- mal

UNIVERSITY OF NAIROBI
SCHOOL OF COMPUTING AND INFORMATICS

MULTI-AGENTS SYSTEM BASED SOFTWARE ERROR IDENTIFICATION,
REPORTING AND FIXING

BY

KENNEDY KIPKEMOI KIRUI

PROJECT REPORT SUBMISSION FOR THE PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER
SCIENCE

AUGUST 2013

DECLARATION

This project as presented in this report is myinagwork and has not been presented for any
other institutional award.

Sign: Date:

Kennedy Kipkemoi Kirui

P58/63885/2011

This project has been submitted in partial fulféim of the requirements for the degree of
Masters of Science in Computer Science at the Wsityeof Nairobi with my approval as the

university supervisor.

Sign: Date:

Dr. Elisha T. Opiyo Omulo
School of Computing and Informatics

University of Nairobi

ABSTRACT

Software systems are being used in various sectdise economy. Software is never perfect
and would always have a defect that need to beegassthe developers to be investigated
and then fixed. A numbers of software vendors hagerporated a feature in their software
that automatically generates an error report andssé to the developers. This is not the case
for majority of other software that relies solely the users to report the error. This poses a
great challenge on the functionality of the syseasrsome of errors are never reported, while
others are reported with incomplete informationthis study, we designed a prototype for a
multi agents-based error identification and repgrsystem that automatically identify errors
as they occur on a software and reports them. Ai-agent architecture is presented,
involving a team of agents that identify and reptive errors. Furthermore the agents
automatically download fixes that are already aldé, and apply them. We tested the system
with a number of known errors and all the errorseneported successfully. Further we tested
the error fixing component with a number of fixeslall of them were applied successfully.
We did an online survey to evaluate the user resptém the system and the expected impact
of the system to an organization. The data showatl the positive impacts outweigh the

negative and the user response was good.

ACKNOWLEDGEMENTS
| would like express my sincere gratitude to thenlghty God for thus far he has helped me.

Secondly, a special gratitude goes to my superviBor Elisha Opiyo for his invaluable
support and guidance in this study. | also apptedihe entire panelists for their comments,
advices and support that helped in improving myjgmto Last but not least, much

appreciation goes to my family, for their unyielgisupport and encouragement during this
project.

TABLE OF CONTENTS

DECLARATION. ...ttt £ 11 e 4 e 2444444 s e e e e e e e e e e e e e e e e e e e neeeeas 1
A B ST R A T e oottt et oo et ettt b oot e et ettt b e h et e e et e eebbh e e e e e e aebb e aaaaas 2
ACKNOWLEDGEMENTS ... et 3
LIST OF FIGURES ...t ettt e e e et et bema b e e e e e e e ee bbb e e e e e e e eeebbaa s 7
LIST OF TABLESot e e e e e e e e e e e e e eas 8
CHAPTER 1: INTRODUGCTION.ccittttttttiittittmmmmmeeeeeeeeteeeteeteeeeeeseeesassssssssesssbeeeeeeeeseeteeeeeeeeeeeeeeees 9
I = Tod (o (o 11 o 9
1.2 ProbIem STATEIMENTooiiiiiiii it e e 9
1.3. GOal OF the StUAY ...ttt e e e e e e eeeeeaeeseeeesnenenennnnennnes 10
@] 1= 1Y 10
IO U3 () Tor=1 o) o o) 1 1= K] (0 [| 10
1.6 Expected contributions of the StUAYccoee oo, 10
1.7 Assumptions and lIMitationscoooeeiiii i 11
CHAPTER 2: LITEREATURE REVIEWooiiiiiiiiiiiiiei ettt 12
B RV WA 1= a1 B3V A=3 (=] o R 12
PN N R g = To =T o | PSPPI 12
N A Y W= To =T] A=) V] (= 12
2.1.3 Characteristics of Multi-agent SYSIEMS......c..uuuuiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeenenes 12
2.1.4 Srengths Of MAS ... e 13
2.1.5 Communication and COONTINALIONccccem oot eeerr e e 13
B Ao 1= | o8 0] 1 31 15
2. 2.0 JADE .. ——— et e e e e e e e e et e e e b a e e e eee b aas 15
2.2.2 INET fraMEWOIK.....ciiuiiiiiiiiiiiie sttt ettt eanr e e st e e s s e e s e e e e s 16
2.3 Agent Development methodolOgIiesccooveviiiiiiiieeeeee e 17
2.3.1 GAIA MEthOUOIOGY........ceiiiiiiiiiiee et mmeee et e e e e e e e e e e 17
2.3.2 Prometheus MethOdOIOgYuuuuuiiiiieei e 17
2.3.3 MESSAGE MEethOdOIOgYccceiiiiiimmmeeeiiee et e e 17
2.3.4 Multi-agent System Engineering Methodologya@®¥E)cccoeeeeeeeiiieiieieii oo, 18
2.4 Bug identification and REPOITINGcemmmmereiiiiiiiiiiiieiiei e e e e e e e e 18
2.4. 1 BUQS OVEIVIEW ...uevviiireieineistsstesaesaaeeeseeeseeeseeesssessassssessssssssssssssaneaeeeeeeeeeeterereresesessereeeens 18
2.4.2 Error ideNntifICALIONoeiiiiiiiscmmme et e e e e e 20
W2 G =YW o I (= g o I =] o Lo 11T 21

2. 4.4 File SNANG c..eeeeeeiiiiie et eeeeee ettt et mne e ettt et e eeeeseeeesnnnnnnnnnrnnnnes 23

A =10 o 1 = Vo] (] o PP 26
2.5.1 BUQ traCKing SYSLEIMciiiiiiiii ettt emmeeeeeeeeeeeeseeessnennnnnnnnes 26
2.5.2 Components of a bug tracking SYSteM......ccceiiiiiiiiiiiiiieee e, 26
2.5.3 Examples of bug tracking SYSIEIMS ... 27

2.6 Fix deployment tEChNOIOGIES............ e e e eeeeeee ettt e e e e e e e e e e 28

2.7 REIAIEA WOTK ...t ettt e et e e e e e e s e e e e e e e e e e 28
2.7.1 RedGate Automated Error Reporting SYSteIM..........covvvvviiiivieeiieeiiieriieeviiieeeeeeeeeeeeeens 28
2.7.2 Other automated error reporting t00IS .cceeee oo 29
2.7.3 Gaps and limitations of the SOIUtIONS cooee oo 30

2.8 PropoSed @rChitECLUIEccce e 31

CHAPTER 3: METHODOLOGYuiiiiiiieiiiit sttt e e e et eatbbaa e e e e e e e eaneemnseaaaaeeaaeeeannnnns 33

3.1 SYSLEIM DESIGN ..t ————————————————————————— 33
.11 OVEBIVIBW ..tttieeieeee e et ettt 44444ttt e e e 4444 m R e e e e e e e e et e e e e e e e e e nnnnnnn e 33
3.1.2 ANAIYSIS PRASEcoiiiiiiieee e et —————— 33
3. 1.3 DESIGN PRASE....eeeeeieiieeeii ittt e e e e 33
o T I o T ES3 =T [PP 34
3.1.5 Justification of MaSE Methodologycccoooeiiiiiiiii e, 34
3.1.6 Limitations of MASE mMethodolOogycccee.eiiiiiiiiiiiiiiiiiie e 34

3.2 Research Methodology and deSIgN..........uceeiiiii e 35
32,1 OVEIVIBW ...ettieeieeee e e ettt ettt 4444444ttt e e e 4444 e m R e e e e e e e e b e e e e e e e e e e e e nnnnnnnees 35
3.2.2 DALA SOUICESoiiiiiiiieiiiiiiiiiirre ettt e e e e e e s e e e e e e e e e e e e e e e e s aennree s 35
3.2.3 Data COIlECtION PrOCEUUIE ottt e e e et e e e e e rmnne e e e e e e eaaeeas 35
T R T = W=V =11 1 T 36

CHAPTER 4: SYSTEM ANALYSIS AND DESIGNccotuiaammiiiiiiei e 37

4.1 SYStem SPECITICALION........ueei e e e e e 37
4. 1.1 OVEIVIEW .ttt e ettt 4444ttt 4 4kt 444kttt e 4o e e e bt e e e ek e e e e e e e e e e s e as 37
4.1.2 INPULS @NA OULPULSooiiiiieeee ettt s s e e eeeeeensenneennnennnes 37
4.1.3 Data MaNAGEIMENT ...uuuuu i e eeeeeeete o e eeeeesaaaseeeeeeeasss s seeeeeeesstnnanassseeeeeeesssssnnseeeeeenes 37
4.1.4 SYSEEIM FAIUIE ...t e e et e e e e e e 38

A (=] = L = 1] 38
4.2.11dentifyiNg QOAISccoiiii et 38
4.2.2 APPIYING USE CASESceeeiiieeiieees e sevetattaaatssataaaassa e eaansssseeanssnnssnnnsnnnnnnnns 40
4.2.3 REFINING FOIES ... sttt memmme e e eeeeseessssessennnnnnnnnnnnes 41

G T2 1= . I 9= T o 43
e B [1Y o 1= T | o 44

4.3.3 Create agent CIASSESc.uuiiiieeeeeeare e e ettt e e e e e e e e e e e e e e e e e 48

4.3.4 Constructing CONVEISALIONScceeiiieiiiiiiiieieieeeeeeeeieeereeseressree s rrrrereereeeeeeeeeeeeeaeeseees 49
4.3.5 Creating @ SEQUENCE QIAGIAM ... iocmmeitire et e e e e e st e e e ee e e e e e e e e 51
4.3.6 ASSEMDIING AQENTS......coiiiiiiieee e 52
4.3.7 Instantiating the AgENTScooi e 53
VARG TR R = =Y o = o= T [o | o 54
CHAPTER 5: SYSTEM IMPLEMENTATION AND TESTINGccoiiiiiiiiiiei e 58
5.1 SYStem deVEIOPMENL..........oiiiiiiiiiieiieeeeeee ettt veee e eb s enaeesessessessssessssssssssnnnnnnnes 58
LA o] o Vo 1 1] = 1o) o P 59
5.3 Testing and EXPerimentation...........oco oot 59
5.3.1 Testing system for screen and event logssidentification and reporting 59
5.3.2 Testing system for internet dOWNTIME . oo 67
5.3.3 Testing system With NON EITOrS.......ccceee i, 67
5.3.4 Testing system for correctness screen eFROICAPLUred...........cccevvvviieeieeeeiiiiciiieeeeeenn 67
5.3.5 Testing for Efficiency and aCCUraCycueeeeeiiieiiiiiiiiie e, 67
5.3.6 System testing for user acceptabilityccooiiiiiiiiii e 68
TR T A I =TS 1 o TR0 g = U YR 68
CHAPTER 6: EVALUATION AND RESULTSuutttttimmreeeeeeeeeeeiieeeeeeeiiesnirsnieennreesseeieeeeeeeeeeee 70
6.1 OVEBIVIBWeeeeeeeeeeee ettt emmmm ettt et e e oo oo ettt e e e e e 44 e amm e R e nnnnnnne e s 70
6.2 RESUILS @Nd QISCUSSIONuviiieiiieeeeeme sttt ettt ettt ssn e e e st e e e st e e e e s b e e ena 70
6.3 SUIMIMAIY ..ot e et e e et e e et e e et e et e e e et e e et e e e e e e e e eeeees 74
CHAPTER 7: CONCLUSION AND RECOMMENDATIONSccceiiiiiiiiiieeeee 75
REFERENGCES ...ttt e ettt e e e e e e e ee e et e bb e e e e e e e eebbaa e e eaaaeennens 77
AP P END DX e e oo ettt et e e e e 82
Appendix 1: ONliNe SUNVEY TOIM ...ttt e e e e e e e e e e e e e e e e e eeeeeeeeeeees 82
Appendix 2: Data collected from the SUINVEY ..eeeeee.eeeeeiiiiiieee e 83
AppeNndix 3: SAMPIE COUE.........ccooi it ar e b e e e s eeenneannesnnnsnnnnnnns 84
ApPPENdix 4: ProjeCt SCREUUIEui ettt e e 88
WY o] oL gl [D Qo o o [T A =W o o = AP 88
Appendix 6: HOW tO ruN the SYSTEMi e e e e e e 88

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:

AQENL IN ItS BNVIFONMENL. ..ottt sre s e sae e e 12
Simple Structure Of KQML.......cooiiirieieieereseseee et 14
COoNtract NEt ProtOCOL......coveieieiirerireee ettt st 15
Jade ArCRITECTULE.ceiiieeee ettt et eae s 16
How to get a public link from a file imabboX.........ccccovirieiii e 25
Sugar SYNC file MANAQGEL.......c.ccvceeieiceeeee et st s re e reseae s 26
How error is reported for Red Gate’s S&gurce Control.........cccceeveeveveeeeceseseesieenee, 29
Stack trace of Red Gate’s Error reporSSLeML.........ccoveveruerieererenrerieeeeese e 29
A diagrammatic representation of the peg architecture...........cccceeveieveviceeienene. 31

Goal hierarChy diagram..........ccceeeeiiieeeeceeeeese et aesree s 40
LU LY o= LTI o [F= o | = F S 41
(Yo LY [oTa F=T I = To =1 1 TSR 42
Concurrent model diagram..........c.oceveeeereneeeee et sre et sb e re e e 42
OVErall ArCITECIULE.......coiieeeeeeeeee et ettt sttt eneenee s 43
Overall flow Of the SYSIEML......ocuieeeeeeee et 44
Screen error identification flow diagram............ccccceveeeeeenecececceeee e 45
Event logs error identification flow gram............cccocoveveniiininnce e 46
Error reporting flow diagram..........cccoveiieieiieeee e 47
Error fixing flOw diagraml..........c.covvveieiiceceeee e 48
Agent ClasSeS IAgraM........ccooeeieiireeeeeeeee ettt ee e e 49
Communication diagram for error ideniion.............ccceveveecievicicerceeece e, 50
Communication diagram for error reP@LLN..........cccoeeeeeerereeienene e 50
Communication diagram for error fiXiNG.........ceeeeeerireererenierese et 51
Communication diagram for progress @Bpl.........ccccvevveviereeieriesieceeresee e 51
SEQUENCE AIAGIAM.....cuiiinieiieiirtiete ettt ettt st ettt sb et ee st sae b s e eae e 52
LYo 1] 1A= T el a1 =T od 11 1= 53
[D1=T 0] 0]V 00 l=T 0 ae IT= Vo =1 o o TSRS 54
Database SHIUCIUIE...........oeueeiieeeeree ettt ettt st e e e saesae e eneeneenes 55
Download errors flow diagram..........ccooeeieiiiieeeeeee e 56
Upload fixes fIOW diagram..........ccoeeeiiriieeeeeceee et 57
Main screen for starting mobile agenLS...........cccovvirireiiininnee e 60
Screen shot showing agents moving tth@nN@OMPULEL...........cceeererererieereneneneene 60
Screen shot showing agents moving IMONM@PULE.............cceeeereeeeriereeeeree e 61
An example of an error occurring on [QECEYSIEM.......cccovieeerereeee e 61
Details of the error occurring in IQCEAWSIEM.........ccoveverierieieeeereeeeeeee e 62
Progress Displayer agent showing tHesta various errors.........ccocceeeveeceeeeeeevennenn, 62
An application running at the develop@naching............ccoceecevireeeeniineecereeeee e, 63
Process of uploading a fix by the dguelo...........cccooerieiriee e 64
Figure showing the average score foptsitive impact questions............cceceeevevveneene. 71
Average score for the negative ImMpaesans..........ccoeveveieirinenescee e 71
Comparison of the positive and the N@GAMPACES............ccceceeererercnerieereeseeeee 72
Positive Versus Negative IMPaCLS.......ccvecveriireecierie ettt st s esa e 73

