

University of Nairobi

School of Computing & Informatics

3D Visualization Program

For

Executable Code Analysis

by

Peter Mulwa

P58/63309/2011

Supervisor

Dr. Tonny Omwansa

2013

A project in partial fulfillment of requirement of Master in Computer Science

University of Nairobi

 i

ABSTRACT

Information Technology is pervasive and new ways to leverage its potential are continuously

emerging. A resultant effect is the increase in the code base as new functionality is implemented.

And as computers increasingly handle and process more information, the analysis of executables

becomes necessary.

Visual Analytics of executable code provides a tool to analyze their structured format, providing

an alternative tool comparable to directly analyzing source code, to generate meaningful

information. Visualization of the software enhances this process by providing the visual

metaphors that represent the code aspects.

Various visual representations have been utilized in visualizing the various aspects of software.

This research presents a visual interface for interacting with Binary Code, illustrating the

potential of basic geometric shapes and visual interaction in understanding the structure of

programs. It proposes that directly manipulating the software structure, with an abstracted visual

representation, provides an improved understanding of a program.

The process involved the design and development of a prototype application of a 3D

environment within which interactions with visual metaphors enabled visualization and analysis

of Binary Code. The key metaphor utilized is based on the lattice structure.

The resultant application provided a 3D visualization environment within which binary code

could be analyzed using a lattice-based metaphor. The application provided functionality for

visually interacting with disassembled code as well as querying the code and visually viewing

the results within the metaphor. The research could provide a basis for research and application

of visual reverse engineering in an environment of touch screens and increasing processing

capability.

Key words: Binary Code, Visualization, Lattice, Metaphor, Instruction Set Architecture

 ii

DECLARATION

I declare that this research project report is my original work and has not been submitted for

academic reward in any institution.

Peter Mulwa

Signature:

Date:

This research project report has been submitted with my approval as supervisor.

Dr. Tonny Omwansa

Signature:

Date:

 iii

ACKNOWLEDGEMENTS

I like to thank Dr. Omwansa for his guidance and critique from the initial stages of proposing

potential projects to finally settling on a project and seeing it to its conclusion. I’m grateful for

the opportunity, patience, and encouragement during the endeavour.

I would also like to thank Mr. Moturi for his pace setting and encouragement to begin and

complete the project. I appreciate your availability and guidance during the entire degree

program.

Thanks also go to my panel of Dr. Wausi, Dr Nganga, and Dr. Orwa, for their input, direction,

and asking the questions needed to refine the project. I really appreciate the encouragement you

gave.

Thank you Mum.

Thank you Jesus.

 iv

TABLE OF CONTENTS

List of Figures vi

List of Tables ix

List of Code Listings x

Chapters

1. Introduction 1

I. Background 1

II. Research Basis; Problem Statement and Purpose of Project 2

III. Research Outcome and their Significance to Key Audience 2

IV. Research Objectives 3

V. Research Scope, Limitations, Assumptions, and Complexity 3

VI. Research Justification 4

VII. Definitions of Important Terms 5

VIII. Subsequent Chapters 5

2. Literature Review 6

I. Overview 6

II. Guiding Concepts (Scope) 6

III. Literature Survey (Common Ground) 8

IV. Case For Research (Literature Gaps) 13

V. Conclusion 15

3. System Design 17

I. Introduction 17

II. Development 18

III. Requirements 20

IV. Conceptual 20

V. Data 25

VI. Import Format 26

VII. Content 29

VIII. Metaphor 38

 v

IX. Construct 45

X. Visual 62

4. Results 69

I. Introduction 69

II. Test Program 69

III. Visualization & Analysis 72

5. Conclusion 82

I. Introduction 82

II. Achievements 82

III. Findings – Review of Research Objectives 85

IV. Contribution – Addressing of Perceived Gaps 85

V. Evaluation 87

VI. Recommendation 89

VII. Summary 89

References 90

Appendices

A. Development Platform 93

B. User Manual 94

C. Usability Testing 95

 vi

LIST OF FIGURES

Figure Description Page

2.1 Code Structuring & Abstraction 7

2.2 Visualization (Code Aspect to Visual Metaphor Mapping) 8

2.3 Literature survey metaphors 13

2.4 Framework for Visual Analytics 15

3.1 Prototype Development Cycle 18

3.2 Interaction Flow 21

3.3 Content Generation 22

3.4 Disassembly of Notepad.exe 28

3.5 Data Files 29

3.6 Data Engine 30

3.7 .ld File Content 32

3.8 .ldl File Content 33

3.9 .ldr File Content 34

3.10 .le File Content 36

3.11 .lel File Content 37

3.12 .ler File Content 37

3.13 Sequential & Control instructions 38

3.14 Runtime dependency 38

3.15 Metaphor representation 39

3.16 Enhanced metaphor representation 39

3.17 Display of branching information 40

3.18 Folding node sequences 41

3.19 Section format 42

3.20 Navigation 43

3.21 Notation 44

3.22 Sequential flow 45

3.23 Control flow 45

3.24 Basic program 47

 vii

3.25 Disassembled Basic Program 47

3.26 Visualized Basic Program 47

3.27 ‘if’ statement 48

3.28 Disassembled ‘if’ Program 49

3.29 Visualized ‘if’ Program 49

3.30 ‘switch’ statement 50

3.31 Disassembled ‘switch’ Program 51

3.32 Visualized ‘switch’ Program 51

3.33 ‘do’ statement 52

3.34 Disassembled ‘do’ Program 53

3.35 Visualized ‘do’ Program 53

3.36 ‘while’ statement 54

3.37 Disassembled ‘while’ Program 55

3.38 Visualized ‘while’ Program 55

3.39 ‘for’ statement 56

3.40 Disassembled ‘for’ Program 57

3.41 Visualized ‘for’ Program 57

3.42 ‘continue’ statement 58

3.43 Disassembled ‘continue’ Program 59

3.44 Visualized ‘continue’ Program 59

3.45 ‘break’ statement 60

3.46 Disassembled ‘break’ Program 61

3.47 Visualized ‘break’ Program 61

3.48 Graphics Engine 62

3.49 Startup Screen 63

3.50 Visualization Screen 63

3.51 Content Generation 64

3.52 Visualization Screen Layout 64

3.53 Visualization Screen Layout Components 65

3.54 Prototype – Initial Screen Layout 68

3.55 Prototype – Initial Screen Animation 68

 viii

4.1 Disassembled Test Program 71

4.2 Test Program Visualization 72

4.3 Navigation & Next Location Highlight 74

4.4 Potential Source Locator 75

4.5 Loops 77

4.6 Potential Endless Loop 79

4.7 Function Call Mapping 80

 ix

LIST OF TABLES

Table Description Page

1.1 Word processor sizes 4

2.1 Recurring themes in literature 12

2.2 Literature survey summary 12

2.3 Perceived gaps in literature 15

3.1 External Components 23

3.2 File / Program Entry Points 23

3.3 Key Processes 24

3.4 Content Files 24

3.5 Format for 1st line of an instruction 27

3.6 Format for 2nd & subsequent lines of instructions 28

3.7 .ld File Format 31

3.8 .ldl File Format 33

3.9 .ldr File Format 34

3.10 .le File Format 35

3.11 .lel File Format 36

3.12 .ler File Format 37

4.1 Test Program (1st 8 nodes; 1st section) 72

B.1 Keyboard Commands 94

 x

LIST OF CODE LISTINGS

Code Listing Description Page

3.1 Basic program 47

3.2 ‘if’ statement 48

3.3 ‘switch’ statement 50

3.4 ‘do’ statement 52

3.5 ‘while’ statement 54

3.6 ‘for’ statement 56

3.7 ‘continue’ statement 58

3.8 ‘break’ statement 60

4.1 Test program source code 78

 1

CHAPTER 1 - INTRODUCTION

1.1 Background

Information Technology is pervasive and new ways to leverage its potential are continuously

emerging. In this innovation process, software provides a tool for implementing new

functionality, with the potential effect of increasing the existing code base.

Review of this code base is difficult for several reasons. Program complexity increases as new

functionality is implemented. Large teams are involved in the development process. Different

software development tools utilized provide unique syntax and means of expressing semantics.

Publishers usually retain the source code; however, executables are released for deployment.

In varied scenarios, executable files need to be reverse engineered in order to understand their

functionality. Disassembling an executable provides a human-readable format that resembles the

underlying machine code due to the one-to-one mapping of machine & assembly code.

Dependent on the size of the executable, the quantity of the information generated can be large.

This makes the analysis of information potentially difficult. Besides textually viewing the

content, visualization can be utilized to enhance the process of understanding and analyzing the

content.

Lattices provide a potentially useful structure that can be adapted to develop a visual metaphor

that can be used to visualize & analyze a program’s disassembled executable code in order to

generate usable information to aid in decision making.

This research project presents a development of a lattice-based metaphor for this purpose. It

begins by abstracting a generic platform’s Instruction Set Architecture (ISA). Rules are then

formulated on how to represent the different combination of instructions in order to enable

adaptation to a lattice structure. A notation for displaying information is developed.

Various basic code constructs dealing with branching and looping are then illustrated by a

process of abstracting their structural design and then visualizing them using the metaphor on the

basis that these constructs are combined in various ways to constitute a program.

 2

1.2 Research Basis; Problem Statement and Purpose of Project

Executables, with their structured format, provide an avenue (at times possibly the only means)

of understanding an actual program’s design and functionality. And as computers increasingly

handle and process more information, the analysis of executables becomes even more necessary.

Visual Analytics of executable code provides a tool for analysis of the structured format of

executables. By extracting and visually presenting information, an alternative form of analysis is

possible that enables abstraction and interaction of underlying, potentially, complex concepts.

The problem can be summarized as ‘extracting and visually presenting information on

executable code for analysis and abstraction of underlying concepts’.

This research attempts to design and implement a 3-Dimensional visual metaphor and interaction

environment for analyzing disassembled binary code on the basis of the structure of its

corresponding Instruction Set Architecture.

1.3 Research Outcomes and their Significance to Key Audience

Various contributing parameters are increasing the need for executable code analysis; they

include:

 Executable code is increasing both in quantity and complexity, as it becomes a critical

component of modern infrastructure.

 Computing power is increasing, and with the rise of Graphic Processing Units, visual

analysis of large quantities of information (programs in this case) is feasible.

 Visual Analytics provides a tool to quickly analyze large code bases in an interactive

manner, enabling quicker identification of pertinent areas of interest in less time and with

less effort.

The research endeavour aims at providing a 3D visualization environment with associated

metaphors that will enable executable binary code analysis in a graphical manner.

 3

Visualization of binary code could enhance the efficiency of the analysis of programs in software

domains where the source code is not usually available. This largely occurs in the software

security domain with potential fields of use being reverse code engineering, vulnerability

research, and malware analysis.

Potential users of the system include:

 Software Engineers maintaining programs without the source code

 Malware Researchers analyzing malware to determine its structure for signature detection

 Security Researchers reverse engineering programs to identify potential flaws

1.4 Research Objectives

1. To design & develop a prototype 3D Visualization application for Binary Code Analysis.

2. To design & develop a 3D Lattice based visual metaphor to represent Binary Code

1.5 Research Scope, Limitations, Assumptions, and Complexity

The platform selected for implementation and analysis is the Microsoft-Intel platform with its

associated Portable Executable file format and assembly language. This is due to its ubiquity and

existing large code base; however, the results are extendable to other platforms.

The research is limited to the Portable Executable File Format, from which further research into

the executable code is possible. The file format will provide the ideal entry point.

Code obfuscation complicates the process of analyzing an executable. The research assumes that

no attempts are made to complicate the program structure.

The level of complexity and/or size of the programs to be visualized are based on real-world

mainstream applications. Examples include the individual applications of the Microsoft Office

Suite. For example, the Microsoft Word 97 binary size is approximately 8.5Mb, its assembly

code listing approximately 148Mb, and when viewed with single line spacing of font size 10

approximately 32,700 pages of 2.7 million lines of assembly code.

 4

Table 1.1: File size analysis for listed word processors.

Executable Binary Assembly Pages (Lines) (see note below)

Notepad (Windows 2000) 50KB 488KB 150 (~9,000)

Wordpad (Windows 2000) 181KB 2.5MB 830 (~47,000)

WinWord (Office 97) 8.5MB 148MB 32700+ (2.7million+)

Note: Pages format (plain text, font size 10, single line spacing)

1.6 Research Justification

Due to the growing complexity of software and its functionality, and the need to analyze the

growing quantity of code in shorter timeframes, visual analysis provides a potential intuitive and

interactive tool.

