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A b stract

Financial Risk management is about understanding large movements in the 

financial market. This study examines the modeling of extreme financial 

data using the methods of Extreme Value Theory. The two models are fitted 

to the NSE 20 Share Index and it emerges that the Peaks Over Threshold 

model gives a better fit to the data as opposed to the Block Maxima Model. 

The maximum likelihood method has been used to estimate the parameters 

of the extreme value models.The Extreme Value Theory based quantiles are

used to estimate the Value-at-Risk,Expected shortfall and the Return level
/

for the the data.

Key words: Extreme Value Theory, Generalized Extreme Value, Block 

Maxima Model, Generalized Pareto Distribution,Peaks Over Threshold Model, 

Value-at Risk,Expected shortfall.
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C hapter 1 

In trod uction

1.1 A brief H istory of Risk M anagem ent

Risk management is a practice that can be traced as far back as the ancient 

Babylon in 1800 BC where options were used as a means to provide cover 

against risk, though it is only until the twentieth century that a formula 

for valuation of derivatives was developed. Before the 1950s the Success of 

an investment was based on its return. Due to the dynamic nature of the 

financial world, the theory of portfolio selection was established in the 1950’s, 

where risk was measured using standard deviation.

The following decades saw several methods of risk management method­

ology evolving including the Sharpe ratio, the Capital Asset Pricing Method 

and the Asset Pricing Theory.
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The Black-Scholes-Merton formula for valuation of derivatives appeared 

in 1973 and not only did it work but it changed the world of finance. Its 

importance was felt in 1978 when the crash of the American Stock market 

was blamed on the formula.

Technological developments, especially in information technology, also 

aided the growth of new risk management and investment products which 

was further aided by the deregulation of the 1980s and the abolition of the 

Bretton-Woods system of fixed exchange rates.

Regulation is an important part of the financial market and hence the 

Basel Committee of Banking Supervision was established in 1974 by the cen­

tral bank governors of the Group of ten (G-10). This committee formulates 

broad supervisory standards and guidelines and recommends statements of 

best practice. The first Basel Accord on Banking Supervision was formu­

lated in 1988 with its main emphasis on credit risk. The second Basel Ac­

cord adopts the three-pillar concept which seeks to achieve a more holistic 

approach to risk management by focusing on interaction between different 

risks categories.

Recent financial disasters and volatility of financial markets have emphasized 

the importance of effective risk management for financial institutions.
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1.2 Financial Risk M anagem ent

Financial risk management is about understanding the large movements in 

the value of asset portfolios. Assessing the probability of rare and extreme 

events is an important issue in the risk management of financial portfolios. 

One of the goals of financial risk management is the accurate calculation of 

large potential losses due to extreme events such as stock market crashes. 

Managing extreme risks often requires estimating quantiles and tail prob­

abilities beyond those observed in the data. The use of quantitative risk 

measures has become an essential management tool to be placed in parallel 

with models of return.

Extreme value theory provides the solid fundamentals needed for the statis­

tical modeling of such events and the computation of extreme risk measures. 

Extreme Value theorem seeks to quantify the probabilistic behavior of un­

usually large losses and to develop the tools for managing extreme risks.
/

Traditional parametric and non-parametric methods for estimating distri­

butions and densities often give very poor fits to the extreme tails of the 

distribution.This is because they make inferences about the tail distribution 

after estimating the entire return distribution. The methods of extreme value 

theory focus on modeling the tail behavior of a loss distribution using only 

extreme values rather than all the data.The link between Extreme Value the-
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orem and risk management is that Extreme Value theory methods fit extreme 

quantiles better than conventional approaches for heavy-tailed data.

1.3 M easures o f Tail Risk

Value at Risk (VaR)

Value at Risk (VaR) summarizes the worst loss over a target horizon with a 

given level of confidence.lt is an estimate of how much a given portfolio can 

lose at a given time period and confidence interval.VaR is a popular approach 

as it provides a single quantity that summarizes the overall market risk faced 

by an institution.

VaR was proposed by J.R  Morgan in 1994 and became a standard measure 

that financial analysts use to quantify risk.According to the.Basle commit­

tee 1996 paper ’Amendment to the Capital Accord to incorporate Market 

Risks’,in calculating the value-at-risk, a 99th percentile, one-tailed confidence 

interval is to be used.

Expected Shortfall(ES)

This is defined as the expected size of a loss that exceeds VaR.

4
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1.4 O bjectives of the Study

The main objective of this study will be to quantify the probability of un­

usually large losses and to develop tools for managing extreme risks. The 

specific objectives are;

• Construct Extreme Value Theorem Models for analysis of extreme risks.

• Quantify large financial losses using Extreme Value Theorem.

• Empirical comparison of the two models of extreme value.

1.5 Significance of the Study

The results of this study will contribute considerably to the financial market 

practitioners who would like to study the behavior of extreme movements in 

the market.

This study will also form good reference material for further research into 

extreme market risk movements.

1.6 O rganization of R eport

Chapter two examines related works that have been done with respect to

extreme value theory and related studies.



Chapter three looks at the extreme value models, the Block Maxima Model 

and the Peaks Over Threshold Model,the various risk measures, value at risk 

and expected shortfall.

Chapter four discusses the exploratory data analysis and estimates the pa­

rameters of the Block Maxima Model and the Peaks Over Threshold Model. 

