.16) we

obtain
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Ek(Rn
,_n k-1 k-(n-1)f n-1 

k-(n-l) [ n (k-l) + (n-l)+— — n
2(r-l)~-
k-1

+ k-n n k-2 
k k-1 k-2"

k-(n-l)
k-(n-l) [3+—  (k-2) + (n-1)u n

n-1
n

2(n-l)
k-2 ■]

k-n k-n-1 n k-3 k-(n-l)
+ k k-1 k-2 k-3*" k-(n-l) 4+— (k-3)+(n-l) n

+ m l  _ 2(n-l)~l 
n k-3 J

+ • • • • • • • • •
+ k-n k-n-1  ̂k-Ck-2) _n_______  k-(k-n). . k-(n-l)

k k-1 k-(k-n-2) k-(k-n-l) k-(k-n) k-(n-l)

[„ ,, n-1. , . , . n-1 2(n-l)lx (k-n+1) + ---in) + (n-1) + ------------L n n n J

k-n k-(n-l) k-(k-l)_____ n k-(k-n+l)
k k-1 k-(k-n-l) k-(k-n) k-(k-n+l)

m

k-(n-l)
k-(n-l)

x (k-n+2) + — — C n-1) + (n-1) + —  (

(2.1.18)

By rearranging and taking appropriate surrmations (2.1.18)

becomes * '
• n k-n+1

E. (R ) = ——  r (m+1)(k-m)(k-m-1)••••(k-m-n+2)K n . pk n m=l

1  k-n+1 2
+ E (k-m.) (k-m-1) •••(k-m-n+2)

k n m=l0
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2 , k-n+1
+ " ' ' Z (k-m)(k-m-1) •••(k-m-n+2) 

k n m=l

p—  kzn+1(k-m-l] (k-m-2) • • • (k-m-n+2) 
k n m=l . (2.1.19)

where

,P = k(k-l)(k-2) •••(k-n+1) k n (2 . 1 .20 )

The surrmations

k"C+1 w. ,, „ ^  (k+lV(n+l)Z m(k-m) (k-m-1) ••• (k-m-n+2) = ---, —
m=l n n̂+1)

k-n+1 y
Z (k-m) (k-m-1)(k-m-2)••• (k-m-n+2) 

m=l
(k+l)r (n+1) 

(n+1)

k^n

k-n+1 kPn
Z, (k-m)(k-m-1)*** (k-m-n+2) = ——  m=l n

(2 . 1 . 21 )

and
k-n+1
Z (k-m-1)(k-m-2)••• (k-m-n+2) 

m=l
(k-1) (n-1) 

n-1

have been determined by- Sterret [_ 26 ] .

Using these surrmations in (2.1.19) above we obtain

p , . k+1 1 (n-1)(k+1) n-1 n -̂1 2n(n-l)
klKnJ = n+1 n+1 n + n (n-l)k

nk n 2n
= ^ I + n + 7 ^ T " T  (2.1.22)

This is exactly the value of E^tRj) for j=n. Thus if the

Theorem is true for j=n-l 0£n-l£k) it is also true for j=n. 

But the Theorem is true for j=l (c.f. lerrma 2.1.1). Hence 

it is true for j=2 and in general for any j (j=l,2,..,k). 
This completes the proof of the Theorem.
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Let R° denote the number of tests required to analyse 

a group-factor i.e., classify as defective or non-defective 

all the factors within a group-factor of size k that is known 

to be defective. Then

E" V  ■ j h W  pk'J) >
where P^tj) is as defined in (2.1.7).

Using (2.1.7) and Theorem 2.1.1 in (2.1.23) we get

E(R°) -  z { i M i . j  - a
j=l J+1

k  1 /kVjnk-j
■’I T K ( j / p q

(2.1.23)

— r {(k+1)(l-qk)+kp-2p) - k+1
1-q l-qk j=lj+lW

I_ k\PJqj k-j

(2.1.24)

Next

‘k*1!

,, ,n U k k-1 k(k-l) 2 k-2 ... 1 kx= (k+lH7 pq + 3x2 p q + *'*+ T T T P }k+1

1 r (k+1) k 2 k-1 (k+1) k( k-1) 3 k-2 + k+1.= -  t— — —  P q + ----2]----- P q + • • • + p }2!

®..~ (l-qk ■*■- (k+l)pqk)

Using (2.1.25) in (2.1.24) we obtain

(2.1.25)

EtRs0) ■ r rD 1-q
(k+1) (l-qk)+kp-2p--̂  (l-qk ^-(k+l)pqk}

1-q
(k+1) + kp - 2p - — (l-qk ■*■} 

P (2.1.26)

Let Rc denote the number of tests (runs) requires 

to analyse all the factors in the r group-factors fours to
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be defective in the first step. Then,

R = r E(R ) S S

i-q _
i k+i' 

(k+1) + kp - 2p - — {1-q }
(2.1.27)

Further let R be the total number of runs required to 

investigate the f factors. Then

(2.1.28)

Theorem 2.1,2

Let R denote the total number of runs required to 

screen out the defective factors from among the ’f ’ factors 

under investigation in a step-wise group screening 

experiment where p is a-prior probability of any factor being 

defective and k is the size of the group-factor in the initial 

step, then

E(R)

where

q = 1 - p.
Proof

f
In,the first step, we have g = group-factors to 

test. Therefore the number of runs required in step one is

Rj « g + 1 . (2.1.29)

the one extra test being the control test. The number of runs 

in the subsequent steps is

Rs = — T  (k+1) + kp - 2p - ^ U - q k+1}j (c.f. 2.1.27),

where r is the number of group-factors found to be defective 

in step one. Then
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E(RS) = jjk+1) + kp - 2p - ^ (l-qk 1}Jk+l,*] E(r)
1-qk

= Qk+l) + kp - 2p - ^  {l-qk+1}] £

using (2.1.6) •
The expected total number of runs is given by

(2.1.30)

ECR) = Rj + E(Rg) (2.1.31)

Using (2.1.29) and (2.1.30) we obtain 

E(R) - 1 fp k
f „.f , 2fp f ,, k+1.

kp (1-q )

= 1 + fp + ifa + f . 1_ {1 _ pk+1} (2.1.32)
k

a + f  -k kp

This completes the proof of Theorem 2.1.2.

Corollary 2.1.1

For small values of p, the expected total number of 

runs is given by

E(R) * 1 + 3£E + 1 _ 2f£ + fhEhlKJ - J- 2 k k 2

upto order p. *

Proof

For small values of p,

I1 ' (i_P)k *] 2 - [-k̂ 1] - , upto order p

(2.1.33)

Substituting this expression in (2.1.32), we get

E(R) = i  + fp  + 2 f a _  f  + fkE  + f £  
k k 2 2

=■ i + JfE + i _ IfR + ihE upto order p

This completes the proof of corollary 2.1.1.

(2.1.34).
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2.1.2, The Optimum size of the group-factor in the initial 

step

Theorem 2.1.3

Assuming p i.e. a-priori probability of a factor 

to be defective to be small, the pize ’k’ of the group-factor 

which minimizes the expected total number of runs in a step

wise group screening design is given by

provided p<5. The corresponding minimum expected total 

number of runs is given by

Proof

Assuming continuous variation in k, the optimum 

group size is obtained by solving the equation

Min ECR) ~ 1 + ^  + f(2p)i(l - 2p)5.

where ECR) is as given'in corollary 2.1.1.

This implies

i.e.,

which gives
2 _ 2 -  4p

or

k = 2 -  4p 

P
( 2 . 1 . 3 5 ) ,
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provided p<|. . ,

The value of k given in [2.1.35) will be in the neighbourhood 

of the point of minimum of E(R) if

dk^
i.e. if

-4fp 2f— ~ > n3 , 3 U 'k k
which is true if p<£. Thus the value of k given in (2.1.35) 

is in the neighbourhood of the point of minimum of E(R). 

Substituting this value of k in the expression for E(R) given 

in corollary 2.1.1, we obtain

min ECR) - 1 + ^  + ^ 2̂ )  “

3 5
+ 2 ( 2 - 4 p )  p (2.1.3Ba)

= 1 + — + f(2p)2(l-2p)2
2 (2.1.36b).

This completes the proof of Theorem 2.1.3.

Next we wish to obtain the value of k that minimizes 

E(R) for arbitrary values of p. For arbitrary values of p,

ECR) = 1 • + fp + ^  + f  - ^  ( I  - qK+1}

c.f.(2.1.32).

The value of k that minimizes E(R) in (2.1.32) is a solution 

of the equation

i*e.,
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-2a 1 r, k+1. 1 k+1
- 5  + — 5 ( 1 - q  } + — q £nq = 0
k2 Pk2 ^

which implies

, k+1 k+11 - q  - 2pq + kq SL̂q = 0 (2.1.37) *

Equation (2.1.37) is non linear in k and can be solved by 

Newton - Raphson iterative method. Let the initial 

approximation be the value of k obtained in (2.1.35). That is

■" ■ ( H * ) (2.1.38).

Let us denote the left hand side of equation (2.1.37) by 

ip(k). Then the next better approximation of optimum k is 

given by

k = k iKk°)
iT(k°)

(2.1.39)

where
k+1 2ijT(k) = kq (£nq) (2.1.40)

The iterations may be continued until the desired level ofm

accuracy is attained.

In the next Theorem, we give a sufficient condition 

for a step-wise design to be more efficient than a single 

stage design.

Definition We shall say that one design is more efficient 

than another if the expected number of runs in one is less 

than or equal to that in the other for all p (0<p<l) with 
strict inequality holding true for at least one value of ’p ’ 

i.e. the probability of a factor to be defective.
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Theorem 2.1.4

A step-wise group screening design with 'f festers

and 'g' group-factors in the initial step, each group--ector , \ 1
where p is the prior probability cf aof size k =

factor being defective, assumed to be small, is more efficieni 

than the corresponding single stage design.

Proof

The Theorem is true if

x + 3f£ + f(2p)*(l - 2p)* < f + 1 (2.1.41]

where the left hand side is the minimum expected number of 

runs in a step-wise group screening design as given in 

(2.1.36b).

Inequality (2.1.41) is true if
2

(l ~ ^  1  2p( 1 - 2p)

i.e. if a*
(2 - 5p)2 > 0 - (2.1.42)

The inequality in (2.1.42) is strict for all values of p, 

0<p<l with equality holding for p=0.4.

This proves theorem 2.1.4.

Since p is assumed to be small and the left hand side c- 

■inequality (2.1.41) holds for p<5, we consider only values of 
p for which

p<0.4 ( 2 . 1 . 4 3 )

Using the fact that optimum value of k decreases as 

P increases and that the expected number of runs increases 

as p increases, one is tempted to argue that the maxim_m
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value of p for which a step-wise group-screening design is 

better than a corresponding single stage design can be obtained 

by putting k=2 and solving for p the inequality

+ 1< f + 1 (2.1.44)

where the left hand side of (2.1.44) represents the 

expected total number of runs in a step-wise group screening 

design and the right hand side represents the number of runs 

^ in a single stage design. The inequality (2.1.44) is true if

fp
2fq + f - kp [>

k+1

2 3- p + 3p - p £ 0

i.e. if

p(p - 3p + 1) _> 0.

Solving the equation

p2 - 3p + 1 = 0, 
we obtain

3 +
P = 2 ±_2

m *
i.e.,

p - 1.5 - 1.110

=0.382 (since p<l).

Thus inequality (2.1.44) implies that

p<0.382.

Comment:

(2.1.45) *

Although the result obtained above agrees with that 

in (2.1.43), the argument is not generally correct.
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2.1.3 A comparison of two stage group screening design with

the step-wise group screening design 

Let there be ’-F’ factors to be tested. The f factors 

are divided into ’g ’ group-factors of k factors each. Let 

’p ’ be the a-priori probability that a factor is defective.

In the two stage group screening procedure, each of the 

group-factors is tested for significance in the first stage.

In the second stage, all the factors within the defective 

group-factors are tested. The probability that a group-factor 

is defective p* is given by
C 'L

p* = 1 - q where q = 1 - p (2.1.46).

The expected total number of runs required to test the f 

factors using this procedure is given by

E(R) = 1 + + fC1 - q^) c.f. Watson [^28J

(2.1.47).

Patel and Ottieno [_ 20 have given the value of k that 

minimizes E(R) in (2.1.47) as

k » 4 4 (2.1.48),

upto order p.

They gave the corresponding minimum value of E(R) as

Min E(R) * 1 + 2fp2- ^  + |fp /2- || fp2 (2.1.49),

2upto order p .

The size 'k* of the group-factor in the initial seep 

which minimizes the expected total number of runs in a sc=p- 

wise group screening design is approximated as
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* (j
2 - 4 :

*
(c.f. (2.1.35))

Q  - p) upto order P (2.1.50)

For a step-wise group screening design,

E(R) « 1 ♦ fp
2fq . f + fo + --- + f - 'kp

i - qk+1

(c.-F. (2.1.32))

1 + fp 2f(i-p) _ f +

f(k2-l) 2 + f(k2-lHk~2_)p

k k 2

il£i£3
(2.1.51)

upto order p .

Substituting the value of k in (2.1.50) in (2.1.51), 

obtain

Min E(R) = 1 + fp + 2f(D* - CX-p3

* m (i - p) * 1 ip •1-
f - p ̂ 2 ̂ ii

24 fd-P)2 - 1
] \ g a ^  -  2] p

If)
3/2

* 1 + 2f (5) + |  fp - fp *2^

upto order p • 

Theorem 2.1.5

(2.1.52)

The step-wise group screening design is more 

efficient than the corresponding two stage group screen.,.g 

design assuming p, i.e. the a-priori probability of a rac-or
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to be defective to be small if

p<0.26 .

Proof:

We have to show that if p<0.26, then min E(R) 

obtained using the step-wise group screening procedure is 

less than or equal to min E(R) obtained using the two stage 

group screening procedure. That is we show that if p<0.26.

i * 2 f ( § y . £ fp - ± ^ f p ' " % 5fp"
3/2  1 P 2

< 1 ♦ 2fp
r „ 3/2 19 2

+ |  fp " 24fP

i.e. we show that if p<0.26

7 A  11/2 1 i
2 + TP - ~YZ~ P 1  2 - TP + TP

31 3/2 
24P (2.1.53).

But for p<0.26,

2 3^ n 3/2 > 0 (2.1.54a)
F  ' T P

Thus (2.1.53) is true if

11/2 1 5
2 * g P - ~J2~ p -  2 - - 2 P

i.e. if

5 5 11/2(2 - 2) + 3 p - p < 0 (2.1.54b)

The equation

(2 - 2) + T p5 3 ll/2
12 p = 0 (2.1.55),

has no real root. The left hand side of (2.1.55) is less 

than zero when p=l and when p=0. Therefore inequality



(2.1.54b) is a strict inequality for all values 

of p ( 0 <p <1) •

Thus inequality (2.1.53) holds if

p^O.26.

This completes the proof of the Theorem.
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2.2 SCREENING WITH ERRORS

In section 2.1, we did not allow errors in 

observations, i.e., a factor was correctly identified as

either defective or non-defective. In this section, we shall%
allow errors in observations and work out corresponding 

results given in section 2.1.

2.2.1 The expected number of runs

Let there be f factors to be tested for 

significance. In step one, the f factors are divided into 

g group-factors of k factors each. The group-factors are 

then tested for their significance by an experiment. Those 

that are declared non-defective are set aside. In step two, 

one factor is taken from each group-factor declared defective 

in step one. The factors are then tested for their 

significance by an experiment. If no factor is declared 

defective, we take another set of factors one from eachm

group-factor and test their significance. We repeat this 

procedure till at least one factor is declared defective.

The factors declared non-defective are set aside, keeping 

the factor(s) declared defective separate. The remaining 

factors from a group-factor that contained a factor that is 

declared defective are set aside and grouped into a group- 

factcr. This process is repeated until one factor is 

declared defective from each group-factor declared defective 

in step one. In the third step, the group-factors set aside 

in step two are tested in an experiment. Again the group- 

factors declared non-defective in step three are set aside.
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(

In the fourth step, we proceed with a series of experiments 

as in step two until one factor is declared defective frcn 

each group-factor declared to be defective in step three.

The remaining factors from each of the group-factors declared 

defective in step three are grouped into a group-factor 

after step four is performed. Again the group-factors set 

aside in step four are tested for their significance in an 

experiment in step five. This procedure is repeated until 

the analysis terminates with all group-factors declared non 

defective. Certainly the analysis will terminate in a

finite number of steps. We allow the possibility that 

defective group-factors and factors may not be detected.

Also non-defective group-factors and factors may be declared 

defective. Our objective is to determine the group size 

* k' in the initial step which minimizes the expected 

number of tests (runs).

Let â. be the level of significance of tests in

step one. Thus â. is the probability of declaring a non

defective group-factor defective in step onej i.e. the first 

kind of error.

Consider the hypothesis

Ho: a group-factor in step one is non-defective.

Alternative

H^: a group-factor in step one is defective

(2 .2 .1).

In testing the significance of factors and group-factors, we 

shall use orthogonal fractional factorial plans of the type
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given by Plackett and Burman [_ 22 . These are specially

constructed two-level orthogonal designs for studying upto

(4m-l) factors in 4m runs. In general the number of runs
/

required by the orthogonal design to study m factors (or 

group-factors) is given by

R(m) = where is the smallest integer

greater than j  except that — = 0 when m=0.4 U J
According to Patel and Ottieno £19]] #

f m ~] e m + h where h B 1,2,3,4 (2.2.2).
4 U J

There are g group-factors to be tested in step one. 

Each group-factor has two levels, the lower level denoted by 

'O’ and the upper level denoted by ’1’. Thus for tests of
g

significance we require an orthogonal plan for a 2 factorial
X

experiment. Now let A be the estimate of the main effect
m

of any group-factor in step one with s defective factors 

each with effect A>0 for s=l,2,..,k. Then

E(A) = sA 

and
2

Var (A) - — — » h c 1<2,3,4 g+h

where oz is the error in observation. 

Next define

•A - sAz = ---------
/j2/(g+h)

*• y - ŝ j

(2.2.3)

(2.2.4)

(2.2.5)
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where
A ( 2 . 2 . 6)

»/cr2/(g+h)
and

A (2.2.7).

Assuming that the observations are normally distributed, 

z is a standardized normal variate. We shall say that a 

step one group-factor is non-defective if s=0, which implies 

that s<f)-̂ =0. On the other hand, a first step group-factor 

will be defective if stj^O. Therefore the hypothesis (2.2.1)

may be expressed as

In testing the hypothesis (2.2.8) we shall use the normal

against (2.2.3)

H-̂ : s ^   ̂0

deviate test if ô  is known otherwise we shall use the t test 
2if a is estimated from the experiment.

Let IIj(s<f>j,ctj) denote the power of the test in step

one. Then

z(aj)-s<{>2

(2.2.9)

where z(aj) is given by

I

(2 .2 . 10).
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When s=0 0, we have

II-j. t Ô ot̂ D = Oj. C2.2.11)

When sfO and — is large, then we have

IljCs^ajl.* 1 C2.2.12)

Let p be the a-priori probability that a factor is Defective. 

Then the probability that a group-factor in step one with 

s defective factors is declared defective is given by

II* = Z /g )p SU -p lk' SIITls<j> , a Tl  
1 s=Cr i i i

' k
= (l-pi'kj. +■ z (£) psu-p)k"snIU(f)I,aI)

(2.2.13)

These results are the same as those given by Patel and Ottieno

[19]. m
Let r be the number of group-factors declared defective in 

step one. Then the probability distribution of r is given by

f ( r )  = ( r )  ^  C l - n * f  ( 2 . 2 . 14J

Thus

ECrT = gll̂

= |  \  (2.2.15)

In the subsequent steps, the analysis is. continued as 

described in the earlier part of section (2.2.1) for the r 

group-factors aeclareo defective in step one. In the first 

experiment of step two, we test r factors 1 factor from
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each of the r group-factors declared 'defective in step one. 

Each factor has two levels, the lower level Denoted by ’O’ 

and the upper level denoted by * 1 *■ Thus using the main 

effect plans of the type given by Plackett and Burman £ 22 ], 
we require

4 [ £ ]  (2.2.16)

runs to test the significance of the r factors. The h runs 

(observations) used in step one can be repeatedly used in all 

the subsequent steps to make the experiments orthogonal.

Let p' be the probability that a factor chosen at random 

from a group-factor in step one containing s oefective factors 

that has been declared defective is defective. Then

P' = Z fe iV S ^(s^jtaj)
IIj s=l' '

Pni
= Cumow £2]]

I
)

(2.2.17),

where

< •
•1 k-S TT f ,q nj (ŝ-j- ,01-j-)

is the probability that a grouprfactor containing at least 

one defective factor is declared defective in the initial step. 

Define a random variable 6 as follows:-

6 = 0  if a factor chosen at random from a group-

factor that is declared defective in step one 

is non-defective 

= 1 otherwise.
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Then
6=0 with probability 1-p'

=1 with probability p'

Let ag be the probability of declaring a non-defective

factor defective and y be the probability of declaring as
defective factor defective in the subsequent steps,

Let

= (l-6)a *-6 y (2.2.18).s ’s
Then

@ = a with probability 1-p's
#

= y with probability
5

Hence the average value of £?+~ is given by

I + = YJ3' +-<* Cl-p'l

' 1 “ 3
nI L-

P (V as )ni  * n i  a s

= £1 
4

il

where

p(y -a )JI*'+ II* a H Ts s i * j s

(2.2.19L

( 2 . 2 . 20 )

is the probability that a factor chosen at random is aeclared 

defective in the subsequent steps, Thus $+ may be interpretted 

as the probability that a factor chosen at random from a 

group-factor that is declarea defective in step one is 

declared defective in the subsequent steps.