Software domains that would benefit from visual analysis include software engineering, reverse

engineering, malware research, security research, and vulnerability research.

A common trend in the above specified domains is the availability of only the executable code;

the source code is usually retained by the developers and not released publicly. In addition,

software is readily available in its executable form. Disassemblers and decompilers exist which

attempt to convert the binary code to some high level form. Disassemblers provide a more

accurate representation due to the one-to-one mapping between assembly code and machine

code. However, analysis of assembly code is not intuitive.

3D visualization provides a graphical alternative to the textual viewing of this code. By

generating a concise visual representation of the underlying binary code, an alternative form of

interaction with code is possible, and potentially ideal because,

 Software is large, complex, and continuously evolves

 Visual processing is more intuitive than textual

 3D visualization increases the spatial space for analysis; there are limits to font shrinkage,

screen resolution, screen monitor sizes, or use of multiple monitors

 Large quantities of information can be analyzed in shorter time frames

 5

 Various aspects can be analyzed and filtered; presented on demand or using different

illustrations, and content can be visually anchored to reduce cognitive load

 Design of a metaphor for binary code enables software visualization to utilize

illustrations tailored specifically for code rather than borrowing information visualization

metaphors.

1.7 Definitions of Important Terms

Several terms occur within this report as well as in the related literature. These are briefly

described below.

 Metaphor – refers to a visual representation of an underlying code concept

 Aspect – refers to an attribute of code

 Anchor – refers to a cognitive reference point used during analysis

1.8 Subsequent Chapters

Content covered in later chapters includes literature review, system design, and results.

 6

CHAPTER 2 – LITERATURE REVIEW

2.1 Overview

This chapter builds a case for the research endeavour outlined in the previous chapter. It consists

of the following sections:

 Guiding Concepts, which provide the scope (Section 2.2)

 Literature Survey, which describes the common ground across the literature (Section 2.3)

 Case For Research, which discusses the perceived gaps in the literature (Section 2.4)

2.2 Guiding Concepts (Scope)

The guiding concepts are used to provide the scope for the research endeavour. They are:

 Screen View

 Program Structure, Control Flow

 Cognitive Dimension

 Visualization, Visual Analytics

They are connected in the following manner: utilization of visualization / visual analytics

enhanced by cognitive dimensions to analyze program structure / control flow on a computing

device’s screen via 3D features and functionality.

2.2.1 Screen View

Information generated from an analysis process on a computing device is usually displayed on its

screen. However, several challenges are faced when attempting to obtain an overall view of the

data presented. Aspects such as quantity & type of content, nature of analysis tool, and the screen

view available can affect the analysis of information.

Limitations are placed on the extent of font shrinkage, screen resolution adjustment, screen size,

or use of multiple screens.

 7

2.2.2 Program Structure, Control Flow

Different categories of tools are available for executable program analysis providing varied

levels of control and information. Examples include disassemblers & decompilers, debuggers,

hex editors, and filters.

However, these tool categories are limited in their capability of providing an initial overall view

of the content they analyze due to their textual nature. For example, identifying various control-

flows (such as back, critical, abnormal, or impossible) is not easily intuitive. Visualization could

provide a global view starting point for visually drilling in, with focused analysis that would

cause unreachable code from the current view to be selectively hidden or automatically removed.

Executable code is increasing in both quantity and complexity, providing a potential software

domain that requires improved and new ways of handling and processing its content.

Figure 2.1: Code is already structured.

Note:

 Source code is converted directly to machine code for execution via a compiler, or into

intermediate byte code that is executed via an interpreter.

 There exists a one-to-one mapping between machine code instructions and assembly code

mnemonics.

2.2.3 Cognitive Dimension (CD)

CDs are guiding principles used in design, usually of user interfaces and notations, enabling

heuristic evaluation of new or existing information artifacts (interactive e.g. applications or non-

interactive e.g. graphs). They provide a lightweight approach in the evaluation of a design space,

without in-depth analysis due to the existence of tradeoffs, to identify usability issues.

 8

Several CDs are utilized in the research, namely abstraction (synopsis of an annotated structure),

diffuseness/terseness (notation space required to provide meaning), secondary notation (extra

information carried by notation), and visibility (ease of identifying notation parts).

2.2.4 Visualization, Visual Analytics

Visualization provides a graphical tool for analyzing large quantities of data to identify patterns,

relations, and structures. Visual Analytics utilizes interactive interfaces to aid reasoning (detect

the expected and discover the unexpected).

Software visualization deals with the mapping between visual metaphors and code aspects.

Executable code with its structure, though abstract, lends itself to visual analysis to improve

program understanding.

In order to achieve the benefits of visual analytics of executable code, the following need to be

addressed: the attributes of both metaphors & aspects, the metaphor representation, the

information to be required to be derived from the massive content, efficient management of the

information derived, and performance enhancements. A methodology also needs to be

incorporated to guide the process.

Figure 2.2: Visualization mapping of code aspects and visual metaphors

Note:

 Software visualization maps executable code comprising of 0s and 1s to graphical

representations.

2.3 Literature Survey (Common Ground)

This section discusses the common goal of visualization on the basis of the guiding concepts. It

illustrates how different research work in software visualization, spanning over 10 years, is

common and overlapping. The goal of this section is to promote the viability of the research

problem’s justification.

 9

2.3.1 Screen View

2D view scalability is hindered as content increases (Zeckzer 2010), and even with zoom

(Broeksema 2011) and multiple view (Maletic 2011, Reniers 2011) capability they are prone to

cognitive overload and lack of intuitiveness (Holy 2012) hence the use of 3D to add a new

spatial dimension (Grancanin 2005), enhance memory activity (Marcus 2003), and make

information analysis easier (Wiss 1998). Extending visual analysis to 3D increases the spatial

space available for interacting with information. Pixel Maps (Marcus 2003), Kiviat (Kerren

2009), and Hull (Lambert 2012) metaphors benefit from 3D. Hierarchical Edge Bundling, which

is extended into 3D space, improves visualization (Beck 2011).

The literature indicates the attempts made at maximizing the use of the screen real estate in order

to cope with increasing quantities of information.

2.3.2 Program Structure, Control Flow

(Grancanin 2005) outlines how visualization is applicable to the entire software lifecycle,

including the support of legacy systems and use in security analysis (Goodall 2009). Both binary

as well as source code is utilized. (Quist 2009, Trinius 2009) visualize malware acquired in

binary form. (Marcus 2003, Zeckzer 2010, Maletic 2011, Reniers 2011) utilize source code from

the perspective of metrics, classes & packages, whole software (for porting), and whole software

(for structure) respectively. Binary code would provide a more accurate form for analysis, as it is

what is actually executed on the computing device.

The literature shows that various visualization undertakings have been done with software and its

attributes for purposes of improving the understanding of programs from both the binary and

source code level.

2.3.3 Cognitive Dimension

Abstraction plays a role in reducing information & cognitive overload. (Grancanin 2005)

mentions 2 concepts that support this. Elision property of ‘abstract distant objects, detail closer

objects’, and Bruce Shneiderman’s visualization mantra which specifies the default sequence of

 10

‘overview first, zoom & filter, details on demand’. Similar echoes are captured in (Marcus 2003).

Complementing components for information extraction are visual and textual representations.

(Goodall 2009) proposes visualization for higher levels and textual for lower levels. The

complex interactions between software entities are prone to make visualization cluttered with the

potential effect of increasing the cognitive load (Caserta 2011, Goodall 2009) and ignoring

information (Kuhn 2010).

Concise information display is enhanced by the use of metaphors that have the capability to

represent the required information, i.e. expressiveness. Cognitive processing is enhanced by

visibility & idealness of the required information encapsulated & presented in metaphors, i.e.

effectiveness. Both expressiveness and effectiveness are properties of metaphors (Grancanin

2005) and tools for the design and evaluation of metaphors (Marcus 2003).

Enhancing abstraction is possible by not displaying all information at once. Pertinent information

can be displayed dependent on the current context or upon demand, by encoding it in the

metaphor (Reniers 2011). Furthermore, the use of mental models to aid in program

comprehension, have been proposed. (Kuhn 2010) proposes the conceptual and structural

models, in addition to introducing the concept of anchors, which provide a reference point in the

analysis.

The literature brings out the concern of information overloading during the analysis of large

quantities of information. Various solutions are proposed and guidelines presented to address the

concern.

2.3.4 Visualization, Visual Analytics

In binary code visualization, metaphors represent aspects of code. However, since the code is

abstract, these metaphors can take varied forms, for example, geometric shapes (Grancanin 2005,

Caserta 2011) or real world objects (Grancanin 2005). In addition to shape, other visual attributes

include size, height/depth, colour, texture/bumpmaps (Holten 2005), transparency, elevation, and

position. These represent various code attributes such as sequence, control structure, nesting

 11

level, declarations & implementations, classes & inheritance, occlusion, etc. (Marcus 2003,

Holten 2005, Zeckzer 2010, Beck 2011, Lambert 2012) mention these attributes.

Various representations have been proposed: Pixel Maps / Cylinder Bars (Marcus 2003),

Matrices / Row-Column (Zeckzer 2010), Tree Maps & Edge Bundling (Caserta 2011), Hulls

(Lambert 2012). The above papers use graphs as a basis in different ways: replacing,

compressing, and enhancing respectively. Graphs are covered in (Reniers 2011). Other

representations include Treemaps (Reniers 2011, Kerren 2009), Radial (Reniers 2011), Kiviat

(Kerren 2009), and Cartography (Kuhn 2010). Furthermore, various combinations of

representations can be utilized concurrently (Broeksema 2011, Maletic 2011).

Visualization generates usable information, for example with refactoring (Broeksema 2011),

which involves determining effort estimation and rewrite impact, or maintenance (Maletic 2011),

which identifies high code turnover areas for purposes of either rewrite, code defect

identification, regression tests, or fan in/out. Integration with other tools, either via input or

output files is possible (Maletic 2011, Kuhn 2010).

Ultimately, visualization should increase the level of understanding of the information being

processed, possibly by maintaining a consistent mental model (Wiss 1998) for recurrent use

(Kuhn 2010). Richard Hamming’s statement, ‘insight, not number is what computing should

evolve to’, is a guiding principle. Abstraction of complex aspects to everyday equivalents

(Medani 2010) and incorporating animation increases understanding (Medani 2010, Kerren

2009), which is further enhanced by lowering clutter by component aggregation (Holy 2012).

Manipulating of the visualization also increases understanding (Wiss 1998). Navigation and

location identification can be enhanced by both animation and panning features (Wiss 1998).

However, animations are susceptible to large changes (Beck 2011).

From a rendering performance perspective (Wiss 1998 also raises this concern), the capability of

being able to utilize the GPU to enhance performance is beneficial. Texture usage, for example,

is natively performed by the GPU.

 12

Due to the varied potential uses of visualization and the abstract nature of the information, a

methodology is required to determine the ideal visualization for a given scenario. (Wiss 1998)

introduces 2 parameters namely the data set (may require prototyping) and task analysis

(involves the parameters of overview, zoom, filter, details on demand, relation, history, and

extraction). (Beck 2011, Goodall 2009) also indicates these 2 parameters. Furthermore, (Wiss

1998) enhances the notion of the uniqueness of visualizations to the problem domain, indicating

that if a methodology doesn’t fit, the alternative could be either modify the design, add

functionality, or use different concurrent visualizations.

Table 2.1: Recurring Themes in Literature

Category Recurring Themes

Screen View Use of 2D & 3D

Program Structure Large Code Bases, Software Lifecycle, Integration

Cognitive Dimension Interaction, Navigation

Visualization Natural Code-Metaphor mapping

Table 2.2: Literature Survey over the period 1998-2012 on Software Visualization

Category Reference

Overview Concepts (Grancanin 2005)

Metaphors Abstraction (Medani 2005)

Cube (Wiss 1998), Cylinder Bars (Marcus 2003, Broeksema 2011)

Graphs (Holy 2012, Reniers 2011), Hull (Lambers 2012)

Kiviat (Kerren 2009), Landscape (Wiss 1998)

Matrices (Zeckzer 2010), Radial (Reniers 2011)

Trees (Kerren 2009, Reniers 2011), Tree Maps (Holten 2005)

Aspect Animation (Kerren 2009), Classes (Zeckzer 2010)

Clutter (Holy 2012), Maintenance (Maletic 2011)

Malware (Quist 2009, Trinius 2009), Metrics (Marcus 2003)

Porting (Broeksema 2011), Realism (Holten 2005)

Structure (Reniers 2011)

 13

Figure 2.3: Illustration of Metaphors in Literature Survey (see Table 2.2 for sources)

Graph

Hull

Cube

Matrix

Kiviat

Cartography

Landscape with Edge Bundling

Radial

Cylinder Bar

2.4 Case For Research (Literature Gaps)

The previous section describes the common landscape based on the guiding concepts. This

section (based on reviewed literature sources) identifies and discusses perceived gaps (which

have not been addressed) and limitations (which could be enhanced) with the focus of being

applied to the research problem.