Conclusions and recommendations for further research are then made and a 

list of references given.

Review

6 /
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C hapter 2

L iterature R eview

In recent years the banking industry has recognized the importance of oper­

ational risk in shaping the future of financial institutions. This recognition 

has led to an increased emphasis on the importance of sound operational 

risk management at financial institutions and to greater prominence of op­

erational risk in banks. Several methods have been used to analyze Value 

at Risk (VaR) with almost the same conclusion, that extreme value theory 

(EVT) is the most suitable method to analyze the tail distribution.

Sarma(2002) analyses the tail behavior of the Nifty innovation distribu­

tion using extreme value theory and finds that the essential features of the 

innovation distribution is very different from the normal distribution and that 

the extreme value theory based generalized Pareto distribution model of tail 

estimation is able to capture these features of the innovation distribution and

7 /
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gives a better fit as opposed to the normal distribution. The differences in 

the upper and lower tail behaviors necessitate different treatment of both.

Recently studies concerning stock market returns have been done. Gen- 

cay and Selcuk(2004) investigate the relative performance of Value-at-Risk 

(VaR) models with the daily stock market returns of nine different emerging 

markets. Well known modeling approaches such as the variance-covariance 

method, historical simulation and the extreme value theory (EVT) are used 

to generate VaR estimates and provide the tail forecasts of daily returns at 

the 0.999 percentile along with 95 percent confidence intervals for stress test­

ing purposes. The results indicate that EVT based VaR estimates are more 

accurate at higher quantiles. It is concluded that the Generalized Pareto 

Distribution and the extreme value theory are an indispensable part of risk 

management in general and the VaR calculations in particular, in emerging 

markets.
/

A similar paper, Maghyereh and Al-Zoubi(2006), concludes that the re­

turn distributions of the Middle east and North African (MENA) markets 

are characterized by fat tails which implies that VaR measures relying on the 

normal distribution will underestimate VaR and suggests that the extreme 

value approach, by modeling the tails of the return distributions, are more 

relevant to measure VaR in most of the MENA.

Ahangarani(2005) estimates VaR using both the classical non parametric
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methods and extreme value theory. The Monte Carlo simulations used in 

this case concludes that EVT has less bias to relative to the classical non 

parametric methods.

The issue of limited data and selection of a threshold are tackled in Plesko, 

(2006). In the case of minimal data where extreme risk measures are nec­

essary it is concluded that EVT is the natural method of estimating the 

risk measures. Selection of a threshold is found to be a trade off between 

accuracy and variance. The paper analyses the quality and applicability of 

extreme value theorem for the estimation of high quantiles in the application 

of Operational Risk. In addition the Log normal tail fitting as an alternative 

to EVT is studied and the conclusion is that it is not yet able to yield satis­

fying results for quantile estimations and that EVT may be the only viable 

method to accurately estimate extreme quantiles. However it is found that

expected EVT quantile estimators overestimate theoretical' quantiles, which
/

comes from the functional form of the quantile estimator.

Gilli and Kellezi(2006) uses both the Block Maxima Model and the Peaks 

Over Threshold Model to model tail-related risk measures such as Value-at- 

Risk, expected shortfall and return level concludes that POT method is more 

superior as it better exploits the information in the data sample.

Francois M. Longin(1999) uses an application of extreme value theory to 

compute the value at risk of a market position, and concludes that extreme

9 >
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value method has three main advantages over classical methods. First, as the 

extreme value method is parametric, out-of-sample Value at Risk computa­

tions are possible for high probability values. Second, as the extreme value 

method does not assume a particular model for returns but lets the data 

speak for themselves to fit the distribution tails, the model risk is consider­

ably reduced as opposed to the normal distribution or any given distribution. 

Third, as the extreme value method focuses on extreme events, the event risk 

is explicitly taken into account.

Alexander J. McNeil(1999)concentrates on the peaks-over-threshold (POT) 

model and emphasizes the generality of this approach.In addition he finds 

that whenever tails of probability distributions are of interest, it is natural 

to consider applying the theoretically supported methods of EVT as methods 

based around assumptions of normal distributions are likely to underestimate 

tail risk. Methods based on historical simulation can only provide very im­

precise estimates of tail risk. EVT is the most scientific approach to an 

inherently difficult problem - predicting the size of a rare event. Review

10



C hapter 3

M eth od o logy

E xtrem e Value T heory(E V T )

Extreme value theorem deals with the study of the asymptotic behavior of 

extreme (minima and maxima) observations of a random variable. By deal­

ing with only extreme observations,EVT can provide a better treatment to
/’

the estimation of tail quantiles like Value at Risk (VaR) and does not re­

quire to make a priori assumption about the return distribution.Moreover, 

EVT based methods inherently incorporates separate estimation of the up­

per and the lower tails, and thereby emphasizes the necessity to treat both 

the tails separately due to possible existence of asymmetry in the return se­

ries. There are two main approaches to extreme values;the Block Maxima 

Model and the Threshold exceedances Model. The Block Maxima Model is

11 f



the traditional model of analyzing data it is however wasteful of data and 

has been superceeded by the threshold exceedances which utilizes data on 

extreme outcomes more efficiently.