LIST OF TABLES

Table 1: Table showing a list Of SCrEEN EILALS........c.ccveeeviiiieeeeceeee e 66
Table 2: Table showing list of event 10gS ITALS..........cceviiiecieieiecee e 66
Table 3: Summary of identification and reportingROMOIS............coererierieininereeceee e 68
Table 4: SUMMary Of €rror fiXiNGccocvevireeee e s be s re s 68
Table 5: TESHNG SUMIMALY.......ciiiiiieiietieterte sttt seete et e steeteeae s e e e e be s e eseesesreesaessesseessesssessessaensens 69
Table 6: Table showing the average score for ppamts in the various survey questions........... 70

CHAPTER 1: INTRODUCTION

1.1 Background

Software systems are being used in various seotdl®e economy. Most softwares are never
perfect and would always have defects that neetbetgpassed to the developers to be
investigated and then fixed. A numbers of softwaeadors have incorporated a feature in
their software that automatically generates anremeport and sends it to the developers
whenever an error occurs. This is not the casenfgority of other software that relies solely
on the users to report the error. This poses & ghaedlenge on the functionality of the system
as some of errors are never reported, while otherseported with incomplete information.
One such software which does not have an autoreabc reporting mechanism is IQcare, an

EMR developed by FG Company.

IQCare is a data capture and reporting system patient management tools designed to
measure patient outcomes [1]. It can be implememt@dsingle stand-alone configuration for
smaller hospitals and in networked configuratiothwnultiple simultaneous data entrants for
higher volume hospitals. The application is higbbnfigurable and provides sophisticated ad
hoc and pre-defined reporting capabilities. To dip&are has been implemented in over 70

hospitals in Uganda, Kenya, Nigeria and Tanzanja [1

In Kenya, hospitals are located across the couBtagh hospital has a data manager and one
or more data entry clerks. Data entry clerks avelired in entering data into the EMR while
data manager oversees the overall data entry m@rekthe use of the EMR, reporting any

issues to FG support staff.

1.2 Problem statement

Error reporting for IQCare system is done manuadrenever a hospital encounters an error,
the data manager needs to send an email to FG sugbafh, giving the details of the error to
aid in the investigation. Once a fix is found, a B@ff will travel to the hospital to fix the
issue. If the reported error is not hospital-specthen the fix will need to be applied in all

the other hospitals.

With such a setup, there are three major challengesfirst issue is incomplete error reports.
This is a major issue as outlined by [33], [25] 48d]. Whenever a hospital encounters an
error, they need to send an error report to FG @tgpaff. These errors are missing important

information such as what the user was doing befaesystem error occurred.

The second one is unreported bugs. A number ofsethat occur when using the system are
never reported to the FG support staff. Systemsusemot report some of the errors, a times
thinking they are the cause of the errors [35]. 8@hthe unreported errors lead to critical

issues such as loss of data. Often, such caseslgreeported when they are critical.

Lastly, there is a problem during the deploymentixads to the hospitals. After finding a fix
for a bug at a hospital, the support staff needsawel to the facility to apply the fix. This
might delay for a few days for hospitals that aae ft is even more challenging for those
fixes that need to be deployed to multiple hosgital

1.3. Goal of the study
The main goal of this study is to develop a systleat will run alongside the main system,
tracking the use of the system, identifying erramsl reporting them whenever they occur.

The system will also automatically apply the fixgce it is ready.

1.4 Objectives
The following are the objectives of this project:

(a) Project objectives

1) Formulate the system requirements
2) Develop a Multi-agents based prototype system usingappropriate technology,
which address the problem of error reporting araléployment.

(b) Research objectives

1. Evaluate the developed system by assessing theassxions to the prototype
2. Assess the expected impact of the system to thenaation

1.5 Justification of the study

Software vendors are spending a lot of resourcgsawniding support for their softwares. At
the same time, fixing of issues raised by clieaketlong to be fixed. Agents can be employed
to carry out continuous monitoring of software aagort any errors that occur. Furthermore,
the agents will automatically apply the fixes asrsas they are made available by developers.

This ensures real-time reporting as well as wefhater response by developers.

1.6 Expected contributions of the study

The following are the expected contributions otiacessful implementation of the system:

10

1) It provides an efficient way to get client issuebjle reducing or even eliminating the
to-and-fro between clients and developers.

2) Developers will get the insight into which bugs dhe most severe or frequent,
allowing them to prioritize bug fixes based on factot guesswork.

3) It enables faster response to system issues frenhdbpitals and delivery of fixes,
thus meeting, or even surpassing their expectations

4) It ensures the fixing of errors/bugs before thetyogenplicated.

5) Deploying fixes that cut across multiple hospitaid be done more easily

6) It will lower customer support costs as the constiavel to sites will be minimized

1.7 Assumptions and limitations

These are the assumptions and limitation made coimcgethis study:

1) We will not be in a position to implement the systi the real life scenario therefore

we will have to implement it on a simplified enumment which will reflect the real
life scenario.

2) The errors that will be reported by the systemthose that affect the smooth running

of the system, such as error pop ups, softwardicrgsunhandled exceptions etc.

3) IQCare EMR is currently running in Windows platforanly, and therefore the

solution that we will develop might not work in ethplatforms

11

CHAPTER 2: LITEREATURE REVIEW

2.1 Multi-Agent system
2.1.1 An agent

An agent is anything that can be viewed as pemgiits environment through sensors and
acting upon that environment through actuators[]further describe an agent as a special
software component that has autonomy that provadesteroperable interface to an arbitrary
system and/or behaves like a human agent, worlangdme clients in pursuit of its own

agenda [3].

___F_d_——:i}. T Action as Output

il Software Agent

Sensor as Inpat — —

Figure 1: Agent in its environment

2.1.2 Multi-agent system

This is a term used to describe a group of inteitgagents that interact with each other in an
environment. The agents are able to operate efédgtiand interact with each other
productively [4]. The environment, in which the atgereside, provides the computational

infrastructure for the agents to communicate/irtiendath one another.
2.1.3 Characteristics of Multi-agent systems

The characteristic of MASs are that (1) each agastincomplete information or capabilities
for solving the problem and thus, has a limitedwgeint; (2) there is no system global
control; (3) data are decentralized; and (4) colpan is asynchronous.

12

2.1.4 Strengths of MAS

Multi-agent system has a number of capabilitiescWwhnclude the following, explained by
Katia [5]:

1) Ability to solve problems that are too large focentralized agent to solve because of
resource limitations or the sheer risk of having centralized system that could be a
performance bottleneck or could fail at criticahés.

2) Ability to allow for the interconnection and intgreration of multiple existing legacy
systems.

3) Ability to provide solutions to problems that caaturally be regarded as a society of
autonomous interacting components agents. For deamp meeting scheduling a
scheduling agent that manages the calendar o$ésaan be regarded as autonomous
and interacting with other similar agents that nggnealendars of different users

4) Ability to provide solutions that efficiently usaformation sources that are spatially
distributed. Examples of such domains include senstworks

5) Ability to provide solutions in situations wherepextise is distributed e.g. health care,
and manufacturing.

6) It enhances performance along the dimensions opatational efficiency, reliability,

extensibility, robustness, maintainability, respeesess, flexibility and reuse.
2.1.5 Communication and coordination

One of the key components of multi-agent systent®mmunication. Agents need to be able
to communicate with users, with system resourcesd, \&@ith each other if they need to
cooperate, collaborate, negotiate and so on. lticplar, agents interact with each other by
using some special communication languages calishtacommunication languages, that
rely on speech act theory[6] and that provide asdn between the communicative acts
and the content language. The first agent commtiaicéanguage with a broad uptake was
KQML [6].

2.1.5.1 KQML
Knowledge Query and Manipulation Language is aquoaitfor exchanging information and

knowledge among agents. The elegance of KQML it @alanformation for understanding

13

the message is included in the communication itglf It allows message content to be
represented in a first-order logic-like languag#echKIF [8]. The basic protocol is defined

by the following structure:

4

KQML

A N Application
Ao)
gent Agent Program

Figure 2: Simple structure of KQML

2.1.5.2 Coordination

Coordination is a process in which agents engagéelp ensure that a community of
individual agents acts in a coherent manner [J]g[®es the following reasons why multiple
agents need to be coordinated: (1) agents’ goajsaaase conflicts among agents’ actions,
(2) agents’ goals may be interdependent, (3) agerag have different capabilities and
different knowledge, and (4) agents’ goals may lmeenmrapidly achieved if different agents
work on each of them.

Coordination among agents can be handled with aetyarof approaches including
organizational structuring, contracting, multi-agplanning and negotiation.

Organizational structuring provides a framework &amtivity and interaction through the
definition of roles, communication paths and autiyorelationships [10]. An important
coordination technique for task and resource aliocaamong agents and determining
organizational structure is the contract net proitdd0]. This approach is based on a
decentralized market structure where agents candakwo roles, a manager and contractor.
The basic premise of this form of coordinationhattif an agent cannot solve an assigned
problem using local resources/expertise, it wit@®apose the problem into sub-problems and
try to find other willing agents with the necessaegources/expertise to solve these sub-

problems.

14

The problem of assigning the sub-problems is solwed contracting mechanism consisting
of: (1) contract announcement by the manager ag@nhsubmission of bids by contracting
agents in response to the announcement, and (@vtieation of the submitted bids by the
contractor, which leads to awarding a sub-problemtract to the contractor(s) with the most

appropriate bids (see Figure 3).

&

Manager agent

Manager agent

[o)
AR AN
\1 A
ﬁ\\ P
dpent dgenl mterested contractor ggent ikterdsted contractor agent
£ SR Y
A
N L AN

agent agent agzent interested contractor Lgent

Step | announce a contract Step 2 receive bids

3

a o

Manager agent Manager agent

0\

possibie contractor agent Pssible conteacior 12enY possible contractor agent pyssible contractor agent
L I+ o
& IE A\
agent possible contractar agent ngent

contractor agent

Step 3 evaluate the bids Step 4 award the contract

Figure 3: Contract net protocol

2.2 Agent Platforms

2.2.1 JADE

JADE was implemented to provide programmers withftllowing ready-to-use and easy-to-
customize core functionalities [6]. JADE providedudly distributed system inhabited by

agents, each running as a separate thread, pdliemtia different remote machines, and
capable of transparently communicating with onetlaero

A JADE platform is composed of agent containers ttzan be distributed over the network.
Agents live in containers which are the Java predteat provides the JADE run-time and all
the services needed for hosting and executing agéh}. There is a special container, called

the main container, which represents the bootgioamt of a platform: it is the first container

15

to be launched and all other containers must joia tmain container by registering with it.

The diagram shows a JADE architecture.

@

Iain confainer
» | i
) e | 4, lsregistered
a4 Is megistered _»" ~_ with @ @
with . #” ..
,.ﬂ-" \\.‘
T —| = T
Container 2 HHattmm e Corntainer 1
| e
P -k,
Hetaork
: -
" o -

Figure 4: Jade architecture

2.2.2 .NET framework

Some features in .NET framework provide for the edlegment of agents through the
combination of units of data and code that can de2moved across machines in a network.
This can be achieved through remoting [7]. .NET Beng is a Microsoft application
programming interface (API) for interprocess comination [8].

Microsoft .NET Remoting provides a framework th#dbws objects to interact with each
other across application domains. Remoting wagydediin such a way that it hides the most
difficult aspects like managing connections, malisgadata, and reading and writing XML
and SOAP. The framework provides a number of sesyiincluding object activation and
object lifetime support, as well as communicatidmrmels which are responsible for
transporting messages to and from remote applitatid]

.NET Remoting allows an application to make an objavailable across remoting
boundaries, which include different appdomains,cesses or even different computers
connected by a network. The .NET Remoting runtirast$ the listener for requests to the

object in the appdomain of the server applicatidh.the client end, any requests to the

16

remotable object are proxied by the .NET Remotingtime over Channel objects that
encapsulate the actual transport mode, including B@eams, HTTP streams and named
pipes. As a result, by instantiating proper Chamigécts, a .NET Remoting application can

be made to support different communication proteamithout recompiling the application

[8].

2.3 Agent Development methodologies
2.3.1 GAIA Methodology

This is a methodology that is specifically tailored the analysis and design of agent-based
systems. Its main purpose is to provide the dessgwéh a modeling framework and several

associated techniques to design agent-orientedmygst

It has two stages, namely, Analysis and Design.lysmainvolves building the conceptual
model of the target system. Design transforms thsract constructs to concrete entities

which have direct mapping to implementation code.

GAIA methodology assumes the availability of a riegment specification.
2.3.2 Prometheus Methodology

In this methodology, the agent development prodesdivided into three phases namely
system specification, architectural design and therdetailed design [36].

a) System Specification: At this phase, the systemspecified using goals and use-
case scenarios. The system'’s interface to its emvient is described in terms of
percepts, actions and external data. This phase iavolve describing the
functionalities of the proposed system.

b) Architectural Design: In this phase, agent types igentified and the overall
structure of the system is captured in a systemvease diagram.

C) Detailed Design: This is the phase where an agent&ynals are defined and

developed in terms of capabilities, data, events@ans.
2.3.3 MESSAGE methodology

It comprises [37]:

17

a) A meta-model extending the UML meta-model and tweecadding new meta-
concepts (such as Agent, Goal and Task) to thosadt considered in UML (e. g.
Class, Actor).

b) A set of views focusing each one on specific aspefcte analysis and design
models while hiding the complexity of the modebashole.

