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ABSTRACT 

 

Information Technology is pervasive and new ways to leverage its potential are continuously 

emerging. A resultant effect is the increase in the code base as new functionality is implemented. 

And as computers increasingly handle and process more information, the analysis of executables 

becomes necessary. 

 

Visual Analytics of executable code provides a tool to analyze their structured format, providing 

an alternative tool comparable to directly analyzing source code, to generate meaningful 

information. Visualization of the software enhances this process by providing the visual 

metaphors that represent the code aspects. 

 

Various visual representations have been utilized in visualizing the various aspects of software. 

This research presents a visual interface for interacting with Binary Code, illustrating the 

potential of basic geometric shapes and visual interaction in understanding the structure of 

programs. It proposes that directly manipulating the software structure, with an abstracted visual 

representation, provides an improved understanding of a program. 

 

The process involved the design and development of a prototype application of a 3D 

environment within which interactions with visual metaphors enabled visualization and analysis 

of Binary Code. The key metaphor utilized is based on the lattice structure. 

 

The resultant application provided a 3D visualization environment within which binary code 

could be analyzed using a lattice-based metaphor. The application provided functionality for 

visually interacting with disassembled code as well as querying the code and visually viewing 

the results within the metaphor. The research could provide a basis for research and application 

of visual reverse engineering in an environment of touch screens and increasing processing 

capability. 

 

Key words: Binary Code, Visualization, Lattice, Metaphor, Instruction Set Architecture 
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CHAPTER 1 - INTRODUCTION 

 

1.1 Background 

Information Technology is pervasive and new ways to leverage its potential are continuously 

emerging. In this innovation process, software provides a tool for implementing new 

functionality, with the potential effect of increasing the existing code base. 

 

Review of this code base is difficult for several reasons. Program complexity increases as new 

functionality is implemented. Large teams are involved in the development process. Different 

software development tools utilized provide unique syntax and means of expressing semantics. 

Publishers usually retain the source code; however, executables are released for deployment. 

 

In varied scenarios, executable files need to be reverse engineered in order to understand their 

functionality. Disassembling an executable provides a human-readable format that resembles the 

underlying machine code due to the one-to-one mapping of machine & assembly code. 

Dependent on the size of the executable, the quantity of the information generated can be large. 

This makes the analysis of information potentially difficult. Besides textually viewing the 

content, visualization can be utilized to enhance the process of understanding and analyzing the 

content. 

 

Lattices provide a potentially useful structure that can be adapted to develop a visual metaphor 

that can be used to visualize & analyze a program’s disassembled executable code in order to 

generate usable information to aid in decision making. 

 

This research project presents a development of a lattice-based metaphor for this purpose. It 

begins by abstracting a generic platform’s Instruction Set Architecture (ISA). Rules are then 

formulated on how to represent the different combination of instructions in order to enable 

adaptation to a lattice structure. A notation for displaying information is developed. 

Various basic code constructs dealing with branching and looping are then illustrated by a 

process of abstracting their structural design and then visualizing them using the metaphor on the 

basis that these constructs are combined in various ways to constitute a program. 
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1.2 Research Basis; Problem Statement and Purpose of Project 

Executables, with their structured format, provide an avenue (at times possibly the only means) 

of understanding an actual program’s design and functionality. And as computers increasingly 

handle and process more information, the analysis of executables becomes even more necessary. 

 

Visual Analytics of executable code provides a tool for analysis of the structured format of 

executables. By extracting and visually presenting information, an alternative form of analysis is 

possible that enables abstraction and interaction of underlying, potentially, complex concepts. 

 

The problem can be summarized as ‘extracting and visually presenting information on 

executable code for analysis and abstraction of underlying concepts’. 

 

This research attempts to design and implement a 3-Dimensional visual metaphor and interaction 

environment for analyzing disassembled binary code on the basis of the structure of its 

corresponding Instruction Set Architecture. 

 

1.3 Research Outcomes and their Significance to Key Audience 

Various contributing parameters are increasing the need for executable code analysis; they 

include: 

 Executable code is increasing both in quantity and complexity, as it becomes a critical 

component of modern infrastructure. 

 Computing power is increasing, and with the rise of Graphic Processing Units, visual 

analysis of large quantities of information (programs in this case) is feasible. 

 Visual Analytics provides a tool to quickly analyze large code bases in an interactive 

manner, enabling quicker identification of pertinent areas of interest in less time and with 

less effort. 

 

The research endeavour aims at providing a 3D visualization environment with associated 

metaphors that will enable executable binary code analysis in a graphical manner. 
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Visualization of binary code could enhance the efficiency of the analysis of programs in software 

domains where the source code is not usually available. This largely occurs in the software 

security domain with potential fields of use being reverse code engineering, vulnerability 

research, and malware analysis. 

 

Potential users of the system include: 

 Software Engineers maintaining programs without the source code 

 Malware Researchers analyzing malware to determine its structure for signature detection 

 Security Researchers reverse engineering programs to identify potential flaws 

 

1.4 Research Objectives 

1. To design & develop a prototype 3D Visualization application for Binary Code Analysis. 

2. To design & develop a 3D Lattice based visual metaphor to represent Binary Code 

 

1.5 Research Scope, Limitations, Assumptions, and Complexity 

The platform selected for implementation and analysis is the Microsoft-Intel platform with its 

associated Portable Executable file format and assembly language. This is due to its ubiquity and 

existing large code base; however, the results are extendable to other platforms. 

 

The research is limited to the Portable Executable File Format, from which further research into 

the executable code is possible. The file format will provide the ideal entry point. 

 

Code obfuscation complicates the process of analyzing an executable. The research assumes that 

no attempts are made to complicate the program structure. 

 

The level of complexity and/or size of the programs to be visualized are based on real-world 

mainstream applications. Examples include the individual applications of the Microsoft Office 

Suite. For example, the Microsoft Word 97 binary size is approximately 8.5Mb, its assembly 

code listing approximately 148Mb, and when viewed with single line spacing of font size 10 

approximately 32,700 pages of 2.7 million lines of assembly code. 
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Table 1.1: File size analysis for listed word processors. 

Executable Binary Assembly Pages (Lines) (see note below) 

Notepad (Windows 2000) 50KB 488KB 150 (~9,000) 

Wordpad (Windows 2000) 181KB 2.5MB 830 (~47,000) 

WinWord (Office 97) 8.5MB 148MB 32700+ (2.7million+) 

Note: Pages format (plain text, font size 10, single line spacing) 

 

1.6 Research Justification 

Due to the growing complexity of software and its functionality, and the need to analyze the 

growing quantity of code in shorter timeframes, visual analysis provides a potential intuitive and 

interactive tool. 

 

Software domains that would benefit from visual analysis include software engineering, reverse 

engineering, malware research, security research, and vulnerability research. 

 

A common trend in the above specified domains is the availability of only the executable code; 

the source code is usually retained by the developers and not released publicly. In addition, 

software is readily available in its executable form. Disassemblers and decompilers exist which 

attempt to convert the binary code to some high level form. Disassemblers provide a more 

accurate representation due to the one-to-one mapping between assembly code and machine 

code. However, analysis of assembly code is not intuitive. 

 

3D visualization provides a graphical alternative to the textual viewing of this code. By 

generating a concise visual representation of the underlying binary code, an alternative form of 

interaction with code is possible, and potentially ideal because, 

 Software is large, complex, and continuously evolves 

 Visual processing is more intuitive than textual 

 3D visualization increases the spatial space for analysis; there are limits to font shrinkage, 

screen resolution, screen monitor sizes, or use of multiple monitors 

 Large quantities of information can be analyzed in shorter time frames 
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 Various aspects can be analyzed and filtered; presented on demand or using different 

illustrations, and content can be visually anchored to reduce cognitive load 

 Design of a metaphor for binary code enables software visualization to utilize 

illustrations tailored specifically for code rather than borrowing information visualization 

metaphors. 

 

1.7 Definitions of Important Terms 

Several terms occur within this report as well as in the related literature. These are briefly 

described below. 

 Metaphor – refers to a visual representation of an underlying code concept 

 Aspect – refers to an attribute of code 

 Anchor – refers to a cognitive reference point used during analysis 

 

1.8 Subsequent Chapters 

Content covered in later chapters includes literature review, system design, and results. 
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CHAPTER 2 – LITERATURE REVIEW 

 

2.1 Overview 

This chapter builds a case for the research endeavour outlined in the previous chapter. It consists 

of the following sections: 

 Guiding Concepts, which provide the scope (Section 2.2) 

 Literature Survey, which describes the common ground across the literature (Section 2.3) 

 Case For Research, which discusses the perceived gaps in the literature (Section 2.4) 

 

2.2 Guiding Concepts (Scope) 

The guiding concepts are used to provide the scope for the research endeavour. They are: 

 Screen View 

 Program Structure, Control Flow 

 Cognitive Dimension 

 Visualization, Visual Analytics 

 

They are connected in the following manner: utilization of visualization / visual analytics 

enhanced by cognitive dimensions to analyze program structure / control flow on a computing 

device’s screen via 3D features and functionality. 

 

2.2.1 Screen View 

Information generated from an analysis process on a computing device is usually displayed on its 

screen. However, several challenges are faced when attempting to obtain an overall view of the 

data presented. Aspects such as quantity & type of content, nature of analysis tool, and the screen 

view available can affect the analysis of information. 

 

Limitations are placed on the extent of font shrinkage, screen resolution adjustment, screen size, 

or use of multiple screens. 
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2.2.2 Program Structure, Control Flow 

Different categories of tools are available for executable program analysis providing varied 

levels of control and information. Examples include disassemblers & decompilers, debuggers, 

hex editors, and filters. 

 

However, these tool categories are limited in their capability of providing an initial overall view 

of the content they analyze due to their textual nature. For example, identifying various control-

flows (such as back, critical, abnormal, or impossible) is not easily intuitive. Visualization could 

provide a global view starting point for visually drilling in, with focused analysis that would 

cause unreachable code from the current view to be selectively hidden or automatically removed. 

 

Executable code is increasing in both quantity and complexity, providing a potential software 

domain that requires improved and new ways of handling and processing its content. 

 

Figure 2.1: Code is already structured. 

 

Note: 

 Source code is converted directly to machine code for execution via a compiler, or into 

intermediate byte code that is executed via an interpreter. 

 There exists a one-to-one mapping between machine code instructions and assembly code 

mnemonics. 

 

2.2.3 Cognitive Dimension (CD) 

CDs are guiding principles used in design, usually of user interfaces and notations, enabling 

heuristic evaluation of new or existing information artifacts (interactive e.g. applications or non-

interactive e.g. graphs). They provide a lightweight approach in the evaluation of a design space, 

without in-depth analysis due to the existence of tradeoffs, to identify usability issues. 
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Several CDs are utilized in the research, namely abstraction (synopsis of an annotated structure), 

diffuseness/terseness (notation space required to provide meaning), secondary notation (extra 

information carried by notation), and visibility (ease of identifying notation parts). 

 

2.2.4 Visualization, Visual Analytics 

Visualization provides a graphical tool for analyzing large quantities of data to identify patterns, 

relations, and structures. Visual Analytics utilizes interactive interfaces to aid reasoning (detect 

the expected and discover the unexpected). 

 

Software visualization deals with the mapping between visual metaphors and code aspects. 

Executable code with its structure, though abstract, lends itself to visual analysis to improve 

program understanding. 

 

In order to achieve the benefits of visual analytics of executable code, the following need to be 

addressed: the attributes of both metaphors & aspects, the metaphor representation, the 

information to be required to be derived from the massive content, efficient management of the 

information derived, and performance enhancements. A methodology also needs to be 

incorporated to guide the process. 

 

Figure 2.2: Visualization mapping of code aspects and visual metaphors 

 

Note: 

 Software visualization maps executable code comprising of 0s and 1s to graphical 

representations. 

