
 

UNIVERSITY OF NAIROBI 

SCHOOL OF COMPUTING AND INFORMATICS 

 

MULTI-AGENTS SYSTEM BASED SOFTWARE ERROR IDENTIFICATION, 
REPORTING AND FIXING 

 

 

 

 

BY 

KENNEDY KIPKEMOI KIRUI 

 

 

 

 

  

 

   

PROJECT REPORT SUBMISSION FOR THE PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER 

SCIENCE 

AUGUST 2013 



1 

 

DECLARATION 

 

This project as presented in this report is my original work and has not been presented for any 

other institutional award. 

 

Sign: _______________________                                   Date: _____________________ 

Kennedy Kipkemoi Kirui 

P58/63885/2011 

 

 

 

 

This project has been submitted in partial fulfillment of the requirements for the degree of 

Masters of Science in Computer Science at the University of Nairobi with my approval as the 

university supervisor. 

 

Sign: _______________________                                   Date: _____________________ 

Dr. Elisha T. Opiyo Omulo 

School of Computing and Informatics 

University of Nairobi 

 

 



2 

 

ABSTRACT 

Software systems are being used in various sectors of the economy. Software is never perfect 

and would always have a defect that need to be passed to the developers to be investigated 

and then fixed. A numbers of software vendors have incorporated a feature in their software 

that automatically generates an error report and sends it to the developers. This is not the case 

for majority of other software that relies solely on the users to report the error. This poses a 

great challenge on the functionality of the system as some of errors are never reported, while 

others are reported with incomplete information. In this study, we designed a prototype for a 

multi agents-based error identification and reporting system that automatically identify errors 

as they occur on a software and reports them.  A multi-agent architecture is presented, 

involving a team of agents that identify and report the errors. Furthermore the agents 

automatically download fixes that are already available, and apply them. We tested the system 

with a number of known errors and all the errors were reported successfully. Further we tested 

the error fixing component with a number of fixes and all of them were applied successfully. 

We did an online survey to evaluate the user response to the system and the expected impact 

of the system to an organization. The data showed that the positive impacts outweigh the 

negative and the user response was good. 



3 

 

ACKNOWLEDGEMENTS 
I would like express my sincere gratitude to the Almighty God for thus far he has helped me. 

Secondly, a special gratitude goes to my supervisor, Dr. Elisha Opiyo for his invaluable 

support and guidance in this study.  I also appreciate the entire panelists for their comments, 

advices and support that helped in improving my project. Last but not least, much 

appreciation goes to my family, for their unyielding support and encouragement during this 

project. 

 



4 

 

 

TABLE OF CONTENTS  

DECLARATION..................................................................................................................................... 1 

ABSTRACT ............................................................................................................................................ 2 

ACKNOWLEDGEMENTS .................................................................................................................... 3 

LIST OF FIGURES ................................................................................................................................. 7 

LIST OF TABLES .................................................................................................................................. 8 

CHAPTER 1: INTRODUCTION............................................................................................................ 9 

1.1 Background ................................................................................................................................... 9 

1.2 Problem statement ......................................................................................................................... 9 

1.3. Goal of the study ........................................................................................................................ 10 

1.4 Objectives .................................................................................................................................... 10 

1.5 Justification of the study .............................................................................................................. 10 

1.6 Expected contributions of the study ............................................................................................ 10 

1.7 Assumptions and limitations ....................................................................................................... 11 

CHAPTER 2: LITEREATURE REVIEW ............................................................................................ 12 

2.1 Multi-Agent system ..................................................................................................................... 12 

2.1.1 An agent ............................................................................................................................... 12 

2.1.2 Multi-agent system ............................................................................................................... 12 

2.1.3 Characteristics of Multi-agent systems ................................................................................ 12 

2.1.4 Strengths of MAS ................................................................................................................. 13 

2.1.5 Communication and coordination ........................................................................................ 13 

2.2 Agent Platforms ........................................................................................................................... 15 

2.2.1 JADE .................................................................................................................................... 15 

2.2.2 .NET framework ................................................................................................................... 16 

2.3 Agent Development methodologies ............................................................................................ 17 

2.3.1 GAIA Methodology.............................................................................................................. 17 

2.3.2 Prometheus Methodology ..................................................................................................... 17 

2.3.3 MESSAGE methodology ..................................................................................................... 17 

2.3.4 Multi-agent System Engineering Methodology (MaSE) ...................................................... 18 

2.4 Bug identification and Reporting ................................................................................................ 18 

2.4.1 Bugs overview ...................................................................................................................... 18 

2.4.2 Error identification ............................................................................................................... 20 

2.4.3 Bug (error) reporting ............................................................................................................ 21 



5 

 

2.4.4 File sharing ........................................................................................................................... 23 

2.5 Bug tracking ................................................................................................................................ 26 

2.5.1 Bug tracking system ............................................................................................................. 26 

2.5.2 Components of a bug tracking system .................................................................................. 26 

2.5.3 Examples of bug tracking systems ....................................................................................... 27 

2.6 Fix deployment technologies ....................................................................................................... 28 

2.7 Related Work ............................................................................................................................... 28 

2.7.1 RedGate Automated Error Reporting system ....................................................................... 28 

2.7.2 Other automated error reporting tools .................................................................................. 29 

2.7.3 Gaps and limitations of the solutions ................................................................................... 30 

2.8 Proposed architecture .................................................................................................................. 31 

CHAPTER 3: METHODOLOGY ......................................................................................................... 33 

3.1 System Design ............................................................................................................................. 33 

3.1.1 Overview .............................................................................................................................. 33 

3.1.2 Analysis phase ...................................................................................................................... 33 

3.1.3 Design phase ......................................................................................................................... 33 

3.1.4 Tools required ....................................................................................................................... 34 

3.1.5 Justification of MaSE methodology ..................................................................................... 34 

3.1.6 Limitations of MaSE methodology ...................................................................................... 34 

3.2 Research Methodology and design .............................................................................................. 35 

3.2.1 Overview .............................................................................................................................. 35 

3.2.2 Data sources ......................................................................................................................... 35 

3.2.3 Data collection procedure ..................................................................................................... 35 

3.2.4 Data analysis ......................................................................................................................... 36 

CHAPTER 4: SYSTEM ANALYSIS AND DESIGN .......................................................................... 37 

4.1 System specification .................................................................................................................... 37 

4.1.1 Overview .............................................................................................................................. 37 

4.1.2 Inputs and outputs ................................................................................................................ 37 

4.1.3 Data management ................................................................................................................. 37 

4.1.4 System failure ....................................................................................................................... 38 

4.2 System analysis ........................................................................................................................... 38 

4.2.1 Identifying goals ................................................................................................................... 38 

4.2.2 Applying Use Cases ............................................................................................................. 40 

4.2.3 Refining roles ....................................................................................................................... 41 

4.3 System Design ............................................................................................................................. 43 

4.3.2 Flow design .......................................................................................................................... 44 



6 

 

4.3.3 Create agent classes .............................................................................................................. 48 

4.3.4 Constructing conversations .................................................................................................. 49 

4.3.5 Creating a sequence diagram ................................................................................................ 51 

4.3.6 Assembling agents ................................................................................................................ 52 

4.3.7 Instantiating the agents ......................................................................................................... 53 

4.3.8 Database design .................................................................................................................... 54 

CHAPTER 5: SYSTEM IMPLEMENTATION AND TESTING ........................................................ 58 

5.1 System development .................................................................................................................... 58 

5.2 Configuration............................................................................................................................... 59 

5.3 Testing and Experimentation ....................................................................................................... 59 

5.3.1 Testing system for screen and event logs errors identification and reporting ...................... 59 

5.3.2 Testing system for internet downtime .................................................................................. 67 

5.3.3 Testing system with non errors ............................................................................................. 67 

5.3.4 Testing system for correctness screen error text captured .................................................... 67 

5.3.5 Testing for Efficiency and accuracy ..................................................................................... 67 

5.3.6 System testing for user acceptability .................................................................................... 68 

5.3.7 Testing summary .................................................................................................................. 68 

CHAPTER 6: EVALUATION AND RESULTS .................................................................................. 70 

6.1 Overview ..................................................................................................................................... 70 

6.2 Results and discussion ................................................................................................................. 70 

6.3 Summary ..................................................................................................................................... 74 

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS ........................................................... 75 

REFERENCES ...................................................................................................................................... 77 

APPENDIX ........................................................................................................................................... 82 

Appendix 1: Online survey form ....................................................................................................... 82 

Appendix 2: Data collected from the survey ..................................................................................... 83 

Appendix 3: Sample code .................................................................................................................. 84 

Appendix 4: Project Schedule ........................................................................................................... 88 

Appendix 5: Project Budget .............................................................................................................. 88 

Appendix 6: How to run the system .................................................................................................. 88 

 



7 

 

LIST OF FIGURES 

Figure 1: Agent in its environment ........................................................................................................ 12 

Figure 2: Simple structure of KQML .................................................................................................... 14 

Figure 3: Contract net protocol.............................................................................................................. 15 

Figure 4: Jade architecture .................................................................................................................... 16 

Figure 5: How to get a public link from a file in dropbox ..................................................................... 25 

Figure 6: Sugar sync file manager ......................................................................................................... 26 

Figure 7: How error is reported for Red Gate’s SQL Source Control ................................................... 29 

Figure 8: Stack trace of Red Gate’s Error reporting system .................................................................. 29 

Figure 9: A diagrammatic representation of the proposed architecture ................................................ 31 

Figure 10: Goal hierarchy diagram........................................................................................................ 40 

Figure 11: Use cases diagram ................................................................................................................ 41 

Figure 12: Role Model Diagram............................................................................................................ 42 

Figure 13: Concurrent model diagram .................................................................................................. 42 

Figure 14: Overall architecture .............................................................................................................. 43 

Figure 15: Overall flow of the system ................................................................................................... 44 

Figure 16: Screen error identification flow diagram ............................................................................. 45 

Figure 17: Event logs error identification flow diagram ....................................................................... 46 

Figure 18: Error reporting flow diagram ............................................................................................... 47 

Figure 19: Error fixing flow diagram .................................................................................................... 48 

Figure 20: Agent classes diagram.......................................................................................................... 49 

Figure 21: Communication diagram for error identification ................................................................. 50 

Figure 22: Communication diagram for error reporting ........................................................................ 50 

Figure 23: Communication diagram for error fixing ............................................................................. 51 

Figure 24: Communication diagram for progress display ..................................................................... 51 

Figure 25: Sequence diagram ................................................................................................................ 52 

Figure 26: Agent architecture ................................................................................................................ 53 

Figure 27: Deployment diagram ............................................................................................................ 54 

Figure 28: Database structure ................................................................................................................ 55 

Figure 29: Download errors flow diagram ............................................................................................ 56 

Figure 30: Upload fixes flow diagram ................................................................................................... 57 

Figure 31: Main screen for starting mobile agents ................................................................................ 60 

Figure 32: Screen shot showing agents moving to another computer ................................................... 60 

Figure 33: Screen shot showing agents moving into a computer .......................................................... 61 

Figure 34: An example of an error occurring on IQCare System ......................................................... 61 

Figure 35: Details of the error occurring in IQCare system .................................................................. 62 

Figure 36: Progress Displayer agent showing the status of various errors ............................................ 62 

Figure 37: An application running at the developer’s machine. ............................................................ 63 

Figure 38: Process of uploading a fix by the developer ........................................................................ 64 

Figure 39: Figure showing the average score for the positive impact questions ................................... 71 

Figure 40: Average score for the negative impact questions ................................................................. 71 

Figure 41: Comparison of the positive and the negative impacts .......................................................... 72 

Figure 42: Positive versus negative impacts ......................................................................................... 73 

 



8 

 

LIST OF TABLES 

Table 1: Table showing a list of screen errors ....................................................................................... 66 

Table 2: Table showing list of event logs errors ................................................................................... 66 

Table 3: Summary of identification and reporting of errors .................................................................. 68 

Table 4: Summary of error fixing .......................................................................................................... 68 

Table 5: Testing summary ..................................................................................................................... 69 

Table 6: Table showing the average score for participants in the various survey questions ................. 70 



9 

 

CHAPTER 1: INTRODUCTION 

1.1 Background 

Software systems are being used in various sectors of the economy. Most softwares are never 

perfect and would always have defects that need to be passed to the developers to be 

investigated and then fixed. A numbers of software vendors have incorporated a feature in 

their software that automatically generates an error report and sends it to the developers 

whenever an error occurs. This is not the case for majority of other software that relies solely 

on the users to report the error. This poses a great challenge on the functionality of the system 

as some of errors are never reported, while others are reported with incomplete information. 