2.4.1 Screen View

The role of 3D is increasing in the analysis of information. However, a direct conversion and/or

utilization of 3D representations don’t directly imply improved information analysis. The

underlying information being analyzed and its interaction requirements should determine the

 14

representation to be utilized. Hence analysis capability can be improved by incorporating the

strengths of 2D and 3D within a 3D environment.

It is proposed that the 3D be mainly utilized to provide a work environment (increase the spatial

analysis view, while maintaining a natural-based layout of interaction) within which both the 2D

and 3D metaphors can be manipulated, rather than resorting to 3D ports when visual limitations

are encountered.

2.4.2 Program Structure, Code Analysis

As software increases in quantity and complexity, visualization is providing a means of

comprehending its functionality. Various representations have been used to determine structural

aspects, while graphs are frequently utilized to represent program flow. However, providing a

complete view of the program structure and code flow at a go, doesn’t enhance screen view

utilization or cognitive load required.

It is proposed that program structure, at the file level, be utilized as a basis for further drilling in,

due to the ease of identifying relevant sections. In addition the compact nature and standardized

format of binary code, rather than source code, would enhance both screen view utilization and

cognitive load required.

2.4.3 Cognitive Dimension

In order to minimize cognitive overload, abstraction plays a role by providing the ability to view

the entire content. Diffuseness and Visibility are not ideally intuitive, as the metaphors utilized

are not designed specifically for code but borrowed from data visualization. However,

incorporating abstraction a natural mapping can be utilized to represent the underlying concept.

Secondary notation has been mostly textual though it can be enhanced within 3D spatial

environments.

It is proposed that initial interaction with an abstracted model with simple geometric metaphors

(designed for code), will enable personalized mental models to be derived for analysis potentially

reducing the initial and subsequent cognitive load.

 15

2.4.4 Visualization, Visual Analytics

Various representations have been proposed for software visualization based on those utilized in

information visualization. Hence they are not native to code analysis.

It is proposed that a code-biased representation would improve program comprehension by

providing a code based navigation and interaction mechanism to encourage recurrent use.

Table 2.3: Summary of Perceived Literature Review Gaps

Category Perceived Gap

Screen View Use of synopsis / abstraction

Program Structure Focus on mainly source code

Cognitive Dimension Minimal cognitive offloading

Visualization Metaphors borrowed from Information Visualization

Figure 2.4: Framework for Visual Analytics (based on the above table)

Note:

 (see above table for descriptions of figure components)

2.5 Conclusion

As computing devices’ capability increases, and new functionality and features required, the

quantity and complexity of executable code will increase. Scenarios will arise where the code

will need to be analyzed to understand its functionality in decreasing time frames.

 16

Current tools and frameworks, adept at their designed functionality fail to provide a 3D visual

analytical interface, with associated metaphors, for executable code. By providing an overall

snapshot of an executable’s structure and visual interaction functionality, a more intuitive form

of analysis is possible, with the potential of increasing the quantity and quality of code analysis

within shorter timeframes.

3D visual processing, which enables humans utilize an innate analysis capability is a viable tool

for executable code analysis. By abstracting away language features, since similar logic can be

viewed using different languages and focusing on the binary code attention can be directed on

understanding the logic of the process rather than the logic of the language.

 17

CHAPTER 3 – SYSTEM DESIGN

3.1 Introduction

The design of the application is based on the structured format of code. At the binary level, the

code is structured in a form ready for execution by a processing unit. This code can be directly

abstracted to assembly language mnemonics while still preserving the inherent structured form.

It is at this level of abstraction that the application analyzes an executable.

Programs are usually distributed in their executable format (.exe files). In order to more easily

analyze them, they need to be converted into their higher-level language equivalents. Assembly

language equivalents are obtained via a disassembler for the target platform. Due to the varied

disassemblers available and their correspondingly different outputs, an input format for the

application is specified for this application (derived from the dumpbin utility availed with

Microsoft’s Visual Studio Integrated Development Environment). Once in the appropriate

format, the disassembly listing can then be imported into the application for visualization.

This chapter describes the research analysis, design, and implementation process. It consists of

the following sections:

 Development, describes the prototyping method (Section 3.2)

 Requirements, describes the program features (Section 3.3)

 Conceptual, describes the interaction flow and content generation process (Section 3.4)

 Data, describes the sources, collection, and introduces analysis & validation (Section 3.5)

 Import Format, describes the structure of the assembly listing of the disassembled

executable (Section 3.6)

 Content, describes the data files, interfaces, and formats used (Section 3.7)

 Visual, describes the user interface aspects (Section 3.8)

 Metaphor, describes the visualization design (Section 3.9)

 Construct, describes the analysis and validation of assembly code (Section 3.10)

 18

3.2 Development

3.2.1 Prototyping

Due to the iterative and incremental nature of the design and development process, the

prototyping methodology of software development is utilized. It enables enhancing functionality

until a complete system is implemented.

The prototyping approach utilized is evolutionary in that the prototype will be refined and

eventually become the final product. This is through an iterative process of reviewing and

improving on the current build. It combines both horizontal and vertical prototyping enabling

both a broad and component based approach respectively. The horizontal aspect enables

designing of the user interface, while the vertical aspect aids in functionality design. These 2

aspects form the key cycles i.e. the visual and functionality features.

The cycles enable incremental prototyping as the various components can be developed and then

integrated into the system. This would result in a module-based design that would enable

extensibility for additional future features.

3.2.2 Cycles

There are 2 key concurrent cycles, the visual and functionality, in order to handle the key

structural components of the application. The visual cycle addresses the views presented by the

application for interaction; the front end. The functionality cycle addresses the background

processing upon which the visual component operates by retrieving content; the backend.

Figure 3.1: Diagrammatic illustration of the utilized prototyping development cycle.

 19

Note:

 From the initial concept to the final prototype, the visual and functionality components of

the system will be design and developed concurrently, in an evolving and interconnected

manner. (The illustration is a customized derivative based on evolution prototyping.)

3.2.3 Benefits

The prototyping methodology provides benefits to this development endeavour that include:

 Ideal for the design of graphical front ends, which are prone to initial change due to being

a contact point for the system’s users.

 Enables feedback to be incorporated into the next cycle.

3.2.4 Limitations & Handling

The iterative nature of prototyping can result in the method being liable to ever changing design

cycles. To overcome this aspect, once the basic visual and functionality features are formulated,

changes are minimized and focus change to information extraction using the visual and

functionality components.

3.3 Requirements

3.3.1 Functional

These describe what the system does, in the process describing and driving the design.

Key features:

 External disassembler incorporation to enable visualization & analysis of programs for

which there is a disassembler for the target platform.

 Text-based data storage engine to contain the disassembled code in a format that enables

visualization & analysis.

 Lattice-based visualization metaphor for visualization, analysis, interaction, and

navigation of disassembled code.

 20

3.3.2 Non Functional

These describe quality related features of the system, in the process describing and driving the

architecture.

Key features:

 Extensibility to enable building new functionality in order to enhance the program.

 Scalability to enable handling of large disassembled files.

 Modular to enable adaption for other platforms.

3.4 Conceptual

3.4.1 Interaction Flow

The main interacting components of the program comprise:

 An executable to be analyzed, either in binary format, or in its equivalent disassembly.

 The Lattice application, which visualizes the executable.

The process of loading an application for visualization and subsequent analysis is simplified

through the use of drag-and-drop functionality. This is intended to minimize intermediary steps

that could be required during the loading process as once the application is run, the operating

system’s graphical file system shell can be utilized to locate the file to be visualized, which is

then dragged onto the running visualization application.

Once loaded, the intermediate steps that may be required, based on the loaded file, are executed

and the loading progress shown. When all the steps are completed, the visualization is then

loaded, and analysis can begin.

Below is an example illustration of the main interacting components (in this case the Notepad

application from Microsoft and the Lattice default screen used for loading the application) of the

visualization process; beginning with an executable, it is dragged using the mouse, onto the

application in a drag-and-drop manner.

 21

Figure 3.2: Interaction Flow

3.4.2 Content Generation

Once the executable file has been loaded into the application, various processes are run in order

to generate the content that will be used for the visualization. The main processes are:

 Disassembly of a loaded executable file into its corresponding assembly listing (referred

to as dumping).

 Importing of the disassembled assembly file listing into the various content files that will

be utilized for both visualization and analysis.

 Loading for the generated content files for visualization and analysis.

Drag-and-Drop

an executable

file onto the

Lattice program

Content Generation

Visualization & Analysis

 22

Below is an illustration of the various processes and outputs involved from the loading of the

initial program to its visualization.

Figure 3.3: Content Generation

The components illustrated above are described in the sections below.

 External Components

 File / Program Entry

 Processes

 Content

External Components

These are not part of the Lattice program but are used to generate content that will be used by the

program. For example, various disassemblers are available for the different platform. The

appropriate disassembler would be used dependent on the target platform of an executable.

 23

Table 3.1 External Components

Item Description

Disassembler An external integratable tool used to generate the assembly listing that

will then be imported into the application. Dependent on the executable’s

platform, the appropriate disassemble can be utilized.

File / Program Entry Points

These are the high-level files used to either generate content (.exe, .lb) or act as a placeholder for

the various content files (.lc; acts as a place holder to represent the various .ld, .le, and .lf files).

They also provide entry points to initiate the visualization process, by eliminating the need to

perform previously completed tasks, thus saving time.

For example, once an executable file (.exe) has been disassembled into its corresponding

assembly file listing (.lb), subsequent visualizations of the same executable file need not

disassembly the executable gain. Similarly, once the assembly file listing (.lb) has been imported

into the various data files (.ld*, .le*, .lf*; collectively represented by the .lc file), they need not

be regenerated again. This saves time when dealing with large files.

Table 3.2 File / Program Entry Points

Item Description

.exe The executable file to be disassembled. Initiates the visualization process from the

loading of the executable. The content is in binary form.

.lb The disassembled file (text) that is generated by the disassembler (formats vary

per disassembler). Initiates the visualization process from the disassembled file (in

order to avoid the need to repeat the disassembly of an already done disassembly).

.lc A placeholder file (contains no content) used to represent all the other content

files (.ld*, .le*, .lf*). It enables initiation of the visualization process from already

imported content (content is ready for visualization; there is no need for

disassembly nor importing into the appropriate format).

 24

Processes

These are refers to the key processes involved in preparation of the content for visualization and

subsequent analysis.

Table 3.3: Key Processes

Item Description

Dump Disassembles the loaded program using a disassemble

Import Parses the assembly listing and generates structured data usable for

analysis

Resolve Identifies and connects control branching offsets found in the assembly

listing

Link Connects control branching offsets for visualization purposes

Load Retrieves the content from the data files into memory for visualization

Visualization Provides a visual interaction interface to the disassembled program

Content Files

These files (with the extensions .ld*, .le*, .lf*), contain the imported content in a structured

format that is used for the visualization as well as the data analysis. These are detailed in Content

Design (Section 3.7).

Table 3.4: Content Files

Item Description

.ld* Set of structured files of the disassembly that can be queried

.ld Imported assembly code

.ldl Assembly code lines used to resolve addresses for branching

.ldr Assembly addresses that need to be resolved

.le* Set of optimized structured files of the disassembly used for visualization

.le Extracted & optimized assembly code used for visualization

.lel Extracted assembly code indices

.ler Extracted assembly code indices that need to be resolved

 25

.lf* Flag related data

.lf Flag database

.lfl Flag configuration data

Note:

 The filename, obtained from the initial drag-and-drop process, is combined with the

various extensions to generate the different files that are used by the program.

