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ABSTRACT 
 
Maize is one of Kenya’s main staple food crop which plays a major role in the livelihoods of 

many households in terms of food security, income and employment generation. Over eighty 

percent of Kenya’s population which is currently over forty million depends on availability of 

maize as the main food. There is a shortage of maize as consumption outstrips production, 

which is caused by low maize production, especially in semi arid or marginal regions. 

Feeding the growing population and meeting the increased domestic future demand will 

continue to be a challenge unless maize production per hectare is improved. This can be 

achieved through application of new farming technologies that could enhance maize 

production such as; planting the best performing and improved hybrid maize varieties which 

are in the market. Most of small scale farmers do not know nor plant these hybrid maize 

varieties which give optimal yield. This study, therefore seeks to determine the best 

performing maize variety out of the twenty five selected. The field trials were conducted in 

two locations namely Katumani and Kangundo in Machakos County, Kenya. The broad 

objective of the study was to determine the overall best maize variety across the two stated 

locations. The design used was a partially balanced lattice design carried out in two locations, 

each having two replications. Results revealed that there were significant mean differences 

among the maize varieties at 5% significant level in Katumani. No significant mean 

differences were noted in Kangundo. In Katumani, the best variety was T9 with mean yield 

of 1.158 t/ha while in Kangundo, T16 with mean yield of 1.747 t/ha. Varieties T16, T2, T5 

and T14 were among the top ten in both locations. Farmers in Kangundo should be 

encouraged to plant varieties T16 and T2 while T9 and T22 in Katumani. Most of the 

varieties do not differ very much in yield capacity and more research should be conducted, 

based on the diversity of the farmer’s requirements. 

Keywords: Maize variety, yields, partially balanced lattice. 
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CHAPTER 1 

1.0   INTRODUCTION 
 
Maize is the primary staple food in Kenya.  It is also the key food crop, accounting for 2.4% 

of Kenya’s gross domestic product (GDP) and 12.6% of agricultural GDP (De Groote et al, 

2005). Over eighty percent of Kenya’s population depend on maize production for food. 

Demand for maize continue to rise and that is why prices have soared by 25% above 2011 

(Eriyo, 2013). Kenya’s poorest citizens spend nearly a third of their income on maize and 

therefore improving maize production is considered to be one of the most important strategy 

for addressing food insecurity problem in a country. However, despite the effort made by 

Kenya Agricultural Research Institute (KARI) that has led to the development and release of 

several high yields maize varieties, their adoption by farmers has been low. This has been 

attributed to lack of sufficient information or exposure to the varieties (Mureithi, 2005). This 

has led to low production especially in marginal or semi arid areas. There is a scarcity of land 

for cultivation due to high population density. The best mechanism of increasing maize 

production in future is by improving yield per hectare on land under use.  The average maize 

yield is about 1.8 t/ha but yields of over 6 t/ha can be achieved (Makokha et al, 2010). This 

yield potential can be achieved by small or large scale farmers adopting and planting maize 

varieties recommended for their areas by research bodies like KARI. This study seek to 

investigate through field trials the best yield maize variety, if planted by farmers in Machakos 

county could lead to increase in  maize yield and boast food security. 

1.1   Background Information 
 
Maize is known by its scientific name as ‘zea mays’ and is not an indigenous cereal in Kenya 

(NAFIS, Kenya).  It originated in Central America about 6,000 to 7,000 years ago.  Maize 

arrived in Africa most likely through Portuguese traders who stopped along the African Coast 
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during 16th century (Miracle 1965).  This maize was flinty, low yielding and varied in colour.  

From the coast, maize slowly moved inward particularly through the routes of slave traders.  

Maize became an important food crop in East Africa at the beginning of 20th century, when 

European settlers introduced new white dent varieties imported from South Africa. By the 

1930s, maize was a dominant food crop; its expansion was driven by the demand for starch 

industry in England and the need to feed miners and farm workers (Byrelee and Eicher, 1997; 

Snake and Jayne, 2003).  The present maize varieties in the country are mainly the result of 

maize breeding and agronomic research programmes which began intermittently in the 1930s. 

From 1990 to 2010, maize area in Kenya has increased from half a million hectares to about 

1.6 million hectares. The total production increased from 0.8 million tonnes to about 2.5 

million tonnes in the same period. However, average yields decreased slightly from 1.7 

tons/ha in 1990 to 1.6 tons/ha in 2010 (FAO, 2011).  In a typical year, maize provides 42% of 

dietary energy intake for Kenyan consumers, including both rural and urban areas 

(Mohammed and Underwood, 2004).  Apart from food for humans, maize is used for many 

different purposes including feed for livestock, and raw material for agro-allied industries.  

Maize is eaten in form of grains and processed to offer various product ranges, which include 

maize flour that is used to make Kenya’s common meal “ugali” and porridge. Maize is also 

used to make vegetable oils and sometimes fermented to produce alcohol to make local beer 

“busaa’’.  Green maize, fresh on the cob, is eaten roasted or boiled separately or mixed with 

legumes.  Maize remnants after harvesting are used as fodder and can also be used to make 

silage when completely dried. It is therefore very important to invest in maize due to its 

varied and wide economical importance.  Every part of maize plant has economical value; the 

grain, leaves, stalk and cob can be used to produce a large variety of food and non-food 

products. 
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1.1.1 Ecological requirements 
 
Maize is grown at latitude ranging from the equator to approximately 50o North and South.  It 

can grow in a wide range of agro-ecological zones in Kenya ranging from 0-2200m above sea 

level depending on variety.  This reflects its ability to adapt to a wide range of production 

environments, under temperature ranging from extreme cold to very hot, under moisture 

regimes ranging from extremely wet to semi-arid. Cold conditions extend the maturity period 

whereas high temperatures lower the yields. The optimum temperature for good yield is 30o. 

Very low or high altitudes results in poor yields. Maize can grow on a wide range of soils 

though it performs best in well drained and well aerated loam or silty loam or alluvial soils 

with PH of 5.5-7.  It is intolerant of water logging.  Maize is grown on terrain ranging from 

completely flat to precipitously steep, in many different types of soil (Morris, 1998b).  Maize 

grows well with 600-900mm of rainfall but average rainfall range is between 250mm to 

2100mm per season (NAFIS, Kenya). The rainfall should be well distributed throughout the 

growing period. The rainfall is most critical at flowering and silking stage.  The wide range of 

conditions has led to a continuous interaction of genotype with environment and formation of 

new maize types in farmer’s field both through natural crossing and farmer selections. The 

performance of maize varieties is therefore highly specific to each condition (Smale et al 

2011). 

1.1.2 Agronomic practices in maize variety trials  
 
Good management practices are essential for the production of high yields in maize variety 

trials.  The management practices include seed dressing, thinning, the filling of vacancies in 

plant stands, cultivation, control of weeds, diseases, insects and vertebrate pests, fertilizers 

application and timely harvesting. 
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1.2 Literature Review 

A correct experimental design is as important as a correct statistical analysis in order to 

obtain valid and reliable conclusions from trials or field experiments. Certain restrictions 

must be imposed when plots are arranged in order to be able to estimate the errors accurately.  

The choice of experimental design as well as of statistical analysis is of huge importance.  

These are necessary in order to obtain precise results (Mohsen and Hegazy, 2013).   

 

The primary aim of most agricultural field experiments is the efficient estimation of treatment 

effects. To achieve this, it is important to control field variation that is caused by 

experimental management, fertility trends and other environmental factors. 

 

Fisher (1926) in his first paper in field experimental designs emphasized the importance of 

randomized arrangements in the estimation of experimental error and described the 

Randomized complete block design (RCBD) and Latin square design as adequate.  However, 

in some situations efficiency of the randomized block, Latin square and other complete block 

types of experiment is not high.   

 

The problem with complete blocking is that as the block size increases due to the increase in 

the number of treatments, the homogeneity of experimental plots, within a large block is 

difficult to maintain and thus local control of experimental variability becomes inefficient. If 

the block size and shape is not appropriately chosen or if the block size is too large, the 

resulting experiment may not be a well controlled experiment in terms of variability and thus 

will provide inefficient results. Randomized block, Latin square and other complete block 

types of experiments are unsuitable for experiments in which large numbers of varieties or 
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treatments are used.  They fail to adequately minimize the effect of soil heterogeneity (Lenter 

and Bishop 1993).   

 

The randomised complete block design (RCBD), because of its simplicity continues to be a 

popular choice for many varietal trials.  The precision of results relies heavily on the control 

of heterogeneity within blocks.  Generally, the greater the heterogeneity within blocks, the 

poorer the precision of variety effect estimates.  As the number of treatments increase, block 

size increases proportionally. This makes it difficult to maintain the homogeneity of 

experimental plots within the large blocks. The experimental error of a complete block design 

is generally expected to increase with the number of treatments.  When the number of factors 

and or levels of factors increase, the number of treatment combinations increase very rapidly 

and it is not possible to accommodate all these treatment combinations in a single 

homogeneous block. 

 

For a long time the methods used to overcome the difficulty of fitting a lot of treatments into 

one block of homogeneous units were; confounding one or more factorial contrasts with 

blocks or use split plot designs which in effect confound a factorial main effect.  This 

reduction in size of block was achieved by sacrificing all or part of the information on certain 

treatment comparisons to achieve more precision on others (Idress and Khan, 2009). 

 

In response to the need for efficient designs for a large number of treatments, Yates (1936) 

developed the group of incomplete block designs, known as quasi-factorials or lattices.  As 

the name implies, each block in an incomplete block design, does not contain all treatments 

and a reasonably small block size can be maintained even if the number of treatments is 

large.  With smaller blocks, the homogeneity of experimental units in the same block is easier 
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to maintain and a higher degree of precision can be generally achieved.  Incomplete block 

designs or lattices divide each complete block into smaller blocks.  These designs are 

arranged in blocks or groups that are smaller than a complete replication in order to eliminate 

heterogeneity (Yate, 1936) 

 

Patterson and Williams (1976), extended Yate’s method of construction to remove 

restrictions on the number of varieties and to generate generalized lattice designs, with 

widespread use, made of incomplete block design in variety trials.  Generalised lattice 

designs are resolvable.  If there is no gain in precision due to reduction in block size, these 

designs can be reanalyzed as if they were ordinary randomized complete blocks. 

 

Bose and Nair (1939) presented a detailed account of construction of several incomplete 

block designs.  Ma and Harrington (1948), during the period 1937 and 1946 used a total of 81 

lattice designs of various kinds in Saskatoon, and Tisdale experiments at the University of 

Saskatchewan.  The average increased efficiency of lattices over randomized blocks was 

48%. 