One such software which does not have an automatic error reporting mechanism is IQcare, an 

EMR developed by FG Company. 

IQCare is a data capture and reporting system with patient management tools designed to 

measure patient outcomes [1]. It can be implemented in a single stand-alone configuration for 

smaller hospitals and in networked configuration with multiple simultaneous data entrants for 

higher volume hospitals. The application is highly configurable and provides sophisticated ad 

hoc and pre-defined reporting capabilities. To date, IQCare has been implemented in over 70 

hospitals in Uganda, Kenya, Nigeria and Tanzania [1].  

In Kenya, hospitals are located across the country. Each hospital has a data manager and one 

or more data entry clerks. Data entry clerks are involved in entering data into the EMR while 

data manager oversees the overall data entry process and the use of the EMR, reporting any 

issues to FG support staff. 

1.2 Problem statement 

Error reporting for IQCare system is done manually. Whenever a hospital encounters an error, 

the data manager needs to send an email to FG support staff, giving the details of the error to 

aid in the investigation. Once a fix is found, a FG staff will travel to the hospital to fix the 

issue. If the reported error is not hospital-specific, then the fix will need to be applied in all 

the other hospitals. 

With such a setup, there are three major challenges. The first issue is incomplete error reports. 

This is a major issue as outlined by [33], [25] and [34]. Whenever a hospital encounters an 

error, they need to send an error report to FG support staff. These errors are missing important 

information such as what the user was doing before the system error occurred.  



10 

 

The second one is unreported bugs. A number of errors that occur when using the system are 

never reported to the FG support staff. System users do not report some of the errors, a times 

thinking they are the cause of the errors [35]. Some of the unreported errors lead to critical 

issues such as loss of data. Often, such cases are only reported when they are critical. 

Lastly, there is a problem during the deployment of fixes to the hospitals. After finding a fix 

for a bug at a hospital, the support staff needs to travel to the facility to apply the fix. This 

might delay for a few days for hospitals that are far. It is even more challenging for those 

fixes that need to be deployed to multiple hospitals. 

1.3. Goal of the study 

The main goal of this study is to develop a system that will run alongside the main system, 

tracking the use of the system, identifying errors and reporting them whenever they occur. 

The system will also automatically apply the fix, once it is ready. 

1.4 Objectives 

The following are the objectives of this project: 

(a) Project objectives 

1) Formulate the system requirements 

2) Develop a Multi-agents based prototype system using an appropriate technology, 

which address the problem of error reporting and fix deployment. 

(b) Research objectives 

1. Evaluate the developed system by assessing the user reactions to the prototype 

2. Assess the expected impact of the system to the organization 

1.5 Justification of the study 

Software vendors are spending a lot of resources in providing support for their softwares. At 

the same time, fixing of issues raised by clients take long to be fixed. Agents can be employed 

to carry out continuous monitoring of software and report any errors that occur. Furthermore, 

the agents will automatically apply the fixes as soon as they are made available by developers. 

This ensures real-time reporting as well as well as faster response by developers. 

1.6 Expected contributions of the study 

The following are the expected contributions of a successful implementation of the system: 



11 

 

1) It provides an efficient way to get client issues, while reducing or even eliminating the 

to-and-fro between clients and developers. 

2) Developers will get the insight into which bugs are the most severe or frequent, 

allowing them to prioritize bug fixes based on facts, not guesswork. 

3) It enables faster response to system issues from the hospitals and delivery of fixes, 

thus meeting, or even surpassing their expectations 

4) It ensures the fixing of errors/bugs before they get complicated. 

5) Deploying fixes that cut across multiple hospitals will be done more easily 

6) It will lower customer support costs as the constant travel to sites will be minimized 

1.7 Assumptions and limitations 

These are the assumptions and limitation made concerning this study: 

1) We will not be in a position to implement the system in the real life scenario therefore 

we will have to implement it on a simplified environment which will reflect the real 

life scenario. 

2) The errors that will be reported by the system are those that affect the smooth running 

of the system, such as error pop ups, software crashing, unhandled exceptions etc.  

3) IQCare EMR is currently running in Windows platform only, and therefore the 

solution that we will develop might not work in other platforms 



12 

 

CHAPTER 2: LITEREATURE REVIEW 

2.1 Multi-Agent system 

2.1.1 An agent 

An agent is anything that can be viewed as perceiving its environment through sensors and 

acting upon that environment through actuators [2]. [2] further describe an agent as a special 

software component that has autonomy that provides an interoperable interface to an arbitrary 

system and/or behaves like a human agent, working for some clients in pursuit of its own 

agenda [3]. 

 
Figure 1: Agent in its environment 

 

2.1.2 Multi-agent system 

This is a term used to describe a group of intelligent agents that interact with each other in an 

environment. The agents are able to operate effectively and interact with each other 

productively [4]. The environment, in which the agents reside, provides the computational 

infrastructure for the agents to communicate/interact with one another.  

2.1.3 Characteristics of Multi-agent systems 

The characteristic of MASs are that (1) each agent has incomplete information or capabilities 

for solving the problem and thus, has a limited viewpoint; (2) there is no system global 

control; (3) data are decentralized; and (4) computation is asynchronous. 



13 

 

 

2.1.4 Strengths of MAS 

Multi-agent system has a number of capabilities which include the following, explained by 

Katia [5]: 

1) Ability to solve problems that are too large for a centralized agent to solve because of 

resource limitations or the sheer risk of having one centralized system that could be a 

performance bottleneck or could fail at critical times. 

2) Ability to allow for the interconnection and interoperation of multiple existing legacy 

systems. 

3) Ability to provide solutions to problems that can naturally be regarded as a society of 

autonomous interacting components agents. For example, in meeting scheduling a 

scheduling agent that manages the calendar of its user can be regarded as autonomous 

and interacting with other similar agents that manage calendars of different users  

4) Ability to provide solutions that efficiently use information sources that are spatially 

distributed. Examples of such domains include sensor networks  

5) Ability to provide solutions in situations where expertise is distributed e.g. health care, 

and manufacturing. 

6) It enhances performance along the dimensions of computational efficiency, reliability, 

extensibility, robustness, maintainability, responsiveness, flexibility and reuse. 

2.1.5 Communication and coordination 

One of the key components of multi-agent systems is communication. Agents need to be able 

to communicate with users, with system resources, and with each other if they need to 

cooperate, collaborate, negotiate and so on. In particular, agents interact with each other by 

using some special communication languages called agent communication languages, that 

rely on speech act theory[6] and that provide a separation between the communicative acts 

and the content language. The first agent communication language with a broad uptake was 

KQML [6]. 

 

2.1.5.1 KQML 

Knowledge Query and Manipulation Language is a protocol for exchanging information and 

knowledge among agents. The elegance of KQML is that all information for understanding 



14 

 

the message is included in the communication itself [7]. It allows message content to be 

represented in a first-order logic-like language called KIF [8]. The basic protocol is defined 

by the following structure: 

 
Figure 2: Simple structure of KQML 

 

2.1.5.2 Coordination 

Coordination is a process in which agents engage to help ensure that a community of 

individual agents acts in a coherent manner [9]. [9] gives the following reasons why multiple 

agents need to be coordinated: (1) agents’ goals may cause conflicts among agents’ actions, 

(2) agents’ goals may be interdependent, (3) agents may have different capabilities and 

different knowledge, and (4) agents’ goals may be more rapidly achieved if different agents 

work on each of them.  

Coordination among agents can be handled with a variety of approaches including 

organizational structuring, contracting, multi-agent planning and negotiation. 

Organizational structuring provides a framework for activity and interaction through the 

definition of roles, communication paths and authority relationships [10]. An important 

coordination technique for task and resource allocation among agents and determining 

organizational structure is the contract net protocol [10]. This approach is based on a 

decentralized market structure where agents can take on two roles, a manager and contractor. 

The basic premise of this form of coordination is that if an agent cannot solve an assigned 

problem using local resources/expertise, it will decompose the problem into sub-problems and 

try to find other willing agents with the necessary resources/expertise to solve these sub-

problems. 

 



15 

 

The problem of assigning the sub-problems is solved by a contracting mechanism consisting 

of: (1) contract announcement by the manager agent, (2) submission of bids by contracting 

agents in response to the announcement, and (3) the evaluation of the submitted bids by the 

contractor, which leads to awarding a sub-problem contract to the contractor(s) with the most 

appropriate bids (see Figure 3). 

 

 
Figure 3: Contract net protocol 

 

2.2 Agent Platforms 

2.2.1 JADE 

JADE was implemented to provide programmers with the following ready-to-use and easy-to-

customize core functionalities [6]. JADE provides a fully distributed system inhabited by 

agents, each running as a separate thread, potentially on different remote machines, and 

capable of transparently communicating with one another. 

A JADE platform is composed of agent containers that can be distributed over the network. 

Agents live in containers which are the Java process that provides the JADE run-time and all 

the services needed for hosting and executing agents [11]. There is a special container, called 

the main container, which represents the bootstrap point of a platform: it is the first container 



16 

 

to be launched and all other containers must join to a main container by registering with it. 

The diagram shows a JADE architecture. 

 

 
Figure 4: Jade architecture 

2.2.2 .NET framework 

Some features in .NET framework provide for the development of agents through the 

combination of units of data and code that can even be moved across machines in a network. 

This can be achieved through remoting [7]. .NET Remoting is a Microsoft application 

programming interface (API) for interprocess communication [8].  

Microsoft .NET Remoting provides a framework that allows objects to interact with each 

other across application domains. Remoting was designed in such a way that it hides the most 

difficult aspects like managing connections, marshaling data, and reading and writing XML 

and SOAP. The framework provides a number of services, including object activation and 

object lifetime support, as well as communication channels which are responsible for 

transporting messages to and from remote applications. [9] 

.NET Remoting allows an application to make an object available across remoting 

boundaries, which include different appdomains, processes or even different computers 

connected by a network. The .NET Remoting runtime hosts the listener for requests to the 

object in the appdomain of the server application. At the client end, any requests to the 



17 

 

remotable object are proxied by the .NET Remoting runtime over Channel objects that 

encapsulate the actual transport mode, including TCP streams, HTTP streams and named 

pipes. As a result, by instantiating proper Channel objects, a .NET Remoting application can 

be made to support different communication protocols without recompiling the application 

[8].  

2.3 Agent Development methodologies 

2.3.1 GAIA Methodology 

This is a methodology that is specifically tailored for the analysis and design of agent-based 

systems. Its main purpose is to provide the designers with a modeling framework and several 

associated techniques to design agent-oriented systems. 

It has two stages, namely, Analysis and Design. Analysis involves building the conceptual 

model of the target system. Design transforms the abstract constructs to concrete entities 

which have direct mapping to implementation code. 

GAIA methodology assumes the availability of a requirement specification. 

2.3.2 Prometheus Methodology 

In this methodology, the agent development process is divided into three phases namely 

system specification, architectural design and then the detailed design [36]. 

a) System Specification: At this phase, the system is specified using goals and use-

case scenarios. The system’s interface to its environment is described in terms of 

percepts, actions and external data.  This phase also involve describing the 

functionalities of the proposed system. 

b) Architectural Design: In this phase, agent types are identified and the overall 

structure of the system is captured in a system overview diagram.  

c) Detailed Design: This is the phase where an agent’s internals are defined and 

developed in terms of capabilities, data, events and plans.  

2.3.3 MESSAGE methodology 

It comprises [37]: 



18 

 

a) A meta-model extending the UML meta-model and therefore adding new meta-

concepts (such as Agent, Goal and Task) to those already considered in UML (e. g. 

Class, Actor). 

b) A set of views focusing each one on specific aspects of the analysis and design 

models while hiding the complexity of the model as a whole. 

c) A number of guidelines and heuristic rules helping the developer in building the 

analysis and design model and in using them to actually implement the system 

under development. 

d) A proper notation that allows easily and intuitively representing the above views in 

a graphical (i.e. through diagrams) and textual (i.e. through schemas) Way.  

 

2.3.4 Multi-agent System Engineering Methodology (MaSE) 

The MaSE methodology is similar to traditional software engineering methodologies is but 

specialized for use in the distributed agent paradigm. It has two phases: Analysis and design. 

The MaSE Analysis phase consists of three steps: Capturing Goals, Applying Use Cases, and 

Refining Roles. The Design phase has four steps: Creating Agent Classes, Constructing 

Conversations, Assembling Agent Classes, and System Design. 

In this study we are using MaSE methodology for the design and analysis of the system. 