3.1 Block M axim a M odel

This approach utilizes the ‘extremal types theorem’ to model the distribution 

of extreme (largest or smallest) observations collected from non-overlapping 

blocks of fixed size from the data. Then the ‘generalized extreme value’ 

distribution is fitted to these block extrema. This distribution reflects the 

behavior of very high profits (in case of maxima)and very high losses (in case 

of minima) from the portfolio.

Definition 3.1 L im it Probabilities fo r  M axim a: Let X x, X 2, ... be a

sequence of iid non-degenerate random variables with common distribution
/

function F and let sample maxima be

Mi =  X x,M n = m ax(X x,X 2, ...,X n),n  > 2. The corresponding minima is 

obtained from the maxima by using the identity; 

m i n ( X i , X2, X n) =  - m a x ( - X i, - X 2, ..., - X n).

The distribution function of the maximum Mn is:

P(M n < x )  =  P{ Xx < x , ..., X n < x )  = Fn{x), x e R , n e  N.

1 /



The behavior of Mn is related to the distribution function F in its tail near 

the right endpoint, denoted by;

xp = sup{x  G R : F(x) <1}

Definition 3.2 M ax-stable distribution: A non-degenerate random vari­

able X  is called max-stable if it satisfies

m ax(Xi, ...Xn) = CnX + dn (3.1)

for iid X , X i X n,appropriate constants Cn > 0 and dn G R and every 

n > 2.

R em ark  3.3 The centring constant dn and normalizing constant cn > 0 will 

be referred to as norming constants.

Equation 3.1 can be re-written as;

c- l (Mn - d n) ^ X  (3.2)

It is therefore concluded that every max-stable distribution is a limit distri­

bution for for maxima of iid random variables.

Theorem  3.4 L im it property o f  m ax stable laws: The class of max- 

stable distributions coincides with the class of all possible (non-degenerate) 

limit laws for (properly normalized) maxima of iid random variables.

13 ->
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Proof. Assume that for appropriate norming constants,

lim F n(c„x +  dn) = H(x),  1 6 R
n—* oc

for some non-degenerate distribution function H. We anticipate that the pos­

sible limits H are continuous functions on the whole of R. Then for every 

k e  N

lim Fnk(CnX +  dn) =  ( lim F n(c„x +  dn))k = H k(x), x € Rn—>oo n—>oo

and

lim F nk(cnkx  +  dnk) =  H (x), i e R
n —»oo

There exists constants 4  > 0 ,4  G R such that

lim cn^ / — Ck
n—»oo

and

lim (dn/j; dn )̂fcn — cJfc
n —♦ oo

and for iid random variables Yi, ...Y/c with df H, 

max(P1, ...Y*) =  cfcyx +  J fc

T heorem  3.5 F ish er-T ip p e t(1928) Theorem:Also known as the ‘Ex­

tremal Type Theorem9

14
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t (X n)be a se<Juence ° f  iid random variables, if there exists norming con- 

St(lnts Cn > 0, d„ e  K and some non-degenerate df H such that

c -l(M n -  dn) A  H

tkf‘n H belongs to one of the following dfs:

0, x  < 0
Frechet: =  i

exp {—x~a} , x  > 0 

exp {—{ -x ) a)} , x < 0
Weibull: *«,(*) =  <

1, x > 0 
A(x) = exp {—e~x} , x  € M

a > 0

a  > 0

Gumbel:

theorem suggests that the asymptotic distribution of the maxima be- 

^°hgs to one of the three distributions above regardless of the original dis­

solution of the observed data. Frechet and Weibull distributions attain the 

Ŝ hpe of a Gumbel distribution when the tail index parameter as a  goes to 

00 and -oo , respectively.

^ f in i t io n  3.6 The dfs <f>Q,'I'Q,A ,are called standard extreme value distri­

butions, the corresPonding standard extremal random variables are;

Prechet: A/n =  nx'* X

K ibull: Nfn = n~VaX

^timbel: Mn =  X  + In n

15 /
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The Gumbel distribution is a limit law for the thin-tailed distributions such as 

t^o normal or log-normal distributions. The Frechet distribution is obtained 

a<s a limiting distribution for the fat-tailed distributions such as Student’s t or 

Stable Paretian distributions. The marginal distribution of a stationary 

gftrch process is also in the domain of attraction of the Frechet, family. Finally, 

lhe Weibull distribution is obtained when the distribution of returns has no

Hil.

**•1.1 Generalized Extrem e Value Distribution

'^nkinson(1955) and Von Mises(1954)show that the three families of extreme 

distribution could be represented into a one parameter model,by taking the 

^parameterization where;

? = 1/ q > 0 corresponds to Frechet distribution,

? =  0 corresponds to Gumbel distribution,
/

? = - \ jo t  < 0 corresponds to Weibull distribution,

t'his representation is known as the generalized extreme value distribution 

(GEV);

{e x p { — (1 +  fx )_Vf \ if £ 7̂  0
(3.3)

exp { - exp {-x}} if £ =  0

where 1 +  £x > 0

16 /
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The support of H^ is

X > - £  1, for £ > 0

x < - f - l, for £ < o

x € M, for £ =  o

exp {- (1 +  £x) - 1*} • 1 +  £r > 0, (3.4)

where H€ , £ € R describes the limit distribution of all normalized maxima.

The parameter £, called the shape parameter, models the distribution tails. 