 

Lattice designs are now frequently used in the field of agriculture to test the yield of annual 

crops.  A condition required in these designs is that the number of treatments used must be a 

perfect square such as 52 or 25, 62 or 36 etc. The most commonly used design is balanced 

lattice and partially balanced lattice design. The discrepancy between these two designs 

occurs on the number of replications to be used. Both require that the number of treatments 

must be a perfect square. In  balanced lattice design, block size (k) is equal to the square root 

of the total number of treatments and the number of replications required is one more than the 

block size i.e. k+1. However in partially balanced lattice design any number of replications 
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can be used. If two replications are used in partially balanced lattice design, the design is 

called a simple lattice; with three replications, it is called a triple lattice; with four 

replications it is called a quadruple lattice, etc. 

 

The advantages of lattice designs are:  

• A large number of treatments may be compared within relatively small blocks (the 

incomplete blocks) and any number of treatments and replications can be used. 

• Lattice designs provide a mechanism for better control of site variation and give a 

higher degree of precision. 

•  Lattice design may be analyzed as a randomized complete block design or 

completely randomized design, depending upon whether or not the incomplete blocks 

are arranged in complete blocks. 

 

 Patterson et al. (1978) suggested that if blocking is not done properly then lattice design can 

be analysed as RCBD by considering super blocks as ordinary blocks. 

 

The disadvantages of lattice designs are: 

• Analysis of lattice designs is more complex when missing plots occurs , covariance 

analysis is used or if the treatments are subjected to different error variances. 

• Lattice designs are not available for all values of treatments, replications and 

incomplete block size. 

•  Lattice designs are more difficult to construct.  
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1.3  Statement of the Problem 
 
Due to the decline of maize production in the country, its national consumption is over and 

above what is produced and therefore feeding the people will continue to be a major 

agricultural challenge. The country continues to rely on imports to meet deficits. Kenyan 

maize production averages 81kg per capita, significantly lower than the average demand of 

103 kg per capita (Pingani, 2000). There is limited scope for expanding cultivated land under 

maize production since unutilized land is diminishing, degrading in soil fertility or unsuitable 

for maize production.  Producing higher maize yield on existing cultivated land would be the 

best way of generating the extra maize grain to feed the nation.  There is therefore a need to 

investigate the best maize variety which will give a higher yield given that the land holdings 

are constant while population growth is on the upward trend on yearly basis. Increasing 

Maize production in Kenya could be approached by planting the most appropriate maize 

varieties.  

 

1.4 Broad objective  
 
To determine the best performing maize variety in a maize variety trial conducted in two 

locations in Machakos County. 

 

1.5 Specific objectives 
 

i)  To determine the best maize variety in each location 

ii)  To determine the overall best maize variety across the two locations 
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1.6 Hypothesis 
 
Different maize varieties have the same mean yield 

 0 1 2 3: ....... kH µ µ µ µ= = =  

against 

1H  at least one ,i sµ is different 

Where kµ is the mean yield of thethk variety. 

In other words the null hypothesis is that all k varieties have the same mean yield. 

The alternative hypothesis 1H is that at least one of the treatments has a mean yield different 

from others. 

 

1.7 Significance of the study 
 
Effort to increase food production has been the key function in agricultural research 

institutions throughout the world.  Such efforts have been spearheaded by Kenya Agricultural 

Research Institute (KARI).  The Institute provides resources through field experimental trials 

which play momentous role in assembling, evaluating maize germ plasma and developing 

different varieties that are resistant to abiotic and biotic stresses. The study will provide 

information for immediate use to the agricultural extension field officers, small and large 

scale maize farmers. Secondly the study hope to provide useful findings to agricultural 

research bodies on the best varieties of maize that can be grown in arid and semi arid land 

(ASAL) for optimum yield.    
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1.8   Methodology 

1.8.1   Study area 
 
The trial was carried out in two locations; Katumani (1035’S; 37014’E) and Kangundo 

(1018’S; 37021’ E). Kangundo is 57km on Eastern side of Nairobi while Katumani is about 

80km south East of Nairobi and 8Km South of Machakos town along the Machakos-Wote 

road. Both locations are in Machakos county, Eastern Province at altitude from 1000 to 

1600m above sea level with a semi- arid tropical climate described as agrecological zone 

(AEZ) IV with bimodal pattern of rainfall (Unesco 1974). 

 

1.8.2   Experimental design. 
 
The trial has 25 treatments (varieties). The experimental design used was a 5 5×  partially 

balanced lattice design with 2 replications of 25 varieties each in 5 blocks. Each block 

contains 5 varieties. Twenty five varieties were randomly assigned to the experimental units 

in a randomized incomplete block design. The trial was carried out during the long rains 

season.  

 

1.8.3   Field layout 
 
All twenty five treatments (varieties) for both locations are shown in the layout in table 1, 2, 

3 and 4.  
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    Table 1:   A 5 5×  balanced-Lattice in the first Replicate for Katumani 
 
 

Block 1 Block 2 Block 3 Block 4 Block 5 
T9 T21 T2 T3 T22 
T13 T8 T24 T10 T12 
T18 T14 T5 T25 T20 
T4 T11 T23 T6 T17 
T1 T16 T7 T15 T19 
     

 

 

      Table 2: A 5 5×  balanced-Lattice in the second Replicate for Katumani 
 

 
Block 1 Block 2 Block 3 Block 4 Block 5 
T9 T13 T18 T4 T1 
T21 T8 T14 T11 T16 
T2 T24 T5 T23 T7 
T3 T10 T25 T6 T15 
T22 T12 T20 T17 T19 
     

 

 

Table 3 :    A 5 5×  balanced-Lattice in the first Replicate for Kangundo 

 
 

Block 1 Block 2 Block 3 Block 4 Block 5 
T9 T21 T2 T3 T22 
T13 T8 T24 T10 T12 
T18 T14 T5 T25 T20 
T4 T11 T23 T6 T17 
T1 T16 T7 T15 T19 
     

 

 
 

    Table 4 :  A 5 5×  balanced-Lattice in the second Replicate for Kangundo 

 
 

Block 1 Block 2 Block 3 Block 4 Block 5 
T9 T13 T18 T4 T1 
T21 T8 T14 T11 T16 
T2 T24 T5 T23 T7 
T3 T10 T25 T6 T15 
T22 T12 T20 T17 T19 
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1.8.4   Data collection  
 
The data on the dried maize yield were recorded on data recording sheets. This raw data was 

keyed in the MS Excel spreadsheet and verified against the original data sheets. The maize 

yield data was expressed in tons per hectare. 

 

1.8.5 Data Analysis 
 
Data analysis was done using Microsoft Office Excel 2007, SAS (ver.9.1.3), Math type 

equations and R (ver.2.13.2) computer packages. 

 

1.8.6   Assumption of analysis of variance 
 
The following assumptions were made before carrying out an analysis of variance: 

i) Each of the “n” (n=2) Populations i e. Katumani and kangundo are normally 

distributed with means, 1 2µ µ=  and variances 2 2
1 2σ σ=  

ii) The two population variances are equal, 2 2
1 2σ σ= (i.e. there is homogeneity of 

variances). 

iii) The independent samples are taken from 2 populations (equal and unequal). 

iv) According to Annette (1990), a random variableX  has a normal distribution 

with mean µ  , variance σ  and a probability density function of 

   

2

2

1
2 2

2

1
( ; ; )

2

x

f x e
µ

σµ σ
πσ

− −  
 =               (1.1) 

 This is denoted by X  ~ 2( , )N µ σ  

 X ~ (0,1)N is called the standard normal distribution with 0µ =  and 2 1σ = . 
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CHAPTER 2 

EXPLORATORY DATA ANALYSIS (EDA) 

2.1   Introduction 
 
Exploratory data analysis (EDA) is an approach used in analysing data sets and summarizing 

their main characteristics, often using visual methods. Exploratory data analysis (EDA) 

checks whether the data conforms to the underlying assumptions of a linear model before 

fitting a linear model. It gives multiple views of the data that may provide useful insights. 

EDA is a critical first step in analyzing the data from an experiment.  

In this data set, EDA employed a variety of graphical techniques for the maize yield in 

Katumani and Kangundo areas. EDA employs graphical techniques and a few quantitative 

techniques. EDA employs a variety of techniques to: extract important variables; uncover 

underlying structure; maximize insight into a data set; detect outliers and anomalies; develop 

models and test underlying assumptions. These techniques are: 

a) Quantile - Quantile Plot (Q-Q plot) is a plot of quantiles of quantitative response 

variables distribution against the quantiles of the normal distribution. If distribution is 

normal, the plot would have, for example, yield variable distributed closely around 

the straight line. Q-Q plots are generally used to determine whether the distribution of 

a variable matches the normal distribution. They allow detection of non-normality. 

b) Histogram shows distribution and check normality. Yield data is normally distributed 

if it has a bell shape. The shape of the histogram indicates the closeness of the data to 

being normally distributed. 

c) Box plots display two common measures of the variability or spread in the data set. 

They also show the outliers and extreme score either on upper or lower whisker.   
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2.2   EDA on Katumani 
 

Katumani _replication 1 

 
Figure 1 

 

Figure 1 shows a Q-Q plot for Katumani maize yield data in replication 1. Most of the points 

are not in straight line or close to it. It shows deviation from normality on both ends as the 

points are far from the line. The plot indicates the existence of two clusters of the data. The 

yield variable does not match the test distribution (i.e. normal distribution). 

 
Figure 2 

 

 
Figure 3 

 
  

Figure 2 shows a histogram for Katumani maize yield data in replication 1 which indicates 

that the yield data is not normally distributed since it has no bell-shape. The distribution is 
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slightly left skewed. This is confirmed by a normal curve superimposed onto the histogram. 

The normal curve has a mean of 0.70 and standard deviation of 0.29. 

 

Figure 3 shows a box plot for Katumani data in replication 1. The lower whisker is longer 

implying that the distribution is negatively skewed (or skewed towards left). The distribution 

is not normal as the median line does not divide the box equally .There are no outliers. 

 
Katumani _replication 2 

 

 

Figure 4 

 

Figure 4 shows a Q-Q plot for Katumani maize yield data in replication 2.The distribution of 

the yield variable does not match the normal distribution since the points do not cluster 

around a straight line or close to it. The Q-Q plot shows deviation from normality on both 

sides i.e. upper and lower sides. 

 

Figure 5 shows a histogram for Katumani maize yield data in replication 2 which indicates 

that the data is not normally distributed since it is not bell-shaped. This is confirmed by the 
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normal curve superimposed on the histogram which is positively skewed. The normal curve 

has a mean of 0.67 and standard deviation of 0.29. 

 

Figure 5 

 

 

Figure 6 

Figure 6 shows a box plot for Katumani maize yield data in replication 2. The upper whisker 

is longer implying that the underlying distribution is positively skewed. There are no outliers. 

The median line does not divide the box equally implying the data is not normally distributed. 

 

Katumani _combined maize yield data 

 

Figure 7 
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Figure 7 shows a Q-Q plot for Katumani combined maize yield data. Most of the data are 

closely around the straight line. There are outliers at lower and upper end. The plot slightly 

matches the test of normality. 

  

Figure 8 Figure 9 

  

Figure 8 shows a histogram plot for Katumani combined maize yield data which have a bell 

shape implying that the yield data is symmetric and approximately normal. A normal curve 

superimposed onto the histogram confirms the variable is normally distributed. It has a mean 

yield of 0.687 and standard deviation of 0.343 

 

Figure 9 shows a box plot for Katumani combined maize yield data. It shows one outlier on 

the upper whisker. The distribution is approximately normal as the median line is not far from 

the middle of the box and whiskers are almost of the same length. 
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2.3   EDA on Kangundo 
 

Kangundo _replication 1 
 

 
Figure 10 

 
Figure 10 shows a Q-Q plot for Kangundo maize yield data in replication 1. The plot is linear 

thus ascertaining the underlying yield data distribution to be approximately normal because 

most of the points except a few cluster around the straight line. 

 

Figure 11 in the next page shows a histogram for Kangundo maize yield data in replication 1 

which is bell-shaped hence its underlying distribution is symmetrical and approximately 

normal. Normality is suggested by a normal curve superimposed on the histogram. The curve 

has a mean of 1.51 and standard deviation of 0.58  
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Figure 11 Figure 12 

 
Figure 12 shows a box plot for Kangundo maize yield data in replication 1. The median line 

almost divides the box-plot equally hence the distribution is approximately normal. There are 

no outliers. 

 
Kangundo _replication 1 

 

 

Figure 13 
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Figure 13 shows a Q-Q plot for Kangundo maize yield data in replication 2. The normal Q-Q 

plot is almost linear with few points deviating at the upper part thus the underlying 

distribution is approximately normal 

  

Figure 14 Figure 15 

 

Figure 14 shows a histogram plot for Kangundo maize yield data in replication 2 which 

indicate that the yield data is normally distributed since it is bell-shaped. A normal curve 

superimposed onto the histogram reveals that the variable is normally distributed. The curve 

has a mean of 1.25 and standard deviation of 0.48 

 

Figure 15 shows a box plot for Kangundo maize yield data in replication 2. The middle line is 

displayed at the middle of the box which confirms that the distribution is symmetric and 

normal. However there is an outlier on each side of the whiskers.  
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Kangundo _combined maize yield data 
 

   
Figure 16 

 
Figure 16 shows a Q-Q plot for Kangundo combined maize yield data which indicate that the 

data is normally distributed since they are closely around the straight line. There are outliers 

at the top and upper end. The plot matches the test of normality.    

 

Figure 17 in the next page shows a histogram for Kangundo combined maize yield data 

which is bell-shaped implying the yield data distribution is symmetric and approximately 

normal. A normal curve superimposed onto the histogram suggests the variable is normally 

distributed. The curve has a mean yield of 1.378 and standard deviation of 0.543 
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Figure 17 Figure 18 

 

Figure 18 shows a box plot for Kangundo maize yield combined data. The distribution is 

almost symmetric and normal as the median line is not displayed far from the middle of the 

box. 

 

2.4   Conclusion 
 
From Exploratory Data Analysis (EDA), we can conclude that combined maize yield data 

over replications for both Katumani and Kangundo is normally distributed. The combined 

data for each location therefore confirms that the data conforms to the underlying 

assumptions of a linear model. 
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CHAPTER 3 

ANALYSIS OF VARIANCE FOR SEPARATE LOCATIONS 

3.1 Introduction 
 
Analysis of Variance (ANOVA) is a statistical technique of using population means and 

variances to test uniformity or homogeneity of data. A population that is not homogeneous 

will have large variance while a homogeneous population will have small variance. The 

essence of ANOVA is that the total amount of variation in a set of data is split into two 

components; the amount which can be attributed to chance and the amount which can be 

attributed to specified causes. The basic principle of ANOVA is to test for the differences 

among the means of the populations by examining the amount of variation within each of 

these samples, relative to the amount of variation between samples. This is done under the 

assumptions that the sampled populations are normally distributed. 

 

3.1.1 Assumptions of ANOVA 
 

i) Experimental errors are independently and normally distributed with mean zero and 

common variance. 

ii)  The effect of the ith treatment remains same irrespective of the plot. 

iii)  The observations are independent. 

iv) Parent population from which observations are taken is normal. 

v) Various treatment and environmental effects are additive in nature. 
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3.2 Lattice Designs - Incomplete Blocks 
 
Experimental designs are basically divided into two categories: complete block design and 

incomplete block design. Complete block design includes; completely randomized design 

(CRD), randomised complete block design (RCBD), latin square design and factorial design. 

Among these designs, RCBD is one of the most extensively used designs in agriculture. 

Incomplete block designs are designs in which only a subset of treatments are applied in each 

block. There are two types of incomplete block design; balanced incomplete block design 

(BIBD) and partially balanced incomplete block design (PBIBD). 

 

In RCBD, a block should be homogeneous and each block contains a complete set of 

treatments. Therefore, a special requirement of RCBD experiments is that every block should 

contain observations on every treatment. However, when the number of treatments (t) is 

higher than the block size (k), every block cannot contain observations on every treatment. 

In this case, an incomplete block design called quasi-factorials or lattice design is used 

instead of RCBD. Lattice designs, originally described by Yates (1936), are a special class of 

incomplete block designs used when number of treatments is large. A lattice design in a field 

trial involves grouping a block into smaller sub blocks. Each sub block cannot accommodate 

all the treatments. Grouping is done in such a way that every pair of treatments occurs 

together in the same block exactly once that is each pair of treatments occurs together in a 

block only once,( 1λ = ) . 

 

In lattice design, the number of treatments (t) is a perfect square or a square of an integer, k  

such that 2t k= .The design may be constructed for a number of treatments such as 9, 16, 25 

etc. Lattice experiments require grouping blocks into replicates, with each replicate 

containing one observation for every treatment. This forces the number of blocks in each 
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replicate to be equal to the number of observations per block. That is, the number of blocks 

per replicate and the number of observations per block are both equal tok t= . In addition, 

if the number of replicate groups (r) in Lattice experiments is equal to k + 1 then the design is 

referred to as a balanced lattice. If r is less than k + 1 then the design is referred to as a 

partially balanced lattice.  

In constructing lattice designs of the balanced type, two fundamental relations are involved; 

tr kb=                                      (3.1) 

  ( ) ( )1 1t r kλ − = −                                                               (3.2) 

Where  b t≥  and λ = the number of times (an integer) a treatment occurs with each of the 

other treatments within an incomplete block. If λ is equal for all pairs of treatments, the 

design is balanced. Lattice designs may also be used when the number of treatments is not a 

perfect square.  Such cases are referred to as rectangular lattice designs. Lattice designs are 

very useful when comparing a large number of varieties because they correct heterogeneity.  

 

3.3 Statistical model and ANOVA’s format of a lattice design 
 
The statistical model of a lattice design is given by: 

( ) ( )ijkl i k ijklj i
Y R B R T eµ= + + + +  

 Where ijklY = the observed value 

  µ = Overall mean yield. 

  iR = Effect of the thi replication 

  ( ) ( )j i
B R = Effect of the thj block within the thi replication. 

  kT = Effect of the thk treatment 

  ijkle = Random error 
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There are two ways of representing ANOVA table of lattice experiments. The different 

formats are shown in tables 5 and 6. 

 
 

Table 5:  The ANOVA table format for a lattice experiment at one location 

 
 

Source of variation Degree of 
freedom 

( )df  

Sum of 
squares 

( )SS  

Mean 
square 

SS
MS

df

 
= 

 
 

ComputedF  

    
 

 

Replication  (R) 1r −  SSR MSR MSR

MSE
 

 
Treatment (unadj.) 
(T) 

2 1k −  SST 
(unadj.) 

MST 
(unadj.) 

( .)MST unadj

MSE
 

 
Blocks within 
replication (adj) (B) 

( 1)r k −  SSB 
(adj.) 

MSB 
(adj.) 

( .)MSB unadj

MSE
 

 
Intra-block error ( 1)( 1)k rk k− − −  SSE MSE 

 
 

Total 2 1rk −  0SST   
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Table 6 : The ANOVA table format  for a lattice experiment at one location with  Adjustments 

 
Source of variation Degree of  

freedom 
( )df  

Sum of  
squares 

( )SS  

Mean square 
SS

MS
df

 
= 

 
 

ComputedF  

    
 

 

Replication  1r −  SSR MSR MSR

MSE
 

 
Treatment 
 (unadj.) 

2 1k −  SST 
(unadj.) 

MST 
(unadj.) 

( .)MST unadj

MSE
 

 
Treatment  
(adj.) 

2 1k −  SST 
(adj.) 

MST 
(adj.) 

( .)MST adj

MSE
 

 
Blocks within 
 replication (adj) 

( 1)r k −  SSB 
(adj.) 

 

MSB 
(adj.) 

 

( .)MSB adj

MSE
 

Blocks within 
replication (unadj) 

( 1)r k −  SSB 
(unadj.) 

MSB 
(unadj.) 

 

( .)MSB unadj

MSE
 

 
Intra-block error ( 1)( 1)k rk k− − −  SSE MSE 

 
 

Total 2 1rk −  0SST   
 

 
 
The SAS ANOVA table format shown in table 7 below reflects two extra sources of variation 

which are not included in the standard format shown in tables 5 and 6. These are component 

B and randomized complete block error. Component B has similar features as blocks within 

replication while randomized complete block error is the sum of the blocks within 

replications sum of squares and the intra block error sum of squares. It is the appropriate error 

used if the experimental design uses a randomized complete block design (RCBD), with the 

replications taking the roles of complete blocks. 
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Table 7: The ANOVA table format for a Lattice Experiment at one Location given by SAS 
  

Source  

Degree of  
freedom 

( )df  

Sum of  
squares 

( )SS  

Mean square 
SS

MS
df

 
= 

 
 

Replications  1r −  SSR MSR 
 

Blocks within Replication (adj) ( )1r k −  SSB MSB 
 

Component B 
 

( )1r k −  SSB MSB 

Treatment (unadj.) 2 1k −  SST MST 
 

Intra-block error ( 1)( 1)k rk k− − −  SSE MSE 
 

Randomized Complete Block Error ( )( )21 1r k− −  

 

RCSSE  RCMSE  

Total 2 1rk −  0SST  
  

  

3.4 ANOVA of yield data for Katumani without adjustments 
 
The total sum of squares ( SST0), replication sum of squares (SSR) and unadjusted treatment 

sum of squares (SSTunadj.) are obtained through SAS analysis and given in table 8 

 

Table 8: Analysis of  Variance for maize yield for Katumani Location 
 

The SAS System 
The Lattice Procedure 

Analysis of Variance for yield 
 

Source df 
Sum of  
Squares(SS) 

Mean 
square(MS) 

    
Replications 1 0.01656 0.01656 

Blocks within Replication (adj) 8 0.3675 0.04593 

Component B 8 0.3675 0.04593 

Treatment (unadj.) 24 4.2517 0.1772 

Intra-block error 16 0.8402 0.05251 

Randomized Complete Block Error 24 1.2077 0.05032 

Total 49 5.4760 0.1118 
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Additional Statistics for yield 

 
Variance of Difference                    0.0525 
LSD at .01 Level                           0.6409 
LSD at .05 Level                           0.4730 
Efficiency Relative to RCBD            95.8241 

 
Treatment Means 

for yield 
 

Treatment        Mean 
 

1      0.3700 
2      0.8350 
3      0.6400 
4      0.3700 
5      0.8900 
6      0.3200 
7      0.3000 
8      0.7250 
9      1.1650 
10      0.9000 
11      0.0950 
12      0.5700 
13      0.5950 
14      0.8100 
15      1.0750 
16      0.8225 
17      0.5750 
18      0.9100 
19      0.0675 
20      0.6600 
21      0.7725 
22      1.1000 
23      1.0250 
24      0.7100 

                                                                25      0.7525 
 
 

Treatment mean square of 0.1772 given from Anova table 8 will have to be adjusted due to 

block effects. The treatment means are not free from block effects as the numbers of 

treatments are high and therefore Anova will not provide a valid F test. 
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3.4.1 Adjustment of treatment means using adjustment factor, ( )a  

 
Treatment means are adjusted either up or down to remove any variation due to the block in 

which they occurred. In this way, all of the treatment means in the trial are compared on the 

same basis, without any bias due to local environmental variation in the field. Adjustment of 

treatment means also account for block to block variation within replications, so that 

treatments in different blocks are compared with precision. 

 Adjusted treatment means are used if: 

 a) The lattice design has a relative efficiency ( )RE is greater than 100 percent  

   compared to the RCBD i.e. 100%RE>  

 b) Error due to blocks known as inter block error  is greater than intra-block error i.e. 

blocks within replication mean square is greater than intra block error mean square 

( bE > eE  )  

 c) A large number of treatments have been used and a significant difference among 

treatments may be expected. 

 Treatment means are adjusted by adjustment factor ( )a is given by: 

     
( 1)

b e

b

E E
a

k r E

−=
−

                (3.3) 

        Where bE = adjusted inter block mean square ( ( .)MSB adj ) 

        eE = Intra-block mean square (MSE)    

 From the analysis we obtain:  

  i) bE =0.04593 and eE =0.05251. bE < eE  and therefore treatments in different blocks can

        be compared with equal precision as blocking has no effect. 

  ii) The relative efficiency is 95.82 % which is less than 100% and therefore adjustment is 
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  necessary. However the efficiency obtained is not a mean achievement for a lattice 

design given the variations encountered in the ASALs. 

 

A large number of treatments have been used and therefore the treatment means are to be 

adjusted for block effects. Adjusted sum of squares for treatments and unadjusted sum of 

squares for block are computed.  

 

3.4.2 Computation of unadjusted block sum of squares ( ( .)SSB unadj ) 

 
Unadjusted block sums of squares within replications i.e. SSB1 and SSB2 are computed first. 

The block totals B1, B2 …B10  for both replications are calculated and shown in tables 9 and 

10. 

 

Table 9: Arrangement of blocks and the treatments for Katumani location  within 
the blocks and their totals 

 

 
Replication 1 

 
Total 

Block 1 9 13 18 4 1 
 1.19 0.6 0.89 0.395 0.39 3.465 

Block 2 21 8 14 11 16 

 
0.67 0.95 1 0.16 0.59 3.37 

Block 3 2 24 5 23 7 

0.92 0.66 0.865 1.16 0.52 4.125 

Block 4 3 10 25 6 15 
0.92 0.99 0.675 0.51 1.05 4.145 

Block 5 22 12 20 17 19 
0.61 0.56 0.58 0.61 0.045 2.405 

Total 4.31 3.76 4.01 2.835 2.595 17.51 
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Table 10:  Arrangement of blocks and the treatments for Katumani location  within 
the blocks and their totals 

 
Replication 2 

Total 

Block 1 9 21 2 3 22 
 1.14 0.875 0.75 0.36 1.59 4.715 

Block 2 13 8 24 10 12 

0.59 0.5 0.76 0.81 0.58 3.24 

Block 3 18 14 5 25 20 
0.93 0.62 0.915 0.83 0.74 4.035 

Block 4 4 11 23 6 17 

 
0.345 0.03 0.89 0.13 0.54 1.935 

Block 5 1 16 7 15 19 
 0.35 1.055 0.08 1.1 0.09 2.675 

Total 3.355 3.08 3.395 3.23 3.54 16.6 

  

 

Unadjusted blocks sum of square for replication 1 is 

  ( )
2 2 2 2

1 2 5 1
1 2

.........
.

B B B R
SSB unadj

k k

+= −
                             (3.4) 

    
2 2 2 2 2 23.465 3.37 4.125 4.145 2.405 (15.51)

5 25

+ + + += −  

    0.404756=  

Unadjusted blocks sum of square for replication 2 is 

  
2 2 2 2 2 2

1

4.715 3.24 4.035 1.935 2.675 (16.6)
( .)

5 25
SSB unadj

+ + + += −  

            0.95958=  

Pooled unadjusted block sum of squares, 

  1 2( .) ( .) ( .)SSB unadj SSB unadj SSB unadj= +                                            (3.5) 

           0.404756 0.95958= +  

           1.364336=  
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3.4.3 Computation of adjusted treatment sum of squares ( ( .)SST adj ) for block effects  

Correction quantity( )Q is used to calculate adjusted sum of square for treatments ( ( .))SST adj  

is given by (3.5) 

  ( 1) ( ( .) ( .))
( 1)(1 )

r
Q k r a SSB unadj SSB adj

r kµ
  

= − −  − +  
             (3.6) 

Where a= adjustment factor       

 bE = adjusted inter block mean square ( ( .)MSB adj ) 

     0.04593=   

 eE = Intra-block mean square (MSE) 

                0.05251=  

 5, 2k r= =  

Substituting , ,b eE E k and r in (3.3) 

0.04593 0.0525

5(2 1)0.04593
a

−=
−

 

   0.027= −   

Substituting , , , ( )k r a SSB unadj and ( )SSB adj in (3.5) 

  
2

5(1)( 0.027) (1.3643 0.3675)
(2 1)(1 5( 0.027))

Q
  

= − −  − + −  
 

        0.311= −  

Quantity Q is subtracted from the unadjusted treatment sum of squares to obtain the adjusted 

sum of squares for treatment i.e.   

( .) ( .)SST adj SST unadj Q= −                (3.7) 

       4.2517 ( 0.3111)= − −  

                 4.5628=   
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3.5 ANOVA of yield data for Katumani with adjustments 
 
Adjusted treatment sum of squares,( ( .))SST adj  unadjusted block sum of squares 

( ( .))SSB unadj  values obtained in section 3.4.2 are entered in the Anova table 11.  

Mean square of adjusted treatment, 
4.5628

( .)
24

MST adj =   

                      0.1901=  

Mean square of unadjusted block, 
1.3643

( .)
8

MSB unadj =  

                        0.1705=  

These values are entered in table 11 

 

Table 11: Anova  table for maize yield for Katumani Location with adjustments 

 
 

Source of variation Degree of  
freedom 

( )df  

Sum of  
squares 

( )SS  

Mean 
square 

SS
MS

df

 
= 

 
 

calcF  tabF  

Replication  1 0.01656 0.01656 0.32 
 

4.49 

Treatment 
 (unadj.) 

24 4.2517 0.1772 3.37* 

 
2.24 

Treatment  
(adj.) 

24 4.5628 
 

0.1901 3.62* 2.24 

Blocks within 
replication (adj) 

8 0.3675 0.04593 0.87 2.59 

Blocks within 
replication (unadj) 

8 1.3643 0.1705 3.25* 2.59 

Intra-block error 16 0.8402 0.05251 
 

  

Total 49 5.4760 0.1118   
 

 

There is significant difference among unadjusted treatment means at 5% level of significance 

since F computed > F tabulated. After treatment means were adjusted, the situation still 

remained the same i.e. adjusted treatment means are significant at 5% level of significance. 
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Adjusted block within replications is not significant at 5% level of significance while 

unadjusted blocks within replications are significant at the same level.  

 

3.5.1 Computation of adjusted block total bC values 

 
An adjusted block bC  value of a block is the difference between column total of replication 2 

and their corresponding block total of replication 1.  

Example: 

1C value of the 1st block in table 12 = 
column total of 
replication 2 

- 

 
block total of 
replication 1 
 

         = 3.355 - 3.465 

      = -0.11   

The column total of replication 2 in table 12 is obtained from the total of each column of 

replication 2 in table 10. The block total of replication 1 in table 12 is obtained from the total 

of each block of replication 1 in table 9.  

 

Table 12: Computation of bC  values for blocks in Katumani  Replication 1 

Column total Block total 

of of 

Block Replication 2 Replication 1 Cb value 

1 3.355 3.465 -0.11 (C1) 

2 3.08 3.37 -0.29 (C2) 

3 3.395 4.125 -0.73 (C3) 

4 3.23 4.145 -0.915 (C4) 

5 3.54 2.405 1.135 (C5) 

Total 16.6 17.51 -0.91 (RC1) 
 

 

Total bC value( )1CR of a replication is the sum of all individual bC values in that replication. 
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Total bC value ( )1CR  for replication 1, 
5

1
1

C i
i

R C
=

=∑  

              0.11 ( 0.29) ( 0.73) 1.135= − + − + − +  

              0.91= −  (table 12) 

Total bC value ( )2CR  for replication 2, 
5

2
1

C i
i

R C
=

=∑  

               0.91=  (table 13) 

Total bC values for both replications are used to: 

i) Check whether arithmetic calculations have been done correctly. If correct, 

summation of bC values for both replications should be zero. 

 Example, for this case, 1 2C CTotal R R= +  

     0.91 0.91= − + 0=      

ii) Compute correction value, bCµ  (section 3.5.2) 

For katumani replication 2, bC values shown in table 13 are given by subtracting block total 

in replication 1 from the corresponding column total in replication 2. 

 

Table 13: Computation of bC  values for blocks in Katumani  Replication 2 

Column total Block total 
of of 

Block Replication 2 Replication 1 Cb values 

1 4.31 4.715 -0.405 (C6) 

2 3.76 3.24 0.52 (C7) 

3 4.01 4.035 -0.025 (C8) 

4 2.835 1.935 0.9 (C9) 

5 2.595 2.675 -0.08 (C10) 

Total 17.51 16.6 0.91 (RC2) 
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3.5.2 Computation of correction value, baC   

 
A correction term for each block is computed by multiplying each bC  value by the quantity 

0.027a = − , given by (3.3) 

For replication 1, these values are:  

 1 027 0.11 0.00297 0.003aC = − × − = =  

 2 0.008aC = , 3 0.020aC = , 4 0.025aC = , 5 0.031aC = −  

For replication 2, these values are: 

 6 0.011aC = , 7 0.014aC = − , 8 0.001aC = , 9 0.024aC = − , 10 0.002aC =  

The total sum of all bC values should add up to zero i.e. 

Total sum of bC values =
10

1 2 10
1

..... 0i
i

aC aC aC aC
=

= + + + =∑              (3.8) 

     = 0.03 0.008 ......... 0.002 0+ + + =   

The baC Values of replication 1 are entered along the last column of table 14 as shown while 

baC values for replication 2 are entered along the last row in the same table. 

Table 14: Treatment totals and correction values for Katumani 
 

 

Block 1 9 13 18 4 1 aC1= 

 
2.33 1.19 1.82 0.74 0.74 0.003 

Block 2 21 8 14 11 16 aC2= 
1.545 1.45 1.62 0.19 1.645 0.008 

Block 3 2 24 5 23 7 aC3= 

 
1.67 1.42 1.78 2.05 0.6 0.020 

Block 4 3 10 25 6 15 aC4= 
1.28 1.8 1.505 0.64 2.15 0.025 

Block 5 22 12 20 17 19 aC5= 

 
2.2 1.14 1.32 1.15 0.135 -0.031 

aC6= aC7= aC8= aC9= aC10= 
0.011 -0.014 0.001 -0.024 0.002 
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3.5.3 Adjusted treatment totals and adjusted treatment means 
 
Each treatment total in table 14 is adjusted for block effects by applying the block corrections 

appropriate to the blocks in which that treatment appears.  

For example 

The adjusted treatment total for treatment 9 in table 14 1 69T aC aC= − −  

                   2.33 0.003 0.011= − −  

                                  2.316=  

Table 15 is constructed to show the treatment total adjusted for block effects. 

 
Table 15:  Adjusted treatment totals for katumani 

 
Block 1 9 13 18 4 1 

2.316 1.201 1.816 0.761 0.735 
Block 2 21 8 14 11 16 

1.526 1.456 1.611 0.206 1.635 
Block 3 2 24 5 23 7 

1.639 1.414 1.760 2.055 0.578 
Block 4 3 10 25 6 15 

 
1.244 1.789 1.480 0.640 2.123 

Block 5 22 12 20 17 19 
2.220 1.185 1.350 1.205 0.163 

 

 

Adjusted treatment means are shown in table 16 obtained by dividing each value in table 15 

by two since each total contains two observations from 2 replications. 

 

Table 16:  Adjusted treatment means for katumani 
 

Block 1 9 13 18 4 1 
1.158 0.601 0.908 0.381 0.367 

Block 2 21 8 14 11 16 
0.763 0.728 0.806 0.103 0.818 

Block 3 2 24 5 23 7 

 
0.820 0.707 0.880 1.027 0.289 

Block 4 3 10 25 6 15 
0.622 0.895 0.740 0.320 1.062 

Block 5 22 12 20 17 19 
1.110 0.592 0.675 0.602 0.082 
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3.5.4 Computation of effective mean square (effective error variance), '
eE  

 
There are differences between adjusted treatment totals (table 15) and treatment totals (table- 

14) and therefore it is necessary to compute effective mean square or effective error variance, 

'
eE which is given by: 

     ' 1
1e e

rka
E E

k
 = + + 

                                                 (3.9)    

' (2)(5)( 0.027)
1 0.05251

5 1eE
− = + + 

 

        0.0501=   where 0.027a = −  from (3.3) 

             0.05251eE =  (table 8), 2r =  and 5k =  

According to Cochran and Cox, 1950 effective error mean square ( '
eE ) is used in the 

denominator of F ratio test instead of eE  to test if there are differences among adjusted 

treatment means.    

 F ratio test of adjusted means (0.05,24,16) '

( .)
calc

e

MST adj
F

E
=  

             
0.1901

0.0501
=  

             3.79=  

     (0.05,24,16) 2.24tabF =     

Since calc tabF F>  , adjusted treatment means are significantly different at 5% 

level of significance. 
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3.6 Comparison of treatment means and the least significant difference (LSD) test  
 
In a partially balanced lattice design, treatments that occur in the same block are compared 

with greater precision i.e. smaller standard error than the treatments that occur in different 

blocks. Standard error for comparing any two treatment means that occur together in the 

same block is given by; ( )1

2
( ) 1 1eE

SE d r a
r

= + −                       (3.10) 

Standard error for comparing any two treatments in the same block in Katumani location is 

  
( ) [ ]1

2 0.053
( ) 1 ( 0.027)

2
SE d = + −   

   0.227=  

 where 0.027a = − , 2r = and 0.053eE =  

The formula for determining standard error for comparing treatment means that occur in 

different blocks is given by;  ( )2

2
( ) 1eE

SE d ra
r

= +                       (3.11) 

Standard error for comparing any two treatments in different blocks in Katumani location is 

( ) [ ]2

2 0.053
( ) 1 2( 0.027)

2
SE d = + −  

   0.224=  

These standard errors when multiplied by the tabular t value for the intra-block error degrees 

of freedom at the specified level of significance will provide LSD value with which the 

adjusted treatment means can be compared for significant differences. 

 

The LSD test is the simplest of the procedures for making pairwise comparisons. The 

procedure provides for a single LSD value, at a prescribed level of significance, which serves 

as the boundary between significant and non significant difference between any pair of 
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treatment means. That is, two treatments are declared significantly different at a prescribed 

level of significance α , if their difference exceeds the computed LSD value i.e. 

1 2x x− > LSDα                                 (3.12) 

Otherwise they are not considered significantly different.  

The aim is to determine the best performing maize variety through comparison of two 

treatment means in two cases: 

 

Case 1: When treatments are in the same block 

For two treatments, take 9 1 1.158T x= =  and 18 2 0.908T x= =  

1 2 9 18x x T T− = −  

            1.158 0.908= −  

            0.250=   

Treatments are from the same block; 1( ) 0.227SE d =  from (3.10) 

Let the level of significance, 5%α = , 16df =  

( )( ), 2 1( )dfLSD t SE dα α=                                                          (3.13) 

From t-table; t tabular = ,0.05 16,0.025 2.583dft t= =  

  2.583 0.227LSDα = ×  

           0.586=  

1 2x x− < 0.05LSD   hence the two treatment means are not significantly different. 

 

Case 2: When treatments are in different blocks   

For two treatments, take 9 1 1.158T x= =  and 22 2 1.110T x= =  

1 2 9 22x x T T− = −  
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            1.158 1.110= −  

            0.048=   

Treatments are from different blocks; 2( ) 0.224SE d =  from (3.11) 

Let the level of significance, 5%α = , 16df =  

( ) ( ), 2 2( )dfLSD t SE dα α=                                                          (3.14) 

From t-table; t tabular = ,0.05 16,0.025 2.583dft t= =  

  2.583 0.224LSDα = ×  

           0.579=  

1 2x x− < 0.05LSD   hence two treatment means are not significantly different. 

 

The best performing maize variety can be determined by comparing the highest yielding 

maize variety with the rest to find out whether there are some significant differences as 

shown in table 17. 
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Table 17: Comparison of  treatment means with T9 
 

 

Treat no. iX  iX  1 iX X−  LSD Signif 

T9 X1 1.158 0.000 
 

 
T22 X2 1.110 0.048 0.579 NS 
T15 X3 1.062 0.096 0.579 NS 
T23 X4 1.027 0.131 0.579 NS 
T18 X5 0.908 0.250 0.586 NS 
T10 X6 0.895 0.263 0.579 NS 
T5 X7 0.880 0.278 0.579 NS 
T2 X8 0.820 0.338 0.579 NS 
T16 X9 0.818 0.341 0.579 NS 
T14 X10 0.806 0.352 0.579 NS 
T21 X11 0.763 0.395 0.579 NS 
T25 X12 0.740 0.418 0.579 NS 
T8 X13 0.728 0.430 0.579 NS 
T24 X14 0.707 0.451 0.579 NS 
T20 X15 0.675 0.483 0.579 NS 
T3 X16 0.622 0.536 0.579 NS 
T17 X17 0.602 0.556 0.579 NS 
T13 X18 0.601 0.558 0.586 NS 
T12 X19 0.592 0.566 0.579 NS 
T4 X20 0.381 0.777 0.586 * 
T1 X21 0.367 0.791 0.586 * 
T6 X22 0.320 0.838 0.579 * 
T7 X23 0.289 0.869 0.579 * 
T11 X24 0.103 1.055 0.579 * 
T19 X25 0.082 1.076 0.579 * 

 

 
 
   NS = Not significant 

      * = Significant at 5% level. 
 
Treatments T4, T1, T6, T7, T11 and T19 are significantly different from T9 at 5% level of 

significance. Other treatment means are not significantly different from T9 at 5% level of 

significance and therefore different types of trials should be conducted to investigate other 

factors. 
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3.7 ANOVA of yield data for Kangundo 
 
Through SAS analysis, Anova table for kangundo is obtained and shown as table 18.  

 
          
Table 18: Analysis of Variance for maize yield for Kangundo Location 

 
The SAS System 

The Lattice Procedure 
 

Analysis of Variance for yield 
 

Source df 
Sum of  
Squares(SS) 

Mean 
square(MS) 

Replications 1 0.4869 0.4869 

Blocks within Replication (adj) 8 2.2871 0.2859 

     Component B 8 2.2871 0.2859 

Treatments (unadj.) 24 3.2770 0.1365 

Intra-block error 16 6.8801 0.4300 

Randomized Complete Block Error 24 9.1673 0.3820 

Total 49 12.9312 0.2639 

 
 

Additional Statistics for yield 
 

Variance of Difference                    0.4300 
LSD at .01 Level                           1.8341 
LSD at .05 Level                           1.3534 

   Efficiency Relative to RCBD            88.8284 
 
 
  

                                      Treatment Means 
                                           for yield 
 
                                     Treatment        Mean 
 
                                             1       1.7750 
                                             2       1.7050 
                                             3             1.4275 
                                             4       0.6750 
                                             5       1.7100 
                                             6       1.4450 
                                             7       1.2125 
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                                             8       1.5750 
                                             9       1.4250 
                                            10       1.5450 
                                            11       1.4700 
                                            12       1.4200 
                                            13       0.8875 
                                            14       1.6400 
                                            15       1.2925 
                                            16       1.6550 
                                            17       1.1600 
                                            18       1.4100 
                                            19       1.3220 
                                            20       1.2800 
                                            21       1.0925 
                                            22       1.3725 
                                            23       1.6650 
                                            24       1.6200 
                                            25       1.4000 
 
 

Treatment means are not free from block effects because the numbers of treatments used are 

many. The analysis of variance will not provide a valid F test and therefore adjustments are 

needed on treatment mean square.  

Blocking has no effect as bE = 0. 2859 is less than eE =0.4300 i.e. bE < eE . Efficiency relative 

to RCBD is 88.8% and adjustments of treatments are necessary as the number of treatments 

used is large. 

 

3.7.1 Adjustment of treatment means using adjustment factor, ( )a  

 
Unadjusted block sums of squares within replications i.e. SSB1 and SSB2 are computed first. 

The block totals B1, B2 …B10 for both replications are calculated and shown in next two 

tables 19 and 20. 
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Table 19: Arrangement of blocks and the treatments for Kangundo location within the blocks 
and their totals 

 
 

Kangundo replication 1 
 

Total 
Block 1 9 13 18 4 1 

1.46 0.335 1.85 0.71 2.75 7.105 
Block 2 21 8 14 11 16 

1.155 1.79 1.35 1.51 2.08 7.885 
Block 3 2 24 5 23 7 

 
2.24 2.05 1.43 1.81 1.205 8.735 

Block 4 3 10 25 6 15 
 2.285 2.01 1.86 0.96 1.525 8.64 

Block 5 22 12 20 17 19 
0.48 1.36 0.97 1.42 1.054 5.284 

Total 7.62 7.545 7.46 6.41 8.614 37.649 
 

 
 
 
 
Table 20: Arrangement of blocks and the treatments for Kangundo location within the blocks 

and their totals. 
 

Kangundo replication 2  
 

 

      
Total 

Block 1 9 21 2 3 22 
 1.39 1.03 1.17 0.57 2.265 6.425 

Block 2 13 8 24 10 12 
1.44 1.36 1.19 1.08 1.48 6.55 

Block 3 18 14 5 25 20 
0.97 1.93 1.99 0.94 1.59 7.42 

Block 4 4 11 23 6 17 

 
0.64 1.43 1.52 1.93 0.9 6.42 

Block 5 1 16 7 15 19 
 0.8 1.23 1.22 1.06 1.59 5.9 

Total 5.24 6.98 7.09 5.58 7.825 32.715 
  

 
 
Unadjusted blocks sum of square for replication 1 is 

  ( )
2 2 2 2

1 2 5 1
1 2

......
.

B B B R
SSB unadj

k k

+ + += −
                          (3.4) 
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2 2 2 2 2 27.105 7.885 8.735 8.64 5.284 (37.649)

5 25

+ + + += −  

    1.607=  

Unadjusted blocks sum of square for replication 2 is 

  
2 2 2 2 2 2

1

6.425 6.55 7.42 6.42 5.9 (32.715)
( .)

5 25
SSB unadj

+ + + += −  

            0.242=  

Pooled unadjusted block sum of squares, 

  1 2( .) ( .) ( .)SSB unadj SSB unadj SSB unadj= +                                           (3.5) 

           1.607 0.242= +  

           1.849=  

 

3.7.2 Computation of adjusted treatment sum of squares ( ( .)SST adj ) for block effects  

 
Correction quantity Q is used to calculate adjusted sum of squares for treatments i.e. 

( .)SST adj  is given by (3.6) 

  ( 1) ( ( .) ( .))
( 1)(1 )

r
Q k r a SSB unadj SSB adj

r kµ
  

= − −  − +  
             (3.6) 

 bE = adjusted inter block mean square ( ( .)MSB adj ) 

     0.2859=   

 eE = Intra-block mean square (MSE) 

                0.4300=  

 5, 2k r= =  

Substituting , ,b eE E k and r in (3.3) 

0.2859 0.4300

5(2 1)0.2859
a

−=
−
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   0.101= −   

Substituting , , , ( )k r a SSB unadj and ( )SSB adj in (3.6) 

 
2

5(1)( 0.101) (1.849 2.2871)
(2 1)(1 5( 0.101))

Q
  

= − −  − + −  
 

    0.894= −  

Quantity Q is subtracted from the unadjusted treatment sum of squares to obtain the adjusted 

sum of squares for treatment i.e.   

 ( .) ( .)SST adj SST unadj Q= −                 (3.7) 

        3.2770 ( 0.894)= − −  

        2.383=  

 

3.8 ANOVA of yield data for kangundo with adjustments 
 
Adjusted treatment sum of squares,( ( .))SST adj  and unadjusted block sum of squares 

( ( .))SSB unadj  values obtained in section 3.71 are entered in Anova table 21.  

Mean square of adjusted treatment, 
2.383

( .)
24

MST adj =   

                 0.0993=  

Mean square of unadjusted block, 
1.849

( .)
8

MSB unadj =  

                       0.1705=  
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Table 21: Anova  table for maize yield for Kangundo Location with adjustments 

 
 

Source of variation Degree of  
freedom 

( )df  

Sum of  
squares 

( )SS  

Mean square 

SS
MS

df

 
= 

 
 

calcF  tabF  

Replication  1 0.4869 0.4869 1.13 4.49 
 

Treatment 
 (unadj.) 

24 3.2770 0.1365 0.32 2.24 

Treatment  
(adj.) 

24 2.383 
 

0.0993 
 

0.23 2.24 

Blocks within 
replication (adj) 

8 2.2871 0.2859 0.66 2.59 

Blocks within 
Replication (unadj) 

8 1.849 0.2311 0.54 2.59 

Intra-block error 16 6.8801 0.4300 
 

  

Total 49 5.4760 0.1118   
 

 
 
Unadjusted treatment means are not significantly different at 5% level of significance since F 

computed < F tabulated. After treatment means were adjusted, the situation still remained the 

same i.e. adjusted treatment means were not significantly different at 5% level of 

significance. Both adjusted and unadjusted block within replications are not significantly 

different at 5 % level of significance.  

 

3.8.1 Computation of adjusted block total bC  values 

For Kangundo replication 1, bC values shown in table 22 are given by subtracting block total 

in replication 1 from the corresponding column total in replication 2.  

For example, 1C  value of the 1st block 5.24 7.105= −  

                 1.865= −  
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Table 22: Computation of bC  values for blocks in Kangundo  Replication 1 

 

 
Column total Block total 

  of of 

Block Replication 2 Replication 1 Cb value 

1 5.24 7.105 -1.865 (C1) 

2 6.98 7.885 -0.905 (C2) 

3 7.09 8.735 -1.645 (C3) 

4 5.58 8.64 -3.06 (C4) 

5 7.825 5.284 2.541 (C5) 

Total 32.715 37.649 -4.934 (RC1) 
 

 

For Kangundo replication 2, bC values shown in table 23 are obtained by subtracting block 

total in replication 1 from the corresponding column total in replication 2. 

For example, for block 1; 1C  value of the 1st block 7.62 6.425= −  

              1.195=  

 
Table 23: Computation of bC  values for blocks in Kangundo  Replication 2 

 
Column total Block total 

of of 

Block Replication 2 Replication 1 Cb value 

1 7.62 6.425 1.195 (C1) 

2 7.545 6.55 0.995 (C2) 

3 7.46 7.42 0.04 (C3) 

4 6.41 6.42 -0.01 (C4) 

5 8.614 5.9 2.714 (C5) 

Total 37.649 32.715 4.934 (RC2) 

 

Total value of bC  for replication 1 and 2 are obtained and add up to zero indicating that 

arithmetic calculation has been done correctly. 

Total of bC  values for replication I is 1 4.934CR= = −  

Total of bC  values for replication 2 is 2 4.934CR= =  
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     1 2C CTotal R R= + 0=             

3.8.2 Computation correction value, baC   

A correction term for each block is computed by multiplying each bC  value by the quantity 

0.101a = −  given by (3.3) in sub section 3.7.1 

For replication 1, these values are:  

 1 0.101 1.865 0.188aC = − × − =  , since 1 1.865C = − from table 22 

 2 0.091aC = , 3 0.166aC = , 4 0.309aC = , 1 0.257aC = −  

For replication 2, these values are: 

 6 0.121aC = − , 7 0.100aC = − , 8 0.004aC = , 9 0.001aC = − , 10 0.274aC = −  

Total bC  values = 
10

1 2 10
1

..... 0i
i

aC aC aC aC
=

= + + + =∑                                                     (3.15) 

         = 0.188 0.091 ......... ( 0.274) 0+ + + − =   

The baC Values of replication 1 are entered along the last column of table 24 as shown while 

baC values for replication 2 are entered along the last row in the same table. 

 

Table 24: Treatments totals  and correction values for Kangundo 
 

 

Block 1 9 13 18 4 1 aC1= 
2.85 1.775 2.82 1.35 3.55 0.188 

Block 2 21 8 14 11 16 aC2= 
2.185 3.15 3.28 2.94 3.31 0.091 

Block 3 2 24 5 23 7 aC3= 
3.41 3.24 3.42 3.33 2.425 0.166 

Block 4 3 10 25 6 15 aC4= 
2.855 3.09 2.8 2.89 2.585 0.309 

Block 5 22 12 20 17 19 aC5= 
2.745 2.84 2.56 2.32 2.644 -0.257 

aC6= aC7= aC8= aC9= aC10= 
-0.121 -0.100 -0.004 0.001 -0.274 
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38.3 Adjusted treatment totals and adjusted treatment means 
 
Each treatment in table 24 is adjusted for block effects by applying the block corrections 

appropriate to the blocks in which that treatment appears. 

For example 

  The adjusted treatment total for T9 in table 22 1 69T aC aC= − −  

                  2.85 0.188 ( 0.121)= − − −  

                                  2.783=  

Table 25 is constructed showing the treatment total adjusted for block effects. 

 
Table 25:  Adjusted treatment totals for kangundo 

 
Block 1 9 13 18 4 1 

2.783 1.687 2.636 1.161 0.718 
Block 2 21 8 14 11 16 

2.215 3.159 3.193 2.848 3.493 
Block 3 2 24 5 23 7 

3.365 3.174 3.258 3.163 2.533 
Block 4 3 10 25 6 15 

 
2.667 2.881 2.495 2.580 2.550 

Block 5 22 12 20 17 19 
3.123 3.197 2.821 2.576 3.175 

 

Adjusted treatment means are obtained by dividing each value in table 25 by two since each 

total contains two observations from 2 replications. 

 

Table 26: Adjusted treatment means  for kangundo 
 

Block 1 9 13 18 4 1 
1.391 0.844 1.318 0.580 0.359 

Block 2 21 8 14 11 16 
1.107 1.580 1.597 1.424 1.747 

Block 3 2 24 5 23 7 

 
1.682 1.587 1.629 1.581 1.267 

Block 4 3 10 25 6 15 
1.333 1.441 1.248 1.290 1.275 

Block 5 22 12 20 17 19 
1.561 1.599 1.411 1.288 1.588 
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3.8.4 Computation of effective mean square (effective error variance), '
eE  

 
There are differences between adjusted treatment totals (table 24) and unadjusted treatment 

totals (table 25) and therefore it is necessary to compute effective mean square or effective 

error variance, '
eE which is given by: 

    ' 1
1e e

rka
E E

k
 = + + 

                          (3.16) 

   ' (2)(5)( 0.101)
1 0.4300

5 1eE
− = + + 

 

        0.3576=   where 0.101a = −  from (3.3) 

             0.4300eE = −  (table 15), 2r =  and 5k =  

 F ratio test of adjustment means (0.05,24,16) '

( .)
calc

e

MST adj
F

E
=  

         
0.0993

0.3576
=  

         0.2777=  

         (0.05,24,16) 2.24tabF =     

Since calc tabF F<  , adjusted treatment means are not significantly different at 

5% level of significance. 
 
 

3.9 Comparison of treatment means and LSD 
  
Standard error for comparing any two treatment means that occur together in the same block 

is given by;      ( )1

2
( ) 1 1eE

SE d r a
r

= + −                                   (3.17) 

Standard error for comparing any two treatments in the same block in Kangundo location is 

  
( )

1

2 0.43
( ) (1 0.101)

2
SE d = −   
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   0.623=  

 where 0.101a = − , 2r = and 0.4300eE =  

The standard error for comparing treatment means that occur in different blocks is given by; 

                     ( )2

2
( ) 1eE

SE d ra
r

= +                                 (3.18) 

Standard error for comparing any two treatments in different blocks in Kangundo location is 

( ) [ ]2

2 0.430
( ) 1 2( 0.101)

2
SE d = + −  

   0.586=  

Comparison test is done to determine the best maize variety in two cases: 

Case 1: When treatments are in the same block 

For two treatments, take 16 1 1.747T x= =  and 22 5 1.597T x= =  

1 5 16 14x x T T− = −  

            1.747 1.597= −  

            0.150=   

Treatments are from same blocks; 1( ) 0.623SE d =  from (3.17) 

Let the level of significance, 5%α = , 16df =  

( )( ), 2 1( )dfLSD t SE dα α=                                                         (3.19) 

From t-table; t tabular = ,0.05 16,0.025 2.583dft t= =  

  2.583 0.623LSDα = ×  

           1.609=  

1 2x x− < 0.05LSD   hence two treatment means are not significantly different. 

Case 2: When treatments are in different blocks 

For two treatments, take 16 1 1.747T x= =  and 2 2 1.682T x= =  
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1 2 16 2x x T T− = −  

            1.747 1.682= −  

            0.065=   

Treatments are from different blocks; 2( ) 0.586SE d =  from (3.18) 

Let the level of significance, 5%α = , 16df =  

( )( ), 2 2( )dfLSD t SE dα α=              (3.20) 

From t-table; t tabular = ,0.05 16,0.025 2.583dft t= =  

  2.583 0.586LSDα = ×  

           1.514=  

1 2x x− < 0.05LSD  hence two treatments are not significantly different i.e.  16T  is not 

significantly better than2T  at 5% level. 

 

The best performing maize variety can be determined by comparing the highest yielding 

maize variety with the rest to find out whether there are some significant differences. 
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Table 27: Comparison of all treatment means with T16 
 

 

Treat no. iX  iX  1 iX X−  LSD Signif 

T16 X1 1.747  

T2 X2 1.682 0.065 1.514 NS 
T5 X3 1.629 0.118 1.514 NS 
T12 X4 1.599 0.148 1.514 NS 
T14 X5 1.597 0.150 1.609 NS 
T19 X6 1.588 0.159 1.514 NS 
T24 X7 1.587 0.160 1.514 NS 
T23 X8 1.581 0.166 1.514 NS 
T8 X9 1.580 0.167 1.609 NS 
T22 X10 1.561 0.186 1.514 NS 
T10 X11 1.441 0.306 1.514 NS 
T11 X12 1.424 0.323 1.609 NS 
T20 X13 1.411 0.336 1.514 NS 
T9 X14 1.391 0.356 1.514 NS 
T3 X15 1.333 0.414 1.514 NS 
T18 X16 1.318 0.429 1.514 NS 
T6 X17 1.290 0.457 1.514 NS 
T17 X18 1.288 0.459 1.514 NS 
T15 X19 1.275 0.472 1.514 NS 
T7 X20 1.267 0.480 1.514 NS 
T25 X21 1.248 0.499 1.514 NS 
T21 X22 1.107 0.640 1.609 NS 
T13 X23 0.844 0.903 1.514 NS 
T4 X24 0.580 1.167 1.609 NS 
T1 X25 0.359 1.388 1.514 NS 

 

 
 
         NS = Not significant 

 * = Significant at 5% level 
 
Mean differences are not significantly different at 5% level of significance. That is there is no 

significant difference between variety T16, the highest yielding and the other varieties. 

Therefore no variety is significantly better than the other. 
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CHAPTER 4 

COMBINED ANALYSIS FOR THE TWO LOCATIONS 

4.1 Introduction 
 
An important objective of an on-farm or field research is often to examine which treatment is 

adapted to which kind of environment. A major reason for replicating experiments over 

multiple environments as locations or sites is to estimate the effects of treatments over a 

variety of environments. 

 

The analysis of variance over different sites or seasons shows whether treatment effects 

change under different environmental conditions. For example, a maize breeder needs to 

know the area of adaptation of new maize varieties developed. To achieve this objective, the 

varieties are tested in field experiments repeated in several locations distributed in maize 

growing areas. The conclusions drawn from an experiment in a single locality will have little 

value for the whole, because performance of varieties will vary depending on the type of soil, 

amount of rainfall and rainfall pattern, and diseases and pests prevalent in different localities 

within the target area. When varieties respond in different ways to changes in environments 

we conclude that there is a variety by location interaction. 

 

The purposes of multi-location tests of a set of treatments are: 

i) To recognize if the area is reasonably homogeneous or if it should be divided into 

more homogeneous locations. 

ii) To draw conclusions about the treatments themselves. This will enable us to 

recommend the use of particular treatment for location 

iii) To recognize the superior treatments in maize variety experiment.  
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Most field experiments are conducted over two or more locations and years. Snedecor and 

Cochran (1967) described the procedure for combined analysis of one factor experiments, but 

do not describe the test of the average response of treatments over locations and years. The 

test of the main effect of locations or years may be of interest to researchers, but is not readily 

available in the literature. Much has not been done on combined analysis of multi locations 

on lattice design.  

 

4.2 Combined analysis procedures 
 
The following steps are followed when carrying out combined analysis for groups of 

experiments; 

Step 1:  Construct an outline of combined analysis of variance over locations 

Step 2:  Perform analysis of the locations separately. 

Step 3:  Test equality of experimental error variances or homogeneity. 

For step 3, there are situations which depend on the number of l  error mean 

square or variances, where l  is the number of locations. 

 

Case 1: When 2l =  

F-test for testing the homogeneity of variance is applied. 2
1S and 2

2S are taken to be the mean 

square errors ( )MSE  for the two locations. The value of F statistics  
2

1
2

2

S

S
 is tested against the 

tabulated F value at 1n and 2n degrees of freedom at 5% level of significance, where  

1n and 2n degrees of freedom ( )df  of errors of the two locations respectively. The larger 2S  is 

the numerator value. If F computed is greater than F tabulated then the two locations are 

heterogeneous. 
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Case 1: When  2l >  

Bartlett`s Chi-Square test is used when locations (populations) are more than two. It is 

designed to test equality of variances across locations against alternative that variances are 

unequal for at least two locations.  

The null and alternative hypotheses are; 

2 2 2
1 2: ......o lH σ σ σ= = =    against 

1H  : at least two 2 'i sσ  are not equal. 

The statistic, 
( )

( ) ( )

2 2

2 1
1 , 1

1

log log

1 1 1
1

3 1

l

e p i e i
i

l l

i i

N l S n S

l n N l

αχ =
− −

=

− −
=

 
+ −  − − 

∑

∑
                 (4.1) 

  Where; in = degree of freedom of thethi location  

    2
iS = variance of thethi location 

    N = total sample size 
1

l

i
i

N n
=

 = 
 

∑  

    l = number of locations and 2PS = pooled variance. 

The pooled variance is a weighted average of location variances and is defined as; 

   
( ) 2

1
2 1

1
l

i
i

P

n S
S

N l
=

−
=

−

∑
                (4.2) 

The 2
1 , 1lαχ − −  follows the chi-square distribution with ( )1l − degrees of freedom at α  level of 

significance. If the calculated value of 21 , 1lαχ − −  is greater than tabulated value 2
1 , 1lαχ − −  then the 

null hypothesis of homogeneity of variance is rejected and the locations are significantly 

different at  α  level of significance. Locations are not homogeneous. 

   

Step 4:  Combined analysis is performed if the population is homogeneous. 
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4.2.1 Statistical model of a combined lattice design 
 
The model of a combined lattice design is given by: 

( ) ( )ijklm i k k ijklmj i
Y L R L B T eµ= + + + + +  

 Where ijkl mY = the observed value 

  µ = the general mean yield. 

  iL = Effect of the thi location 

  ( ) ( )j i
R L = Effect of the thj replication within the thi location. 

  kB = Effect of the thk block 

  LT = Effect of the thl treatment 

  ijklme = Random error 

4.2.2 General formats for combined analysis over multiple locations 
 
Much has not been done on Anova formats of lattice design at multiple locations but there are 

two namely the standard and SAS formats given in tables 28 and 29 respectively.  