 

2.4 Bug identification and Reporting 

2.4.1 Bugs overview 

2.4.1.1 Bug (software bug)  

Ion et al [11] describes a bug as an error, flaw, mistake, "undocumented feature", failure, or 

fault in a computer program that prevents it from behaving as intended, for example 

producing an incorrect result. An error occurs when software cannot complete a requested 

action as a result of some problem with its input, configuration, or environment.  

2.4.1.2 Classification of software bugs  

 Software bugs can be classified according to severity or according to type. Classification 

according to severity gives the following classes[14]: 



19 

 

1) Catastrophic: These are defects that cause disastrous consequences for the system in 

question e.g. critical loss of data, critical loss of system availability, critical loss of 

security, critical loss of safety, etc. 

2) Severe: These are defects that cause very serious consequences for the system in 

question e.g. function is severely broken, cannot be used and there is no workaround. 

3) Major: These are defects that cause significant consequences for the system in 

question. It is a defect that needs to be fixed but there is a workaround e.g. function 

badly broken but workaround exists 

4) Minor: These are defects that cause small or negligible consequences for the system in 

question. They are easy to recover from or work around them e.g. misleading error 

messages or displaying output in a font or format other than what the customer 

desired. 

5) No Effect: These are trivial defects that can cause no negative consequences for the 

system in question. Such defects normally produce no erroneous outputs e.g. simple 

typos in documentation or bad layout or misspelling on screen.  

Padmini C. [13] classifies bugs according to type as follows: 

1) User Interface Errors: These are caused by missing or wrong functions, thus the 

system does not do what the user expects. It is characterized by missing information, 

misleading, confusing information, wrong content in Help text, inappropriate error 

messages, and performance issues - Poor responsiveness. 

2) Error Handling errors: These are defects caused by inadequate protection against 

corrupted data, tests of user input, version control etc. 

3) Boundary related errors: These are errors caused by exceeding boundaries in loop, 

space, time, memory, mishandling of cases outside boundary etc. 

4) Calculation errors: These are errors caused by bad logic, bad arithmetic, outdated 

constants, incorrect conversion from one data representation to another, wrong 

formula, incorrect approximation etc. 

5) Initial and Later states not set: There errors are caused by failure to set data item to 

zero, to initialize a loop-control variable, to re-initialize a pointer, to clear a string or 

flag, or incorrect initialization. 

6) Control flow errors: These errors are caused by stack underflow/overflow, failure to 

block or un-block interrupts, comparison yielding wrong result, missing or wrong 

default value, or wrong data-types. 



20 

 

7) Errors in Handling or Interpreting Data: There are caused by un-terminated null 

strings, or overwriting a file after an error exit or user abort. 

8) Race Conditions: This error occurs as a result or racing for resources, for instance a 

task starts before its prerequisites are met, or messages don't arrive in the order sent. 

9) Load Conditions: These errors occur when the required resources are not available e.g. 

memory space. These errors occur when priority tasks cannot put off less priority 

tasks, or programs do not return unused memory. 

10) Hardware errors: Occur as a result of wrong device, device unavailable, under-

utilizing device intelligence, misunderstood status or return code, wrong operation or 

instruction codes etc. 

11) Testing Errors: These are errors that occur as a result of some failure during testing 

such as failure to check for unresolved problems just before release, failure to verify 

fixes, failure to provide summary report etc. 

2.4.2 Error identification 

Bugs that occur in a system need to be identified. One way is by looking at the system event 

logs. Windows logs store events from legacy applications and events that apply to the entire 

system[15].  There are three categories of logs: Application, security and system logs[15].  

Application logs contain events logged by applications or programs. For example, a database 

program might record a file error in the application log. 

Other errors can be identified on the user interface. These include error messages on the user 

interface of the running program, which can pop up from the system. Such error can be 

identified by monitoring the text on the open windows, noting any key words that suggest that 

an error has occurred in the system. Monitoring of screen text can be done in the following 

ways: 

1) Programmatically, there libraries that can be used to get application captions, URLs 

and other active text on the screen. 

2) Use of Optical Character Recognition tools 

2.4.2.1 Optical character recognition 

Optical Character Recognition (OCR) lets you convert images with text into text documents 

using automated computer algorithms [16].  To use this means, a screen shot of the error 

needs to be done, then the error details can be extracted using the OCR. 



21 

 

Example of OCR 

Microsoft Office Document Imaging [17] 

An OCR component called Microsoft Office Document Imaging comes with Microsoft office 

2007. When Microsoft Office is installed, you can add the OCR libraries to your project. 

Supported image formats are TIFF, multi-page TIFF, and BMP. 

Tesseract OCR Engine 

It is thought of as one of the most accurate open source OCR engines available [19]. 

Combined with the Leptonica Image Processing Library it can read a wide variety of image 

formats and convert them to text in over 60 languages. It was one of the top 3 engines in the 

1995 UNLV Accuracy test [19]. It supports output text formatting, hOCRpositional 

information and page layout analysis. Support for a number of new image formats was added 

using the Leptonica library. It supports a number of languages. 

It can recognize Arabic, English, Bulgarian, Catalan, Czech, Chinese, Danish, German, 

Greek, Finnish, French, Hebrew, Croatian, Hungarian, Indonesian, Italian, Japanese, Korean, 

Latvian, Lithuanian, Dutch, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak, 

Slovenian, Spanish, Serbian, Swedish, Tagalog, Thai, Turkish, Ukrainian and Vietnamese. 

Tesseract can be trained to work in other languages too [20]. 

Tess4J  

Tess4J is a Java JNA wrapper for Tesseract OCR API [21]. The library provides optical 

character recognition (OCR) support for[21]: 

1) TIFF, JPEG, GIF, PNG, and BMP image formats 

2) Multi-page TIFF images 

3) PDF document format 

Tess4J is being developed and tested with Java 32-bit on Windows and Linux [21]. 

The Tesseract OCR DLL file, language data for English, and sample images are bundled with 

the program. Language data packs for Tesseract should be decompressed and placed into the 

tessdatafolder[21]. 

2.4.3 Bug (error) reporting 



22 

 

Bug reporting process is a way to elicit feedback from end users on defects and failures that 

affect them. Systems like Bugzilla or Jira are frequently used to aid this bug reporting process 

[22]. A high-quality error report allows a user to understand and correct the problem. 

Unfortunately, the quality of error reports has been decreasing as software becomes more 

complex and layered [23]. 

End-users take the cryptic error messages given to them by programs and struggle to fix their 

problems using search engines and support websites, before finally submitting to developers. 

Developers cannot fix the errors when they receive an ambiguous or otherwise insufficient 

error indicator from a black-box software component. Therefore there is need to write a good 

bug report. 

2.4.3.1 How to write a good bug report 

Hilton[24] gives the following hints on how to write a good bug report: 

1. Be specific: Use the exact same words as the application. If you see something, write 

it as is. If you click something, write its exact name. For menus: Follow the sequence 

of menus separated by the ‘/’ character, for example “File / Save As…” For screens, 

Look at the top of the window and type exactly what is there. For buttons or tabs, 

Copy and paste the exact text shown. For links: Copy and paste the whole URL 

including the “http://”. 

2. Don’t ignore error dialogs: Read the error dialog messages as they are very helpful. 

3. Describe what was happening before: To reproduce it we need to reproduce the whole 

workflow, which means we need you to tell us what you were doing before the bug 

appeared and what the software was doing too. 

4. Report the first error you see: Oftentimes, people get so used to an error that they 

become tuned to ignoring it. So when a new error occurs, they report that as the “first” 

error they saw. Not true. If a part of a system has failed, the next error may be a result 

of the first failure and not a real error in itself. We need to know if you ignored a crash 

before you got this error. 

5. Attach or Copy and Paste: Copy and paste whatever you can into the bug report, attach 

as many screens and files as you can. The more information we have, the more likely 

we’ll find the issue and fix it. 

6. Workarounds are Bugs: If you cannot get something done using the expected process, 

but can with a workaround, you have a bug. Report it. Workarounds cause huge 



23 

 

problems later on so it is best to get the expected process fixed than rely on the 

workaround. 

2.4.3.2 Components of a good bug report 

Among the problems experienced by developers, incomplete information is the most 

commonly encountered [25]. Common problems experienced by developers when going 

through bug reports from clients include errors in steps to reproduce; bug duplicates; and 

incorrect version numbers, observed and expected behavior, incomplete information [25] 

among others. Another issue that developers often seemed challenged by is the fluency in 

language of the reporter. Most of these problems are likely to lead developers astray when 

fixing bugs. Therefore there is need to give a good bug report to the developer 

A good bug report will need to include the following components [26]: 

1) Problem Report Title: The title needs to be clear, concise, succinct and informative. It 

should include: (1) Build or version of the software or OS on which the problem 

occurred (2) Verb describing the action that occurred (3) Explanation of the situation 

that was happening at the time that the problem occurred and (4) In case of a crash or 

hang, include the symbol name 

2) Steps to Reproduce: Describe the step-by-step process to reproduce the bug, including 

any non-default preferences/installation and the system configuration information. Be 

very specific and be sure to provide details, opposed to high-level actions. 

2.4.3.3 Duplication in bug reporting 

The same defect and failure could affect many users. These users could simultaneously or in 

parallel submit reports describing the same defect. These reports are termed as duplicate bug 

reports. Bug triagers should not assign these reports to different developers; this would be a 

waste of effort and a potential of causing conflicting changes being made to a system. 

2.4.3.4 Addressing problem of duplicate bugs 

To address the problem of duplicate bug reports, in the research community there have been 

two threads of work[22]: 

1. Given a new bug report, return other bug reports that are similar to it. 

2. Given a new bug report, classify it as either a duplicate bug report or not. 

2.4.4 File sharing 



24 

 

Apart from error reports being send, there might be need to send files such as screen shots, log 

files or database backups to the developer. Some of these files might be very large, and thus 

cannot be sent by e-mail. There are a number of file sharing services that can be used to 

distribute files via links[27]. Some such as MediaFire, RapidShare, ShareFileandYouSendIt 

are dedicated to sending and hosting large files in a corporate context, while the others such as 

Box, Dropbox, Google Drive, Minus, SkyDrive and SugarSync are more general, personal-

use file-storage services that have mass distribution as an adjunct feature[27]. 

All of the services mentioned above allow download links to be generated from uploaded 

files, which makes it easy to distribute them to a mailing list or other group.There are libraries 

that can be included in a program to enable automatic file sharing and generation of download 

links. 

2.4.4.1 Examples of file sharing services 

Dropbox [27] 

Dropbox is a file hosting service that offers cloud storage, file synchronization, and client 

software [42]. It allows users to create a special folder on each of their computers, which 

Dropbox then synchronizes so that it appears to be the same folder with the same contents 

regardless of which computer is used to view it. Files placed in this folder also are accessible 

through a website and mobile phone applications [42]. 

It was among the first services to offer seamless upload and storage via its client software. All 

you need to do to sync files to Dropbox is put them in Dropbox's designated folder on a 

system with the client app, and the sync happens silently in the background [27]. 



25 

 

 

Figure 5: How to get a public link from a file in dropbox 

 

SugarSync 

In SugarSync, you can designate existing file folders in your computer to be synced to the 

cloud and to any other computers you designate. SugarSync also creates a "Magic Briefcase" 

folder in the Documents folder such that anything placed there is automatically synced across 

all devices registered to the user’s account [27]. 

A "Web Archive" folder, on the other hand, stores files from devices but does not sync them 

automatically if the originals are changed. This makes the Web Archive a useful place for 

files intended mainly to be distributed to others, so they're not replicated unnecessarily [27]. 

The desktop client also includes a file manager application that lets one to see what files are 

synced into the cloud and across their devices, all in one place [27].  



26 

 

 

Figure 6: Sugar sync file manager 

 

2.5 Bug tracking 

Bug tracking is the process of finding defects in a product by inspection, testing, or recording 

feedback from customers, and making new versions of the product that fix the defects [28]. In 

software Engineering, when the numbers of defects gets quite large, and the defects need to be 

tracked over extended periods of time, use of a defect tracking system can make the 

management task much easier. 

2.5.1 Bug tracking system 

A bug tracking system is a software application that is designed to help keep track of reported 

software bugs in software development efforts [29]. It may be regarded as a type of issue 

tracking system. 

Many bug tracking systems, such as those used by most open source software projects, allow 

users to enter bug reports directly. Having a bug tracking system is extremely valuable in 

software development, and they are used extensively by companies developing software 

products.  