Each of the three extreme value distributions can be obtained as a special case 

of the GEV distribution. When £ > 0, we get the Frechet distribution, when 

(  < 0 we get the Weibull distribution and £ =  0 is the case of the Gumbel 

distribution. is a standard generalized extreme value distribution.

Definition 3.7 M a xim u m  dom ain o f attraction: The random variable 

X(the distribution function F of X, the distribution of X) belongs to the max­

imum domain of attraction of the extreme value distribution H if there exist 

constants cn > 0, dn G M. such that;

c~l(M — n — dn) - i  H

We write X  E MDA(H) ,(F G MDA(H)).

17 /
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3 1.2 Parameter Estimation for Generalized Extreme 

Value Distribution

^troduce the location and scale parameters, /x € R, 0  > 0 in the Generalized 

P̂ktrerne Value Distribution to get:

Ht;nAx ) =  e x p j - U  +  f ^ p ) ”1/€} » 1 +  ^~/F^"> 0 ' (3.5)

e extremal index 9 consists of shape, scale and location parameters, £, (3, /x 

1 ̂ spectively. Our data consists of a sample X \ , ..., X n iid from He.

A ssu m p tio n  3.8 Xi has an exact extreme value distribution H^.

tin s  assumption is not realistic and so at times the more tenable assumption 

'  hat Xi are approximately distributed is used.

^The Generalized Extreme Value distribution can be fitted using various meth­

ods like the maximum likelihood method and the probability-weighted mo- 

tnents method . We will use the maximum likelihood method to estimate 9.

3.1.3 M aximum Likelihood Estimation of 6

Note that the extremal index 9 consists of shape, scale and location parame­

ters, f , /?, fi respectively. Suppose we have data from an unknown underlying

18 t
\

f



distribution F which we suppose lies in the domain of attraction of an ex­

treme value distribution H  ̂ for some £ and that the data are realizations of 

iid random variables. Divide the data into m blocks of size n. The true dis­

tribution of the n-block maximum Mn can be approximated for large enough 

n by a three parameter Generalized Extreme Value distribution, H ^ p .  It 

will be assumed that the block size n is quite large so that the block maxima 

observations can be taken to be independent.

The number (m)and size (n) of the blocks are determined as a trade-off. A 

large value of n leads to a more accurate approximation of the block maxima 

distribution by a Generalized Extreme Value distribution and a low bias in 

the parameter estimates; a large value of m gives more block maxima data 

for the Maximum Likelihood Estimation and leads to a low variance in the 

parameter estimates.

Consider financial applications where daily return data are divided into yearly 

blocks and the maximum daily falls or rises within these blocks are analyzed. 

Denote the block maximum of the jth block by Mnj. Let h ^ p  be the density 

of the  Generalized Extreme Value distribution. The likelihood function will

be;
m

ft] Mni) = ' (3-6)
i= l

'  19 /
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Denote the log-likelihood by p, /?; Mni) = In L(£, p, /?; Mni).Then,

£(£,p,p-,Mni) = ^  In h ^ p(Mni)
i=l

- m l n / ? - ( l  +  ^ ) ^ l n ( l  +  CMn* fi) ~ **) 1/4
€7t r ' " '  *  7 t r 1 '  *

The above equation must be maximized subject to the parameter constraints 

that P > 0 and 1 +  £(Mn* — p) > 0 for all i and £ > — 5.

The fitted Generalized Extreme Value model can be used to analyze stress 

losses.There are two approaches;

Definition 3.9 (R e tu rn  Level) The return level estimation problem de­

fines the frequency of occurrence of the stress event and estimates its mag­

nitude.Let H denote the distribution function of the true distribution of the 

n-block maximum. The k n-block return level is rn>k = qi~i/k(H)i.e the (1-1/k) 

quantile of H.

The return level can be estimated by;

r„,fc =  -  i )  =  p +  | ( ( -  ln(l -  £))-« -  1) (3.7)

Definition 3.10 (R e tu rn  Period) The return period estimation problem 

defines the size of the stress event and estimates the frequency of its occur­

rence. Let H denote the distribution function of the true distribution of the 

n-block maximum.

20



The return period of the event {Mn > u} is given by

£n,u = 1/H{u). (3-8)

3.2 T hreshold Exceedances M odel

In this approach all data that are extreme due to the fact that they exceed 

a designated high level are used.

3.2.1 Generalized Pareto distribution (G PD)

The main distributional model for threshold exceedances is the generalized 

Pareto distribution.

D efinition 3.11 G$ is defined by

1 -  (1 +  £x) 1/{ if £¥= Q
(3.9)G ^ x ) =

if £ =  0

where

x > 0 if £ > 0

0 < x  < - l / £ if £ =  0

G{ is a standard generalized Pareto distribution. 

Introduce the scale parameter /3 to get

G ^ ( x )  =  ! — (! +  & ) ~ m , x e  D & /?), (3.10)

21
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where

x € D((,0) =  .
[0, oo) if

[o ,-m \  if

The Generalized Pareto Distribution(GPD), G^p,

£ > 0

£ < 0

£ € R, appears as the

limit distribution of scaled excesses over high thresholds.

Definition 3.12 M ean excess function: Let x be a random variable with 

distribution function(df) F and right endpoint x f■ For a fixed u > x f ,

Fu{ x) = P (X  - u <  x /X  > u), x > 0

is the excess of the random variable X(of the df F)over the threshold u.