 The file extensions, .l*, were selected in order to enable the application identify files it

has generated, and for the user to easily identify files due to their unique file extensions.

The files however, comprise of structure raw text.

3.5 Data

3.5.1 Source

The data consists of software programs in the form of executable files that will be used as input.

Programs are restricted to the 32 bit version for the Intel platform. The approach is based on the

availability of the executables in binary format as opposed to source code format (which is

usually retained by the developers).

However, since the binary format needs to be translated to at least assembly code for analysis by

humans, the input is based on this format. Since there is a 1-to-1 mapping between machine and

assembly code (Figure 2.1), and disassemblers available for the various platforms, focus can be

directed to the importing and visualization processes.

3.5.2 Collection; Tools & Process

Disassemblers are utilized to generate the equivalent assembly language code for executable

programs that are acquired for analysis. The generated assembly code listing is utilized as input

into the visualization program.

The basic process (Figure 3.3) involves:

1. Acquire an executable file

 26

2. Generate the assembly language equivalent using a disassembler for the target platform

3. Load the assembly language listing into the visualization program

This process ensures that any program that has been converted into its executable equivalent for

deployment can be visualized as long as a disassembler for the platform exists. This provides the

benefit of separating the visualization process from the disassembling process, enabling a more

modular system. In addition, it enables the use of already existing disassemblers that have been

developed for various processors.

3.5.3 Analysis & Validation

In order to validate that the disassembly listing, that will be generated and utilized in the

visualization and analysis, is the correct representation of an equivalent program. The following

approach is taken.

 Sample programs are created. This starts with a simple program that exits immediately

(has no functionality). Other programs representing different constructs and simple

functionality are subsequently created based on the simple program.

 The equivalent functionality is described from how it would be implemented using only

an Instruction Set Architecture (ISA) for a given platform.

 The programs are then disassembly, and the program flow analyzed to determine a match

between the actual platform’s disassembly, and the conceptual platform’s logic.

The construct’s section (Section 3.10) details the analysis & validation.

3.6 Import Format

The input format provides an interface specification for importing assembly listings, generated

by different assemblers, into the program for visualization. As long as the output of the different

assemblers can be formatted into the specification, any disassembler can be utilized, as

subsequently any executable which has a corresponding disassembler can be visualized and

analyzed by the program.

 27

The format is based on the dumpbin.exe utility as described in the chapter’s introduction

(Section 3.1). Lines that don’t match the instruction format, specified below, are ignored, as they

don’t constitute an instruction (e.g. comments generated as part of the disassembly process).

The format is specified for a given line that is to be parsed and imported, and is of the form:

_ _XXXXXXXX:_XX_XX_XX_XX_XX_XX_ _<Opcode>_<Operand>

where _ is a place holder for a space, and X is a place holder for a hexadecimal digit. Details are

described in table 3.5 below.

Table 3.5: Format for 1st line of instruction

Offset from line

start

Length

(characters)

Description

0, 1 2 Space

2-9 8 Offset Address (hexadecimal digits)

10 1 Colon

11 1 Space

12-29 18 (3 * 6) Byte + Space i.e. 2 hexadecimal digits +

space

30 1 Space

31-41 11 Opcode

42 1 Space

43 (until end of line) Operand

If more than 1 line is required to describe the bytes of an instruction, the format is of the form:

_ _ _ _ _ _ _ _ _:_XX_XX_XX_XX_XX_XX

where _ is a place holder for a space, and X is a place holder for a hexadecimal digit. Details are

described in table 3.6 below.

 28

Table 3.6: Format for 2nd & subsequent instruction lines

Offset from line

start

Length

(characters)

Description

0-11 12 Space

12-29 18 (3 * 6) Byte + Space i.e. 2 hexadecimal digits +

space

Sample Input is illustrated below (taken from an executable’s corresponding .lb file):

Figure 3.4: Disassembly Listing of Notepad.exe

a. Disassembly Listing – contains comments

b. Disassembly Listing – highlights show multi line instruction

 29

3.7 Content

Various data files are utilized to store the content required for both visualization and analysis

(Table 3.4). A text-based database engine, which provides 3 interfaces (read, write, and update)

is utilized in modifying the data files.

3.7.1 Data Files

This section expounds on the import process, initially mentioned in Content Generation (Section

3.4.2), illustrating the various data files (Figure 3.5) that comprise the content. Details of the file

structures are given in Data Format (Section 3.7.3).

In summary:

 .lc files represent a place holder to identify the other associated files

 .ld files contain the imported disassembly listing in a format usable by the program

 .le files contain information, based on the .ld files, intended for visualization

 .lf files contain the parameters used for analysis of the executable code

Figure 3.5: Data Files

 30

3.7.2 Data Interfaces

In order a facilitate reading and writing of the data files, a text-based data engine is utilized to

retrieve and store content within the data files. For each data file, 3 interfaces are provided,

illustrated below, namely:

 Read – retrieves a single line from the data file

 Write – stores a single line to the data file

 Update – stores the updated version of a line or segment of the line to the data file

Figure 3.6: Data Engine

3.7.3 Data Format

This section describes the details of the content files as well as provides sample illustrations. The

files consist of structured text and can be viewed with any text editor. Each of the lines of the

various files are of a standard size in order to enable efficient read/write and search operations.

.lc File

The .lc file is a place holder for the program to easily identify the other program files that contain

content used for both visualization and analysis. The file is empty and is used to obtain the

filename portion of the loaded file. For example, loading the Notepad.lc file into the program

enables the location of the other related content files such as Notepad.ld, Notepad.le, Notepad.lf,

etc.

 31

.ld File

The .ld file contains the imported assembly listing in a structured format i.e. the assembly lines

only, with non-instruction lines not imported.

Table 3.7: .ld File Format

Name Type Length Description

Offset String 8 Address in hexadecimal format

Byte String 24 Instruction in hexadecimal format

Opcode String 12 Instruction opcode

Operand String 101 Instruction operand

Execute Number 2 Type of execution

0 = sequence

1 = control

Isa Number 8 Instruction Type

Offset2 String 8 Branch address in hexadecimal format

Level Number 2 Direction of execution

0 = sequential

1 = branch to lower address

2 = branch to higher address

3 = branch (determined at runtime)

Line2 String 8 Line within the .ld file from the branched address

Flag Number 4 Flag Notation

The .ld file builds on the .lb file (the disassembly listing generated by a disassembler), by

identifying, extracting, generating, and tag various attributes of each assembly line.

For example, the opcode is either classified as a sequence or control instruction. If it is a control

instruction, the offset of the branching address is identified and the direction of the flow (to

either a lower address or higher address) is determined. Certain scenarios prevent identification

of the branch address, such as when a CPU register or memory location is involved indicating a

 32

runtime branch. Once a new branching offset is identified, the current line of the instruction is

updated to link it to the branched to instruction’s line.

Due to its contents, the .ld file forms the main data file that is utilized when any query needs to

be done to identify pertinent information. Once generated, the .lb file, is no longer utilized.

Figure 3.7: .ld File Content

a. Highlight shows the initial 4 fields

b. Highlight shows the last 6 fields

.ldl File

The .ldl file is utilized to aid in searching for address links. It comprises of line information

whose content identifies lines in the .ld file.

 33

Control branches that have been identified in the .ld file need to be linked in order to enable the

visualization process highlight interconnecting branches. Hence, the ldl file is used to calculate

the linkages.

For example, once a branch offset is identified, its offset is subtracted from the initial offset in

the assembly listing. The difference is the location of the jumped to branch location. This

difference, when reference in the .ldl file corresponds to a line. The contents of the line identify

the instruction that will be executed upon branching.

The file is generated concurrently with the .ld file. Instructions in the .ld file that occupy more

than 1 byte are reflected in the .ldl file in more than 1 line, i.e. the lines in the .ldl file represent 1

byte each, with multiple byte instructions in the .ld file, occupying an equivalent number of bytes

in the .ldl file.

Table 3.8: .ldl File Format

Name Type Length Description

Line Number 8 Line number (hexadecimal) of instruction located at byte

offset from start

Figure 3.8: .ldl File Content

 34

.ldr File

The .ldr file contains addresses that need to be resolved once the .ld file is generated as they are

forward referencing processes.

During the generation of the .ld file branching instructions are identified and noted as either a

forward, backward, or runtime branch. It is possible to calculate backward branches as the

information has already been generated. However, forward branching is not possible due to the

lack of required information, yet to be processed.

Hence, the .ldr file contains addresses that will need to be resolved to enable linking of branching

instructions. Once the .ld file generation process is complete, the resolve process utilizes this file

to calculate branching connections, which are reflected in both the .ld and .le files.

Table 3.9: .ldr File Format

Name Type Length Description

Offset2 Number 8 Branch address that needs to be resolved

LineLd Number 8 Location of the line in the .ld file containing the branching

instruction

LineLe Number 8 Location of the line in the .le file containing the branching

instruction

Note: The values are in hexadecimal form

Figure 3.9: .ldr File Content (Highlight shows fields)

 35

.le File

The .le file contains the extracted assembly listing derived from the .ld file that is utilized for

visualization as well as analysis. The field is generated concurrently with the .ld file, and is the

main file that is utilized in the visualization process.

Instructions contained within the .ld file can be broadly classified as either being of a sequential

or control nature, with the latter branching to a potentially non-consecutive instruction. Usually

more than 1 sequential instruction follows another. Within the .le file, contiguous sequential

instructions are reduced to a single line to enable visualization using a lattice structure.

The file compresses the .ld file while storing information that will enable it reference and retrieve

the full information from the .ld file if necessary. For example, it stores offset addresses that can

be referenced in the .ld file to retrieve opcode and operand information. It also recalculates

branching connections within itself as it has compressed the .ld file, and can no longer directly

use the branching information in the .ld file.

Table 3.10: .le File Format

Name Type Length Description

Line String 8 Contains the corresponding line in the .ld file

Execute Number 2 (Similar to the corresponding .ld field)

Isa Number 8 (Similar to the corresponding .ld field)

Level Number 2 (Similar to the corresponding .ld field)

Line2 String 8 Contains the corresponding branch line in the .ld file

Offset String 8 Contains the address of the line

Offset2 String 8 Contains the address of the branch line

Index2 String 8 Contains the index in the .le file of the branch

Seq Number 4 Number of constituent instruction sequences

Flag Number 4 If ‘Execute’ = ‘Sequence’, number of flagged sequences

If ‘Execute’ = ‘Control’, flag notation

 36

Figure 3.10: .le File Content

a. Highlight shows the fields

b. Highlight show a runtime dependent instruction hence no linking is possible

.lel File

The .lel file provides a similar role to the .le file, that the .ldl file provides to the .ld file.

Table 3.11: .lel File Format

Name Type Length Description

Index Number 8 Line number (hexadecimal) of instruction located at byte

offset from start

 37

Figure 3.11: .lel File Content

.ler File

The .ler file provides a similar role to the .le file, that the .ldr file provides to the .ld file.

Table 3.12: .ler File Format

Name Type Length Description

Offset Number 8 Branch address that needs to be linked

Index Number 8 Location of line in .le file containing the branch instruction

Note: the values are in hexadecimal form

Figure 3.12: .ler File Content (Highlight shows fields)

 38

3.8 Metaphor

3.8.1 Instruction Set Architecture (ISA)

A platform’s ISA comprises its assembly language constructs. In general, the instructions can

broadly be divided into 2 broad categories:

 Sequential instructions, which will execute the next following instruction.

 Control instructions, which have the potential to alter the flow of the program.

Figure 3.13: Sequential and Control instructions (example program flow of 10 instructions)

Note:

 Program consists of 7 sequential type instructions, and 3 control type instructions.

 Instructions 4 and 7 are of a conditional nature, while instruction 8 is of an unconditional

nature.

 The program flow can be determined prior to runtime. For the control type instructions,

the branching offset is specified in immediate form.

Figure 3.14: Runtime Dependency

Note:

 Instruction 7 is now runtime dependent, possibly due to the operand of the instruction

specifying the branching offset in register or memory.

 39

3.8.2 ‘Compression’ of the ISA

A potential optimized representation of a program flow can be generated by combining

sequential instructions into a single representation and treating them as one unit. Logic flow

within the unit begins from the start and flows to the end sequentially; there are no deviations.

Control instructions, however, can’t be represented as a single unit due to their potential to

deviate from the potentially sequential flow.