2.5.2 Components of a bug tracking system 

A major component of a bug tracking system is a database that records facts about known 

bugs. Facts may include the time a bug was reported, its severity, the erroneous program 



27 

 

behavior, and details on how to reproduce the bug; as well as the identity of the person who 

reported it and any programmers who may be working on fixing it [30]. 

A bug tracking system should allow administrators to configure permissions based on status, 

move the bug to another status, or delete the bug. The system should also allow administrators 

to configure the bug statuses and to what status a bug in a particular status can be moved. 

Some systems will e-mail interested parties, such as the submitter and assigned programmers, 

when new records are added or the status changes. 

2.5.3 Examples of bug tracking systems 

There are a number of both desktop and web-based bug tracking software tools. The 

following bug tracking software, among others are described in [31]: 

1) Census Bug Tracking Software 

Census is a highly scalable web-based issue tracking tool that can track bugs, defects, change 

requests, support calls, test cases, timesheets, and much more. Features include full 

customization capabilities, Visual SourceSafe integration, automatic e-mail notifications, 

user/group/field-level security, role-based workflow rules, custom Web views for different 

groups of users, built-in reporting, attachments, and change history tracking 

2) AceProject 

AceProject offers free web-based project management, bug tracking and timesheet software. 

3) Bugzilla 

This is an open source application, web-based, general-purpose bug-tracker tool originally 

developed and used by the Mozilla project. 

4) Mantis 

It is a free web-based bug-tracking system, written in PHP scripting language, which works 

with MySQL, MSSQL, and PostgreSQL databases and a webserver. It is also distributed with 

most Linux distributions. 

 



28 

 

2.6 Fix deployment technologies 

The following are ways of applying fixes to existing software applications: 

1) Automatic updates 

An example is windows updates which is a service provided by Microsoft that provides 

updates for the Microsoft Windows operating system and its installed components, including 

Internet Explorer.  

2) Manual patching 

This is done by manually copying and replacing the DLL, EXE and any other files on the 

installation folder. 

3) ClickOnce Technology 

ClickOnce Technology enables applications to check for newer versions as they become 

available and automatically replace any updated files. Applications can be configured to 

check for updates on startup or after startup. 

4) Use of patch application tools 

There are several tools to aid in the patch application process, such as RTPatch, JUpdater, 

StableUpdate or Visual Patch.  

 

2.7 Related Work 

2.7.1 RedGate Automated Error Reporting system 

This is an error reporting system that customers use to report error when they occur on 

RedGate products [41]. It allows automatic sending of an error report when any of their 

products crashes. A typical error report comprises a full stack trace and details about the 

exception context, including values of all the local variables. 

Another feature is that it allows the customization of the exception dialog to provide 

additional information that can be packaged with the exception report. Customizations could 

include a log file or a screenshot taken at the time of the error, or asking end users for contact 

information so you can notify them when a fix is released [41]. 



29 

 

 

Figure 7: How error is reported for Red Gate’s SQL Source Control 

 

Figure 8: Stack trace of Red Gate’s Error reporting system 

 

2.7.2 Other automated error reporting tools 

There are other similar or related tools that automatically report system errors. These include 

the following: 

Windows Error Reporting [39] 



30 

 

It is a crash reporting service that prompts users to send crash reports to Microsoft for online 

analysis. The information goes to a central database run by Microsoft. It consists of diagnostic 

information that helps the company or development team responsible for the crash to debug 

and resolve the issue if they choose to do so. 

 

Talkback [39] 

Talkback was the crash reporter used by Mozilla software up to version 1.8.1 to report crashes 

of its products to a centralized server for aggregation or case-by-case analysis. If a Mozilla 

product (e.g. Mozilla Firefox) were to crash with Talkback enabled, the Talkback agent would 

appear, prompting the user to provide optional information regarding the crash. 

 

ABRT - Automated Bug-Reporting Tool [39] 

ABRT intercepts core dumps from applications and after a user confirmation sends bug report 

to various bug tracking systems, such as Fedora Bugzilla. 

 

CrashRpt [39] 

It is a light-weight open source error handling framework for applications created in 

Microsoft Visual C++ and running under Windows. It intercepts unhandled exceptions, 

creates a crash mini-dump file, builds a crash descriptor in XML format, presents an interface 

to allow user to review the crash report, and finally it compresses and sends the crash report to 

the software support team. 

It also provides a server-side command line tool for crash report analysis named crprober. The 

tool is able to read all received crash reports from a directory and generate a summary file in 

text format for each crash report. It also groups similar crash reports making it easier to 

determine the most popular problems. The crprober tool does not provide any graphical 

interface, so it is rather cryptic and difficult to use. 

 

2.7.3 Gaps and limitations of the solutions 

The following are the gaps and limitations that will be addressed by the proposed solution: 

1) Submitting of error fails if there is no active internet connection.  

2) The solutions above do not include error fixing 



 

3) The current solutions mainly 

do not necessarily cause the software to crash, but need to be reported

4) There is need for a generic solution that is independent

be configured to track the error of any software application

not provide such. 

2.8 Proposed architecture 

For this study, we propose an architecture in which situated agents in the client and server 

computers will continuously monitor the system. The agents will use system logs, Screenshot 

outputs and unexpected system behavior

creates an error report, and then sends it 

logged in a bug tracking system. Once a fix is

server, where the agents can download it and patch it on their machines.

The proposed architecture will make use of limited internet co

whereby the error is captured and stored in the machine for submission when a 

the internet is available. It will use file sharing mechanisms such as dropbox to ensure that 

errors, screenshots and other files ar

Figure 9: A diagrammatic representation of the proposed architecture

31 

mainly handle cases of software crashing. There are errors that 

do not necessarily cause the software to crash, but need to be reported

There is need for a generic solution that is independent from the main system

be configured to track the error of any software application. The current solutions do 

For this study, we propose an architecture in which situated agents in the client and server 

computers will continuously monitor the system. The agents will use system logs, Screenshot 

and unexpected system behavior to identify errors. On identifying an error, an agent 

creates an error report, and then sends it to the developer. On the developer’s end, the error is 

g tracking system. Once a fix is ready, it will be uploaded in a central public 

server, where the agents can download it and patch it on their machines. 

The proposed architecture will make use of limited internet connection at the facilities, 

whereby the error is captured and stored in the machine for submission when a 

the internet is available. It will use file sharing mechanisms such as dropbox to ensure that 

screenshots and other files are uploaded without failure. 

: A diagrammatic representation of the proposed architecture 

There are errors that 

do not necessarily cause the software to crash, but need to be reported 

from the main system, and can 

. The current solutions do 

For this study, we propose an architecture in which situated agents in the client and server 

computers will continuously monitor the system. The agents will use system logs, Screenshot 

. On identifying an error, an agent 

eloper’s end, the error is 

ready, it will be uploaded in a central public 

nnection at the facilities, 

whereby the error is captured and stored in the machine for submission when a connection to 

the internet is available. It will use file sharing mechanisms such as dropbox to ensure that the 

 



32 

 

Although the proposed solution is made for IQCare system, it will be a generic solution that 

can be configured to be used for monitoring any other related system. 



33 

 

CHAPTER 3: METHODOLOGY 

3.1 System Design 

3.1.1 Overview 

We are using MaSE methodology for system design. There are two steps involved: Analysis 

and design. 

3.1.2 Analysis phase 

The analysis phase involves the following steps: 

1) Capturing goals: Here we take an initial system specification and transform it into a 

structured set of system goals. Then the goals are analyzed and structured into a Goal 

Hierarchy diagram. 

2) Applying Use Cases: Here we capture a set of use cases from the initial system context 

and create a set of Sequence diagrams to help the system analyst identify an initial set 

of roles and communications paths within the system. 

3) Refining roles: Here we transform the structured goals and Sequence diagrams into 

roles. After roles are created, tasks are associated with each role that describes the 

behavior that the role must exhibit to successfully achieve its goals. 

3.1.3 Design phase 

The design phase involves the following steps: 

1. Creating agent classes: Here we create agent classes from the roles defined in the 

Analysis phase. The end product of this phase is an Agent Class diagram, which 

depicts the overall agent system organization consisting of agent classes and the 

conversations between them. 

2. Constructing conversations: Here we construct conversations by extracting the 

messages and states defined for each communication path in Concurrent Task Models, 

adding additional messages and states for added robustness. 

3. Assembling agents: Here we create the internals of the agent classes. This is 

accomplished via two sub-steps: defining the agent architecture and defining the 

components that make up the architecture. The outcome is an Agent Architecture 

diagram. 



34 

 

4. System design: Here we take the agent classes defined previously and instantiates 

actual agents. We use a Deployment Diagram to show the numbers, types, and 

locations of agents within a system. 

3.1.4 Tools required 

To accomplish the goal of this study, the following tools will be needed: 

1) Windows OS (At least XP SP2) 

2) Visual Studio 2010 

3) Relational Database Management Systems (SQL 2008 Express) 

4) Microsoft Office 2007 

5) Dropbox 

3.1.5 Justification of MaSE methodology 

A major strength of MaSE is the ability to track changes throughout the process. Every object 

created during the analysis and design phases can be traced forward or backward through the 

different steps to other related objects. For instance, a goal derived in the Capturing Goals 

step can be traced to a specific role, task, and agent class. 

Also MaSE supports the development from requirements analysis to implementation 

3.1.6 Limitations of MaSE methodology 

MaSE methodology has the following weaknesses [40]: 

1) Existing gap between analysis and design phases: Therefore one should go back to the 

first step and analyse the role requirements to gather necessary information for decision 

making about the appropriate agent architecture. 

2) Lack of knowledge modeling in the methodology: modeling the internal knowledge of 

agents such as rules or plans is ignored and is not addressed. 

3) Weak documentation: In the MaSE, documentation of many aspects of an agent-based 

system is implicit. For example, roles are just documented in sequence diagrams and by 

their related tasks in the analysis phase. Since a good documentation is needed for 

maintenance of a system, the methodology should guide software engineer to produce 

necessary documents and artifacts for better maintenance of the developed system. 

Explicit documentation for roles helps the methodology to achieve this goal.  



35 

 

4) Problem in modeling interactions: MaSE use UML sequence diagram for modeling role 

interactions so it cannot model some specific characteristics of agents such as concurrent 

threads of interactions among roles.  

MaSE methodology can be improved and extended by adding a "Role Schema" and a 

"Knowledge Modeling" step in the analysis phase. Improvement can also be done by the use 

of AgML instead of UML. 

 

3.2 Research Methodology and design 

3.2.1 Overview 

Research is done to achieve the following two purposes:  

1. To evaluate the expected impact of the system on the organization.  

2. To evaluates the developed system by assessing the user reactions to the prototype.  

3.2.2 Data sources 

The primary source of data is a survey research where the software developers and IT support 

staff fill an online survey form. Willing participants are asked to participate in the survey.  

3.2.3 Data collection procedure 

1) Online Survey 

The participants were given a link to the online survey form. There were eleven questions to 

answer. The first ten questions were multi-choice questions with five choices as follows: 

1. Strongly disagree 

2. Disagree 

3. Neither agree not disagree 

4. Agree 

5. Strongly agree 

Users answered the questions by putting a check mark (√) on the selected choice. The last 

question was an open question where the user was expected to describe their expectations of 

the proposed system. A copy of the online survey form is included in the appendix section. 



36 

 

The advantage for using the online survey is that a lot of checks can be put in place to ensure 

that the participants input the correct details. More so, as the participants fill the forms, all 

data is automatically put in a spreadsheet documents, this reducing the process of compiling 

the data.  

3.2.4 Data analysis 

There are two types of data being collected: Qualitative and quantitative data. The data 

analysis is performed according to research questions. Descriptive statistics is used to answer 

descriptive questions. Data is collected and put in a spreadsheet (MS Excel).The data is the 

tabulated and analyzed in form of graphs and charts.  

The output of the analyzed data is used to make conclusion on the expected impact of the 

proposed system. 



37 

 

CHAPTER 4: SYSTEM ANALYSIS AND DESIGN 

 

The analysis and design was guided by the MaSE methodology.  

4.1 System specification 

4.1.1 Overview 

Currently, the reporting of errors is done manually across hospitals in Kenya. The proposed 

system will automatically identify report and fix errors. The error identification will involve 

the checking of event logs for errors as well as monitoring screen text. A non-fatal error 

usually involves a pop up message dialog on the screen showing the error that has occurred. A 

fatal error might not show a pop up message, but the application will crash and therefore, an 

entry will be made on the event logs. 

The process of error reporting will entail the generation of an error report, based on the error 

report specification described in chapter 2. The error report will then be send to the developer. 