The function

e(u) =  E (X  -  u /X  > u), 0 < u < xF

is called the mean excess function of X.

T heorem  3.13 The P ickands-Balkem a-de H aan Theorem

Suppose that X \ ,  X2, ...,X n  are n independent realizations of a random vari­

able X  with a distribution function F(x). Let xF be the finite or infinite right 

endpoint of the distribution F. The distribution function of the excesses over 

certain (high) threshold u is given by

p / x „  r \  _  F {x + u) -  F{u)
F» W  =  Pr |  X  -  u < x /X  > u J  — I

fo r  0 < x < Xp ~ vl- 

22



The Pickands-Balkema-de Haan theorem (Balkema and de Haan 1974; Pickands 

1975) states that if the distribution function F€ DA(H^) then 3 a positive 

measurable function 0{k) such that;

lim sup |Fu(x) — G^Ja(u)(x)| =  0 (3.11)
V ’— * X F  0 < X < X p — U

and vice versa, where G^tp(u)(x) denote the Generalized Pareto distribution.

The above theorem states that as the threshold k becomes large, the dis­

tribution of the excesses over the threshold tends to the Generalized Pareto 

distribution, provided the underlying distribution F belongs to the domain 

of attraction of the Generalized Extreme Value distribution.

3.2.2 Parameter Estimation for GPD;Peaks-Over-Threshold  

M odel

The Peaks-Over-Threshold (POT) Model, attempts to estimate the tails of 

the underlying return distribution, instead of modeling the distribution of 

extremes as in the Block Maxima Model approach.In the POT model, a 

certain threshold is identified to define the starting of the tail of the return 

distribution. Then the distribution of the ‘excesses’ over the threshold point 

is estimated.This approach utilizes the Pickands-Balkema-de Haan theorem 

to fit a generalized Pareto distribution to the excesses over specific thresholds.

The POT Model uses the following assumptions;



A ssum ption 3.14 • Exceedances occur at a homogeneous Poisson pro­

cess in time.

• The corresponding excesses over u are independent and have a Gen( 1 

alized Pareto Distribution.

• Excesses and exceedances are independent of each other.

Suppose X i, ...,X n are iid with distribution function F  € MDA{H€) for sdme 

£ G R. Choose a high threshold u and denote by

Nu = card{i : i = 1, Xi > u}

the number of exceedances of u by X u X n.Denote the corresponding ex­

cesses b y K i , YNu. The excess distribution function of X is given by;

Fu{y) = P( Y  < x / X  >u) ,  y > 0.

This can be written as;

F(u + y) = F{u)Fu(y). C3-12)

Equation (3.10) is the limit result for Fu{y) for an appropriate positive func_ 

tion (3 a function of u.For large u the following approximation is derived;

Fu(y) ~  GitP{u)(y) (3-13^
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£ and (3(u) are estimated from the excess data and depend on u.

From equation (3.11) a natural estimator for F(u) is given by the empirical 

distribution function

(F(u)j =  Fn(u) =  ^  1{Xi>u] = ^
t = l

Equation (3.12) leads to the estimator;

M v ) )  »  G ^ ( y )  (3.14)

for appropriate f  =  £Nu and (3 = 0Nu. The resulting tail estimator will be;

(F(u + y)) = ^ ( l + ( j ) T  (3.15)

The quantile is estimated by inverting the tail estimator formula 3.14 to get;

xp = u +  ! ( ( ^ ( l - p ) ) - < ' - l )  (3.16)

To calculate the relevant estimators the following input is required;

• reliable models for the point process of exceedances.

• a sufficiently high threshold u.

• estimators £ and (3.

R em ark 3.15 Selection of the threshold u is a trade-off between bias and 

variance. A high value of u results in too few exceedances and hence high 

variance estimators. A low value of u results in biased estimators.
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For the Pickands-Balkema-de Haan theorem to hold the value of u should be

sufficiently high. The Generalized Pareto distribution estimators are unbi­

ased if and only if k —* u, i.e if the threshold is sufficiently high.

3.2.3 M aximum Likelihood Estimation

The data is iid with common distribution function F. Let F be Generalized 

Pareto Distribution with parameters £ and (3 so that the density f is

The above equation must be maximized subject to the parameter constraints
/

that £ > —5.

3.2.4 M easures of Tail Risk

The Generalised Pareto distribution for excess losses is used to estimate the 

tail of the underlying loss distribution F and associated risk measures.

The log-likelihood function equals

£((£,/?); Mni) =  - n ln / 3 -  (± +  1 ) £ > ( 1  +  ^M ni) (3.17)

26 /
V



Definition 3.16 (Q uantile function) : The generalized inverse of the dis­

tribution function F

F ^ (t)  = inf {x € R : F(x) > t }  0 < t < l

is called the quantile function of the df F. The quantity Xt =  F*~(t) defines 

the t-quantile of F.

Definition 3.17 Value-at-Risk: This is the capital sufficient to cover, in 

most instances, losses from a portfolio over a holding period of a fixed number 

of days.

A ssum ption 3.18 Let F be a loss distribution with right endpoint xp and 

assume that for some high threshold u we have Fu(x) = G^}g(x) for 0 < x < 

xp — u and some ( £ R  and f3 > 0.