Figure 3.15: Metaphor representation

Note:

 The metaphor representation effectively reduces the potential graphical area required to

represent a program’s flow.

Figure 3.16: Enhance Metaphor representation

Note:

 The metaphor representation can be extended to both 2D (by adding the Z axis) and 3D

(by adding the Y axis).

 40

 Branching information is now stored within the metaphor representation. This increases

clarity as the number of branches increases.

 Each combined sequence instruction and each individual control instruction are now

referred to as nodes of the metaphor.

Figure 3.17: Display of branching information

a. Branching information for Instruction 8

b. Branching information for Instruction 4

Note:

 Information on the exact branching location when branching into a sequential section is

displayed by the metaphor textually, when interacting with the metaphor and

concurrently viewing the disassembly listing.

3.8.3 Folding Instruction Sequences to Sections

As the quantity of nodes representing instructions increases, the linear growth in the X-axis is

limited by the available screen space. In order to accommodate this growth, the Z-axis can be

utilized. However, this requires the specification of a dimension.

 41

A dimension refers to the number of nodes that will be displayed on the X-axis. For example, if

the dimension is set to 10, then the 11th node will wrap around and be displayed at the next

incremented Z-axis index. The figure below illustrates this folding.

Figure 3.18: Folding Nodes Sequences

In order to provide clarity as nodes are combined, the follow formats are defined:

 The size of a node in both the X-axis and Z-axis is of equal size.

 When folding a node sequence, the Z-axis leaves spacing equivalent to the size of a node.

This results in the Z-axis containing half the number of nodes than the X-axis. For

example, using the figure above, if the dimension is set to 10, then there will be a

maximum to 10 nodes on the X-axis, and a maximum of 5 rows on the Z-axis.

3.8.4 Building Sections

Once the maximum number of rows along the Z-axis is reached (based upon the set dimension),

the resultant collection of nodes is referred to as a section. A single section is represented by a

different node type differentiated by its colour code. The next node after a section is formed

becomes the 1st node of the new section. The figure below illustrates this process.

 42

Figure 3.19: Section Formation

Note:

 The initial sequence of 15 nodes forms 2 sections based on a dimension of 4.

 Nodes within a section are located only along the X-axis and Z-axis.

As the number of sections increase, their layout is ordered along the axes in the following order:

X-Z-Y. The dimension used when representing sections is defined by the number of sections,

with the value being the cube-root of the number of sections.

3.8.5 Navigation of Nodes & Sections

Due to the multi-dimensional nature of the lattice structure, navigations in the various domains is

possible, and sequentially moving from one node to another is not mandatory.

Movement along the X-axis, with the current input mode set to node navigation, results in either

a move to the next (forward) or previous (backward) node. Moving forward from the last node in

a given section results in the 1st node of the next section being highlighted, while moving

backward from the 1st node in a given section results in the last node of the previous section

being highlighted.

 43

Movement along the Z-axis, with the current input mode set to node navigation, results in either

a move to the next (forward) or previous (backward) node using an offset equal to the dimension.

This is equivalent to either an upward or downward movement. The movement may either result

in the next or previous section being displayed.

Movement along either axis results in the corresponding section of the highlighted node being

highlighted in the ‘Section’ navigation view.

Movement in the ‘Section’ navigation view resembles the above description of movement in the

‘Node’ navigation view, with the difference being that when a different ‘Section’ is selected, the

1st node of that section is the one highlighted. This is because a section represents more than 1

node.

The figure below illustrates the focus changing from the 5 node to the 9 node via an upward

movement, which is equivalent to adding the dimension of value 4.

Figure 3.20: Navigation

a. Initial Location

 44

b. Location after navigation

Note:

 Navigation is via either the keyword, which limits movement to either the next, previous,

up, and down nodes. To quickly navigation to any node, the mouse can be utilized to

select the desired node.

 Once a node is selected, information related to it can be displayed via pressing the ‘Enter’

key.

3.8.6 Notation

In order to encode information in the metaphor, colour notations have been utilized. These are

used to provide intuitive information from visual analysis of the disassembled program.

Figure 3.21: Notation

 45

3.9 Constructs

3.9.1 Assembly Language

Given any executable file, its contents can be converted into an equivalent assembly language

listing (given a disassembler for the target platform).

The Instruction Set Architecture (ISA) for a given platform describes the assembly language

programming interface for that given. The available instructions are utilized to generate

programs either directly or via a higher level programming language. However, at the assembly

language level, there is usually a one-to-one mapping with the machine code, if macros aren’t

utilized.

At this level of analysis, the instructions can broadly be classified as either being sequential or

control. Sequential instructions are executed and the following instruction executed next (Figure

3.30). Control instructions on the other hand, have the potential to alter the flow of execution

(Figure 3.31).

Figure 3.22: Sequential Flow

Figure 3.23: Control Flow

Hence, executable code comprises of different permutations of sequential & branching

instructions using the available ISA.

 46

3.9.2 Code

In order to ease the programming effort, higher level languages have been introduced, such as

C/C++. These have also resulted in the introduction higher level constructs used to improve the

clarity of expression. Examples of these higher level constructs include:

 Branching statements: if-else, switch-case-break-default

 Looping statements: do-while, while, for

These were previous implemented using conditional and unconditional ISA instructions such as

jle, jg, jmp, etc. Hence, using the reverse process, these construct can be deduced from the

assembly language due to how they function.

Note:

 In order to be able to identify the code constructs in disassembled code, compiler

optimizations need to be turned off, as the optimized compiled code doesn’t enable direct

identification of the various code constructs described below.

 The C/C++ programming language is utilized to generate the various code constructs.

 The Intel ISA is utilized for the disassembled code.

 The descriptions of the various code constructs will comprise of:

o A description & illustration of the construct.

o Code listing in a high level language used to illustrate the construct.

o Screen shot the disassembled code & its visualization (Section 3.6 discusses the

visualization methodology).

 Since additional code is included in the disassembled programs, only the relevant

disassembled code will be highlighted.

o Red highlights will indicate the relevant disassembled code.

o Blue highlights will indicate the relevant code constructs.

o Green highlights (& none highlights) indicate the stack frame setup.

 Stack frames are illustrated in the ‘basic program’ section. They occur with function calls

and involve a setup and cleanup process. The setup process save the current stack pointer

in addition to allocating memory on the stack for local variables. The cleanup process

restores the stack pointer.

 47

Empty Program

This section begins by illustrating the disassembled code for a basic program. The program calls

the entry point function, main, and returns the hexadecimal value 1234. This program will be

used as a basis for illustrating the various code constructs subsequently covered in this section.

Figure 3.24: Basic Program

Code Listing 3.1: Basic Program

int main() {

return 0x1234;

}

Figure 3.25: Diassembly of Basic Program

Note:

 Red highlight shows the disassembled program. Blue highlight show the return value as

specified in the ‘return 0x1234. Green highlight shows the stack frame setup and cleanup.

Figure 3.26: Visualization of basic program (Illustration of a single sequential node)

 48

If-Else

The ‘if’ section of an ‘if-else’ statement, provides the capability of skipping a section of code if a

condition is not met. The ‘else’ section provides the capability of executing a sequence of code

dependent on a condition being met or not.

Consequently, the presence of an ‘if’ statement could be identified by the presence of a

conditional forward jump to a higher address as well as by an unconditional jump forward to skip

the else section.

Figure 3.27: if statement

Code Listing 3.2: if statement

int main() {

 int nCondition = 0;

 int nValue = 0;

 if (nCondition)

 nValue = 1;

 else

 nValue = 0;

 return 0x1234;

}

 49

Figure 3.28: Disassembly of ‘if’ statement

Note:

 Red highlight shows the disassembled program.

 Blue highlight shows the ‘if’ statement.

o ‘je 00401023’ shows the conditional jump to the ‘else’.

o ‘jmp 0040102A’ shows the unconditional jump past the end of the ‘if’ statement,

and is called as the last line of the ‘if’ portion.

Figure 3.29: Visualization of ‘if’ statement

 (a) (b)

Note:

 Image (a)

Currently selected node (white highlight) is the ‘if’ clause, which potentially transfers

control to the ‘else’ code segment (green highlight) thus bypassing the ‘if’ code segment

(black highlight between white & green highlight).

 Image (b)

The selected node (white highlight) is an instruction within the ‘if’ code segment of the

‘if’ clause that causes the ‘else’ code segment to be bypassed once the ‘if’ code segment

has completed. It is an unconditional jump to an instruction immediately after the ‘if’

statement (green highlight).

 50

Switch-Case-Break-Default

The ‘switch’ section provides the capability of jumping directly to the ‘case’ section, with the

default being a last option ‘case’. The ‘break’ section enables exiting the switch statement.

Thus unconditional jumps could indicate the presence of a switch statement and associated

case/default labels. Unconditional forward jumps could indicate break statements.

Figure 3.30: switch statement

Code Listing 3.3: switch statement

int main() {

 int nCondition = 0;

 int nValue = 0;

 switch (nCondition) {

 case 0:

 nValue = 0;

 break;

 case 1:

 nValue = 1;

 break;

 default:

 nValue = 2;

 }

 51

 return 0x1234;

}

Figure 3.31: Disassembled ‘switch’ statement

Note:

 Red highlight shows the disassembled program.

 Blue highlight shows the ‘switch’ statement.

o ‘je 00401028, je 00401031’ show the conditional jump to the ‘cases’, while ‘jmp

0040103A’ shows the unconditional jump to the ‘default’ portion.

o ‘jmp 00401041’ shows the unconditional jump to after the end of the ‘switch’

statement, and are called from the end of each of the ‘cases’. The ‘default’ falls

through.

Figure 3.32: Visualized ‘switch’ statement

 (a) (b) (c)

Note:

 Image (a)

The selected node (white highlight) is the ‘switch’ statement’s check for ‘case 0’, which

jumps to the body of the ‘case’ statement (green highlight) or falls through to check the

next ‘case’.

 52

 Image (b)

The selected node (white highlight) is the ‘switch’ statement’s check for ‘case 1’, which

jumps to the body of the ‘case’ statement (green highlight) or falls through to the check

of the next ‘case’. The next ‘case’ happens to be the ‘default’.

 Image (c)

The selected node (white highlight) is the ‘switch’ statement’s check for the default

statement, which unconditionally jumps to the body of the ‘default’ statement (green

highlight).

 The last 2 nodes are the unconditional jumps at the end of each to the 2 ‘case’ statements

that are required to bypass the reminder of the ‘switch’ statement.

Do-While Statement

The ‘do-while’ statements enable a loop to be executed at least once. At the end of the loop, the

iteration condition is checked and the loop either terminates or continues.

Hence, a conditional backward jump would indicate the possibility of a do statement

Figure 3.33: do statement

Code Listing 3.4: do statement

int main() {

 int nCondition = 0;

 int nValue = 0;

 do {

 nValue++;

 } while (nCondition);

 53

 return 0x1234;

}

Figure 3.34: Disassembled ‘do’ statement

Note:

 Red highlight shows the disassembled program.

 Blue highlight shows the ‘do’ statement.

o ‘jne 00401014’ is the conditional jump back to the beginning of the loop or fall

through if the loop is to exit.

Figure 3.35: Visualized ‘do’ statement

Note:

 Currently selected node (white highlight) is the ‘while’ code segment of the ‘do’

statement that jumps back to the beginning of the loop (red highlight).

 54

While Statement

A ‘while’ statement provides the feature of enabling a condition to be checked prior to entering a

loop. If the condition is met then the loop’s statements are executed. Prior to iterating through the

loop, the condition is checked once again to determine whether the loop can terminate or iterate.

Hence, ‘while’ statements will have 2 conditional jumps; the 1st that checks the condition prior to

entering the loop, and the 2nd that checks whether the loop is to terminate. The 1st one jumps

beyond the 2nd hence bypassing the loop, while the 2nd jumps to just after the 1st.

Consequently, a conditional forward jump and/or a conditional backward jump indicate the

potential presence of a ‘while’ statement.

Figure 3.36: while statement

Code Listing 3.5: while statement

int main() {

 int nCondition = 0;

 int nValue = 0;

 while (nCondition) {

 nValue++;

 }

 return 0x1234;

}

 55

Figure 3.37: Disassembled ‘while’ statement

Note:

 Red highlight shows the disassembled program.

 Blue highlight shows the ‘while’ statement.

o ‘je 00401025’ is the conditional jump to either bypass the loop or fall through into

the loop.

o ‘jmp 00401014’ is the unconditional jump to the beginning of the loop.