Out of the group-factors declared defective at any step, 

it is possible that due to errors in observations, we may find

some group-factors from which no factor is declared defective



44

on individual tests. Let a* be the proportion of suchs
group-factors. Obviously cl* will be different at every sdep.s
However for simplicity in algebra, we shall assume a* to be 

of uniform value, say a*.

Let us denote by P*(j) the probability that exactly j factors 

from a group-factor that is declared defective in step one 

are declared defective in the subsequent steps.

Then

p k ‘j)

i - -L [1 - a  - i-)k ]
nj

^ nik (j) I’V ? ’
k-j

> 0

>1,2,.. .,k

( 2 . 2 . 21 )

Let E*CR.) be the expected number of tests (runs) required 
k J

to declare exactly j factors defective from a group-factor

of size k which has been declared defective in step one. To

obtain an expression for E* CR.) we start by considering a
k J

sequence of lemmas.

Lemma 2.2.1

E*(R ) « k 
k 0

Proof

The proof is trivial since to declare all the k 

factors in the group-factor as non-defective we need to 

test all cf them.

Lemma 2.2.2

Ek'Ri>
k + 3 1 + a^k a* (1-g)
2 + 2 ~ k + 2 ~ 2 ~ k  k
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where

S=0 

= 1 otherwise

if a* = 0

Proof

It is equally likely that the one factor declared

defective be found at any trial. Consequently the 

probability that it is found on any one trial is •£. If the 

one factor declared defective is found on the £ ^  trial>

£■1,2,...,k-2, then £ tests are needed to find it. The next 

test we need is the group test on a group-factor consisting 

of (k-£) factors. If this group-factor is declared non

defective, we shall stop the test procedure otherwise we

continue testing individual factors until all the (k-£) factors
stare declared non-defective. If the (k-1) factor is the

thone declared defective, then we have to test the k factor 

as well. However if the first k-1 factors tested are declared 

non-defectivewe shall need to test the k  ̂factor to declare 

it defective only if a*fO; otherwise we would declare it 

defective with probability 1 (this corresponds to the case 

when we have no errors in observations).

Thus

rk-2 
l

u=

( 2 . 2 . 22 )

Using lemma 2.2.1, we get

E*(R,) « ~ 
k 1 k

<s-2 q
E {(£+1) + ct*E* (R )} + k + (k-1) + K\
1=1 0 J

> 1 >  ■ K
kE2(£+l) + ct*kZ2(k-£) 
t£=l £=1

+ 2 (l-C)
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___  k 3 1 ot*k a* a* (l-£)
W  T r r y i ' i - T

(2.2.23)

This proves the lerrma.

Lemma 2.2.3

2(l-gHk-2)
k(k-l)

Proof

Here the approach is to find the first factor to be

declared defective and thus reduce the problem to the one in

which the group-factor has only one factor to* be declared

defective. This problem of a group-factor having only one

factor to be declared defective was considered in lemma 2.2.2.

The probability that the first factor tested is declared 
2

defective is - . If the first factor tested is declared km
defective, then on the average we require' {1+1+E* (R-,)}

k-1 1

runs to complete the test procedure. For A=l,2,...,k-3, the
stprobability that the (£+1) factor tested is the first to 

be declared defective is

the number of tests (runs) required to complete the test

first, k-2 factors tested are declared non-defective, then we 

need to test the other two factors to declare thorn defective

k-A
2 and on the average

procedure in this case is {(£+1) + 1 + E£_(£+i) ^ 1^* ^

i.e., we need k tests.
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Hence

E*(R2) ■ IU ♦ l  * E ' . / R j l )

k"3 & /k-(w+l)\ 2E n ------ { u + 1 )  + ]. + E * (R )}
J>=1 w=l\k-(w-l)/ k-i, . k-U+1) 1

2k
kCk-lD

Substituting in (2.2.24) the values given by (2.2.23) we 

obtain

(2.2.24).

E* (R ) = r k_1 n. k-1 3 1 A ^*/k-l _ 1 l..t Cl-€)
2+ ^  + -  - —  + a V  2 ‘ F I } ' k-1k 2 k k-1 [_ 2 2 k-1

2 k-2 k-2 , 3 1 * rk-2 _ 1 1 ,
k k-1 L 2 + 2 " k-2 + a 1 2 2 k-21 '

(l-c)
k-2

Z M  r
k k-i L

4+ —  + *  _ ^  + 0.{J<£ . L i . Mk-3 3 1
2 + 2 ~ k-3 2 k-3 k-3

1 - 1 -  Hk-S
k k-1 L

3 3 _ 1
2 + 2 " 3

* r3 a*{— _ 1 _ I )  - (l-o
2 2 3 3 .

*/2 a *{— 1
* > -

(1-0
2 2

3

* ! l T T (k)
(2.2.25)

By taking appropriate summations, (2.2.25) can be written as

W  ■ Hk^IT

___3_
+ k(k-l)

a* .

k-1 !
E (m+l)(k-m) + T~r.— r> 

m=l k(k-1} m=l

k-2 2
E (k-m)

k(k-l) m=l

k-2
E (k-m) 

m=l

k-2, 7E (k-m)^

2(k-2)
k(k-l)

a' k-2
k(k-l) m=lE,(k-m)
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2g*(k-2) 2(l-g)(k-2)
k(k-l) k(k-l)

2 "(k+l)k(k-i) A k(k-l)]
' " k(k-l) 1 6 2 J

* 1 'k(k-l) (2k-l) 3 Rk+l) (k-2)~
k(k-l) 6 . ' k(k-l) L 2

2(k-2) a* kCk-I)(2k-l)
k(k-l) + k(k-l) _ B

2g*(k-2) 
k(k-l)

2(l-g)(k-2) f9 _
k(k-l) '

This gives the required result on further simplification.

g* (k+l)(k-2) 
k(k-l) 2

Lertma 2.2.4

EkCfV
3k 3 3(k-2+3)
4 + J + 4 " k(k-l)

3
k-1 k(k-l) }

Proof

- 3(l-g)(k-3) 
k(k-l)

After one factor has been declared defective, the

problem reduces to that considered in lemma 2.2.3. The

probability that the first factor tested is declared

defective is and the probability that for £=1,2,.., k-c 
stthe (£+1) factor tested is the first to be declared def

is n -?■ ——  . If the first factor tested is dec
w=l\k-(w-1)/k-£' ' \ 

defective, then on the average we need {1 + 1 +

to complete the test procedure. However if for £=1,2,..,

.26).

ective

lared

tests

k-3
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the U+l) factor tested is the first to be declared 

defective, then on the average we shall need

(U+1) + 1 + E* tests to complete the test

procedure. Thus

E*(R3) - ! < 1  ♦ 1 * E- 1CR2)) 

k-3T i (k-(w+2A 3

(2.2.27)

Using (2.2.26) we get

_  , 3 k-1 k-2 ) 2(k-l) „ 2 2
E*(RJ = ~ —  — r <2 + i--- + 2 + r "'k 3 k k-1 k-2 3 k-2

+ a* k-1 2 2(l-£)(k-3)
3 k-2 (k-1)(k-2); (k-1)(k-2)

J

3 k-3 k-2 
k k-1 k-2

a* p

3 k-3 k-4 
+ k k-1 k-2

2(k-2) . n . 2 2
3 3 2 3 k-3

2 2 4 1 2(1-^)(k-4)
3 k-3 (k-2)(k-3); (k-2)(k-3)

J

r. • 2(k-3) + 2 + 2 - 2
4 + 3 3 k-4

a* (
k-3
3

2
3

2 4+k-4 (k-3)(k
2(l-q-(k-5) 
(k-3)(k-4)

3 2
k-2 f k-2)

2(3) + 2 + 2
k k-1 3 2 3

a. r»*t̂ 3 2 2 , M 2(1-C)
.3 3 2 3x2/ 3x2
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2
k-2

*

(k-1) + 2(2) _
3 * 2 *

N
/N1 * /'2 2 2 + 4 \a / 3 3 1 2x1)V. ' J
k-2
E (m+1)(k-m)(k m-1) +

3 2 
2 ’ 1

2 V (  k-m)2 (k-m-1)
<P3 m=l

-S- kE?(k-mHk-m-l) - -|- EJk-m) 
kP3 m‘1 kP3 m=1

a* 2 2a*Ejk-m) (k-m-1) - _E, (k-m) (k-m-1)
kP3 m=1 kP3 m=1

6a* k-2,, , 12a*(k-2) 6(1-?) k-3-=— E (k-m) + ---- f;----------f;—  E m
k 3 m=l kP3 k 3 m=l

where .P-, = k(k-l)(k-2).k 3

Using the sums given in (2.1.21) in the equation above, we 

obtain

3
EktR3J ,P.k'*3 L-

P P “ (k+1) 4 + k_3
12 - k 3

+ C3k-1
P- 12

rkP3
kP3 kP3

"(k-2) (k+1)

a* r kp 3 1 2a*

1-on
Q

_

kP3
12 (3k-1)

kP3 3

6a*
kP3

(k-2)(k+1) 12a*(k-2) 
kP3

6 d - q
kP3

(k-2)(k-3)
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k+1 (3k-l) 8 3(k+1)
4 + 1 + 6 + 3 " k(k-l)

3k-l _ 2 3(k+l) + 12
12 " 3 " k(k-l) + k(k-l)

3(l-£)(k-3)
k(k-l) (2.2.28)

This gives the required result on further simplification.

We are now ready to state and prove a more general result. 

Theorem 2.2.1

In a step-wise group screening design in which all the 

group-factors are of the same size ' k’ in the initial step, the 

average number of tests required to analyse a group-factor 

which is declared defective in step one, frcrn which exactly j 

factors are declared defective in the subsequent steps is 

given by

E*(R.) = 1L- + k j+1

* / k+ or{---
J  + 1

. + J _  j (k+j-2)
J j+1 k(k-l)

.2
_ _J_ _ J__ + _J____ j
j+1 k-1 k(k-l)

j(l-g)(k-j)
k(k-l)

for j=l,2,..,k,

where a* is the proportion of group-factors declared 

defective at any step but due to errors in czservations no 

factor from each.such group-factor is declared defective on 

individual tests and £=0 if a*=0 and 1 otherwise.
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Proof

The proof follows by mathematical induction. The 

validity of the Theorem has been shown for j=l. We assure 

that the Theorem is true for j=n-l (l<n-l<k), that is

p t p  , (n-l)k , ,, (n-1) (n-l){k+(n-l)-2)
tklKn_1) = ------ + (n-1) + ------------ ZTC Ti------k n-i n n kCk-lj

*rk (n-1) (n-1) (n-1)2 ,
“ 1n • — ---- i ^ T  * ktFTT }

(n-1)(l-£)(k+l-n) 
k(k-l) (2.2.29)

We shall show that the Theorem is true for j=n. Now for

j  = a

E*(R ) = -r- (1 + 1 + E* (R .)} k h k k-1 n-1

{(£+1) + 1 + Ek - ( £ + l ) (Rn - l ) }

(2.2.30).
m nIn the first term, is the probability th^t the first factor 

tested is declared defective and {1 + 1 + E£_^(Rn_i)) is the

average number of tests required to perform the analysis 

if the first factor tested is declared defective. The term

n [
w=!\k-(w-l) - ) f I  « * * 1 )  * 1 * Ek - U n ) (Rn - l , )

in the summation is the product of the.probability that for
st£=1,2,...,k-n, the (£+1) factor is the first factor tc be 

declared defective and the average number of tests (runs! 

required to perform the analysis in that case. Substituting 

in (2.2.30) the values given by (2.2.29), we obtain
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EfCR )-7 K_1"k n k k-1 k-(n-l)
(n-l)(k-l) + n-1 (n-l)(k+n-4)

h n (k-1)(k-2)

+ or k-1 n-1 n-1 (n-1)2 (n-1) (l-£) (k-n))
_n n k.-2 ' (k-1) (k-2)_ (k-1)(k-2)

n k-n k-2 k-(n-l) J, . (n-1)(k-2) n2-l+ —  r— -  t— -  . . — :— — > 3  + -----------------------  + ---------k k-1 k-2 k-(n-l) (_

(n-1)(k+n-5)

n n

Ck-2)Ck-3) + a* k-2 n-1 n-1 (n-1)+
2 n

k-3 Ck-2)Ck-33
\

(n-1)(1- 
(k

)(l-£)(k-n-l)l 
2)(k-3) J

k-n k-n-1 n k-3 k-(n-l) j„ . (n-1)(k-3) n^-1+ -------------------------- . . .— ;— — < 4  + ----------------  +k k-1 k-2 k-3 k-(n-l)

(n-1)(k+n-6)
(k-3)(k-4)

(n-1)(l-£)(k-n-
(k-3)(k

*fk-3 n-a * --------n n

(k-n-2)l 
-4) J

-1 n-1 (n-1)2 i

k-4 (k-3)(k-4)

k-n k-n-1 k-(k-2) n____  k-(k-n)
k k-1 ” k-(k-n-2) k-(k-n-l) k-(k-n)

k-(n-l) \ ri t n(n-l) n-1 (n-l)(2n-3)x -— ;— —  4 (k-n+1) + ----- + ---  •k-Cn-1) n(n-l)

+ a n _ n-1 n-1 ' (n-1) + (n-1)(l-£),,,
n n n-1 n(n-l) n(n-l)

k-n k-n-1 k-(k-l)____ n k-(k-n+l)
k k-1 k-(k-n-l) k-(k-n) k-(k-n+l)

x k-(n-l) r(k_n.2) ̂  (ri-1) (n-1) + n2-l _ (n-1) (2n-5) 
k-(n-l') \  n n (n-1) (n-2)
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(2.2.31)„fn-l n-1 n-1 (n-1)^
+ a IT T  " "7T " rFZ + uTmTFTT

By rearranging and taking appropriate surrmations, (2.2.21) 

becomes
k-n+1
Z {(m+1)(k-m)(k-m-1)... (k-m-n+2)Ek'Rn> ’ k n m=l

_ k-n+1
+ ——  Z ttK-m) (k-m-1) ... (k-m-n+2)}

kpn m*1

2_1 k-n+1
+ ---- Z {(k-m) (k-m-1) ...(k-m-n+2)}
kPn m=1

(n-l)n
kPn

k-n+1
Z {(k-m-1)(k-m-2) 

m=l
.(k-m-n+2)}

(n-1)(n-2)n k-n+1
Z {(k-m-2)(k-m-3)...(k-m-n+2) 

m=l

*  i n  N - 1  2
+ -p— Z {(k-m) (k-m-1)(k-m-2)...(k-m-n+2)} 

k n ni=l

(n-l)a*
p ,Z {(k-m) (k-m-1) (k-m-2)... (k-m-n+2) } 
k n  m=l

+ a*(n-l) 2n
kPn

k-n+1
Z {(k-m-2)(k-m-3)...(k-m-n+2)} 

m=l .

a* (n-l)n 
kPn

k-n+1
Z {(k-m)(k-m-2)...(k-m-n+2)} 

m=l

C  11 K-n
- p (1-g) Z {(k-m-2)(k-m-3)...(k-m-n+1)} 
k n  m=l (2.2.32)
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where . P k!
k n (k-n)!

E*(R ) = k n

.21) in (2.2.32) we obtain

n " ( k + l ) P (n+l) kP«l n-1
kPn n(n+l) n + kPn

(k+1) (n+1) 
(n+1)

n2-l rkPnl (n-l)‘n f:k-l)P (n-l)l
k^n n k^n L n-1 J
(n-1)(n-2)n f ( k - 2 ) P ( n- ~ ) l a* f ( k + l ) P (n+l

kPn n-2 + kPn (n+1)

(n-l)a* rkPn] a* (n-l)^n (k-2)P(n-2)
kPn n ' kPn n-2

(n-l)na*
kPn

r»Cn-l) C1-

(k-l)P(n-l) (k-2)P (n-2)
n-1 n-2

F) r tk-2)rfp-;lj

k+1 . n-1 ,, n-1 n -1
* 1 *(7?T)lktl) - ~ ------r

n
k

n(n-l)
+ a *< k+1

k(k-l) ( n + 1) n

n (n-l)n

_ i . 1 + I + (n-1) n
n k(k-l)(n-2)

k (n-2)k(k-i)

n(n-l)(k-n) 
(n-l)k(k-l) (1-5)

i e .,
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n n(k+n-2)
+ n + n+1 " k(k-l) '

k 2n n n >+
n+1 n+1 k-1 k(k-l)

n(l-£)(k-n) 
k(k-l) (2.2.33)

This is exactly the value of Eĵ (Rj) for j=n. Thus if the 

Theorem is true for j=n-l (0<n-l<_k), it is also true for j-n. 

But the Theorem is true for j = l (c.f. lerrma 2.2.2). Hence it

This completes the proof. ,

The Theorem does not apply to the case j=0 which is trivial

and was considered in lemma 2.2.1. In special case, when

a*=0, then £=0. This is the case when we have no errors in

observations and the formula for EMR.) given in Theorem. 2.2.1
K J

coincides with that for Ek(R.) given in Theorem 2.1.1.

analyse a group-factor i.e., declare as defective or non

defective the factors within a group-factor of size k which 

has been declared defective in step one. Then we have the 

following corollary.

Corollary 2.2.1

In a step-wise design, the expected number of runs 

required to analyse a group-factor of size k which has been 

declared defective in step one is given by

is true for j=2 and in general for any j, j=l,2,...,k.

Let R* denote the number of tests (runs) required to o



+ -=7 lk+1 + k6* - ~ U  '  ' 1 - 6 * )  }1
I L  6*

ni

-27
(2-£)3* + S 3*

or

nI
^ - ' { 1  -  ( l - 6 * ) k+1 -  k B * ( l - 6 * ) k}

Proof
- 1 + 6*2 - 3*] *

E(R*) - I E* (R ) P* (j) 
b j = 0  ^ J  ^

(2.2.34).

Using (2.2.21), lemma 2.2.1 and Theorem 2.2.1 we get

E(R*) ■ k - ̂ 1 -  ( l - £ * )>1J

—  k i k .  + j  + - i —  -i f-k+j — 6 * ^ ( l - 6 * ) k ^
n* j  = H j  + l  j  + l  k ( k - l )  J ( J /

a* k + —  E
n?

k j J , J
J  . j  = l g  + l  j  + l  k - l  k( k - 1 )J w

6*J"(l-3*)k_j

—  i ( j k - j 2 ) f kl 3 *J ( l - 3 * ) k_j
k ( k - l )  n j  j - 1

i  . e . ,

E(R-) - k - 1 - (1-3*)kl

“i

ic _  1 _  k+1
( k + l ) { l  (1 -6 * )  ). + k6* -  ^ r t l  -  (1 -6* )+
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-  (k+1)  e * ( l - F * ) k } -  7 T T ~ T T  ( A *k ( k - l )

-  -  -  2 - 2  
+ k B * ( l - B * )  - 2k8* + k 8*

^  -  ( 1  -  ( l - F ) k> + i r  ( 1  " Cl -  B*)k+1
nT L

■ .-.-ft - s  • *5 'llg ; ; y

1"? 1
k ( k - l )  n* k2 8* - kB*(1-3*) - k2 8 * 2

i.e.,

E ( R * )  -  k -  —
5 " i

1 -  (1 f5")k

”1
k ♦ 1 + k5* - p- {1 - tl

n;
or

«-£)!* * c F 2

nj u
1 _  k+1 —  —  ki*- a - (i - b*j - kg*(i - b*j }

- i + ?* - F

This proves the corollary.
] ( 2 . 2 . 3 5 )  .

Let R denote the number of tests required to analyseO
the r group-factors declared defective in step one. Then

Rs ■ r  E l R s ’
( 2 . 2 . 3 6 )

We may now state and proof the following Theorem.
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Theorem 2,2.2

The expected total number of runs in a step-wise group 

screening design with errors in observations, in which k is the 

size of each of the group-factor in step one and 6* is the 

probability of declaring a factor defective in the 

subsequent steps is given b y

E(R) “ h + ^ + f - i u -  (1 - I * ) k+1Hl-cx*)
K Kp

* « • {1 - ¥  - t  > * fn;

- f[l - U  - 3*)k] -

- £  - a*} - fct*3*(l - 3*)k

where a* is the proportion of group-factors declared defective 

at any step but due to errors in observations no factor from 

each such group-factor is declared defective on individual 

tests, m

§ = 0  if a* - 0 

= 1 otherwise.

Proof

The number of runs in step one is 

■Rj = h + g

* h + $- (h-1,2,3,4) (2.2.37) .k -

The number of runs required in the subsequent steps is 

Rs = rE(P*) from (2.2.36).
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Using corollary 2.2.1, it follows that

E(RS) = fnJ - f[l - (1 - 6*)^ + f + £  +

(2 - oe* + se*2

+ ^f { i " u " ^*)k+1}  " fot*u  "

fa* fa*F*2 fa* 3*
k k k (2.2.38),

after replacing ’r ’ by E(r) = gll* given in (2.2.15).