 

2.3 Literature Survey (Common Ground) 

This section discusses the common goal of visualization on the basis of the guiding concepts. It 

illustrates how different research work in software visualization, spanning over 10 years, is 

common and overlapping. The goal of this section is to promote the viability of the research 

problem’s justification. 
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2.3.1 Screen View 

2D view scalability is hindered as content increases (Zeckzer 2010), and even with zoom 

(Broeksema 2011) and multiple view (Maletic 2011, Reniers 2011) capability they are prone to 

cognitive overload and lack of intuitiveness (Holy 2012) hence the use of 3D to add a new 

spatial dimension (Grancanin 2005), enhance memory activity (Marcus 2003), and make 

information analysis easier (Wiss 1998). Extending visual analysis to 3D increases the spatial 

space available for interacting with information. Pixel Maps (Marcus 2003), Kiviat (Kerren 

2009), and Hull (Lambert 2012) metaphors benefit from 3D. Hierarchical Edge Bundling, which 

is extended into 3D space, improves visualization (Beck 2011). 

 

The literature indicates the attempts made at maximizing the use of the screen real estate in order 

to cope with increasing quantities of information. 

 

2.3.2 Program Structure, Control Flow 

(Grancanin 2005) outlines how visualization is applicable to the entire software lifecycle, 

including the support of legacy systems and use in security analysis (Goodall 2009). Both binary 

as well as source code is utilized. (Quist 2009, Trinius 2009) visualize malware acquired in 

binary form. (Marcus 2003, Zeckzer 2010, Maletic 2011, Reniers 2011) utilize source code from 

the perspective of metrics, classes & packages, whole software (for porting), and whole software 

(for structure) respectively. Binary code would provide a more accurate form for analysis, as it is 

what is actually executed on the computing device. 

 

The literature shows that various visualization undertakings have been done with software and its 

attributes for purposes of improving the understanding of programs from both the binary and 

source code level. 

 

2.3.3 Cognitive Dimension 

Abstraction plays a role in reducing information & cognitive overload. (Grancanin 2005) 

mentions 2 concepts that support this. Elision property of ‘abstract distant objects, detail closer 

objects’, and Bruce Shneiderman’s visualization mantra which specifies the default sequence of 
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‘overview first, zoom & filter, details on demand’. Similar echoes are captured in (Marcus 2003). 

Complementing components for information extraction are visual and textual representations. 

(Goodall 2009) proposes visualization for higher levels and textual for lower levels. The 

complex interactions between software entities are prone to make visualization cluttered with the 

potential effect of increasing the cognitive load (Caserta 2011, Goodall 2009) and ignoring 

information (Kuhn 2010). 

 

Concise information display is enhanced by the use of metaphors that have the capability to 

represent the required information, i.e. expressiveness. Cognitive processing is enhanced by 

visibility & idealness of the required information encapsulated & presented in metaphors, i.e. 

effectiveness. Both expressiveness and effectiveness are properties of metaphors (Grancanin 

2005) and tools for the design and evaluation of metaphors (Marcus 2003). 

 

Enhancing abstraction is possible by not displaying all information at once. Pertinent information 

can be displayed dependent on the current context or upon demand, by encoding it in the 

metaphor (Reniers 2011). Furthermore, the use of mental models to aid in program 

comprehension, have been proposed. (Kuhn 2010) proposes the conceptual and structural 

models, in addition to introducing the concept of anchors, which provide a reference point in the 

analysis. 

 

The literature brings out the concern of information overloading during the analysis of large 

quantities of information. Various solutions are proposed and guidelines presented to address the 

concern. 

 

2.3.4 Visualization, Visual Analytics 

In binary code visualization, metaphors represent aspects of code. However, since the code is 

abstract, these metaphors can take varied forms, for example, geometric shapes (Grancanin 2005, 

Caserta 2011) or real world objects (Grancanin 2005). In addition to shape, other visual attributes 

include size, height/depth, colour, texture/bumpmaps (Holten 2005), transparency, elevation, and 

position. These represent various code attributes such as sequence, control structure, nesting 
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level, declarations & implementations, classes & inheritance, occlusion, etc. (Marcus 2003, 

Holten 2005, Zeckzer 2010, Beck 2011, Lambert 2012) mention these attributes. 

 

Various representations have been proposed: Pixel Maps / Cylinder Bars (Marcus 2003), 

Matrices / Row-Column (Zeckzer 2010), Tree Maps & Edge Bundling (Caserta 2011), Hulls 

(Lambert 2012). The above papers use graphs as a basis in different ways: replacing, 

compressing, and enhancing respectively. Graphs are covered in (Reniers 2011). Other 

representations include Treemaps (Reniers 2011, Kerren 2009), Radial (Reniers 2011), Kiviat 

(Kerren 2009), and Cartography (Kuhn 2010). Furthermore, various combinations of 

representations can be utilized concurrently (Broeksema 2011, Maletic 2011). 

 

Visualization generates usable information, for example with refactoring (Broeksema 2011), 

which involves determining effort estimation and rewrite impact, or maintenance (Maletic 2011), 

which identifies high code turnover areas for purposes of either rewrite, code defect 

identification, regression tests, or fan in/out. Integration with other tools, either via input or 

output files is possible (Maletic 2011, Kuhn 2010). 

 

Ultimately, visualization should increase the level of understanding of the information being 

processed, possibly by maintaining a consistent mental model (Wiss 1998) for recurrent use 

(Kuhn 2010). Richard Hamming’s statement, ‘insight, not number is what computing should 

evolve to’, is a guiding principle. Abstraction of complex aspects to everyday equivalents 

(Medani 2010) and incorporating animation increases understanding (Medani 2010, Kerren 

2009), which is further enhanced by lowering clutter by component aggregation (Holy 2012). 

Manipulating of the visualization also increases understanding (Wiss 1998). Navigation and 

location identification can be enhanced by both animation and panning features (Wiss 1998). 

However, animations are susceptible to large changes (Beck 2011). 

 

From a rendering performance perspective (Wiss 1998 also raises this concern), the capability of 

being able to utilize the GPU to enhance performance is beneficial. Texture usage, for example, 

is natively performed by the GPU. 
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Due to the varied potential uses of visualization and the abstract nature of the information, a 

methodology is required to determine the ideal visualization for a given scenario. (Wiss 1998) 

introduces 2 parameters namely the data set (may require prototyping) and task analysis 

(involves the parameters of overview, zoom, filter, details on demand, relation, history, and 

extraction). (Beck 2011, Goodall 2009) also indicates these 2 parameters. Furthermore, (Wiss 

1998) enhances the notion of the uniqueness of visualizations to the problem domain, indicating 

that if a methodology doesn’t fit, the alternative could be either modify the design, add 

functionality, or use different concurrent visualizations. 

 

Table 2.1: Recurring Themes in Literature 

Category Recurring Themes 

Screen View Use of 2D & 3D 

Program Structure Large Code Bases, Software Lifecycle, Integration 

Cognitive Dimension Interaction, Navigation 

Visualization Natural Code-Metaphor mapping 

 

Table 2.2: Literature Survey over the period 1998-2012 on Software Visualization 

Category Reference 

Overview Concepts (Grancanin 2005) 

Metaphors Abstraction (Medani 2005) 

Cube (Wiss 1998), Cylinder Bars (Marcus 2003, Broeksema 2011) 

Graphs (Holy 2012, Reniers 2011), Hull (Lambers 2012) 

Kiviat (Kerren 2009), Landscape (Wiss 1998) 

Matrices (Zeckzer 2010), Radial (Reniers 2011) 

Trees (Kerren 2009, Reniers 2011), Tree Maps (Holten 2005) 

Aspect Animation (Kerren 2009), Classes (Zeckzer 2010) 

Clutter (Holy 2012), Maintenance (Maletic 2011) 

Malware (Quist 2009, Trinius 2009), Metrics (Marcus 2003) 

Porting (Broeksema 2011), Realism (Holten 2005) 

Structure (Reniers 2011) 
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Figure 2.3: Illustration of Metaphors in Literature Survey (see Table 2.2 for sources) 

Graph 

 

Hull 

 

Cube 

 

Matrix 

 

Kiviat 

 

Cartography 

 

Landscape with Edge Bundling 

 

 

Radial 

 

 

Cylinder Bar 

 

 

2.4 Case For Research (Literature Gaps) 

The previous section describes the common landscape based on the guiding concepts. This 

section (based on reviewed literature sources) identifies and discusses perceived gaps (which 

have not been addressed) and limitations (which could be enhanced) with the focus of being 

applied to the research problem. 

 

2.4.1 Screen View 

The role of 3D is increasing in the analysis of information. However, a direct conversion and/or 

utilization of 3D representations don’t directly imply improved information analysis. The 

underlying information being analyzed and its interaction requirements should determine the 
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representation to be utilized. Hence analysis capability can be improved by incorporating the 

strengths of 2D and 3D within a 3D environment. 

 

It is proposed that the 3D be mainly utilized to provide a work environment (increase the spatial 

analysis view, while maintaining a natural-based layout of interaction) within which both the 2D 

and 3D metaphors can be manipulated, rather than resorting to 3D ports when visual limitations 

are encountered. 

 

2.4.2 Program Structure, Code Analysis 

As software increases in quantity and complexity, visualization is providing a means of 

comprehending its functionality. Various representations have been used to determine structural 

aspects, while graphs are frequently utilized to represent program flow. However, providing a 

complete view of the program structure and code flow at a go, doesn’t enhance screen view 

utilization or cognitive load required. 

 

It is proposed that program structure, at the file level, be utilized as a basis for further drilling in, 

due to the ease of identifying relevant sections. In addition the compact nature and standardized 

format of binary code, rather than source code, would enhance both screen view utilization and 

cognitive load required. 

 

2.4.3 Cognitive Dimension 

In order to minimize cognitive overload, abstraction plays a role by providing the ability to view 

the entire content. Diffuseness and Visibility are not ideally intuitive, as the metaphors utilized 

are not designed specifically for code but borrowed from data visualization. However, 

incorporating abstraction a natural mapping can be utilized to represent the underlying concept. 

Secondary notation has been mostly textual though it can be enhanced within 3D spatial 

environments. 

 

It is proposed that initial interaction with an abstracted model with simple geometric metaphors 

(designed for code), will enable personalized mental models to be derived for analysis potentially 

reducing the initial and subsequent cognitive load. 
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2.4.4 Visualization, Visual Analytics 

Various representations have been proposed for software visualization based on those utilized in 

information visualization. Hence they are not native to code analysis. 

 

It is proposed that a code-biased representation would improve program comprehension by 

providing a code based navigation and interaction mechanism to encourage recurrent use. 

 

Table 2.3: Summary of Perceived Literature Review Gaps 

Category Perceived Gap 

Screen View Use of synopsis / abstraction 

Program Structure Focus on mainly source code 

Cognitive Dimension Minimal cognitive offloading 

Visualization Metaphors borrowed from Information Visualization 

 

Figure 2.4: Framework for Visual Analytics (based on the above table) 

 

Note: 

 (see above table for descriptions of figure components) 

 

2.5 Conclusion 

As computing devices’ capability increases, and new functionality and features required, the 

quantity and complexity of executable code will increase. Scenarios will arise where the code 

will need to be analyzed to understand its functionality in decreasing time frames. 
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Current tools and frameworks, adept at their designed functionality fail to provide a 3D visual 

analytical interface, with associated metaphors, for executable code. By providing an overall 

snapshot of an executable’s structure and visual interaction functionality, a more intuitive form 

of analysis is possible, with the potential of increasing the quantity and quality of code analysis 

within shorter timeframes. 

 

3D visual processing, which enables humans utilize an innate analysis capability is a viable tool 

for executable code analysis. By abstracting away language features, since similar logic can be 

viewed using different languages and focusing on the binary code attention can be directed on 

understanding the logic of the process rather than the logic of the language. 
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CHAPTER 3 – SYSTEM DESIGN 

 

3.1 Introduction 

The design of the application is based on the structured format of code. At the binary level, the 

code is structured in a form ready for execution by a processing unit. This code can be directly 

abstracted to assembly language mnemonics while still preserving the inherent structured form. 