On receiving the error report, he/she will develop a fix and then upload on a public server, 

where in turn the client application will download, and the install the fix on the client 

computer. 

The process of identification of errors, reporting and fixing is done by agents, forming a 

multi-agent system. 

4.1.2 Inputs and outputs 

4.1.2.1 Inputs 
This system is tracking an existing system; therefore the name of that system will be input. 

The system will be tracking errors; it therefore needs the definition of what errors are.  A list 

of past errors that are in the current bug tracking system will be input to the system. 

4.2.2.2 Outputs 
The system will output a list of identified errors and their status. The status will be either 

“identified”, “reported”, “fix ready” or “fixed”. 

4.1.3 Data management 



38 

 

The data used by the system will be stored in a database. The system will save all the 

identified errors in database. Likewise, the status of each error will be saved in the database.  

The list of past errors described in section 4.1.2.1 above will be saved in database. 

4.1.4 System failure 

On the event that this prototype system fails, a record will be put in the event log. In addition, 

the output from the system will indicate the point of failure. The output shows the progress of 

the identified errors, and if the progresses of the errors stagnate at some point, then it would 

be an indication of system failure. 

4.2 System analysis 
The purpose of the MaSE analysis phase is to produce a set of roles whose tasks describe 

what the system has to do to meet its overall requirements. A role describes an entity that 

performs some function within the system. In MaSE, each role is responsible for achieving or 

helping to achieve specific system goals or sub-goals [37]. 

System analysis involves the following three steps: 

1. Identifying goals from user requirements and structuring them into a Goal Hierarchy 

Diagram 

2. Identifying use cases and creating sequence diagrams to help identify an initial set of 

roles and communications paths 

3. Transforming the goals into a set of roles 

4.2.1 Identifying goals 

This is the first step in the analysis phase, which takes an initial system specification and 

transforms it into a structured set of system goals. 

a) Capturing goals 

This process begins by extracting scenarios from the initial specification and describing the 

goal of that scenario. The following are the scenarios from our initial specification: 

1. The system is responsible for identifying, reporting and fixing of errors 



39 

 

2. Error identification will involve monitoring of the target system as it runs, and 

detecting errors on the screen as they occur. A knowledge base of errors will be used 

to inform the system on the type of errors to report. 

3. An Error reporting component will generate an error report, ensuring that all the 

components of a good error report are captured. 

4. An error will be reported by sending an error file to the developer. 

5. If need be, the developer can place a request for the database, and the system will 

automatically get and send it to the developer 

6. The error fixing component of the system will check regularly for any new fixes 

released by the developer. 

7. If a new fix if available, the component will download it, and then install/apply it on 

the target system. 

Goals are then derived from the scenarios. The following are the derived goals: 

1. Identify screen errors 

2. Identify errors on windows logs 

3. Upload captured screenshots 

4. Generate an error report 

5. Send error report to developer 

6. Send database to developer 

7. Check if new fixes exist 

8. Download new fixes 

9. Apply/install the fixes 

b) Structure the goals 

The goals are put in hierarchies depending on the importance, level or detail. This results in a 

goal hierarchy diagram.  



40 

 

 

Figure 10: Goal hierarchy diagram 

 

4.2.2 Applying Use Cases 

a) Creating use cases 

Use cases define a sequence of events that can occur in the system. They are examples of how 

the user thinks the system should behave. Although part of the Applying Use Cases step, 

creating use cases may actually elicit more information or clarify existing information about 

system goals. 

The goal of creating use cases is to identify paths of communication, not to define all possible 

combinations of events and data in the system. 

Actors 

The main actors are the agents that are responsible for the identification, reporting and fixing 

of software errors. The other actor is the systems developer, who is the one responsible for 

developing fixes for the identified errors. 



41 

 

 

Figure 11: Use cases diagram 

  

4.2.3 Refining roles 

The objective of this step is to transform the structured goals and sequence diagrams into roles 

and their associated tasks. The tasks are generally derived from the goals for which a task is 

responsible. These are captured in a role model diagram as shown below. 



42 

 

 

Figure 12: Role Model Diagram 

 

There are roles that may have concurrent executing tasks that define the required roles 

behavior. In this system, the Identification of screen errors and the identification of Event log 

errors are done concurrently. This is represented in a concurrent model diagram shown below. 

 

Figure 13: Concurrent model diagram 

 



43 

 

4.3 System Design 
 

4.3.1 Overall architecture 

Situated agents in the client computers will continuously monitor the system. The agents use 

system logs and screenshots to identify errors. On identifying an error, an agent creates an 

error report, and then uploads it using Dropbox. The error report will be downloaded on the 

developer’s computer and logged in a bug tracking system. Once a fix is ready, it will be 

uploaded in Dropbox, where the agents can pick it and apply/install it on the client’s 

machines. 

The system will make use of limited internet connection at the hospital, whereby the error is 

captured and stored in the machine for submission when a connection to the internet is 

available.  

 

Figure 14: Overall architecture 

 

The process of screen error identification involves the capturing of screen shot, and then text 
is extracted from the image using Microsoft’s Office Document Imaging libraries. An 
algorithm is then used to match the text to that of already known errors. If it matches then, 



44 

 

that means an error has occurred, and therefore it will be reported. The following applications 
therefore will need to be put in place to ensure the successful running of the system:  

1. Installing Office 2007, ensuring Microsoft Office Document Imaging is installed. 
2. Installation of Dropbox and logging in using a valid Dropbox account 

 

4.3.2 Flow design 

4.3.2.1 Overall flow of the system 
The identification of screen and event logs errors is done concurrently. The errors are then 
reported. Once a fix is developed, error fixing will be done. 

 

Figure 15: Overall flow of the system 

 

4.3.2.2 Screen error identification flow diagram 
The identification of screen errors entails ensuring that the currently active application is the 
target software, which is IQCare. The flow of the screen error identification is shown in the 
diagram below. 



45 

 

 

 

Figure 16: Screen error identification flow diagram 

 

4.3.2.3 Event logs error identification flow diagram 
Errors logged in the windows event logs are extracted in the process shown below: 



46 

 

 

Figure 17: Event logs error identification flow diagram 

 

4.3.2.4 Error reporting flow diagram 
Once errors have been identified, they will be reported by placing them in a Dropbox folder. 
The synchronization mechanism of Dropbox will ensure that the errors will be accessible in 
the developer’s computer. 

 



47 

 

 

Figure 18: Error reporting flow diagram  

 

4.3.2.5 Error fixing flow diagram 
After the developer has developed and released a fix, the ErrorFixer agent will get and install 
the fix as described in the flow diagram below. 



48 

 

 

Figure 19: Error fixing flow diagram  

 

4.3.3 Create agent classes 

Agent classes are created from the roles defined in the Analysis phase. The end product of this 

phase is an Agent Class Diagram, which depicts the overall agent system organization 

consisting of agent classes and the conversations between them. 



49 

 

 

Figure 20: Agent classes diagram 

 

4.3.4 Constructing conversations 

Here, the conversations between agents are defined. The following conversations occur 

between agents: 

a) Communication diagram for error identification 

On identification of an error, the ErrorIdentifier agent will send a message to the 

ErrorReporter and ProgressDisplayer agents. The communication is done informally by 

updating the status of an error on the database.  



50 

 

 

Figure 21: Communication diagram for error identifi cation 

 

b) Communication diagram for error reporting 

The ErrorReporter agent will receive an information message from the ErrorIdentifier agent. 

It will then generate an error report and then send it. After sending the report, it will inform 

the ErrorFixer and ProgressDisplayer agents of the reported error. 

 

Figure 22: Communication diagram for error reportin g 

 

c) Communication diagram for error fixing 

Upon receiving a message from the ErrorReporter agent, the ErrorFixer will check for new 

fixes, download and then apply/Install the fix. It will then send a message to the 

ProgressDisplayer agent, with the details of the fixed error. 



51 

 

 

Figure 23: Communication diagram for error fixing 

 

d) Communication diagram for Progress display 

The agent will be receiving messages from the ErrorIdentifier, ErrorReporter and ErrorFixer 

agents. Upon receiving a message from the ErrorIdentifier, it adds it to the list of identified 

errors. It will use the messages from the Error Reporter and ErrorFixer to update the status of 

the error accordingly. 

 

Figure 24: Communication diagram for progress display 

 

4.3.5 Creating a sequence diagram 

A Sequence Diagram depicts the sequence of events that are transmitted between the agent 

classes. The communications described above are summed up in a sequence diagram. 



52 

 

 

Figure 25: Sequence diagram 

4.3.6 Assembling agents 

The thick dotted lines represent outer agent connectors. They define connection with external 

resources such as other agents, sensors, databases and data stores. 



53 

 

 

Figure 26: Agent architecture 

4.3.7 Instantiating the agents 

Here we take the agent classes and instantiate actual agents. The instantiation is represented in 

a deployment diagram shown below. 

 



54 

 

Figure 27: Deployment diagram 

 

4.3.8 Database design 

The database stores the details of the identified error, the status of whether it is reported or not 

and the status of whether it is fixed or not. Moreover, it will also store the details of the fix 

applied on the target software. 

A reported error might have one or more fixes, and therefore the relationship between the 

identified error and the fix will be one-to-many relationship. Two tables will be created, for 

storing the errors and the fixes respectively, as shown in the following database diagram. 

After determining the data to be stored, and applying the normalization rules, I have come up 

with two tables described below: 

Errors table 

Name Data type Length Description 

Id Int 4 Primary key 

ErrorName Text 100 Name of the error 

Category Text 20 

Category of the error, which is Event logs or 

ScreenErrors 

ErrorText Text Max The details of the caqptured error 

AttachmentLink Text 300 A web link of uploaded screen shots 

MachineName Text 20 Name of the computer where the error occurred 

MsgSendToRepor

ter Boolean 1 

A status to indicate whether the error has been passed 

to reporter module or not 

Reported Boolean 1 

A status to indicate whether error has been reported 

or not 

MsgSendToFixer Boolean 1 

A status to indicate whether the fixing component has 

been notified 

DateOfError DateTime 8 date and time when the error occurred 

 

Fixes table 

Column Data type Size Description 

id Integer 4 Primary key 

ErrorID Integer 4 Foreign key links to Errors table 

FixType Text 20 

Type of fix. This is either manual patch, database script or 

executable patch 

FixDestination Text 300 

This is used for manual patches. It is the folder where the files 

are copied to 

DateReleased date time 8 Date when the fix was uploaded by developer 



55 

 

Applied Boolean 1 A status to indicate whether the fix has been applied or not 

DateApplied Date time 8 Date and time when the fix was applied 

 

The “ErrorID” column of the fixes table links to the “id” column of the errors table. 

 

Figure 28: Database structure 

 

4.3.9 Developer’s Module (Bug Tracking System) 

This is an application that is running on the software developer’s computer. Any reported 

error will be displayed by this application. Once an error is reported, it will be downloaded 

and then displayed. The developer will then develop a fix, and upload it using this module.  

The two core functionalities are: 

1. Download all details of the reported errors 

2. Enable the developer to upload fixes for the errors 

Errors

id

ErrorName

Category

ErrorText

AttachmentLink

MachineName

MsgSendToReporter

Reported

MsgSendToFixer

DateOfError

Fixes

id

ErrorID

FixType

FixSource

FixDestination

DateReleased

Applied

DateApplied



56 

 

4.3.9.1 Flow diagram for the downloading of reported errors 

 

Figure 29: Download errors flow diagram 

Read the error details from the error files

Update the status of the errors in database

Refresh the errors display list

Check for new reported errors in Dropbox

Sleep (t)



57 

 

4.3.9.2 Flow diagram for the uploading of fixes for errors 

 

Figure 30: Upload fixes flow diagram 

 

4.3.9.3 Database design 
The data for this module is stored in a SQL Server database. The database has one table 

described below: 

Column Data type Size Description 
Id Integer 4 A unique identity 
ErrorID Integer 4 Id of the error in the client machine 
ErrorName Text 100 The name of the error 

Category Text 20 
Category of the error: This is either screen errors or 
event log errors 

ErrorText Text Max The error text as captured 
ReceivedFrom Text 200 The Hospital/client where the error is from 
FixUploaded Boolean 1 The status of whether a fix has been uploaded or not 
DateOfError DateTime 8 The date and time when the error occurred 

 

 

Create a fix file

Copy the fix file to Dropbox folder

Update status of error in database



58 

 

CHAPTER 5: SYSTEM IMPLEMENTATION AND TESTING 

5.1 System development 
The system is developed using C#.net. The agents are run in JADE platform, where some of 

the functionalities such as error identification and reporting are done in C#. The agents have 

the capability to move across machines. This is enabled by the use Dot Net framework, using 

a communication called remoting. Sample code have been included in the appendix section. 