C) A number of guidelines and heuristic rules helpiihg developer in building the
analysis and design model and in using them toa#lgtimplement the system
under development.

d) A proper notation that allows easily and intuitive¢presenting the above views in

a graphical (i.e. through diagrams) and textual (hrough schemas) Way.

2.3.4 Multi-agent System Engineering Methodology (MSE)

The MaSE methodology is similar to traditional s@fte engineering methodologies is but
specialized for use in the distributed agent pgradilt has two phases: Analysis and design.
The MaSE Analysis phase consists of three stepstuGiag Goals, Applying Use Cases, and
Refining Roles. The Design phase has four stepsattig Agent Classes, Constructing
Conversations, Assembling Agent Classes, and SyB&sign.

In this study we are using MaSE methodology fordesign and analysis of the system.

2.4 Bug identification and Reporting
2.4.1 Bugs overview

2.4.1.1 Bug (software bug)

lon et al [11] describes a bug as an error, flaw, mistakedbcumented feature”, failure, or

fault in a computer program that prevents it fromhéving as intended, for example

producing an incorrect result. An error occurs wiseftware cannot complete a requested

action as a result of some problem with its inpapfiguration, or environment.

2.4.1.2 Classification of software bugs
Software bugs can be classified according to ggver according to type. Classification
according to severity gives the following classd§[1

18

1)

2)

3)

4)

5)

Catastrophic: These are defects that cause disastansequences for the system in
guestion e.g. critical loss of data, critical ladssystem availability, critical loss of
security, critical loss of safety, etc.

Severe: These are defects that cause very seramseq@uences for the system in
guestion e.g. function is severely broken, caneatised and there is no workaround.
Major: These are defects that cause significantseguences for the system in
guestion. It is a defect that needs to be fixedtbete is a workaround e.g. function
badly broken but workaround exists

Minor: These are defects that cause small or nibigigonsequences for the system in
guestion. They are easy to recover from or workuadothem e.g. misleading error
messages or displaying output in a font or form@dweio than what the customer
desired.

No Effect: These are trivial defects that can causenegative consequences for the
system in question. Such defects normally producemoneous outputs e.g. simple

typos in documentation or bad layout or misspelbngscreen.

Padmini C. [13] classifies bugs according to typdéadlows:

1)

2)

3)

4)

5)

6)

User Interface Errors: These are caused by missingrong functions, thus the
system does not do what the user expects. It iactaized by missing information,
misleading, confusing information, wrong contentHelp text, inappropriate error
messages, and performance issues - Poor respoessven

Error Handling errors: These are defects causednagiequate protection against
corrupted data, tests of user input, version coetm

Boundary related errors: These are errors causeexbgeding boundaries in loop,
space, time, memory, mishandling of cases outidedary etc.

Calculation errors: These are errors caused bylbgid, bad arithmetic, outdated
constants, incorrect conversion from one data sgmtation to another, wrong
formula, incorrect approximation etc.

Initial and Later states not set: There errorscaesed by failure to set data item to
zero, to initialize a loop-control variable, toirgtialize a pointer, to clear a string or
flag, or incorrect initialization.

Control flow errors: These errors are caused bgkstanderflow/overflow, failure to
block or un-block interrupts, comparison yieldingowg result, missing or wrong

default value, or wrong data-types.

19

7) Errors in Handling or Interpreting Data: There aaused by un-terminated null
strings, or overwriting a file after an error eartuser abort.

8) Race Conditions: This error occurs as a resuliaomng for resources, for instance a
task starts before its prerequisites are met, asages don't arrive in the order sent.

9) Load Conditions: These errors occur when the requiesources are not available e.g.
memory space. These errors occur when prioritystasionot put off less priority
tasks, or programs do not return unused memory.

10)Hardware errors: Occur as a result of wrong devaeyice unavailable, under-
utilizing device intelligence, misunderstood statmgeturn code, wrong operation or
instruction codes etc.

11)Testing Errors: These are errors that occur asatref some failure during testing
such as failure to check for unresolved problenss pefore release, failure to verify

fixes, failure to provide summary report etc.
2.4.2 Error identification

Bugs that occur in a system need to be identif@ytk way is by looking at the system event
logs. Windows logs store events from legacy appboa and events that apply to the entire
system[15]. There are three categories of log9lidation, security and system logs[15].
Application logs contain events logged by applmasi or programs. For example, a database

program might record a file error in the applicatlog.

Other errors can be identified on the user intexfdtese include error messages on the user
interface of the running program, which can popfigm the system. Such error can be
identified by monitoring the text on the open winado noting any key words that suggest that
an error has occurred in the system. Monitoring@€en text can be done in the following

ways:

1) Programmatically, there libraries that can be usedet application captions, URLs
and other active text on the screen.
2) Use of Optical Character Recognition tools

2.4.2.1 Optical character recognition
Optical Character Recognition (OCR) lets you cohueages with text into text documents
using automated computer algorithms [16]. To Use means, a screen shot of the error

needs to be done, then the error details can bactadl using the OCR.

20

Example of OCR
Microsoft Office Document Imaging [17]

An OCR component called Microsoft Office Documemialjing comes with Microsoft office
2007. When Microsoft Office is installed, you catidathe OCR libraries to your project.
Supported image formats are TIFF, multi-page Tkt BMP.

Tesseract OCR Engine

It is thought of as one of the most accurate opsmurce OCR engines available [19].
Combined with the Leptonica Image Processing Libiacan read a wide variety of image
formats and convert them to text in over 60 langsadf was one of the top 3 engines in the
1995 UNLV Accuracy test [19]. It supports outputxtteformatting, hOCRpositional
information and page layout analysis. Support faumber of new image formats was added
using the Leptonica library. It supports a numiddanguages.

It can recognize Arabic, English, Bulgarian, Catal&€zech, Chinese, Danish, German,
Greek, Finnish, French, Hebrew, Croatian, Hungariationesian, Italian, Japanese, Korean,
Latvian, Lithuanian, Dutch, Norwegian, Polish, Rgudese, Romanian, Russian, Slovak,
Slovenian, Spanish, Serbian, Swedish, Tagalog,, Thakish, Ukrainian and Vietnamese.

Tesseract can be trained to work in other langutmef20].

TessAJ

Tess4J is a Java JNA wrapper for Tesseract OCR[ZE! The library provides optical
character recognition (OCR) support for[21]:

1) TIFF, JPEG, GIF, PNG, and BMP image formats
2) Multi-page TIFF images

3) PDF document format
Tess4J is being developed and tested with Javat 2+©MWindows and Linux [21].

The Tesseract OCR DLL file, language data for Efgland sample images are bundled with
the program. Language data packs for Tesseractdsbeudecompressed and placed into the
tessdatafolder[21].

2.4.3 Bug (error) reporting

21

Bug reporting process is a way to elicit feedbacknf end users on defects and failures that
affect them. Systems like Bugzilla or Jira are frextly used to aid this bug reporting process
[22]. A high-quality error report allows a user tmderstand and correct the problem.

Unfortunately, the quality of error reports has rbekecreasing as software becomes more

complex and layered [23].

End-users take the cryptic error messages givémeta by programs and struggle to fix their
problems using search engines and support webbeésie finally submitting to developers.

Developers cannot fix the errors when they recamweambiguous or otherwise insufficient
error indicator from a black-box software componditerefore there is need to write a good

bug report.

2.4.3.1 How to write a good bug report

Hilton[24] gives the following hints on how to weia good bug report:

1. Be specific: Use the exact same words as the apiplic If you see something, write
it as is. If you click something, write its exa@me. For menus: Follow the sequence
of menus separated by the ‘/' character, for exanipile / Save As...” For screens,
Look at the top of the window and type exactly wisathere. For buttons or tabs,
Copy and paste the exact text shown. For links:yCapd paste the whole URL
including the “http://”.

2. Don’tignore error dialogs: Read the error dialogssages as they are very helpful.

3. Describe what was happening before: To reproduae iheed to reproduce the whole
workflow, which means we need you to tell us whaiti yvere doing before the bug
appeared and what the software was doing too.

4. Report the first error you see: Oftentimes, peaé so used to an error that they
become tuned to ignoring it. So when a new errours; they report that as the “first”
error they saw. Not true. If a part of a systemflaéed, the next error may be a result
of the first failure and not a real error in its&fe need to know if you ignored a crash
before you got this error.

5. Attach or Copy and Paste: Copy and paste whatexecan into the bug report, attach
as many screens and files as you can. The moramiafmon we have, the more likely
we’ll find the issue and fix it.

6. Workarounds are Bugs: If you cannot get somethmgedusing the expected process,
but can with a workaround, you have a bug. ReportWorkarounds cause huge

22

problems later on so it is best to get the expegiedess fixed than rely on the

workaround.

2.4.3.2 Components of a good bug report

Among the problems experienced by developers, ipéet@ information is the most
commonly encountered [25]. Common problems expeeénby developers when going
through bug reports from clients include errorssiaps to reproduce; bug duplicates; and
incorrect version numbers, observed and expectédviomr, incomplete information [25]
among others. Another issue that developers ofté@med challenged by is the fluency in
language of the reporter. Most of these problenasligely to lead developers astray when

fixing bugs. Therefore there is need to give a doaglreport to the developer
A good bug report will need to include the folloginomponents [26]:

1) Problem Report Title: The title needs to be cleancise, succinct and informative. It
should include: (1) Build or version of the softeasr OS on which the problem
occurred (2) Verb describing the action that oauif3) Explanation of the situation
that was happening at the time that the problenuroed and (4) In case of a crash or
hang, include the symbol name

2) Steps to Reproduce: Describe the step-by-step ggdoereproduce the bug, including
any non-default preferences/installation and tretesy configuration information. Be
very specific and be sure to provide details, opdds high-level actions.

2.4.3.3 Duplication in bug reporting

The same defect and failure could affect many ugédrese users could simultaneously or in
parallel submit reports describing the same defdutse reports are termed as duplicate bug
reports. Bug triagers should not assign these tepordifferent developers; this would be a

waste of effort and a potential of causing confiigtthanges being made to a system.

2.4.3.4 Addressing problem of duplicate bugs
To address the problem of duplicate bug reportshenresearch community there have been

two threads of work[22]:

1. Given a new bug report, return other bug repows ane similar to it.

2. Given a new bug report, classify it as either alidape bug report or not.

2.4.4 File sharing

23

Apart from error reports being send, there mighhéed to send files such as screen shots, log
files or database backups to the developer. Sontleese files might be very large, and thus
cannot be sent by e-mail. There are a number efsfilaring services that can be used to
distribute files via links[27]. Some such as MediiaFRapidShare, ShareFileandYouSendIt
are dedicated to sending and hosting large filesdarporate context, while the others such as
Box, Dropbox, Google Drive, Minus, SkyDrive and &u§ync are more general, personal-
use file-storage services that have mass distobwts an adjunct feature[27].

All of the services mentioned above allow downldials to be generated from uploaded
files, which makes it easy to distribute them toailing list or other group.There are libraries
that can be included in a program to enable auforfilet sharing and generation of download

links.

2.4.4.1 Examples of file sharing services
Dropbox [27]

Dropbox is a file hosting service that offers clostdrage, file synchronization, and client
software [42]. It allows users to create a spefolder on each of their computers, which
Dropbox then synchronizes so that it appears tthbesame folder with the same contents
regardless of which computer is used to view ted-placed in this folder also are accessible

through a website and mobile phone applicationg [42

It was among the first services to offer seamlgdsad and storage via its client software. All
you need to do to sync files to Dropbox is put thienDropbox's designated folder on a
system with the client app, and the sync happéestli in the background [27].

24

Mame Date maodified Type Size

@ 2002 Apnl pages.pdf 172372012 9:00 PM POF File 3,748 KE
@ | 2012 June pdf A4 2012 405 PM PDF File 3,110 KB
&g | 2012 March.pdf 12/15/2011 1148 PDF Fite 3077 KB
| 2002 May pdf 116/2012 3050 POF File 4386 KB
ig | August IIIJ.R = By = ’:;.:: .:"\! jj- T'.IEE ' .:_ KE
@ | Decemnber 201 [L:20 AM PDF File 10,658 KB
@ | feb 2012.pdi | %F Dropbox ¥ Erowse on Dropbox website i KB
| Juby 201 2. paf Share with v Get link I%S l;- B
| March 3011.pe Rectine preiiiic unrions . View previcus vefsions] KB
g | November 201 e DT Tie 2077 KB
@ | pages (2).pdf endio rOEATPM PDF File 6,142 KE
4 | pages.pdi Cut 508 PM POCF File 21,134 KB
o | theGardenofsi Copy 1 2:00 PLF Fite 24T KE

Create shortcut

Delete

Rename

Properties

Figure 5: How to get a public link from a file in dropbox

Sugar Sync

In SugarSync, you can designate existing file fcdda your computer to be synced to the
cloud and to any other computers you designatearSygc also creates a "Magic Briefcase"
folder in the Documents folder such that anythitaged there is automatically synced across

all devices registered to the user’s account [27].

A "Web Archive" folder, on the other hand, storiéssf from devices but does not sync them
automatically if the originals are changed. Thiskesathe Web Archive a useful place for
files intended mainly to be distributed to otheis they're not replicated unnecessarily [27].

The desktop client also includes a file managetiegion that lets one to see what files are

synced into the cloud and across their devices) alhe place [27].