It is at this level of abstraction that the application analyzes an executable. 

 

Programs are usually distributed in their executable format (.exe files). In order to more easily 

analyze them, they need to be converted into their higher-level language equivalents. Assembly 

language equivalents are obtained via a disassembler for the target platform. Due to the varied 

disassemblers available and their correspondingly different outputs, an input format for the 

application is specified for this application (derived from the dumpbin utility availed with 

Microsoft’s Visual Studio Integrated Development Environment). Once in the appropriate 

format, the disassembly listing can then be imported into the application for visualization. 

 

This chapter describes the research analysis, design, and implementation process. It consists of 

the following sections: 

 Development, describes the prototyping method (Section 3.2) 

 Requirements, describes the program features (Section 3.3) 

 Conceptual, describes the interaction flow and content generation process (Section 3.4) 

 Data, describes the sources, collection, and introduces analysis & validation (Section 3.5) 

 Import Format, describes the structure of the assembly listing of the disassembled 

executable (Section 3.6) 

 Content, describes the data files, interfaces, and formats used (Section 3.7) 

 Visual, describes the user interface aspects (Section 3.8) 

 Metaphor, describes the visualization design (Section 3.9) 

 Construct, describes the analysis and validation of assembly code (Section 3.10) 
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3.2 Development 

 

3.2.1 Prototyping 

Due to the iterative and incremental nature of the design and development process, the 

prototyping methodology of software development is utilized. It enables enhancing functionality 

until a complete system is implemented. 

 

The prototyping approach utilized is evolutionary in that the prototype will be refined and 

eventually become the final product. This is through an iterative process of reviewing and 

improving on the current build. It combines both horizontal and vertical prototyping enabling 

both a broad and component based approach respectively. The horizontal aspect enables 

designing of the user interface, while the vertical aspect aids in functionality design. These 2 

aspects form the key cycles i.e. the visual and functionality features. 

 

The cycles enable incremental prototyping as the various components can be developed and then 

integrated into the system. This would result in a module-based design that would enable 

extensibility for additional future features. 

 

3.2.2 Cycles 

There are 2 key concurrent cycles, the visual and functionality, in order to handle the key 

structural components of the application. The visual cycle addresses the views presented by the 

application for interaction; the front end. The functionality cycle addresses the background 

processing upon which the visual component operates by retrieving content; the backend. 

 

Figure 3.1: Diagrammatic illustration of the utilized prototyping development cycle. 
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Note: 

 From the initial concept to the final prototype, the visual and functionality components of 

the system will be design and developed concurrently, in an evolving and interconnected 

manner. (The illustration is a customized derivative based on evolution prototyping.) 

 

3.2.3 Benefits 

The prototyping methodology provides benefits to this development endeavour that include: 

 Ideal for the design of graphical front ends, which are prone to initial change due to being 

a contact point for the system’s users. 

 Enables feedback to be incorporated into the next cycle. 

 

3.2.4 Limitations & Handling 

The iterative nature of prototyping can result in the method being liable to ever changing design 

cycles. To overcome this aspect, once the basic visual and functionality features are formulated, 

changes are minimized and focus change to information extraction using the visual and 

functionality components. 

 

3.3 Requirements 

 

3.3.1 Functional 

These describe what the system does, in the process describing and driving the design. 

 

Key features: 

 External disassembler incorporation to enable visualization & analysis of programs for 

which there is a disassembler for the target platform. 

 Text-based data storage engine to contain the disassembled code in a format that enables 

visualization & analysis. 

 Lattice-based visualization metaphor for visualization, analysis, interaction, and 

navigation of disassembled code. 
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3.3.2 Non Functional 

These describe quality related features of the system, in the process describing and driving the 

architecture. 

 

Key features: 

 Extensibility to enable building new functionality in order to enhance the program. 

 Scalability to enable handling of large disassembled files. 

 Modular to enable adaption for other platforms. 

 

3.4 Conceptual 

 

3.4.1 Interaction Flow 

The main interacting components of the program comprise: 

 An executable to be analyzed, either in binary format, or in its equivalent disassembly. 

 The Lattice application, which visualizes the executable. 

 

The process of loading an application for visualization and subsequent analysis is simplified 

through the use of drag-and-drop functionality. This is intended to minimize intermediary steps 

that could be required during the loading process as once the application is run, the operating 

system’s graphical file system shell can be utilized to locate the file to be visualized, which is 

then dragged onto the running visualization application. 

 

Once loaded, the intermediate steps that may be required, based on the loaded file, are executed 

and the loading progress shown. When all the steps are completed, the visualization is then 

loaded, and analysis can begin. 

 

Below is an example illustration of the main interacting components (in this case the Notepad 

application from Microsoft and the Lattice default screen used for loading the application) of the 

visualization process; beginning with an executable, it is dragged using the mouse, onto the 

application in a drag-and-drop manner. 
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Figure 3.2: Interaction Flow 

 

     

 

 

 

 

 

 

 

3.4.2 Content Generation 

Once the executable file has been loaded into the application, various processes are run in order 

to generate the content that will be used for the visualization. The main processes are: 

 Disassembly of a loaded executable file into its corresponding assembly listing (referred 

to as dumping). 

 Importing of the disassembled assembly file listing into the various content files that will 

be utilized for both visualization and analysis. 

 Loading for the generated content files for visualization and analysis. 

 

Drag-and-Drop 

an executable 

file onto the 

Lattice program 

Content Generation 

Visualization & Analysis 
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Below is an illustration of the various processes and outputs involved from the loading of the 

initial program to its visualization. 

 

Figure 3.3: Content Generation 

 

 

 

The components illustrated above are described in the sections below. 

 External Components 

 File / Program Entry 

 Processes 

 Content 

 

External Components 

These are not part of the Lattice program but are used to generate content that will be used by the 

program. For example, various disassemblers are available for the different platform. The 

appropriate disassembler would be used dependent on the target platform of an executable. 
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Table 3.1 External Components 

Item Description 

Disassembler An external integratable tool used to generate the assembly listing that 

will then be imported into the application. Dependent on the executable’s 

platform, the appropriate disassemble can be utilized. 

 

File / Program Entry Points 

These are the high-level files used to either generate content (.exe, .lb) or act as a placeholder for 

the various content files (.lc; acts as a place holder to represent the various .ld, .le, and .lf files). 

They also provide entry points to initiate the visualization process, by eliminating the need to 

perform previously completed tasks, thus saving time. 

 

For example, once an executable file (.exe) has been disassembled into its corresponding 

assembly file listing (.lb), subsequent visualizations of the same executable file need not 

disassembly the executable gain. Similarly, once the assembly file listing (.lb) has been imported 

into the various data files (.ld*, .le*, .lf*; collectively represented by the .lc file), they need not 

be regenerated again. This saves time when dealing with large files. 

 

Table 3.2 File / Program Entry Points 

Item Description 

.exe The executable file to be disassembled. Initiates the visualization process from the 

loading of the executable. The content is in binary form. 

.lb The disassembled file (text) that is generated by the disassembler (formats vary 

per disassembler). Initiates the visualization process from the disassembled file (in 

order to avoid the need to repeat the disassembly of an already done disassembly). 

.lc A placeholder file (contains no content) used to represent all the other content 

files (.ld*, .le*, .lf*). It enables initiation of the visualization process from already 

imported content (content is ready for visualization; there is no need for 

disassembly nor importing into the appropriate format). 
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Processes 

These are refers to the key processes involved in preparation of the content for visualization and 

subsequent analysis. 

 

Table 3.3: Key Processes 

Item Description 

Dump Disassembles the loaded program using a disassemble 

Import Parses the assembly listing and generates structured data usable for 

analysis 

Resolve Identifies and connects control branching offsets found in the assembly 

listing 

Link Connects control branching offsets for visualization purposes 

Load Retrieves the content from the data files into memory for visualization 

Visualization Provides a visual interaction interface to the disassembled program 

 

Content Files 

These files (with the extensions .ld*, .le*, .lf*), contain the imported content in a structured 

format that is used for the visualization as well as the data analysis. These are detailed in Content 

Design (Section 3.7). 

 

Table 3.4: Content Files 

Item Description 

.ld* Set of structured files of the disassembly that can be queried 

.ld Imported assembly code 

.ldl Assembly code lines used to resolve addresses for branching 

.ldr Assembly addresses that need to be resolved 

.le* Set of optimized structured files of the disassembly used for visualization 

.le Extracted & optimized assembly code used for visualization 

.lel Extracted assembly code indices 

.ler Extracted assembly code indices that need to be resolved 
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.lf* Flag related data 

.lf Flag database 

.lfl Flag configuration data 

 

Note: 

 The filename, obtained from the initial drag-and-drop process, is combined with the 

various extensions to generate the different files that are used by the program. 

 The file extensions, .l*, were selected in order to enable the application identify files it 

has generated, and for the user to easily identify files due to their unique file extensions. 

The files however, comprise of structure raw text. 

 

3.5 Data 

 

3.5.1 Source 

The data consists of software programs in the form of executable files that will be used as input. 

Programs are restricted to the 32 bit version for the Intel platform. The approach is based on the 

availability of the executables in binary format as opposed to source code format (which is 

usually retained by the developers). 

 

However, since the binary format needs to be translated to at least assembly code for analysis by 

humans, the input is based on this format. Since there is a 1-to-1 mapping between machine and 

assembly code (Figure 2.1), and disassemblers available for the various platforms, focus can be 

directed to the importing and visualization processes. 

 

3.5.2 Collection; Tools & Process 

Disassemblers are utilized to generate the equivalent assembly language code for executable 

programs that are acquired for analysis. The generated assembly code listing is utilized as input 

into the visualization program. 

 

The basic process (Figure 3.3) involves: 

1. Acquire an executable file 
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2. Generate the assembly language equivalent using a disassembler for the target platform 

3. Load the assembly language listing into the visualization program 

 

This process ensures that any program that has been converted into its executable equivalent for 

deployment can be visualized as long as a disassembler for the platform exists. This provides the 

benefit of separating the visualization process from the disassembling process, enabling a more 

modular system. In addition, it enables the use of already existing disassemblers that have been 

developed for various processors. 

 

3.5.3 Analysis & Validation 

In order to validate that the disassembly listing, that will be generated and utilized in the 

visualization and analysis, is the correct representation of an equivalent program. The following 

approach is taken. 

 Sample programs are created. This starts with a simple program that exits immediately 

(has no functionality). Other programs representing different constructs and simple 

functionality are subsequently created based on the simple program. 

 The equivalent functionality is described from how it would be implemented using only 

an Instruction Set Architecture (ISA) for a given platform. 

 The programs are then disassembly, and the program flow analyzed to determine a match 

between the actual platform’s disassembly, and the conceptual platform’s logic.  

 

The construct’s section (Section 3.10) details the analysis & validation. 

 

3.6 Import Format 

The input format provides an interface specification for importing assembly listings, generated 

by different assemblers, into the program for visualization. As long as the output of the different 

assemblers can be formatted into the specification, any disassembler can be utilized, as 

subsequently any executable which has a corresponding disassembler can be visualized and 

analyzed by the program. 
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The format is based on the dumpbin.exe utility as described in the chapter’s introduction 

(Section 3.1). Lines that don’t match the instruction format, specified below, are ignored, as they 

don’t constitute an instruction (e.g. comments generated as part of the disassembly process). 

 

The format is specified for a given line that is to be parsed and imported, and is of the form: 

_ _XXXXXXXX:_XX_XX_XX_XX_XX_XX_ _<Opcode>_<Operand> 

where _ is a place holder for a space, and X is a place holder for a hexadecimal digit. Details are 

described in table 3.5 below. 