The expected total number of runs is now given by

E(R) = Rj- + E(Rg)

2f - ,k+l
= h + y  + f - ^  U  -  d  ~ $*) H I  -  a*)

{  ' ¥  - t }  *
£  - (1 - B*)^j  - l a*

-  { Z*2tt ~ a * }  -  f a * 6 * ( l  -  6 * ) k

(2.2.39)

using (2.2.37) and (2.2.38) putting the like terms together. 

This completes the proof of Theorem 2.2.2.

Corollary 2.2.2 ' •

For large values of — and arbitrary values of p, the 

expected total number of runs in a step-wise group screening 

design is approximately equal to

l
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h. f . f -k k
l-|l-(l-as)p-as^l-(l-aI)qk\(k+1

—  (1-a )p + as(l-(l-a,Jq ^

2-€ a’l 
k k J)p + a {l-d-^dq } s K s 1

t

[l-(l-aI)qk~ - f l-/l-(l-as)p - a^l-d-a^q*) 

f(l-as)p + a ^ l - d - a ^ q ^ J  (£-a*}

f
i r  -

U-as)p + ^(l-C'l-a^q1) ’ l-Cl-OgJp-^fl-d-ajJq^

fa* f 
k “ k

fa*

Proof:

If —  is large, we have the following approximations 
a

n* = l-(l-a-[)q

n + *  1
I

Y - 1's

and
6* ~ p(l-a ) + a {l-U-a-Jq }

(2.2.40)

(2.2.41)

(2.2.42)

(2.2.43)*s' -s'" I

The corollary follows immediately on substituting these 

approximations in (2.2.40)., This completes the proof. 

Corollary 2.2.3 * I

If ax=a =a* * 0, which is the case when we have noI s
errors in observations, then

2fq f f. k+1
E(R) = l + f p + - r 1 + f -  —  i - Q k
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Proof

The proof follows on substituting otj = ag = a* = 0 in 

the expression for E(R) given in corollary 2.2.2 noting 

that £ = 0 and using non-orthogonal designs. The value of 

E(R) given in corollary 2.2.3 coincides with that given in 

Theorem 2.1.2.

Corollary 2.2.4 * 1

For large values of ^ and small values of p, the 

expected total number of runs in a step-wise group screening 

design is approximately equal to

h + £ + fa* + fCl - ag)p jl - - k + i(k + 1)Cl - a*)j-

+ f C1 - aj)kp + fa-j..

Proof

If — is large, then aT, a and a* are relativelyO * -L S

small. Thus if p is small, we have
k

1 - (1 - cij)q - (1 - a^Jkp + â. upto order p

(2.2.44).

The corollary follows immediately on substituting the
%

approximate value given above in the expression for E(R5 in 

corollary 2.2.2 and approximating the resulting expression to 

terms of order p.

This completes the proof of the corollary.
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2.2.2 The optimum size of ths group-factor in the initial

step

Theorem 2.2.3

Assuming p i.e., the a-priori probability of a 

factor to be defective to be smell, and ^ large, the size ’k’ 

of the group-factor which minimizes the expected total number 

of runs in a step-wise group screening design with errors in 

observations is given by

2 - 2(l-a )(2-?)p ^ ~  s ______
_2(l-a ]p-(l-ac,)(l+a*)p J. s

provided k is real, and the corresponding minimum value of 

E(R) is given by

min E(R) - h+2f (l-dj)p _ 7(l-aR)(l+a*)p l-(l-asH2-

+ f|a*+aj + ^(l-asH3-a*)pj
m

where cx̂ is the probability of declaring a non-defective 

group-factor defective in the initial step, cxs is the 

probability of declaring a non-cafective factor defective in 

the subsequent steps and 'a* is the proportion of group-factors 

declared defective at any step but due to errors in 

observations no factor is declared defective on individual 

tests. The variable £ takes the value 0 if a**=0 and the 

value 1 otherwise.

Proof

Assuming continuous variation in k, the optimum size 

of the group-factor is obtained by solving the equation
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dk E(R) = 0,

where E(R) is as given in corollary 2.2.4, 

This implies

K  [l - (1 - aj(2 - Op] + ^(1 - a H I  + a* )p

i.e.

k =

- (1 - aj)p = 0

2 - 2(1 - a ) (2 - O p  s
_2(l-aj]p - (1-a ) (l+a*)p_ 

This value of k is real if

2(l-a )(1- h  < 1s 2
i.e. if

(2.2.45)

p  <  -----------------------------
2(l-a ) (1- -|) s 2

(2.2.46)

The minimum value of the right hand side in inequality 
]_ *

(2.2.46) is 2 • This implies that inequality (2.2.46) is

true if

p  < I (2.2.47)

Next we show that the value of k given in (2.2.45) is in 

the neighbourhood of the point of minimum of. E(R) given in 

corollary 2.2.4. This is so if 

.2
E(R) > 0

dk

i.e.,

[l-(l-asH2-OpJ > 0
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1 # 6 • t ,

P < - i ---------
2U-as)(l- | )

which is condition (2.2.46).

Therefore the value of k given in (2.2.45) is in the 

neighbourhood of the point of' minimum of E(R) given in corollary

2.2.4.

Substituting this value of k in the expression for E(R) in 

corollary 2.2.4, we obtain

min E(R)

+

= h+2f^l-aj)p ‘ ■|(l-as)(l+a')p|^l-(1-as)(2- C ) ^  

f j a *  + ctj + -̂(1 -  asH 3  - a*)p j (2.2.48).

This completes the proof of the Theorem.

Corollary 2.2.5

If a ,  = a = a* = 0, which is the case when we have I » s
no errors in observations, the cptimum size of the group- 

factor is given by

T 2 - 4p ~15

L p _
provided p<L

and the corresponding minimum E(R) is given by

min E(R) = 1 + ^  + f(2p)5(l - 2p)5.
2

Proof

The proof is obvious on substituting “j = Gs = a* = 0

in (2.2.45) and in (2.2.48), noting that in this case h = 1 

and 5 = 0. The values of k and min E(R) in corollary 2.2.5
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coincides with those given in Theorem 2.1.3.

Next we wish to obtain the value of k that minimizes 

E(R) for arbitrary values of p and large ^ . For arbitrary 

values of p and large ^
3 k+1

2f

o

f(1-a*)E(R) . h. f  . f - k
l-'[l-(l-as)p-as(l-(l-aI) q ^  

(l-as)p+as (l-(l-aI)qk)

+ f (l-a^p+ctgU-d-a-jJq }
—I L

Eli “1
k k

k 1 r r  • , kv\kl+ f l-Cl-a^q'j -f l-|l-a-as)p-as(l-a-aI)q )J

T "  " ^ (1~as3p + ast " a "ai)qk)]' &~a*)

- fa* j(l- as)p+as(l-(l-aI)qkj}* 

l-(]r-as)p-as(l-(l-aT)qk) |

(c.f.corollary 2.2.2).

The value of k that minimizes E(R) given above is a solution 

of the equation

E(R) = 0 dk

l .e.,

-2+a*+|(l-as)p+as^l-(l-aI)qk)j,(2-£;+a*) Cl-a )p s

+a .(l-(l-ctI)qk)j2(^-a*)
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(1-a )q -a + ---
s k

(2-£)a a a*
- g * s. +1

kas(l-aj)q̂ JJnq {l-(l-as)p - as(l-Cl-aj)q̂ )}
k-1

l-a*{(l-a )p + a (l-d-a^lq )}>]

+a (l-aT)q i x q s i
2 U - 0  k
------  {(1-a )p + as(l-(l-aj)q 5}

- a*{l-(l-a )p _ a_(l~(l_aT)q )}

(1-a*)
k+1

l-{l-(l-a )p-a (1-a- a )q )} s s i
ITTk (1- a )p+a (l-(l-aTlq )L s s l

a (1-a*) + -s_----
(k+l){l-(l-a )p-a (l-(l-aT)q )} . s r = I

(l-as)p+as(l-(l-aI)q )

x (1-a )q *>- q

1-a* as(l-a )qk{xq[l-{l-(l-as)p-as(l-(l-ai)qk)> J
{(1-a )p+a (l-(l-a_]q̂ )}2 u s ^ s 1

= 0 (2.2.49)

The valqe of k that minimizes E(R) given in corollary 2.2.2 

which is a solution to equation (2.2.49) is close to the 

value of k given in (2.2.45) and can be obtained using Newton 

Raphson's iterative method on equation (2.2.49).
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CHAPTER III

STEP-WISE GROUP SCREENING DESIGNS WITH UNEQUAL A-PRIORI 

PROBABILITIES

3.1. SCREENING WITHOUT ERRORS

In chapter 2, we assumed that every factor is defective 

with the same a-priori probability and thus divided the factors 

under investigation in the initial step into group-factors 

of equal sizes. It is quite possible however, that all factors 

may not be defective with the same a-priori probability. In 

such a case it is possible using certain criteria, to divide 

the factors under investigation in the initial step into 

group-factors of unequal sizes. For example in a 

manufacturing plant turning out hundreds of items everyday, 

the probability of the plant producing defective items will 

vary from time to time due to assignable causes of variation 

which affect the production. Thus it is reasonable to
m

assume that all items are not defective with the same 

a-priori probability. Let p p  p£,•••, P (p^iP i=l,2,...,g)

be a sequence of variables selected in some way from the unit 

interval (0,1). The p^'s can be selected either by using a 

systematic procedure or by some random process such as a 

table of random nuntiers. For the purpose of dividing the 

factors .into group-factors, we shall identify p^ as the 

probability that, a factor selected at random from the î '1 

group-factor is defective. Thus we have a situation where 

the factors to be tested in the i ^  group-factor have a 

variable probability p^ of being defective. It is expected
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that this method of grouping the factors such that the 

factors to be tested in the i ^  group-factor have probability 

Pj of being defective could reduce the expected number of runs 

needed to isolate defective items from the population.

3.1.1 The expected number of runs

Let there be 'f' factors divided into 'g ’ group-factors 

in the initial step, where 'f' and 'g' are fixed. Let be 

the number of factors in the i^^ group-factor in the initial 

step (i=l,2,..,g).

Then
g

f = .E_k. (3.1.1).1=1 1

Let p^ be the a-priori probability that a factor in the i ^  

group-factor in the initial step is defective (i=l,2,..,g).

It is possible to re-order p^’s so that P-̂ P2— *" • \iPg

<p<l. The value p could be the probability of factors being 

defective under the assumption that all factors are defective 

with the same a-priori probability. If p? is the probability

that the i ^  group-factor of size k^ is defective, and j is 

the number of defective factors in it, then

= 1-q
k.l

where

q. = 1-p. Mi Ki

(3.1.2)

(3.1.3).
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In the initial step, all the g group-factors are tested for 

significance. Thus the number of runs required in the initial 

step is given by .

Rj = g ♦ 1 ' (3.1.4)

where the one extra run is the control run.

Define a random variable LL such that

U. = 1 with probability p* if the ith group-factor is 
1 i

defective,

= 0 otherwise

Then

(i=l,2,3,.. .g).

E(Ui)

" ^i
= l-q^ (3.1.5)

Let (j) denote the probability that the î *"1 
l

defective group-factor contains exactly j defective factors. 

Then

1 J  t Mj / Pi d-Pi) 1 (j=l,2,3,..,k.)

(3.1.6)

Let E, (Ri) be the average number of tests (runs) required to
i J

analyse the i^k group-factor i.e. classify as defective or 

non-defective all the factors within the i ^  group-factor of 

size k^ in the subsequent steps if it contains exactly j 

defective factors. Then using Theorem 2.1.1, we get

Pi, (j) -
ki i-q,

V rj’ + j
j+i

(j=l,2,..,k.) 

(i=l,2,..,g) (3.1.7)
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Let R . be the number of runs required to analyse the i 
S l

,th

group-factor which is known to be defective. Then
k.

• E(V  ■  j i V A 0 1

k.r1
Z

I-,"1 J'1

^ i  + . + _j_
j+l + J + j+l

2J
k,- • i v 1

— FT 
1-q,1 L

(k . . l ) .k .p- .  - 2pt  - i - a - q . 1 }

(3.1.8) [c.f. (2.1.26)].

Let Rg denote the number of tests required to analyse all the 

group-factors found to be defective in the initial step. Then

Rc = I E(RC .) Ub i=1 bi l

g , r  i
(ki +1)+kiPi-2Pi-  ^ . { 1 ^ i  } U i 

1-1 l-q.1 L 1 -1
(3.1.9).

Theorem 3.1.1

Let R be the total number of runs required to screen 

the defective factors from among the 'f' factors under 

investigation if the factors with the same a-priori probability

of being defective are grouped into a single i ^  group-factor 

of size k^ (i=l,2,..,g), in the initial step. Then

g
E(R) = 'l+2g+f+ Z 

i=l
i V 1

V i ' 2p r r {1‘qi 1
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Proof

The number of runs required in the initial step is

Rt = 1+g (3.1.10)

In the subsequent steps, we require

g
RS - Z kb i=l K

k. +1
(k.+l)+k.p.-2p.- -{1-q.* }l r l- ri p- Mi U. (3.1.11) x

runs.

This implies that

g 1 
E(RS) = Z. . k.

1=1 1-q.11

k.+l
(k.*l)tklPi-2pr  )

1 \ .
ECllJ

g
= Z  

i=l
( k ^ D - k j p ^ p . -  )

using (3.1.5). Hence,

g
E(RQ) = g+f+ Z 

b i=l

1 k.+l
k.p.-2p.- — {1-q.1 3 r l l p^ l (3.1.12)

The expected total number of runs is given by

E(R) = Rj. + E(RS)

g
= l+2g+f+ Z 

i-1

-i k.+l
k.p.-2p.- — {1-q.1 }l i  l p. Mii . - _

(3.1.13)

This proves the theorem.

Corollary 3.1.1

For small values of p[s (i=l,2,...,g), the ex pected 

total number of runs-is given by
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E(R) -  L g -  ^  |

Proof

For small i.e., the a-priori probability of a 

factor in the i^h group-factor to be defective,

i H i 1 ' ] = 5 ; [ l k i * 1 ) p i -
Cki+ l)k.  2 (ki +l')'ki (ki - l )  3

-p + 2x3

« k.+l -l

2
kf+k.
— — - D upto order p

2 Hi i

Using (3.1.14) in (3.1.13) we get

g
E(R) = l+2g+f+ E 

i=l
k.p.-2p.-k.-l+ r l ri l 2

k.p. k.p. iKi . iKi

g 3 8 1 S 2
■ l4B-2 jjPi* 2 2

-P.1

(3.1.14)

(3.1.15)

This completes the proof of the corollary.

3.1.2 The optimum sizes of the group-factors in the initial 

Step

Theorem 3.1.2

Assuming p^ i.e., the a-priori probability of a factor 

in the i*^ group-factor to be defective to be small, the size 

k^ of the i*'*"1 group-factor which minimizes the expected total 

number of runs in a step-wise group screening design is given

by

k. * (f + |g) _ 1
g 1 

Pi Z ~
1 i-lPi

3
1 (i=l,2,...,g)
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and the corresponding minimum value of ECR) is given by

Min ECR) 25
= 1+S * T  i=!pi + 8(3g + 2f)

2 1
g 1 Z -
i=l Pi

Proof

The problem is to obtain k^s which minimize the

expected total number of runs given in corollary 3.1.1

subject to the condition 
g

f = Z k. 
i=1 1

The condition above, implies that

k = f - k - k-, - *•* " k  . g 1 2  g-1
Substituting for k in (3.1.15), we geto *

ECR) = FCk1,k2,k3,.--.kg_1)

*  X* S - 2 . f  P i*  f Lklpl*k2P2*’*•*kg-lpg-l

(f'kr k2.... kgjpg]

klPl*k2P2*-” *kg-lPg-l

P^J . (3.1. 16)

Assuming continuous variations in k’s, critical values of
i

k’s are obtained by solving the equations 
i

3 k,-
* 0 (i=l,2.... g-1)

(3.1.17)
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which imply

2^i~pg] + kip i- (f-kr k2-*-*"kE -i)pB--L rg 

i«l,2,...,g-l

1 • G ■ f

kipi-(f-k1-k2-...kg _1 )pg -5 Cpg -p.)

which imply

( k . +— ) p . = ( k + —  ) p 
i 2 1 B 2 Hg

i-1,2,. . . ,g-l C3.1

Equations (3.1.18) imply

i . e . ,

‘ V  f >  lkg* 2 )PE
1/p. 1/P g

i=1,2,..,,g-l

(3,1

t k r . l ’ .  ( k 2* ! >
1/p.

fkg -i* !) C v  I
1/p. i/p .Hg-l

_2_
X / Pf

3fi ♦ g
Z k,

- 2 '' j,j

i “ 1P i

111
!  i

i-l P i

which gives

(3.1

ki • * +'> — g 1
- f  • (1=1,2,.

a. I - 
X i = l Pi

. 18) .

.19)-

. 2 0 )

• ,gl

( 3 . 1 . 2 1 )
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We now-wish to show that the values of k!s1
given in (3.1.21) are in the neighbourhood of points 

of minimum of E(R). This will be so if the second 

order derivative matrix

of dimension

(g-1) x (g-1) is positive definite for values of

k^-'s given in (3.1.21) where

32F
3k

. = p . + p2 Kl Hg (i-1.2,----g-1)

and

32F
3k.3k. " pc 

i J *
( i + j -1.2, ... ,g-l)

Hence

D - Dlag(p1 ,p2 ,...,pg l ) . 

where 3 . is a (g-1) x (g-1) matrix of ones.o
The matrix D is positive definite since all the 

elements along the leading diagonal are of the form

pg >C. 4-1,2 • ■ • / g - L } furthermore

pl+pg pg = P 1P2 +PiPg +P2Pg > °'

Pg P2*Pg

p l*pg Pg. * Pg •

pi P2 + Pg Pg = PlP2P3-PiP2Pg + PiP3Pg-Pz?3Pg>0. ,

Pg Pg P3*Pg
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and in general

lD l = PiP2p3' ’ 'pg-l*p2p3 ’ * 'Pg-lPg*P lP3P4* • *Pg-lPg + *

Hence the value of k ^ ’s given in (3.1.21) are in

the neighbourhood of points of minimum for ECR) in 

corollary 3.1.1, Substituting these values of k ^ ’s 

in the formula for E(R) given in corollary 3.1.1, 

we obtain '

+ P 1P2p3 -•*P g - 2 Pg . > 0

( 3 , 1 . 2 2 ) .

This completes the proof of Theorem 3.2.1.



78

In the theorem that follows, we shqll show 

that min E(R) given in C3,l,22) is less than or 

equal to min E(R) given in (2.1.36a) under the

assumption p^=p£= -p =p
g

Theorem 3.1,3 * I

A step-wise group screening design with 

initial group-factors of unequal sizes, the i ^  

group-factor consisting of factors with a-priori 

probability p^ of being defective is more efficient 

(in the sense of fewer runs) than the corresponding
I

step-wise group screening design with the same 

number of initial group-factors but of equal sizes 

each containing factors with a-priori probability 

p of being defective provided

P i  1  P = ,.,,g] ,

Proof

The problem is to show that min E(R) given 

in Theorem 3.1,2 is' less than or equal to min E(R) 

given in (2.1.36a). That is we show that

l4g- f  P i * § (38*2f)2

iii p,

, 3_ fp<_ 1+ -~fp +  -
3 / 2

-  -  — --------T  * | ( 2 - 4 p ) ! p :
( 2 - 4 p )2 C 2 - 4 p )2 2

( 3 . 1 . 2 3 ) .
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Substituting g = where k = as

given in (2.1.35), inequality (3.1.23) becomes

i 25 § , l f, ,nP,2 1l + g " -5- . P 4 * p(3g*2f) -------0 i-1 1 8 g 1
.E, -1=1 p.

3
<_ 1+ + g ~ 2gp + i_£

2g

i . e . ,
25 S i 2 1

t  iJj Pi * a (38 * 2fl - r - i
. E -  i = 1 Pi

25 l fQ -,_,2p <.---Q-Pg + g(3g + 2f ) ĝ (3.1.24)

l , e ,

25
8 C^P -  j x p i > 2 f ) 2 f r iE - 

i=l Pi

(3.1.251,

which is true if

25 , 
TTlSP

g
i = 1

25
P«1 + T g ‘ g 1

i-1 P:
f | - °

l . e .,

- E p . t
i - 1  1

_g_

.! Ii-i Pi

< 0

l . e .
2 f  f  1g < E„ p . . E, —  5 -  i-1 H 1 1=1 p. ( 3 . 1 . 2 6 ) ,
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which follows from Cauchy - Schwarz inequality

i Jrl.E (p.)2(- ) 
i = 1 Pi

g
< Z p .
- i = l 1 i - -i

This proves the Theorem,

II M
OP
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3.2, SCREENING WITH ERRORS

The problem of step-wise group screening

with unequal a-priori probabilities of factors to

be defective has been considered in section 3.1.