25

A Sugartyre Fie Manager e
Fig - §dn Yiew Tesl Help
o A syne Fekders (Lol Manange Syne Falder
W Serdarunc it computery | Hagic Bricfease [Fross
T My Documdnds Sma : Spe Type Dot Sioehfomd Sl
& i MAagic Mriefase B2 7 apni pagerpal 3MB Adobe Aol Do, 1732017 500 P Eacied Up
B P BB o2 smne.pat 3 ME Agobe Adromat Doo. 383012 405 P Bacictd Up
Sampie Dorumenty B8 2207 Maschpt IMa Adobe Screkat Do 1252000 1116 A8 Eacisd Up
Lample Mutic = FO1E may g 1 LB kdabe Adrosat Do MBI 3005 P Eacked Up
Sarmgie Photay = Lugis MLT pat dn Agube Acrodal Do, 501 528 P Earked Sip
o {aa) Shaed Folsers B Derember 2001 Funimsbor: salet bas.. 10 M8 Adobie Acradiat Do., RTETLL K120 &M Eacied Up
B hared WHR K8 B e o002 patt IMB Adobe &mobat Do.. TLL40L 4L P Eacu=d Up
wnl Owenpd By Al = hily 3313, pdl S MA Hdobe Scroal Dio.. dFEEEL] L35 P Uplosding
55| Mobie Phoin B saich 2010 pak 24 B Adobe Aaroat Do. 1LE20VI010 12:59 P Fenasing Uipisatd
F = Howember 3311, pdl THRIB Hhdobe dcroiest Do, 1LASI0LE 110 P Fending Lipdoad
P o At B pages gros %MD idobe Artat Do.., BASLL 547 80 Pering Upizad
;-l- Do Py = LI Ea8 o 9 Adahe Airgdat Do, 11182010 S04 P Fersfing Liptgad
= EheGardengfennen B0 _PrevpSeleace . 258 KB Adohe Lirelal Do, 11ARNIID 1100 P8 Backsd Up

Figure 6: Sugar sync file manager

2.5 Bug tracking

Bug tracking is the process of finding defects praduct by inspection, testing, or recording
feedback from customers, and making new versiotseoproduct that fix the defects [28]. In
software Engineering, when the numbers of defeets quite large, and the defects need to be
tracked over extended periods of time, use of adlefracking system can make the

management task much easier.

2.5.1 Bug tracking system

A bug tracking system is a software applicatiort thalesigned to help keep track of reported
software bugs in software development efforts [20fnay be regarded as a type of issue

tracking system.

Many bug tracking systems, such as those used Isy open source software projects, allow
users to enter bug reports directly. Having a biagking system is extremely valuable in
software development, and they are used extensirglgompanies developing software

products.

2.5.2 Components of a bug tracking system

A major component of a bug tracking system is aluade that records facts about known

bugs. Facts may include the time a bug was repoitedeverity, the erroneous program

26

behavior, and details on how to reproduce the bagyell as the identity of the person who

reported it and any programmers who may be workim§xing it [30].

A bug tracking system should allow administrat@rsonfigure permissions based on status,
move the bug to another status, or delete the Thg system should also allow administrators
to configure the bug statuses and to what statisgain a particular status can be moved.
Some systems will e-mail interested parties, sctin@ submitter and assigned programmers,

when new records are added or the status changes.
2.5.3 Examples of bug tracking systems

There are a number of both desktop and web-basedtiacking software tools. The

following bug tracking software, among others agsatibed in [31]:
1) Census Bug Tracking Software

Census is a highly scalable web-based issue trg¢&oi that can track bugs, defects, change
requests, support calls, test cases, timesheets, nach more. Features include full
customization capabilities, Visual SourceSafe irdegn, automatic e-mail notifications,
user/group/field-level security, role-based worlfloules, custom Web views for different

groups of users, built-in reporting, attachments] ehange history tracking
2) AceProject

AceProject offers free web-based project manageregttracking and timesheet software.
3) Bugzilla

This is an open source application, web-based, rgeparpose bug-tracker tool originally
developed and used by the Mozilla project.

4) Mantis

It is a free web-based bug-tracking system, writtePHP scripting language, which works
with MySQL, MSSQL, and PostgreSQL databases andlzsarver. It is also distributed with

most Linux distributions.

27

2.6 Fix deployment technologies

The following are ways of applying fixes to exigtisoftware applications:
1) Automatic updates

An example is windows updates which is a servicavided by Microsoft that provides
updates for the Microsoft Windows operating systerd its installed components, including

Internet Explorer.
2) Manual patching

This is done by manually copying and replacing tid., EXE and any other files on the

installation folder.
3) ClickOnce Technology

ClickOnce Technology enables applications to chiecknewer versions as they become
available and automatically replace any updateek filApplications can be configured to

check for updates on startup or after startup.
4) Use of patch application tools

There are several tools to aid in the patch apydicgorocess, such as RTPatch, JUpdater,
StableUpdate or Visual Patch.

2.7 Related Work

2.7.1 RedGate Automated Error Reporting system

This is an error reporting system that customess tasreport error when they occur on
RedGate products [41]. It allows automatic sendsfigan error report when any of their
products crashes. A typical error report comprigelsill stack trace and details about the

exception context, including values of all the locariables.

Another feature is that it allows the customizatioh the exception dialog to provide
additional information that can be packaged with éxception report. Customizations could
include a log file or a screenshot taken at the tohthe error, or asking end users for contact

information so you can notify them when a fix itessed [41].

28

SQL Source Control 5
Notify Red Gate of this error
B2 ﬁMm]:ludh muﬂ_hmw&dﬁdehﬂmm of the $QL Source Control
Enor detals: Please wait while SOL Sowrce Control is sending Lhe report
The ramaote name could not be rescheed: Yarepo test’ - to Red Gate Software Lid throwgh the Intemet
Trying to connect to TFS server « Connecting to server.
« Transfening report.
Yeour emad - g0 we can notify you of a foc + Emorreporting completed. Thank you.
o @red gate com|
[Send Eror Report | [Cancel | || | Poweredby i

Figure 7: How error is reported for Red Gate’s SQL Surce Control

M Stack trace %

@' SystemIndexOutCRangeException
Index was outside the bounds of the array,
:ig [Reflector]Reflector.CodeModel. Assembly. Module

internal IType ReadTypeOrTypeReferance(int token IGenericArgumentProvider genericType, L. %
DiworkiReflectorProte5.00\ReflectorSource\CodeModelAssem bbb ktodule.csline 3385

¥ token : int 16793588 (010036
& @ genericType : TypeDedlaration
@ genericMethod : IGenericArgumentProvider null
& @ this: Module “Keymaker.exe™
W offsetThing : int el
@ int 1 fonety
i object]] e
-ip [Refiector]Reflector.CodeModel. Assembly. TypeDedaration
public [TypeReference get_BaseTypell ¥

Diawork\ReflectorProi\6.5.00\ReflectonSource\CodeModehAssem bh\TypeDeclarationcsdine 186

% [Refiector]Reflector. Application.JconHelper
internal static int GetimagelndexTypeReferance typeReference]; ¥
DiWorkiReflectorProt6.5.0\ReflectorSource’\ApplicationlconHelpercsdine 32

=ig [Reflector]Reflector.Application. Browser. TypeDeclarationltem

Figure 8: Stack trace of Red Gate’s Error reportingsystem

2.7.2 Other automated error reporting tools

There are other similar or related tools that aatically report system errors. These include
the following:
Windows Error Reporting [39]

29

It is a crash reporting service that prompts useiend crash reports to Microsoft for online
analysis. The information goes to a central da&lpas by Microsoft. It consists of diagnostic
information that helps the company or developmeatrt responsible for the crash to debug

and resolve the issue if they choose to do so.

Talkback [39]

Talkback was the crash reporter used by Mozillansok up to version 1.8.1 to report crashes
of its products to a centralized server for aggtiegaor case-by-case analysis. If a Mozilla
product (e.g. Mozilla Firefox) were to crash withlkback enabled, the Talkback agent would

appear, prompting the user to provide optionalrimiztion regarding the crash.

ABRT - Automated Bug-Reporting Tool [39]
ABRT intercepts core dumps from applications ardrad user confirmation sends bug report

to various bug tracking systems, such as Fedoraibaig

CrashRpt [39]

It is a light-weight open source error handlingniework for applications created in
Microsoft Visual C++ and running under Windows. iitercepts unhandled exceptions,
creates a crash mini-dump file, builds a crashrmjgec in XML format, presents an interface
to allow user to review the crash report, and findlcompresses and sends the crash report to
the software support team.

It also provides a server-side command line tootfash report analysis named crprober. The
tool is able to read all received crash reportsfeodirectory and generate a summary file in
text format for each crash report. It also groupsilar crash reports making it easier to
determine the most popular problems. The crprobel does not provide any graphical

interface, so it is rather cryptic and difficultuse.

2.7.3 Gaps and limitations of the solutions

The following are the gaps and limitations that Wwé addressed by the proposed solution:
1) Submitting of error fails if there is no activeemiet connection.

2) The solutions above do not include error fixing

30

3) The current solutionmainly handle cases of software crashifigere are errors th.
do not necessarily cause the software to crasmerd to be report

4) There is need for a generic solution that is indepa from the main syste, and can
be configured to track the error of any softwarpl@atior. The current solutions ¢

not provide such.

2.8 Proposed architecture

For this study, we propose an architecture in wisithated agents in the client and sel
computers will continuously monitor the system. Hgents will use system logs, Screen:
outputsand unexpected system beha to identify errors On identifying an error, an age
creates an error report, and then sento the developer. On the dgeper’s end, the error
logged in a bg tracking system. Once a fix ready, it will be uploaded in a central puk
server, where the agents can download it and plagchtheir machine

The proposed architecture will make use of limitaternet cnnection at the facilities
whereby the error is captured and stored in thenhmador submission whenconnection to
the internet is available. It will use file sharingechanisms such as dropbox to ensurethe

errors,screenshots and other file:e uploaded without failure.

ﬂclient
Client) Bug tracking
computer Error detected Error reporting |::> System

If no fix, then submit
error

A developer
picks the
Check and Check ifa issue
download fix exists
fixes for
past errors

Central public server <::| Fix development

Afixisuploadedona
central server

o

,,fi Developer

Figure 9: A diagrammatic representation of the proposed arhitecture

31

Although the proposed solution is made for IQCa&tesm, it will be a generic solution that

can be configured to be used for monitoring angothlated system.

32

CHAPTER 3: METHODOLOGY
3.1 System Design

3.1.1 Overview

We are using MaSE methodology for system desigerdlare two steps involved: Analysis

and design.

3.1.2 Analysis phase

The analysis phase involves the following steps:

1) Capturing goals. Here we take an initial system specification #&@ehsform it into a
structured set of system goals. Then the goalamay/zed and structured into a Goal
Hierarchy diagram.

2) Applying Use Cases: Here we capture a set of use cases from thalisigstem context
and create a set of Sequence diagrams to helyshens analyst identify an initial set
of roles and communications paths within the system

3) Refining roles: Here we transform the structured goals and Semudiagrams into
roles. After roles are created, tasks are assaciaith each role that describes the

behavior that the role must exhibit to successfatlijieve its goals.

3.1.3 Design phase

The design phase involves the following steps:

1. Creating agent classes. Here we create agent classes from the roles atkfim the
Analysis phase. The end product of this phase ifgent Class diagram, which
depicts the overall agent system organization stingi of agent classes and the
conversations between them.

2. Constructing conversations. Here we construct conversations by extracting the
messages and states defined for each communigatbrin Concurrent Task Models,
adding additional messages and states for addedtredss.

3. Assembling agents. Here we create the internals of the agent clas$bs is
accomplished via two sub-steps: defining the agewohitecture and defining the
components that make up the architecture. The mdcs an Agent Architecture

diagram.

33

4. System design: Here we take the agent classes defined previoasty instantiates
actual agents. We use a Deployment Diagram to stimvnumbers, types, and
locations of agents within a system.

3.1.4 Tools required

To accomplish the goal of this study, the followingls will be needed:

1) Windows OS (At least XP SP2)

2) Visual Studio 2010

3) Relational Database Management Systems (SQL 2008ES)
4) Microsoft Office 2007

5) Dropbox

3.1.5 Justification of MaSE methodology

A major strength of MaSE is the ability to trackadlges throughout the process. Every object

created during the analysis and design phasesectmaded forward or backward through the

different steps to other related objects. For imsta a goal derived in the Capturing Goals

step can be traced to a specific role, task, ardtagass.

Also MaSE supports the development from requiresanalysis to implementation

3.1.6 Limitations of MaSE methodology

MaSE methodology has the following weaknesses [40]:

1)

2)

3)

Existing gap between analysis and design phasesefdre one should go back to the
first step and analyse the role requirements tbhegatecessary information for decision
making about the appropriate agent architecture.

Lack of knowledge modeling in the methodology: modgthe internal knowledge of
agents such as rules or plans is ignored and iadwessed.

Weak documentation: In the MaSE, documentation ahynaspects of an agent-based
system is implicit. For example, roles are justudoented in sequence diagrams and by
their related tasks in the analysis phase. Singo@ documentation is needed for
maintenance of a system, the methodology shouldegsoftware engineer to produce
necessary documents and artifacts for better nrantz of the developed system.

Explicit documentation for roles helps the methodglto achieve this goal.

34

4) Problem in modeling interactions: MaSE use UML ssme diagram for modeling role
interactions so it cannot model some specific attarsstics of agents such as concurrent

threads of interactions among roles.

MaSE methodology can be improved and extended lijngda "Role Schema" and a
"Knowledge Modeling" step in the analysis phaseprisrement can also be done by the use
of AgML instead of UML.

3.2 Research Methodology and design

3.2.1 Overview

Research is done to achieve the following two psego

1. To evaluate the expected impact of the system @wotganization.

2. To evaluates the developed system by assessingéneeactions to the prototype.
3.2.2 Data sources
The primary source of data is a survey researchevhe software developers and IT support
staff fill an online survey form. Willing participas are asked to participate in the survey.
3.2.3 Data collection procedure

1) Online Survey

The participants were given a link to the onlinevey form. There were eleven questions to

answer. The first ten questions were multi-choigesions with five choices as follows:

Strongly disagree
Disagree
Neither agree not disagree

Agree

a r w0 b Pe

Strongly agree

Users answered the questions by putting a check (wron the selected choice. The last
guestion was an open question where the user weectEd to describe their expectations of
the proposed system. A copy of the online survemfis included in the appendix section.

35

The advantage for using the online survey is that af checks can be put in place to ensure
that the participants input the correct details.réleo, as the participants fill the forms, all

data is automatically put in a spreadsheet docwsnéms reducing the process of compiling

the data.

3.2.4 Data analysis

There are two types of data being collected: Qatale and quantitative data. The data
analysis is performed according to research questiDescriptive statistics is used to answer
descriptive questions. Data is collected and pw Bpreadsheet (MS Excel).The data is the

tabulated and analyzed in form of graphs and charts

The output of the analyzed data is used to makelgsion on the expected impact of the

proposed system.

36

CHAPTER 4: SYSTEM ANALYSIS AND DESIGN

The analysis and design was guided by the MaSEaudelbgy.
4.1 System specification

4.1.1 Overview

Currently, the reporting of errors is done manualtyoss hospitals in Kenya. The proposed
system will automatically identify report and fixrers. The error identification will involve
the checking of event logs for errors as well asitooing screen text. A non-fatal error
usually involves a pop up message dialog on theescshowing the error that has occurred. A
fatal error might not show a pop up message, ugafplication will crash and therefore, an

entry will be made on the event logs.