 

Table 3.5: Format for 1st line of instruction 

Offset from line 

start 

Length 

(characters) 

Description 

0, 1 2 Space 

2-9 8 Offset Address (hexadecimal digits) 

10 1 Colon 

11 1 Space 

12-29 18 (3 * 6) Byte + Space i.e. 2 hexadecimal digits + 

space 

30 1 Space 

31-41 11 Opcode 

42 1 Space 

43 (until end of line) Operand 

 

 

If more than 1 line is required to describe the bytes of an instruction, the format is of the form: 

_ _ _ _ _ _ _ _ _:_XX_XX_XX_XX_XX_XX 

where _ is a place holder for a space, and X is a place holder for a hexadecimal digit. Details are 

described in table 3.6 below. 
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Table 3.6: Format for 2nd & subsequent instruction lines 

Offset from line 

start 

Length 

(characters) 

Description 

0-11 12 Space 

12-29 18 (3 * 6) Byte + Space i.e. 2 hexadecimal digits + 

space 

 

Sample Input is illustrated below (taken from an executable’s corresponding .lb file): 

 

Figure 3.4: Disassembly Listing of Notepad.exe 

 

a. Disassembly Listing – contains comments 

 

 

b. Disassembly Listing – highlights show multi line instruction 
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3.7 Content 

Various data files are utilized to store the content required for both visualization and analysis 

(Table 3.4). A text-based database engine, which provides 3 interfaces (read, write, and update) 

is utilized in modifying the data files. 

 

3.7.1 Data Files 

This section expounds on the import process, initially mentioned in Content Generation (Section 

3.4.2), illustrating the various data files (Figure 3.5) that comprise the content. Details of the file 

structures are given in Data Format (Section 3.7.3). 

 

In summary: 

 .lc files represent a place holder to identify the other associated files 

 .ld files contain the imported disassembly listing in a format usable by the program 

 .le files contain information, based on the .ld files, intended for visualization 

 .lf files contain the parameters used for analysis of the executable code 

 

Figure 3.5: Data Files 
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3.7.2 Data Interfaces 

In order a facilitate reading and writing of the data files, a text-based data engine is utilized to 

retrieve and store content within the data files. For each data file, 3 interfaces are provided, 

illustrated below, namely: 

 Read – retrieves a single line from the data file 

 Write – stores a single line to the data file 

 Update – stores the updated version of a line or segment of the line to the data file 

 

Figure 3.6: Data Engine 

 

 

3.7.3 Data Format 

This section describes the details of the content files as well as provides sample illustrations. The 

files consist of structured text and can be viewed with any text editor. Each of the lines of the 

various files are of a standard size in order to enable efficient read/write and search operations. 

 

.lc File 

The .lc file is a place holder for the program to easily identify the other program files that contain 

content used for both visualization and analysis. The file is empty and is used to obtain the 

filename portion of the loaded file. For example, loading the Notepad.lc file into the program 

enables the location of the other related content files such as Notepad.ld, Notepad.le, Notepad.lf, 

etc. 
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.ld File 

The .ld file contains the imported assembly listing in a structured format i.e. the assembly lines 

only, with non-instruction lines not imported. 

 

Table 3.7: .ld File Format 

Name Type Length Description 

Offset String 8 Address in hexadecimal format 

Byte String 24 Instruction in hexadecimal format 

Opcode String 12 Instruction opcode 

Operand String 101 Instruction operand 

Execute Number 2 Type of execution 

0 = sequence 

1 = control 

Isa Number 8 Instruction Type 

Offset2 String 8 Branch address in hexadecimal format 

Level Number 2 Direction of execution 

0 = sequential 

1 = branch to lower address 

2 = branch to higher address 

3 = branch (determined at runtime) 

Line2 String 8 Line within the .ld file from the branched address 

Flag Number 4 Flag Notation 

 

The .ld file builds on the .lb file (the disassembly listing generated by a disassembler), by 

identifying, extracting, generating, and tag various attributes of each assembly line. 

 

For example, the opcode is either classified as a sequence or control instruction. If it is a control 

instruction, the offset of the branching address is identified and the direction of the flow (to 

either a lower address or higher address) is determined. Certain scenarios prevent identification 

of the branch address, such as when a CPU register or memory location is involved indicating a 
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runtime branch. Once a new branching offset is identified, the current line of the instruction is 

updated to link it to the branched to instruction’s line. 

 

Due to its contents, the .ld file forms the main data file that is utilized when any query needs to 

be done to identify pertinent information. Once generated, the .lb file, is no longer utilized. 

 

Figure 3.7: .ld File Content 

 

a. Highlight shows the initial 4 fields 

 

 

b. Highlight shows the last 6 fields 

 

.ldl File 

The .ldl file is utilized to aid in searching for address links. It comprises of line information 

whose content identifies lines in the .ld file. 
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Control branches that have been identified in the .ld file need to be linked in order to enable the 

visualization process highlight interconnecting branches. Hence, the ldl file is used to calculate 

the linkages. 

 

For example, once a branch offset is identified, its offset is subtracted from the initial offset in 

the assembly listing. The difference is the location of the jumped to branch location. This 

difference, when reference in the .ldl file corresponds to a line. The contents of the line identify 

the instruction that will be executed upon branching. 

 

The file is generated concurrently with the .ld file. Instructions in the .ld file that occupy more 

than 1 byte are reflected in the .ldl file in more than 1 line, i.e. the lines in the .ldl file represent 1 

byte each, with multiple byte instructions in the .ld file, occupying an equivalent number of bytes 

in the .ldl file. 

 

Table 3.8: .ldl File Format 

Name Type Length Description 

Line Number 8 Line number (hexadecimal) of instruction located at byte 

offset from start 

 

Figure 3.8: .ldl File Content 
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.ldr File 

The .ldr file contains addresses that need to be resolved once the .ld file is generated as they are 

forward referencing processes. 

 

During the generation of the .ld file branching instructions are identified and noted as either a 

forward, backward, or runtime branch. It is possible to calculate backward branches as the 

information has already been generated. However, forward branching is not possible due to the 

lack of required information, yet to be processed. 

 

Hence, the .ldr file contains addresses that will need to be resolved to enable linking of branching 

instructions. Once the .ld file generation process is complete, the resolve process utilizes this file 

to calculate branching connections, which are reflected in both the .ld and .le files. 

 

Table 3.9: .ldr File Format 

Name Type Length Description 

Offset2 Number 8 Branch address that needs to be resolved 

LineLd Number 8 Location of the line in the .ld file containing the branching 

instruction 

LineLe Number 8 Location of the line in the .le file containing the branching 

instruction 

Note: The values are in hexadecimal form 

 

Figure 3.9: .ldr File Content (Highlight shows fields) 
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.le File 

The .le file contains the extracted assembly listing derived from the .ld file that is utilized for 

visualization as well as analysis. The field is generated concurrently with the .ld file, and is the 

main file that is utilized in the visualization process. 

 

Instructions contained within the .ld file can be broadly classified as either being of a sequential 

or control nature, with the latter branching to a potentially non-consecutive instruction. Usually 

more than 1 sequential instruction follows another. Within the .le file, contiguous sequential 

instructions are reduced to a single line to enable visualization using a lattice structure. 

 

The file compresses the .ld file while storing information that will enable it reference and retrieve 

the full information from the .ld file if necessary. For example, it stores offset addresses that can 

be referenced in the .ld file to retrieve opcode and operand information. It also recalculates 

branching connections within itself as it has compressed the .ld file, and can no longer directly 

use the branching information in the .ld file. 

 

Table 3.10: .le File Format 

Name Type Length Description 

Line String 8 Contains the corresponding line in the .ld file 

Execute Number 2 (Similar to the corresponding .ld field) 

Isa Number 8 (Similar to the corresponding .ld field) 

Level Number 2 (Similar to the corresponding .ld field) 

Line2 String 8 Contains the corresponding branch line in the .ld file 

Offset String 8 Contains the address of the line 

Offset2 String 8 Contains the address of the branch line 

Index2 String 8 Contains the index in the .le file of the branch 

Seq Number 4 Number of constituent instruction sequences 

Flag Number 4 If ‘Execute’ = ‘Sequence’, number of flagged sequences 

If ‘Execute’ = ‘Control’, flag notation 
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Figure 3.10: .le File Content 

 

a. Highlight shows the fields 

 

 

b. Highlight show a runtime dependent instruction hence no linking is possible 

 

.lel File 

The .lel file provides a similar role to the .le file, that the .ldl file provides to the .ld file. 

 

Table 3.11: .lel File Format 

Name Type Length Description 

Index Number 8 Line number (hexadecimal) of instruction located at byte 

offset from start 
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Figure 3.11: .lel File Content 

 

 

.ler File 

The .ler file provides a similar role to the .le file, that the .ldr file provides to the .ld file. 

 

Table 3.12: .ler File Format 

Name Type Length Description 

Offset Number 8 Branch address that needs to be linked 

Index Number 8 Location of line in .le file containing the branch instruction 

Note: the values are in hexadecimal form 

 

Figure 3.12: .ler File Content (Highlight shows fields) 
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3.8 Metaphor 

 

3.8.1 Instruction Set Architecture (ISA) 

A platform’s ISA comprises its assembly language constructs. In general, the instructions can 

broadly be divided into 2 broad categories: 

 Sequential instructions, which will execute the next following instruction. 

 Control instructions, which have the potential to alter the flow of the program. 

 

Figure 3.13: Sequential and Control instructions (example program flow of 10 instructions) 

 

Note: 

 Program consists of 7 sequential type instructions, and 3 control type instructions. 

 Instructions 4 and 7 are of a conditional nature, while instruction 8 is of an unconditional 

nature. 

 The program flow can be determined prior to runtime. For the control type instructions, 

the branching offset is specified in immediate form. 

 

Figure 3.14: Runtime Dependency 

 

Note: 

 Instruction 7 is now runtime dependent, possibly due to the operand of the instruction 

specifying the branching offset in register or memory. 
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3.8.2 ‘Compression’ of the ISA 

A potential optimized representation of a program flow can be generated by combining 

sequential instructions into a single representation and treating them as one unit. Logic flow 

within the unit begins from the start and flows to the end sequentially; there are no deviations. 

 

Control instructions, however, can’t be represented as a single unit due to their potential to 

deviate from the potentially sequential flow. 

 

Figure 3.15: Metaphor representation 

 

Note: 

 The metaphor representation effectively reduces the potential graphical area required to 

represent a program’s flow. 

 

Figure 3.16: Enhance Metaphor representation 

 

Note: 

 The metaphor representation can be extended to both 2D (by adding the Z axis) and 3D 

(by adding the Y axis). 
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 Branching information is now stored within the metaphor representation. This increases 

clarity as the number of branches increases. 

 Each combined sequence instruction and each individual control instruction are now 

referred to as nodes of the metaphor. 

 

Figure 3.17: Display of branching information 

 

a. Branching information for Instruction 8 

 

 

b. Branching information for Instruction 4 

 

Note: 

 Information on the exact branching location when branching into a sequential section is 

displayed by the metaphor textually, when interacting with the metaphor and 

concurrently viewing the disassembly listing. 

 

3.8.3 Folding Instruction Sequences to Sections 

As the quantity of nodes representing instructions increases, the linear growth in the X-axis is 

limited by the available screen space. In order to accommodate this growth, the Z-axis can be 

utilized. However, this requires the specification of a dimension. 
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A dimension refers to the number of nodes that will be displayed on the X-axis. For example, if 

the dimension is set to 10, then the 11th node will wrap around and be displayed at the next 

incremented Z-axis index. The figure below illustrates this folding. 

 

Figure 3.18: Folding Nodes Sequences 

 

 

In order to provide clarity as nodes are combined, the follow formats are defined: 

 The size of a node in both the X-axis and Z-axis is of equal size. 

 When folding a node sequence, the Z-axis leaves spacing equivalent to the size of a node. 

This results in the Z-axis containing half the number of nodes than the X-axis. For 

example, using the figure above, if the dimension is set to 10, then there will be a 

maximum to 10 nodes on the X-axis, and a maximum of 5 rows on the Z-axis. 