We see that for x > u,
/

F(x) = P(x > u)P(X > x / X  > u )

=  F(u)P(X — u > x -  u / X  > u)

-  F(u)Fu(x -  u)

=  f (u)( 1 + ^ r 1*
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This formula may be inverted to obtain a high quantile of the underlying

distribution interpreted as VaR- For ft >  F{u), VaR is equal to

B . A - a . c  n  
VaRa = qa(F) = u + ^ ( ( j ^ )

Definition 3.19 Expected Shortfall: This estimates the potential size of 

the loss exceeding VaR.

Expected shortfall (ES) is equal to,

e s .  =
VaRa , P ~
T ^ ?  +  i - e '

(3.18)
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C hapter 4 

D a ta  A nalysis

The data used in this study is the weekly prices of the NSE 20 Share Index 

for the period February 2002 to November 2008.The data has been analyzed 

using S-Plus Fin metrics module.

4.1 E xploratory D ata A nalysis

/
Figure (4.1) is an illustration of the actual weekly NSE 20-share index prices 

and the weekly percentage returns. Table (4.1) shows the basic statistics for 

the NSE 20 share Index.

Figure (4.2) shows the qq-plot of the returns which suggests that the tails of 

the return distribution are fatter than the normal distribution which suggests 

the Frechet family of generalized extreme value distributions with £ > 0 for

29



Weekly Cloaing Price*

Figure 4.1: weekly closing prices and percentage returns on the NSE 20 Share 

Index.

Data Index

Min 1008.790

1st quartile 2455.390

Median 3527.500

3rd quartile 4879.860

Max 6161.460

Table 4.1: Basic Statistics for NSE 20 Share Index
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Weekly Cbalng Price*

Figure 4.1: weekly closing prices and percentage returns on the NSE 20 Share 

Index.

Data Index

Min 1008.790

1st quartile 2455.390

Median 3527.500

3rd quartile 4879.860

Max 6161.460

Table 4.1: Basic Statistics for NSE 20 Share Index
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Figure 4.2: Normal Q-Q Plot, 

the block maximum of negative returns.

4.2 Param eter E stim ation
/

4.2.1 Block Maxima Model

The returns on the data has been organised into monthly blocks.

Figure (4.3) gives several graphical summaries of the monthly block max- 

ima.The largest weekly negative return in a monthly block is 13.65 percent 

in 2007. The number of records is consistent with iid behavior.The his-
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togram resembles a Frechet density. The qq-plot uses the Gumbel, H0, 

as the reference distribution. For this distribution, the quantiles satisfy 

Hq 1(p) — — ln(— ln(p)).The downward curve in the plot indicates a gen­

eralized extreme value distribution with £ > 0.

We need to estimate the shape,scale and location parameters, ft, //,, respec-

0 5 10

Monthly maximum

Plot of Record Development

Figure 4.3: Monthly block maxima, histogram,Gumbel qq-plot and records 

summary for the NSE 20 share Index.
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tively. The maximum likelihood estimators for these parameters using block 

maxima are computed using the monthly blocks from the weekly (negative) 

returns on NSE 20 share Index.Table (4.2) shows an estimate of these pa­

rameters, which form the extremal index 0,with £ =  0.139, after fitting the 

model.

From the analysis we find that the probability that a new record maximum

parameter value Std. Error

£ 1.39 x 10-1 8 x 10“2

& 1.62 1.55 x 10-1

1.08 2.0 x 10-1

Table 4.2: Estimated Parameters for GEV distribution.

weekly negative return will be established during the next month is 0.52 per­

cent.

To test the fit to the generalized extreme value we see from Figure (4-4) of 

residual plots, the scatter plot of the residuals, with a lowest estimate of 

trend, does not reveal any significant unmodeled trend in the data.The qq- 

plot, using the exponential distribution as the reference distribution's linear 

and appears to validate the generalized extreme value distribution.

The estimate of the 12 month return level is 5.79 percent. The plot of

33
t

\



Figure 4.4: Residual plot for GEV. 

this is seen in figure (4.5).

4.2.2 Generalized Pareto Distribution

The mean excess plot is used to determine the threshold (u) for the Gener-
/

alized Pareto distribution.The mean excess plot for the NSE 20-share Index 

data is illustrated in figure (4.6). The mean excess plot for the NSE 20-share 

Index negative returns is linear in u for u < 0.5.This suggests that the thresh­

old u =  0.5 may be appropriate for the GPD approximation to be valid.

Diagnostic plots for Generalized Pareto distribution fit to weekly negative 

returns on NSE 20-share Index are shown in figure (4.7) with Table (4.3)
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Figure 4.5: 12-month return level.

Threshold

Figure 4.6: Mean excess plot.
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showing an estimate of the parameters, which form the extremal index 6,

and appears to fit the distribution of threshold excesses fairly well.

0 20 40 60 80 100 120
Ordering

0 1 2 3 4 5
Ordered Data

Figure 4.7: Diagnostic plots for GPD fit to NSE 20 Share Index.

Parameter Value Std. Error

i 1.07 x 10-1 1.06 x 10-1

P 1.712 x 10"1 2.36 x 10"1

Table 4.3: Parameter estimates for the GPD distribution.