The development was broken down into modules. The following modules were identified: 

1) Error identification 

Error identification is done by reading errors in Event logs, and identifying screen errors. 

Identification of screen errors is done by capturing a screenshot, and then checking for errors 

details in the screenshot. The identification of errors is done using Optical character 

recognition tools. For this project Microsoft Office Document Imaging (MODI), to read all 

the text from the screenshot. We then check through the text for any of the error in the 

knowledge base.  

2) Error Reporting 

The errors are reported by use of dropbox software. The error reporting agent creates an error 

file, then copies it to a dropbox folder. This is a shared folder that will enable the application 

in the developer’s end to access the shared error files.  

3) Error fixing 

This module checks for new fixes that have been uploaded by the developer. The process of 

uploading fixes is done using dropbox. The file synchronization feature of dropbox is used 

whereby; the developer places the fix in a folder in the server machine. The folder will be 

synchronized, thus having the same file downloaded to the client machine.   

4) Progress Displaying 

Developer’s computer 

This module is showing the progress of the reported errors.  



59 

 

I have also developed a module that runs on the developers end. This module is used to notify 

the developers of new bugs reported, and also to enable the developers to upload fixes. 

5.2 Configuration 
Once the system is developed, the following configurations will need to be done before 

running the system: 

1. Putting all the known errors in database. These are the errors that have occurred in the 

past. The errors are obtained from the current bug tracking system 

2. Setting/updating the name of the application to be tracked for errors 

3. Installing Dropbox folder in the various client machines, and ensuring that Errors and 

fixes folder are created. The folders are created in one machine, and then shared with 

the users in the other machines, including the developer. 

5.3 Testing and Experimentation 
The system was set up in a testing environment, which was composed of two client computers 

representing the hospital computers and one computer representing the FG company server 

machine. The system was tested in different conditions to ensure that it was functioning well. 

The various tests are described below: 

5.3.1 Testing system for screen and event logs errors identification and reporting 

The five agents are started as shown in the screenshot below. The five agents are all mobile 

and can move across the network. An agent host needs to be installed on every computer. This 

is the container where the agents will reside when they move to the computer. 



60 

 

 

Figure 31: Main screen for starting mobile agents 

 

On moving the agents, the status of the agents is displayed below, showing if the agents 

moved successfully to the target computer. 

 

Figure 32: Screen shot showing agents moving to another computer 

 



61 

 

The agent host in the target computer will indicate when an agent has moved to the target 

computer as shown in the screenshot below. The agents will continue running until the agent 

host is closed. 

 

Figure 33: Screen shot showing agents moving into a computer 

 

To test the error identification and reporting, errors were created by running IQCare and 

causing known errors like the one in the example below.  

 

Figure 34: An example of an error occurring on IQCare System 



62 

 

 

 

Figure 35: Details of the error occurring in IQCare system 

 

A progress displayer displays the status of the errors. Different color codes are used to 

differentiate between identified, reported and fixed errors.  

 

Figure 36: Progress Displayer agent showing the status of various errors that have been identified 

 

Developer’s Module (Bug tracking system) 

The following application is running on the developer’s machine, enabling him/her to view 

any new reported errors. The seven errors shown in the previous diagram have all been 



63 

 

reported, and the developer is able to view them by clicking on ‘Download new errors’ 

button. On selecting an error, the error details are displayed on the right hand side.  

 

Figure 37: An application running at the developer’s machine. 

 

We developed a fix, and then uploaded it by clicking on the “Upload fix” button as shown in 

the screenshot below. Upon uploading a fix, the background colors changes to differentiate 

them from errors that do not have fixes. 



64 

 

 

Figure 38: Process of uploading a fix by the developer 

 

The system was tested with both screen errors and event log errors as outlined below: 

(a) Screen errors 

The system was tested by creating a number of known errors to ensure that the system is able 

to identify and report them. Ten known screen errors were caused to occur in two machines, 

and all of them were identified. Some of the known errors were caused to occur more than 

once therefore 52 errors were identified in total, and for every instance, they were reported 

successfully as shown in the table below. Ten fixes were uploaded, and all of them were 

applied successfully as shown in the table below. 

Error Name Category Machine Name Reported Fix Uploaded Fixed 

Img_20130731_211539 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130731_211932 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130731_211956 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_121156 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_121205 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_125236 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_142727 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144338 ScreenError KK-VIRTUAL TRUE FALSE FALSE 



65 

 

Img_20130801_144339 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144340 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_144341 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144342 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144343 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144344 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144345 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_144905 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144906 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_144907 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_144912 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151040 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_151053 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_151054 ScreenError KK-VIRTUAL TRUE TRUE TRUE 

Img_20130801_151102 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151105 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151114 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151435 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151440 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151453 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151454 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151454 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151500 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_151501 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_152027 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_152033 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_152033 ScreenError KK-VIRTUAL TRUE FALSE FALSE 

Img_20130801_152051 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_152055 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_152055 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_152100 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_152108 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_152738 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_152800 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_153950 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_154002 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_154005 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_163348 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130801_163847 ScreenError KENNEDY TRUE FALSE FALSE 



66 

 

Img_20130803_090137 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130803_093635 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130803_093703 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130803_093727 ScreenError KENNEDY TRUE FALSE FALSE 

Img_20130803_093738 ScreenError KENNEDY TRUE FALSE FALSE 

Table 1: Table showing a list of screen errors 

 

(b) Event logs errors 

Twenty four (24) event log errors were identified as well as summarized in the table below: 

Error Name Category Machine Name Reported Fix Uploaded Fixed 

IQcare_Error_106 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_11 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_118 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_128 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_134 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_139 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_142 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_170 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_176 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_180 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_19 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_21 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_235 EventLogs KK-VIRTUAL TRUE FALSE FALSE 

IQcare_Error_240 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_241 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_252 EventLogs KENNEDY TRUE FALSE FALSE 

IQcare_Error_27 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_31 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_43 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_49 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_64 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_7 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_83 EventLogs KENNEDY TRUE TRUE TRUE 

IQcare_Error_88 EventLogs KENNEDY TRUE FALSE FALSE 

Table 2: Table showing list of event logs errors 



67 

 

The table shows that all the errors were reported, and for all errors that a fix was provided, the 

fix was downloaded and applied. 

5.3.2 Testing system for internet downtime 

The other thing that we tested was error identification and reporting when the internet 

connection is down. This was done by creating some system errors. The Errors were 

identified, and once the internet connection was restored, all the errors were reported to the 

developer. The use of Dropbox ensured that once an internet connection was available, the 

files were synchronized appropriately.  

5.3.3 Testing system with non errors 

This involved testing system to ensure that it reports errors only. This involved creating 

messages on the system that do not exist in the knowledge base as well as running the system 

in a normal manner without any errors. In this case, the system did not report any error. 

5.3.4 Testing system for correctness screen error text captured 

This is a test to ensure that the captured screen text is correct. The tests show that the captured 

screen text was 60% correct. The algorithm used when matching the text ensured that even 

with 60% correctness, then error text could still be matched with the text in database. Below 

is an example of error text reported by the system: 

Screen error text:  

IQCare Management [SystemAdmin] - Test Hospital unhandled exception has occurred in 

your application. If you click Continue, the application will ignore this error and attempt to 

continue. If you click Quit, the application will close immediately.  No connection could be 

made because the target machine actively refused it 127.0.0.1:8001 

Reported error text:   

IQCare Management [SystemAdmini - Test Hospital - -  Unhaned cep(ion has oocured your 

appl,cgion you clidc  OContinue, the ,pIication wi qoe tWs error and tent to contn.ie. I you 

ckdc (kd. the application wi dose immediate.  No connection coid be made because the tag 

machine adively refused I 1270.0.1 :8001.   

5.3.5 Testing for Efficiency and accuracy 



68 

 

This is a test to ensure that the identified error is the one reported to the developer as well as 

to test the length of time that the system takes to report the error. The system identified errors 

as soon as they occurred.  All errors that were identified were reported.  Likewise all fixes that 

were uploaded from the developer’s end were downloaded and then applied/installed. 

5.3.6 System testing for user acceptability 

The prototype system was set up at the company for the users to experiment with it. We did a 

research find out the user reaction to the prototype, and well as to assess the expected impact 

of implementing the system in the origination.  The results of the research are described in the 

chapter 6. 

5.3.7 Testing summary 

(a) The summary of identification and reporting of errors 

Type of Error Errors that occurred Errors identifie d Errors reported 

Screen Errors 52 52 52 

Event logs errors 24 24 24 

Table 3: Summary of identification and reporting of errors 

 

(b) The summary of error fixing 

Type of Error Fixes uploaded Fixes applied 

Screen Errors 10 10 

Event logs errors 10 10 

Table 4: Summary of error fixing 

 

(c) The overall summary of the tests done 

Test Pass or fail Comments 

Event log errors identification Pass  

Screen errors identification Pass The text matching 

algorithm was adjusted to 

match only 60% of error 

text 



69 

 

Screenshots uploading Pass  

Error reporting Pass  

Error fixing Pass  

Testing system in inconsistent internet connection Pass  

Testing system with non errors Pass  

Testing for accuracy and efficiency Pass The process takes a 

maximum of 5 minutes 

Testing for user acceptability Pass  

Table 5: Testing summary 



70 

 

CHAPTER 6: EVALUATION AND RESULTS 

6.1 Overview 
This chapter presents the results of the data analysis. An online survey was done which 

involved the respondents answering eleven questions, of which ten were multi-choice 

question. The survey contained ten statements in which the user stated how much they agree 

with the statement in a scale of 0 to 4. ‘0’ represented “disagree” whereas ‘4’ represented 

‘totally agree’.  

6.2 Results and discussion 
We received responses from 18 participants, and the following is an average of the responses 

for the participants. The ten statements and their average score for the 18 respondents: 

Statement Average Score 

I am enthusiastic about the new system 2.72 

The new system will cut down on customer support cost 3.17 

The new system will provide an efficient way to get the issues from 
clients 3.17 

Developers will get insight of the errors which are severe and frequent 2.83 

The new system will ensure faster response to system issues 3 

Deployment of fixes across the hospitals will be done much more easily 3.11 

I might lose my job as a result of the use of this system 2.17 

This system is hard to use 1.94 

For me, the system will frustrate my work 1.83 

We will achieve less when using this new system that what we are 
achieving now 1.78 

Table 6: Table showing the average score for participants in the various survey questions 

 

The first six statements are focused on evaluating the positive impact of the system. This is 

represented graphically in the figure 32. The chart reveals that on average, the system score 

around 3 points out of 4, which is around 75%. This shows that the expected positive impact 

of the system is good. 



71 

 

The last four statements are focused on evaluating the negative impact of the system. This is 

represented graphically in figure 33. The average score for the negative impacts of the system 

is slightly less than 2, which is around 45%. This is still a high figure, which should not be 

ignored. If the organization is to implement the proposed system, then it will need to put 

measures in place to address the four issues represented in the four statements.  

 

Figure 39: Figure showing the average score for the positive impact questions 

 

 

Figure 40: Average score for the negative impact questions 

 

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Enthusiastic 

about system

Reduce 

customer 

support cost

Efficient way 

for error 

reporting

Insight to 

severe and 

frequent 

errors

Faster 

response to 

customer 

issues

Faster 

deployment 

of fixes across 

hospitals

A
v

e
ra

g
e

 s
co

re

Positive Impacts

Average

0

0.5

1

1.5

2

2.5

Losing of job System hard to 

use

System 

frustrating my 

work

We will achieve 

less using system

Average

A
v

e
ra

g
e

 S
co

re

Negative Impacts

Average



72 

 

The following is a comparison of the negative and the positive impacts of proposed system. 

The positive impacts score higher than the negative impacts, and therefore this system is 

likely to receive a good response among a majority of the users. 

 

Figure 41: Comparison of the positive and the negative impacts 

  

An analysis of the individual responses reveals that a number of users who have great 

expectations of the system, entered low values for the negative impacts of the system. Users 

who entered low values for the positives entered high values for the negatives. For instance 

respondent 10 (R10) recorded 4 for the negative impact, and 1.5 for the positive impact of the 

system. This could be an issue to do with the attitude towards the system. 

0

0.5

1

1.5

2

2.5

3

3.5

System Impact

Average Score



73 

 

 

Figure 42: Positive versus negative impacts 

 

The final question in the survey was open ended and asked “What are your thoughts about the 

proposed system?” Eight participants responded to this question, and here are their answers: 

1. I am not sure if this system would be effective as some of our hospitals do not have 

constant internet connection, therefore it might result in even more delays. 