While developing the theory, we assumed that there

were no errors in observations. In this section,

we shall allow errors in observations and work out

corresponding results given in section 3,1. As in

section 3.1, factors with the same a-priori

probability of being defective will be put together

in the same group-factor in the initial step, thus

resulting in group-factors of unequal sizes in

the initial step. For the purpose of experimentation,

we shall follow the method described in section 2.2.
#
3,2,1. The expected number of runs

Let there be 'f' factors under investigation, 

In the initial step, the 'f* factors are divided 

into ’g ’ group-factors such that all the factors 

with the same a-priori probability of being defective 

are put in the same group-factor. Suppose the i ^  

group-factor has factors, then we have 

g
l k. = f Ci=l,2,..,g) C3.2.1),

i = l 1

where f and g are fixed.
A

? Let A^ be the estimate of the main effect of 

the i^^ group-factor containing ’s ^ ’ defective 

factors. If the effect of a defective factor
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within the i ^  group-factor is A^>0 (i*l,2,t,, fg),

then

ECA.) = s.A. (3,2.2a)

and

Var (A .) =
g + h

Next define

where

and

A .- s .A . i 11
/j2/(g+h)

Y • ~ s . A 1T Ii

A.l

/o2/(g + h )

(h=1,2,3,4) (3.2.2b)

(3.2.3)

(3.2.4)

A = _ _ i _  
TIi

Jo2/g + h
(3.2.5)

Assuming observations to be normal, is a standard 

normal variate, We shall say that the i*"*"1 group- 

factor is non-'-defective if s^ = 0, which implies that 

Si^Ii = ^  defective if  ̂ 0* Thus we

wish to test the hypothesis

H : s . 1 T . = 0 o iTIi •
alternative (3,2,6}

H l :si$Ii k 0

Assuming o is known, we shall use the normal deviate 

test, otherwise we would use a corresponding t-test.
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The power of the test for the i^*1 group- 

factor is

„ , , , : i I z2\ „
"ii si^Ii' “ii f e x p  \ ~ t  ) a z

2(aIi’-s i*Ii 0.2.7)

where z C a ^ )  is given by

= J ^ e x p r r ; d2
(3.2.8)

ztaIi>

which is the size of the critical region for testing
t h 'the significance of the i group-factor. When 

A .
s .= 0 or —  = 0, we have l a

Hjjto.cjj) -ajj
A •

When s^=fO and —  is large, then we have

(3.2.9).

n T .(s.<J>T . , a T . )  -  1Ii irIi' Ii (3.2.10).

Let p^ Li=1,2,.,.,g ), be the a-priori 

probability that a factor within the i*^ group-factor

is defective. Then the probability that the i. th

group-factor containing s^ defective factors is 

declared defective is given by.

k . , . l fk . \ s .
" u  * p p? K ) k l ' S i  ni i t s ^ i i - a i i )

( 3 . 2 . 1 1 ) .

Define a random variable U. such thatl
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U i = 1 with probability n*^ if the ith initial 

group-factor is declared defective,

= 0 otherwise

i=l,2,,..,g. (3,2,12a),

Then

E C U .  ) = n *  C 3 , 2 , 1 2 b ) .l Ii
\

In the subsequent steps, the analysis of the group- 

factors declared defective in step one is continued 

as described in section 2.2.

Let p^' be the probability that a factor 

chosen at random from the i^^ group-factor containing 

s^ defective factors that has been declared defective 

in step one is defective. Then

p i ki si_1 ki"si
> - p -  U s l- i K  ii 1“ii s i=l\ 1 /

pin Ii

nii

I i

(3,2.13)

where
/k. - l \  s . - l  k . - s .

n * .  - E ( 1 . I p . 1 q . 1 1 I IT . ( s . ( 4 T . , a T .I i  S-  = 1 ^ s i - l ^ K i  H i  I I  i Y I i  I i

(3.2.14)

following Curnow [ 2 .

Define a random variable 6^ as follows;- 

6.=0 if a factor chosen at random from al
group-factor that is declared defective
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in step one is non-defective 
= 1 otherwise.

Then

6^ = 0 with probability 1-pT 

= 1 with probability pT .

Let as  ̂ be the probability of declaring a non-defective 

factor from the i ^  group-factor defective and ys  ̂ be 

the probability of declaring a defective factor from 

the i ^  group factor defective in the subsequent 

steps.

Let

Then

8. = (1-6.)a . + 6 .y . .l i si l ' si

. with probability 1-pT

= y • with probability pTSI X

Thus the average value of ft is given by

'(3.2.15)

ft = y . p i 'sr i
m

+ a . S 1

• - i - nn T, LX 1
). (y . l 'si k • / 11 T •SI II L T • UII SI

‘ii
(3.2.16a)

where

8
S ■  [ - i

(y . - a . ) n . + nsi si Ii Ii“si] (3.2.16b)

this the probability that a factor from the i 

initial step group-factor is declared defective in

the subsequent steps. Thus ft may be interpretted
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as the conditional probability that a factor 

chosen at random from the i^^ group-factor that 

is declared defective in the initial step is 

declared defective.

Let be the probability that a group-factor

consisting of factors from the i^*1 initial group-

factor is declared defective at any step but on

testing individual factors within it, no factor is

declared defective due to errors in observations.

Obviously a*^ will take different values at

different steps, However for simplicity in algebra,
♦

we shall assume a*^ to be of uniform value, say .

Denote by P* f ., the probability that l j J

exactly j factors from the i ^  group-factor that 

is declared defective in step one are declared 

defective irvthe subsequent steps, Then

p k

k .*i
-ci-Ij) J-

Cj 1 -
k . - j

> J C 1 -B ! )  1 j=l,2,,.,ki

[3.2,17) •

Let E* (R.) be the expected number of runs required 
Ki J '

to analyse the i ^  group-factor, i.e. declare as 

defective or non-defective all the factors within 

the i ^  group-factor of size k^-which has been
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declared defective, if exactly j factors from it 

are declared defective in the subsequent steps. 

Then using lemma 2.2,1 and Theorem 2.2,1 we have

and

E* CR.) = k. 
kj  J x

V V  ■

for j=0 (3,2.18a]

♦ atl

jki * j ♦ j
j +l j + l

k.i J j
j + l j + l k.-ll

S j K k i"j) for

j (k.+j-2)

x 1

M V 11- [3,2.18b]
where E.=0 if a! = 0 and 1 otherwise.l l

Denote by R ^  the number of tests (runs! required
.thto analyse the i group-factor once it has been 

declared defective in the initial step. Then
m

E(RSi> ■ J o Eki tRj 1FV J1

k.1

Ii L

k.
i-ci-e?] 1

i >i+ ---  £
RIi

jk.
1 ♦ j * - J-

JCki+j-21
j+l k.Ck.-l] J - i x

x | j1) U t ) (1-6!)

a!x

jli

.2

, . , ki’J

j * i ' J*1 ' V 1 * k . i k . - n j
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I k A  - J _ krJ
x M e  u p  a - s p

a - C i )  ki j c k  - j l  K  _  i _  kr j
- — r-5-  ----1----  i . I (6!)J (1-8!) 1

n ; ,  J - i  k . C k . - l )  kj/ i i11 1 1

i. e .
k.

E(R . ]  » k.  -  - i -  
1 n i .ii L

k.*l
rs*y i1-C1-313l

" i i L

_ i _ k. + 1
ki + 1 + kiei " e T {1" u "6i ) 1 }J

* { i  * i 2]II

/V *a .

n h
-=*-.{ 1 - C1 - e t)

k . +1 _  k. _  _ _
1 - k . e t Cl - Bt )  * 1 } - 1 + P . -8?l l

*
i i

(3.2,19) ,

using (2.2.35).

Let Rg denote the number of tests required to 

analyse all the group-factors declared defective in 

step one. Then

ic = E U.E(RC .) s i=1 l Si C3.2.20)

where LL is as already defined in (3.2,12a), 

Theorem 3.2.1

The expected total number of runs in a

step-wise grou.p screening design with g (fixed)

group-factors in the initial step such that the

i ^  group-factor is of size k. ( i = 1,2, . . . , g ) and B’1
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is the probability of declaring q factor within the 

i^^1 group-factor defective in the subsequent steps 

is given by

ECRJ = h+f+2g -

+
g _
z k,. e!Ji= 1 1 11- k . ni Ii

g r _  k .* 
- Z k. l-(l-Bt) 1i= l 1 1 J J i - i  *

where ct! is the probability that a group-factor 

consisting of factors from the i ^ initial group- 

factor is declared defective but on testing 

individual factors within it, no factor is declared 

defective due to errors in observations and £^ = 0 if 

a?=0 and 1 otherwise.

Proof

In step one, we require

Rj = h+g runs (h=l,2,3,41, (3,2.211

The number of runs required in the subsequent steps 

i s ’
g •

R„ = t U.ECRo.l as given in (3.2,201,w  ̂  ̂ 1 O 1

Using (3.2,191, it follows that
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E(R.
g g r _  k.-i

) = .E k.n* - E k. 1-Cl-e!) * 1 i = l i Ii i = X i(_ i J

g
- — d - n

3*
i

♦ E 
i = 1

k.+l+k.B? 1 1 1

g r, — * —  2*1
- .En [(2-Ci)6. . C. 6*.1 = 1 i i J

g ,fl .. k . +1 — . , i

k. +1T* i 1

i=l i n

k.
k.BMl-lT) M

1 + 3;2 ■  ■ >;]

E(R) = R: * E(Rg)

,(3.2.221,

after replacing IL by,E(U^) = 11*̂  given in 

(3.2.12b) .

The expected total number of runs is now given fcy

(3,2.23).

Using (3,2,211 and (3.2.22) in (3.2.23), putting the 

like terms together, we obtain the expression for 

E(R) given in the Theorem, This completes the proof. 

Corollary 3.2,1
A . 1 s

For large values of and arbitrary values

of p^'s, the expected total number of runs in a step

wise group screening design with the i ^  group-factor 

of size k^ (i = 1,2,, . ,,g ) is approximately equal to

h+f+ 2 g -  E
i = 1

r r ■ • k- k.
t i - « j ) b

. 1

k.
,(!-«_,) + a„,{l-(l-aIi)q.1}si si
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g
+ E k.<

i-1 1
p . (1 - a . ) + a . \ a)*1 si si\ II /

r t
2-5. atL i  1 1

» x- — - k T

k.
j 1kif1'(1-“ii)qi1

i-1

r / k.\
l-<l-Cl-a . )p.~a . (1 - (1-a7 .)q .si r i s i V  Ii i /

k.‘. i

g g
Z a!+ E ta!-5 . )

i-1 1 i-1 1 1
i.tl-a .)-a .(i-(1-aT .)q . 0  l si si V Ii^i/

g
E

i = l ki“l' C1’0si1Pi'“si(1‘tl‘aIi,qil(/

X 4 1 - C1-a .)p . -a .( s i  r i  s i \ l-(l-an ] q ^ ki

Proof
A . ' s

If — -—  are large, we have the following

approximations

* 1 -
(3,2.24)

and

nn  ■ 1-

Y . «'lSI

(.3,2,25)

(3.2.26)

6> - <1-<Js l )pi ♦
(3.2.27).

The corollary ’follows immediately on using these 

approximations*in the expression for E(R) given in 

theorem 3.2.1. 

this completes the proof.
i
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Corollary 3,2.2
A • s

For large values of --- - and small valueso

of p^'s, the expected total number of runs in a 

step-wise group screening design with g group- 

factors in the initial step, the i ^  group-factor 

being of size k^Ci=l,2,,,,,g) is approximately equal 

to

h*g. j i u - « s l )k.p.
r 2 - 5 .

— -k.+ ici-o/ ) Ik.+1)- 1- k.l 'i 2

g g

Proof
A . 1 s

If ■■■■*■ i ■ are large, then a T .'s , a and, 0 XI S A

at's are relatively small. Hence if p ^ ’s are small.

we have
k.

lr-Cl-c^lq.1 = C U a Ii)kipi ♦ aIi 

upto order p^ [3,2,28).

The corollary follows immediately on substituting ths 

approximate value given in [3.2,283 in corollary 

3,2,1, approximating the resulting expression to terms 

of order p^ and rearranging similar terms. This 

completes the proof,

3.2.2 The optimum sizes of the group-factors in 

the initial step

Theorem 3,2,2

For large values of
A . 1 s
----  and small values co



p ^ ’s, where is the a-priori probability of a 

factor within the i ^  group-factor to be defective,

the size 'k. * of the i 1
. th group-factor that minimizes 

the expected number of runs is given by

k. = /f+ E
g ra**aT . + H l - a  . ) ( 3-a? Ip .1 L l Ii si______ l r lj

i = 1
[2(l-otIj]-Cl-agilCl + a!V^pi

[
2Cl-aT .)-(l-a .]Cl*a Ii si nip. f

1 J ‘i== 1 f2(l-aT . 1-C 1-a . ] C1 + a? ]1 p . L Ii si

K * 1!!* H l - a ill[3-.;)p1]

[2[l-.aI1]-(l-asi!(l*o.;)]p.

where is the probability of declaring the î *"1

non-defective group-factor defective, a! is the
m

probability that a group-factor consisting of factors

from the i ^  initial step group-factor is declared

defective at any step but on testing individual

factors within it, no factor is declared defective

due to errors in observations and a . is thesi
probability of declaring a non-defective factor 

from the i^^ group-factor defective..

Proof

The problem is to minimize E(R] given in

corollary 3,2,2, subject to the condition 
g
E k. = f . 

i-1 1
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By the method of Lagrange's multiplier, let

F ' ̂ 2' * * 1 ̂  ̂  g '   ̂̂
g g

= h+ g+ Z k.o! + l k.ot-j..
i-1 1 1  i=1 1 11

g
+ Z Cl^a .3 k .p ., 1-

i-1 S1 1 1 i

g 2 / g >
Z k. (1 - a T • ) p . + X If- Z k.)

i=l * 11 1 \  i-1 V

f  C2-C 3 x
—r— ---- k . + i(l-a!)(k.*2k. l 2 i i

where X is the Lagrange's multiplier.

Assuming continuous variation in k^, the critical 

values of k /  are obtained by solving the equations

3k, = 0 CiFl,2,..,g)

and (3.2.29)

^  - 0 3 X
Conditions [3,2,291 imply

- f~2 C l-aT .1^2(1-a ,3 + Cl-a .lCl^otllk.p. L Ii si si l j l rl

[•i+ <xT . + (l-a . )p.+ -~(l-a .1(1 Ii s i r i, 2 si

and

X = 0

g
Z k.

i - 1  1
= f

(3.2.30]

(3.2,31)
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From (3,2.30] we get

| d-asll(3-a:)p.]
K . = ------------------- ---------------

1 f 2 C l - a T. ) - C l - o  . ) ( l * a t  )1 p .[_ I i  s i  1 J r i

' ' (.3,2,321,
Summing (3,2.32] over i and solving for X we get

/
X =

g
f  + E k

+ a T .+ -■ (1 - a .1(3 Ii 2 si ~a I )pi]
i’1 ^ C l - C j j l - a - a ^ H l . c p J p .

g
I

1=1 [2ti-,l i i-ti'«slm * o j ] j p 1 (3.2.33]

The Theorem follows immediately on substituting this 

value of X in (3,2.32],

This completes the proof.

Corol l ary 3 ,2 -, 3

If a-r.̂ ct ,'a? = CL, which is the case when we . I i si i '
have no errors in observations,

k. « (f + 4f]
.1 2

P • r —
v V i

3
2

Proof

The proof is obvious on substituting 

ô .. - a! = a^. = 0 in the expression for k^ given 

in Theorem 3.2,2,

The value of k^ given in corollary 3.2.3 coincides 

with that given in Theorem 3.1.2.
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CHAPTER IV

INCORRECT DECISIONS IN STEP-WISE GROUP SCREENING 

DESIGNS

4.1. SCREENING WITH EQUAL A-PRIORI PROBABILITIES

In section 2,2, we worked out the value of 

the optimum size of the initial group-factor taking 

into consideration only the expected total number 

of runs, In this section, we shall work out the 

value of the optimum size of the group-factor in 

the initial step, taking into consideration both 

the expected total number of runs and the expected 

total number of incorrect decisions,

4,1,1 Calculation of the expected total number 

of incorrect decisions

We shall consider the following cases of 

-incorrect decisions;

Ci) declaring defective factors as non

defective in the initial step, 

tii) declaring defective factors as non

defective in the subsequent steps and 

Ciii) declaring non-defective factors as 

defective in the subsequent steps,

Let P*[j) be the probability that exactly 

j factors are declared defective in the subsequent 

steps from a group-factor of size k that is declared 

defective in the initial step.
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T h e n

p;cj> -

1- ~r j-0

n j \ J , 
\_

_ J _ _ n
e* (i-e*) J j = l ,2, . ..,k

as explained in (2.2.21).

Let E^tj) denote the expected number of factors 

declared defective from a group-factor that was 

declared defective in the initial step.

Then
x •

E k (j) - ij k P

= k & + (4.1.1),

where g + is the conditional probability that a 

factor chosen at random from a group-factor of size 

* k * that is declared defective in the initial step i 

declared defective.

Let p^°^ be the probability that a factor

chosen at random from a group-factor that is

declared non-defective in initial step is defective.

Then ^
(□) p U - n J )

!-nj (c.f. Patel [l 8] )

(4.1.2),

where n* and n* are as defined in section 2.2.

Further let p + be the conditional probability that 

a factor is non-defective given that it is declared

defective.
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Lemma 4.1.1

a Cl-p")+ s r
P 1T+

where a and p' are as defined in section 2.2, s
Proof

Let E^ be the event that a non-defective

factor from a group-factor that is declared defective

in the initial step is declared defective in the

subsequent steps and let E„ be the event that az
factor from a group-factor that is declared defective

in the initial step is declared defective. Then

Prob.CE,) = (l-p')a (4.1.3)I s
and

Prob.(E-) = p'y + C l -p^)o z s s (4,1.4)

where y is the probability of declaring a defective s
factor defective in subsequent steps.

Hence,

p + = Prob. (^ l / ^ )

a (1-p'J s
p"ys +(l-p'')as

a (1-p ') s K
e+

[c.f. (2.2.19)]

(4.1.5).

This completes the proof of the lemma. 

Theorem 4.1.1

Let M d be the number of defective factors 

declared defective in a step-wise group screening 

design with f factors, the a-priori probability of
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a factor to be defective being 'p', then

E(Mr ) - fp Yg

where y is the probability of declaring a defective s
+

factor defective in the subsequent steps and is 

as given in (2.1,18),

Proof

The total number of factors that are 

declared defective from the r (r<g) group-factors

declared defective in the initial step is equal to
\  •

r k B + using (4.1.1).

The probability that a factor which is declared 

defective is defective is given by

l-p+ (4.1.6)

where p + is as given in lemma 4.1.1.

Therefore

M r - rkg*(l-p+) (4.1.7).

Replacing r by E(r) = gn* we get
0 .

E(Mr ) = fnjl+ (l-p+ ) (4.1.8).

Substituting the value of p + given in lemma 4.1.1 

and noting that

3+= Y p "  + a(l-p'*) sr s K
and
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in C4.1.8) we obtain

E(MR ) = fpn*Ys (4.1,9) .

This completes the proof of the Theorsm,

In the next Theorem, we shall obtain an 

expression for the expected number of defective 

factors declared non-defective in the subsequent 

steps.

Theorem 4.1.2

In a step-wise group-screening design with 

f factors and with errors in observations, each 

factor being defective with a-priori probability 'p', 

the expected number of defective factors declared 

non-defective in the subsequent steps is given by

l s = f p n * ( l - Y s )

where y s is the probability of declaring a defective
+ m

factor defective in the subsequent steps and is 

as given in (2,2.18),

Proof

The expected total number of defective 

factors in the g group-factors is equal to 

fp.

The number of defective factors declared non-defective 

in the initial step is equal to

(g-r)kp^0  ̂ (4.1.10)

where p^0  ̂ is as given in (4.1.2).

The number of defective factors declared defective
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in the subsequent steps is MR , If Ig denotes the 

expected number,of defective factors declared 

non-defective in the subsequent steps, then

Is = E[fp-(g-r)pCo) - Mr

= fpIUtl-y ) (4.1.11),J. S

using (4.1.9) and replacing r by E(r) = gn* .

This proves the Theorem.

Let 1^ denote the expected number of 

defective factors declared non-defective in step 

one.

Lemma 4.1.2

Ij = fp(l-n*)

Proof

Ij = E(g-r)kp(o) (c.f. (4.1.10))

= fp(l-n*) (4.1.12),
** *

substituting for E(r) = g IT j  .

Hence the lemma.

In the Theorem that follows, we shall obtain 

an expression for the expected number of nqn- 

defective factors declared defective in the 

subsequent steps,

Theorem 4.1.3

Let M be the number of non-defective u
factors declared defective in the subsequent steps.
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T h e n

ECM ) = fa (n* - pIU), u s i  r I

where as is the probability of declaring a non

defective factor defective in the subsequent steps, 

n* is the probability of declaring a group-factor 

defective in the initial step and p, 11̂  and f are 

as defined earlier.

Proof

The total number of factors that are 

declared defective from the r group-factors declared 

defective in step-one is

rkf3+ using (4.1.1)

Thus

M = rk"g + p + u r

where p+ is the probability that a factor that is 

declared defective in the subsequent steps is non

defective. Therefore

ECM 3 = ECrkf5+ p+ )

= fas ̂ nj - pnj 

using (4.1.5) and noting p'

(-4.1.13)

This completes the proof of the Theorem.