Figure 3.38: Visualized ‘while’ statement

 (a) (b)

Note:

 Image (a)

The selected node (white highlight) represents the ‘while’ statement that checks whether

the condition is met or not. In the latter case, the check results in bypassing the ‘while’

loop and continuing execution after the end of the loop (green highlight).

 Image (b)

The selected node (white highlight) represents the end of the while statement, which

causes the loop to begin again. Control is passed backwards to the beginning of the loop

(red highlight).

 56

For Statement

A ‘for’ statement provides the feature of being able to initialize variables prior to entering a loop,

in addition to specifying how the iteration check changes.

The initialize occurs prior to entering the loop and is performed only once. If the condition is

met, the loop is entered, while if the condition is not met, the loop is bypassed. Hence, the

condition checking behaves as a ‘if’ statement, while the loop behaves as a ‘do’ statement.

Figure 3.39: for statement

Code Listing 3.6: for statement

int main() {

 int nCondition = 0;

 int nValue = 0;

 for (nCondition = 0; nCondition < 10; nCondition++) {

 nValue++;

 }

 return 0x1234;

}

 57

Figure 3.40: Diassembled ‘for’ statement

Note:

 Red highlight shows the disassembled program.

 Blue highlight shows the ‘for’ statement.

o ‘jmp 00401026’ is the initialization portion of the ‘for’ statement

o ‘jge 00401037’ is the conditional jump to either end the loop, or continue from

the beginning of the loop. It is the condition portion of the ‘for’ statement.

o ‘jmp 0040101D’ is the unconditional jump to the beginning of the loop.

Figure 3.41: Visualized ‘for’ statement

 (a) (b) (c)

Note:

 Image (a)

The selected node (white highlight) is an unconditional jump that bypasses the iteration

portion of the ‘for’ statement that increments the counter by 1. It jumps to a location just

before the ‘for’ condition is checked (green highlight).

 Image (b)

The selected node (white highlight) is the checking of the ‘for’ condition, which can

potentially exit the loop, to the instruction immediately after the loop (green highlight).

 58

 Image (c)

The selected node (white highlight) is the instruction located at the end of the ‘for’ loop

that transfers control to the beginning of the loop (red highlight); first incrementing the

counter, and then checking the condition.

Loop Support Statements: Continue Statement

Loop statements provide for the use of continue statements. A continue statement cause the loop

to begin from the start, and thus can be represented with an unconditional jump to the start of the

loop.

Figure 3.42: continue statement

Code Listing 3.7: continue statement

int main() {

 int nCondition = 0;

 int nValue = 0;

 while (nCondition) {

 nValue++;

 continue;

 nValue += 2;

 }

 return 0x1234;

}

 59

Figure 3.43: Disassembled ‘continue’ statement

Note:

 Red highlight shows the disassembled program.

 Blue highlight shows the loop with the ‘continue’ statement.

o ‘jmp 00401014’ is the unconditional jump to the beginning of the loop.

Figure 3.44: Visualized ‘continue’ statement

 (a) (b) (c)

Note:

 Image (a)

The selected node (white highlight) is the check at the beginning of the loop, which can

potentially bypass the entire loop to an instruction immediately after the loop (green

highlight).

 Image (b)

The selected node (white highlight) is the ‘continue’ statement that unconditionally

transfers control back to the beginning of the loop (red highlight).

 Image (c)

The selected node (white highlight) is an instruction at the end of the loop that causes the

loop to iterate by transferring control back to the beginning of the loop (red highlight).

 60

Loop Support Statements: Break Statement

Loop statements provide support for the use of break statements, which cause the loop to exit.

From the assembly level perspective they can be indicated with an unconditional jump to a

location after the end of the loop.

Figure 3.45: break statement

Code Listing 3.8: break statement

int main() {

 int nCondition = 0;

 int nValue = 0;

 while (nCondition) {

 nValue++;

 break;

 nValue += 2;

 }

 return 0x1234;

}

 61

Figure 3.46: Diassembled ‘break’ statement

Note:

 Red highlight shows the disassembled program.

 Blue highlight shows the loop with a ‘break’ statement.

o ‘jmp 00401030’ is the unconditional jump to after the end of the loop.

Figure 3.47: Visualize ‘break’ statement

 (a) (b) (c)

Note:

 Image (a)

The selected node (white highlight) is the check at the beginning of the loop, which can

potentially bypass the loop to an instruction immediately after the loop (green highlight).

 Image (b)

The selected node (white highlight) is the ‘break’ statement that exits the loop. It is an

unconditional jump to an instruction immediately after the loop (green highlight).

 Image (c)

The selected node (white highlight) is an instruction at the end of the loop that causes the

loop to iterate by unconditionally jumping back to the loop condition check (red

highlight).

 62

3.10 Visual

3.10.1 Internal Structure

The internal visualization-related components are designed in a modular manner to enable

extension of functionality. They include the following modules:

 Graphics – deals with the initialization and management of graphic resources &

components of the system.

 Effect – deals with how the GPU renders content.

 Mesh – provides the vertices used to describe objects.

 Fx – provides the base functionality for the visualizations from which additional

functionality is implemented by sub classing. The ‘Section’ sub class manages a

collection of nodes, while the ‘Content’ sub class manages a collection of sections.

The different modules are implemented in layers.

Figure 3.48: Graphics Engine Internal Structure

3.10.2 Interaction Flow

The general flow of the program is illustrated in the Section 3.4.1.

3.10.3 User Interface

This section describes the various interfaces that are presented from the start of the application to

visualization & analysis of a loaded executable file.

 63

Main Screens (User Interface Stages)

To simplify interaction, drag-and-drop is utilized in the loading of content. The start screen is

initially reduced in size to enable files to be dragged and dropped from the desktop. Once files

are received, the view is then enlarged.

Figure 3.49: Startup screen (used for drag & drop operations)

Figure 3.50: Visualization screen (used for visualization & analysis)

Content Generation & Loading

Prior to visualization & analysis, content needs to be generated from the executable file that is

loaded, if the content has not already been generated. Once generated the content is loaded into

the application for visualization and subsequently analysis purposes. Below is an illustration of

the process.

 64

Figure 3.51: Content Generation

a. Full screen display

b. Focus of relevant area show the steps & progress of the content generation process

Visualization Screen

Once the content has been loaded into the application, the main visualization screen is displayed

beginning the actual visualization of the disassembled code.

Figure 3.52: Visualization Screen Layout

a. With analysis section hidden

 65

b. With analysis section shown

The various screen areas are described next.

Visualization Layout

The visualization area is divided into 4 regions, namely

 Legend – located at the lower left region, provides a quick view of the interface notation

and commands.

 Node – initially located at the centre of the view, provides the visualization of the

disassembled code. This view can be alternated with the ‘Section’ view.

 Section – initially located to the left of the ‘Node’ section, provides a broad overview of

the current node location with reference to the entire code being analyzed. This view can

be alternated with the ‘Node’ view.

 Analysis – located at the upper right region, provides various tools that can be used to

provide the textual view of the node’s disassembled code together is notational

information. In addition, it provides an interface for analyzing the visualized code.

Figure 3.53: Visualization Layout Components

a. Legend View

 66

b. Node (right) & Section (left) View; focus on 1st node and 1st section

c. Disassembly View

Note:

 The offset provides a means of specified an exact offset to navigation to.

 The displayed buttons provide the following functionality respectively:

o Synchronize the specified offset with the visualization view when toggled on. If

the toggle state is off (as currently displayed) the disassembly information

specified by the offset is only displayed in the list view below the offset edit

location.

o Display the instruction just before the top-most displayed instruction in the

disassembly view listing.

o Display the instruction just after the bottom-most displayed instruction in the

disassembly view listing.

o Clear any notation flags currently assigned to an instruction.

 67

 Disassembly listing that displays disassembly information beginning from either the

currently selected node in the ‘Node’ view or the specified offset.

 Additional information is provided in the status bars such as the range of potential offset

addresses.

d. Analysis View

Note:

 The category provides a means of filtering the type of analysis to perform. Currently, the

2 categories are either ‘General’ for a non-specific based analysis type, and ‘Code’ for

code based specific analysis.

 The displayed button provides a means of clearing the states of selected analyses.

 The display view below the category provides a means of interacting with the

visualization by selecting a listed analysis (via double clicking to select or toggle on/off),

which is then visualized in the visualization area of the ‘Node’ and ‘Section’.

Evolving Design Influencing Final Design

The design and implementation of the program underwent several iterations. During the reviews

between the iterations, features were modified due to feedback. Both the visual as well as the

functionality features were affected.

Below are some screen features that were altered during the development cycle.

 68

Figure 3.54: Initial screen layout

Note:

 Bottom left & right portions eventually dropped from final program, as they did not

contribute any assistance. However, an enhancement based on sections was incorporated

by:

o Aggregating the 2 aspects. It enabled the addition of a legend on the screen.

o Incorporating a switching feature to toggle the aggregated aspects and the main

content.

 Text section enhanced to enable searching.

Figure 3.55: Initial content animation (when traversing different sections of the code)

Note:

 Animation dropped from final program, as it did not enable intuitive navigation.

 69

CHAPTER 4 – RESULTS

4.1 Introduction

Once an assembly listing has been imported into the application, visualization and data analysis

can then be performed to gather information about the disassembled executable code.

This chapter is structure as follows:

 Description of program that will be compiled and then disassembled (Section 4.2).

 Visualization & Analysis of the disassembled program (Section 4.3).

4.2 Test Program

Code Listing 4.1: Program used for testing

int Add(int n1, int n2);

int main() {

 int nSum = 0;

 int nCount = 10;

 int nCondition = 1;

 int nValue = 0;

 //sums the numbers 1 to 10

 for (int i = 1; i < 11; i++)

 nSum += i;

 //adds 2 numbers

 Add(nSum, 2);

 //loops decrementing count

 do {

 nCount--;

 } while (nCount);

 70

 //condition check

 if (nCondition) {

 nValue++;

 } else {

 //continuous loop

 while (1) {

 }

 }

 return 0x1234;

}

int Add(int n1, int n2) {

 return n1 + n2;

}

Note:

 The above program was compiled with optimizations disabled. This was to prevent the

compiler from modifying the code, which was have resulted in the disassembly code not

being directly reference with the original source code. Illustration of the mapping

between the visualization and source code would not be clear.

 The program was also compiled without debug symbols present. Executable programs

that are release for public use rarely contain debug symbols as these assist in the process

of reverse engineering by providing function name hints.

 Once compiled the program was disassembled. The output is shown in Figure 4.1 below.

 71

Figure 4.1: Disassembled test code

 72

4.3 Visualization & Analysis

4.3.1 Visualization

Once loaded into the application, the disassembly results in the following visualization.

Figure 4.2: Test program’s visualization

Note:

 The dimension is set to 4 (hence 4 nodes along the X-axis and 2 along the Z-axis).

 There are 3 sections.

 By default upon startup, the 1st node and section is highlighted (white highlight).

Description

The visualization of the program illustrated in Figure 4.2 above, shows 4 sequential portions as

well as 4 control nodes within the 1st section. Below is a summary of the nodes in the order they

appear (incremented along the X-axis then the next row in the Z-axis),

Table 4.1: 1st 8 nodes; 1st section

Node Type Description

1 Sequential All the instructions prior to reaching the ‘for’ loop

2 Control Beginning of the ‘for’ loop. The control bypasses the ‘for’ iteration code

(Node 3), and transfers control to the ‘for’ condition, which determines

whether the ‘for’ body will be entered. It is an unconditional jump to the

‘for’ condition check at the end of the body of the ‘for’ loop (Node 4)

3 Sequential The ‘for’ iteration code

 73

4 Control The ‘for’ condition check that transfers control by either,

 Fall through if the condition is met and the ‘for’ body is to be

entered Node 5 is the body of the ‘for’ loop

 Bypasses the ‘for’ body if the condition is not met, and transfers

control to the beginning of the next sequential code (Node 7) that

is not part of the ‘for’ loop. This is illustrated in Figure 4.3a

5 Sequential Body of the ‘for’ loop

6 Control Refers to the unconditional jump to the ‘for’ iteration code located at

Node 3. This is illustrated in Figure 4.3b

7 Sequential Refers to the instructions after the ‘for’ loop, in this case the function

call setup for the ‘Add’ function that passes function arguments and

prepares the stack frame

8 Control Calling of the ‘Add’ function

Note:

 Node 1 are instructions prior to the ‘for’ loop

 Nodes 2-6 comprise the ‘for’ loop

 Nodes 7-8 comprise the ‘add’ function

4.3.2 Analysis

This section discusses the following visualization analyses:

 Navigation – next location highlighting

 Potential source locator

 Loop identification

o Loops

o Loops without intermediate branching

 Mapping

o Function calls

 74

Navigation – Next location highlight

The visualization interface provides the feature of being able to navigate through a program’s

code in various forms while providing current location highlight, potential branching location

highlight, and overall location highlighting. Refer to Table 4.1 for a description of the nodes.