The process of error reporting will entail the gaien of an error report, based on the error

report specification described in chapter 2. Thereeport will then be send to the developer.

On receiving the error report, he/she will devetofix and then upload on a public server,
where in turn the client application will downloadnd the install the fix on the client

computer.

The process of identification of errors, reportiawgd fixing is done by agents, forming a

multi-agent system.

4.1.2 Inputs and outputs

4.1.2.1 Inputs
This system is tracking an existing system; thesetbe name of that system will be input.

The system will be tracking errors; it thereforeeds the definition of what errors are. A list

of past errors that are in the current bug trackiygjem will be input to the system.

4.2.2.2 Outputs
The system will output a list of identified erraaad their status. The status will be either

“identified”, “reported”, “fix ready” or “fixed”.

4.1.3 Data management

37

The data used by the system will be stored in abdase. The system will save all the

identified errors in database. Likewise, the staffusach error will be saved in the database.

The list of past errors described in section 411ahove will be saved in database.

4.1.4 System failure

On the event that this prototype system fails,canme will be put in the event log. In addition,
the output from the system will indicate the pahfailure. The output shows the progress of
the identified errors, and if the progresses ofdhers stagnate at some point, then it would

be an indication of system failure.

4.2 System analysis
The purpose of the MaSE analysis phase is to peoduset of roles whose tasks describe

what the system has to do to meet its overall requents. A role describes an entity that
performs some function within the system. In Ma8&ch role is responsible for achieving or

helping to achieve specific system goals or suldsg&a].
System analysis involves the following three steps:

1. Identifying goals from user requirements and striaoyg them into a Goal Hierarchy
Diagram

2. ldentifying use cases and creating sequence diagtarmelp identify an initial set of
roles and communications paths

3. Transforming the goals into a set of roles

4.2.1 Identifying goals

This is the first step in the analysis phase, whaltes an initial system specification and

transforms it into a structured set of system goals
a) Capturing goals

This process begins by extracting scenarios froirtitial specification and describing the
goal of that scenario. The following are the scersairom our initial specification:

1. The system is responsible for identifying, repatamd fixing of errors

38

Error identification will involve monitoring of thdarget system as it runs, and
detecting errors on the screen as they occur. Avladge base of errors will be used
to inform the system on the type of errors to répor

An Error reporting component will generate an emeport, ensuring that all the

components of a good error report are captured.

4. An error will be reported by sending an error fidethe developer.

If need be, the developer can place a requesthiordatabase, and the system will
automatically get and send it to the developer

The error fixing component of the system will chedgularly for any new fixes
released by the developer.

If a new fix if available, the component will dovaad it, and then install/apply it on

the target system.

Goals are then derived from the scenarios. Thewviatlg are the derived goals:

© © N o g s~ wDdhPE

Identify screen errors

Identify errors on windows logs
Upload captured screenshots
Generate an error report

Send error report to developer
Send database to developer
Check if new fixes exist
Download new fixes

Apply/install the fixes

b) Structure the goals

The goals are put in hierarchies depending onrttpoitance, level or detail. This results in a

goal hierarchy diagram.

39

Identify, report and fix errors

Identify Report Fix

Identify Identify Upload Generate Send Upload Check Download Apply |
SCreen log screenshots error errar database for new fix install fix
errors Errors report report fix

Figure 10: Goal hierarchy diagram

4.2.2 Applying Use Cases

a) Creating use cases

Use cases define a sequence of events that canindbe system. They are examples of how
the user thinks the system should behave. Althquayth of the Applying Use Cases step,
creating use cases may actually elicit more inféionaor clarify existing information about
system goals.

The goal of creating use cases is to identify paflommunication, not to define all possible

combinations of events and data in the system.

Actors

The main actors are the agents that are resporisiblbe identification, reporting and fixing
of software errors. The other actor is the systdmsloper, who is the one responsible for
developing fixes for the identified errors.

40

.
Q.

R e ""F-IilfJ r\\J
P —_ r/'-- h __p-"-_-f-f- f JA'. III
_— Bdends (gereen ermor identiﬁcatiun\ﬁ"' L/ A
~ A
- Screen errors
- ¥ ~ identifier agent
L Error identification |
r\ - I.'/ Event logs error \\I‘_ IQ‘
~ e _ Extends \ |d|f[1t‘|—ﬁcat|0n v __""'--—-_____.-LHJ \
e — e —— I AN
o) U\
;,;J f‘\ﬁ o Error reporting \I Event logs errar
I A \ J/ identifier agent
7AW
Error reporter agent
|:/ Fix development \:H— - .f"(r.\
) ________J \
|II JIA"'I |
O L\
I,—‘s—)—\\ Developer
JJ [u______ -
IA) T Error fixing \,I
/AN - /
Error fixer agent
'® /
I,s—)—\\ I I Progress display \II
g p—— N /
[N
A\
Progress displayer
agent

Figure 11: Use cases diagram

4.2.3 Refining roles

The objective of this step is to transform theduted goals and sequence diagrams into roles
and their associated tasks. The tasks are geneeilyed from the goals for which a task is

responsible. These are captured in a role modgtahaas shown below.

41

Error Reportin
Error Identification B E

Get Event log Send error report
Generate error
errors
report
Identify Screen
errors
Upload screenshots

Error Fixing Fix Development (Done by
developer)

See error
e (ctecktorfres) — -

Figure 12: Role Model Diagram

There are roles that may have concurrent executisgs that define the required roles
behavior. In this system, the Identification ofesm errors and the identification of Event log

errors are done concurrently. This is represemteddoncurrent model diagram shown below.

Screen error Event logs error
identification identification

O

Figure 13: Concurrent model diagram

42

4.3 System Design

4.3.1 Overall architecture

Situated agents in the client computers will camimsly monitor the system. The agents use
system logs and screenshots to identify errorsidentifying an error, an agent creates an
error report, and then uploads it using Dropboxe €fror report will be downloaded on the
developer’'s computer and logged in a bug trackiygjesn. Once a fix is ready, it will be
uploaded in Dropbox, where the agents can picknd apply/install it on the client’'s

machines.

The system will make use of limited internet cortimgcat the hospital, whereby the error is
captured and stored in the machine for submissibenwa connection to the internet is

available.

Client's computer 1

Public server

./..-
(Error |dentification

Details of
identified
error Error

- = details

' ™\
(Error reporting |——>
A _/

-

i, ™\
.\ Error Fixing ‘ — Developer's computer

-
v

e ™
' - >« Download reported errors)

Client's computer 2

7

Dropbox ‘_—f{/ Upload fixes

Error Identification

Details of

identified

error Error
e ™ details

| Error reporting J— _'f_?_‘
. / /N
-~ ™~ IN III'\
(Error Fixing »‘ L
. A Fisx Developer

Figure 14: Overall architecture

The process of screen error identification involtres capturing of screen shot, and then text
is extracted from the image using Microsoft's Oéfi©ocument Imaging libraries. An
algorithm is then used to match the text to thaalofady known errors. If it matches then,

43

that means an error has occurred, and therefarid ibe reported. The following applications
therefore will need to be put in place to ensueediccessful running of the system:

1. Installing Office 2007, ensuring Microsoft OfficeoPument Imaging is installed.
2. Installation of Dropbox and logging in using a dallropbox account

4.3.2 Flow design

4.3.2.1 Overall flow of the system
The identification of screen and event logs erisrdone concurrently. The errors are then
reported. Once a fix is developed, error fixingl\wé done.

Screen Error [dentification Event logs error identification

L

Error reporting

Y

Error fixing

A
L

Figure 15: Overall flow of the system

4.3.2.2 Screen error identification flow diagram

The identification of screen errors entails engytimat the currently active application is the
target software, which is IQCare. The flow of tleeegn error identification is shown in the
diagram below.

44

i

4

k4

[Get the active software application

l Is it lQCare software?

T

o == s o

F ~ ""h_‘
[Sleep (20 seconds) \”'s. o i >
N /

+ e
-

l Yes
F g

(Capture screen shot of active window or pop up)
-

Y

ra
(Extract text from the screen shot j

Y

(Match the extracted text with known errors j}

occurred)?

il
- s

-~ -,
Mo - .,

l Text matches (Error has

i

l Yes

LI\/ Capture screen shot of the whole screen)'

Y

f:/ Put the screen shot in Dropbox error folder /\"J

:

' ™

'.\ Save the error details in Database /—

Figure 16: Screen error identification flow diagram

o

4.3.2.3 Event logs error identification flow diagram
Errors logged in the windows event logs are exéiéat the process shown below:

45

L

(iSet the date & time of last run

L

e ™
| Check if there are new errors since last run |

Mew errors exist?

~ No

I_.—-"'.- \‘\l - e
| Sleep (60 seconds) |« = =
.-"'; HHHH ___.-""#
+* HH'\-\. .-""-'
Yes
e ™
| Extract all the new errors from event logs |
A
Y
4 ™
| Save the extracted errors in database |
oy

Figure 17: Event logs error identification flow diagam

4.3.2.4 Error reporting flow diagram

Once errors have been identified, they will be reggbby placing them in a Dropbox folder.
The synchronization mechanism of Dropbox will eestivat the errors will be accessible in
the developer’s computer.

46

¥

-.\.

\
| Load all new errors that have not been reported from database |

J

Y
- - - T
e \ / N
; \ / \
f Sleep (60 seconds)) [Create error files for each error |
\ A l\ /
e o
- ¥ —
-
Il.l . \
(Put the error files in Dropbox errors folder |
'.\\ ’.J
Y
J{f" "_\
(Update the status of the errors in database (Mark them as "-I
\ reported)
r

e -
" o

Figure 18: Error reporting flow diagram

4.3.2.5 Error fixing flow diagram
After the developer has developed and releasex] ¢hé ErrorFixer agent will get and install
the fix as described in the flow diagram below.

47

~ -

(Check Dropbox fixes folder for new fixes (Fix files) \]

l Errar files exist?

e

h ND .-""### HHHHH
f/ Sleep (60 seconds) \::: = s
F Y e
Yes

[Read the fix files

Y

e \\
-

[Apply the fixes

Y

[Update the status of the fixed errors

"B
"

Y

[Delete the fix files

Figure 19: Error fixing flow diagram

4.3.3 Create agent classes

Agent classes are created from the roles defindueinalysis phase. The end product of this
phase is an Agent Class Diagram, which depicts aberall agent system organization

consisting of agent classes and the conversatemglkn them.

48

Details of identified error

ScreenErrorsldentifier

¢ |dentifyScreenErmor

« CaptureScreenShots

» UploadScreenShots

» SaveErrorDetailsinDatabase

™~
~.

Motification Df“k\‘“"-

identified error

Figure 20: Agent classes diagram

S

.
r

EventLogsErrorsldentifier

» ExtractEventLogsErmrors
« SaveErrorsinDatabase

Details of
identified
error

|

ErrorReporter

MNotification of
identified error

¥

ProgressDisplayer

» DisplayErrorsProgress

Motification nf/

L 4

» LoadldentifiedErors
« CreateErrorFiles
» UploadErrorFiles

reported For Naotification of
ﬁ"ﬁ reported error
/ h
e ErrorFixer
» DownloadFixes
» ApplyFixes
MNotification

4.3.4 Constructing conversations

Here, the conversations between agents are defifiegl. following conversations occur

between agents:

a) Communication diagram for error identification

On identification of an error, the Errorldentifieagent will send a message to the
ErrorReporter and ProgressDisplayer agents. Thenuonitation is done informally by

updating the status of an error on the database.

49

of fixed error

UploadScreenshot

. IdentifyScreenError

Y

GetEventLogError

Y

INFORM

(Identified_error,
ErrorReporter and
Progresshonitor)

o

Figure 21: Communication diagram for error identifi cation

b) Communication diagram for error reporting

The ErrorReporter agent will receive an informatioassage from the Errorldentifier agent.
It will then generate an error report and then séndfter sending the report, it will inform

the ErrorFixer and ProgressDisplayer agents ofdéperted error.

IMFORM
. {identified_error) GenerateErrorReport

INFORM
l (Reported_error,E

rrorFixer and
SendErrorReport ProgressDisplayer) _Lo

Figure 22: Communication diagram for error reporting

¢) Communication diagram for error fixing

Upon receiving a message from the ErrorReportentagiee ErrorFixer will check for new
fixes, download and then apply/Install the fix. Wwill then send a message to the

ProgressDisplayer agent, with the details of tkedierror.

50

INFORM
. (Reported_Error) CheckForFix() Exist
]

| l

DownloadFix ()

Mot exist

Wait (Interval) .ﬁ. I“F' 0
ppRiyFx

IMFORM
{Fixed_Errar,

ProgressDisplayer)

Figure 23: Communication diagram for error fixing

d) Communication diagram for Progress display

The agent will be receiving messages from the Ktenttifier, ErrorReporter and ErrorFixer
agents. Upon receiving a message from the Errotiftenit adds it to the list of identified
errors. It will use the messages from the Errordriep and ErrorFixer to update the status of

the error accordingly.

INFORM (Identified_errar)

b 4

INFORM [Reported_errar] DisplayErrorProgress o

IMFORM (Fixed_error]

Figure 24: Communication diagram for progress disphy

4.3.5 Creating a sequence diagram

A Sequence Diagram depicts the sequence of eVieatsate transmitted between the agent

classes. The communications described above ammedmp in a sequence diagram.

51

(O
~ JLNe ;A—)—-.

e uH N C Hp
it -'i-’f] [\'-_\bE J\[: r’l'.k"‘—'j\ [
| rrar f AN | | / J"\.'
\ [/ /\\ identification _/ W) U\
L LY agents ErrorReporter agent Developer ErrorFixer agent
Error Identification Error Reporting Fix Development Error Fixing

Identify()

Report()

¥

Develop fix

Fixed

Display Status

Figure 25: Sequence diagram
4.3.6 Assembling agents

The thick dotted lines represent outer agent canngecThey define connection with external

resources such as other agents, sensors, datainaseata stores.

52

Details of identified error

ScreenErrorsldentifier

o |dentifyScreenEmor

o CaptureScreenShots

o UploadScreenShots

» SaveEmorDetailsInDatabase

Notification of
identified error

Figure 26: Agent architecture

4.3.7 Instantiating the agents

EventLogsErrorsldentifier

o ExtractEventLogsErrors
o SaveEmorsinDatabase

ErrorReporter
Petai}s of o LoadldentifiedErors
identified + CreateErmorFiles
error

¢ UploadErrorFiles

Notification of
identified error

ProgressDisplayer

o DisplayErrorsProgress

Notification of
reported error

Notification of
reported error

ErrorFixer

» DownloadFixes
o ApplyFixes

Notification
of fixed error

Here we take the agent classes and instantiatal agants. The instantiation is represented in

a deployment diagram shown below.