Let I denote the expected total number of 

incorrect decisions in a step-wise group screening 

design with errors in observations. Then we have 

the following Theorem.
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The expected total number of incorrect 

decisions in a step-wise group screening design with 

f factors each factor being defective with a-priori 

probability p is given by

I = fp - fpn*ys + fas (n* " Pnj 5

where p, nt, n! and y are as defined earlier.1 X s

Proof

The expected total number of incorrect 

decisions is obtained by adding I^, I and E(M ),i.e.,

I = IT + Ic + ECM )I S  u

= f p (l-nj)+fpnj(i-ys ) + fas (i!j - pn-j-1

(4.1.14),
using (4.1.12) and Theorems (4,1.2) and (4.1,3).

T h e o r e m  4 , 1 . 4

. Simplifying *(4.1.14) we get

I - fp - fpn^Yg + fots (nI " P11̂  (4.1.15).

This completes the proof of the Theorem.

Corollary 4,1.1

For large and arbitrary p, the expected 

.total number of incorrect decisions in a step-wise 

group screening design with errors in observations 

is approximately equal to

f Q s [ q  “ d - a j l q 1' ]  ■
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Proof

When —  is large, we have the following o

approximations

rr *  K r •i K \n * = a Tq + (1-q )

= l-Cl-aT )q

and
"l “ 1

1.

The corollary follows immediately on using these
\ .

approximations in (4.1,15).

Corollary 4.1.2

For large —  and small p, the expected total 

number of incorrect decisions in a step-wise group 

screening design with errors in observations is 

approximately equal to

fas£(oij-p) + (l-otj)pkj.

Proof

For small p, 
kq - 1-kp , upto order p.

The result follows on using this approximation in 

corollary 4.1,1,
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4,1.2 Optimum size of the group-factor in the

initial step considering the expected total 

number of runs and the expected total number 

□f incorrect decisions

Since we cannot minimize•both I and E(R) at 

the same time, we will try to minimize one of them 

while fixing the value of the other, for the 

following cases:-

(i) large ^ and small p and 

C i i ) large and arbitrary p.

4,1,2,1 Optimum size of the group-factor in the 

initial step for large and small p

Theorem 4,1,5

For large and small p, i.e., a-priori

probability of a factor to be defective, the size 

k of the gro^p-factor in the initial step which 

minimizes the expected total number of runs for 

a fixed value of the expected total number of 

incorrect decisions u say, in a step-wise group 

screening design with errors in observations is 

given by
w-fas (a j-p)

^ fa 11- a T)p *s .1

and the corresponding minimum value of E(R) is 

given by

a*+aT +i(l-a H3-a*)p I 2 s ^min E (R 1 - h+f
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f a (l-aT )p r s 1
oj-

0)

l-Cl-a* ) ( 2 - O p
fa (l-aT )p L -*s I

-fa (aT-p) f i 1

a C l-aT ) s 1

where a T , a and a* are as defined in section 2.2 1 s
and the variable £ takes the value 0 if a*=0 and 

the value 1 otherwise.

Proof

For large —  and small p, we have a

E(R) “ h+ + fa* + f(l-as )p ^1- -k+ i(k+1)(1-a* k 4

f (1-aj)kp + faj ,

and

I a fa (̂a-j.-p) + (l-aj.)pkJ

using corollaries 2,2,4 and 4.1.2 respectively.

The problem is to minimize ECR) given above subject 

to the condition

fag ̂ (a j-p ) + (1-a j  ) p k j = u) (fixed).

This is equivalent to solving this constraint.

Thus the required value of k is 

k =
u-fa (ax-p) ____ s I K
fa (l-aT )p s 1

(4.1.16a).

Since I is an increasing function of k, u should be 

chosen so that the value of k in (4.1.15a) does not 

exceed the value of k that minimizes ECR) in

k=zS
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corollary (2.2.4). That is we choose the value of 

u> which satisfies the condition

ui-fa (aT-p) P 2-2 (1-3 _ ) ( 2-£ ) ps I . _______ =____________
fa C1-a T) —  2(1-a T)p - i i - a )( 1+a* ) ps i  I s .

(4.1.16b)

The expression on the right hand side is the value 

of k which minimizes E(R),

Inequality (4.1.16b) gives

a) < fa (1 - a - ) — s l
2-2(1-a )(2-£)p s
2(l-aj)p-(l-as )(1+a*)p

+ fa (aT-p) (4.1.16c)s I ^

The inequality (4.1,16c) is valid if

1-2(1-a )(l-|)p > 0 s 2

which is true if p<5 ^:.f. (2.2.47)^.

Substituting^ the value of k given in (4.1.16a) in 

the formula for E(R) given above we obtain

min E (R ). h + f a* +a j

f a (l-aT)p
. + ____ §_____L — .

d)-fa ( l-aT ) p s I K

) (3-a*)p]

)(2-5)p]

w-fa (a x-p)+ _____s__ L _
a (1 - a x ) s I

f( 1 - a j ) - -|(l-as )(l + a*)J

(4.1.17).

This completes the proof of the Theorem.
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Interchanging the roles of E(R) and I in 

Theorem 4.1.5, we obtain the following Theorem.

Theorem 4.1,6

Assuming p to be small and large, the size

* k ' of the group-factor which minimizes the 

expected total number of incorrect decisions subject 

to a fixed value of the expected total number of 

runs, say v, is given by

Ci) k *
v-h-f{a*+ a T + -~(l-a )(3-a*)p} 
_______________ 1 Z_____s________ _
2fp£(l-oij)- l-as ) (1+ a * )J

v-h-f{a*+aT+ i(l-a )(3-a*)p} 1 2 s
' 2

2f p{ ( 1-a-j-) - l-«s ) ( 1 + a* ) }

1-Cl-a )(2-C)p s
_ 1 

2

2 p { ( 1 - a j ) -  ± ( l - a  H l  + a * ) }

when
1 t

> h + 2f ̂ (1-OjJp- l-as 3 (1 + a* ) pj * Q l- (l-as ) (2-?)pJ

+ f  j a  * + a j  + ^ ( l - a s ) ( 3 - a * ) p j

( i i 3 k -
2 - 2 ( l - a „ ) ( 2 - 5 ) p  

2 ( l - a T) p - ( l - a  H l + a * )
L  S

when

= h + 2 f ^ ( l - a j ) p -  - ^ ( l - a s ) ( l  + a * ) p j  j ^ l - ( i - a s ) ( 2 ~ c ) pv
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Proof

♦ f^a'+aj* ^(l-ag)(3-a*)pj

The problem is to minimize

I = fas j^Caj-p) + Cl-aj )pkj ,

subject to the condition

ECR) = h+ £  + k fa * +f(1-a )pj1_ 2-g 
k k+±(k+l)(1-a*)

+ f (1-a^)kp + faj 

= v (fixed) .
V

This is equivalent to solving for k in the equation 

f k2p £( 1-Oj ) - ^(l-os )(l + a*)J

h+ | h-v + f { a*+a j + 2-Cl-as )(3 -o-lp}]

+ f j\-(l-ag ) (2-£)pJ = 0 (4.1.18).

Eq.uation (4.1.18) implies

v-h-f{a * + a T+ i(l-a )(3-a*)p} 
k = ------------ 1-- 1-----s-------- L_

2f p £( 1-a ̂ ) - ^(l-og )(l+o*)J 

v - h - f { a * + a j + ^(l-as )(3-a*)P r

2fp|^(l-Oj)- -i( l-ag ) ( 1+a* )J

1 - ( 1  -cts ) ( 2 - C ) P

2p{ (1-a-,-) -i(l-as ) (1 + a*)}

( 4 . 1 . 1 9 ) .
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The smaller value of k gives the point of minimum 

for I. The values of k in (4.1.19) will be real if 

we choose v >_ min E(R) given in Theorem 2.2.3. 

i . e .,

v > h+2f [ c w : )p - 4ci a ) (1 + a s ;>p]

X 01 - (1 - a
12

)t2-5)p

[ - + a I + ^ ■ ^ _as 3~a* ) P*]

(4.1.20)

If v is such that we have equality in (4.1.20) 

instead of inequality, then the value of k will be 

given by

" 2-2(1-a )(2-?)p
k = -------- -----------------

2 (l-aT ) p- (1-a ) ( 1 + a* )P I s

(4.1.21),

which is exactly the value of k which minimizes 

E(R) in corollary 2.2.4.

•This completes the proof.

4.1.2.2 Optimum size of the group-factor in the

initial step for large ^ and arbitrary p

Theorem 4.1.7

For large and arbitrary p, the group size
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’k' which minimizes the expected total number of 

runs for a fixed value of the expected total number 

of incorrect decisions uj say, in a step-wise group 

screening design with errors in observations is 

given by

logCfa q - a>) - log fa (l-aT)
k « ------- ------------------- 5-----—

log q

where q=l-p , a^ and ag are as defined earlier. 

Proof

The problem is to minimize E(R) given in
x •

corollary 2.2.2 subject to the condition

I = a) (fixed)

where I is as given in corollary 4.1.1, 

i . e .,

minimize

E (R ) * h * x  * f
f (1-a* ) U ~ » 8 )p -q g ( l - d - Q j ) gk) ^

k + 1

Cl-a )p+a (l-(l-aT )qk)

[ d - a s ) p + a {l-(l-aT)q } 1- 2-5

♦ f l-(l-aj)qkJ-f l-^l-(l-as )p-as ^l-(l-aj)qk̂ ^

fa’
" k [ti-OsJp + a s C i - U - O j J q ^ t S - o * }

■fa '(ci-as )p + as (l-(l-ai)ql̂)j‘[l-(l-as)p-as (l-(l-ai)qk̂

( 4 . 1 . 2 2 ) .
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subject to the condition

I - f as (q -C1 “a j ) = to (fixed).

The optimum value of k is obtained by solving the 

constraint given above. This gives

log(fa q-to) - log fa (l-aT)

log q (4,1.23).

Since I is an increasing function of k, to should be 

chosen so that the value of k in (4.1,23) should 

not exceed the value of k that minimizes E(R) in

(4.1.22) obtained using Newton - Raphson's iterative 

method on equation (2.2.49). The corresponding

min E(R) is obtained by substituting the value of 

k in (4.1.23) in the expression for E(R) given in

(4.1.22) .

This completes the proof.

Next we would like to choose k such that Im

is minimum for fixed value of E(R), say v. The 

problem is equivalent to minimizing I

I = fas |^q-(l-aI )qkJ ,

subject to the condition

E(R)=h+ —  +f- f(1~a * ] 
k k

1-^1- (l-as jp-as (l- (1-cij )qk)j- 

(1-a )p + a (l-(l-a )qk)

k+ 1

+ f T( l-ag ) p + as { 1 - (1-a j ) q k) 1- 2-5 a
k
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* f l-(l-o

(4.1.24).

1-U-c.i)

The problem is equivalent to solving the constraint. 

Equation (4.1.24) can be solved for k using Newton - 

Raphson iterative method, taking the value of k 

given in Theorem 4.1.6 as the initial approximation. 

The required minimum value of I is obtained by 

substituting the value of k obtained as stated above 

in the expression for I in corollary 4.1,1.

4.1.3 Optimum size of the group-factor in the

initial step in relation to the total cost

Let c^ be the cost of inspection per run

and C£ be the loss incurred per incorrect decision. 

Then the expected total cost is

C = c x E (R ) + c2I 

i . e . ,

(4.1.25)

+ f  0 * { 1  -  -  £ - }  + f nk k I
*

-f{l-(l-0*)k } - £  a*
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- £e*2 U - a * }  - fa*I*(l-B*)k

+ c2 [fp-fpnjYs + fas (nJ - pIIj)J

using Theorem 2,2.2 and Theorem (4.1,4).

We shall find the value of k which minimizes the 

expected total cost, for the following casesj-

Ci) large ^ and small p,

(ii) large ^  and arbitrary p.

Theorem 4,1,8 _

Assuming p, i.e,, the a-priori probability 

of a factor to be defective to be small, and large,

the size ’k ’ of the group-factor which minimizes the 

expected total cost 'C’ in a step-wise group 

screening design with errors in observations is given 

by

k
2c x {1 - (2 - 5 ) (1 - a s ) p'}

2 (l-aT ) Cc.+c0a )p-(l-a )(l+a*)c,p 1 i z s  s . 1

subject to k being real, where ag is the probability 

of declaring a non-defective factor defective in the 

subsequent steps, otj is the probability of declaring 

a non-defective group-factor defective in the 

initial step, a* is the proportion of group-factors 

declared defective at any step but due to errors in 

observations no factor from each such group-factor 

is declared defective on individual tests, c^ is



11 5

the cost of inspection per run and c  ̂ is the loss 

incurred per incorrect decision. The variable £ 

takes the value 0 if a* = 0 and the value 1 otherwise. 

Proof

For large ^ and small p, we havs

E(R) = fa*+f(1-a-)p4l- (2-0
k

■>
k+i( k + 1 )(1-a* 3>

2 J

+ f(l-aj)kp + faj 

using corollary 2.2.4, and

I - fa jjC a -j- -p 3 + (1-a j  ) p k j

using corollary 4.1.2.

The expected total cost thus becomes

r 1
C - c jTi +]“+f a * + f (l-as ) p< l- - k+^tk+1)

f (1-a j ) kp + fa j.]
c 2 {jF + (l_oij)kp}j (4,1.27]

from (4.1.25).

Assuming continuous variation in k, the optimum 

size of the group-factor is obtained by solving 

the equation

dC
dk = 0.

This implies
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3  [ H H 1 ( 1 - s ,p]

+ c 1 p l - a I ) p - ( l - c t s ) p ^ ( l - a s ) ( l - o * ] p J

C2 Cl-aj)p

1. e

k =
2o1{l-(2- e H l - o s )p}

__ 1 ^ 2

2(l-aT )(c.+c_a )p-(l-a )(l+a*)c,p 1 1 2  8 s 1

(4.1

The value of k in [4.1.28) is real if

1
2 11 -ag ) (1-|)

C4.1

which is true if

p  < |  (c.f. (2.2.47)) ,

This value of k wil-l be in the’ neighbourhood of 

point of minimum of the expected total cost ’C ’ 

in (4.1.27) if

d2 C

dk2
> 0

i . e . if

^3 (1- C2-5)(l-as )p}c1 > 0 
k

l.E

28) . 

29) ,

the

given

2(1-a )(1-|) s 2
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which i s  c o n d i t i o n  ( 4 . 1 . 2 9 ) .

T h e r e f o r e  t he  v a l ue  of  k gi ven in ( 4 . 1 . 2 8 )  i s  in 

t he  nei ghbourhood o f  t he  p o i n t  of  minimum of  the  

e x p e c t e d  t o t a l  c o s t  C gi ven in ( 4 . 1 . 2 7 ) .

This  c ompl et es  t he  pr oo f  of  t he  Theorem.

The c o r r e s p o n d i n g  minimum val ue  of  ’ O' i s  o b t a i ne d  

by s u b s t i t u t i n g  t h i s  v a l ue  of  k in t he  e x p r e s s i o n  

f o r  ' C ’ in ( 4 . 1 . 2 7 ) .

The next  c a s e  we a r e  i n t e r e s t e d  in i s  when

— i s  l a r g e  and p a r b i t r a r y .  Using c o r o l l a r y  2 . 2 . 2
\  •

and c o r o l l a r y  4 . 1 . 1 ,  t he  e x p e c t e d  t o t a l  c o s t  becomes

O c . h+X H
f ( 1 - a * ), l-|j.-(l-as )p-as (l-(l-aI )qk) }l" l

k ( l - a s ) p + a s ( l - ( l - a ];) q k)

+ f  { 1 - ( 1-a-j. ) q } - f< l - ^ l - ( l - a s ) p - a s ( l - ( l - a I ) q k) j >

' ■ T ' ' l f (1"as )p + as(1" (1‘aI )qk) }  U -°*}

{
*■>»

( l-as )p + as (l-( l-a].)qk) >■ 1-(l-ag ) p-as (l-(1-c^ ) 2^) »

+ f ( l - a s ) p * « s ( l - ( l - t. I ) q k) I t
2 -  £ a 1

+ c. fas(q‘ ( 1_ai )qk)
( 4 . 1 . 3 0 )  .
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The v a l ue  of  k t h a t  mi ni mi zes  C gi ven in p r e v i o us  

page i s  a s o l u t i o n  of  t he  equa t i o n

dC
dk = 0

1. e .

-~ 2  r.2*.-*{(i-.B ,p*.8 Ci-(i-.llq'5}«-e*.-)

♦i[ci-as)p + a8 (1-(l-«i)qk) J  U - a *  )J

(1  -  a j  ) q in q
(2-C)as asa* ,

* V  ------ k------  + " I T "  + 1

+ k a s ( l - a ; [) q km q ^ l - C  l - o t s ) p - a s ( l - ( l - a ];) q k) j ’ 

x [ l - a * | u - a s )p + a s ( l - ( l - a I ) q k) j ]

a s n - a i ) q V q p - U ka } j \ l - a s )p + a s ( l - C l - a - [ ) q k) j  

- a *  j l - ( l - a s ) p - a s ( l - ( l - a ]; ) q k) J ’

(1-a* ) l - { l - C l - a s ) p - a s ( l - C l - B I l q k) }  

Cl-°s )p + as (l-Cl-aI )qk̂

k + 1

a ( 1 - a * )s ( k+ 1 )<T - ( l - a s ) p - a s ( l - ( l - ' a i )qk) . r i
k .  ( l - a s )p + a s Q. - (  l - a ^ q 1̂ _

x(l-aT)q S,*. q
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C1 — a * ) as ( l-ajlq^n-q ̂ l-|l-( l-as]p-as (l-C l-o^ ) q kj| 

_ «T( l - as )p + a s ( l - ( l - a I ) q k) j 2

k +

- C2«s C l~a j ) q k£xq = 0 (4.1.31).

The value of k that minimizes C in (4.1.30) is 

nearer to the value of k given in Theorem 4.1.8 and 

can be obtained using Newton - Raphson's iterative 

method applied to equation (4.1.31).
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4.2 SCREENING WITH UNEQUAL A-PRIORI PROBABILITIES

In this section, we will discuss the 

performance of a step-wise group-screening design 

with unequal a-priori probabilities of factors to 

be defective and with errors in observations.

4.2.1 Calculation of the expected number of 

incorrect decisions

Incorrect decisions arise in the following

ways: -

(i) declaring defective factors as non

defective in the initial step,

Cii) declaring defective factors as non

defective in subsequent steps and 

(iii) declaring non-defective factors as 

defective in subsequent steps.

Let P£ (j) be the probability that exactly
l

j. factors from the i ^  group-factor of size that 

is declared defective in the initial step are 

declared defective in the subsequent steps. Then

1

-
1 - rr- u - u - B ! )  i >

111 i 1

k.\_ J _  ki’j
}) 3* u-e*]n * . \ ! ^  11 v j

j = o-

j = l,2. k.l

as explained earlier in (3.2.17).

Let E^ (j) denote the expected number of factors

declared defective from the i ^  group-factor that
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was declared defective in the initial step. • Then

V J ’ = ^  ki ? i

= k. Bt 1 1 (4.2.1)

where g? is the conditional probability that a 

factor chosen at random from a group-factor of size 

that is declared defective in the initial step 

is declared defective.

Lemma 4.2.1,

Let M0 be the number of defective factors K
declared defective in a step-wise group screening 

design with g initial group-factors, the factors in 

the i ^  group-factor of size being defective with 

a-priori probability p^ (i = 1,2, . . . ,g ). Then

E(IV  = kiPinIiYsi

where ys  ̂ is the probability that a defective factor 

from the i ^  group-factor that is declared defective 

in the initial step is declared defective in the 

subsequent steps and JI^ is the probability that the 

iE^ group-factor containing at least one defective 

factor is declared defective.

Proof

The total number of factors declared defective

in the subsequent steps is 

g
E k.gru.

i-1 1 1 1
( c . f . ( 4 . 2 . 1 ) ) ,
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where Lh is as already defined in (3.2.12].

The probability that a factor that is declared 

defective from the i ^  group-factor that is 

declared defective is defective is equal to

1 ' Pi
where

a .(1-p')si r 1

B + 
i

using (4.1.5) , and

p . lit •*1 Ii

■Si

(4.2.2)

(4.2.3)

(4.2.4),

is the probability that a factor chosen at random 
t hfrom the i group-factor that is declared defective

in the initial step is defective. Then

g
p = m Z k.eHl-p.)U.R = 1 i i ri l

Hence,

M,

e (Nr )
g
E M ? ( l - p t ) E ( U .  )

i-1 1 1 1

= e k.Fer - a .(i-P ')jn* 
i = l l L i S1 Ii

l . e . ,

g
E(Mn ) = E k.R E k.y .p'n* 

i=l 1 31 i Ii
(4.2.5) ,

replacing by {YsiP^ + «s l (1-p r)> as given insi

( 3 . 2 . 1 6 a ) .

/
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Substituting the value of pf given in (4.2.4) in 

(4.2.5) we get

E(Mr ) z  k . p . n i . y  .
l r l  I I  S Ii-1

(4.2.6).

This completes the proof of the lemma.

In the lemma that follows, we obtain an 

expression for the expected number of defective 

factors declared non-defective in the subsequent 

steps from all the group-factors that are declared 

defective in the initial step.
\  •

Lemma 4.2.2

L

The expected number of defective factors 

declared non-defective from all the group-factors 

that are declared defective in the initial step is 

given by
g
z k.p.ni. ( 1-y •)■l'l Ii 'si*1 = 1

Proof

The expected total number of defective 

factors in all the g group-factors in the initial 

step is equal to
g
Z k . p .

i-1 1 1  •
The number of defective factors declared non

defective in the initial step is equal to

I (1-U.)k.p?o) 
i-1 ■ 1 1 1

(4.2.7)
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where p.to) pi (l‘"ii1

1 ■

is the probability

that a factor chosen at random from the ith initial 

step group-factor declared non-defective, is defective, 

Therefore

XS = E
g g
E k.p. - E (l-U.)k.p 

i-1 1 1  i=l i
(o) MR

l . e .,

g
= E k . p .  