The number of exceedances is 128 observations.Notice that £ =  0.107 is 

fairly close to zero and indicates that the return distribution is not so heavy-

36 /

\



showing an estimate of the parameters, which form the extremal index 6,

and appears to fit the distribution of threshold excesses fairly well.

x (on log scale)

Figure 4.7: Diagnostic plots for GPD fit to NSE 20 Share Index.

Parameter Value Std. Error

€ 1.07 x 10-1 1.06 x 10-1

(3 1.712 x IQ-1 2.36 x 10-1

Table 4.3: Parameter estimates for the GPD distribution.

The number of exceedances is 128 observations.Notice that £ =  0.107 is 

fairly close to zero and indicates that the return distribution is not so heavy-
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tailed.This is in addition to this estimate being smaller than the generalized 

extreme value estimate £ =  0.139 based on weekly data.

4.2.3 Measures of Tail risk

Table (4.4) shows the estimates of VaRq and ESq based on the generalized 

Pareto distribution approximations. With 5 percent probability the daily re­

turn could be as low as -4.3 percent and, given that the return is less than 4.3 

percent, the average return value is -6.6 percent. Similarly, with 1 percent 

probability the daily return could be as low as -7.9 percent with an average 

return of -10.55 percent given that the return is less than -7.9 percent.

Note that the estimates of VaRq and ESq based on the normal distribution

p Quantile Shortfall

0.95 4.300 6.60

0.99 7.927 10.547

Table 4.4: GPD based risk measures estimates

are fairly close to the estimates based on the generalized Pareto distribution.
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p Quantile Shortfall

0.95 4.953 6.290

0.99 7.133 8.217

Table 4.5: Risk measure estimates based on assumptions of normal distribu­

tion.
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C hapter 5

C onclusions and  

R ecom m en dation s

In this chapter we give a conclusion of the findings and recommendations for 

further research.

5.1 C onclusions

We have illustrated how extreme value theory can be used to model tail- 

related measures such as Value at Risk, expected shortfall and return level 

applying it to the NSE 20 Share Index weekly returns. A comparison of the 

two models indicate that the ’’Peaks Over Threshold” model gives a better 

estimation to the extreme values as it focuses on modeling the tail behavior
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using extreme values beyond a certain threshold as opposed to the Blocks 

Maxima Model which utilizes only the maximum losses in large blocks. In 

addition it is easier to calculate risk measures using the ’Peaks Over Thresh­

old ’ model as opposed to the Block Maxima Model. In addition normal 

quantiles are close to the Generalized Pareto distribution quantiles which 

implies that the risk is not underestimated.

5.2 R ecom m endations

More work can consider the use of non-parametric models, e.g the Hill 

method, to estimate tail distributions and densities and comparing this with 

the parametric models.

Further work could consider multivariate approach to extreme value analysis 

to give a complete picture of the market risk.

t
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A p p en d ix

D ata

Weekly closing prices for the NSE 20- Share Index for the period 1st Febru­

ary 2002 to 28th November 2008.

1340.31 1336.81 1332.54 1335.52 1317.78 1260.9 1232.87 1214.54 1183.1 1177.81 

1168.88 1139.32 1129.01 1124.54 1124.82 1122.64 1064.24 1071.07 1071.45 

1079.2 1075.77 1086.62 1079.27 1094.86 1111.5 1103.44 1080.12 1070.38 1066.08

1047.87 1043.38 1036.74 1008.79 1021.95 1025.61 1025.61 1032.75 1053.78
/

1064.86 1118.44 1197.86 1239.36 1166.01 1161.63 1167.18 1225.95 1298.86

1384.98 1572.12 1509.43 1554.07 1510.63 1536.75 1520.16 1507.96 1557.74

1549.68 1542.73 1564.2 1598.81 1617.35 1705.13 1705.13 1766.48 1886.36 

2187.48 2119.13 2083.21 2074.67 2016.87 2015.34 1959.6 1948.73 1920.52

1938.22 1934.14 1963.21 2000.98 2027.54 2048.81 2047.58 2107.43 2139.7

2169.17 2218.03 2328.05 2398.22 2384.38 2445.39 2470.67 2457.21 2455.39
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2458.21 2502.97 2736.98 2733.53 2635.03 2674.2 2705.46 2753.33 2788.98