Machine 1

Machine 2

Machine 3

Agent Host

« SE1: ScreenErrorldentifier
« L E1: LogsErrorsidentifier
+ ER1: ErrorReporter

« EF1: ErrorFixer

+ PD1: ProgressDisplayer

Agent Host

Agent Host

« SE2: ScreenErrorldentifier
s | F2 LogsErrorsidentifier
+ ER2: ErrorReporter

« EF2: ErrorFixer

+ PD2: ProgressDisplayer

« SE3: ScreenErrorldentifier
« | E3: LogsErrorsidentifier
« ER3: ErrorReporter

« EF3: ErrorFixer

+ PD3: ProgressDisplayer

Agent Client

« ScreenErrorldentifier
« LogsErrorsldentifier
« ErrorReporter

« ErrorFixer

s ProgressDisplayer

Machine 0

53

Figure 27: Deployment diagram

4.3.8 Database design

The database stores the details of the identifiext,éhe status of whether it is reported or not

and the status of whether it is fixed or not. M it will also store the details of the fix

applied on the target software.

A reported error might have one or more fixes, #metefore the relationship between the

identified error and the fix will be one-to-manyatonship. Two tables will be created, for

storing the errors and the fixes respectively hasv in the following database diagram.

After determining the data to be stored, and applyhe normalization rules, | have come up

with two tables described below:

Errors table

Name Data type | Length Description
Id Int 4 Primary key
ErrorName Text 100 Name of the error
Category of the error, which is Event logs or
Category Text 20 ScreenErrors
ErrorText Text Max The details of the caqptured error
AttachmentLink Text 300 A web link of uploaded screen shots
MachineName Text 20 Name of the computer where the error occurred
MsgSendToRepor A status to indicate whether the error has been passed
ter Boolean 1 to reporter module or not
A status to indicate whether error has been reported
Reported Boolean 1 or not
A status to indicate whether the fixing component has
MsgSendToFixer | Boolean 1 been notified
DateOfError DateTime | 8 date and time when the error occurred
Fixes table
Column Data type | Size Description
id Integer 4 Primary key
ErroriD Integer 4 Foreign key links to Errors table
Type of fix. This is either manual patch, database script or
FixType Text 20 executable patch
This is used for manual patches. It is the folder where the files
FixDestination Text 300 are copied to
DateReleased date time | 8 Date when the fix was uploaded by developer

54

Applied Boolean 1 A status to indicate whether the fix has been applied or not

DateApplied Date time | 8 Date and time when the fix was applied

The “ErrorID” column of the fixes table links toalfid” column of the errors table.

Ty e Errors
Fixes 2 id
F id ErrorName
ErrorID Category
FixType ErrorText
FixSource AttachmentLink
FixDestination MachineName
DateReleased MsgSendToReporter
Applied Reported
DateApplied MsgSendToFixer
DateOfError

Figure 28: Database structure

4.3.9 Developer’'s Module (Bug Tracking System)

This is an application that is running on the saf®vdeveloper’s computer. Any reported
error will be displayed by this application. Onae exror is reported, it will be downloaded

and then displayed. The developer will then develd, and upload it using this module.
The two core functionalities are:

1. Download all details of the reported errors

2. Enable the developer to upload fixes for the errors

55

4.3.9.1 Flow diagram for the downloading of reported errors

O

< Check for new reported errors in Dropbox >

< Sleep (t)

< Read the error details from the error files >

< Update the status of the errors in database >

< Refresh the errors display list >

Figure 29: Download errors flow diagram

56

4.3.9.2 Flow diagram for the uploading of fixesfor errors

< Create a fix file >
< Copy the fix file to Dropbox folder >
< Update status of error in database >

Figure 30: Upload fixes flow diagram

4.3.9.3 Database design
The data for this module is stored in a SQL Sedatabase. The database has one table

described below:

Column Data type Size Description
Id Integer 4 A unique identity
ErroriD Integer 4 Id of the error in the client rhate
ErrorName Text 100 The name of the error

Category of the error: This is either screen ermrs
Category Text 20 event log errors
ErrorText Text Max The error text as captured
ReceivedFrom Text 200 The Hospital/client where the error igriro
FixUploaded | Boolean 1 The status of whether a &g been uploaded or not
DateOfError | DateTime 8 The date and time when ther eccurred

57

CHAPTER 5: SYSTEM IMPLEMENTATION AND TESTING

5.1 System development

The system is developed using C#.net. The ageatsuarin JADE platform, where some of
the functionalities such as error identificatiordaeporting are done in C#. The agents have
the capability to move across machines. This ibkeadaby the use Dot Net framework, using

a communication called remoting. Sample code haea Included in the appendix section.
The development was broken down into modules. dhewing modules were identified:
1) Error identification

Error identification is done by reading errors imekt logs, and identifying screen errors.
Identification of screen errors is done by capminscreenshot, and then checking for errors
details in the screenshot. The identification ofoer is done using Optical character
recognition tools. For this project Microsoft O#idocument Imaging (MODI), to read all
the text from the screenshot. We then check thrahghtext for any of the error in the

knowledge base.
2) Error Reporting

The errors are reported by use of dropbox softwHrne.error reporting agent creates an error
file, then copies it to a dropbox folder. This islaared folder that will enable the application

in the developer’s end to access the shared éleer f
3) Error fixing

This module checks for new fixes that have beewnaged by the developer. The process of
uploading fixes is done using dropbox. The file dyonization feature of dropbox is used

whereby; the developer places the fix in a foldethe server machine. The folder will be

synchronized, thus having the same file downloadete client machine.

4) Progress Displaying
Developer’'s computer

This module is showing the progress of the repoetears.

58

| have also developed a module that runs on theldpers end. This module is used to notify

the developers of new bugs reported, and alsodblerthe developers to upload fixes.

5.2 Configuration
Once the system is developed, the following comfgans will need to be done before

running the system:

1. Putting all the known errors in database. Theselarerrors that have occurred in the
past. The errors are obtained from the currentttagiing system

2. Setting/updating the name of the application téraeked for errors

3. Installing Dropbox folder in the various client nhates, and ensuring that Errors and
fixes folder are created. The folders are createohnie machine, and then shared with

the users in the other machines, including the ldpee.

5.3 Testing and Experimentation
The system was set up in a testing environmentiwivas composed of two client computers

representing the hospital computers and one compepeesenting the FG company server
machine. The system was tested in different cambtio ensure that it was functioning well.

The various tests are described below:
5.3.1 Testing system for screen and event logs ersadentification and reporting

The five agents are started as shown in the sdieebglow. The five agents are all mobile
and can move across the network. An agent hostrtedat installed on every computer. This

is the container where the agents will reside wthely move to the computer.

59

I - =

Agents Available Computers

v| Scrren_Error_Identifier KENNEDY
v| EventLogs_Error_Identifier KENNEDY-PC
v| Error_Fixer

M| Progress_Displayer

Refresh

Move the selected agents to the selected computers

Figure 31: Main screen for starting mobile agents

On moving the agents, the status of the agentss@aged below, showing if the agents

moved successfully to the target computer.

. ﬁle:,f,f,fD;fPrq‘em_mamgemcnenwinmebunggemclient.ExE_ L= | S

Scrren_Error_Identifier moved to KH-UIRTUAL successfully
EventLogs_Error_Ildentifier moved to KE-UIRTUAL successfully
Error_Reporter moved to KE-UIRTUAL successfully
Error_Fixer moved to KEK-UIRTUAL successfully
Progress_Displayer moved to KEK-UIRTUAL successfully

Figure 32: Screen shot showing agents moving to aher computer

60

The agent host in the target computer will indicateen an agent has moved to the target
computer as shown in the screenshot below. Thet@agelh continue running until the agent

host is closed.

slaeaper & e

AgentHostl started -
Preszs enter to stop...

EventLogs_Error_Identifier has arrived

Screen_Error_Identifier has arrvived

Error_Fixer has arrived
Error_Reporter has arrived

Progress_Displaver has arrived

Figure 33: Screen shot showing agents moving intoc@mputer

To test the error identification and reporting,oesr were created by running IQCare and

causing known errors like the one in the examplevbe

[0 1QGare Management (ystemAdmin] Test Fospial I W L w i W Y -— B W S

Service DB Operations Form Builder QueryBuilder Help Others Logout Exit

¥ oz

Figure 34: An example of an error occurring on IQCae System

61

Unhandled exception has occumed in your application. f you click
Continue, the application will ignore this emor and attempt to continue.
you click Guit, the application will close immediately.

Mo connection could be made because the target machine actively
refused it 127.0.0.1:8001.

| Detais

Figure 35: Details of the error occurring in IQCare system

A progress displayer displays the status of thersrrDifferent color codes are used to

differentiate between identified, reported and dixegrors.

Error_Name Error_Details
|Qcare_Emor - EventLogs Product: 1QCare AutoUpdat...

|Qcare_Emor - Evertlogs Product: 1QCare AutolUpdat...

Figure 36: Progress Displayer agent showing the gte of various errors that have been identified

Developer's Module (Bug tracking system)

The following application is running on the devedop machine, enabling him/her to view
any new reported errors. The seven errors showtinenprevious diagram have all been

62

reported, and the developer is able to view thenxlimking on ‘Download new errors’

button. On selecting an error, the error detagsdisplayed on the right hand side.

ErroriD

ErrorName

IQcare_Emor

ErrorText

Product: 1QCare ...

ReceivedFrom

KENNEDY

FixUploaded

IQcare_Emor

IQcare_Emor

Product: 1QCare ...

Product: 1QCare ...

KENNEDY

KENMNEDY

O@E

!

B

5

IQcare_Emor

Img_20130801_1...

Product: 1QCare -...

Management [Sy...

KK-VIRTUAL

KK-VIRTUAL

OO

Ima_20130801_1...

Management [Sy...

KK-VIRTUAL

Img_20130801_1...

Management [Sy...

KK-VIRTUAL

Img_20130801_1...

Management [Sy...

KK-VIRTUAL

Img_20130801_1...

Management [Sy...

KK-VIRTUAL

Ima_20130801_1...

Management [Sy...

KK-VIRTUAL

Img_20130801_1...

Management [Sy...

KK-VIRTUAL

Imn 0710801 1

Manznamernt [Suw

KIC-VIRT 4]

o o

Download new emors l

Upload fix

BackupDigkFile: CreateMedia: Backup device
‘EQCareDBBackuptQCare-Ver3. 5 Patch 1
2013-08-01 bak' failed to create. Operating
system emor 3ffailed to retrieve text for this
emor. Reason: 15100).

Figure 37: An application running at the developers machine.

We developed a fix, and then uploaded it by cligkam the “Upload fix” button as shown in
the screenshot below. Upon uploading a fix, thekgamnd colors changes to differentiate

them from errors that do not have fixes.

63

ErrorName ErrorText ReceivedFrom FixUploaded - .Ead(upDiskHle::D'eateMedia: Baciup device
= || 'E:QCareDBBackuphQCare-Verd.5 Patchi
=) |2013-08-01 bak’ failed to create. Operating

: : T S — : i system emor 3failed to retieve text for this
. [Acare Emor BackupDiskHle::. . . KENNEDY eror F{eason; 15700},

Emor Mame [IGc:aqe_Elmr

Error ID |2-iﬁ

Browse for fix: |d5_M3\SampIe Fnces'\.Sarane_Fnc_Sc:'ipt.sqll E

Fix Type: [Datahasem v]

Destination Folder for manual patches); C-QCare Management®, |

| Uplad || Cancel |

img_20130801_1... | Management [Sy... | KK-VIRTUAL
lima 20130801 1 | Mananemert 1Sy | KKAIRTIIAL

Download new emors I [Upload fix J

Figure 38: Process of uploading a fix by the deveber

The system was tested with both screen errors et &g errors as outlined below:
(a) Screenerrors

The system was tested by creating a number of kresvars to ensure that the system is able
to identify and report them. Ten known screen eriere caused to occur in two machines,
and all of them were identified. Some of the knosvrors were caused to occur more than
once therefore 52 errors were identified in toald for every instance, they were reported
successfully as shown in the table below. Ten fwese uploaded, and all of them were
applied successfully as shown in the table below.

Error Name Category Machine Name Reported Fix Uploded | Fixed
Img_20130731_ 211539 ScreenError | KK-VIRTUAL TRUE TRUE TRUE
Img_20130731_211932 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130731_ 211956 ScreenError | KK-VIRTUAL TRUE TRUE TRUE
Img_20130801_ 121156 ScreenError | KK-VIRTUAL TRUE TRUE TRUE
Img_20130801_121205 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_125236 ScreenError | KK-VIRTUAL TRUE TRUE TRUE
Img_20130801_142727 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144338 ScreenErrof KK-VIRTUAL TRUE FRE FALSE

64

Img_20130801_144339 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144340 ScreenError | KK-VIRTUAL TRUE TRUE TRUE

Img_20130801_144341 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144342 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144343 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144344 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144345 ScreenError | KK-VIRTUAL TRUE TRUE TRUE

Img_20130801_144905 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144906 ScreenError | KK-VIRTUAL TRUE TRUE TRUE

Img_20130801_144907 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_144912 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151040 ScreenError | KK-VIRTUAL TRUE TRUE TRUE

Img_20130801_ 151053 ScreenError | KK-VIRTUAL TRUE TRUE TRUE

Img_20130801_ 151054 ScreenError | KK-VIRTUAL TRUE TRUE TRUE

Img_20130801_151102 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151105 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151114 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151435 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151440 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151453 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151454 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151454 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151500 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_151501 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_152027 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_152033 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_152033 ScreenErrof KK-VIRTUAL TRUE FRE FALSE
Img_20130801_152051 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_152055 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_152055 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_152100 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_152108 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_152738 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_152800 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_153950 ScreenError KENNEDY TRUE FALSE FALSE
Img_20130801_154002 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_154005 ScreenError KENNEDY TRUE FALSE FALSE
Img_20130801_163348 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130801_163847 ScreenErrof KENNEDY TRUE FALSE FALSE

65

Img_20130803_090137 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130803_093635 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130803_093703 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130803_093727 ScreenErrof KENNEDY TRUE FALSE FALSE
Img_20130803_093738 ScreenErrof KENNEDY TRUE FALSE FALSE

Table 1: Table showing a list of screen errors

(b) Event logs errors

Twenty four (24) event log errors were identifiedveell as summarized in the table below:

Error Name Category Machine Name Reported Fix Uploded Fixed
IQcare_Error_106 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_11 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_118 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_128 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_134 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_139 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_142 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_170 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_176 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_180 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_19 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_21 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_235 EventLogs KK-VIRTUAL TRUE FALSE ESE
IQcare_Error_240 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_241 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_252 EventLogs KENNEDY TRUE FALSE FALSE
IQcare_Error_27 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_31 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_43 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_49 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_64 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_7 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_83 EventLogs KENNEDY TRUE TRUE TRUE
IQcare_Error_88 EventLogs KENNEDY TRUE FALSE FALSE

Table 2: Table showing list of event logs errors

66

The table shows that all the errors were repogdad,for all errors that a fix was provided, the

fix was downloaded and applied.