. , i i
-  E k . p ^ d

i - 1  1 11=1

g
= E k . p .  

. . i i
n : . ( l - y  .)

I l  S I

Ii R'

(4.2.8)
i = l

using (4,2.6) .

This completes the proof.

Let Ij denote the expected number of defective 

factors declared non-defective in step one.

Lemma 4.2.3

g
lT = e k.p.(l-nT.)I j,,! iHi II

Proof

h  ■ E

g

E (l-U.)k.p!o) 
i-1 1l i^i (c.f. (4.2.7))

g
E k.p.(1-ni.) 

i-1 1 1  11 (4.2.9) ,

substituting for E (U i ) = n * . and simplifying. 

This proves the lemma.
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Let Mu be the number of non-oafective factors 

declared defective in the subsequent steps. Then 

we have the following lemma.

Lemma 4.2.4

ECM ) u

Proof

g
E k .a . I n *

1 s i  I i p iIIii)

The total number of factors declared defective 

in the subsequent steps is

g
E k.gtU.

i= 1 i l l ^c.f.(4.2.1)^^

where is as already defined in (3.2.12). 

Thus
g _

M = Z k .gtU.pt u .=1 1 1 1P1

which implies

ECM ) u = E

= E

g
Z k.gtU.pt

i-1 1 1 1 1

g
Z k.U.cx . (1-pD

i=! 1 1 31 i
[c f

l . e .,

g '
e (m ) = e k.o .(n* - p.ni.)U 1 SI II K1 II

on replacing by E(U^) = n* ̂  and p f by

p . n t .
- 1- 11 *

*

h i

(4.2.10),

T h i s  c o m p l e t e s  t h e  p r o o f .
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Theorem 4.2.2

Let I be the expected total number of 

incorrect decisions in a step-wise group screening 

design with g group-factors in the initial step 

such that the i ^  group-factor of size k^ contains 

factors with a-priori probability p^ of being 

defective ( i= 1,2, . . ., g) .

Then

1 * J j V i  '  J j ' V i ' T r s i  4 1f 1ki “ s i ( " i i ' pi IIi i

where ni., ni. and v . are as defined earlier. Ii Ii 'si

Proof

The expected total number of incorrect 

decisions is given by

I = IT + Ic + ECM ) I S  u

g g
z  k.p.(l-n!.)+ z  k.p.n* (1-y ■ ), r i  Ii . , r  l Ii 'sii = l i = 1

g+• z  k . a  . ( n *  - p . n ; . )  . , i si Ii r i Ii 1 =  1

using lemmas 4.2.2, 4.2.3 and 4.2.4.

l . e . ,

g g g
I  = Z k . p .  - Z k . p . n t . y  . + Z k .a . ( H *. . iri . , v i  Ii'si . , l si Ii 1=1 1=1 1=1

T h i s  c o m p l e t e s  t h e  p r o o f  o f  t h e  T h e o r e m .

p . n i . )*1 Ii

( 4 . 2 . 1 1 )
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Corollary 4.2.1 

g
Max I = Z k.p. - Z k.p.v .nT . U T . ,aT .)i=1 r i  i=1 r  i 'si Ii yIi'wIiJ

B
+ Z k . a . 
1=1 1 31

/ k. k. n

(“liq i +(1_qi )nIi(ki*li,al i V

p inii C ̂ Ii'“ii 3

Proof

g g g
I = Z k.p.- Z k . p . n + Y  .+ Z k .a .(n ! .- p .Hi . ) . . r i  . , iK i Ii'si . , i si Ii H i Ii 

1=1 1=1 , 1=1

g
= Z k.p. - E'(Md ) * ECM ). 

i=l 1 1  R u-

Hence I will take its maximum value when E(Mn ) isK
minimum and E(M ) is maximum.u
But

g
E(MD ) = Z k.p.ni.y . R i=1 r  l Ii'si (c.f. (4.2.6)),

takes its minimum value when

ki / V h  v 1 k--s.
y ' ln --1 lnT .(s.»T .,“T .)

s.=l\°i V  1 11 1 11 11nii = E IS . . W P i is

replaced by n j ̂  <f>j j_ > a j ̂ J •

l . e .,

g
Min E(MU ) = Z k . y . p . nT . (<f>T . , aT . ) 

R i=1 1 S1 1 I1 I1 I1 ( 4 . 2 . 1 2 )
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Next
g

ECM ) = z k . a  . ( n *  -  p . n *  ) ,u i=1 i si Ii r i Ii

takes its maximum value when is replaced by

its maximum value and is replaced by its

minimum value, 

i .e ., when

r k. k. *)
is replaced by {“ xi^i1 +  ̂1

and

IIĵ  is replaced by ^ 1  i * aIi ̂ *

Thus

g f k . k .
Ma x  E ( M  ) -  E k M n  Ck ♦ , a  !

1=1 U

- p inI1(*I .,aIi)j-

(4.2.133

Using (4.2.12) and (4.2.13) in (4.2.11) we get

g g
Max I  - ^ ^ k . P i n j . U j . ,  a I 1 ) Y s i

g f ki ki
.E . k i “ s i r i i q i  * ( 1 ' q i  ) n i i ( k i * i i -  “ i i >i = l u

-  p . n T . ( <j>T .r i ii iii- “a 1}
( 4 . 2 . 1 4 )

T h i s  p r o v e s  t h e  c o r o l l a r y .
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Corollary 4.2.2
A,

For large and arbitrary p^'s ,

g
max I = E k.a .

i=i 1 31

k.n
q. - (1-aT . )q .1 Ii

Proof

Since a Ii^ “ anc* Ys  ̂ 2 1 "for
A .

large —  , the result follows from (4.2.14) by 

replacing

nIi^si^Ii' ali^ ^y
\  • i

and

Y . by 1. 'si 3
Corollary 4.2.3

A . ' s
For large — ^—  and small p^'s ,

max I

Proof

g
E k . a . 

i = 1 1 S1
(aT . - p.) + (1-aT .)p .k .Ii 'l II r i l

k.
The result is obtained by replacing q^1 by 

1-k^p^ in corollary 4.2.2.

4.2.2 Optimum sizes of the initial group-factors 

considering the expected total number of 

incorrect decisions and the expected total 

number of runs

Since we cannot minimize both max I and 

E(R)'at the same time, we will try to minimize one 

of them while fixing the value of the other.
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A. ’s
We shall discuss the case when — -—  are large

and p . ’s small.

Under the above assumptions, the maximum 

expected total number of incorrect decisions is 

given by
g

max I = Z k,a .
i-i 1 31

Ca,.- p .)+(l-a_.]p .k . Ii K i Ii K i l

as given in corollary 4.2.3. 

The problem is to minimize

g
Z k . a . 

i-i 1 81
CaT . - p . ) + C l - a T . ) p . k .Ii r i Ii l

subject to the conditions

g g
Ci) h + g+ Z k.a!+ Z Cl-c* .)k.p.'

i-i 1 1 51 1 11

g g 2+ Z aT .k.+ Z k.(l-aT .)p. = v [fixed] 
i-t 11 1 i-1 1 11 1

g
(ii) z k. = f 

i-1 1

(iii) k..- > 0l i-1,2,...,g.

Using the method of Lagranges multipliers, let

F( k, , k_, . . ., k , X, , X-,]• 1 2  g 1 2

g
Z k . a .

i - 1  1 51
(aT .-p.) + (l-aT .)k .3.Il Ii i! l

g
+ X•) h + g-v+ Z k.at

i = 1 i i
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g
* E C l - a  .) k . p .< 
i =! 51 1

C2-5i) x
1--- — — -k.-^tl-a*) Ck. +1).1

k i  V ‘ “ i ’ " j

g §  . 2 ,
♦  E a , . k . + E k . ( l - a T. ) p . I l l  ’ T’i = 1 1-1 1 Ii K i

+ A-
g
E k. - f

i-1 1 (4.2

For critical values.

= 0 > (i-1,2 .....g) , = 0 and I f  = 0 .dKi 9A1 x 3A2

These imply

“si“li ‘ “sipi * 2tl‘0 Ii)“sikipi

* Xl{“si * “Ii * |(l-»s i H 3 - a p p .

- ( 1 - a  . ) ( 1 + a*) k .p . + 2 ( 1 - a T . ) k .p . 4
S I  1 1*1 I i  1 1 J

r  a 2 = o

g gh+g-v+ E k.a* + E aT.k.l i _ T 11 l

(4.2

i=1 * 1 i=l 

g
E ( 1- ot  . ) k . p . <

i-1 51 1 1

(2 - 5 .) -I

1-- — ^— k! ~4( 1-a?)(k.+1)
k. l  2 i  i

g 2
+ E k . ( l - a T . ) p . 

i - i  1 11 1
(4.2

and
g
E k. = f

i - 1  1
(4.2

.15)

.16)

.17)

.18)
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From (4.2.16) we get

k. = 
1

S l - I l ^ l t g i <« I i 1 , t 2 1 _
2(l_a| p ( ^ j  + cls£)-(l-asp ( l +ap  ^ i

5(l~a .)(3-a*) - a .______si______ l______ si___________
2(l-aT . H X 1+a .)-(1-a .)(l+a?) ii i si si 1

A.l say (1=1,2, g)

(4.2.IS)

where A. and B. are unknown.l l
It is rather difficult to obtain the exact value of

kj by eliminating X^ and X̂ . We shall try to

obtain k. for the special case when a T . = aT , a .= a l K Ii I si

Theorem 4.2.3

If a T . = a T , a . = a and a! = a, then for
4 ' s J l 1 31 3 1

large ----  and small p.'s, the value of k. whichb a ri l%

minimizes the maximum value of the total expected 

number of incorrect decisions for a fixed value 

v, of the expected total number of runs is given by

where

B

2 1 2 ~15 
td Z j- - f - agf)

i = 1p i •

• V -  1 =  1  ■ ■ IP!
g
2
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A = f  - Bg

I  A '
l-iPi

a =
4(l-o )(3-a*) 2 s
( l - a T ) - 4 ( l - o  ) (1 + a * )  1 2  s

and

d =
v-h-g-(a* +aT )

( l - o T ) - i ( l - a  3 1 l  + o * )I 2 s

Proof:

When a T . = aT, a . = a and a! = a*, £. = £ li 1 si s l x
(i=l,2,...,g) so that (4.2.15) becomes

1 2  3 g 1 2

g g 2
= a a Tf  - a E k . p .  + a ( l - a T ) E k . p .  S i  S 1 1 s I  ̂  ̂ 1rl

• • , E 2
h + g - v + ( a * + a T ) f + ( 1 - a T ) E k . p .1 l i=1 l i

♦ (l-as ) E k.p,]1- - k,+i(1-a*)(k,+1)
! i-i 1 ‘ L  4  1 2  1

+ X.
g
E k. - f

i-1 * 1

Thus (4.2.16) and (4.2.17) becomes

- a p. + 2a ( l - a T ) k . p . s K i  s I  1*1
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+ A

+ 2A.(l-aT )k .p . + A-, = 0 1 I ir l 2 ( 4 . 2 . 2 0 )

and

h+g-v + ot* f  + ( 1 - ots ) E k .p  . f l -  L2-LL -  k.
s i=i 1 x L ki • 1

+ i(l-a*)(k

respectively.

From (4.2.20) we get

i + 1)J  + aI
g ,

f + (1 - aT ) Z k.p. 
1 i-1 1 1

= 0

(4.2.21)

k. =
1 2(l-aT )(A, +a )-(l-a )(l+a*) PiI 1 s s

H l - a  ) (3-ot* ) ~ a _______ s_____________ s____;_____
2(  l - a T) ( A,+a ) - ( l ~ a  ) ( l + a * )  I 1 s s

= A —  + B
P,-

(4.2.22)

where A and B are constants to be determined. 

Multiplying (4.2.22) by 1, p.̂  and k ^ ^  and summing 

each result over i we get

g 1
f = A Z -  + Bg (4.2.23)

i = 1p i

and

g g
Z k.p, = Ag 

i = l 1 1
+ B E

i-1

g 2 g
E kfp. = Af 

i-1 1 1
+ B E

i = 1 l l

(4.2.24)

( 4 . 2 . 2 5 )
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From (4.2.24) and (4.2.25) we obtain

g 2 2 gZ k.p. = Af + BAg + B Z p. 
i=1 1 1  i=l 1

But from (4.2.21),

( 4 . 2 . 2 6 )  .

g 2Z kfp. + 
i = 1 1 1

m - a  ) ( 3-a* )s
(l-aT)-j(1-a )(1+a* ) 

I  s

Z k.p. 
i-1 1 1

v-h-g-(a* +otj)f

"  ( l - a T ) - i ( l * a  ) ( 1  + a * )I s

= d , say, (4.2.27).

Using (4.2.24) and C4.2.26) in (4.2.27), we get

' 2 B 8
Af + BAg + B Z p. + aAg + a B Z p. = d 

i-1 1 i = 1 1

where

a =
i(l-o )(3-a*)______s________________
( l - a T) - J ( l - a  ) ( 1  + a *)  I s

(4.2.28)

l . e .
g

Af + (B+a)Ag + B(B+a) Z p. = d
i-1 1 (4.2.29).

From (4.2.23)

A -
S i

1-IP!

(4.2.30) .

Substituting this value in (4.2.29) we get

g g l 2\ 2 / g g l 2lI p i E ?  ' g  0 + a Z p  j i  - E
i-1 1i = 1p i J  l i-1 1i = 1p i J
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2 8 1 + f + agf - d E —  = 0 (4.2.31).

Therefore

(4.2.32) .

.Substituting these values of B in (4.2.30), we get 

the corresponding values of A. We shall now show that 

the quantity within the square root in (4.2.32) is 

positive.

Now

agf

(4.2.27)

i . e . ,

agf

(4.2.33)

By Schwartz’s ’inequality
2

2
g

( 4 . 2 . 3 4 )
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and

g
E Ck.+ | ) 2 p.  

i-1 1 2 1
\ l  ± 1 » /
L i - i  p tj r

9 2 9
= f2 + agf + |  g2

Using (4.2.35) in (4.2.33) we get

g 1 2d E -  - f - agf
i-1 pi

a2 2 g g i
> f  <8 - * Pi * £  3^ i-1 1 i-1 P i

\  •

From (4.2.34) and (4.2.36) we conclude 

2 (d I £  - f2 - agf)
|  .  ------------------  > o.

f f 1 2
1 P i 1 p " g

i-1 1 i-1 pi

(4.2.35).

(4.2.36).

(4.2.37).

For positive values of k^ , we get two sets 

of solutions." To check which set gives a minimum 

value, we examine

g g 2
Max I = a a Tf - as E k.p. + a (l-aT ) E k . p .s x  ̂ 1 1 S 1 1 1

which is to be minimized.

Substituting the values of k^'s given in (4.2.22) 

and noting that

A . f bjl

! -  
1-1 p i

as given in (4.2.30)
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we get

Max I = BaJkl-aj) B d L
g
I P: 

i  = 1 '
g

f
i-i Pi

+ a a Tf  + a ( l - a T) f 2 ------ -s i  s X • g
Z -

i - 1  P i

asfg

! - 
i d  p i

But

l . e ,

g e2Z p . 1  -- a-
i - 1  1 g

z  -
i = l  P i

g
Z p 

i  = l  1
g

(c.f. (4.2.34)^

!  i
i d  Pi

> 0

(4.2.38)

(4.2.39)

From (4.2.38) we conclude max I is minimum when
m

b [b (1-0];)- l] takes its minimum value.

But

B - - £  ± 2 "

g 2
2 (d Z p . -f -agf) 
\\  i  = 1 1
4 g g , 2

E pi 2 o " gi d  1 i d  p i  J

± t ,

where  ̂ > 0

say,

(c. f . (4.2.28 j) .

When B = - -sj- + t ,

B ^Bd-OjJ-ll = ( -  |  + t ) 2 ( l + a I ) +  |

( 4 . 2 . 4 0 )
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a ,
When B ~ ~ 2 ~ t '

= (-

1 •

|  - t ) 2 Cl-oI ) ♦  §  + t

( 4 . 2 . 4 1 )

But

( -  |  + t  D 2 C 1-ct-j.) -  t  < ( -  |  -  t  D 2 C 1-a- j . ) + t

since a>0 and t>0. 

Therefore B |̂ B (1 -  a x ) - l j

(4.2.42)

takes its minimum value when

B = - ■57 + t

i .e ., when

6 -  - f *
2a—  +4

S i  2
(d 1 - - f - ^gf)

i-1 P i
g § 1 2E p. I - - g

i-1 1 i-1 P i

(4.2.43).

.This proves the theorem.
m

Interchanging the roles of max I and E(R) in 

Theorem 4.2.3, we obtain the following Theorem 

Theorem 4.2.4

If a T . = a x , a . = a , a*. = a* and = £ ,Ii I si s i 1
A . 1 s

then for large ----  and small p.'s the value of k.

which minimizes the expected total number of runs for 

a fixed value of the maximum total expected number 

of incorrect decisions, w, say, is given by

k. = 0 —  + T 
1 p i
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where

-1
2 C1 - a -j.)

CeJ l  Pi ■

4Cl-aT r  g g i 7
1 Z p .  Z -  - g  }

1 i-i 1 i-i Pi

o f -
g
£

i = l

fil
JL
Pi

and

e
0) - a aTfs I

as

Proof:

The problem is to minimize

g ?
ECR) = h + g + (a* + oT ]f ♦ Cl - a T) Z kf p .

.i 1 i-i 1 i
g

-+ Cl-a ) E k . p .
S i = l 1 1

subject to thE following conditions

(i) max I = g g 2a a Tf-'a- Z k.p. + a (l-aT ) Z k. s i  s . 1 r l s I . , 1 1=1 1=1

= a) [fixed) .

• J

(ii)
g
Z k. =

• i ii=l
f

Ciii) k. > 0.l

Using the method of Lagranges multipliers, let

1- ^  - k.+ ^(l-a*)(ki+l)



141

F ( k-. i k« > * i i i k j ^i )1 2  g 1 2

g 2h + g +(a*+aT)f+ Cl-aT ) I k.p.
1 1 i-i 1 1

*( 1'°s) i-1kiPi{̂ 1" ■ ki * ■§( 1-a*) (k^lll-

r g s 2 i♦X.la a-rf-co-a* E k.p.+a (l-aT) E k.p.l 
! L  s 1 S i  = 1 i  i  s I  . = 1 i p l j

g
+ E k. - f)

* i*l 1
For critical values.

(4.2.44)

3F n r • t t > 3F n , 3F n3k," 0 (l-1'2 ' • 3X = 0 and —  = 0 .

These imply

k2

2 ( l - a T) k . p . + ± ( l - a  ) ( 3 - a * ) p . - ( 1 - a  ) ( l + a * ) k . p .  1 l i  2 s r i s 1 *1

-X.a p. + 2X.a (l-aT )k.p. + X~ = 0 (4.2.45)1 sr i I s  1 l i  2

E g 2
asa If " “ " .z 1kip i + as ( 1"°iJ . E1kip i = 0

(4.2.46)

and
g
E k. = f (4.2.47)

i=l 1 - .

From (4.2.45), we get

k.l 2(l-aT )(1+X.a )-(1-a )(l+a*) 1 I s  s

X. a -  | ( 1 - a  ) ( 3 - a * )I s  _____ s________________
2 ( l - a T) ( 1+X, a  ) - ( 1 - a  ) ( 1 + a * )  I I s  s
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= Q + T (4.2.40)

where Q and T are constants to be determined. 

Multiplying (4.2.48) by 1, and k^p^ and summing 

each result over i, we get

g 1f = Q E A  + gT 
i = l p i

(4.2.49)

and

g g
l k.pi = gQ + T E p.

i = l i= 1
(4.2.50)

g 2 2E k.p. = fQ + T E k.p.
i=l 1 1 i=l

From (4.2.50) and (4.2.51) we obtain

i‘ i (4.2.51)

g 2 2 gE k.p. = fQ + gQT + T E p.
i = 1 x' x i = l

(.4.2.52)

But from (4.2.46)

g g 9 " a a.f
E k.p. + (l-ctT ) E kfp. = ------

i-1 1 l - 1 1=1 1 1  “s

= e, say,

(4.2.53)

Using (4.2.50) and (4.2.52) in (4.2.53) we get

g
gQ + T * E p . + (l-aT) 

i = l 1 •
• 2 gfQ + gQT + T E p.

i = l 1

= e
(4.2.54).
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From C4.2.49)

Q
i  i

i-i Pi

= f - g T ( 4 . 2 . 5 5 )

Substituting this in (4.2.54) we get

g
V 1 21 t 2

g
1 n rT + E

i-1 p i J _i = 1

2 g (1-aj)f -e E 1
P • = 0

g

1 i-lPi

i-1 Hi

(4.2.56)

Therefore

T = 211-aj) 4 d - a I )

g
e E
i-1

1 X
v g f -

(l-a];)f2

(1-a j r g g 1 2]

l i - l  1 i l l  V 8 }J
(4.2.57).