Figure 4.3: Navigation & next location highlighting

a. Next location highlight

Note:

 The dimension is set to 4.

 The selected node (white highlight) is the disassembled ‘jge 00401045’ instruction that

represents the source code ‘for (int i = 1; i < 11; i++)’ instruction’s condition check,

which either enters the loop or bypasses the loop if the check fails (either at the 1st check

or upon loop completion).

 The potential branch location (green highlight) is the 1st instruction after the ‘for’ loop. It

is represented by the disassembled ‘push 2’ instruction that represents the parameter

passing of the source code ‘Add(nSum, 2)’.

 In the ‘Section’ view, the current section is the 1st (white highlight), implying that the

current analysis location is found near the start of the program relative to the whole

program.

b. Validating intermediary visualization

 75

Note:

 The selected node (white highlight) is the disassembled ‘jmp 0040102B’ instruction

located at the end of the ‘for’ that enables the loop to iterate. It returns to a location just

before the ‘jge 00401045’ instruction in order to increment the counter.

Potential source locator

Navigation through a program’s flow is usually in a forward direction, i.e. from the current

location to potential next locations either sequentially or by control branching. However, the

capability of being able to identify potential areas that could have resulted in a branch to the

current location is beneficial.

Figure 4.4: Potential source locator

a. Instruction location accessible from 2 different locations

Note:

 The dimension is set to 4.

 The back track feature of the program has been run on the selected node (white highlight)

located in the 2nd section (white highlight in the ‘Section’ view).

 The selected node (white highlight), which is the ‘mov edx,1’ instruction at offset

‘0040106F’ is the beginning of the ‘while’ loop. The instruction moves a ‘1’ to the

register ‘edx’, which is used to check the condition ‘while(1)’.

 This instruction location can be reached via to ways as indicated by the 2 yellow

highlights.

o The 1st is from within the current section as indicated by the ‘yellow’ node in the

‘Node’ view. This instruction is the ‘je 0040106F’ at offset ‘00401062’. This is

the jump of the ‘if’ statement that jumps the ‘if’ portion and goes to the ‘else’

portion of the ‘if’ statement.

 76

o The focus of the selected ‘Section’ indicated by the white highlight, supersedes its

other notation of being yellow highlighted, it contains a potential source location.

b. 1st location from ‘if’ statement

o The 2nd is from a location in the next ‘Section’ as indicated by the highlighted

yellow ‘Section’ in the ‘Section’ view, see figure (a). This particular ‘Section’ is

then selected, indicated by the new ‘white’ highlight and a change in the ‘Node’

view (the 1st node in that ‘Section’ is highlighted, which in this case happens to be

the desired node).

o The selected node in the ‘Node’ view is a jump to a lower address in a different

‘Section’. This is illustrated by the red highlight in the ‘Section’ view. This

instruction is the ‘jmp 0040106F’ instruction that is located at the end of the

‘while’ loop that transfers control to the beginning of the loop.

c. 2nd location from ‘while’ statement

 77

Loops – Unconditional Backward Jump

Loops can be identified by a backward transfer of control. In the analysis of code, it may be

useful to identify potential loops in the program, for example to determine a program’s

complexity or runtime implications for performance analysis.

Figure 4.5: Loops

a. Setting the analysis parameter

Note:

 In the ‘Analysis’ view the ‘Code’ category is selected, and the ‘Loop (Jump Backward)’

item selected by double-clicking.

 The ‘Run’ command is executed to run through the disassembled code to generate

information.

b. 2 loops have been identified

 78

Note:

 The dimension is set to 10; consequently the number of sections based on this dimension

is 1, as illustrated by the single white-highlighted ‘section’ at the top left.

 2 loops have been identified (yellow highlights), which represent the ‘do’ and ‘while’

statements.

 The white-highlighted ‘sequential node’ is the default selected node at the start of the

nodes; upon loading a visualization or selecting a ‘section’ the default selected node is

always the 1st in the program (also if 1st ‘section’ is selected) or the 1st node in a given

‘section’ if the subsequent ‘sections’ are selected.

 The 1st yellow-highlighted node, the 6th node from the start of the program, is the

unconditional backward jump to the ‘for’ iteration code. It is the jump located at

‘0x00401043’ jumping backward to the location ‘0x0040102B’, which is the code that

increments the loop condition by a value of 1 (location 0x0040102E).

 The 2nd yellow-highlighted node, the 17th node from the start of the program (2nd last

node), is the unconditional jump at the end of the ‘while’ loop that transfers control back

to the start of the loop to check the loop condition in order to determine whether to enter

the loop again or not. It is the instruction at location ‘0x00401078’, which transfers

control back to the loop condition at location ‘0x0040106F’. The instruction at location

‘0x00401076’ that provides the option to exit the loop is present since optimization was

disabled; the compiler includes the instruction since the while condition check results in a

value that needs to be checked regardless of whether it changes or not. An optimizing

compiler would notice that the loop condition is an immediate value that is known at

compile time.

Loops without intermediate control instruction

In some cases, a perpetual loop may be created. For example, a program’s main loop

continuously runs until explicitly it is either terminated by the program or by the user.

Identification of such loops may be required in order to identify loops that could run indefinitely,

either by intentional or accidental design.

 79

Figure 4.6: Potential endless loop

a. Setting the analysis parameter

Note:

 In the ‘Category’ drop down, the ‘Code’ option is selected, and the ‘Immediate Loop

(Jump Backward) item selected by double clicking it.

 The ‘Run’ command is executed to analyze the program.

b. 1 potential endless loop identified

Note:

 The dimension is set to 10 resulting in the number of ‘section’ being 1 (indicated by the

single white-highlighted ‘section’ at the top left.

 1 potential item (yellow highlight) has been identified. It is the ‘do’ statement. This

statement has been implemented without a potential exit in the form of a branching out of

the loop.

 The yellow-highlighted node (10th node) refers to the instruction located at ‘0x0040105C’

that transfers control back to the beginning of the loop at location ‘0x00401053’;

involves decrementing the loop condition variable.

 80

 Between the beginning of the loop and the check at the end of the loop there are no

intermediate ways in which the loop can exit. The loop condition is the only way of

potentially exiting the loop.

 Though this is a functionality of the program, it indicates a potential loop that may loop

more than intended dependent on the value passed to the loop condition variable. Hence

by highlight such loops extra attention could be place to determine whether the loop exit.

Mapping – Function Calls

Program functionality is usually implemented in functions for modular design. Identification of

these functions helps to narrow down areas of analysis. They also indicate a location where local

variables will be defined.

Figure 4.7: Function call mapping

a. Setting the analysis parameter

Note:

 In the ‘Analysis’ view, select the ‘Flag’ tab. In the ‘Category’ drop down, select the

‘Code’ item. Select the ‘Frame Pointer’ item by double clicking on it.

 Generate the program information by executing the ‘Run’ command.

b. Identified functions

 81

Note:

 2 stack frame pointer instructions are identified indicated by the yellow highlights. These

refer to the 2 functions within the program, i.e. the ‘main’ function, which provides the

program’s entry point, and the ‘Add’ function.

 The 1st yellow highlight (1st node), refers to the program’s initial stack frame generated

by the ‘main’ function. It refers to the instructions beginning at the location

‘0x00401000’.

 The 2nd yellow highlight (last node), refers to the ‘Add’ function’s stack frame. The

function is placed at the end of the program, and begins at the location’0x00401090’.

 Identification of stack frames provides an insight into how a program’s functionality is

implemented as well as how the program flows. This is because functionality is usually

implemented in modules.

 82

CHAPTER 5 - CONCLUSION

5.1 Introduction

As visual processing capability increases with advances in processing speeds of both the Central

Processing Unit (CPU) and Graphics Processing Unit (GPU), the visual analysis of information

is increasingly possible to greater extents. Software visualization benefits from these advances.

This research explored a lattice-based metaphor for software visualization and analysis of an

executable’s disassembled code. The feasibility of the lattice structure for both tasks was

implemented and illustrated. The metaphor design was based on the abstraction of a processor’s

Instruction Set Architecture (ISA). Various basic code constructs that form building blocks for

programs were derived from basic program flow, and then visualized and analyzed. A test

program was then implemented in a high level language (C/C++), disassembled, visualized, and

analyzed, with the goal of extracting potentially useful information.

An additional outcome of the research effort resulted in a potential process/methodology that

could be used in the design of new software visualization metaphors. This involved the sequence

of abstraction of the underlying software aspects to be visualized, generation of the basic

building blocks that are extendable to software built using the basic constructs, notation

development, and finally design of an interaction mechanism.

The test results illustrated that the proposed metaphor provided a means of visually interacting

with disassembled code to both obtain a better insight as well as extract potentially useful

information for further analysis.

5.2 Achievements

Problem Identification

The quantity of executable code (without access to the original source code) that needs to be

analyzed is increasing as new functionality is required and implemented. Furthermore, the time

frames needed for analyzing the software is decreasing. This results in a need for new methods

 83

of analyzing and extracting potentially useful information. Visualization provides one

alternative. However, the metaphors that are usually utilized are borrowed from information

visualization and hence may not be ideally suited for software visualization in which code

aspects rather than numerical data needs to be analyzed.

With the increasing capability of both CPUs and GPUs, previously resource intensive graphic

visualization is now possible. This enables more use of a system’s graphical capability to enable

use of 3D graphics for visualization, resulting in an increased spatial space for analysis, in

addition to the use of 3D metaphors to enhance analysis of information.

Access to a program’s source code is not always available as publishers usually retain it, but

release the executable code. However, with disassemblers for a target’s platform, the executable

code can be converted to its equivalent assembly code with a one-to-one mapping. Hence by

obtaining both an executable and its platform’s disassembler, any program can be potentially

analyzed.

The research project focused on the design and implementation of a 3D metaphor for

visualization of binary code to enhance this capability.

Literature Review & Scope Identification

Visualization of information involves mapping of information aspects to visualization

metaphors. In scientific computing, the metaphors are already predefined due to the structured

nature of the information they represent. However, in information visualization, the information

being represented is abstract in nature with no predefined structure. Software visualization

usually utilizes information visualization metaphors, which are not always suitable. Software

though abstract in nature, inherently has a structure.

The literature reviewed indicated a high reliance on information visualization metaphors. The

research project proposed that software visualization would involve a hybrid of both scientific as

well as information visualization. Hence it attempted to map the inbuilt structure of binary code

to a predetermined structure based on a lattice.

 84

Methodology

Software comprises of a collection of instructions based on a processor’s ISA, regardless of the

implementation language. These instructions can be grouped into constructs that form building

blocks for programs. Examples include branching constructs, loop constructs, function calling

constructs.

The ISA instructions were broadly categorized as either sequential or control type. The former

resulted in the next instruction being executed. With the latter, the subsequent instruction to be

executed was an option of 2 possible instructions based on the result of the control check. These

2 categories resulted in the generation of 2 models that mapped directly to the lattice structure,

making it feasible for software visualization. This was in the form of nodes (for control type) of

the lattices as well as the spaces/links (for sequential type) within.

Based on this, a whole program could be concisely represented using a lattice structure, with

additional functionality being built on top of the lattice metaphor.

Furthermore, the process used in the research project can be generalized, and is not only

applicable to the current study or to a specific technology. The concepts are abstracted to enable

use in related fields of research.

Results

Once implemented, the lattice metaphor was utilized to view a test program in order to determine

whether the visualized representation mapped the known program’s source code. This involved

implementing specific constructs and functions, compiling the source, disassembling the

generated program, and importing the disassembly listing into the visualization program.

The visualization was then analyzed to determine whether the implemented functionality could

be identified as well as whether queries could be run to generate information that could be

confirmed by the availability of the source code. Success of this process would then be

extendable to any program regardless of the availability of its source code.