 

3.8.4 Building Sections 

Once the maximum number of rows along the Z-axis is reached (based upon the set dimension), 

the resultant collection of nodes is referred to as a section. A single section is represented by a 

different node type differentiated by its colour code. The next node after a section is formed 

becomes the 1st node of the new section. The figure below illustrates this process. 
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Figure 3.19: Section Formation 

 

Note: 

 The initial sequence of 15 nodes forms 2 sections based on a dimension of 4. 

 Nodes within a section are located only along the X-axis and Z-axis. 

 

As the number of sections increase, their layout is ordered along the axes in the following order: 

X-Z-Y. The dimension used when representing sections is defined by the number of sections, 

with the value being the cube-root of the number of sections. 

 

3.8.5 Navigation of Nodes & Sections 

Due to the multi-dimensional nature of the lattice structure, navigations in the various domains is 

possible, and sequentially moving from one node to another is not mandatory. 

 

Movement along the X-axis, with the current input mode set to node navigation, results in either 

a move to the next (forward) or previous (backward) node. Moving forward from the last node in 

a given section results in the 1st node of the next section being highlighted, while moving 

backward from the 1st node in a given section results in the last node of the previous section 

being highlighted. 
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Movement along the Z-axis, with the current input mode set to node navigation, results in either 

a move to the next (forward) or previous (backward) node using an offset equal to the dimension. 

This is equivalent to either an upward or downward movement. The movement may either result 

in the next or previous section being displayed. 

 

Movement along either axis results in the corresponding section of the highlighted node being 

highlighted in the ‘Section’ navigation view. 

 

Movement in the ‘Section’ navigation view resembles the above description of movement in the 

‘Node’ navigation view, with the difference being that when a different ‘Section’ is selected, the 

1st node of that section is the one highlighted. This is because a section represents more than 1 

node. 

 

The figure below illustrates the focus changing from the 5 node to the 9 node via an upward 

movement, which is equivalent to adding the dimension of value 4. 

 

Figure 3.20: Navigation 

 

a. Initial Location 
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b. Location after navigation 

 

Note: 

 Navigation is via either the keyword, which limits movement to either the next, previous, 

up, and down nodes. To quickly navigation to any node, the mouse can be utilized to 

select the desired node. 

 Once a node is selected, information related to it can be displayed via pressing the ‘Enter’ 

key. 

 

3.8.6 Notation 

In order to encode information in the metaphor, colour notations have been utilized. These are 

used to provide intuitive information from visual analysis of the disassembled program. 

 

Figure 3.21: Notation 
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3.9 Constructs 

 

3.9.1 Assembly Language 

Given any executable file, its contents can be converted into an equivalent assembly language 

listing (given a disassembler for the target platform). 

 

The Instruction Set Architecture (ISA) for a given platform describes the assembly language 

programming interface for that given. The available instructions are utilized to generate 

programs either directly or via a higher level programming language. However, at the assembly 

language level, there is usually a one-to-one mapping with the machine code, if macros aren’t 

utilized. 

 

At this level of analysis, the instructions can broadly be classified as either being sequential or 

control. Sequential instructions are executed and the following instruction executed next (Figure 

3.30). Control instructions on the other hand, have the potential to alter the flow of execution 

(Figure 3.31). 

 

Figure 3.22: Sequential Flow 

 

 

Figure 3.23: Control Flow 

 

 

Hence, executable code comprises of different permutations of sequential & branching 

instructions using the available ISA. 
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3.9.2 Code 

In order to ease the programming effort, higher level languages have been introduced, such as 

C/C++. These have also resulted in the introduction higher level constructs used to improve the 

clarity of expression. Examples of these higher level constructs include: 

 Branching statements: if-else, switch-case-break-default 

 Looping statements: do-while, while, for 

These were previous implemented using conditional and unconditional ISA instructions such as 

jle, jg, jmp, etc. Hence, using the reverse process, these construct can be deduced from the 

assembly language due to how they function. 

 

Note: 

 In order to be able to identify the code constructs in disassembled code, compiler 

optimizations need to be turned off, as the optimized compiled code doesn’t enable direct 

identification of the various code constructs described below. 

 The C/C++ programming language is utilized to generate the various code constructs. 

 The Intel ISA is utilized for the disassembled code. 

 The descriptions of the various code constructs will comprise of: 

o A description & illustration of the construct. 

o Code listing in a high level language used to illustrate the construct. 

o Screen shot the disassembled code & its visualization (Section 3.6 discusses the 

visualization methodology). 

 Since additional code is included in the disassembled programs, only the relevant 

disassembled code will be highlighted. 

o Red highlights will indicate the relevant disassembled code. 

o Blue highlights will indicate the relevant code constructs. 

o Green highlights (& none highlights) indicate the stack frame setup. 

 Stack frames are illustrated in the ‘basic program’ section. They occur with function calls 

and involve a setup and cleanup process. The setup process save the current stack pointer 

in addition to allocating memory on the stack for local variables. The cleanup process 

restores the stack pointer. 
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Empty Program 

This section begins by illustrating the disassembled code for a basic program. The program calls 

the entry point function, main, and returns the hexadecimal value 1234. This program will be 

used as a basis for illustrating the various code constructs subsequently covered in this section. 

 

Figure 3.24: Basic Program 

 

 

Code Listing 3.1: Basic Program 

int main() { 

return 0x1234; 

} 

 

Figure 3.25: Diassembly of Basic Program 

 

 

Note: 

 Red highlight shows the disassembled program. Blue highlight show the return value as 

specified in the ‘return 0x1234. Green highlight shows the stack frame setup and cleanup. 

 

Figure 3.26: Visualization of basic program (Illustration of a single sequential node) 
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If-Else 

The ‘if’ section of an ‘if-else’ statement, provides the capability of skipping a section of code if a 

condition is not met. The ‘else’ section provides the capability of executing a sequence of code 

dependent on a condition being met or not. 

 

Consequently, the presence of an ‘if’ statement could be identified by the presence of a 

conditional forward jump to a higher address as well as by an unconditional jump forward to skip 

the else section. 

 

Figure 3.27: if statement 

 

 

Code Listing 3.2: if statement 

int main() { 

 int nCondition = 0; 

 int nValue = 0; 

 

 if (nCondition) 

  nValue = 1; 

 else 

  nValue = 0; 

 

 return 0x1234; 

} 
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Figure 3.28: Disassembly of ‘if’ statement 

 

Note: 

 Red highlight shows the disassembled program. 

 Blue highlight shows the ‘if’ statement. 

o ‘je 00401023’  shows the conditional jump to the ‘else’. 

o ‘jmp 0040102A’ shows the unconditional jump past the end of the ‘if’ statement, 

and is called as the last line of the ‘if’ portion. 

 

Figure 3.29: Visualization of ‘if’ statement 

 (a)  (b) 

Note: 

 Image (a) 

Currently selected node (white highlight) is the ‘if’ clause, which potentially transfers 

control to the ‘else’ code segment (green highlight) thus bypassing the ‘if’ code segment 

(black highlight between white & green highlight). 

 Image (b) 

The selected node (white highlight) is an instruction within the ‘if’ code segment of the 

‘if’ clause that causes the ‘else’ code segment to be bypassed once the ‘if’ code segment 

has completed. It is an unconditional jump to an instruction immediately after the ‘if’ 

statement (green highlight). 
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Switch-Case-Break-Default 

The ‘switch’ section provides the capability of jumping directly to the ‘case’ section, with the 

default being a last option ‘case’. The ‘break’ section enables exiting the switch statement. 

 

Thus unconditional jumps could indicate the presence of a switch statement and associated 

case/default labels. Unconditional forward jumps could indicate break statements. 

 

Figure 3.30: switch statement 

 

 

Code Listing 3.3: switch statement 

int main() { 

 int nCondition = 0; 

 int nValue = 0; 

 

 switch (nCondition) { 

 case 0: 

  nValue = 0; 

  break; 

 case 1: 

  nValue = 1; 

  break; 

 default: 

  nValue = 2; 

 } 
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 return 0x1234; 

} 

 

Figure 3.31: Disassembled ‘switch’ statement 

 

Note: 

 Red highlight shows the disassembled program. 

 Blue highlight shows the ‘switch’ statement. 

o ‘je 00401028, je 00401031’ show the conditional jump to the ‘cases’, while ‘jmp 

0040103A’ shows the unconditional jump to the ‘default’ portion. 

o ‘jmp 00401041’ shows the unconditional jump to after the end of the ‘switch’ 

statement, and are called from the end of each of the ‘cases’. The ‘default’ falls 

through. 

 

Figure 3.32: Visualized ‘switch’ statement 

 (a)  (b)  (c) 

 

Note: 

 Image (a) 

The selected node (white highlight) is the ‘switch’ statement’s check for ‘case 0’, which 

jumps to the body of the ‘case’ statement (green highlight) or falls through to check the 

next ‘case’. 
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 Image (b) 

The selected node (white highlight) is the ‘switch’ statement’s check for ‘case 1’, which 

jumps to the body of the ‘case’ statement (green highlight) or falls through to the check 

of the next ‘case’. The next ‘case’ happens to be the ‘default’. 

 Image (c) 

The selected node (white highlight) is the ‘switch’ statement’s check for the default 

statement, which unconditionally jumps to the body of the ‘default’ statement (green 

highlight). 

 The last 2 nodes are the unconditional jumps at the end of each to the 2 ‘case’ statements 

that are required to bypass the reminder of the ‘switch’ statement. 

 

Do-While Statement 

The ‘do-while’ statements enable a loop to be executed at least once. At the end of the loop, the 

iteration condition is checked and the loop either terminates or continues. 

 

Hence, a conditional backward jump would indicate the possibility of a do statement 

 

Figure 3.33: do statement 

 

 

Code Listing 3.4: do statement 

int main() { 

 int nCondition = 0; 

 int nValue = 0; 

 

 do { 

  nValue++; 

 } while (nCondition); 
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 return 0x1234; 

} 

 

Figure 3.34: Disassembled ‘do’ statement 

 

 

Note: 

 Red highlight shows the disassembled program. 

 Blue highlight shows the ‘do’ statement. 

o ‘jne 00401014’ is the conditional jump back to the beginning of the loop or fall 

through if the loop is to exit. 

 

Figure 3.35: Visualized ‘do’ statement 

 

Note: 

 Currently selected node (white highlight) is the ‘while’ code segment of the ‘do’ 

statement that jumps back to the beginning of the loop (red highlight). 
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While Statement 

A ‘while’ statement provides the feature of enabling a condition to be checked prior to entering a 

loop. If the condition is met then the loop’s statements are executed. Prior to iterating through the 

loop, the condition is checked once again to determine whether the loop can terminate or iterate. 

 

Hence, ‘while’ statements will have 2 conditional jumps; the 1st that checks the condition prior to 

entering the loop, and the 2nd that checks whether the loop is to terminate. The 1st one jumps 

beyond the 2nd hence bypassing the loop, while the 2nd jumps to just after the 1st. 

 

Consequently, a conditional forward jump and/or a conditional backward jump indicate the 

potential presence of a ‘while’ statement. 

 

Figure 3.36: while statement 

 

 

Code Listing 3.5: while statement 

int main() { 

 int nCondition = 0; 

 int nValue = 0; 

 

 while (nCondition) { 

  nValue++; 

 } 

 

 return 0x1234; 

} 
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Figure 3.37: Disassembled ‘while’ statement 

 

Note: 

 Red highlight shows the disassembled program. 

 Blue highlight shows the ‘while’ statement. 

o ‘je 00401025’ is the conditional jump to either bypass the loop or fall through into 

the loop. 

o ‘jmp 00401014’ is the unconditional jump to the beginning of the loop. 

 

Figure 3.38: Visualized ‘while’ statement 

 (a)  (b) 

Note: 

 Image (a) 

The selected node (white highlight) represents the ‘while’ statement that checks whether 

the condition is met or not. In the latter case, the check results in bypassing the ‘while’ 

loop and continuing execution after the end of the loop (green highlight). 

 Image (b) 

The selected node (white highlight) represents the end of the while statement, which 

causes the loop to begin again. Control is passed backwards to the beginning of the loop 

(red highlight). 
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For Statement 

A ‘for’ statement provides the feature of being able to initialize variables prior to entering a loop, 

in addition to specifying how the iteration check changes. 

 

The initialize occurs prior to entering the loop and is performed only once. If the condition is 

met, the loop is entered, while if the condition is not met, the loop is bypassed. Hence, the 

condition checking behaves as a ‘if’ statement, while the loop behaves as a ‘do’ statement. 

 

Figure 3.39: for statement 

 

 

Code Listing 3.6: for statement 

int main() { 

 int nCondition = 0; 

 int nValue = 0; 

 

 for (nCondition = 0; nCondition < 10; nCondition++) { 

  nValue++; 

 } 

 

 return 0x1234; 

} 
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Figure 3.40: Diassembled ‘for’ statement 

 

 

Note: 

 Red highlight shows the disassembled program. 

 Blue highlight shows the ‘for’ statement. 

o ‘jmp 00401026’ is the initialization portion of the ‘for’ statement 

o ‘jge 00401037’ is the conditional jump to either end the loop, or continue from 

the beginning of the loop. It is the condition portion of the ‘for’ statement. 

o ‘jmp 0040101D’ is the unconditional jump to the beginning of the loop. 

 

Figure 3.41: Visualized ‘for’ statement 

 

 (a)   (b)   (c) 

 

Note: 

 Image (a) 

The selected node (white highlight) is an unconditional jump that bypasses the iteration 

portion of the ‘for’ statement that increments the counter by 1. It jumps to a location just 

before the ‘for’ condition is checked (green highlight). 

 Image (b) 

The selected node (white highlight) is the checking of the ‘for’ condition, which can 

potentially exit the loop, to the instruction immediately after the loop (green highlight). 
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 Image (c) 

The selected node (white highlight) is the instruction located at the end of the ‘for’ loop 

that transfers control to the beginning of the loop (red highlight); first incrementing the 

counter, and then checking the condition. 

 

Loop Support Statements: Continue Statement 

Loop statements provide for the use of continue statements. A continue statement cause the loop 

to begin from the start, and thus can be represented with an unconditional jump to the start of the 

loop. 

 

Figure 3.42: continue statement 

 

 

Code Listing 3.7: continue statement 

int main() { 

 int nCondition = 0; 

 int nValue = 0; 

 

 while (nCondition) { 

  nValue++; 

  continue; 

  nValue += 2; 

 } 

 

 return 0x1234; 

} 
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Figure 3.43: Disassembled ‘continue’ statement 

 

Note: 

 Red highlight shows the disassembled program. 

 Blue highlight shows the loop with the ‘continue’ statement. 

o ‘jmp 00401014’ is the unconditional jump to the beginning of the loop. 

 

Figure 3.44: Visualized ‘continue’ statement 

 (a)  (b)  (c) 

Note: 

 Image (a) 

The selected node (white highlight) is the check at the beginning of the loop, which can 

potentially bypass the entire loop to an instruction immediately after the loop (green 

highlight). 

 Image (b) 

The selected node (white highlight) is the ‘continue’ statement that unconditionally 

transfers control back to the beginning of the loop (red highlight). 

 Image (c) 

The selected node (white highlight) is an instruction at the end of the loop that causes the 

loop to iterate by transferring control back to the beginning of the loop (red highlight). 
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Loop Support Statements: Break Statement 

Loop statements provide support for the use of break statements, which cause the loop to exit. 

From the assembly level perspective they can be indicated with an unconditional jump to a 

location after the end of the loop. 

 

Figure 3.45: break statement 

 

 

Code Listing 3.8: break statement 

int main() { 

 int nCondition = 0; 

 int nValue = 0; 

 

 while (nCondition) { 

  nValue++; 

  break; 

  nValue += 2; 

 } 

 

 return 0x1234; 

} 
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Figure 3.46: Diassembled ‘break’ statement 

 

Note: 

 Red highlight shows the disassembled program. 

 Blue highlight shows the loop with a ‘break’ statement. 

o ‘jmp 00401030’ is the unconditional jump to after the end of the loop. 

 

Figure 3.47: Visualize ‘break’ statement 

 (a)  (b)  (c) 

Note: 

 Image (a) 

The selected node (white highlight) is the check at the beginning of the loop, which can 

potentially bypass the loop to an instruction immediately after the loop (green highlight). 

 Image (b) 

The selected node (white highlight) is the ‘break’ statement that exits the loop. It is an 

unconditional jump to an instruction immediately after the loop (green highlight). 

 Image (c) 

The selected node (white highlight) is an instruction at the end of the loop that causes the 

loop to iterate by unconditionally jumping back to the loop condition check (red 

highlight). 
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3.10 Visual 

 

3.10.1 Internal Structure 

The internal visualization-related components are designed in a modular manner to enable 

extension of functionality. They include the following modules: 

 Graphics – deals with the initialization and management of graphic resources & 

components of the system. 

 Effect – deals with how the GPU renders content. 

 Mesh – provides the vertices used to describe objects. 

 Fx – provides the base functionality for the visualizations from which additional 

functionality is implemented by sub classing. The ‘Section’ sub class manages a 

collection of nodes, while the ‘Content’ sub class manages a collection of sections. 

 

The different modules are implemented in layers. 

 

Figure 3.48: Graphics Engine Internal Structure 

 

 

3.10.2 Interaction Flow 

The general flow of the program is illustrated in the Section 3.4.1. 

 

3.10.3 User Interface 

This section describes the various interfaces that are presented from the start of the application to 

visualization & analysis of a loaded executable file. 

 

 

 



 63 

Main Screens (User Interface Stages) 

To simplify interaction, drag-and-drop is utilized in the loading of content. The start screen is 

initially reduced in size to enable files to be dragged and dropped from the desktop. Once files 

are received, the view is then enlarged. 

 

Figure 3.49: Startup screen (used for drag & drop operations) 

 

 

Figure 3.50: Visualization screen (used for visualization & analysis) 

 

 

Content Generation & Loading 

Prior to visualization & analysis, content needs to be generated from the executable file that is 

loaded, if the content has not already been generated. Once generated the content is loaded into 

the application for visualization and subsequently analysis purposes. Below is an illustration of 

the process. 
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Figure 3.51: Content Generation 

 

a. Full screen display 

 

 

b. Focus of relevant area show the steps & progress of the content generation process 

 

Visualization Screen 

Once the content has been loaded into the application, the main visualization screen is displayed 

beginning the actual visualization of the disassembled code. 

 

Figure 3.52: Visualization Screen Layout 

 

a. With analysis section hidden 
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b. With analysis section shown 

 

The various screen areas are described next. 

 

Visualization Layout 

The visualization area is divided into 4 regions, namely 

 Legend – located at the lower left region, provides a quick view of the interface notation 

and commands. 

 Node – initially located at the centre of the view, provides the visualization of the 

disassembled code. This view can be alternated with the ‘Section’ view. 

 Section – initially located to the left of the ‘Node’ section, provides a broad overview of 

the current node location with reference to the entire code being analyzed. This view can 

be alternated with the ‘Node’ view. 

 Analysis – located at the upper right region, provides various tools that can be used to 

provide the textual view of the node’s disassembled code together is notational 

information. In addition, it provides an interface for analyzing the visualized code. 

 

Figure 3.53: Visualization Layout Components 

 

a. Legend View 
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b. Node (right) & Section (left) View; focus on 1st node and 1st section 

 

 

c. Disassembly View 

Note: 

 The offset provides a means of specified an exact offset to navigation to. 

 The displayed buttons provide the following functionality respectively: 

o Synchronize the specified offset with the visualization view when toggled on. If 

the toggle state is off (as currently displayed) the disassembly information 

specified by the offset is only displayed in the list view below the offset edit 

location. 

o Display the instruction just before the top-most displayed instruction in the 

disassembly view listing. 

o Display the instruction just after the bottom-most displayed instruction in the 

disassembly view listing. 

o Clear any notation flags currently assigned to an instruction. 
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 Disassembly listing that displays disassembly information beginning from either the 

currently selected node in the ‘Node’ view or the specified offset. 

 Additional information is provided in the status bars such as the range of potential offset 

addresses. 

 

 

d. Analysis View 

Note: 

 The category provides a means of filtering the type of analysis to perform. Currently, the 

2 categories are either ‘General’ for a non-specific based analysis type, and ‘Code’ for 

code based specific analysis. 

 The displayed button provides a means of clearing the states of selected analyses. 

 The display view below the category provides a means of interacting with the 

visualization by selecting a listed analysis (via double clicking to select or toggle on/off), 

which is then visualized in the visualization area of the ‘Node’ and ‘Section’. 

 

Evolving Design Influencing Final Design 

The design and implementation of the program underwent several iterations. During the reviews 

between the iterations, features were modified due to feedback. Both the visual as well as the 

functionality features were affected. 

 

Below are some screen features that were altered during the development cycle. 
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Figure 3.54: Initial screen layout 

 

Note: 

 Bottom left & right portions eventually dropped from final program, as they did not 

contribute any assistance. However, an enhancement based on sections was incorporated 

by: 

o Aggregating the 2 aspects. It enabled the addition of a legend on the screen. 

o Incorporating a switching feature to toggle the aggregated aspects and the main 

content. 

 Text section enhanced to enable searching. 

 

Figure 3.55: Initial content animation (when traversing different sections of the code) 

 

Note: 

 Animation dropped from final program, as it did not enable intuitive navigation. 
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CHAPTER 4 – RESULTS 

 

4.1 Introduction 

Once an assembly listing has been imported into the application, visualization and data analysis 

can then be performed to gather information about the disassembled executable code. 

 

This chapter is structure as follows: 

 Description of program that will be compiled and then disassembled (Section 4.2). 

 Visualization & Analysis of the disassembled program (Section 4.3). 

 

4.2 Test Program 

 

Code Listing 4.1: Program used for testing 

int Add(int n1, int n2); 

int main() { 

 int nSum = 0; 

 int nCount = 10; 

 int nCondition = 1; 

 int nValue = 0; 

  

 //sums the numbers 1 to 10 

 for (int i = 1; i < 11; i++) 

  nSum += i; 

 

 //adds 2 numbers 

 Add(nSum, 2); 

 

 //loops decrementing count 

 do { 

  nCount--; 

 } while (nCount); 
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 //condition check 

 if (nCondition) { 

  nValue++; 

 } else { 

  //continuous loop 

  while (1) { 

  } 

 } 

 

 return 0x1234; 

} 

int Add(int n1, int n2) { 

 return n1 + n2; 

} 

 

Note: 

 The above program was compiled with optimizations disabled. This was to prevent the 

compiler from modifying the code, which was have resulted in the disassembly code not 

being directly reference with the original source code. Illustration of the mapping 

between the visualization and source code would not be clear. 

 The program was also compiled without debug symbols present. Executable programs 

that are release for public use rarely contain debug symbols as these assist in the process 

of reverse engineering by providing function name hints. 

 Once compiled the program was disassembled. The output is shown in Figure 4.1 below. 
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Figure 4.1: Disassembled test code 
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4.3 Visualization & Analysis 

 

4.3.1 Visualization 

Once loaded into the application, the disassembly results in the following visualization. 

 

Figure 4.2: Test program’s visualization 

 

Note: 

 The dimension is set to 4 (hence 4 nodes along the X-axis and 2 along the Z-axis). 

 There are 3 sections. 

 By default upon startup, the 1st node and section is highlighted (white highlight). 