Substituting fihese values of T in (4.2.55) we get 

the corresponding values of Q.

We shall now show that the values of T given in 

(4.2.57) are real. This is so if the quantity within 

the square root is positive.

Now

£ 1 2 
e l — - gf-(l-aT )f
i=l p i i

g g
E k . p . E i i i  ■ i PL= 1 1= 1 K

1 S 2•f + ( 1 - a T ) E k p.
i 1 i-1 1 1 i-1 P5  -

(c.f. (4.2.53))
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g i g
Cl-o, )  E -  E1 • n D • • l1=1  1=1 ki + 2(1-o t ) P i

g i g  2
------z ± z P - g f - d - a  )r
4(l-aj) i=l i=l

, , 2  p “ l g i g> (l-aT )f + fg+— -s------ -r-p:---- y 2 - E p.
1 4<l-« ) 4(1-“ l)1=1 p i,i.iPi

using Schwartz's inequality . f . (4.2.34)).

(4.2.58),

l . e.,

8 i 2
e E — - g f - ( l - a T ) f  
i-i pi 1

g

4 (l-aT JV  L

2 f 1 f
g - E -  E p.

i=1 H i i=1

g i 2 8 g i 2
( l - a j l J  E p. E -  -g ( i - a y ) ^  E p. E -  - g

1 i=1 1 i=1 P i 1 i=l 1 i-1 Pi

4(1-0^)
(4.2.59)

Thus the quantity inside the square roGt in (4.2.57) 

ispositive.

Therefore we get two sets of solutions for k^'s. To 

check which set gives a minimum value, we examine

g 2
E (R ) = h+g+(a*+aT )f+(l-aT ) E k T p .

1 1 i-i 1 1
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♦ d - o  ) E k . p . d -  s . , r  l x=l

g
- k. + ̂ (1-a*) (k. +1) *? k . i 2 l

g
h+g+(a*+aT )f-(1-a H 2 -£) Z p.

S i = l 1

1 g + 1-a H3-a*) Z k.p.2 s j .j lHl

♦£(l-aj) - “ (l-os )(l*a*]| £ k?p.

which is to be minimized.

Substituting the values of d  given in (4.2.48) and 

noting that

Q - f - e t

I  i
i-i Pi

(c.f. (4,2.55))

we get

- g
E(R) = h + g +( a*+aT ) f - (1-ot )(2-£) I p.

S . .. i = l 1

^(l-as ) (3-a*)-gf^ 1 + |^(l-aI )-|(l-as ) ( l + a * ) | ~
E -

i-1 Pi

g

? - 
i = l p i'

Ml-a )(3-a *) 2 s

^ C l - a I )--i(l-as ) Cl+a*)JlJ

ItxOW li
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Noting that

g
Z p ,  - _g_

i = l i  i
i-i Pi

> 0 , (c.f. (4.2.39H ,

E(R) given above is minimum when

T [ i u - a s ) (3-a*) +/(l-aI)'-itl-as ) (1+a*) JtJ

takes its minimum value. For the two values of T 

in (4.2.57), the above expression is smallest when

-1
2(1-Oj)

§ 1  2 
e Z -  -gf-(l-aT)f n . & Ili-1 P

4 ( 1 - a j ) ( 1 - O j H  Z p .  Z i  -  g " }
g g i
Z p .  Z -

i - 1 1 i-1 Pi

(4.2.60).

This proves the Theorem.

4.2.3 Optimum sizes of group-factors in the initial 

step in relation to the total cost

In. this section, we shall define the expected 

total cost as a linear function of the expected 

number of runs and the expected number of incorrect 

decisions and try to obtain the sizes of the group- 

factors so that the expected total cost is minimum.

Let the cost of inspection per run be c^ and 

suppose that the loss due to incorrect decisions is 

proportional to the maximum expected number of 

incorrect decisions. Let c  ̂ be the loss per unit of
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the maximum expected number of incorrect decisions. 

Then the expected total cost C is given by

C * c^E(R) + c2 max I.

k.+l
h + f+ 2g- I -i-C 1-a? 1 { 1-C1-6? ] 1 }

i = l B!

+ I k . B*”* 
i = 1 1 1

2-5. 
1 ’ 1k. k.l i

. g , *+ e k.n,.
i-i 1 11

k. T* , 1E k . {1 - (1 - Bi ) } - E a!  + E ( o ? - 5 . ) B /
i-1 1 i-1 1 i=l 1 1

E k.a?B?(l-ft*) 
i=l 1 1 1

k.l

+ c.
g g

i ^ kipi 'i^ 1kip iYsi,!Ii^*I^’''Ii,

j 1ki°si{(“iiq i1 * U  V J n ^ t k j

- p

—

inIi(+Ii-aIi)j

using Theorem (3.2.1) and corollary (4.2.1).

Theorem 4.2.5
A . ' s

For large values of — ^—  and small values 

of p ^ ’s (p^ <_ p, i = l,2, . . . , g) , the value of k^ which 

minimizes the expected total cost is given by
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g
k. = 1

where

G. =

G.
1f - E G.H. , „
ll! G.

i-i 1

+ G.H.l l

and

1 [2tl-“l^-(1-c'si)(1*t‘i)] clPi*2asi(1'“li,c2pi

H i = 1’“s i ) C3_“i 5 pl}'“c2“s ito‘li'p i1
Proof

A. ’ si
aFor large values of — —̂  and small values 

of p ^ ’s, the expected total cost is given by

C = c.
g g 7

h+g+ I (at+aT .)k + E (l-aT .)k.p.
i=l 1 11 1 i-1 11 1 1

+ Z (1-a .)k .p .
i-f 51 1 1

2~Si 1
1 ----r—— ~ k . + ± ( l - a i * ) ( k . + l )k. l  2 1 l

/  C2 Z k.a .f(aT .-p.) + (l-otT .)k.p."| • 1 Sl[ 1 1 * 1  II 1 1 J

using corollaries (3.2.2) and (4.2.3).

We wish to minimize the expected total cost 'C' given 

above subject to the conditions

g
(i) .E k. = f 

i = l 1

(ii) k^ > 0 i = l ,2, . ..,g
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Using the method of Lagranges multiplier let

F(k,,k_,...,k i\)"C^1 2  g 1
g g

h+g+ E ( a?+aT.) k . +  E ( l - a T . ) k . p .  
i „ l  1 H  1 i - 1  I I

, 2-e
+ E (1-a . )k.p.il j— - - k

i  = l si 1' 1
k i

+ c.

+ ± (1-a?)(k.+1)

g r
E k.a . i ( a T .-p.) + ( l - a T . ) k .p . i = 1 l s l L Ii i lx i'l

+ X
g
E k . - f  

i-1 1 (4.2.61),

where X is the Lagrange's multiplier.

Assuming continuous variations in k^, the critical 

values of k. are obtained from the equations

s'.l
and (4.2.62).

3F
ax = 0

Conditions (4.2.62) imply

c, I(a?+aT . ) +i(l-a . ) ( 3-ct * ) p .+2 ( 1-aT . ) k . p . l | _ i l i  2 si i K i Ii r  l

-(1-a .)(l+a?)k.p.|si l i ij

a .(aT .-p.)+2a .(l-aT.)k .p . +X = 0 L SI II r l SI II X lj+ c.

(4.2.63)
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and

E k . = f 
1-1 1

g
(4.2.64)

From (4.2.63) we get

-  X - c , ( a *. + a T . ) + i (  1 - a  . ) ( 3 - a ? ) p . i - c _ a  . ( a T . - p . )  ^ ______ 1 L l Ii 2_____si______ l K iJ 2 si Ii Ki
1*2 (l-aT . ) - (l~a . ) (1 + a!)lc,p.+2a .(l-aT .)c_ p . Ii si i J r i  si Ii 2Mi

(4.2.65).

Summing (4.2.65) over ’i ’ we get

g
f = -X E

i = l {2(l-aT .)-(1-a .)(1 + a?)Tc,p.+ 2a .(l-aT .)c0p . L Ii si 1 J 1*1 si Ii 2K i

g c , <( a * +aT . ) +i( 1 -a . ) ( 3-a*. ) p . f-c_a . (aT .-p.)| H i  Ii 2 si______ 1 *i J  2 si I i ^ i
i = l /2(l-aT .)-(l-a . ) (1+ a!)lc p.+2a . (1-aT .)c0p .L Ii si rj lr i s i l l  2Ki

(4.2.66).

Let

G. -1

{2(1"“li)' (1'“E i )(1*“ i ,} clPi*2“s i (1'aIi)c2pi

(4.2.67)

and

H. = c , ' f ( a ’! ' +aT . )  + - l ( l - a  . ) ( 3 - a !  )p.l-c a . (aT .-p.) 
1 1L 1 I 1 2 s i  1 ^ i j  2 s i  I i  *1

Then (4.2.66) becomes
g g

f = X E G. + E H.G. « -1 1 . . 1 11=1 1=1

(4.2.68) .
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l . e .,

X = f - E G.H.
i-1 i i / g

(4.2
E G. 

1-1 1

Using (4.2.67), (4.2.60) and (4.2.69) in (4.2.65) 

obtain

k. =l f -
g
E G.H. 

i-1 1 1

G.l
g
E G. 

i-1 1

+ G.H.l l

(4.2,

62).

W5

703 .

This completes the proof.



APPENDICES

The tables given in the following appendices,

result from the theories developed in this thesis.

For all practical purposes, the values cf k's Ci.e. 

the group-sizes) in all tables should be rounded to 

the nearest integers.
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TABLES RESULTING FROM CHAPTER II

Tabls 1(a): Optimum group-sizes in the initial st=r

and expected number of runs for selected 

a-priori probabilities fcr stej-wise 

designs with f=10Q, and without errors 

in observations

- e ? ) 1

Min ECR) * 1 ♦ ^  + fC2p)5(l-2p]5

Cc.f. Theorem 2.1.33.

p k Min ECR)

0.001 44.66 5.62

0.002 31.56 7.61

0.005 19.90 11.70

£.010 14.00 16.50

0.015 11.37 20.31

0.020 9.80 23.60

0.025 8.72 26.54

0.045 6.36 36.37

0.060 5.42 42.50

0.060 4.58 49.56

0.100 4.00 56.00

0.150 3.06 69.33

0.200 2.45 79.99

0.250 2.00 86.50
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Table 1(b); Relative perfor^ance of step-wise

designs and corresponding two stage 

group-screening designs for f=10Q and 

selected values cf p and without errors 

in observations

In column 3,

e (r ) = l + fp + ^ 9- + f - ut: (1 - qk + Sk * P
[c.f. (2.1.32)} .

In column 5,

E(R) = 1 + |  + fCl - q k) [c.f; (2.1.47)]

• - Step-wise group 
screening

Two stage group 
screening

p k Min ECR) k Min E(R)

• 0.001 45 5.58 32 7.28
0.002 32 7.55 23 9.85
0.005 ‘ 21 11.54 15 14.91

: o . o i o 15 16.17 11 20.56
; 0.015 12 ;19.32 9 24.83

0.020 11 22.96 8 28.42
0.025 9 25.76 7 31.53
0.035 8 30.35 6 36.91
0.045 7 34.37 5 41.56
0.060 6 40.59 5 47.61

; 0.080 ' 5 47.39 4 54.36
0.100 5 53.29 4 60.39
0.150 4 65.78 3 • 72.92
0.200 3 75.33 3 63.13
0.250 3 84.35 3 92.15



1 5 5

Remarks

Cl) The integer value that minimizes E(R3 is 

obtained using a computer search in both cases.

(2) The table indicates that for small values of 

p,  step-wise designs are prefferable to corresponding 

two stage designs but for higher values of p, 

step-wise designs have distinct advantage over two 

stage designs.

Tables 1(c), 1(d), 1(e), 1(f), 1(g), 1(h), H i ) ,  H j J ,  

and 1(k ) :

Optimum group sizes in the initial step and 

expected number of runs for selected prior 

probabilities and with errors in observations 

for step-wise designs

The integer value of the group size * k ’ that
m

minimizes

E (R ) =h +-r-+f- k
f ( 1 - a * )

1
L 

^

Jl-as )p-as Ci-(i-aI )qk)ln
k

ij
! 1-a )p + as r s ('l-(l-aI )qk)

+ f (1 -cts )p + as ( 1-(1-otj )q } 2-C al 
k k

+ f 1 - ( 1 - a j ) q -f 1~^1“ (l~as ) p-as (l- (1-aj) q*-'
kl

fa’
2

•~^(l-as )p + as (l-(l-a];)qk)| (£-ct*)
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l-as)p+as(l-(l-aI)ql̂)|

x (l-as ) p-as (l-(1-a j )

(c.f. Coro 1 lary .2.2.2) 

has been obtained using a computer search.
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T a b l e  1 (cl : f = 1 0 0 ,  a I = 0 . 0 0 5 ,  a * = 0 . 0 0 5 ,  cxs = 0 . 0 0 2

p 0.001 0.002 0.005 0,010 0.020 0.030 0.035 0.040 0.050 0.060 0.080 0.100 0.150 0.200

k 40 35 29 15 9 9 9 9 9 7 7 6 4 4

Min E (R ) 6.44 8.31 12.70 17.00 24.16 29.34 31.05 34.31 39.07 43.35 50.99 58.11 71.52 83.42

Table 1(d): f=10Q, ctT = 0.01, a*=0.01, a =0.01 -------------  I s

P 0.01
4

0.02 0.03 0.035 0.04 0.05 0.06 0.07 0.08 0.09 0.10 IDi—1a 0.20

k 15 14 9 9 9 9 7 7 • 7 7 6 4 4

Min E(R) 17.35 24.55 29.81 32.28 34.71 39.43 43.04 47.70 51.45 55.10 50.62 72.07 83.93
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T a b l e  1( e )  : f = 1 0 0 ,  O j - 0 . 0 5 ,  a * = 0 . 0 5 ,  a s = 0 . 0 2

p 0.01 0.02 0.03 0.04 0.105 0.06 0.07 0.08 0.09 0.10 0.15 0.20

k 29 14 9 9 9 9 7 7 7 7 4 4

Min ECR) 22.61 29.85 35.58 40.03 44.38 48.61 52.59 56.08 59.49 62.81 76.39 87.49

Table 1(f): f=100, a T = 0.05, a*=0.05, a *0.05------------- 1 s

P 0.01 0.02* 0.03 0.04 0.05 0,06 0.07 0.0.8 0.09 0.10 0.15 0.20

k 31 15 14 9\ • 9 9 7 7 7 7 4 4

Din ECR) 17.76 27.26 33.75 38.71 43.20 47.64
-------r
51.91 55.54 59.11 62.61 76.38 87.75
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T a b l e  1 ( g ) :  f = 1 0 0 ,  ctT = 0 . 1 0 ,  a * = 0 . 1 0 ,  a _ = 0 . 0 5X s

p 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20

k 33 15 14 9 9 9 9 7 7 7 4 4

'lin E (R) 23.92 34.12 40.09 45.52 49.54 53.54 57.49 61.32 64.55 67.72 81.63 91.98

Table 1(h): f=100, a T=0.10, a*=0.10, a =0.10-----------  1 s

P 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20

k 29 15 14 9 9 9 9 . 7 7 7 4 4

Min E (R ) 19.57 30.45 37.42 43.46 47,88 52.36 56.82 60.59 64.14 67.63 81.58 92.39
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T a b l e  l ( i ) :  f = 5 0 0 ,  a T = 0 . 0 0 5 ,  ct* = 0 . 0 0 5 ,  a = 0 . 0 0 2
----------------  I s

p 0.001 0.002 0.005 0.010 0.020 0.030 0.040 0.050 0.060 0.080 0.100 0.150 0.200

k 47 34 22 16 10 8 8 7 6 6 6 4 3

Min E (R ) 27.7 37.5 57.6 81.1 116.6 143.3 166.5 187.7 207.6 243.0 276.6 345.6 404.9

Table lfj): f = 500, a T=0.01, a*=0.01, a =0.01-----------—  I s

P 0.01 0.02 0.03 0.035 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20

k 16 12 8 8 8 7 7
i
6 6 6 6 4 3

Min ECR) 82.4 118.4 146.1 157.5 168,9 190.3 210.2 228.2 245.6 262,6 279.1 348.4 407.5
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T a b l e  1 ( k ) ; f = 5 0 0 ,  a j = 0 . 0 5 ,  a * = 0 . Q 5 ,  a s = 0 . 0 5

p 0.01 0.02 0,03 0.04 0,05 0,06 0.07 0.08 0,09 0.10 0.15 0.20

k 26 16 10 Q 8 7 7 6 6 6 4 4

Min E (R ) 108.5 145.9 173.9 196.8 217,0 236.1 254.0 270.4 286,1 301.5 369.9 425.5

Remark:

Tables 1(c), 1(d), l(k) clearly indicate that with errors in observations,
min E (R ) increases with p and is higher than the corresponding value without errors 
in observations. *
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APPENDIX II

TABLES RESULTING FROM CHAPTER III

Tables 2(a), 2(b), 2(c) and 2(d): Optimum group

sizes in the initial step and expected 

number of runs for selected unequal a-priori 

probabilities for f=100 and without errors

3
2

\  •

g 1 2
E p ♦ i(3g - 2 f r  

i = l 1 °

E -
i-1 P i

(c.f. Theorem 3.1.2)
i

g = 7

i P i k.l

1 0.004 23.714
2 0.005 18.671
3 0.006 15.309

■ 4 0.007 12.908
. 5 0.008 11.107

• 6 0.009 9.706
7 0.010 8.585

Total 100.000

in observations

ki ■  ( u h )  — r r
p, E 

i1 --lPi

Min E(R) « 1 + g - 25

Table 2(a): p ̂ £ p  = 0.010

Min E (R )=13.419.
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For the corresponding two stage design, 

min E(R) = 17.127.

Table 2(b) : p. < p = 0.015, g = 9

i Pi k.l

1 0.007 17.175

2 0.008 14.841

3 0.009 13.025

4 0.010 11.573

5 0.011 10.384

6 0.012 9.394

7 0.013 8.556

8 0.014 7.838

9 0.015 7.214

Total 100.000

Min E(R) = 17.109

For the cqrresponding two stage design, 

Min ECR) = 21.518
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T a b l e  2 C c ) : <_ p = 0 . 0 3 5 ,  g = 1 3

i Pi k.l

1 0.008 17.097

2 0.009 15.031

3 0.010 13.378

4 0.013 9.944

5 0.015 8.418

6 0.017 7.251

7 0.020 5.939

8 0.022 5.263

9 0.025 4.451

10 0.027 4.010

11 0.030 3.459

12 0.033 3.008

13 0.035 2.751

Total 100.000

Min ECR) = 22.064

For the corresponding two stage design,

m i n  E C R )  = 2 6 . 4 5 0
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T a b l e  2 ( d )  ; p̂ , <_ p = 0 , 1  g = 20

i Pi k,. i

1 0.040 9.571

2 0.045 8.341

3 0.050 7,357

4 0.053 6.856

5 0.055 6.552

6 0.060 5.880

7 0.062 5.643

8 0.065 5.312

9 0.070 4.826

10 0,075 4.405

11 0.078 4.177

12 0.080 4.036

13 0.082 3.901

14 0.085 3.710

15 0.087 3.590

16 0.090 3.420

17 0.092 3.314

18 0,095 3.162

19 0.098 3.019

20 0.100 2.928 .

Total 100.000

Min ECR) = 45.216

For the corresponding two stage design, min ECR) = 55.065
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Remark: Tables 2(a), 2(b), 2(c) and 2(d) indicate

that when screening with unequal prior probabilities 

step-wise designs are prefferable to corresponding 

two stage designs.

Tables 2(e), 2(f), 2(g), 2(h), 2(i) and 2(j ):

Optimum group sizes in the initial step 

and the expected number of runs for 

selected unequal a-priori probabilities 

for step-wise designs with f=100 and 

with errors in observations

k. =l
+

[2(l-a,.)-(l-a .)(l+at)]p. L Ii sx

1x

[ 2 ( 1 ~aIi ̂ ~ (l-ot

1

[2(l-oT .)-(l-a . )(1 + a ?)]p . L Ii si l J l l
(c.f. Theorem 3.2.2).