2818.29 2893.12 3157.88 3138.37 3175.8 3125.57 3175.36 3129.18 3074.07 

2939.31 2849.55 2673.84 2581.46 2727.73 2747.52 2707.6 2626.12 2644.8 2593.99 

2680.75 2662.49 2639.83 2686.99 2669.34 2634.67 2657.76 2674.56 2614.95

2708.03 2757.28 2715.34 2700.15 2712.65 2710.73 2704.15 2652.64 2650.2

2648.71 2673.54 2745.83 2778.29 2829.65 2832.3 2868.26 2885.16 2885.16

2921.53 2954.09 2999.54 2979.13 2923.86 2945.58 3007.94 3102.16 3078.93

3092.24 3167.79 3198.06 3191.78 3219.37 3208.66 3211.64 3170.25 3155.01

3139.54 3163.95 3138.17 3165.19 3227.59 3242.89 3292.75 3353.51 3492.58

3506.05 3716.9 3780.08 3860.83 4006.27 4203.51 4142.8 3987.04 3982 4049.95 

4012.42 4047.26 3980.37 3884.63 3847.17 3801.87 3791.57 3832.69 3843.49

3921.4 4008.76 3976.62 3880.88 3928.16 3951.59 3955.38 4022.02 3972.82 

3963.26 3953.01 3973.04 4030.97 4140.66 4199.53 4173.5 4163.64 4100.22

4071 4062.56 4055.78 3872.21 3955.42 4067.41 4101.64 4025.3 3973.79 3960.19
/

4025.21 4149.14 4316.72 4411.81 4338.42 4339.47 4189.66 4272.43 4246.8 

4260.49 4271.72 4272.6 4244.16 4271.68 4340.88 4407.54 4451.08 4451.08

4469.6 4490.84 4523.8 4750.8 4778.35 4879.86 4903.9 4906.49 4864.02 5106.65

5515.34 5654.46 5642.04 5752.57 5553.08 5477.86 5589.64 5487.73 5645.65

6161.46 6025.41 5961.61 5663.65 5817.04 5798.73 5732.67 5268.99 5245.62

5171.13 4465.09 5133.67 5215.2 5242.88 5099 5148.07 5116.02 5114.17 5167.34 

5134.51 5001.77 5068.68 5137.45 5124.14 5146.73 5160.89 5117.37 5137.51
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5317.73 5320.42 5240.83 5171.3 5234.7 5371.72 5560.23 5484.63 5491.27 5146.46

5005.89 5175.8 4884.75 5044.06 4980.49 5124.31 5147.62 5198.23 5234.54 

5265.15 5339.8 5339.8 5444.83 5015.5 5335.23 5098.48 4967.88 4795.96 4657.6

4986.06 4924.35 5354.68 5354.68 4959.44 4907.29 4855.36 4951.73 5021.82 

5141.62 5207.23 5364.72 5274.44 5170.55 5149.96 5175.83 5477.7 5320.28 

5284.08 5152.03 5129.73 5081.34 5025.84 4963.46 4849.97 4676.9 4689.92 

4648.78 4774.75 4541.93 4294.3 4244.83 4251.3 4174.84 3882.76 3716.32 3373.87 

3386.65 3918.78 3625.59 3527.5 3341.47

S-Plus Script

Index 

Index, ts

summary (Index)

Index08 =  getReturns(Index.ts, type=” discrete” , percentage=T)
/

par(mfrow=c(2,l))

plot(Index.ts, main=”Weekly Closing Prices”) 

plot(Index08, main=”Weekly Percentage Returns”) 

qqPlot(seriesData(Index08)) 

boxplot(seriesData(Index08)) 

histPlot(seriesData(Index08))
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qqPlot(Index08,strip.text=” Weekly returns on Index” ,xlab=” Quantiles of stan­

dard normal” ,ylab=” Quantiles of Index”) 

autocorTest(Index08, lag.n=10, method=”lb”) 

par(mfrow=c(2,l)) 

acf(seriesData(Index08)) 

acf(seriesData(Index08) ,type=” partial”)

MonthlyMax.Index =  aggregateSeries(-Index08, by=”months”,FUN=max) 

MonthlyMax.Index

Xn = sort(seriesData(MonthlyMax.Index))

Xn

par(mfrow=c(2,2)) 

plot(MonthlyMax.Index)

hist(seriesData(MonthlyMax.Index) ,xlab=” Monthly maximum”) 

plot(Xn,-k>g(-log(ppoints(Xn))),xlab=”Monthly maximum”)
/

tmp = records(-Index08)

gev.fit,.month =  gev(-Index08, block=”month”)

gev.fit.monthn

gev. fit.monthp&r .ests

gev. fit. monthpar. ses

par(mfrow  =  c(l,2))

plot(gev. fit.m onth)
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\-pgev(max(gev.fit.m<ynthd&ta),y.\-gev.fd..mont\ipar.ests[' xi"],mu =  gev.fit.monthpa.r.ests[

rlevel.manth. 12 =  rlevel.gev(gev. f  it.month,k.blocks =  12, type =  ”profile”)

class(rlevel.month. 12)

names(r level.month. 12)

rlevel.month. 12rlevel

me.Index = meplot(-Index08)

par (mfrow=c( 1,2)) qplot(-Index08, threshold=0.5, main=”Index.ts returns 

negative returns”)

gpd.Index =  gpd(-Index08, threshold=0.5)

gpd. Ind exupper.thresh

gpd. Index n.upper.exceed

gpd.Indexp.Zess .upper .thresh

gpd. Index upper. par. ests

gpd.Ind exupper.parses

par(mfrow = c( 2,2))

plot (gpd. Index)

riskmeasures(gpd.Index, c(0.95,0.99))

Index.mu =  mean(—Index 08)

Index.sd = sqrt(var(—Index08))

var.95 =  Index.mu + Index.sd * qnorm(0.95)

var.99 = Index.mu  +  Index.sd * qnorm(0.99)
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var. 95

var. 99

z%  =  (var. 95 — Index.mu)/Index, sd 

299 =  (var. 99 — Index.mu)/Index, sd 

es.95 =  Index.mu +  Index.sd * dnorm(z95)/(1 -  pnorm(z%))

es.99 =  Index.mu +  Index.sd * dnorm(z99)/(1 -  pnorm(z99)) 

es.95

es.99
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