2. This is a very important idea to implement. The ability to have the errors reported 

automatically will be a nice. Also the fact that screenshots will be captures, would 

ensure easier recreation of errors occuring at the hospitals 

3. I like the proposed system. It would save the company quite some money 

4. I am not sure this will work, this is because it will be hard to identify what is an error 

and what is not, but all the same I like the idea 

5. The idea of automatic error reporting is a good one. If this can be implemented as 

proposed, then it help in knowing what system issues are being experienced in the 

hospitals, and being able to fix in time before they become serious issues 

6. I like the system. This needs to be implemented. 

7. I think this is a good system. My concern is on the resources it require. Will this affect 

the running of the main system?  

8. I think the system is good. I am looking forward to using it. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

S

c

o

r

e

Respondents

Positive impact

Negative imact



74 

 

Six out of the eight responses likes the proposed system, and think that it will work. This is 

about 75% of the respondents reacting positively towards the system.  

6.3 Summary 
The study reveals that reaction of the users towards the system is good, with about 75% of the 

participants responding positively. The expected positive impact of the system is high. There 

is also some expected negative impact of the system. Most of the expected negative impact is 

issue to to with attitude towards the system. Measures need to be put in place to ensure that 

the positive impact is maintained, whereas the negative impact of the system is minimised. 



75 

 

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusion 

In this study, we have identified the technologies for error detection, reporting and fixing of 

errors. We have used these technologies in the development of a multi-agents based error 

identification, reporting and fixing system. We have tested the system under different 

scenarios and it works well. We have then done an evaluation of the expected impacts of the 

system to the organization. From the research, we established that the user response to the 

system is good. We have also established that both positive and negative impacts are expected 

if the system is implemented but the positive impacts outweigh the negative. 

7.2 Limitations  

The solution we have developed is limited to the identification of software errors that occur in 

two forms only:  

a) Errors that are manifested on the screen, i.e. when an error occurs, evidences of the 

error are displayed on the screen. 

b) Errors that are logged on the Application’s Event logs. 

Errors that are not are not manifested in the two ways above will not be captured by the 

developed system. 

Secondly, the fixing of errors is limited to the following three ways only: 

a) Manual patching: This involves the overwriting of the installation files in a program’s 

installation directory 

b) Running of a database update script: For database related issues, a script will be 

updated which will make the necessary correction on the database. 

c) Installation of an update program: This is the running of an executable file which will 

re-install the program afresh or overwrite the files in the installation directory.  

7.3 Further work 

As explained above, I explored two ways of identifying errors. More work need to be done to 

come up with more ways of detecting and identifying software errors. Secondly, I used .NET 

framework as a platform for the agents. Compared to JADE, not much has been done on the 



76 

 

.NET framework; more work can be done on that area, to explore the potentiality in running 

agents in this platform. 



77 

 

REFERENCES 

[1] IQcare, http://www.iqstrategy.net/frmiqcare.shtml, last accessed February 15, 2013 

[2] Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: a Modern Approach. Prentice 

Hall, 2nd edition 

[3] Claudiu I., Andy S. and Laura S. (2011). Multi-Agent Approach for Data Analysis in a 

Knowledge-based System for Contact Centers, http://www.waset.org/journals/waset/v59/v59-

216.pdf, last accessed February 15, 2013 

[4] Michael N. and Larry M. (n.d.). Multiagent systems and societies of agents, 

http://www.dsi.fceia.unr.edu.ar/downloads/iia/biblio/cap2-agentes.pdf, last accessed February 

15, 2013 

[5] Katia P. (1998). Multiagent systems, 

http://www.cs.uga.edu/~maria/pads/papers/AIMag19-02-2-article.pdf, last accessed February 

15, 2013 

[6] Fabio L., Giovanni C. and Dominic G. (2007). Developing multiagent systems with 

JADE,  

http://www.ittelkom.ac.id/staf/kms/Advanced%20SW%20Eng%202011/ebook/developing%2

0multi%20agent%20systems%20with%20JADE.pdf, last accessed February 15, 2013 

[7] Neely M. (2006). Write Mobile Agents In .NET To Roam And Interact On Your Network, 

http://msdn.microsoft.com/en-us/magazine/cc163649.aspx, last accessed February 15, 2013 

[8] Wikipedia (n.d.). .NET Remoting, http://en.wikipedia.org/wiki/.NET_Remoting, last 

accessed February 15, 2013 

[9] Hassan S. (2006). .NET remoting with an easy example, 

http://www.codeproject.com/Articles/14791/NET-Remoting-with-an-easy-example, last 

accessed February 15, 2013 

[10] Jacques F., Olivier G. and Fabien M. (2004). From Agents to Organizations: an 

Organizational View of Multi-Agent Systems, 

http://www.lirmm.fr/~ferber/publications/papers/AOSE03_FerbGutMich.pdf, last accessed 

February 15, 2013 



78 

 

[11] Priyanka S., Hassan M., Mijal M. and Pranav P. (2004). Open Agent based system for 

strategic decisions using JADE Architecture, 

http://www.prjpublication.com/PrjAdmin/UploadFolder/Mijal_PPS_Pranav_hasan.pdf last 

accessed February 15, 2013 

[12] Ion V. and Christian B. (1999). A study concerning the bug tracking applications,  

http://picoforge.int-evry.fr/cgi-

bin/twiki/viewfile/Helios_wp3/Web/Task1Category?rev=1;filename=A_STUDY_CONCERN

ING_THE_BUG_TRACKING_APPLICATIONS.pdf, last accessed February 15, 2013 

[13] Padmini C. (n.d.). Types of Software errors and bugs | Most Common Software bugs,  

http://www.softwaretestingtimes.com/2010/04/types-of-software-errors-and-bugs-most.html, 

last accessed February 15, 2013 

[14] Investigation of software defect prediction, 

http://shodhganga.inflibnet.ac.in/bitstream/10603/4557/15/15_chapter%204.pdf, last accessed 

February 15, 2013 

[15] Event logs, http://technet.microsoft.com/en-us/library/cc722404.aspx last accessed 

February 15, 2013 

[16] About Optical Character Recognition in Google Drive, 

http://support.google.com/drive/bin/answer.py?hl=en&answer=176692, last accessed 

February 15, 2013 

[17] Welker M. (2007). OCR with Microsoft Office, 

http://www.codeproject.com/Articles/10130/OCR-with-Microsoft-Office, last accessed 

February 15, 2013 

[18] Language Technologies, Bangor University (2008). An overview of the Tesseract OCR 

(optical character recognition) engine, and its possible enhancement for use in Wales in a pre-

competitive research stage,  http://www.saltcymru.org/english/saltcymru_document5.pdf, last 

accessed February 15, 2013 

[19] Google (n.d.). tesseract-ocr: An OCR Engine that was developed at HP Labs between 

1985 and 1995... and now at Google,  http://code.google.com/p/tesseract-ocr/, last accessed 

February 15, 2013 



79 

 

[20] OCR - Optical Character Recognition, OCR - Community Ubuntu documentation,  

https://help.ubuntu.com/community/OCR, last accessed February 15, 2013 

[21] Tess4J, Tess4J - A Java JNA wrapper for Tesseract OCR API,  

http://tess4j.sourceforge.net/, last accessed February 15, 2013 

[22] Yuan T., Chengnian S. and David L. (2012). Improved Duplicate Bug Report 

Identification, 16th European Conference on Software Maintenance and Reengineering,  

http://www.comp.nus.edu.sg/~suncn/papers/csmr12.pdf, last accessed February 15, 2013 

[23] Jungwoo H., Christopher J., Jason V., Indrajit R., Hany E., Donald E., David L., and 

Emmett W. (2007). Improved error reporting for software that uses black-box components, 

Microsoft research,  http://research.microsoft.com/apps/pubs/default.aspx?id=139859, last 

accessed February 15, 2013 

[24] Hilton L. (2012). How to Write a Good Bug Report, Software and advice that's not of 

this verse, Retrieved Janauary 16, 2013, from http://noverse.com/blog/2012/06/how-to-write-

a-good-bug-report/, last accessed February 15, 2013 

[25] Nicolas B., Sascha J., Adrian S., Cathrin W., Rahul P. and Thomas Z. (n.d.). What Makes 

a Good Bug Report, Retrieved Janauary 16, 2013, from www.cs.vu.nl/~rpremraj/papers/08-

fse.pdf 

[26] Apple (n.d.). Bug reporting best practices, 

https://developer.apple.com/bugreporter/bugbestpractices.html, last accessed February 15, 

2013 

[27] Serdar Y. (2012). 10 file-sharing options: Dropbox, Google Drive and more, 

http://www.computerworld.com/s/article/9228869/10_file_sharing_options_Dropbox_Google

_Drive_and_more, last accessed February 15, 2013 

[28] Wikipedia (2012). Defect tracking, http://en.wikipedia.org/wiki/Defect_tracking, last 

accessed February 15, 2013 

[29] Shreya J. (2011). Top 10 Open Source Bug Tracking Systems, 

http://www.toolsjournal.com/articles/item/184-top-10-open-source-bug-tracking-systems, last 

accessed February 15, 2013 



80 

 

[30] Detect tracking tools,http://softwarequalitysource.com/DefectTrackingTool.html, last 

accessed February 15, 2013 

[31] Software Bug Tracking Tools,http://www.bug-tracking.info/software-bug-tracking-

tools.php, last accessed February 15, 2013 

[32] Scott A. Deloach, Mark F. Wood and H. Sparkman, Multi-agent systems engineering, 

from http://people.cis.ksu.edu/~sdeloach/publications/Journal/MaSE%20-%20IJSEKE.pdf, 

last accessed February 15, 2013 

[33] Roderic, Incomplete error messages #2, http://drupal.org/node/1590212, last accessed 

February 15, 2013 

[34] Error reporting and disclosure, R. Wolf, G. Hughes. 

http://www.ncbi.nlm.nih.gov/books/NBK2652/, last accessed February 15, 2013 

[35] David U.(2008). Medication Error Reporting Systems: Problems and Solutions, 

http://www.ismp-canada.org/download/Medication%20Error%20Reporting%20Systems%20-

%20Problems%20and%20Solutions.pdf, last accessed February 15, 2013 

[36] W. Michael and P. Lin, (2004). “The prometheus methodology”, 

http://www.cs.rmit.edu.au/agents/www/papers/mseas04-wp.pdf, last accessed Feb 25th, 2013 

[37] G. Caire, F. leal, J. Rodriques, and P.Inovacao (2007).Message: Methodology for 

Engineering Systems of Software agents, http://archive.eurescom.eu/~pub-deliverables/P900-

series/P907/TI2/p907ti2.pdf, last accessed February 15, 2013 

[38] Scott A. DeLoach, (n.d.).Multiagent Systems Engineering: A Methodology And 

Language for Designing Agent Systems,http://macr.cis.ksu.edu/mase, last accessed February 

15, 2013 

[39] Crash reporter, http://en.wikipedia.org/wiki/Crash_reporter, last accessed Feb 25th, 2013 

[40] S. Vafadar, A.Barfouroush, M. Reza and A. Shirazi, (2009). Bridging the Gaps in the 

MaSE Methodology, http://ceit.aut.ac.ir/~vafadar/Reference%20Files/Vafadar_ATS2003.pdf, 

last accessed February 15, 2013 

[41] Automated Error Reporting: The Gateway to Better Quality, L. Lotfi. 

http://www.infoq.com/articles/Error-Reporting, last accessed February 15, 2013 



81 

 

[42] Wikipedia (n.d.), Dropbox (Service), http://en.wikipedia.org/wiki/Dropbox_(service), 

Last accessed February 15, 2012 



82 

 

APPENDIX 

Appendix 1: Online survey form 
 

ERROR REPORTING AND FIXING SYSTEM 

Online Survey 

Thank you for checking out the error reporting prototype system. Please take some time to give us 

your views on the system by answering the following questions. Note that this survey is anonymous 

so try to be as honest as possible. 

The first ten questions are multi-choice requiring you to tell us how you agree with the statements in 

a scale of 0 to 4. "0" represents "STRONGLY DISAGREE", “1” represents “DISAGREE”, “2” represents 

“NEITHER AGREE NOR DISAGREE”, “3” represents “AGREE” and "4" represents "TOTALLY AGREE". 

The last question is an open question where we are asking you to give us your thoughts about the 

system. 