E(R)=h + g+ E k.a’f+ E (1-a .)k.p.<i- 
i-.l 1 1 i-1 31 1 1

g g
- -  k. + i (l-af) (k. +1)

I
IN • V X  «  • /  V I '  •l 2 i i

i
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g
+ E a

g
T .k. +

i-i 11 1 i-i
Z k .(1-a,.)p . l II pi

Cc.f. corollary 3.2.2)

= 1 when a* =f 0. l l 1

Table 2te) ; h=l, g = 7, p <_ p = 0.010

a?=a* = 0.005, aT .=aT = 0.005 l I I I

a .= a - = 0.002

i Pi • k .l

1 0.004 23.722

2 0.005 18.675

3 0.006 15.310

4 0.007 12.907

5 0.008 11.104

6 0.009 9.702

7 0.010 8.580

Total 100.000

Min ECR) = 14.405
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a T . = a T = 0 . 0 1 ,  a * = a * ~ 0 . 0 1 ,  Ii I x

a . = a = 0 . 0 1si s

T a b l e  2 ( f ) :  h = l ,  g = 7, p. < p = 0 . 0 1 0

i P i k .l

1 0.004 23.720

2 0.005 18.674

3 0.006 15.310

4 0.007 12.906

5 0.008 11.105

6 0.009 9.703

7 0.010 8.582

T otal 100.000

Min E C R ) = 15.365
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aT . =aT = 0.005, a ? = a* = 0 . 0 0 5 a .=a =0.002
I I  I  i  s i  3

T a b l e  2 ( g ) : h = 3 ,  g = 1 3 ,  p. < p = 0 . 0 3 5

i ' Pi • k.i

1 0.008 17.111

2 0.009 15.042

3 0.010 13.386

4 0.013 9.948

5 0.015 8.419

6 0.017 7.251

7 0.020 5.936

. 8 0.022 5.259

9 0.025 4.446

10 0.027 4.005

If 0.030 3.453

12 0.033 3.001

13 0.035 2.743

Total 100.000

m i n  E C R )  = 2 5 . 2 3 9
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Table 2(h); h = 3, g = 13, p ̂ <_ p = 0.035

aT.=aT=0.01, a?=a*=0.01» ae.=ac=0.011 1 1  l s i s

i Pi k .l

1 0.008 17.107

2 0.009 15.039

3 0.010 13.384

4 0.013 9.947

5 0.015 8.419

6 0.017 7.251

7 0.020 5.937

8 0.022 5.260

9 0.025 4.447

10 0.027 4.006

* 11 0.030 3.455

12 0.033 ‘ 3.003

13 0.035 2.745

Total 100.000

m i n  E C R )  = 2 6 . 1 7 5
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aT .= aT = 0.005, a?=a*=0.005, a .=a =0.002 1 1 1  l s i s

T a b l e  2 ( i ) : h = 4, g = 20, £  P = 0 * 1 ^ 0

1 p i k.i

1 0.040 9.581

2 0.045 8.348

3 0.050 7.362

4 0.053 6.860

5 0.055 6.555

6 0.060 5.883

7 0.062 5.644

8 0.065 5.314

9 0.070 4.826

10 0.075 4.403

-11 0.078 4.176

12 0.080 4.033

13 0.082 3.898

14 0.085 3.707

15 0.087 3.587

16 0.090 3.417

17 0.092 3.310

18 0.095 3,158

19 0.098 3.014

20 0.100 2.924

Total 100.000

min E(R) = 50.422
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a T .=aT=0.01, a?=a*=0.01, a .=a =0.01 Ii I l si s

T a b l e  2 ( j )  : h = 4, g = 2 0 ,  p < p = 0 . 1 0 0

i p i k .l

1 0.040 9.578

2 0.045 8.346

3 0.050 7.361

4 0.053 6.858

5 0.055 6.554

6 0.060 5.882

7 0.062 5.644

8 0.065 5.313

9 0.070 4.826

10 0.075 4.404

11
m

0.078 4.176

12 0.080 4.034

13 0.082 3.899

14 0.085 3.708

15 0.087 3.588

16 0.090 3.418

17 0.092 3.311

18 0.095 3.159

19 0.098 3.016

20 0.100 2.925
Total 100.000

min E C R 1 = 51.213
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Remark: The tables 2(e), 2(f), ..., 2(j) clearly

indicate that with errors in observations the 

value of minimum E(R) increases.
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APPENDIX III 

TABLES RESULTING FROM CHAPTER IV

Tables 3(a), 3(b), 3(c), 3(d) and 3(e): Step-wise

group screening plans for f = 100 with 

selected prior probabilities *p' and with a 

specified number of incorrect decisions ’v ’

In these plans,

logCfa q - a>) - log fa (l-aT)
k = -----------?--------------------------- §------- L -

log q

|c.f . (4.1.23)|

and

E (R ) = h + f -k k
l-(l-(tl-=.s )p-c.s (l-(l-aI)qk)}l'Tl 

(l-as )p + as (l-( l-aj-Jq1")

[ ( l - % ) p * a s  a - ( 1 - c . j  ) q k } ]  [ l  -  ^

l-(l-aT)q -f l-^l-(l-as )p-as (l-(l-a];)qk)| *1

fa1 s )ptas(l-(l-aI )qk) {.{-«•)

fa*|^( l-os ) p*ds (l- ( l-aI)qk)l 

X [ l - U - „ s )p - «s (l-(l-cI)qk)]

[c.f. (4.1.22)]
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T a b l e  3 ( a ) :  a T = 0 . 0 5 ,  a* = 0 . 0 5 ,  = 0 . 0 5 ,  to = 1■ X s

p 0.01 0.02 0.03 0.04 0.05 0.06 0.0.7 0.08 0.09 0.10 0.15 0.20

k 18.35 9.76 6.90 5.47 4.61 4.04 3.63 3.33 3.09 2.90 2.34 2.06

min E(R) 21.72 30.18 37.12 43.01 48.23 53.95 59.28 61.27 66.97 67.43 81.87 95.00

Table 3(b): a^- = 0.05, a * = 0.05, a = s 0.05, tu = 2

P 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.20

k 9.13 8.04 7.23 6.60 6.09 5.68 5.34» 5.05 4.81 4.60 3.88

min E(R) 47.81 54.49 55.80 58.01 64.07 65.00 '66.82 72.53 74.15 • 75.69 .87.25
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T a b l e  3 ( c ) :  a T - 0 . 1 0 ,  a* = 0 . 1 0 ,  a„ = 0 . 0 5 ,  w K 1——  X S

p 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15

k 12.97 7.08 5.12 4.14 3.55 3.16 2.89 2,68 2.51 2.39 2.00

min E (R ) 32.99 41.35 51.03 57.44 62.98 67.88 69.26 75.21 79.82 81.13 .94.46

Table 3(d): otT = 0.10, a* = 0.10, a =* 0.05, ai = 2-------------  I s

P 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.20

k 8.26 7.30 6.58 6.02 5,58 5.22
1

4.92 4.67 4.45 4.27 3.63

min E(R) 56.62 58.25 60.63 65.83 67.85 69.74 75.50 77.16 78.71 80.17 94.31
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T a b l e  3 ( e ) : ,  a T = 0 . 1 0 ,  a* = 0 . 1 0 ,  a * 0 . 1 0 ,  ai = 3----------------  X s

p 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20

k 26.44 13.87 9.69 7.60 6.34 5.51 4.92 4,47 4.12 3.85 3.03 2.63

min E(R) 22.56 30.95 39.69 46.78 52.97 55.55 61.70 63.52 69.06 70.37 85.37 95.45

i
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Tables 3(f), 3(g), 3(h), 3(i): Step-wise group

screening plans for f = 100 which minimize 

expected total cost for selected prior 

probabilities 'p*

In these plans, the integer value of k that minimizes 

the expected total cost

where

c 1E(R) + c2 I

the cost of observing a run

2

2 f . r f (1-a*) H _(l-«B )p-«8 (l-t1-BI )qk)jr
k k (l-as )p + os (l- (l-OjJq^

+ f j^l-ag )p + aa {l-(l-a 

[l-(l-ai)qk]-f[l-[
m

) p + as r s

l-(l-as )p-as (l-(l-aj

(l-(r-ctI)qk) ] 2 {C-a*}

- fa*|( 1 - a s ) P + ots  ̂l-ctj ) q k)
✓

x j^l-(l-as )p-as (l-(l-a];)qk̂  

(c.f. (4.1.22))

and

I = fa {q - (1-aT)qk }, (c.f. Corollary 4.1.1)S J*

has been obtained using a computer search.
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The minimum C given in column 5 is a relative figure

using c^ i.e., the cost of observing a run as the

unit. [i. e . it indicates the values of C / c J .

Table 3(f): a = 0 . 0 5 ,  a*=0.05, a =0.05----------- -—  I s

p k E(R) I min C

0.01 30 17.762 1.436 18.049

0.02 15 27.256 1.392 27.535
0.03 14 33.753 1.749 31.103
0.04 9 38.708 1.510 39.010
0.05 9 43.200 1.756 43.552
0.06 9 47.644 1.978 48.039
0.07 7 51.907 1.792 52.266
0.08 7 55.541 1.950 55.931
0.09 7 59.109 2.095 59.528
0.10 7 62.605 2.228 63.050
0.11 6 65.972 2.089 66.390
0.12 4 69.170 1.551 69.481
0.13 " 4 71.607 1.629 71.933
0.14 4 74.012 1.702 74.352
0.15 4 76.384 1.770 76.738
0.16 4 78.724 1.835 79.091-
0.17 4 81.031 1.896 81.410
0.18 4 62.171 1.925 83.694
0.19 4 85.543 2.005 85.944
0.20 . 4 87.748 2.054 88.159
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= 3 : 5

T a b l e  3 ( g ) :  a T = 0 . 0 5 ,  a* = 0 . 0 5 ,  a = 0 . 0 5

p k ECR) I min C

0.01 30 17.762 1.436 18.624

0.02 15 27.256 1.392 28.092

0.03 14 33.753 1.749 34.802

0.04 9 38.708 1.510 39.614

0.05 9 43.200 1.756 44.254

0.08 9 47.644 1.978 48.831

0.07 7 51.907 1.792 52.982

0.08 7 55.541 1.950 56.711

0.09 7 59.109 2.095 60.367

0.10 7 62.605 2.228 63.942

0.11 6 65.972 2.089 67.225

0.12 4 69.170 1.551 70.101

0.13 4 71.607 1.629 72.584

0.14 4 74.012 1.702 75.033

0.15 4 76.384 1.770 77.447

0.16 4 78.724 1.835 79.825

0.17 4 81.031 1.896 82.163

0.18 4 83.304 1.952 84.475

0.19 4 85.543 2.005 86.746

0.20 . 4 87.748 2.054 • 88.980
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T a b l e  3 ( h ) :  a T = 0 . 1 ,  a* = 0 . 1 ,  a = 0 . 0 5----------------  1 s

p k E (R) I min C

0.01 32 23.930 1.688 24.267

0.02 15 34.116 1.576 34.431

0.03 14 40.094 1.912 40.476

0.04 9 45.523 1.684 45.860

0.05 9 49.539 1.914 49.922

0.06 9 53.538 2.122 53.962

0.07 9 57.486 2.308 57.948

0.08 7 61.317 2.090 61.735

0.09 7 64.546 2.225 64.991

0.10 7 67.721 2.343 68.191

0.11 7 70.837 2.460 71.329

0.12 . 7 73.887 2.561 74.400

0.13 6 76.767 2.399 77.247

0.14 4 79.489 1.838 79.857

0.15 4 81.634 1.901 82.014

0.16 4 83.754 1.960 84.146

0.17 4 85.849 2.014 86.252

0.18 4 87.918 2.065 ■ 88.331

0.1'9 4 89.961 2.113 90.383 •

0.20 ' 4 91.976 2.157 92.408
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Table 3 C i): a T = 0.1, a* = 0.1, a = 0.05--------------------  I  s

C2 : C 1 = ^ :

p k E (R ) I min C

0.01 32 23.930 1.6e8 24.942

0.02 15 34.116 1.576 35.062

0.03 14 40.094 1.912 41.241

0.04 9 45.523 1.684 46.533

0.05 9 49.539 1.914 50.688

0.06 9 53.538 2.122 54.810

0.07 9 57.486 2.308 58.871

0.08 7 61.317 2.090 62.571

0.09 7 64.546 2.225 65.881

0.10 7 67.721 2.348 69.130

0.11 7 70.837 2.460 72.312

0.12 6m 74.011 2.310 75.397

0.13 6 76.767 2.399 78.207

0.14 4 79.489 1.838 80.592

0.15 A 81.638 1.901 82.775

0.16 4 83.754 1.960 84.930

0.17 4 85.649 2.014 87.058

0.18 4 . 87.9 IB 2.065 .89.157

0.1.9 4 89.961 2.113 91.228

0.20 * 4 91.976 2.157 '93.270
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Optimum group-sizes obtained by minimizing 

the maximum value of the total expected 

number of incorrect decisions I for a 

specified value of the expected total

number of runs, -v, when = a^, a! = a*,
/

a . = a and f = 100 for selected unequal s i s  M
a-priori probabilities.

In these plans.

T a b l e s  3 ( j ) ,  3 ( k 3, 3 ( & )  a n d  3 ( m ) ;

where

and

k.x A—  + B 
P i

b - - !  +
2

£  + 4

A - ±— §&■
-f -
i-1 p i

a =

d =

2 i 2 
C d E —  - f ~ a g f )

i  = 1p i

! £ i 2L p . X —
i - 1  1 i - 1  P i

~ g

a* ]

( 1 - a  )(1 +a*)s ,

- ( a *  + aj)

(1 - a T ) - Hl-fl } (1 +a * ) 1 s

(c.f. Theorem 4.2.3]

for

h = 4 [ f ] " g
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g g 2
Minmax I = a a Tf - a  E k. p .  + a ( l - a T) E k. p.S I s 1-1 s I ._ ̂ lrl

(c.f. Corollary 4.2.31

Table 3( j ) ; h = 3, g = 13, v = 24, 0^=0.05

a*=0.05, a =0.05, p. < p = 0.035 s ri —  r

i pi k.l

1 0.008 15.380

2 0.009 13.691

3 0.010 12.340

4 0.013 9.533

5 0.015 8.286

6 0.017 7.332

7 0.020 6.259

8* 0.022 5.706

9 0.025 5.043

10 0.027 4.682

11 0.030 4.232

12 0.033 3.863

13 0.035 3.653

T otal 100.000

MinNax I = 0.760
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a * = 0.05, a =0.05, p. < p = 0.035S 1

T a b l e  3 ( k )  : h = 3, g = 1 3 ,  v = 25, ctj-0.05.

i P i k .l

1 0.008 10.338

2 0.009 9.757

3 0.010 9.292

4 0.013 8.326

5 0.015 7.897

6 0.017 7.568

7 0.020 7.199

8 0.022 7.009

9 0.025 6.780

10 0.027 6.656

11. 0.030 6.501

12 0.033 • 6.375

13 0.035 6.302

Total 100.000

MinMax I = 0.813
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a* = 0.05,ot =0.05, p. < p = 0.100 s l —

T a b l e  3 U  ) h = 4, g = 20, v = 49 ,  0 ^ = 0 . 0 5 ,

i •HCL k .l

1 0.040 8.614

2 0.045 7.641

3 0.050 6.863

4 0.053 6.467

5 0.055 6.227 '

6 0.060 5.696

7 0.062 5.508

8 0.065 5.247

9 0.070 4.863

10 0.075 4.529

11m 0.078 4.350

12 0.080 4.237

13 0.082 4.131

14 • 0.085 3.980

15 0.087 3.885

16 0.090 3.752

17 . 0.092 3.667

18 0.095 3.546

19 * 0.098 3.434

20 0.100 3.363

Total 100.000

MinMax I = 1.528



V 107

a*=0.05, a =0.05, p. < p = 0.100 s ' i —  ^

T a b l e  3( m )  : h = 4, g = 20, v = 50, a-j- = 0 . 0 5 ,

i Pi k.l

1 0.040 6.142

2 0.045 5.035

• 3 0.050 5.509

4 0.053 5.464

5 0.055 5.300

6 0.060 5.220

7 0.062 5.161

B 0.065 5.070

9 0.070 4.957

10 0.075 4.050

11 0.070 4.795

12m 0.000 4.759

13 0.002 4.725

14 0.005 4.670

15 0.007 4.640

16 0.090 4.605

17 0.092 4.579

10 0.095 4.540

19 0.090 4.505

20 0.100 4.402

Total 100.000

MinMax I 1.564
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Optimum group-sizes which minimize expected

total cost C, when a T .=aT , a?=a* and a .=a ,J. i I i s i s
for f=100 and for selected unequal a-priori 

probabilities

T a b l e s  3(n), 3(d ), 3(p) and 3(g):

In these plans,

g
k. = I f- E G.H. 

i-1

G.
--- -—  + G.H.i i J g 11

' E G .
i=l 1

where 

G. = -1
1 ^ (  l-aj)-(l-as)(1 + a* )Jc1pi + 2as(1-aj)c2pi

and

H. = c,i (a* + aT) +-̂ ( 1-a ) ( 3-a* )p .1 - c„a (a,-p.), i II 1 2  s x 2 s 1 ' i

C = c1E(R) + c2I

where

E (R) = h g , 2+ g +(a++a T)f-(l-ac,5' E P 1- + U - CiT ) z k.p i s .  i x . i l1=1  1=1

1 g + 4(l-a )(3-a*) E k.p.2 S i=l 1 1

1 g 2 i(l-a ) (1+a *) I kfp. 2 s w  lPi

g g 2
I = a aTf - a«- E k.p. + a (l-aT) E k.p.

s  I  s 1=1  1H1 S I  J . x 1H1

(c.f. Theorem 4.2.5)

The minimum C given is a relative figure using c^ i.e 

the cost of observing a run as the unit. [i.e. it 

indicates the value of C/c [] .
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*3=0.05, c 2 :c ̂ = 1 : 5, p. < p = 0.035

T a b l e  3 ( n )  : h = 3, g = 1 3 ,  c x ^ O . 0 5 ,  a * = 0 . 0 5

i Pi k.l

1 0.008 17.129

2 0.009 15.056

3 0.010 13.397

4 0.013 9.952 t
5 0.015 8.421

6 0.017 7.250

7 0.020 5.933

8 0.022 5.254

9 0.025 4.440

10 0.027 3.998

11 0.030 3.445

12 0.033 2.992

13 0.035 2.733

Total 100.000

ECR) = 33.577 

I = 0.771 

Min C = 33.731

I
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Table 3 C o ): h = 3, g=13, oij = 0.05, a* = 0 .05

a =0.05, c0 :c1=3:5 s 2 1 p ̂ < p = 0.035

i pi k.l

1 0.008 17.088

2 0.009 15.024

3 0.010 13.372

4 0.013 9.942

5 0.015 8.418

6 0.017 7.252

7 0.020 5.940

8 0.022 5.265

9 0.025 4.454

10 0.027 4.014

y 0.030 3.463

12 0.033 3.013

13 0.035 2.755

Total 100.000

E(R) = 33.577 

I = 0.770

Min C = 34.039
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as = 0.05, C2 :c  ̂= 1:5, <_ p = 0.100

T a b l e  3 ( p )  : h = 4, g = 20 ,  a ^ O . 0 5 ,  a * = 0 . 0 5

i Pi k .l

1 0.040 9.593

2 0.045 8.357

3 0.050 7.368

4 0.053 6.865

5 0.055 6.559

6 0.060 5.88 6

7 0.062 5.644

8 0.065 5.315

9 0.070 4.826

10 0.075 4.402

11 0.078 4.174

iCMrH 0.080 4.031

13 0.082 3.895

14 0.085 3.704

15 0.087 3.583

16 0.090 3.412

17 0.092 3.305

18 . 0.095 3.153

19 0.098 3.009

20 * 0.100 2.918

T otal 100.000

E (R ) = 56.421

I 1.546 (4in C = 56.731
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a =0.05, c0 :c,33:5, p. < p = 0.100 s 2 1 i —

T a b l e  3 ( g )  : h = 4, g = 20, cij. = 0 . 0 5 ,  oi* = 0 . 0 5 ,

i p i k.i

1 0.040 9.565

2 0.045 8.337

3 0.050 7.354

4 0.053 6.853

5 0.055 6.550

6 0.060 5.880

7 0.062 5.642

8 0.065 5.313

9 0.070 4.827

10 0.075 4.403

11 0.078 4.179

12 0.080 4.037

13 0.082 3.902

14 0.085 3.712

. -15 0.087 3.592

16 0.090 • 3.423

17 0.092 3.316

18 0.095 3.164

19 0.098 3.020

20 0.100 2.931

Total 100.000

E (R )'= 55.422 } 1 = 1.545 } Min C = 57.349
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CONCLUDING RENARKS

The usual sampling inspection plan, consists 

of drawing a sample or samples from the population. 

All the items in the sampleCs) are then examined.

If the proportion of defective items in the sampleCsJ 

is small, then they are replaced by good ones and 

all the items in the population are accepted. In 

such a case, some items are passed without being 

inspected. In group screening designs however, every 

item is subject to inspection either in groups or 

individually. Group screening designs are thus some 

kind of 100% sampling inspection plans.

In this thesis, a class of group screening 

designs which we have called "the step-wise designs" 

are studied. The step-wise group screening design 

requires fewer runs than the corresponding two stage 

group screening design, for all prevalence rates of 

defectives for which a two stage group screening 

design has fewer runs than a single stage design.

The two stage group-screening design and consequently 

the step-wise group screening design has fewer runs, 

than an s-stage (s >_3) group screening design for 

prevalence rates of defective greater than 0.09. The 

step-wise group screening design has fewer runs than 

the single stage design for a wider range of 

prevalence rates of defective items than an s-stage 

(s j>2) group screening design.
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Group screening techniques can be used in 

industries in sorting out defective items from non 

defective ones with substantial saving in cost of 

inspection and time. In chemical industry, the 

technique has been used for example in (i) classif

ying an unknown chemical.element, (ii) selecting
0

the best catalyst for a chemical reaction from a 

large number of compounds which are possible 

candidates. Group screening techniques have also 

been applied in Biological experiments.

In this thesis, we have assumed that the 

direction.of the effect of a defective factor is 

known or is correctly assumed a-priori. Further 

work could be done in step-wise design by relaxing 

this assumption. We could allow the possibility 

of cancellation of effects.

V
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