5.3.2 Testing system for internet downtime

The other thing that we tested was error identifice and reporting when the internet
connection is down. This was done by creating s@ystem errors. The Errors were
identified, and once the internet connection wasored, all the errors were reported to the
developer. The use of Dropbox ensured that oncetamet connection was available, the

files were synchronized appropriately.

5.3.3 Testing system with non errors

This involved testing system to ensure that it reperrors only. This involved creating
messages on the system that do not exist in thelkdge base as well as running the system
in a normal manner without any errors. In this ¢se system did not report any error.

5.3.4 Testing system for correctness screen erragit captured

This is a test to ensure that the captured scesérnistcorrect. The tests show that the captured
screen text was 60% correct. The algorithm usedhwhatching the text ensured that even
with 60% correctness, then error text could s#lrbatched with the text in database. Below

is an example of error text reported by the system:
Screen error text:

IQCare Management [SystemAdmin] - Test Hospital unhandled exception has occurred in
your application. If you click Continue, the application will ignore this error and attempt to
continue. If you click Quit, the application will close immediately. No connection could be
made because the target machine actively refused it 127.0.0.1: 8001

Reported error text

IQCare Management [SystemAdmini - Test Hospital - - Unhaned cep(ion has oocured your
appl,cgion you clidc OContinue, the ,plication wi qoe tWs error and tent to contn.ie. | you
ckdc (kd. the application wi dose immediate. No connection coid be made because the tag
machine adively refused | 1270.0.1 :8001.

5.3.5 Testing for Efficiency and accuracy

67

This is a test to ensure that the identified eisdhe one reported to the developer as well as

to test the length of time that the system takagport the error. The system identified errors

as soon as they occurred. All errors that werstifled were reported. Likewise all fixes that

were uploaded from the developer’s end were dovdddand then applied/installed.

5.3.6 System testing for user acceptability

The prototype system was set up at the companhéousers to experiment with it. We did a

research find out the user reaction to the promtgmd well as to assess the expected impact

of implementing the system in the origination. Tasults of the research are described in the

chapter 6.

5.3.7 Testing summary

(&) The summary of identification and reportingeafors

Type of Error Errors that occurred |Errors identifie d | Errors reported
Screen Errors 52 52 52
Event logs errors 24 24 24

Table 3: Summary of identification and reporting oferrors

(b) The summary of error fixing

Type of Error Fixes uploaded Fixes applied

Screen Errors 10 10

Event logs errors 10 10

Table 4: Summary of error fixing

(c) The overall summary of the tests done

Test Pass or fail | Comments
Event log errors identification Pass

Screen errors identification Pass The text

algorithm was adjusted
match only 60% of err

text

matching

}

68

|

Screenshots uploading Pass

Error reporting Pass

Error fixing Pass

Testing system in inconsistent internet connectiétass

Testing system with non errors Pass

Testing for accuracy and efficiency Pass The procetakes 3
maximum of 5 minutes

Testing for user acceptability Pass

Table 5: Testing summary

69

CHAPTER 6: EVALUATION AND RESULTS

6.1 Overview

This chapter presents the results of the data sisabAn online survey was done which
involved the respondents answering eleven questiohswhich ten were multi-choice
guestion. The survey contained ten statements inolwthe user stated how much they agree
with the statement in a scale of 0 to 4. ‘O’ reprdged “disagree” whereas ‘4’ represented

‘totally agree’.

6.2 Results and discussion
We received responses from 18 participants, andotteaving is an average of the responses

for the participants. The ten statements and thetrage score for the 18 respondents:

Statement Average Score
| am enthusiastic about the new system 2.72
The new system will cut down on customer suppast co 3.17

The new system will provide an efficient way to dbe issues from

clients 3.17
Developers will get insight of the errors which aevere and frequent 2.83
The new system will ensure faster response to syssuUes 3

Deployment of fixes across the hospitals will be@onuch more easily 3.11

I might lose my job as a result of the use of #yistem 2.17
This system is hard to use 1.94
For me, the system will frustrate my work 1.83

We will achieve less when using this new systent thihat we are
achieving now 1.78

Table 6: Table showing the average score for particgnts in the various survey questions

The first six statements are focused on evaluategpositive impact of the system. This is
represented graphically in the figure 32. The cheweals that on average, the system score
around 3 points out of 4, which is around 75%. H®hiews that the expected positive impact

of the system is good.

70

The last four statements are focused on evalu#itiegnegative impact of the system. This is
represented graphically in figure 33. The averageesfor the negative impacts of the system
is slightly less than 2, which is around 45%. Tikistill a high figure, which should not be

ignored. If the organization is to implement thegwsed system, then it will need to put

measures in place to address the four issues egpeekin the four statements.

Positive Impacts
3.3
3.2
3.1
o 3
g 29
% 2.8
5 2.7
g: 26 W Average
B
2.4 T T T T T
Enthusiastic Reduce Efficient way Insight to Faster Faster
about system customer for error severe and response to deployment
support cost reporting frequent customer of fixes across
errors issues hospitals

Figure 39: Figure showing the average score for thgositive impact questions

Negative Impacts
2.5
2 .
o
S 15 -
[
&
5 1
z M Average
0.5 -
O n T 1
Losing of job System hard to System We will achieve Average
use frustrating my less using system
work

Figure 40: Average score for the negative impact astions

71

The following is a comparison of the negative anel positive impacts of proposed system.
The positive impacts score higher than the negatiyeacts, and therefore this system is
likely to receive a good response among a majofithe users.

System Impact

| | | | | | I o
o N Q

T T
EC I R

3.5

2.5

1.5

0.5

o = N w
] l l]]
=

6\ &) (\% (&)
& &Qo & & & & S K O &
N) <% S K O X Q
SRR R N T
Q0 ¢,\>Q > 0\} oc," \/o" QO . \(90 0{,\
? < & & S < < > A
o & ¢ & N & & &8 &
B N I S S & e
& S P @ & & &
S & S X 0 &
<& b\} .\Q,Q c,Q/ Q/c’ Q,Q (7{ §\
Q\Q, ‘{\\0 <9 ‘k § R\
< & <& 9 N
@R
NS ,\6
2
X
&

Figure 41: Comparison of the positive and the negate impacts

An analysis of the individual responses reveald thanumber of users who have great
expectations of the system, entered low valueshi®megative impacts of the system. Users
who entered low values for the positives enteregh Ivialues for the negatives. For instance
respondent 10 (R10) recorded 4 for the negativeaah@nd 1.5 for the positive impact of the
system. This could be an issue to do with theualgittowards the system.

72

m = 0 o On

CA A
T XA AT —
Yy WA

»—4
2.5
2 l ‘\ / —&— Positive impact

1.5 l ——Negative imact
.1 _ l
A N\ : N\

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10R11R12R13R14R15R16R17R18

Respondents

Figure 42: Positive versus negative impacts

The final question in the survey was open endedaakdd “What are your thoughts about the

proposed system?” Eight participants respondelisoquestion, and here are their answers:

1.

| am not sure if this system would be effectivesame of our hospitals do not have
constant internet connection, therefore it migttein even more delays.

This is a very important idea to implement. Theligbto have the errors reported
automatically will be a nice. Also the fact tharesnshots will be captures, would
ensure easier recreation of errors occuring abdspitals

| like the proposed system. It would save the campite some money

| am not sure this will work, this is because itlwe hard to identify what is an error
and what is not, but all the same | like the idea

The idea of automatic error reporting is a good. dhé¢his can be implemented as
proposed, then it help in knowing what system issaiee being experienced in the
hospitals, and being able to fix in time beforeythecome serious issues

| like the system. This needs to be implemented.

| think this is a good system. My concern is onriésources it require. Will this affect
the running of the main system?

| think the system is good. | am looking forwarduging it.

73

Six out of the eight responses likes the propogstes, and think that it will work. This is
about 75% of the respondents reacting positivelatds the system.

6.3 Summary
The study reveals that reaction of the users tosvirel system is good, with about 75% of the

participants responding positively. The expectesitpe@ impact of the system is high. There
is also some expected negative impact of the sydtmat of the expected negative impact is
issue to to with attitude towards the system. Messueed to be put in place to ensure that

the positive impact is maintained, whereas the teganpact of the system is minimised.

74

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

In this study, we have identified the technologmserror detection, reporting and fixing of
errors. We have used these technologies in thelagmwent of a multi-agents based error
identification, reporting and fixing system. We batested the system under different
scenarios and it works well. We have then donevafuation of the expected impacts of the
system to the organization. From the research, stebkshed that the user response to the
system is good. We have also established thatgastitive and negative impacts are expected

if the system is implemented but the positive impawtweigh the negative.
7.2 Limitations

The solution we have developed is limited to trenidication of software errors that occur in

two forms only:

a) Errors that are manifested on the screen, i.e. vemearror occurs, evidences of the
error are displayed on the screen.

b) Errors that are logged on the Application’s Evegsl

Errors that are not are not manifested in the tvaysvabove will not be captured by the

developed system.
Secondly, the fixing of errors is limited to thdléaving three ways only:

a) Manual patching: This involves the overwriting betinstallation files in a program’s
installation directory

b) Running of a database update script: For databela¢ed issues, a script will be
updated which will make the necessary correctiotherdatabase.

c) Installation of an update program: This is the raogrof an executable file which will
re-install the program afresh or overwrite thedfiie the installation directory.

7.3 Further work

As explained above, | explored two ways of idemtifyerrors. More work need to be done to
come up with more ways of detecting and identifysaffware errors. Secondly, | used .NET

framework as a platform for the agents. ComparedAIOE, not much has been done on the

75

.NET framework; more work can be done on that ai@a&xplore the potentiality in running

agents in this platform.

76

REFERENCES

[1] IQcare,_http://www.igstrategy.net/frmigcaresitlast accessed February 15, 2013

[2] Russell, S. J. and Norvig, P. (2003). Artificlatelligence: a Modern Approach. Prentice
Hall, 2nd edition

[3] Claudiu I., Andy S. and Laura S. (2011). Mukient Approach for Data Analysis in a

Knowledge-based System for Contact Centers, hitww/.waset.org/journals/waset/v59/v59-

216.pdf last accessed February 15, 2013

[4] Michael N. and Larry M. (n.d.). Multiagent sgsts and societies of agents,
http://www.dsi.fceia.unr.edu.ar/downloads/iia/bidiap2-agentes.pdiast accessed February
15, 2013

[5] Katia P. (1998). Multiagent systems,
http://www.cs.uga.edu/~maria/pads/papers/AlMagl2aitticle.pdf, last accessed February
15, 2013

[6] Fabio L., Giovanni C. and Dominic G. (2007). @ping multiagent systems with
JADE,
http://www.ittelkom.ac.id/staf/lkms/Advanced%20SW%P9%202011/ebook/developing%?2
Omulti%20agent%20systems%20with%20JADE. et accessed February 15, 2013

[7] Neely M. (2006). Write Mobile Agents In .NET T®oam And Interact On Your Network,
http://msdn.microsoft.com/en-us/magazine/cc163&pX dast accessed February 15, 2013

[8] Wikipedia (n.d.). .NET Remotinghttp://en.wikipedia.org/wiki/.NET _Remotinglast
accessed February 15, 2013

[9] Hassan S. (2006). NET remoting with an easy angple,
http://www.codeproject.com/Articles/14791/NET-Reimgtwith-an-easy-example, last

accessed February 15, 2013

[10] Jacques F., Olivier G. and Fabien M. (2004)onk Agents to Organizations: an
Organizational View of Multi-Agent Systems,
http://www.lirmm.fr/~ferber/publications/papers/AB83 FerbGutMich.pdf, last accessed
February 15, 2013

77

[11] Priyanka S., Hassan M., Mijal M. and Prana Z04). Open Agent based system for
strategic decisions using JADE Architecture,
http://www.prjpublication.com/PrjAdmin/UploadFoldbfijal PPS_Pranav_hasan.pdf last

accessed February 15, 2013

[12] lon V. and Christian B. (1999). A study conueg the bug tracking applications,
http://picoforge.int-evry.fr/cqgi-
bin/twiki/viewfile/Helios_wp3/Web/Task1Category?relfilename=A_STUDY_ CONCERN
ING_THE BUG_TRACKING APPLICATIONS.pdflast accessed February 15, 2013

[13] Padmini C. (n.d.). Types of Software errorsl &lugs | Most Common Software bugs,
http://www.softwaretestingtimes.com/2010/04/typésaitware-errors-and-bugs-most.html,

last accessed February 15, 2013

[14] Investigation of software defect prediction,
http://shodhganga.inflibnet.ac.in/bitstream/106688/415/15 chapter%204.pdfst accessed
February 15, 2013

[15] Event logs, _http://technet.microsoft.com/eibgary/cc722404.aspxlast accessed
February 15, 2013

[16] About Optical Character Recognition in Google Drive,
http://support.google.com/drive/bin/answer.py?hEamswer=176692, last accessed
February 15, 2013

[17] Welker M. (2007). OCR with Microsoft Office,
http://www.codeproject.com/Articles/10130/OCR-wNtierosoft-Office, last accessed
February 15, 2013

[18] Language Technologies, Bangor University (0@ overview of the Tesseract OCR
(optical character recognition) engine, and itssgme enhancement for use in Wales in a pre-
competitive research stage, http://www.saltcynmaienglish/saltcymru_document5.ptHst

accessed February 15, 2013

[19] Google (n.d.). tesseract-ocr: An OCR Enginat twas developed at HP Labs between
1985 and 1995... and now at Google, http://codmigocom/p/tesseract-octist accessed
February 15, 2013

78

[20] OCR - Optical Character Recognition, OCR - @aummity Ubuntu documentation,
https://help.ubuntu.com/community/OCIast accessed February 15, 2013

[21] Tess4Jd, Tess4d - A Java JNA wrapper for TasserOCR API,
http://tess4j.sourceforge.neldst accessed February 15, 2013