1. I am enthusiastic about the new system 

  0   1   2   3  4 

2. The new system will cut down on customer support cost 

 0   1   2   3  4 

3. The new system will provide an efficient way to get the issues from clients 

 0   1   2   3  4 

4. Developers will get insight of the errors which are severe and frequent 

 0   1   2   3  4 

5. The new system will ensure faster response to system issues 

 0   1   2   3  4 

6. Deployment of fixes across the hospitals will be done much more easily 

 0   1   2   3  4 

7. I might lose my job as a result of the use of this system 

 0   1   2   3  4 

8. This system is hard to use 



83 

 

 0   1   2   3  4 

9. For me, the system will frustrate my work 

 0   1   2   3  4 

10. We will achieve less when using this new system that what we are achieving now 

 0   1   2   3  4 

 

11. What are your thoughts about the prototype system? 

--------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------

------------------------ 

 

Appendix 2: Data collected from the survey 
 

 POSITIVE IMPACTS  NEGATIVE IMPACTS 

R
E

S
P

O
N

D
E

N
T

S
 

E
n

th
u

si
a

st
ic

 a
b

o
u

t 
sy

st
e

m
 

R
e

d
u

ce
 c

u
st

o
m

e
r 

su
p

p
o

rt
 c

o
st

 

E
ff

ic
ie

n
t 

w
a

y
 f

o
r 

e
rr

o
r 

re
p

o
rt

in
g

 

In
si

g
h

t 
to

 s
e

v
e

re
 a

n
d

 f
re

q
u

e
n

t 
e

rr
o

rs
 

F
a

st
e

r 
re

sp
o

n
se

 t
o

 c
u

st
o

m
e

r 
is

su
e

s 

F
a

st
e

r 
d

e
p

lo
y
m

e
n

t 
o

f 
fi

x
e

s 
a

cr
o

ss
 h

o
sp

it
a

ls
 

 C
a

n
 l

e
a

d
 t

o
 l
o

ss
 o

f 
jo

b
 

S
y

st
e

m
 i

s 
h

a
rd

 t
o

 u
se

 

S
y

st
e

m
 f

ru
st

ra
ti

n
g

 m
y

 w
o

rk
 

W
e

 w
il

l 
a

ch
ie

v
e

 l
e

ss
 u

si
n

g
 t

h
e

 s
y

st
e

m
 

R1 4 4 4 4 3 3  1 1 1 1 

R2 4 4 4 4 4 4  0 0 0 0 

R3 3 4 4 3 3 3  3 3 3 3 

R4 2 4 4 3 2 2  3 3 2 1 

R5 2 3 3 3 3 3  3 2 1 1 

R6 3 3 4 3 4 4  1 1 1 1 



84 

 

R7 3 4 2 1 2 2  3 2 3 3 

R8 4 3 3 3 4 4  1 2 2 3 

R9 4 2 2 2 3 3  3 2 2 2 

R10 1 2 2 2 1 1  4 4 4 4 

R11 4 3 3 3 4 3  1 1 1 1 

R12 1 2 3 3 2 1  3 3 2 2 

R13 1 2 3 3 3 3  4 4 3 3 

R14 2 4 4 3 4 4  3 3 3 3 

R15 2 2 3 3 3 4  2 2 2 2 

R16 3 3 3 3 3 4  1 1 1 1 

R17 3 4 3 2 3 4  2 1 2 1 

R18 3 4 3 3 3 4  1 1 1 1 

 

Appendix 3: Sample code 
 

(a) String matching algorithm 

public static int DamerauLevenshteinDistance(string source, string target) 
        { 
            if (String.IsNullOrEmpty(source)) 
            { 
                if (String.IsNullOrEmpty(target)) 
                { 
                    return 0; 
                } 
                else 
                { 
                    return target.Length; 
                } 
            } 
            else if (String.IsNullOrEmpty(target)) 
            { 
                return source.Length; 
            } 
 
            var score = new int[source.Length + 2, target.Length + 2]; 
 
            var INF = source.Length + target.Length; 
            score[0, 0] = INF; 
            for (var i = 0; i <= source.Length; i++) { score[i + 1, 1] = i; score[i + 1, 0] = INF; } 
            for (var j = 0; j <= target.Length; j++) { score[1, j + 1] = j; score[0, j + 1] = INF; } 
 
            var sd = new SortedDictionary<char, int>(); 
            foreach (var letter in (source + target)) 
            { 
                if (!sd.ContainsKey(letter)) 
                    sd.Add(letter, 0); 
            } 
 
            for (var i = 1; i <= source.Length; i++) 
            { 
                var DB = 0; 
                for (var j = 1; j <= target.Length; j++) 
                { 
                    var i1 = sd[target[j - 1]]; 
                    var j1 = DB; 
 
                    if (source[i - 1] == target[j - 1]) 
                    { 
                        score[i + 1, j + 1] = score[i, j]; 



85 

 

                        DB = j; 
                    } 
                    else 
                    { 
                        score[i + 1, j + 1] = Math.Min(score[i, j], Math.Min(score[i + 1, j], score[i, 
j + 1])) + 1; 
                    } 
 
                    score[i + 1, j + 1] = Math.Min(score[i + 1, j + 1], score[i1, j1] + (i - i1 - 1) + 
1 + (j - j1 - 1)); 
                } 
 
                sd[source[i - 1]] = i; 
            } 
 
            return score[source.Length + 1, target.Length + 1]; 
        } 

 

(b) Code for Screen Errors identification 

protected override void Run() 
        { 
            Console.WriteLine("\nScreen_Error_Identifier has arrived"); 
 
            //create working folders 
            Directory.CreateDirectory(sWorkingFolder); 
            Directory.CreateDirectory(sErrorsFolder); 
            Directory.CreateDirectory(sTempFolder); 
            Directory.CreateDirectory(sFixesFolder); 
 
            //Load the list of known errors 
            ErrorKB = LoadErrors(); 
 
            //Remove any files left during the last execution 
            DeleteAllFilesInFolder(sWorkingFolder); 
            DeleteAllFilesInFolder(sTempFolder); 
 
            //Start today's business 
            for (; ; ) 
            { 
                try 
                { 
                    if 
(ActiveWindowTitleReader.GetActiveWindowTitle().ToString().ToLower().IndexOf(sApp.ToLo
wer()) != -1) 
                    { 
                        //Printscreen active window 
                        string sPath = PrintScreenActiveWindow(); 
 
                        //Do a full print screen and put in Temp folder 
                        PrintScreen(sPath.Replace("Working", "Temp")); 
 
                        //Extract the image text 
                        string sErrorText = ExtractImageText(sPath); 
 
                        //Check if we are still dealing with the current screen 
                        if (sPreviousErrorText != sErrorText) 
                        { 
                            if (CheckIfErrorHasOccurred(sErrorText) == true) 
                            { 
                                //Copy the file in temp folder 
                                File.Copy(sPath.Replace("Working", "Temp"), sPath, 
true); 



86 

 

 
                                if (sPreviousErrorKeywords != sErrorKeywords) 
                                { 
                                    //Save error in database 
                                    string sFileName = 
Path.GetFileNameWithoutExtension(sPath); 
                                    int iRecordID = SaveError(0, sFileName, 
"ScreenError", sErrorText, sErrorsFolder, Environment.MachineName, false, 
DateTime.Now); 
                                     
                                    //Copy image to Errors folder 
                                    string sTempPath = sPath.Replace("Img_", 
iRecordID.ToString() + "_"); 
                                    File.Copy(sPath, sTempPath.Replace(sWorkingFolder, 
sErrorsFolder), true); 
                                } 
 
                                File.Delete(sPath.Replace("Working", "Temp")); 
                            } 
 
                            //Keep a copy of the current text 
                            sPreviousErrorKeywords = sErrorKeywords; 
                            sPreviousErrorText = sErrorText; 
                        } 
 
                        //Delete the file in working folder 
                        File.Delete(sPath); 
                    } 
                } 
                catch (Exception ex) 
                { 
                    Console.WriteLine("\nScreen_Error_Identifier: The following error 
has occured: " + ex.Message); 
 
                    if (ex.Message.ToLower().IndexOf("retrieving the com class 
factory") != -1) 
                    { 
                        Console.WriteLine("\nScreen_Error_Identifier: The 
Screen_error_Identifier will now run as a separate program"); 
                        
Process.Start(@"C:\Dropbox\ErrorReporter\Agents\ScreenErrorIdentifier\ScreenErrorsIden
tifier.exe"); 
                        break; 
                    } 
                } 
            } 
        } 

 

(d) Error reporting using Dropbox 

protected override void Run() 
        { 
            Console.WriteLine("\nError_Reporter has arrived"); 
 
            int iRecordID = 0; 
            string sErrorName = string.Empty; 
            string sErrorText = string.Empty; 
 
            for (; ; ) 
            { 



87 

 

                Thread.Sleep(20000); 
 
                Console.WriteLine("\nError_Reporter: Checking if new errors have been 
identified..."); 
 
                try 
                { 
                    DataTable Errors = LoadIdentifiedErrors(); 
 
                    for (int i = 0; i < Errors.Rows.Count; i++) 
                    { 
                        iRecordID = Convert.ToInt32(Errors.Rows[i]["id"]); 
                        sErrorName = Errors.Rows[i]["ErrorName"].ToString(); 
                        sErrorText = Errors.Rows[i]["ErrorText"].ToString(); 
 
                        string sErrorDetails = iRecordID.ToString() + "|" + sErrorName 
+ "|" + "Category not specified" + "|" + sErrorText + "|" + Environment.MachineName; 
 
                        //Put fix in local dropbox folder 
                        File.WriteAllText(sErrorsFolder + iRecordID.ToString() + "_" + 
sErrorName + ".error", sErrorDetails); 
 
                        SaveError(iRecordID, "", "", "", "", "", true, DateTime.Now); 
 
                        Console.WriteLine("\nError_Reporter: Identified error 
reported"); 
                    } 
                } 
                catch (Exception ex) 
                { 
                    Console.WriteLine("\nError_Reporter: The following error has 
occured: " + ex.Message); 
                } 
            } 
        } 

 

(e) Code for Error fixing 

private static void ApplyFixes() 
        { 
            List<sy_LoadActiveFixesResult> oActiveFixes = 
oDAL.sy_LoadActiveFixes().ToList(); 
 
            for (int i = 0; i < oActiveFixes.Count; i++) 
            { 
                try 
                { 
                    if (oActiveFixes[i].FixType == "Script") 
                    { 
                        //Run database script 
                        RunDatabaseScript(oActiveFixes[i].FixSource); 
                    } 
                    else if (oActiveFixes[i].FixType == "Filepatch") 
                    { 
                        //Copy patch files 
                        CopyPatchFiles(oActiveFixes[i].FixSource, 
oActiveFixes[i].FixDestination); 
                    } 
                    else if (oActiveFixes[i].FixType == "Executable") 
                    { 



88 

 

                        //Execute the installation 
                        RunInstallMSI(oActiveFixes[i].FixSource); 
                    } 
 
                    oDAL.sy_UpdateFixStatus(oActiveFixes[i].id, true, DateTime.Now); 
                } 
                catch (Exception ex) 
                { 
                    Console.WriteLine(ex.Message); 
                } 
            } 
        } 

 

Appendix 4: Project Schedule 

WEEK 1&2 3&4 5&6 7&8 9&10 11&12 13&14 15&16 17&18 19&20 21&22 23&24 25&26

1. Proposal writing

2. Present  proposal to panelist

3. System Analysis & design

4. System Coding

5. Implementation and testing

6. Presentation and demo to panelist

7. Prototype evaluation/ conclusion

8. Conclusion  & Project completion

9. Presentation: evaluation, analysis  & conclusion 

 

Appendix 5: Project Budget 

Item Units Cost per Unit (Kshs) Total Cost (Kshs) 

Wireless Router 1 10,000 10,000 

Computers 3 40,000 120,000 

Modems 2 2,500 5,000 

MS Office 2007 1 2,500 2,500 

Dropbox Software 1 0 0 

RDBMS(SQL Server express) 1 0 0 

Total 127,500 

 

 

Appendix 6: How to run the system 
 

1. Install Microsoft office 2007, ensuring that Microsoft office Document Imaging is 

installed. 



89 

 

2. Install Dropbox software and create a Dropbox folder in Drive C of the computer 

3. Install SQl Server 2008, and then run the create database script (Create database 

script.sql) in SQL server management studio 

4. Install the Agent Host application in every computer in the network 

5. Install Agent Client application in the computer where the agents will be launched 

6. Start the agent Host application in all the computers in the network 

7. Start the agent Client application and use it to send agents to the computers on the 

network 

 