 

Description 

The visualization of the program illustrated in Figure 4.2 above, shows 4 sequential portions as 

well as 4 control nodes within the 1st section. Below is a summary of the nodes in the order they 

appear (incremented along the X-axis then the next row in the Z-axis), 

 

Table 4.1: 1st 8 nodes; 1st section 

Node Type Description 

1 Sequential All the instructions prior to reaching the ‘for’ loop 

2 Control Beginning of the ‘for’ loop. The control bypasses the ‘for’ iteration code 

(Node 3), and transfers control to the ‘for’ condition, which determines 

whether the ‘for’ body will be entered. It is an unconditional jump to the 

‘for’ condition check at the end of the body of the ‘for’ loop (Node 4) 

3 Sequential The ‘for’ iteration code 
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4 Control The ‘for’ condition check that transfers control by either, 

 Fall through if the condition is met and the ‘for’ body is to be 

entered Node 5 is the body of the ‘for’ loop 

 Bypasses the ‘for’ body if the condition is not met, and transfers 

control to the beginning of the next sequential code (Node 7) that 

is not part of the ‘for’ loop. This is illustrated in Figure 4.3a 

5 Sequential Body of the ‘for’ loop 

6 Control Refers to the unconditional jump to the ‘for’ iteration code located at 

Node 3. This is illustrated in Figure 4.3b 

7 Sequential Refers to the instructions after the ‘for’ loop, in this case the function 

call setup for the ‘Add’ function that passes function arguments and 

prepares the stack frame 

8 Control Calling of the ‘Add’ function 

 

Note: 

 Node 1 are instructions prior to the ‘for’ loop 

 Nodes 2-6 comprise the ‘for’ loop 

 Nodes 7-8 comprise the ‘add’ function 

 

4.3.2 Analysis 

This section discusses the following visualization analyses: 

 Navigation – next location highlighting 

 Potential source locator 

 Loop identification 

o Loops 

o Loops without intermediate branching 

 Mapping 

o Function calls 
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Navigation – Next location highlight 

The visualization interface provides the feature of being able to navigate through a program’s 

code in various forms while providing current location highlight, potential branching location 

highlight, and overall location highlighting. Refer to Table 4.1 for a description of the nodes. 

 

Figure 4.3: Navigation & next location highlighting 

 

a. Next location highlight 

Note: 

 The dimension is set to 4. 

 The selected node (white highlight) is the disassembled ‘jge 00401045’ instruction that 

represents the source code ‘for (int i = 1; i < 11; i++)’ instruction’s condition check, 

which either enters the loop or bypasses the loop if the check fails (either at the 1st check 

or upon loop completion). 

 The potential branch location (green highlight) is the 1st instruction after the ‘for’ loop. It 

is represented by the disassembled ‘push 2’ instruction that represents the parameter 

passing of the source code ‘Add(nSum, 2)’. 

 In the ‘Section’ view, the current section is the 1st (white highlight), implying that the 

current analysis location is found near the start of the program relative to the whole 

program. 

 

 

b. Validating intermediary visualization 
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Note: 

 The selected node (white highlight) is the disassembled ‘jmp 0040102B’ instruction 

located at the end of the ‘for’ that enables the loop to iterate. It returns to a location just 

before the ‘jge 00401045’ instruction in order to increment the counter. 

 

Potential source locator 

Navigation through a program’s flow is usually in a forward direction, i.e. from the current 

location to potential next locations either sequentially or by control branching. However, the 

capability of being able to identify potential areas that could have resulted in a branch to the 

current location is beneficial. 

 

Figure 4.4: Potential source locator 

 

a. Instruction location accessible from 2 different locations 

Note: 

 The dimension is set to 4. 

 The back track feature of the program has been run on the selected node (white highlight) 

located in the 2nd section (white highlight in the ‘Section’ view). 

 The selected node (white highlight), which is the ‘mov edx,1’ instruction at offset 

‘0040106F’ is the beginning of the ‘while’ loop. The instruction moves a ‘1’ to the 

register ‘edx’, which is used to check the condition ‘while(1)’. 

 This instruction location can be reached via to ways as indicated by the 2 yellow 

highlights. 

o The 1st is from within the current section as indicated by the ‘yellow’ node in the 

‘Node’ view. This instruction is the ‘je 0040106F’ at offset ‘00401062’. This is 

the jump of the ‘if’ statement that jumps the ‘if’ portion and goes to the ‘else’ 

portion of the ‘if’ statement. 
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o The focus of the selected ‘Section’ indicated by the white highlight, supersedes its 

other notation of being yellow highlighted, it contains a potential source location. 

 

 

b. 1st location from ‘if’ statement 

 

o The 2nd is from a location in the next ‘Section’ as indicated by the highlighted 

yellow ‘Section’ in the ‘Section’ view, see figure (a). This particular ‘Section’ is 

then selected, indicated by the new ‘white’ highlight and a change in the ‘Node’ 

view (the 1st node in that ‘Section’ is highlighted, which in this case happens to be 

the desired node). 

o The selected node in the ‘Node’ view is a jump to a lower address in a different 

‘Section’. This is illustrated by the red highlight in the ‘Section’ view. This 

instruction is the ‘jmp 0040106F’ instruction that is located at the end of the 

‘while’ loop that transfers control to the beginning of the loop. 

 

 

c. 2nd location from ‘while’ statement 
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Loops – Unconditional Backward Jump 

Loops can be identified by a backward transfer of control. In the analysis of code, it may be 

useful to identify potential loops in the program, for example to determine a program’s 

complexity or runtime implications for performance analysis. 

 

Figure 4.5: Loops 

 

a. Setting the analysis parameter 

Note: 

 In the ‘Analysis’ view the ‘Code’ category is selected, and the ‘Loop (Jump Backward)’ 

item selected by double-clicking. 

 The ‘Run’ command is executed to run through the disassembled code to generate 

information. 

 

 

b. 2 loops have been identified 
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Note: 

 The dimension is set to 10; consequently the number of sections based on this dimension 

is 1, as illustrated by the single white-highlighted ‘section’ at the top left. 

 2 loops have been identified (yellow highlights), which represent the ‘do’ and ‘while’ 

statements. 

 The white-highlighted ‘sequential node’ is the default selected node at the start of the 

nodes; upon loading a visualization or selecting a ‘section’ the default selected node is 

always the 1st in the program (also if 1st ‘section’ is selected) or the 1st node in a given 

‘section’ if the subsequent ‘sections’ are selected. 

 The 1st yellow-highlighted node, the 6th node from the start of the program, is the 

unconditional backward jump to the ‘for’ iteration code. It is the jump located at 

‘0x00401043’ jumping backward to the location ‘0x0040102B’, which is the code that 

increments the loop condition by a value of 1 (location 0x0040102E). 

 The 2nd yellow-highlighted node, the 17th node from the start of the program (2nd last 

node), is the unconditional jump at the end of the ‘while’ loop that transfers control back 

to the start of the loop to check the loop condition in order to determine whether to enter 

the loop again or not. It is the instruction at location ‘0x00401078’, which transfers 

control back to the loop condition at location ‘0x0040106F’. The instruction at location 

‘0x00401076’ that provides the option to exit the loop is present since optimization was 

disabled; the compiler includes the instruction since the while condition check results in a 

value that needs to be checked regardless of whether it changes or not. An optimizing 

compiler would notice that the loop condition is an immediate value that is known at 

compile time. 

 

Loops without intermediate control instruction 

In some cases, a perpetual loop may be created. For example, a program’s main loop 

continuously runs until explicitly it is either terminated by the program or by the user. 

Identification of such loops may be required in order to identify loops that could run indefinitely, 

either by intentional or accidental design. 
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Figure 4.6: Potential endless loop 

 

a. Setting the analysis parameter 

Note: 

 In the ‘Category’ drop down, the ‘Code’ option is selected, and the ‘Immediate Loop 

(Jump Backward) item selected by double clicking it. 

 The ‘Run’ command is executed to analyze the program. 

 

 

b. 1 potential endless loop identified 

 

Note: 

 The dimension is set to 10 resulting in the number of ‘section’ being 1 (indicated by the 

single white-highlighted ‘section’ at the top left. 

 1 potential item (yellow highlight) has been identified. It is the ‘do’ statement. This 

statement has been implemented without a potential exit in the form of a branching out of 

the loop. 

 The yellow-highlighted node (10th node) refers to the instruction located at ‘0x0040105C’ 

that transfers control back to the beginning of the loop at location ‘0x00401053’; 

involves decrementing the loop condition variable. 
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 Between the beginning of the loop and the check at the end of the loop there are no 

intermediate ways in which the loop can exit. The loop condition is the only way of 

potentially exiting the loop. 

 Though this is a functionality of the program, it indicates a potential loop that may loop 

more than intended dependent on the value passed to the loop condition variable. Hence 

by highlight such loops extra attention could be place to determine whether the loop exit. 

 

Mapping – Function Calls 

Program functionality is usually implemented in functions for modular design. Identification of 

these functions helps to narrow down areas of analysis. They also indicate a location where local 

variables will be defined. 

 

Figure 4.7: Function call mapping 

 

a. Setting the analysis parameter 

Note: 

 In the ‘Analysis’ view, select the ‘Flag’ tab. In the ‘Category’ drop down, select the 

‘Code’ item. Select the ‘Frame Pointer’ item by double clicking on it. 

 Generate the program information by executing the ‘Run’ command. 

 

 

b. Identified functions 
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Note: 

 2 stack frame pointer instructions are identified indicated by the yellow highlights. These 

refer to the 2 functions within the program, i.e. the ‘main’ function, which provides the 

program’s entry point, and the ‘Add’ function. 

 The 1st yellow highlight (1st node), refers to the program’s initial stack frame generated 

by the ‘main’ function. It refers to the instructions beginning at the location 

‘0x00401000’. 

 The 2nd yellow highlight (last node), refers to the ‘Add’ function’s stack frame. The 

function is placed at the end of the program, and begins at the location’0x00401090’. 

 Identification of stack frames provides an insight into how a program’s functionality is 

implemented as well as how the program flows. This is because functionality is usually 

implemented in modules. 
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CHAPTER 5 - CONCLUSION 

 

5.1 Introduction 

As visual processing capability increases with advances in processing speeds of both the Central 

Processing Unit (CPU) and Graphics Processing Unit (GPU), the visual analysis of information 

is increasingly possible to greater extents. Software visualization benefits from these advances. 

 

This research explored a lattice-based metaphor for software visualization and analysis of an 

executable’s disassembled code. The feasibility of the lattice structure for both tasks was 

implemented and illustrated. The metaphor design was based on the abstraction of a processor’s 

Instruction Set Architecture (ISA). Various basic code constructs that form building blocks for 

programs were derived from basic program flow, and then visualized and analyzed. A test 

program was then implemented in a high level language (C/C++), disassembled, visualized, and 

analyzed, with the goal of extracting potentially useful information. 

 

An additional outcome of the research effort resulted in a potential process/methodology that 

could be used in the design of new software visualization metaphors. This involved the sequence 

of abstraction of the underlying software aspects to be visualized, generation of the basic 

building blocks that are extendable to software built using the basic constructs, notation 

development, and finally design of an interaction mechanism. 

 

The test results illustrated that the proposed metaphor provided a means of visually interacting 

with disassembled code to both obtain a better insight as well as extract potentially useful 

information for further analysis. 

 

5.2 Achievements 

 

Problem Identification 

The quantity of executable code (without access to the original source code) that needs to be 

analyzed is increasing as new functionality is required and implemented. Furthermore, the time 

frames needed for analyzing the software is decreasing. This results in a need for new methods 
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of analyzing and extracting potentially useful information. Visualization provides one 

alternative. However, the metaphors that are usually utilized are borrowed from information 

visualization and hence may not be ideally suited for software visualization in which code 

aspects rather than numerical data needs to be analyzed. 

 

With the increasing capability of both CPUs and GPUs, previously resource intensive graphic 

visualization is now possible. This enables more use of a system’s graphical capability to enable 

use of 3D graphics for visualization, resulting in an increased spatial space for analysis, in 

addition to the use of 3D metaphors to enhance analysis of information. 

 

Access to a program’s source code is not always available as publishers usually retain it, but 

release the executable code. However, with disassemblers for a target’s platform, the executable 

code can be converted to its equivalent assembly code with a one-to-one mapping. Hence by 

obtaining both an executable and its platform’s disassembler, any program can be potentially 

analyzed. 

 

The research project focused on the design and implementation of a 3D metaphor for 

visualization of binary code to enhance this capability. 

 

Literature Review & Scope Identification 

Visualization of information involves mapping of information aspects to visualization 

metaphors. In scientific computing, the metaphors are already predefined due to the structured 

nature of the information they represent. However, in information visualization, the information 

being represented is abstract in nature with no predefined structure. Software visualization 

usually utilizes information visualization metaphors, which are not always suitable. Software 

though abstract in nature, inherently has a structure. 

 

The literature reviewed indicated a high reliance on information visualization metaphors. The 

research project proposed that software visualization would involve a hybrid of both scientific as 

well as information visualization. Hence it attempted to map the inbuilt structure of binary code 

to a predetermined structure based on a lattice. 
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Methodology 

Software comprises of a collection of instructions based on a processor’s ISA, regardless of the 

implementation language. These instructions can be grouped into constructs that form building 

blocks for programs. Examples include branching constructs, loop constructs, function calling 

constructs. 

 

The ISA instructions were broadly categorized as either sequential or control type. The former 

resulted in the next instruction being executed. With the latter, the subsequent instruction to be 

executed was an option of 2 possible instructions based on the result of the control check. These 

2 categories resulted in the generation of 2 models that mapped directly to the lattice structure, 

making it feasible for software visualization. This was in the form of nodes (for control type) of 

the lattices as well as the spaces/links (for sequential type) within. 

 

Based on this, a whole program could be concisely represented using a lattice structure, with 

additional functionality being built on top of the lattice metaphor. 

 

Furthermore, the process used in the research project can be generalized, and is not only 

applicable to the current study or to a specific technology. The concepts are abstracted to enable 

use in related fields of research. 

 

Results 

Once implemented, the lattice metaphor was utilized to view a test program in order to determine 

whether the visualized representation mapped the known program’s source code. This involved 

implementing specific constructs and functions, compiling the source, disassembling the 

generated program, and importing the disassembly listing into the visualization program. 

 

The visualization was then analyzed to determine whether the implemented functionality could 

be identified as well as whether queries could be run to generate information that could be 

confirmed by the availability of the source code. Success of this process would then be 

extendable to any program regardless of the availability of its source code. 
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The visualization was tested with varied programs of different sizes in order to determine the 

scalability of the visualization. This was essential as program functionality increases as new 

functionality is implemented. 

 

5.3 Findings – Review of Research Objective 

The objectives of the research project were to design and develop a 3D visualization application 

for binary code analysis that utilizes a 3D lattice-based metaphor to represent the binary code. 

 

The research project implemented the 3D metaphor within a 3D environment that was capable of 

visualizing an application for which there was the platform’s corresponding disassembler. The 

disassembler however needed to generate the disassembly listing in a specified format required 

for importing of the assembly code into the visualization program. However, with a customize 

parse program, any disassembler’s output can be converted into the appropriate format. 

 

The 1st objective was achieved by implementing a 3D environment that enabled the X, Y, and Z 

dimensions to be visually perceived. The 2nd objective was achieved by mapping the extracted 

sequential and control instructions onto a lattice structure that utilized the X, Y, and Z 

dimensions. The 3D metaphor was then placed into the 3D environment within with interaction 

was possible. 

 

5.4 Contributions – Addressing of Perceived Gaps 

 

Theoretical 

The research project presented the feasibility of a lattice-based metaphor built from an ISA. The 

metaphor provided a concise and scalable means of visualizing and analyzing programs in 

assembly code. The results indicate that software visualization is a hybrid of both scientific and 

information visualization as software though abstract has an inherent structure. Consequently, 

metaphors that provide structure could be adapted for software visualization rather than relying 

on information visualization metaphors exclusively. 
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Methodology 

A potential process for designing novel or adapting existing metaphors specifically for software 

visualization is presented. The steps presented could be utilized in the design of other 

visualization metaphors. 

 

Practical 

The research project resulted in an application that can be utilized to visualize and analyze 

assembly code, and hence indirectly any program. The scalability feature enables programs of 

any size to be visualized and analyzed. Furthermore, due to the structuring of the imported 

disassembled content, various analyses not currently included can be incorporated into the 

application enhancing its usefulness. 

 

The metaphor provides a means of reducing cognitive overload by providing a means of 

abstracting and providing a synopsis of a program in a visual manner. Drill down capability 

enables obtaining greater detail in a specific section of the visualization. Cognitive Dimensions 

are utilized to enhance the metaphor. For example, diffuseness (notation space required to 

provide meaning) is utilized to provide an overall view of a program, while secondary notation is 

embedded within the metaphor. 

 

3D environments provide a feasible interaction mechanism for dealing with large quantities of 

information. Limits exist on how much fonts can be reduced to increase the amount of textual 

information displayed. Screen resolutions/sizes and use of multiple monitors is limited. 

 

With the minimal use of the keyboard in interacting with the metaphor, relying more on the 

mouse, 3D visualizations and analyses can be extended to touch screen computing devices whose 

processing capability is increasing, both the CPU and GPU. This creates new uses for touch 

devices. 
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5.5 Evaluation 

 

Does the study make significant value add contribution to current thinking? 

Building on the surveyed literature, common concepts are extracted which indicate common 

practices in the visualization field and its associated research. Potential gaps which could be 

addresses and/or improved are identified. The literature covered various aspects of software 

visualization focusing on different levels of software, different stages of software development, 

and different uses of software metrics. 

 

Based on the survey, a perceived gap was identified with the type of visualization metaphors 

used (mostly from information visualization), minimal focus on fully exploiting 3D natively 

(mostly focused on 3D metaphors in a 2D environment), and focus on source code level metrics 

(rather than binary code level). 

 

Will the study change the practice if implemented in the area? 

The need to be able to understand large quantities of information in shorter time frames is 

becoming essential especially in software analysis. This is due to the critical role technology 

plays in modern processes. With the increasing capability of computing devices, and their 

ubiquity, research is being undertaken in the field of software visualization to find viable ways of 

using the concepts in the field to achieve this goal. The need for software visualization and 

associated analyses is bound to increase especially as software is increasingly being used for 

malevolent purposes. 

 

Are the underlying logical answers & supporting evidence compelling? 

The results of the application of software metaphors in visualization and analysis of binary code 

provide an intuitive way of interacting with software. The movement from textual representation 

that is read to visual representation that engages during interaction increases the use of additional 

cognitive faculties. For example, when drilling in and out of content, a mental picture is 

formulated as compared to scrolling through text in a sequential manner. Hence by 

demonstrating the feasibility of a software metaphor, this potential is illustrated, and with 

refinement would provide a new means of interacting with software. 
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How well does the research convey completeness and thoroughness? 

Metaphors represent underlying aspects. In the research, the lattice metaphor represented the 

underlying binary code. Using an ISA, the basic building blocks are identified. These are 

combined together to constitute larger programs. By identifying these basic building blocks, 

comprising of sequential blocks, branching & looping constructs, these are exhaustively and 

comprehensively described, visualized, and analyzed prior to using them to visualize and analyze 

larger and more complex programs. 

 

Is the thesis well written and flow logically? 

The research project begins by outlining the current state of information growth, both from the 

data and code perspectives. It outlines the need to be able to analyze the growing quantity of 

information in shorter time frames. Visualization provides a tool to achieve this. By 

incorporating the use of visualization in code analysis, the need for metaphors arises. A 3D 

environment enhances a metaphor’s capability and consequently the visualization and analysis 

capability. 

 

On this basis, a research problem area is identified. Literature review indicated the viability of 

software visualization as supported by the various metaphors that have been used in the field. 

Potential gaps are identified and form the viability of the research. A system is designed taking 

into account various aspects of design such as conceptual, requirements, data, content, import 

format, visualization, and constructs. These are used to guide the system development. 

 

Why now? Is the topic of interest to other practitioners in the area? 

Software now plays a critical role in modern infrastructure by running processes that manipulate 

information. As computing devices become more capable, new features and functionality is 

being implemented. This results in an increase in the code base. The need to analyze these 

processes (code) in shorter time frames is becoming essential. Consequently, research is being 

carried out in the field of visualization, both scientific and information, in order to use the 

benefits and capabilities to address growing information analysis needs. 
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Who else including academic readers are interested in the topic? 

Various software domains require the ability to analyze binary code directly due to the 

unavailability of a program’s source code. These include software engineers who are maintaining 

or integrating software, antivirus engineers who need to understand malware in order to update 

detection signatures, or security engineers would use visualization to identify vulnerabilities. 

Hence, beyond the theoretical aspects there are practical areas of use. 

 

5.6 Recommendations 

Various areas of potential enhancements exist. 

 

Currently, the metaphor relies on only 2 node models – for sequential and control type 

instructions. However, control instructions can further be categorized, for example into jumps 

and calls. Different models could be utilized to visually encode these sub categories, which 

would enhance visual perception and intuitiveness. 

 

GPU features such as lighting could be improved to enhance the visualization environment and 

metaphor. This would increase the visual fidelity encouraging adoption and use. Since the 

features are native to the GPU, analysis performance would not be affected. 

 

Drag and drop functionality for interacting with code segments could be implemented. This 

would provide the capability of manipulating the lattice structure enabling new levels of visual 

interaction and program manipulation. 

 

5.7 Summary 

This research project began with the concept of visualizing binary code due to its role in 

processing of information and the ready availability of programs in executable format. The 

developed lattice-based metaphor provided a concise visual metaphor for interacting and 

analyzing the equivalent disassembled code demonstrating the feasibility in 3D. 

 

As computing devices increase in processing capability, 3D visualization provides an alternative 

to textual analysis of large quantities of information, which includes binary code. 
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APPENDIX A – DEVELOPMENT PLAFORM 

 

System Build Features: 

 Intel 32/64 bit processor 

 Windows Operating System supporting DirectX 10.1 and above 

 Visual Studio 2008 Professional Edition 

 Graphics Processing Unit supporting DirectX 10.1 and above 

 

Support Tools 

 Dumpbin – provided with Visual Studio development tool 

 Link – provided with Visual Studio development tool 
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APPENDIX B – USER MANUAL 

 

Visualization Keyboard Commands 

 

Table B.1: Keyboard Commands 

Key Description 

Views  

F1 Toggle ‘legend’ view 

F2 Display/Hide ‘analysis’ view 

F3 Switch ‘node’ and ‘section’ views 

Q Quit visualization (stops the current visualization) 

S Sets focus to the ‘node’ view for navigation 

C Sets focus to the ‘section’ view for navigation 

(arrow keys) Navigates the ‘node’ / ‘section’ views dependent on current mode 

(enter key) Displays a node’s related information 

(left click) Selects node 

Visual  

X Rotates the node/section view 

R Resets the node/section view to default rotation 

I / O Zooms in / out on section view 

Information  

F5 Run through disassembled code to generate information 

P Pauses/Resumes run through disassembled code 

L Displays branching information with the current section 

+Shift – Displays branching information outside the current section 

+Ctrl – Clears branching information 

B Displays potential source locations for the current node 

T Simulates a run through the code 

+Ctrl – Clears the run through simulation 

N Displays selected flagged notation 
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APPENDIX C – USABILITY TESTING 

 

Questionnaire 

 

Question (Tick in one of the boxes) Poor Okay Good 

1. Initial impression of application    

2. Ease of navigation through the code    

3. Ease of use of the application    

4. Ease of generating beneficial information    

5. Value of analysis features    

6. Insight into the visualized program    

 

 

Question (Tick in one of the boxes) No Yes 

7. Would you use it   

8. Have you used a similar program before   

9. Would you recommend it to someone   

 

 

10. Comments on the program: 

 

 

 