[22] Yuan T., Chengnian S. and David L. (2012). toyed Duplicate Bug Report
Identification, 16th European Conference on Softwltaintenance and Reengineering,

http://www.comp.nus.edu.sg/~suncn/papers/csmrlAgsifaccessed February 15, 2013

[23] Jungwoo H., Christopher J., Jason V., IndrRBjit Hany E., Donald E., David L., and
Emmett W. (2007). Improved error reporting for safte that uses black-box components,

Microsoft research, http://research.microsoft.compbs/pubs/default.aspx?id=139858st

accessed February 15, 2013

[24] Hilton L. (2012). How to Write a Good Bug RepoSoftware and advice that's not of
this verse, Retrieved Janauary 16, 2013, from /higuerse.com/blog/2012/06/how-to-write-

a-good-bug-reportiast accessed February 15, 2013

[25] Nicolas B., Sascha J., Adrian S., Cathrin Rahul P. and Thomas Z. (n.d.). What Makes
a Good Bug Report, Retrieved Janauary 16, 2018 frovw.cs.vu.nl/~rpremraj/papers/08-

fse.pdf

[26] Apple (n.d.). Bug reporting best practices,
https://developer.apple.com/bugreporter/bugbedtipeschtml, last accessed February 15,
2013

[27] Serdar Y. (2012). 10 file-sharing options: Pbox, Google Drive and more,

http://www.computerworld.com/s/article/9228869/1ik fsharing_options_Dropbox_Google

Drive_and_moredast accessed February 15, 2013

[28] Wikipedia (2012). Defect tracking, http://enkpedia.org/wiki/Defect trackinglast
accessed February 15, 2013

[29] Shreya J. (2011). Top 10 Open Source Bug Tnack Systems,
http://www.toolsjournal.com/articles/item/184-tof-bpen-source-bug-tracking-systentast

accessed February 15, 2013

79

[30] Detect tracking tools,http://softwarequalitusoce.com/DefectTrackingTool.htmllast

accessed February 15, 2013

[31] Software Bug Tracking Tools,http://www.bugkang.info/software-bug-tracking-
tools.phpjast accessed February 15, 2013

[32] Scott A. Deloach, Mark F. Wood and H. Sparkmitulti-agent systems engineering,
from http://people.cis.ksu.edu/~sdeloach/publicaidournal/MaSE%20-%201JSEKE.pdf
last accessed February 15, 2013

[33] Roderic, Incomplete error messages #2, hthupal.org/node/1590212ast accessed
February 15, 2013

[34] Error reporting and disclosure, R. Waolf, G. dihes.
http://www.ncbi.nlm.nih.gov/books/NBK2652ast accessed February 15, 2013

[35] David U.(2008). Medication Error Reporting $ms: Problems and Solutions,
http://www.ismp-canada.org/download/Medication%20E¥%20Reporting%20Systems%20-
%20Problems%20and%20Solutions,ddEt accessed February 15, 2013

[36] W. Michael and P. Lin, (2004). “The prometheusnethodology”,
http://www.cs.rmit.edu.au/agents/www/papers/mseagf4df last accessed Feb 25th, 2013

[837] G. Caire, F. leal, J. Rodriques, and P.Inowa¢a007).Message: Methodology for
Engineering Systems of Software agents, http:/feecburescom.eu/~pub-deliverables/P900-
series/P907/TI12/p907ti2.pdhst accessed February 15, 2013

[38] Scott A. DelLoach, (n.d.).Multiagent Systemsgleering: A Methodology And
Language for Designing Agent Systems,http://masksu.edu/masedast accessed February
15, 2013

[39] Crash reporter, http://en.wikipedia.org/wiki&Sh_reporterdast accessed Feb 25th, 2013
[40] S. Vafadar, A.Barfouroush, M. Reza and A. 8hiy (2009). Bridging the Gaps in the
MaSE Methodology, http://ceit.aut.ac.ir/~vafadafdRence%20Files/Vafadar ATS2003.pdf,
last accessed February 15, 2013

[41] Automated Error Reporting: The Gateway to BettQuality, L. Lotfi.
http://www.infog.com/articles/Error-Reportintast accessed February 15, 2013

80

[42] Wikipedia (n.d.), Dropbox (Servicehttp://en.wikipedia.org/wiki/Dropbox_(servige)

Last accessed February 15, 2012

81

APPENDIX

Appendix 1: Online survey form

ERROR REPORTING AND FIXING SYSTEM

Online Survey

Thank you for checking out the error reporting prototype system. Please take some time to give us

your views on the system by answering the following questions. Note that this survey is anonymous

so try to be as honest as possible.

The first ten questions are multi-choice requiring you to tell us how you agree with the statements in
a scale of 0 to 4. "0" represents "STRONGLY DISAGREE", “1” represents “DISAGREE”, “2” represents
“NEITHER AGREE NOR DISAGREE”, “3” represents “AGREE” and "4" represents "TOTALLY AGREE".

The last question is an open question where we are asking you to give us your thoughts about the

system.

1. 1 am enthusiastic about the new system

c C .C.,CE,

2. The new system will cut down on customer support cost

C C C.,C L

4

3. The new system will provide an efficient way to get the issues from clients

C C C.,C L

4

4. Developers will get insight of the errors which are severe and frequent

C C C.,C L

4

5. The new system will ensure faster response to system issues

C C C.,C L

4

6. Deployment of fixes across the hospitals will be done much more easily

C C C.,C L

4

7. I might lose my job as a result of the use of this system

C C C.,C L

4

8. This system is hard to use

82

1[: 2[: 3[: 4

C G

9. For me, the system will frustrate my work

1[: 2[: 3[: 4

C G

10. We will achieve less when using this new system that what we are achieving now

1[: 2[: 3[: 4

C ,C

11. What are your thoughts about the prototype system?

Appendix 2: Data collected from the survey

NEGATIVE IMPACTS

wa3sAs ay3 3uisn SS3| A31YIE ||IM I

Jdom Aw Suizeaisniy waisAs

9sh 0} pJey s| waisAs

qof jo sso| 03 ped| ue)

POSITIVE IMPACTS

s|eydsoy ssoJoe saxiy Jo JuswAo|dap J91se4

S9NSS| J2W03Shd 0} asuodsald 1931se

SJ04J49 Juanbauy pue 919A3S 03 y3Isu|

3uiliodau 40443 40} Aem juaio1yy3

1502 Jy0ddns JowWo03sSnd 3dNpay

wa1sAs 1noge diaseisnyiug

SLN3IANOJS3Y

R1

R2

R3

R4
R5

R6

83

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

W WIW NNRPIRPDPRPIDdPW
Wlwlw w bl winvDrRPlwlbdIN
PRI RPIRPINWPAP WL DDNNDN

RrINRrINMW AW R AW R W

APl WR I WERIW AN

WINWWWWWWINDN W -

W W W W Pl WWWININWN

A PRPIWIN BAINDNWNIND WD

RPINIERPINWWINRER PN DNW

R R RPN WWINIRIPPINWW

Appendix 3: Sample code

(a) Sring matching algorithm

public static int DameraulLevenshteinDistance(string source, string target)

{

if (String.IsNullOrEmpty(source))
{
if (String.IsNullOrEmpty(target))
{
return 0;
}
else
{
return target.Length;
}
}
else if (String.IsNullOrEmpty(target))
{
return source.length;
¥

var score = new int[source.Length + 2, target.Length + 2];

var INF = source.Length + target.Length;

score[@, @] = INF;

for (var i = @; 1 <= source.Length; i++) { score[i + 1, 1]
for (var j = @; j <= target.Length; j++) { score[l, j + 1]

var sd = new SortedDictionary<char, int>();
foreach (var letter in (source + target))

if (!sd.ContainsKey(letter))
sd.Add(letter, 0);

¥
for (var i = 1; i <= source.Length; i++)
{
var DB = 0;
for (var j = 1; j <= target.Length; j++)
{
var il = sd[target[]j - 1]1];
var jl = DB;

if (source[i - 1] == target[j - 1])

score[i + 1, j + 1] = score[i, jI1;

84

i; score[i + 1, 9]
j; score[0, j + 1]

INF; }
INF; }

DB = j;
}

else

{
score[i + 1, j + 1] = Math.Min(score[i, j], Math.Min(score[i + 1, j], score[i,
j+1)) + 1
}

score[i + 1, j + 1] = Math.Min(score[i + 1, j + 1], score[il, j1] + (i - i1 - 1) +
1+(J-31-1));
}

sd[source[i - 1]] = i;

return score[source.Length + 1, target.Length + 1];

(b) Code for Screen Errorsidentification

protected override void Run()

{

Console.WriteLine("\nScreen_Error_Identifier has arrived");

//create working folders
Directory.CreateDirectory(sWorkingFolder);
Directory.CreateDirectory(sErrorsFolder);
Directory.CreateDirectory(sTempFolder);
Directory.CreateDirectory(sFixesFolder);

//Load the 1list of known errors
ErrorKB = LoadErrors();

//Remove any files left during the last execution
DeleteAllFilesInFolder(sWorkingFolder);
DeleteAllFilesInFolder(sTempFolder);

//Start today's business

for (5 5)
{
try
{
if

(ActiveWindowTitleReader.GetActiveWindowTitle().ToString().ToLower().IndexOf(sApp.ToLo
wer()) != -1)
{
//Printscreen active window
string sPath = PrintScreenActiveWindow();

//Do a full print screen and put in Temp folder
PrintScreen(sPath.Replace("Working", "Temp"));

//Extract the image text
string sErrorText = ExtractImageText(sPath);

//Check if we are still dealing with the current screen

if (sPreviousErrorText != sErrorText)

{
if (CheckIfErrorHasOccurred(sErrorText) == true)
{

//Copy the file in temp folder
File.Copy(sPath.Replace("Working", "Temp"), sPath,
true);

85

if (sPreviousErrorKeywords != sErrorKeywords)
{
//Save error in database
string sFileName =
Path.GetFileNameWithoutExtension(sPath);
int iRecordID = SaveError(@, sFileName,
"ScreenError", sErrorText, sErrorsFolder, Environment.MachineName, false,
DateTime.Now);

//Copy image to Errors folder

string sTempPath = sPath.Replace("Img ",
iRecordID.ToString() + "_");

File.Copy(sPath, sTempPath.Replace(sWorkingFolder,
sErrorsFolder), true);

}

File.Delete(sPath.Replace("Working", "Temp"));
}

//Keep a copy of the current text
sPreviousErrorKeywords = sErrorKeywords;
sPreviousErrorText = sErrorText;

}
//Delete the file in working folder
File.Delete(sPath);
¥
}
catch (Exception ex)
{

Console.WriteLine("\nScreen_Error_Identifier: The following error
+ ex.Message);

has occured:

if (ex.Message.TolLower().IndexOf("retrieving the com class
factory") != -1)
{
Console.WriteLine("\nScreen_Error_Identifier: The
Screen_error_Identifier will now run as a separate program");

Process.Start(@"C:\Dropbox\ErrorReporter\Agents\ScreenErrorIdentifier\ScreenkErrorsIden
tifier.exe");
break;

(d) Error reporting using Dropbox

protected override void Run()

{

Console.WriteLine("\nError_Reporter has arrived");

int iRecordID = 0;
string sErrorName
string sErrorText

string.Empty;
string.Empty;

for (5 5)
{

86

Thread.Sleep(20000);

Console.WriteLine("\nError_Reporter: Checking if new errors have been
identified...");

try
{
DataTable Errors = LoadIdentifiedErrors();
for (int i = @; i < Errors.Rows.Count; i++)
{
iRecordID = Convert.ToInt32(Errors.Rows[i]["id"]);
sErrorName = Errors.Rows[i]["ErrorName"].ToString();
sErrorText = Errors.Rows[i]["ErrorText"].ToString();
string sErrorDetails = iRecordID.ToString() + "|" + sErrorName
+ "|" + "Category not specified" + "|" + sErrorText + "|" + Environment.MachineName;

//Put fix in local dropbox folder
File.WriteAllText(sErrorsFolder + iRecordID.ToString() + "_" +
'.error", sErrorDetails);

sErrorName +

SaveError(iRecordID, , , , , , true, DateTime.Now);

Console.WriteLine("\nError_Reporter: Identified error
reported");

}
}
catch (Exception ex)
{

Console.WriteLine("\nError_Reporter: The following error has
+ ex.Message);

}

occured:

}

(e) Codefor Error fixing

private static void ApplyFixes()
{

List<sy LoadActiveFixesResult> oActiveFixes =
ODAL.sy_LoadActiveFixes().TolList();

for (int i = @; i < oActiveFixes.Count; i++)
{
try
{
if (oActiveFixes[i].FixType == "Script")
{
//Run database script
RunDatabaseScript(oActiveFixes[i].FixSource);

}
else if (oActiveFixes[i].FixType == "Filepatch")

{
//Copy patch files

CopyPatchFiles(oActiveFixes[i].FixSource,
oActiveFixes[i].FixDestination);

else if (oActiveFixes[i].FixType == "Executable")

{

87

//Execute the installation
RunInstallMSI(oActiveFixes[i].FixSource);

}

OoDAL.sy_UpdateFixStatus(oActiveFixes[i].id, true, DateTime.Now);
gatch (Exception ex)
¢ Console.WriteLine(ex.Message);
}

Appendix 4: Project Schedule

WEEK 1&2 3&4 5&6 7&8 9&10 11&12 13&14 15&16 17&18 19&20 21&22 23&24 25&26
. Proposal writing

. Present proposal to panelist

. System Analysis & design

. System Coding

. Implementation and testing

. Presentation and demo to panelist

. Prototype evaluation/ condusion

. Condusion & Project completion

© o Jd & U AW N =

. Presentation: evaluation, analysis & condusion

Appendix 5: Project Budget

Item Units | Cost per Unit (Kshs) | Total Cost (Kshs)
Wireless Router 1 10,000 10,000
Computers 3 40,000 120,000
Modems 2 2,500 5,000

MS Office 2007 1 2,500 2,500

Dropbox Software 1 0 0

RDBMS(SQL Server express) 1 0 0

Total 127,500

Appendix 6: How to run the system

1. Install Microsoft office 2007, ensuring that Micads office Document Imaging is

installed.

88

w

N o g A

Install Dropbox software and create a Dropbox foldeDrive C of the computer

Install SQI Server 2008, and then run the createbdae script (Create database
script.sql) in SQL server management studio

Install the Agent Host application in every compuiethe network

Install Agent Client application in the computerex the agents will be launched
Start the agent Host application in all the compauiie the network

Start the agent Client application and use it tedsagents to the computers on the

network

89