 85

The visualization was tested with varied programs of different sizes in order to determine the

scalability of the visualization. This was essential as program functionality increases as new

functionality is implemented.

5.3 Findings – Review of Research Objective

The objectives of the research project were to design and develop a 3D visualization application

for binary code analysis that utilizes a 3D lattice-based metaphor to represent the binary code.

The research project implemented the 3D metaphor within a 3D environment that was capable of

visualizing an application for which there was the platform’s corresponding disassembler. The

disassembler however needed to generate the disassembly listing in a specified format required

for importing of the assembly code into the visualization program. However, with a customize

parse program, any disassembler’s output can be converted into the appropriate format.

The 1st objective was achieved by implementing a 3D environment that enabled the X, Y, and Z

dimensions to be visually perceived. The 2nd objective was achieved by mapping the extracted

sequential and control instructions onto a lattice structure that utilized the X, Y, and Z

dimensions. The 3D metaphor was then placed into the 3D environment within with interaction

was possible.

5.4 Contributions – Addressing of Perceived Gaps

Theoretical

The research project presented the feasibility of a lattice-based metaphor built from an ISA. The

metaphor provided a concise and scalable means of visualizing and analyzing programs in

assembly code. The results indicate that software visualization is a hybrid of both scientific and

information visualization as software though abstract has an inherent structure. Consequently,

metaphors that provide structure could be adapted for software visualization rather than relying

on information visualization metaphors exclusively.

 86

Methodology

A potential process for designing novel or adapting existing metaphors specifically for software

visualization is presented. The steps presented could be utilized in the design of other

visualization metaphors.

Practical

The research project resulted in an application that can be utilized to visualize and analyze

assembly code, and hence indirectly any program. The scalability feature enables programs of

any size to be visualized and analyzed. Furthermore, due to the structuring of the imported

disassembled content, various analyses not currently included can be incorporated into the

application enhancing its usefulness.

The metaphor provides a means of reducing cognitive overload by providing a means of

abstracting and providing a synopsis of a program in a visual manner. Drill down capability

enables obtaining greater detail in a specific section of the visualization. Cognitive Dimensions

are utilized to enhance the metaphor. For example, diffuseness (notation space required to

provide meaning) is utilized to provide an overall view of a program, while secondary notation is

embedded within the metaphor.

3D environments provide a feasible interaction mechanism for dealing with large quantities of

information. Limits exist on how much fonts can be reduced to increase the amount of textual

information displayed. Screen resolutions/sizes and use of multiple monitors is limited.

With the minimal use of the keyboard in interacting with the metaphor, relying more on the

mouse, 3D visualizations and analyses can be extended to touch screen computing devices whose

processing capability is increasing, both the CPU and GPU. This creates new uses for touch

devices.

 87

5.5 Evaluation

Does the study make significant value add contribution to current thinking?

Building on the surveyed literature, common concepts are extracted which indicate common

practices in the visualization field and its associated research. Potential gaps which could be

addresses and/or improved are identified. The literature covered various aspects of software

visualization focusing on different levels of software, different stages of software development,

and different uses of software metrics.

Based on the survey, a perceived gap was identified with the type of visualization metaphors

used (mostly from information visualization), minimal focus on fully exploiting 3D natively

(mostly focused on 3D metaphors in a 2D environment), and focus on source code level metrics

(rather than binary code level).

Will the study change the practice if implemented in the area?

The need to be able to understand large quantities of information in shorter time frames is

becoming essential especially in software analysis. This is due to the critical role technology

plays in modern processes. With the increasing capability of computing devices, and their

ubiquity, research is being undertaken in the field of software visualization to find viable ways of

using the concepts in the field to achieve this goal. The need for software visualization and

associated analyses is bound to increase especially as software is increasingly being used for

malevolent purposes.

Are the underlying logical answers & supporting evidence compelling?

The results of the application of software metaphors in visualization and analysis of binary code

provide an intuitive way of interacting with software. The movement from textual representation

that is read to visual representation that engages during interaction increases the use of additional

cognitive faculties. For example, when drilling in and out of content, a mental picture is

formulated as compared to scrolling through text in a sequential manner. Hence by

demonstrating the feasibility of a software metaphor, this potential is illustrated, and with

refinement would provide a new means of interacting with software.

 88

How well does the research convey completeness and thoroughness?

Metaphors represent underlying aspects. In the research, the lattice metaphor represented the

underlying binary code. Using an ISA, the basic building blocks are identified. These are

combined together to constitute larger programs. By identifying these basic building blocks,

comprising of sequential blocks, branching & looping constructs, these are exhaustively and

comprehensively described, visualized, and analyzed prior to using them to visualize and analyze

larger and more complex programs.

Is the thesis well written and flow logically?

The research project begins by outlining the current state of information growth, both from the

data and code perspectives. It outlines the need to be able to analyze the growing quantity of

information in shorter time frames. Visualization provides a tool to achieve this. By

incorporating the use of visualization in code analysis, the need for metaphors arises. A 3D

environment enhances a metaphor’s capability and consequently the visualization and analysis

capability.

On this basis, a research problem area is identified. Literature review indicated the viability of

software visualization as supported by the various metaphors that have been used in the field.

Potential gaps are identified and form the viability of the research. A system is designed taking

into account various aspects of design such as conceptual, requirements, data, content, import

format, visualization, and constructs. These are used to guide the system development.

Why now? Is the topic of interest to other practitioners in the area?

Software now plays a critical role in modern infrastructure by running processes that manipulate

information. As computing devices become more capable, new features and functionality is

being implemented. This results in an increase in the code base. The need to analyze these

processes (code) in shorter time frames is becoming essential. Consequently, research is being

carried out in the field of visualization, both scientific and information, in order to use the

benefits and capabilities to address growing information analysis needs.

 89

Who else including academic readers are interested in the topic?

Various software domains require the ability to analyze binary code directly due to the

unavailability of a program’s source code. These include software engineers who are maintaining

or integrating software, antivirus engineers who need to understand malware in order to update

detection signatures, or security engineers would use visualization to identify vulnerabilities.

Hence, beyond the theoretical aspects there are practical areas of use.

5.6 Recommendations

Various areas of potential enhancements exist.

Currently, the metaphor relies on only 2 node models – for sequential and control type

instructions. However, control instructions can further be categorized, for example into jumps

and calls. Different models could be utilized to visually encode these sub categories, which

would enhance visual perception and intuitiveness.

GPU features such as lighting could be improved to enhance the visualization environment and

metaphor. This would increase the visual fidelity encouraging adoption and use. Since the

features are native to the GPU, analysis performance would not be affected.

Drag and drop functionality for interacting with code segments could be implemented. This

would provide the capability of manipulating the lattice structure enabling new levels of visual

interaction and program manipulation.

5.7 Summary

This research project began with the concept of visualizing binary code due to its role in

processing of information and the ready availability of programs in executable format. The

developed lattice-based metaphor provided a concise visual metaphor for interacting and

analyzing the equivalent disassembled code demonstrating the feasibility in 3D.

As computing devices increase in processing capability, 3D visualization provides an alternative

to textual analysis of large quantities of information, which includes binary code.

 90

REFERENCES

Beck, Fabian, et al (2011), Visually Exploring Multi-Dimensional Code Couplings, VisSoft 2011

IEEE International Workshop on Visualizing Software for Understanding and Analysis,

September 2011

Broeksema, Bertjan, et al (2011), PortAssist: Visual Analysis for Porting Large Code Bases,

VizSoft 2011 IEEE International Workshop on Visualizing Software for Understanding and

Analysis, September 2011

Caserta, Pierre, et al (2011), 3D Hierarchical Edge Bundles to Visualize Relations in a Software

City Metaphor, VisSoft 2011 IEEE International Workshop on Visualizing Software for

Understanding and Analysis, September 2011

Goodall, John (2009), Visualization is Better! A Comparative Evaluation, VizSec 2009,

International Workshop on Visualization for Cyber Security, October 2009

Grancanin, Denis, et al (2005), Software Visualization, Innovations in Systems and Software

Engineering, September 2005, Volume 1, Issue 2, Pages 221-230

Holten, Danny, et al (2005), Visual Realism for the Visualization of Software Metrics, IEEE

Workshop on Visualizing Software for Understanding and Analysis, 2005

Holten, Danny, et al (2006), Visualization of Software Metrics using Computer Graphics

Techniques, Conference of the Advanced School of Computing and Imaging, 2006

Holy, Lukas, et al (2012), Lowering Visual Clutter in Large Component Diagram, 2012

International Conference on Information Visualization, July 2012

Kerren, Andreas, et al (2009), Novel Visual Representation for Software Metrics using 3D and

Animation, Software Engineering Workshop, 2009

 91

Kuhn, Adrian, et al (2010), Embedding Spatial Software Visualization in the IDE: An

Exploratory Study, SoftViz 2010 International Symposium on Software Visualization, 2010

Lambert, A, et al (2012), Visualizing Patterns in Node-Link Diagrams, 2012 International

Conference on Information Visualization, July 2012

Maletic, Jonathan I., et al (2011), MosaiCode: Visualizing Large Scale Software (A Tool

Demonstration), VizSoft 2011 IEEE International Workshop on Visualizing Software for

Understanding and Analysis, September 2011

Marcus, Andrian, et al (2003), 3D Representations for Software Visualizations, SoftViz 2003

ACM Symposium on Software Visualization, 2003

Medani, Dan, et al (2010), Graph Works – Pilot Graph Theory Visualization Tool, SoftViz 2010

ACM Symposium on Software Visualization, 2010

Quist, Danny, et al (2009), Visualizing Compiled Executables for Malware Analysis, VizSec

2009, International Workshop on Visualization for Cyber Security, October 2009, Pages 27-32

Reniers, Dennie, et al (2011), Visual Exploration of Program Structure, Dependencies, and

Metrics with Solid SX, VizSoft 2011 IEEE International Workshop on Visualizing Software for

Understanding and Analysis, September 2011

Trinius, Philipp, et al (2009), Visual Analysis of Malware Behaviour Using Treemaps and

Threaded Graphs, VizSec 2009, International Workshop on Visualization for Cyber Security,

October 2009, Pages 33-38

Wiss, Ulrika, et al (1998), Evaluating Three-Dimensional Information Visualization Designs: A

Case Study of Three Designs, IEEE Conference on Information Visualization, July 1998

 92

Zeckzer, Dirk (2010), Visualizing Software Entities Using a Matrix Layout, SoftViz 2010 ACM

Symposium on Software Visualization, 2010

Notes

(Holten 2005) and (Holten 2006) papers comprise the same content.

 93

APPENDIX A – DEVELOPMENT PLAFORM

System Build Features:

 Intel 32/64 bit processor

 Windows Operating System supporting DirectX 10.1 and above

 Visual Studio 2008 Professional Edition

 Graphics Processing Unit supporting DirectX 10.1 and above

Support Tools

 Dumpbin – provided with Visual Studio development tool

 Link – provided with Visual Studio development tool

 94

APPENDIX B – USER MANUAL

Visualization Keyboard Commands

Table B.1: Keyboard Commands

Key Description

Views

F1 Toggle ‘legend’ view

F2 Display/Hide ‘analysis’ view

F3 Switch ‘node’ and ‘section’ views

Q Quit visualization (stops the current visualization)

S Sets focus to the ‘node’ view for navigation

C Sets focus to the ‘section’ view for navigation

(arrow keys) Navigates the ‘node’ / ‘section’ views dependent on current mode

(enter key) Displays a node’s related information

(left click) Selects node

Visual

X Rotates the node/section view

R Resets the node/section view to default rotation

I / O Zooms in / out on section view

Information

F5 Run through disassembled code to generate information

P Pauses/Resumes run through disassembled code

L Displays branching information with the current section

+Shift – Displays branching information outside the current section

+Ctrl – Clears branching information

B Displays potential source locations for the current node

T Simulates a run through the code

+Ctrl – Clears the run through simulation

N Displays selected flagged notation

 95

APPENDIX C – USABILITY TESTING

Questionnaire

Question (Tick in one of the boxes) Poor Okay Good

1. Initial impression of application

2. Ease of navigation through the code

3. Ease of use of the application

4. Ease of generating beneficial information

5. Value of analysis features

6. Insight into the visualized program

Question (Tick in one of the boxes) No Yes

7. Would you use it

8. Have you used a similar program before

9. Would you recommend it to someone

10. Comments on the program:

