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ABSTRACT

Maize is one of Kenya’s main staple food crop whitdys a major role in the livelihoods of
many households in terms of food security, income& employment generation. Over eighty
percent of Kenya’s population which is currentlyeoforty million depends on availability of
maize as the main food. There is a shortage ofenaszconsumption outstrips production,
which is caused by low maize production, especiallysemi arid or marginal regions.
Feeding the growing population and meeting theeilased domestic future demand will
continue to be a challenge unless maize produgigmhectare is improved. This can be
achieved through application of new farming tecbg@s that could enhance maize
production such as; planting the best performing) iamproved hybrid maize varieties which
are in the market. Most of small scale farmers do kmow nor plant these hybrid maize
varieties which give optimal yield. This study, tbire seeks to determine the best
performing maize variety out of the twenty fiveesgked. The field trials were conducted in
two locations namely Katumani and Kangundo in M&osaCounty, Kenya. The broad
objective of the study was to determine the ovdyalit maize variety across the two stated
locations. The design used was a partially balateitide design carried out in two locations,
each having two replications. Results revealed tinate were significant mean differences
among the maize varieties at 5% significant level Katumani. No significant mean
differences were noted in Kangundo. In Katumare, ltlest variety was T9 with mean yield
of 1.158 t/ha while in Kangundo, T16 with mean gielf 1.747 t/ha. Varieties T16, T2, T5
and T14 were among the top ten in both locatiorexmErs in Kangundo should be
encouraged to plant varieties T16 and T2 while T8 &22 in Katumani. Most of the
varieties do not differ very much in yield capacityd more research should be conducted,
based on the diversity of the farmer’s requirements

Keywords: Maize variety, yields, partially balanced lattice.



CHAPTER 1

1.0 INTRODUCTION

Maize is the primary staple food in Kenya. It iscathe key food crop, accounting for 2.4%
of Kenya’'s gross domestic product (GDP) and 12.6%goicultural GDP (De Groote et al,
2005). Over eighty percent of Kenya’'s populatiorpeted on maize production for food.
Demand for maize continue to rise and that is whges have soared by 25% above 2011
(Eriyo, 2013). Kenya's poorest citizens spend ryearkhird of their income on maize and
therefore improving maize production is considei@the one of the most important strategy
for addressing food insecurity problem in a countdpwever, despite the effort made by
Kenya Agricultural Research Institute (KARI) thashled to the development and release of
several high yields maize varieties, their adoptignfarmers has been low. This has been
attributed to lack of sufficient information or eoqure to the varieties (Mureithi, 2005). This
has led to low production especially in marginatemi arid areas. There is a scarcity of land
for cultivation due to high population density. Thest mechanism of increasing maize
production in future is by improving yield per hax on land under use. The average maize
yield is about 1.8 t/ha but yields of over 6 t/lean de achieved (Makokha et al, 2010). This
yield potential can be achieved by small or largeles farmers adopting and planting maize
varieties recommended for their areas by reseacclieb like KARI. This study seek to
investigate through field trials the best yield neavariety, if planted by farmers in Machakos

county could lead to increase in maize yield apasbfood security.

1.1 Background Information

Maize is known by its scientific name ‘@sa maysand is not an indigenous cereal in Kenya
(NAFIS, Kenya). It originated in Central Americhaut 6,000 to 7,000 years ago. Maize

arrived in Africa most likely through Portuguesaders who stopped along the African Coast



during 18" century (Miracle 1965). This maize was flintywgielding and varied in colour.
From the coast, maize slowly moved inward partidylethrough the routes of slave traders.
Maize became an important food crop in East Afatdhe beginning of 2bcentury, when
European settlers introduced new white dent vaseitnported from South Africa. By the
1930s, maize was a dominant food crop; its expansi@s driven by the demand for starch
industry in England and the need to feed minersfamd workers (Byrelee and Eicher, 1997;
Snake and Jayne, 2003). The present maize varietine country are mainly the result of
maize breeding and agronomic research programmie whgan intermittently in the 1930s.
From 1990 to 2010, maize area in Kenya has incdefieen half a million hectares to about
1.6 million hectares. The total production increh$em 0.8 million tonnes to about 2.5
million tonnes in the same period. However, averggdds decreased slightly from 1.7
tons/ha in 1990 to 1.6 tons/ha in 2010 (FAO, 201Mh)a typical year, maize provides 42% of
dietary energy intake for Kenyan consumers, inclgdiboth rural and urban areas
(Mohammed and Underwood, 2004). Apart from foodfomans, maize is used for many
different purposes including feed for livestockdammw material for agro-allied industries.
Maize is eaten in form of grains and processedftr @arious product ranges, which include
maize flour that is used to make Kenya’'s commonlrhegali” and porridge. Maize is also
used to make vegetable oils and sometimes fermeéatpobduce alcohol to make local beer
“busaa”. Green maize, fresh on the cob, is eabasted or boiled separately or mixed with
legumes. Maize remnants after harvesting are asdddder and can also be used to make
silage when completely dried. It is therefore veanportant to invest in maize due to its
varied and wide economical importance. Every panhaize plant has economical value; the
grain, leaves, stalk and cob can be used to produleege variety of food and non-food

products.



1.1.1 Ecological requirements

Maize is grown at latitude ranging from the equatoapproximately 5ONorth and South. It
can grow in a wide range of agro-ecological zondsenya ranging from 0-2200m above sea
level depending on variety. This reflects its ipito adapt to a wide range of production
environments, under temperature ranging from exére@wld to very hot, under moisture
regimes ranging from extremely wet to semi-aridldGmnditions extend the maturity period
whereas high temperatures lower the yields. Thaenopb temperature for good yield is°30
Very low or high altitudes results in poor yielddaize can grow on a wide range of soils
though it performs best in well drained and welaéed loam or silty loam or alluvial soils
with PH of 5.5-7. It is intolerant of water loggin Maize is grown on terrain ranging from
completely flat to precipitously steep, in manyfaiént types of soil (Morris, 1998b). Maize
grows well with 600-900mm of rainfall but averaganfall range is between 250mm to
2100mm per season (NAFIS, Kenya). The rainfall &hdwe well distributed throughout the
growing period. The rainfall is most critical abftering and silking stage. The wide range of
conditions has led to a continuous interactionexfagype with environment and formation of
new maize types in farmer’s field both through nafwrossing and farmer selections. The
performance of maize varieties is therefore higspgcific to each condition (Smale et al

2011).

1.1.2 Agronomic practices in maize variety trials

Good management practices are essential for thduption of high yields in maize variety
trials. The management practices include seedidiggsthinning, the filling of vacancies in
plant stands, cultivation, control of weeds, dissasnsects and vertebrate pests, fertilizers

application and timely harvesting.



1.2 Literature Review

A correct experimental design is as important asolect statistical analysis in order to
obtain valid and reliable conclusions from trials feld experiments. Certain restrictions
must be imposed when plots are arranged in ordee tble to estimate the errors accurately.
The choice of experimental design as well as dissi@al analysis is of huge importance.

These are necessary in order to obtain preciség¢bohsen and Hegazy, 2013).

The primary aim of most agricultural field experimis the efficient estimation of treatment
effects. To achieve this, it is important to cohtfeld variation that is caused by

experimental management, fertility trends and ogmsironmental factors.

Fisher (1926) in his first paper in field experirtedrdesigns emphasized the importance of
randomized arrangements in the estimation of ewpmrial error and described the

Randomized complete block design (RCBD) and Lajuese design as adequate. However,
in some situations efficiency of the randomizedck|d_atin square and other complete block

types of experiment is not high.

The problem with complete blocking is that as thexk size increases due to the increase in
the number of treatments, the homogeneity of erpamtal plots, within a large block is
difficult to maintain and thus local control of eqpmental variability becomes inefficient. If
the block size and shape is not appropriately ahaseif the block size is too large, the
resulting experiment may not be a well controllgdeziment in terms of variability and thus
will provide inefficient results. Randomized blodkatin square and other complete block

types of experiments are unsuitable for experimentshich large numbers of varieties or



treatments are used. They fail to adequately maarthe effect of soil heterogeneity (Lenter

and Bishop 1993).

The randomised complete block design (RCBD), bexadists simplicity continues to be a
popular choice for many varietal trials. The psemm of results relies heavily on the control
of heterogeneity within blocks. Generally, theajez the heterogeneity within blocks, the
poorer the precision of variety effect estimatds the number of treatments increase, block
size increases proportionally. This makes it dificto maintain the homogeneity of
experimental plots within the large blocks. Theearkmental error of a complete block design
is generally expected to increase with the numbé&eatments. When the number of factors
and or levels of factors increase, the numbereztinent combinations increase very rapidly
and it is not possible to accommodate all thesatrtrent combinations in a single

homogeneous block.

For a long time the methods used to overcome fifiewdty of fitting a lot of treatments into

one block of homogeneous units were; confounding on more factorial contrasts with
blocks or use split plot designs which in effechfomnd a factorial main effect. This
reduction in size of block was achieved by sadnfjall or part of the information on certain

treatment comparisons to achieve more precisiontloers (Idress and Khan, 2009).

In response to the need for efficient designs ftarge number of treatments, Yates (1936)
developed the group of incomplete block designewknas quasi-factorials or lattices. As
the name implies, each block in an incomplete bidekign, does not contain all treatments
and a reasonably small block size can be mainta@gvesh if the number of treatments is

large. With smaller blocks, the homogeneity ofexmental units in the same block is easier



to maintain and a higher degree of precision cagdreerally achieved. Incomplete block
designs or lattices divide each complete block istoaller blocks. These designs are
arranged in blocks or groups that are smaller thaamplete replication in order to eliminate

heterogeneity (Yate, 1936)

Patterson and Williams (1976), extended Yate's wotlof construction to remove
restrictions on the number of varieties and to gaeegeneralized lattice designs, with
widespread use, made of incomplete block desigwairety trials. Generalised lattice
designs are resolvable. If there is no gain ircigien due to reduction in block size, these

designs can be reanalyzed as if they were ordiargyomized complete blocks.

Bose and Nair (1939) presented a detailed accolucbmstruction of several incomplete
block designs. Ma and Harrington (1948), during pleriod 1937 and 1946 used a total of 81
lattice designs of various kinds in Saskatoon, @isdlale experiments at the University of
Saskatchewan. The average increased efficiendatifes over randomized blocks was

48%.

Lattice designs are now frequently used in thalfwf agriculture to test the yield of annual
crops. A condition required in these designs @& the number of treatments used must be a
perfect square such aé & 25, & or 36 etc. The most commonly used design is bathnc
lattice and partially balanced lattice design. Tdiscrepancy between these two designs
occurs on the number of replications to be usedh Bequire that the number of treatments
must be a perfect square. In balanced latticegdebiock size (k) is equal to the square root
of the total number of treatments and the numbeepiications required is one more than the

block size i.e. k+1. However in partially balandattice design any number of replications



can be used. If two replications are used in pgirtlzalanced lattice design, the design is
called a simple lattice; with three replications,is called a triple lattice; with four

replications it is called a quadruple lattice, etc.

The advantages of lattice designs are:
* A large number of treatments may be compared witbiatively small blocks (the
incomplete blocks) and any number of treatmentsraplications can be used.
» Lattice designs provide a mechanism for better robmtf site variation and give a
higher degree of precision.
* Lattice design may be analyzed as a randomizedpleten block design or
completely randomized design, depending upon whethaot the incomplete blocks

are arranged in complete blocks.

Patterson et al. (1978) suggested that if blocksngpt done properly then lattice design can

be analysed as RCBD by considering super blocksdisary blocks.

The disadvantages of lattice designs are:
* Analysis of lattice designs is more complex whessimg plots occurs , covariance
analysis is used or if the treatments are subjdotedferent error variances.
» Lattice designs are not available for all values ta@fatments, replications and
incomplete block size.

» Lattice designs are more difficult to construct.



1.3 Statement of the Problem

Due to the decline of maize production in the coynts national consumption is over and
above what is produced and therefore feeding theplpewill continue to be a major
agricultural challenge. The country continues tly ien imports to meet deficits. Kenyan
maize production averages 81kg per capita, sigmiflg lower than the average demand of
103 kg per capita (Pingani, 2000). There is lim#gedpe for expanding cultivated land under
maize production since unutilized land is diminmghidegrading in soil fertility or unsuitable
for maize production. Producing higher maize yiefdexisting cultivated land would be the
best way of generating the extra maize grain td the nation. There is therefore a need to
investigate the best maize variety which will gavdnigher yield given that the land holdings
are constant while population growth is on the upWend on yearly basis. Increasing
Maize production in Kenya could be approached @anfihg the most appropriate maize

varieties.

1.4 Broad objective

To determine the best performing maize variety imaze variety trial conducted in two

locations in Machakos County.

1.5 Specific objectives

i) To determine the best maize variety in eachtion

ii) To determine the overall best maize varietgoas the two locations



1.6 Hypothesis
Different maize varieties have the same mean yield
Holth = 1= Uy = [
against

H, at least ongu . is different

Where 4 is the mean yield of tHe" variety.

In other words the null hypothesis is thatlallarieties have the same mean yield.

The alternative hypothesid, is that at least one of the treatments has a mietoh different

from others.

1.7 Significance of the study

Effort to increase food production has been the kayction in agricultural research
institutions throughout the world. Such effortvédeen spearheaded by Kenya Agricultural
Research Institute (KARI). The Institute providesources through field experimental trials
which play momentous role in assembling, evaluatimgjze germ plasma and developing
different varieties that are resistant to abiotid diotic stresses. The study will provide
information for immediate use to the agriculturatemsion field officers, small and large
scale maize farmers. Secondly the study hope toigeouseful findings to agricultural
research bodies on the best varieties of maizectimatbe grown in arid and semi arid land

(ASAL) for optimum vyield.



1.8 Methodology

1.8.1 Study area

The trial was carried out in two locations; Katum#h’35’S; 3714E) and Kangundo
(1°18'S; 3721 E). Kangundo is 57km on Eastern side of Nairobilevkiatumani is about
80km south East of Nairobi and 8Km South of Mackatamvn along the Machakos-Wote
road. Both locations are in Machakos county, Eastnovince at altitude from 1000 to
1600m above sea level with a semi- arid tropicahate described as agrecological zone

(AEZ) IV with bimodal pattern of rainfall (Unesc®14).

1.8.2 Experimental design.

The trial has 25 treatments (varieties). The expental design used was5x 5 partially

balanced lattice design with 2 replications of Zieties each in 5 blocks. Each block
contains 5 varieties. Twenty five varieties wemned@mly assigned to the experimental units
in a randomized incomplete block design. The twals carried out during the long rains

season.

1.8.3 Field layout

All twenty five treatments (varieties) for both &imns are shown in the layout in table 1, 2,

3 and 4.
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Table 1: A 5x5 balanced-Lattice in the first Replicate for Katurna

Block 1 Block 2 Block 3 Block 4 Block 5

T9
T13
T18
T4
T1

T21
T8

T14
T11
T16

T2
T24
TS
T23
T7

T3
T10

T25
T6

T15

T22
T12

T20
T17

T19

Table 2: A 5x5 balanced-Lattice in the second Replicate for Katnim

Block 1 Block 2 Block 3 Block 4 Block 5

T9
T21
T2
T3
T22

T13
T8

T24
T10
T12

T18
T14
T5

T25
T20

T4
T11

T23
T6

T17

T1
T16

T7
T15

T19

Table 3: A 5x5 balanced-Lattice in the first Replicate for Kandan

Block 1 Block 2 Block 3 Block 4 Block &

T9
T13
T18
T4
T1

T21
T8

T14
T11
T16

T2
T24
TS
T23
T7

T3
T10

T25
T6

T15

T22
T12

T20
T17

T19

Table 4 : A 5x5 balanced-Lattice in the second Replicate for Kauagu

Block 1 Block 2 Block 3 Block 4 Block 5

T9
T21
T2
T3
T22

T13
T8

T24
T10
T12

T18
T14
T5
T25
120

T4
T11
T23
T6
T17

T1
T16
T7
T15
T19
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1.8.4 Data collection

The data on the dried maize yield were recordedata recording sheets. This raw data was
keyed in the MS Excel spreadsheet and verifiedratjahe original data sheets. The maize

yield data was expressed in tons per hectare.

1.8.5 Data Analysis

Data analysis was done using Microsoft Office Ex28D7, SAS (ver.9.1.3), Math type

equations and R (ver.2.13.2) computer packages.

1.8.6 Assumption of analysis of variance

The following assumptions were made before carrgimigan analysis of variance:

i) Each of the “n” (n=2) Populations i e. Katumamd kangundo are normally
distributed with meansy, = &, and variancew,” = g,’
i) The two population variances are equaf, = g,’(i.e. there is homogeneity of

variances).
iii) The independent samples are taken from 2 s (equal and unequal).
iv) According to Annette (1990), a random variaKlehas a normal distribution

with meany , varianceo and a probability density function of

o) (1.1)

f(x Lk, 0‘2) :#
T emw?
This is denoted byX ~N(u,0?)

X ~N(0,1)is called the standard normal distribution wiit+ 0 ando” =1.
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CHAPTER 2
EXPLORATORY DATA ANALYSIS (EDA)

2.1 Introduction

Exploratory data analysis (EDA) is an approach useghalysing data sets and summarizing

their main characteristics, often using visual rodth Exploratory data analysis (EDA)

checks whether the data conforms to the underlgsgumptions of a linear model before
fitting a linear modellt gives multiple views of the data that may pravidseful insights.

EDA is a critical first step in analyzing the d&tam an experiment.

In this data set, EDA employed a variety of graphitechniques for the maize vyield in

Katumani and Kangundo areas. EDA employs grapheainiques and a few quantitative

techniques. EDA employs a variety of techniquesetdract important variables; uncover

underlying structure; maximize insight into a daéd; cted outliers and anomalies; develop
models and test underlying assumptions. These ifgobs are:

a) Quantile - Quantile Plot (Q-Q plot) is a plot of quantiles of quantitative response
variables distribution against the quantiles of nbemal distribution. If distribution is
normal, the plot would have, for example, yieldighle distributed closely around
the straight line. Q-Q plots are generally useddtermine whether the distribution of
a variable matches the normal distribution. Thégvadetection of non-normality.

b) Histogram shows distribution and check normality. Yield dstmormally distributed
if it has a bell shape. The shape of the histograticates the closeness of the data to

being normally distributed.

C) Box plots display two common measures of the variabilityspread in the data set.

They also show the outliers and extreme scoreredtheipper or lower whisker.
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2.2 EDA on Katumani

Katumani _replication 1

Normal Q-Q Plot for katumani_replication 1
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Figure 1

Figure 1 shows a Q-Q plot for Katumani maize yigddia in replication 1. Most of the points
are not in straight line or close to it. It shovevihtion from normality on both ends as the
points are far from the line. The plot indicates éxistence of two clusters of the data. The

yield variable does not match the test distribution normal distribution).

Histogram for katumani_replication 1 Boxplot for katumani_replication 1
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Figure 2 Figure 3

Figure 2 shows a histogram for Katumani maize yith in replication 1 which indicates

that the yield data is not normally distributedcgirit has no bell-shape. The distribution is
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slightly left skewed. This is confirmed by a nornsatve superimposed onto the histogram.

The normal curve has a mean of 0.70 and standardtiba of 0.29.

Figure 3 shows a box plot for Katumani data inicggion 1. The lower whisker is longer
implying that the distribution is negatively skew@d skewed towards left). The distribution
is not normal as the median line does not dividelitix equally .There are no outliers.

Katumani _replication 2

Normal @-Q Plot for katumani_replication 2

15

Expected normal value
10

05
|
o

00
|

Observed value

Figure 4

Figure 4 shows a Q-Q plot for Katumani maize yigdda in replication 2.The distribution of
the yield variable does not match the normal distion since the points do not cluster
around a straight line or close to it. The Q-Q glodws deviation from normality on both

sides i.e. upper and lower sides.

Figure 5 shows a histogram for Katumani maize yiith in replication 2 which indicates

that the data is not normally distributed sinds ot bell-shaped. This is confirmed by the
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normal curve superimposed on the histogram whigosstively skewed. The normal curve

has a mean of 0.67 and standard deviation of 0.29.

Frequency

0.2 04 0.6 0.8 10 12

0.0

Histogram for katumani_replication 2

Boxplot for katumani_replication 2
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Figure 5

Figure 6

Figure 6 shows a box plot for Katumani maize yigdda in replication 2. The upper whisker

is longer implying that the underlying distributi@positively skewed. There are no outliers.

The median line does not divide the box equallylyimg the data is not normally distributed.

Katumani _combined maize yield data

Normal Q-Q Plot for Katumani

15

1.0

Expected normal value

0.5

00
1

Observed value

Figure 7
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Figure 7 shows a Q-Q plot for Katumani combinedzmaiield data. Most of the data are
closely around the straight line. There are olegrlower and upper end. The plot slightly

matches the test of normality.

Histogram for Katumani Boxplot for Katumani
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Figure 8 Figure 9

Figure 8 shows a histogram plot for Katumani coretlimaize yield data which have a bell
shape implying that the yield data is symmetric apgroximately normal. A normal curve
superimposed onto the histogram confirms the vigisbnormally distributed. It has a mean

yield of 0.687 and standard deviation of 0.343

Figure 9 shows a box plot for Katumani combinedzmajield data. It shows one outlier on

the upper whisker. The distribution is approximatadrmal as the median line is not far from

the middle of the box and whiskers are almost efsame length.
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2.3 EDA on Kangundo

Kangundo _replication 1

Normal Q-Q Plot for Kangundo_replication 1

Expected normal value

Observed value

Figure 10
Figure 10 shows a Q-Q plot for Kangundo maize ydgth in replication 1. The plot is linear

thus ascertaining the underlying yield data distiin to be approximately normal because

most of the points except a few cluster aroundstraaght line.

Figure 11 in the next page shows a histogram fergKiado maize yield data in replication 1
which is bell-shaped hence its underlying distiitruis symmetrical and approximately
normal. Normality is suggested by a normal curygesimposed on the histogram. The curve

has a mean of 1.51 and standard deviation of 0.58
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Histogram for Kangundo_replication 1 Boxplot for Kangundo_replication 1
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Figure 11 Figure 12

Figure 12 shows a box plot for Kangundo maize yg&th in replication 1. The median line
almost divides the box-plot equally hence the itistron is approximately normal. There are

no outliers.

Kangundo _replication 1

Normal Q-Q Plot for Kangundo_replication 2

Expected normal value

Observed value

Figure 13
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Figure 13 shows a Q-Q plot for Kangundo maize yédth in replication 2. The normal Q-Q
plot is almost linear with few points deviating #te upper part thus the underlying

distribution is approximately normal

Histogram for Kangundo_replication 2 Boxplot for kangundo_replication 2
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Figure 14 Figure 15

Figure 14 shows a histogram plot for Kangundo maiedd data in replication 2 which
indicate that the yield data is normally distritditeince it is bell-shaped. A normal curve
superimposed onto the histogram reveals that thabte is normally distributed. The curve

has a mean of 1.25 and standard deviation of 0.48

Figure 15 shows a box plot for Kangundo maize yagth in replication 2. The middle line is

displayed at the middle of the box which confirmhaittthe distribution is symmetric and

normal. However there is an outlier on each sidinefwhiskers.
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Kangundo _combinedmaize yield data

Normal Q-Q Plot for Kangundo
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Figure 16
Figure 16 shows a Q-Q plot for Kangundo combinedzengield data which indicate that the

data is normally distributed since they are closgtyund the straight line. There are outliers

at the top and upper end. The plot matches thetesirmality.

Figure 17 in the next page shows a histogram fong&iado combined maize yield data
which is bell-shaped implying the yield data distition is symmetric and approximately
normal. A normal curve superimposed onto the hrstimgsuggests the variable is normally

distributed. The curve has a mean yield of 1.3#Bstandard deviation of 0.543
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Histogram for Kangundo Boxplot for Kangundo
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Figure 17 Figure 18

Figure 18 shows a box plot for Kangundo maize yisbthbined data. The distribution is
almost symmetric and normal as the median lineotsdisplayed far from the middle of the

box.

2.4 Conclusion

From Exploratory Data Analysis (EDA), we can comguthat combined maize yield data
over replications for both Katumani and Kangundmdasmally distributed. The combined
data for each location therefore confirms that thea conforms to the underlying

assumptions of a linear model.

22



CHAPTER 3
ANALYSIS OF VARIANCE FOR SEPARATE LOCATIONS

3.1 Introduction

Analysis of Variance (ANOVA) is a statistical tedhue of using population means and
variances to test uniformity or homogeneity of datgpopulation that is not homogeneous
will have large variance while a homogeneous pdmrawill have small variance. The
essence of ANOVA is that the total amount of vaoiatin a set of data is split into two
components; the amount which can be attributedhence and the amount which can be
attributed to specified causes. The basic princgfl&NOVA is to test for the differences
among the means of the populations by examiningatheunt of variation within each of
these samples, relative to the amount of variabetween samples. This is done under the

assumptions that the sampled populations are niyraiatributed.

3.1.1 Assumptions of ANOVA

i) Experimental errors are independently and normdikyributed with mean zero and
common variance.
i)  The effect of the'l treatment remains same irrespective of the plot.
iii)  The observations are independent.
iv)  Parent population from which observations are takerormal.

v)  Various treatment and environmental effects arétiddn nature.
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3.2 Lattice Designs - Incomplete Blocks

Experimental designs are basically divided into twategories: complete block design and
incomplete block design. Complete block designudek; completely randomized design
(CRD), randomised complete block design (RCBD)nlaguare design and factorial design.
Among these designs, RCBD is one of the most ektelysused designs in agriculture.
Incomplete block designs are designs in which antyibset of treatments are applied in each
block. There are two types of incomplete block desibalanced incomplete block design

(BIBD) and patrtially balanced incomplete block adgs{(PBIBD).

In RCBD, a block should be homogeneous and eacbkbbmntains a complete set of
treatments. Therefore, a special requirement of R€Bperiments is that every block should
contain observations on every treatment. Howevdrerwthe number of treatments (t) is
higher than the block size (k), every block carswitain observations on every treatment.

In this case, an incomplete block design calledsgtectorials or lattice design is used
instead of RCBD. Lattice designs, originally delsed by Yates (1936), are a special class of
incomplete block designs used when number of treatsis large. A lattice design in a field
trial involves grouping a block into smaller sulodits. Each sub block cannot accommodate
all the treatments. Grouping is done in such a Wet every pair of treatments occurs
together in the same block exactly once that i$ geir of treatments occurs together in a

block only once 4 =1) .

In lattice design, the number of treatments (§ [gerfect square or a square of an integer,

such thatt = k?.The design may be constructed for a number ofriveats such as 9, 16, 25
etc. Lattice experiments require grouping blockso imeplicates, with each replicate

containing one observation for every treatmentsTiorces the number of blocks in each
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replicate to be equal to the number of observatmersblock. That is, the number of blocks

per replicate and the number of observations pmrkbare both equal to=+/t . In addition,
if the number of replicate groups (r) in Latticgpeximents is equal to k + 1 then the design is
referred to as a balanced lattice. If r is lessithar 1 then the design is referred to as a
partially balanced lattice.
In constructing lattice designs of the balancea typo fundamental relations are involved;
tr =kb (3.1)

Mt-1)=r(k-1) (3.2)
Where b>t and /A = the number of times (an integer) a treatment kxcaith each of the
other treatments within an incomplete blockAlis equal for all pairs of treatments, the
design is balanced. Lattice designs may also b& wken the number of treatments is not a
perfect square. Such cases are referred to asgrdar lattice designs. Lattice designs are

very useful when comparing a large number of vessdbecause they correct heterogeneity.

3.3 Statistical model and ANOVA'’s format of a lattce design

The statistical model of a lattice design is gign
Yia =M+ R+ B @j(i)-'- T+ &
WhereY;,, =the observed value
4 =Overall mean yield.
R =Effect of thei" replication

B(R). ., =Effect of the " block within thei” replication.

iM)
T, =Effect of thek™ treatment

&« = Random error
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There are two ways of representing ANOVA tableatfite experiments. The different

formats are shown in tables 5 and 6.

Table 5. The ANOVA table format for a lattice experimexitone location

Source of variatio Degree oi Sum of Mean Compute F
freedom squares square
df S
(df) (S9 M= SS
df
Replication (R r-1 SSFk MSR MSR
MSE
Treatment (unadj.) k2 -1 SST MST MST( unadj)
@) (unadj.) (unadj.) MSE
Blocks within rk -1) SSE MSB MSH unad))
replication (adj) (B) (adj.) (adj.) MSE
Intra-block error (k=1(rk-k-1) SSE MSE
Total rk? -1 SST
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Table 6: The ANOVA table format for a lattice experimexitone location with Adjustments

Source of variatior Degree of Sum of Mean square Computed~
freedom squares (MS— Ssj

(df) (S9 T
Replication r-1 SSFk MSR MSR
MSE
Treatment k2 -1 SST MST MST( unadj)
(unadj.) (unadj.)  (unadj.) MSE
Treatmen k2 -1 SST MST MST( adj))
(adj.) (adj.) (adj.) MSE
Blocks within rk —1) SSE MSB MSH adj)
replication (adj) (adj.) (adj.) MSE
Blocks withir rk -1) SSE MSB MSB( unad)
replication (unadj) (unadj.)  (unadj.) MSE
Intra-block error  (k-1)(rk—k-1) SSE MSE
Total rk? -1 SST

The SAS ANOVA table format shown in table 7 bel®flects two extra sources of variation
which are not included in the standard format shawtables 5 and 6. These are component
B and randomized complete block error. Componehta8 similar features as blocks within
replication while randomized complete block errar the sum of the blocks within
replications sum of squares and the intra bloctresum of squares. It is the appropriate error
used if the experimental design uses a randomieatplete block design (RCBD), with the

replications taking the roles of complete blocks.
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Table 7: The ANOVA table format for a Lattice Experimentasite Location given by SAS

Degree of Sum of Mean square
freedom squares (MS— Ssj

Source (df) (59 Cdf
Replications r-1 SSFk MSR
Blocks within Replication (adj) r(k _1) SSE MSB
Component B r(k _1) SSE MSB
Treatment (unadj.) k2 -1 SST MST
Intra-block error (k-1)(rk-k-1) SSE MSE

Randomized Complete Block Er (r —1)(k2 _1) SSE. MSE,.

Total rk? -1 SST

3.4 ANOVA of yield data for Katumani without adjustments

The total sum of squares ( S Treplication sum of squares (SSR) and unadjuseadment

sum of squares (SSTunadj.) are obtained through&raf/sis and given in table 8

Table 8: Analysis of Variance for maize vield for tumani Locatio

The SAS System
The Lattice Procedure
Analysis of Variance for yield

Sum of Mean

Source df Squares(SS; square(MS)
Replications 1 0.01656 0.01656
Blocks within Replication (adj)) 8 0.3675 0.04593
Component B 8 0.3675 0.04593
Treatment (unadj.) 24 4.2517 0.1772
Intra-block error 16  0.8402 0.05251
Randomized Complete Block Erra 24  1.2077 0.05032
Total 49  5.4760 0.1118
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Additional Statistics for yield

Variance of Difference 0.0525
LSD at .01 Level 0.6409
LSD at .05 Level 0.4730
Efficiency Relative to RCBD 95.8241

Treatment Mear

for yield
Treatment Mean
1 0.3700
2 0.8350
3 0.6400
4 0.3700
5 0.8900
6 0.3200
7 0.3000
8 0.7250
9 1.1650
10 0.9000
11 0.0950
12 0.5700
13 0.5950
14 0.8100
15 1.0750
16 0.8225
17 0.5750
18 0.9100
19 0.0675
20 0.6600
21 0.7725
22 1.1000
23 1.0250
24 0.7100
25 0.7525

Treatment mean square of 0.1772 given from Anok&et8 will have to be adjusted due to
block effects. The treatment means are not freen flwock effects as the numbers of

treatments are high and therefore Anova will notte a valid F test.
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3.4.1 Adjustment of treatment means using adjustmeriactor, (a)

Treatment means are adjusted either up or dowanmve any variation due to the block in
which they occurred. In this way, all of the treatthmeans in the trial are compared on the
same basis, without any bias due to local envirarialevariation in the field. Adjustment of
treatment means also account for block to blockiatian within replications, so that
treatments in different blocks are compared witkcgion.

Adjusted treatment means are used if:

a) The lattice design has a relative efficieBE) is greater than 100 percent

compared to the RCBD i.®E>100%
b) Error due to blocks known as inter block ernargreater than intra-block error i.e.

blocks within replication mean square is great@antintra block error mean square
(E,>E.)

c) A large number of treatments have been usedaasgnificant difference among
treatments may be expected.

Treatment means are adjusted by adjustment féaﬁda; given by:

a=_ B~ & (3.3)
K(r -1)E,

Where E, =adjusted inter block mean squaM$B adj))

E, =Intra-block mean square (MSE)

From the analysis we obtain:

i) E,=0.04593 andE,=0.05251E, <E, and therefore treatments in different blocks can

be compared with equal precision as blagkias no effect.

i) The relative efficiency is 95.82 % which &sk than 100% and therefore adjustment is
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necessary. However the efficiency obtained isanatean achievement for a lattice

design given the variations encountered in the ASAL

A large number of treatments have been used andftiie the treatment means are to be
adjusted for block effects. Adjusted sum of squdogstreatments and unadjusted sum of

squares for block are computed.

3.4.2 Computation of unadjusted block sum of squase(SSE unad))

Unadjusted block sums of squares within replicatioe. SSB and SSB are computed first.

The block totals B B, ...Bio for both replications are calculated and showtabiles 9 and

10.

Table 9: Arrangement of blocks and the treatments for Kanirteration within
the blocks and their totals

Replication 1

Total

Block 1 9 13 18 4 1
1.19 0.6 0.89 0.395 0.39 3.465

Block2 21 8 14 11 16
0.67 0.95 1 0.16 0.59 3.37

Block 3 2 24 5 23 7
0.92 0.66 0.865 1.16 0.52 4.125

Block 4 3 10 25 6 15

0.92 0.99 0.675 0.51 1.05 4.145
Block5 22 12 20 17 19

0.61 0.56 0.58 0.61 0.045 2.405

Total 431 3.76 4.01 2.835 2.595 17.51
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Table 10: Arrangement of blocks and the treatments for Katirttecation within

the blocks and their totals

Replication 2
Total
Block 1 9 21 2 3 22
1.14 0.875 0.75 0.36 1.59 4.715
Block 2 13 8 24 10 12
059 05 0.76 0.81 0.58 3.24

Block 3 18 14 5 25 20

0.93 0.62 0.915 0.83 0.74 4.035
Block 4 4 11 23 6 17

0.345 0.03 0.89 0.13 0.54 1.935
Block 5 1 16 7 15 19

0.35 1.055 0.08 1.1 0.09 2.675

Total 3.355 3.08 3.395 3.23 3.54 16.6

Unadjusted blocks sum of square for replication 1 i

SSB( unad) = B’ + 521 ........ B> _%2

_3.465+ 337+ 4125+ 4143 2405 (153
5 25

=0.40475¢

Unadjusted blocks sum of square for replication 2 i

_4718+ 3.24+ 4035+ 1933 2675 (167

SSB( unad
X ) 5 25

=0.9595¢

Pooled unadjusted block sum of squares,
SSR unad)= SSB unaplf S$B ung
=0.404756+ 0.959t

=1.36433¢
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3.4.3 Computation of adjusted treatment sum of squas (SST ad)) for block effects
Correction quantit{(Q) is used to calculate adjusted sum of square fatrtrents(SST ad))
is given by (3.5)

r

Q= k(r—l)aK—(r _1)(1+ k/,l)

J(SSEG unadj— SSB aly (3.6)

Where a= adjustment factor
E, =adjusted inter block mean squaM$B( adj))
=0.0459:
E. =Intra-block mean square (MSE)
=0.0525!
k=5r=2
SubstitutingE,, E,, k andr in (3.3)

- 0.04593- 0.052
5(2-1)0.04593

=-0.027

Substitutingk, r,a, SSK unadj and SSH adjin (3.5)

2
(2-1)(1+ 5¢ 0.027)

Q= 5(1)(—0.027{( J (1.3643 0.367%

=-0.311
Quantity Q is subtracted from the unadjusted treatment susgoéres to obtain the adjusted
sum of squares for treatment i.e.
SST ad)= SS{T unagif (3.7)
=4.2517- ¢ 0.3111

=4.562¢
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3.5 ANOVA of yield data for Katumani with adjustments
Adjusted treatment sum of squar&ST ad)) unadjusted block sum of squares
(SSKE unad)) values obtained in section 3.4.2 are entered il\tierva table 11.

4.5628
24

Mean square of adjusted treatmeMiST( ad)) =

=0.1901

Mean square of unadjusted blod¥SB( unad, =%MB

=0.170<

These values are entered in table 11

Table 11 Anova table for maize vield for Katumani Locatiwith adjustments

Source of variation Degree of Sum of Mean
freedom squares square

df S
(df) (S9 Ms =SS
df Fcalc Ftab

Replication 1 0.01656 0.01656 0.32 4.49
Treatment 24 4.2517 0.1772 3.37 224
(unadj.)
Treatmen 24 4.562¢ 0.190: 3.6 2.2¢
(adj.)
Blocks withir 8 0.367¢ 0.0459: 0.87 2.5¢
replication (adj)
Blocks within 8 1.3643 0.1705 3.25 2.59
replication (unadj)
Intra-block error 16 0.8402 0.05251
Total 49 5.4760 0.1118

There is significant difference among unadjustedtinent meanst 5% level of significance
since F computed > F tabulated. After treatmentneeaere adjusted, the situation still

remained the same i.e. adjusted treatment mearssgaiécant at 5% level of significance.
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Adjusted block within replications is not signifitaat 5% level of significance while

unadjusted blocks within replications are significat the same level.

3.5.1 Computation of adjusted block totalC, values

An adjustedblock C, value of a block is the difference between coluptaltof replication 2
and their corresponding block total of replication

Example:

C,value of the T block in table 12 = Ccolumn total of - block total of

replication 2 replication 1
= 3.355 - 3.465
=-0.11

The column total of replication 2 in table 12 istaihed from the total of each column of
replication 2 in table 10. The block total of regliion 1 in table 12 is obtained from the total

of each block of replication 1 in table 9.

Table 12;:Computation ofC, values for blocks in Katumani Replication 1

Column total  Block total
of of
Block Replication 2 Replication1  Cy value

1 3.355 3.465 -0.11 (Cy)
2 3.08 3.37 -0.29 (Cy)
3 3.395 4.125 -0.73 (Cy)
4 3.23 4.145  -0.915 (Cy)
5 3.54 2.405 1.135 (Cs

Total 16.6 1751  -0.91 (Rcy)

Total vaalue( RCl)of a replication is the sum of all individu@}, values in that replication.
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5
Total C, value (R.,) for replication 1,R;, => G

i=1
=-0.11+ £ 0.29)% £ 0.73) 1.1%

=-0.91 (table 12)

5
Total C,value (R.,) for replication 2,R., =Y G

i=1
=0.91 (table 13)
Total C, values for both replications are used to:
i) Check whether arithmetic calculations have bdene correctly. If correct,
summation ofC, values for both replications should be zero.
Example, for this casd,otal= R, + R,
=-0.91+ 0.9:=0
ii) Compute correction valugyC, (section 3.5.2)
For katumani replication 2C, values shown in table 13 are given by subtractioghkbtotal

in replication 1 from the corresponding column katareplication 2.

Table 13 Computation ofC, values for blocks in Katumani Replication 2

Column total  Block total

of of
Block Replication 2 Replication 1  Cpvalues
1 4.31 4.715 -0.405 (Ce)
2 3.76 3.24 0.52 (Cy)
3 4.01 4.035 -0.025 (Cy)
4 2.835 1.935 0.9 (Cy)
5 2.595 2.675 -0.08 (Cip
Total 17.51 16.6 0.91 (Rco)
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3.5.2 Computation of correction valueaC,

A correction term for each block is computed by tiplifing eachC, value by the quantity
a=-0.027, given by (3.3)
For replication 1, these values are:
aC =-027x-0.1F 0.0029% 0.0(
aC, =0.008,aC, =0.020,aC, =0.025,aC, =—0.031
For replication 2, these values are:
aC, =0.011,aC, =-0.014,aC, =0.001,aC, = —0.024,aC, =0.002

The total sum of all, values should add up to zero i.e.
10

Total sum ofC,values=)» aG = aG + aG +....+ aG,=0 (3.8)
i=1

=0.03+ 0.008 ....... * 0.002

The aC, Values of replication 1 are entered along the dattmn of table 14 as shown while
aC values for replication 2 are entered along theriastin the same table.

Table 14: Treatment totals and correction values for Katumani

Block 1 9 13 18 4 1 aG=
233 119 182 0.74 0.74 0.003
Block 2 21 8 14 11 16 aG=

1545 145 1.62 0.19 1.645 0.008

Block 3 2 24 5 23 7 aG=
167 142 178 2.05 0.6 0.020

Block 4 3 10 25 6 15 aCG=
1.28 1.8 1.505 0.64 2.15 0.025

Block 5 22 12 20 17 19 aG=
22 114 132 1.15 0.135 -0.031

aCG= aCG= aG= aG= aGe
0.011 -0.014 0.001 -0.024 0.002
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3.5.3 Adjusted treatment totals and adjusted treatrant means

Each treatment total in table 14 is adjusted fockleffects by applying the block corrections
appropriate to the blocks in which that treatmepesrs.

For example

The adjusted treatment total for treatment 9 imetdd=T9-aC — aC

=2.33- 0.003 0.01
=2.316

Table 15 is constructed to show the treatment tadplsted for block effects.

Table 15: Adjusted treatment totals for katumani

Block 1 9 13 18 4 1
2.316 1.201 1.816 0.761 0.735
Block 2 21 8 14 11 16
1.526 1.456 1.611 0.206 1.635
Block 3 2 24 5 23 7
1.639 1.414 1.760 2.055 0.578
Block 4 3 10 25 6 15
1.244 1.789 1.480 0.640 2.123
Block 5 22 12 20 17 19
2.220 1.185 1.350 1.205 0.163

Adjusted treatment means are shown in table 16Gredeby dividing each value in table 15

by two since each total contains two observatiomsf2 replications.

Table 16: Adjusted treatment means for katumani

Block 1 9 13 18 4 1
1.158 0.601 0.908 0.381 0.367
Block 2 21 8 14 11 16
0.763 0.728 0.806 0.103 0.818
Block 3 2 24 5 23 7
0.820 0.707 0.880 1.027 0.289
Block 4 3 10 25 6 15
0.622 0.895 0.740 0.320 1.062
Block 5 22 12 20 17 19
1.110 0.592 0.675 0.602 0.082

38



3.5.4 Computation of effective mean square (effevt error variance), E,

There are differences between adjusted treatmtaistiable 15) and treatment totals (table-
14) and therefore it is necessary to compute effechean square or effective error variance,

E. which is given by:

E = (1+ ;Lf‘lj E, (3.9)

e

E. = (l+(2)(5)(ﬂ)j 0.0525:
5+1

=0.0501 wherea =-0.027 from (3.3)

E, =0.0525: (table 8),r =2 andk =5
According to Cochran and Cox, 1950 effective emogan square E,) is used in the

denominator of F ratio test instead &f to test if there are differences among adjusted
treatment means.

F ratio test of adjusted medfAg s 24.16)= m

e

~0.1901

~0.0501

=3.79

Fab(0.05,24.16)= 2-24

Since F_,. > F_, , adjusted treatment means are significantly okffie at 5%
level of significance.
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3.6 Comparison of treatment means and the least siicant difference (LSD) test

In a partially balanced lattice design, treatmdhtd occur in the same block are compared
with greater precision i.e. smaller standard ethan the treatments that occur in different

blocks. Standard error for comparing any two treattnrmeans that occur together in the

same block is given bySE( d) :\/erEe [1+(r-1) 4 (3.10)

Standard error for comparing any two treatmentiénsame block in Katumani location is

SE(d) = \/2(0'—2053[1+ (-0.027]

=0.227
wherea=-0.027,r =2and E, =0.053

The formula for determining standard error for campg treatment means that occur in

different blocks is given by:SE( ) = Z'rze (1+ rg (3.11)

Standard error for comparing any two treatmentsiffierent blocks in Katumani location is

SKEd)= \/2(0;2053[1+ 2(-0.027}

=0.224
These standard errors when multiplied by the takiulalue for the intra-block error degrees
of freedom at the specified level of significancél wrovide LSD value with which the

adjusted treatment means can be compared for isgmifdifferences.
The LSD test is the simplest of the procedures m@aking pairwise comparisons. The

procedure provides for a single LSD value, at aqibed level of significance, which serves

as the boundary between significant and non signiti difference between any pair of
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treatment means. That is, two treatments are detlsignificantly different at a prescribed

level of significancer , if their difference exceeds the computed LSD eale.

X = %> LSD,

Otherwise they are not considered significantlyedént.

(3.12)

The aim is to determine the best performing maiaeety through comparison of two

treatment means in two cases:

Case 1 When treatments are in the same block
For two treatments, takg, = x, =1.158 andT,, = X, = 0.908
% =% =T~ T,
=1.158- 0.90¢

=0.250

Treatments are from the same blo8&( d) =0.227 from (3.10)
Let the level of significance;, =5%, df =16

LSD, =( 1) ( SE 9)
From t-table; t tabular £ s =15 ;05— 2.583

LSD, =2.583x 0.22°

=0.586

% =% <LSD,, hence the two treatment means are not significaifterent.

Case 2 When treatments are in different blocks

For two treatments, tak& = x, =1.158 andT,, = x,=1.110

X% =%=T,=T,
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=1.158- 1.11(

=0.048
Treatments are from different blockSH d) =0.224 from (3.11)

Let the level of significance; =5%, df =16
LSD, =(t2) ( SE 9)) (3.14)
From t-table; t tabular £ ;s =15 ;05— 2.583

LSD, =2.583x 0.22«

=0.579

Z —Z <LSDO, hence two treatment means are not significantlycfit.

The best performing maize variety can be determineddmgparing the highest yielding

maize variety with the rest to find out whether thare some significant differences as

shown in table 17.
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Table 17: Comparison of treatment means with T9

Treatno. X, X, X,-X LSD Signif

T9 X1 1.158 0.000

T22 X2 1.110 0.048 0.579 NS
T15 X3 1.062 0.096 0.579 NS
T23 X4 1.027 0.131 0.579 NS
T18 X5 0.908 0.250 0.586 NS
T10 X6 0.895 0.263 0.579 NS
TS5 X7 0880 0.278 0.579 NS
T2 X8 0820 0.338 0.579 NS
T16 X9 0.818 0.341 0.579 NS
T14 X10 0.806 0.352 0.579 NS
T21 X11 0.763 0.395 0.579 NS
T25 X12 0.740 0.418 0.579 NS
T8 X13 0.728 0.430 0.579 NS
T24 X14 0.707 0.451 0.579 NS
T20 X15 0.675 0.483 0.579 NS
T3 X16 0.622 0.536 0.579 NS
T17 X17 0.602 0.556 0.579 NS
T13 X18 0.601 0.558 0.586 NS
T12 X19 0.592 0.566 0.579 NS
T4 X20 0.381 0.777 0.586 *
T1 X21 0.367 0.791 0.586 *
T6 X22 0.320 0.838 0.579 *
T7 X23 0.289 0.869 0.579 *
T11 X24 0.103 1.055 0.579 *
T19 X25 0.082 1.076 0.579 ~*

NS = Not significant
«= Significant at 5% level.

Treatments T4, T1, T6, T7, T11 and T19 are signifiyadifferent from T9 at 5% level of
significance. Other treatment means are not signifigatifferent from T9 at 5% level of
significance and therefore different types of trialsstidoe conducted to investigate other

factors.
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3.7 ANOVA of yield data for Kangundo

Through SAS analysis, Anova table for kangundo tsiokd and shown as table 18.

Table 18: Analysis of Variance for maize vield for Kangundo Lagat

The SAS System
The Lattice Procedure

Analysis of Variance for yield

Sum of Mean

Source df Squares(SS) square(MS)
Replications 1 0.4869 0.4869
Blocks within Replication (ad)) 8 2.2871 0.2859

Component B 8 2.2871 0.2859
Treatments (unadj.) 24 3.2770 0.1365
Intra-block error 16 6.8801 0.4300
Randomized Complete Block Error 24 9.1673 0.3820
Total 49 12.9312 0.2639

Additional Statistics for yield

Variance of Difference 0.4300
LSD at .01 Level 1.8341
LSD at .05 Level 1.3534
Efficiency Relative to RCBD 88.8284

Treatment Mgan
for yield

Treatment Mean

1.7750
1.7050
1.4275
0.6750
1.7100
1.4450
1.2125

NOoO o~ WNPE
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8 1.5750

9 1.4250
10  1.5450
11  1.4700
12 1.4200
13 0.8875
14  1.6400
15  1.2925
16  1.6550
17 1.1600
18 1.4100
19  1.3220
20 1.2800
21 1.0925
22 1.3725
23  1.6650
24  1.6200
25  1.4000

Treatment means are not free from block effects bedheseumbers of treatments used are
many. The analysis of variance will not provide aid/& test and therefore adjustments are
needed on treatment mean square.

Blocking has no effect ag, = 0. 2859 is less thak,=0.4300 i.e.E, <E,. Efficiency relative

to RCBD is 88.8% and adjustments of treatments acessary as the number of treatments

used is large.

3.7.1 Adjustment of treatment means using adjustmeriactor, (a)

Unadjusted block sums of squares within replicaticmsSSB and SSB are computed first.
The block totals B B; ...Bio for both replications are calculated and shown int ex

tables 19 and 20.
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Table 19: Arrangement of blocks and the treatments for Kanguodation within the blocks
and their totals

Kangundo replication 1

Total

Block 1 9 13 18 4 1
1.46 0.335 1.85 0.71 2.75 7.105

Block 2 21 8 14 11 16
1.155 1.79 1.35 151 2.08 7.885

Block 3 2 24 5 23 7
224 205 143 1.81 1.205 8.735

Block 4 3 10 25 6 15
2285 2.01 1.86 0.96 1.525 8.64

Block 5 22 12 20 17 19
0.48 1.36 0.97 1.42 1.054 5.284

Total 7.62 7.545 7.46 6.41 8.614 37.649

Table 20: Arrangement of blocks and the treatments for Kanguodation within the blocks
and their totals.

Kangundo replication

Total

Block 1 9 21 2 3 22
1.39 1.03 1.17 0.57 2.265 6.425

Block2 13 8 24 10 12
1.44 1.36 1.19 1.08 1.48 6.55

Block3 18 14 5 25 20
0.97 193 1.99 094 159 7.42

Block 4 4 11 23 6 17
0.64 1.43 152 1.93 0.9 6.42

Block 5 1 16 7 15 19
0.8 1.23 1.22 1.06 159 59

Total 5.24 6.98 7.09 558 7.825 32.715

Unadjusted blocks sum of square for replication 1 is

SSB( unad) = B+ 522; ------ + B’ _ki; o
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_7.105+ 7.885+ 8735+ 8.64 5.284 (37.64
5 25

=1.607

Unadjusted blocks sum of square for replication 2 is

6.425 + 6.58+ 7.4+ 6.4% 59 (2.7F

SSB( unad) = = >
=0.242
Pooled unadjusted block sum of squares,
SSK unad)= SSB unajpf S$B ung (3.5)
=1.607+ 0.24:
=1.849

3.7.2 Computation of adjusted treatment sum of squas (SST ad)) for block effects

Correction quantityQ is used to calculate adjusted sum of squares fotnisgds i.e.
SST ad) is given by (3.6)

r

Q= k(r—l)aK—(r _1)(1+ k/,l)

J(SS& unadj— SSB aly (3.6)

E, =adjusted inter block mean squalM$B adj))
=0.285¢
E. =Intra-block mean square (MSE)
=0.430C
k=5r=2
SubstitutingE,, E,, k andrin (3.3)

= 0:2859- 0.4301
5(2-1)0.2859
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=-0.101

Substitutingk, r,a, SSK unadj and SSE adjin (3.6)

2
(2-1)(1+ 5¢ 0.101)

Q=5(1)(—0.101M J (1.849 2.287}

=-0.894
Quantity Q is subtracted from the unadjusted treatment sumuzreg to obtain the adjusted
sum of squares for treatment i.e.
SST ad) = SS{T unafif (3.7)
=3.2770- € 0.894

=2.383

3.8 ANOVA of yield data for kangundo with adjustmerts
Adjusted treatment sum of squarf&ST ad)) and unadjusted block sum of squares
(SSE unad)) values obtained in section 3.71 are entered in Anabke 21.

Mean square of adjusted treatmeMiST( ad)) =%f3

=0.099¢
1.849

Mean square of unadjusted blod¥SB unadj) = 5

=0.170¢
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Table 21: Anova table for maize yield for Kangundo Locationhwdidjustments

Source of variation Degree of Sum of Mean square

_ Ssj

freedom squares

(df) (89

(s

_E I:calc Ftab
Replication 1 0.486¢ 0.486¢ 1.15 4.4¢
Treatment 24 3.2770 0.1365 0.32 2.24
(unadj.)
Treatment 24 2.383 0.0993 0.23 2.24
(adj.)
Blocks within 8 2.2871 0.2859 0.66 2.59
replication (adj)
Blocks withir 8 1.84¢ 0.231: 0.54 2.5¢
Replication (unadj
Intra-block erro 16 6.880: 0.430(
Total 49 5.4760 0.1118

Unadjusted treatment meaae not significantly different at 5% level of sifjoance since F

computed < F tabulated. After treatment means werestet], the situation still remained the

same i.e. adjusted treatment means were not sigmifycadifferent at 5% level of

significance. Both adjusted and unadjusted blocthiwireplications are not significantly

different at 5 % level of significance.

3.8.1 Computation of adjusted block totalC, values

For Kangundo replication 1C, values shown in table 22 are given by subtractingkbtotal

in replication 1 from the corresponding column tataleplication 2.

For exampleC, value of the I block=5.24- 7.10"

=-1.865
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Table 22_Computation ofC, values for blocks in Kangundo Replication 1

Column total Block total

of of
Block Replication 2 Replication1  Cyvalue
1 5.24 7.105 -1.865(C)
2 6.98 7.885 -0.905(Cy)
3 7.09 8.735 -1.645(Cy)
4 5.58 8.64 -3.06 (Cy)
5 7.825 5.284 2.541(Cs)
Total 32.715 37.649 -4.934 (Rcy)

For Kangundo replication 27, values shown in table 23 are obtained by subtradtiock

total in replication 1 from the corresponding coluratakin replication 2.
For example, for block 1C, value of the T block=7.62- 6.42*

=1.19¢

Table 23: Computation ofC, values for blocks in Kangundo Replication 2

Column total Block total

of of
Block Replication 2 Replication1  C,value
1 7.62 6.425 1.195(Cy)
2 7.545 6.55 0.995(Cy)
3 7.46 7.42 0.04 (Cy)
4 6.41 6.42 -0.01(Cy)
5 8.614 5.9 2.714(Cs)
Total 37.649 32.715 4.934 (Rc)

Total value ofC, for replication 1 and 2 are obtained and add upeto mdicating that

arithmetic calculation has been done correctly.

Total of C, values for replication | is R, =-4.934

Total of C, values for replication 2 is R., =4.934
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Total=R,+ R,=0
3.8.2 Computation correction valueaGC,

A correction term for each block is computed by nplyjing eachC, value by the quantity

a=-0.101given by (3.3) in sub section 3.7.1

For replication 1, these values are:
aC =-0.101x-1.865 0.18, sinceC, =-1.865from table 22
aC, =0.091,aC, =0.166,aC, =0.309,aC, =-0.257

For replication 2, these values are:

aC, =-0.121,aC, =-0.100,aC, =0.004,aC, =-0.001,aC, = -0.274
10

Total C, values =) aC =aG+ aG +....+ aG,=0 (3.15)
i=1

=0.188+ 0.09% ....... + « 0.274)
The aC Values of replication 1 are entered along the lastroalof table 24 as shown while

aC, values for replication 2 are entered along the lastinothve same table.

Table 24: Treatments totals and correction values for Kangundo

Block 1 9 13 18 4 1 aG=
285 1775 282 1.35 355 0.188

Block 2 21 8 14 11 16 aC=
2.185 3.15 3.28 294 331 0.091

Block 3 2 24 5 23 7 aG=
3.41 3.24 342 3.33 2.425 0.166

Block 4 3 10 25 6 15 aCs=

2.855 3.09 2.8 2.89 2.585 0.309

Block 5 22 12 20 17 19 aG=
2.745 284 256 2.32 2.644 -0.257

aG= aC= aG= aG= aGg=
-0.121 -0.100 -0.004 0.001 -0.274
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38.3 Adjusted treatment totals and adjusted treatmiet means

Each treatment in table 24 is adjusted for block &fféxy applying the block corrections
appropriate to the blocks in which that treatment appe

For example
The adjusted treatment total for T9 in tableed® - aC — aG

=2.85- 0.188 ¢ 0.12]

=2.783

Table 25 is constructed showing the treatment taljalsted for block effects.

Table 25: Adjusted treatment totals for kangundo

Block 1 9 13 18 4 1
2.783 1.687 2.636 1.161 0.718
Block 2 21 8 14 11 16
2.215 3.159 3.193 2.848 3.493
Block 3 2 24 5 23 7
3.365 3.174 3.258 3.163 2.533
Block 4 3 10 25 6 15
2.667 2.881 2.495 2.580 2.550
Block 5 22 12 20 17 19
3.123 3.197 2.821 2.576 3.175

Adjusted treatment means are obtained by dividindy @atue in table 25 by two since each

total contains two observations from 2 replications.

Table 26: Adjusted treatment means for kangundo

Block 1 9 13 18 4 1
1.391 0.844 1.318 0.580 0.359
Block 2 21 8 14 11 16
1.107 1.580 1.597 1.424 1.747
Block 3 2 24 5 23 7
1.682 1.587 1.629 1.581 1.267
Block 4 3 10 25 6 15
1.333 1.441 1.248 1.290 1.275
Block 5 22 12 20 17 19
1.561 1.599 1.411 1.288 1.588
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3.8.4 Computation of effective mean square (effevt error variance), E,

There are differences between adjusted treatment {¢dle 24) and unadjusted treatment

totals (table 25) and therefore it is necessary topteneffective mean square or effective

error variance E, which is given by:

e

E :(“%?J E, (3.16)

E. = (1+ w)j 0.430C
5+1

=0.357€ wherea=-0.101from (3.3)

E, =-0.430C (table 15),r =2 andk =5

MST( adj)
—=

e

F ratio test of adjustment meﬁ(.f,c(olosym,m):

_0.0993

©0.3576
=0.2777

Ftab(0.05,24,16): 2.24

Since F_,. < F_, , adjusted treatment means are not significanfigmint at

calc

5% level of significance.

3.9 Comparison of treatment means and LSD

Standard error for comparing any two treatment meansttatr together in the same block

is given by;  SE(d) = \/ ZrEe [1+(r-1) g (3.17)

Standard error for comparing any two treatments indheesblock in Kangundo location is

S=C)) =\/@(1— 0.101)
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=0.628
wherea=-0.101,r =2and E, =0.430C

The standard error for comparing treatment means that atdifferent blocks is given by;

SE(d) =252 (1+ 19 (3.18)

r

Standard error for comparing any two treatments in @iffeblocks in Kangundo location is

SE(d)= \/2(0'—243()[“ 2(-0.101)

=0.586
Comparison test is done to determine the best mvaigety in two cases:

Case 1 When treatments are in the same block
For two treatments, takg, = x, =1.747 andT,, = x, =1.597
X—X%= T16_ T14
=1.747- 1.59°

=0.150

Treatments are from same blocl&H d) =0.623 from (3.17)

Let the level of significance;, =5%, df =16

LSD, = (1 ... )( SE @) (3.19)
From t-table; t tabular £ ;s =15 ;0= 2.583
LSD, =2.583x 0.62:
=1.609
Z —Z <LSD,, hence two treatment means are not significantigrent.
Case 2 When treatments are in different blocks

For two treatments, takg, = x, =1.747 and T, = x, =1.682
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Z _Z = TlG - Tz
=1.747- 1.68:

=0.065
Treatments are from different blockSH d,) =0.58€ from (3.18)

Let the level of significance;, =5%, df =16
LSD, =(ty.,.)( SK 9)) (3.20)
From t-table; t tabular £ s =15 ;0= 2.583
LSD, =2.583x 0.58¢
=1.514

% - % <LSD,,; hence two treatments are not significantly différee. T, is not

significantly better thal, at 5% level.

The best performing maize variety can be determimgdcomparing the highest yielding

maize variety with the rest to find out whetheréhare some significant differences.
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Table 27: Comparison of all treatment means with T16

Treatno. X; X X,- X, LSD Signif

T16 X1 1.747

T2 X2 1.682 0.065 1.514 NS
T5 X3  1.629 0.118 1.514 NS
T12 X4  1.599 0.148 1.514 NS
T14 X5 1.597 0.150 1.609 NS
T19 X6  1.588 0.159 1.514 NS
T24 X7 1.587 0.160 1.514 NS
T23 X8 1.581 0.166 1.514 NS
T8 X9  1.580 0.167 1.609 NS
T22 X10 1.561 0.186 1.514 NS
T10 X11 1.441 0.306 1.514 NS
T11 X12 1.424 0.323 1.609 NS
T20 X13 1.411 0.336 1.514 NS
T9 X14 1.391 0.356 1.514 NS
T3 X15 1.333 0.414 1.514 NS
T18 X16 1.318 0.429 1.514 NS
T6 X17 1.290 0.457 1.514 NS
T17 X18 1.288 0.459 1.514 NS
T15 X19 1.275 0.472 1.514 NS
T7 X20 1.267 0.480 1.514 NS
T25 X21 1.248 0.499 1.514 NS
T21 X22 1.107 0.640 1.609 NS
T13 X23 0.844 0.903 1.514 NS
T4 X24 0.580 1.167 1.609 NS
Tl X25 0.359 1.388 1.514 NS

NS = Not significant
= Significant at 5% level

Mean differences are not significantly differen6&b level of significance. That is there is no
significant difference between variety T16, the hegt yielding and the other varieties.

Therefore no variety is significantly better thae other.
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CHAPTER 4
COMBINED ANALYSIS FOR THE TWO LOCATIONS
4.1 Introduction
An important objective of an on-farm or field resgais often to examine which treatment is
adapted to which kind of environment. A major raador replicating experiments over
multiple environments as locations or sites is stineate the effects of treatments over a

variety of environments.

The analysis of variance over different sites aass@s shows whether treatment effects
change under different environmental conditionst Example, a maize breeder needs to
know the area of adaptation of new maize varietegeloped. To achieve this objective, the
varieties are tested in field experiments repeatedeveral locations distributed in maize
growing areas. The conclusions drawn from an erpanmt in a single locality will have little
value for the whole, because performance of vasetiill vary depending on the type of soil,
amount of rainfall and rainfall pattern, and dissaand pests prevalent in different localities
within the target area. When varieties respondifierént ways to changes in environments

we conclude that there is a variety by locatioeriattion.

The purposes of multi-location tests of a set @ftiments are:

i) To recognize if the area is reasonably homogeseaw if it should be divided into
more homogeneous locations.

i) To draw conclusions about the treatments thdwese This will enable us to
recommend the use of particular treatment for looat

iii) To recognize the superior treatments in maiagety experiment.
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Most field experiments are conducted over two orermiocations and years. Snedecor and
Cochran (1967) described the procedure for combamadysis of one factor experiments, but
do not describe the test of the average responseatiments over locations and years. The
test of the main effect of locations or years maybinterest to researchers, but is not readily
available in the literature. Much has not been dome&ombined analysis of multi locations

on lattice design.

4.2 Combined analysis procedures

The following steps are followed when carrying axdmbined analysis for groups of

experiments;

Step & Construct an outline of combined analysis ofarace over locations
Step 2 Perform analysis of the locations separately.
Step 3 Test equality of experimental error varianceb@mogeneity.

For step 3, there are situations which depend emtimber ofl error mean

square or variances, wherds the number of locations.

Case 1: Whenl =2

F-test for testing the homogeneity of variancepigli?d. S*and S,? are taken to be the mean
2
square error:ﬁMSE) for the two locations. The value of F statistiez? is tested against the

tabulated F value anand n,degrees of freedom at 5% level of significance, nehe

n andn, degrees of freedordf) of errors of the two locations respectively. Thsger S’ is

the numerator value. If F computed is greater tRaabulated then the two locations are

heterogeneous.
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Case 1: When| >2

Bartlett's Chi-Square test is used when locatigg@pylations) are more than two. It is
designed to test equality of variances across imtatagainst alternative that variances are
unequal for at least two locations.

The null and alternative hypotheses are;

H,:0’=0,=....=0° against

H, : at least twag;*'s are not equal.
|

(N —I)IogeSf,—Z nlog, S
The statistic X7, ,_, = L (4.1)

+3(|1—1)[§r1_(N1-')J

Where; n = degree of freedom of th&location

S?= variance of th&" location

|
N = total sample sizE N=>'n J

i=1
| = number of locations an8’ = pooled variance.

The pooled variance is a weighted average of logatariances and is defined as;
S=tTT (4.2)

ThexZ,,_, follows the chi-square distribution Witﬂ —1)degrees of freedom at level of

significance. If the calculated value af ,,_, is greater than tabulated valyé,,,_, then the

null hypothesis of homogeneity of variance is rigdcand the locations are significantly

different at a level of significance. Locations are not homogerseo

Step 4 Combined analysis is performed if the populat®homogeneous.
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4.2.1 Statistical model of a combined lattice desig
The model of a combined lattice design is given by:
Yiam =M+ L + R( I—)j(i)"' B+ T+ &m

WhereY.

ki m =the observed value

L =the general mean yield.
L, = Effect of thei" location

R(L), ., =Effect of the j" replication within thei" location.

iM)
B, =Effect of thek" block

T, = Effect of thel " treatment

&m = Random error

4.2.2 General formats for combined analysis over nitiple locations

Much has not been done on Anova formats of lattesign at multiple locations but there are

two namely the standard and SAS formats givenblesa28 and 29 respectively.

Table 28: The standard Anova table format for lattice expent at multiple locations

Sum of Mean
Source df Squares(SS) square(MS)
Locations (L) p-1 SSL MSL
Replicates within Locations p(r-1) SSF MSR
Treatments (unadj.) (T) t-1 SST MST
Treatments (adj.) t-1 =l MST
Block(ad)) (B) pr(k —-1) SSB MSB,
Intra-block error p(k-1)(rk-1) SSE MSE
Total prt—1 SST
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Table 29: The SAS Anova table format for lattice experimentalltiple locations

Sum of Mean

Source df Squares(SS) square(MS)
Locations p-1 SSL MSL
Replications p(r—1) SSFk MSR
Blocks within Replication (ad) r(k _1) SSE MSB

Component A r(k _1) SSE MSB

Component B r(k _1) SSE MSB
Treatments (unadj.) k2 -1 SST MST
Intra-block error (k-1)(rk—k-1) SSE MSE
Randomized Complete Block Error p(k2 —1)(r—1) SSE. MSE,.
Total prt -1 SST

According to lattice procedures the blocks withaplications sum of squares is further
broken down into components A and B. If there israpetition of the basic plan, the
component B sum of squares is the same as thesbleithin replications sum of squares. If
there is repetition of the basic plan, the compomeisum of squares reflects the variation

among blocks that contain the same treatments.

4.3 Testing for homogeneity of experimental error &riances (or populations)

Since there are two sets (populations) of data f@tumani and Kangundo, F-test is used to

test for homogeneity i.e. a test on equality ofarares is performed.

Against

H:o’#0,
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2
The test statistics is given Wy, :% whereS?>S/?

From table 17, mean square of intra block errokiangundo= S? = 0.430(

From table 8, mean square of intra block erroKiatumani= S, =0.0525

2 0.4300
F(16.16),, = 05 = 0.05251
-8.19

Fanes =0 (0.95,16,16F 2.33

SinceF

calculated

>F e H, iS rejected and therefo?® # o,

The two populations (locations) are significantiffetent at 5% level of significance and

therefore combined analysis for the two locaticasnot be done.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

The maize yield mean differences of all varieties Kangundo were not significantly
different at 5% level of significance as indicatiedtable 27. Variety T16 was the best in
Kangundo with mean yield of 1.747 t/ha while vayigfl had the lowest mean yield of 0.359

t/ha. The best 10 varieties were; T16, T2, T5, TN, T19, T24, T23, T8 and T22.

The best maize variety in Katumani was T9 with mgiaid of 1.158 t/ha while T19 was the
lowest with mean vyield of 0.082 t/ ha. Treatment T1, T6, T7, T11l and T19 were
significantly different with best variety T9 andrii@ers should not plant them. The best 10
varieties from table 17 were T9, T22, T15, T23, TI80, T5, T2, T16 and T14. They

treatment means were not significantly differeotirbest variety T9.

The best variety T9 in Katumani did not do wellkiangundo as it was ranked™ position.
The best variety T16 in Kangundo had a better yialdKatumani as it was ranked"9
position. Farmers can be encouraged to plant & rBsults revealed that varieties T22 and
T23 did well in Katumani as well as in KangundoeTdame could be said of varieties T2 and

T5.

| would recommend farmers in Kangundo to plantet#es T16, T2 and T5 while varieties
T9, T22 and T15 should be planted in Katumani ad&@ce most of the varieties do not differ
very much in yield capacity, more research showddbne based on the diversity of the
farmer’s needs. Different types of field trialsexperiments to investigate other factors like
early maturity, dry matter content, susceptibility pests, insects and diseases, fertilizer

applications and so on should be conducted.
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APPENDICES

Appendix 2: Maize yield data in tons per hectare for Katumarthie two replicates.

Katumani replication 1

Block 1 Block 2 Block 3 Block 4 Block 5
9 (1.190) 21(0.670) 2 (0.920) 3(0.920) 22(0.610)
13 (0.600 8 (0.€50) 24 (0.660 10(0.990 12 (0.560
18 (0.890 14 (1.000 5 (0.865 25(0.675 20 (0.580
4 (0.395 11(0.160 23(1.160 6 (0.510 17 (0.610
1 (0.390) 16 (0.590) 7 (0.520) 15(1.050) 19 (0.045)
Katumani replication 2
Block 1 Block 2 Block 3 Block 4 Block 5
9 (1.140) 13(0.590) 18 (0.930) 4 (0.345) 1 (0.350)
21(0.875 8 (0.500 14 (0.620 11 (0.003) 16 (1.055
2 (0.750 24 (0.760 5 (0.915 23 (0.890 7 (0.080
3 (0.360 1C (0.810 25 (0.830 6 (0.130 15(1.100
22 (1.590) 12 (0.580) 20 (0.740) 17 (0.540) 19 (0.090)

Key:
Italic numbers represent the different varieties.
Numbers in brackets represent the different vayetids

Appendix 2: Maize yield data in tons per hectare for Kangundthée two replicates

Kangundo replication 1

Block 1 Block 2 Block 3 Block 4 Block 5

9 (1.460) 21(1.155) 2 (2.240) 3(2.285) 22 (0.480)
13 (0.33%) 8 (1.790 24 (2.050) 10 (2.010 12 (1.360)
18 (1.850) 14 (1.350 5(1.430) 25 (1.8¢€0) 20(0.970)
4(0.710 11(1.510 23(1.810) 6 (0.96() 17 (1.420)
1 (2.750) 16 (2.080) 7 (1.205) 15(1.525) 19 (1.054)
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Kangundo replication 2

Block 1 Block 2 Block 3 Block 4 Block 5

9 (1.390) 13 (1.440) 18 (0.970) 4 (0.640) 1 Qo)

21 (1.030) 8 (1.360) 14 (1.930) 11 (1.430) 16230)

2 (1.170) 24 (1.190) 5 (1.990 23 (1.520 7 (1.220)

3 (0570 10 (1.080) 25 (0.940 6 (1.930) 15(1.060)

22 (2.26%) 12 (1.480) 20 (1.590) 17 (0.900 19 (1.590
Key:

Italic numbers represent the different varieties.
Numbers represent the different variety yields

Appendix 3: R Procedure for EDA of data yields from Katumani

c=read.csv(file.choose())

> attach(c)
> require(graphics)
> C

group block treatmnt yield
1 1 1 9 1.190
2 1 1 13 0.600
3 1 1 18 0.890
4 1 1 4 0.395
5 1 1 1 0.390
6 1 2 21 0.670
47 2 5 16 1.055
48 2 5 7 0.08
49 2 5 15 1.100
50 2 5 19 0.090

> hist(yield,main="Histogram for
Katumani',xlab="Yield(Kg/ha)"',ylab="Frequency',prob=TRUE)
>d§ur§e(dnorm(x, mean=mean(yield), sd=sd(yield)),type="1",
add=T

> qqnorm(yield,main="Normal Q-Q Plot for
Katumani',xTab='oObserved value',ylab="Expected normal value')
> qqline(yield,main="Normal Q-Q Plot for Katumani')
boxplot(yield,main="BoxpTlot for Katumani')

mean(yield)

sd(yield)

vV VYV
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Appendix 4: SAS Lattice procedure for analysing maize gatéds from Katumani

data katumani;
input group block treatmnt yield@@;

cards;
1 1 9 1.19
1 1 13 0.6
1 1 18 0.89
2 5 7 0.08
2 5 15 1.100
2 5 19 0.09

proc Tattice data=katumani;

var yield;

run;

Appendix 5: R Procedure for EDA of data yields from Kangundo

> f=read.csv(file.choose(Q))
> attach(f)
> ;equire(graphics)

>

reps block variety yield
1 1 9 1.460
2 1 1 13 0.335
3 1 1 18 1.850
4 1 1 4 1.710
47 2 5 16 1.230
48 2 5 7 1.220
49 2 5 15 1.060
50 2 5 19 1.590

> hist(yield,main="Histogram for
Kangundo',xlab="Yield(Kg/ha)"',ylab="'Frequency',prob=TRUE)
>d§ur§e(dnorm(x, mean=mean(yield), sd=sd(yield)),type="1",
add=T

> qqnorm(yield,main="Normal Q-Q Plot for
Kangundo',xlab="'0Observed value',ylab='Expected normal value')

> gqqline(yield,main="Normal Q-Q Plot for Kangundo')
>

> boxplot(yield,main="Boxplot for Kangundo')

>

> mean(yield)
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Appendix 6: SAS Lattice procedure for analysing maize gatids from Kangundo

data kangundo;
input group block treatmnt yield@@;

cards;
1 1 9 1.460
1 1 13 0.335
1 1 18 1.850
1 5 17 1.420
1 5 19 1.054
2 1 9 1.390
2 1 21 1.030
2 5 7 1.22
2 5 15 1.06
2 5 19 1.59

proc Tattice data=kangundo;

var yield;

run;
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