 
Table 28: The standard  Anova table format for lattice experiment at multiple  locations 

 
 

Source df 
Sum of  
Squares(SS) 

Mean 
square(MS) 

Locations (L) 1p −  SSL MSL 

Replicates within Locations ( 1)p r −  SSR MSR 

Treatments (unadj.) (T) 1t −  SST MST 

Treatments (adj.) 1t −  
aSST aMST  

Block(adj) (B) ( 1)pr k −  
aSSB  aMSB  

Intra-block error ( 1)( 1)p k rk− −  SSE MSE 

Total 1prt −  oSST  
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Table 29: The SAS Anova table format for lattice experiment at multiple  locations 
 
 

Source df 
Sum of 
Squares(SS) 

Mean 
square(MS) 

Locations 1p −  SSL MSL 

Replications ( 1)p r −  SSR MSR 

Blocks within Replication (adj) ( )1r k −  SSB MSB 

     Component A ( )1r k −  SSB MSB 

     Component B ( )1r k −  SSB MSB 

Treatments (unadj.) 2 1k −  SST MST 

Intra-block error ( 1)( 1)k rk k− − −  SSE MSE 

Randomized Complete Block Error ( )( )2 1 1p k r− −  RCSSE  RCMSE  

Total 1prt −  
0SST  

 

According to lattice procedures the blocks within replications sum of squares is further 

broken down into components A and B. If there is no repetition of the basic plan, the 

component B sum of squares is the same as the blocks within replications sum of squares. If 

there is repetition of the basic plan, the component A sum of squares reflects the variation 

among blocks that contain the same treatments.  

 

4.3 Testing for homogeneity of experimental error variances (or populations) 
 
Since there are two sets (populations) of data from Katumani and Kangundo, F-test is used to 

test for homogeneity i.e. a test on equality of variances is performed. 

2 2
1 2:oH σ σ=  

Against  

2 2
1 1 2:H σ σ≠  
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The test statistics is given by 
2

1
2

2
calc

S
F

S
=  where 2

1S > 2
2S  

From table 17, mean square of intra block error for Kangundo 2
1 0.4300S= =  

From table 8, mean square of intra block error for Katumani 2
2 0.05251S= =  

   
2

1
2

2

(16,16)calc

S
F

S
= =

0.4300

0.05251
 

           8.19=  

   (0.95,16,16) 2.333tabledF qf= =  

Since calculatedF > tabulatedF , oH  is rejected and therefore 2 2
1 2σ σ≠  

The two populations (locations) are significantly different at 5% level of significance and 

therefore combined analysis for the two locations cannot be done. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 
 
The maize yield mean differences of all varieties in Kangundo were not significantly 

different at 5% level of significance as indicated in table 27.  Variety T16 was the best in 

Kangundo with mean yield of 1.747 t/ha while variety T1 had the lowest mean yield of 0.359 

t/ha. The best 10 varieties were; T16, T2, T5, T12, T14, T19, T24, T23, T8 and T22. 

 

The best maize variety in Katumani was T9 with mean yield of 1.158 t/ha while T19 was the 

lowest with mean yield of 0.082 t/ ha. Treatments T4, T1, T6, T7, T11 and T19 were 

significantly different with best variety T9 and farmers should not plant them. The best 10 

varieties from table 17 were T9, T22, T15, T23, T18, T10, T5, T2, T16 and T14. They 

treatment means were not significantly different from best variety T9. 

 

The best variety T9 in Katumani did not do well in Kangundo as it was ranked 17th position. 

The best variety T16 in Kangundo had a better yield in Katumani as it was ranked 9th 

position. Farmers can be encouraged to plant it. The results revealed that varieties T22 and 

T23 did well in Katumani as well as in Kangundo. The same could be said of varieties T2 and 

T5. 

 

I would recommend farmers in Kangundo to plant varieties T16, T2 and T5 while varieties 

T9, T22 and T15 should be planted in Katumani area. Since most of the varieties do not differ 

very much in yield capacity, more research should be done based on the diversity of the 

farmer’s needs.  Different types of field trials or experiments to investigate other factors like 

early maturity, dry matter content, susceptibility to pests, insects and diseases, fertilizer 

applications and so on should be conducted. 
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APPENDICES 
 

Appendix 2: Maize yield data in tons per hectare for Katumani in the two replicates. 

 
Katumani replication 1 

 
Block 1 Block 2 Block 3 Block 4 Block 5 
9 (1.190) 21 (0.670) 2  (0.920) 3 (0.920) 22 (0.610) 
13 (0.600) 8 (0.950) 24 (0.660) 10 (0.990) 12 (0.560) 
18 (0.890) 14 (1.000) 5  (0.865) 25 (0.675) 20 (0.580) 
4 (0.395) 11 (0.160) 23 (1.160) 6  (0.510) 17 (0.610) 
1 (0.390) 16 (0.590) 7 (0.520) 15 (1.050) 19 (0.045) 

 
 

Katumani replication 2    
 

Block 1 Block 2 Block 3 Block 4 Block 5 
9  (1.140) 13 (0.590) 18  (0.930) 4  (0.345) 1 (0.350) 
21 (0.875) 8  (0.500) 14  (0.620) 11 (0.003) 16  (1.055) 
2  (0.750) 24 (0.760) 5   (0.915) 23  (0.890) 7  (0.080) 
3  (0.360) 10 (0.810) 25  (0.830) 6   (0.130) 15 (1.100) 
22 (1.590) 12 (0.580) 20  (0.740) 17  (0.540) 19 (0.090) 

 
 

Key: 
Italic numbers represent the different varieties.  
Numbers in brackets represent the different variety yields 
 
 
 

 
 

Appendix 2:   Maize yield data in tons per hectare for Kangundo in the two replicates 
 

Kangundo replication 1 
 

Block 1 Block 2 Block 3 Block 4 Block 5 
9 (1.460) 21 (1.155) 2  (2.240) 3 (2.285) 22 (0.480) 
13  (0.335) 8 (1.790) 24 (2.050) 10 (2.010) 12 (1.360) 
18 (1.850) 14 (1.350) 5 (1.430) 25 (1.860) 20 (0.970) 
4 (0.710) 11 (1.510) 23 (1.810) 6  (0.960) 17  (1.420) 
1  (2.750) 16  (2.080) 7 (1.205) 15(1.525) 19 (1.054) 
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Kangundo replication 2 
 

Block 1 Block 2 Block 3 Block 4 Block 5 
9  (1.390) 13 (1.440) 18  (0.970) 4 (0.640) 1  (0.800) 
21  (1.030) 8 (1.360) 14 (1.930) 11 (1.430) 16  (1.230) 
2   (1.170) 24 (1.190) 5  (1.990) 23  (1.520) 7  (1.220) 
3  (0.570) 10  (1.080) 25  (0.940) 6   (1.930) 15(1.060) 
22  (2.265) 12 (1.480) 20 (1.590) 17 (0.900) 19 (1.590) 

 
 

Key: 
Italic numbers represent the different varieties.  
Numbers represent the different variety yields 

 
 
 
 
 

Appendix 3:  R Procedure for EDA of data yields from Katumani 
 
 

c=read.csv(file.choose()) 
> attach(c) 
> require(graphics) 
> c 
   group   block  treatmnt   yield 
1      1     1        9   1.190 
2      1     1       13   0.600 
3      1     1       18   0.890 
4      1     1        4   0.395 
5      1     1        1   0.390 
6      1     2       21   0.670 
........................................ 
........................................ 
........................................ 
........................................ 
 
47     2     5       16   1.055 
48     2     5        7   0.08 
49     2     5       15   1.100 
50     2     5       19   0.090 
 
> hist(yield,main='Histogram for 
Katumani',xlab='Yield(Kg/ha)',ylab='Frequency',prob=TRUE) 
> curve(dnorm(x, mean=mean(yield), sd=sd(yield)),type="l", 
add=T) 
> qqnorm(yield,main='Normal Q-Q Plot for 
Katumani',xlab='Observed value',ylab='Expected normal value') 
> qqline(yield,main='Normal Q-Q Plot for Katumani') 
> boxplot(yield,main='Boxplot for Katumani') 
> mean(yield) 
> sd(yield) 
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Appendix 4:   SAS Lattice procedure for analysing maize data yields from Katumani  
 
 
data katumani; 
input group block treatmnt yield@@; 
cards; 

1  1   9  1.19 
1  1   13  0.6 
1  1   18  0.89 
............................ 
............................ 
............................ 
............................ 
 
2  5   7  0.08 
2  5   15  1.100 
2  5   19  0.09 
; 

proc lattice data=katumani; 
var yield; 
run; 
 
 
 
 
 

 
 

Appendix 5:  R Procedure for EDA of data yields from Kangundo 
 

> f=read.csv(file.choose()) 
> attach(f) 
> require(graphics) 
> f 
   reps block variety yield 
1     1     1       9 1.460 
2     1     1      13 0.335 
3     1     1      18 1.850 
4     1     1       4 1.710 
........................... 
........................... 
........................... 
........................... 
 
47    2     5      16 1.230 
48    2     5       7 1.220 
49    2     5      15 1.060 
50    2     5      19 1.590 
 
> hist(yield,main='Histogram for 
Kangundo',xlab='Yield(Kg/ha)',ylab='Frequency',prob=TRUE) 
> curve(dnorm(x, mean=mean(yield), sd=sd(yield)),type="l", 
add=T) 
> qqnorm(yield,main='Normal Q-Q Plot for 
Kangundo',xlab='Observed value',ylab='Expected normal value') 
> qqline(yield,main='Normal Q-Q Plot for Kangundo') 
>  
> boxplot(yield,main='Boxplot for Kangundo') 
>  
> mean(yield) 
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Appendix 6:   SAS Lattice procedure for analysing maize data yields from Kangundo 
 
data kangundo; 
input group block treatmnt yield@@; 
cards; 

1  1  9  1.460 
1  1  13  0.335 
1  1  18  1.850 
....................... 
....................... 
....................... 
 
1  5  17  1.420 
1  5  19  1.054 
2  1  9  1.390 
2  1  21  1.030 
...................... 
...................... 
...................... 
 
2  5  7  1.22 
2  5  15  1.06 
2  5  19  1.59 

; 
proc lattice data=kangundo; 
var yield; 
run; 

 

 
 


