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Executive Summary 

This project presents a spatio-temporal model for pupil performance in Kenya certificate Of 

Primary Education (KCPE) in Kenya between 2006 and 2010 in the 47 counties of Kenya. For 

this analysis, time will be represented by year (2006-2010) while space will be represented by 

county. The goal of the project is to put forward an efficient estimation and prediction approach 

that accounts for both spatial and temporal dependence. The model employs a Bayesian method 

in which a prior distribution and a likelihood are stated and consequently updated using the data. 

The model involves a Gaussian Field (GF), affected by a measurement error and a process 

characterized by time and space.  

Data used for this study refers to the KCPE scores of all primary schools in the 47 counties of 

Kenya from 2006 to 2010. A dependent variable (DV) is created by obtaining aggregate counts 

of the number of students scoring 350 marks and above in KCPE in each county over the five-

year period. Analysis was done using INLA, an R package that makes use of deterministic nested 

Laplace approximations to provide a faster and more accurate alternative to Markov Chain 

Monte Carlo (MCMC) methods. 

A negative binomial likelihood was assigned to the DV, and, together with a Gaussian prior, 

space and time attributes were used in a model for explaining performance in KCPE over the five 

year period and within the 47 counties. 

From the analysis, it was found out that throughout the five-year period, the best performance 

was recorded in 2008. Generally, students in counties located in the central part of the country 

have the highest probability of scoring at least 350 marks in KCPE while those in the lake and 

coast regions have the lowest probability. Additionally, performance in any county was seen to 

be related to that of neighboring counties and the relation became weaker as the distance 

increases. 
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CHAPTER 1: INTRODUCTION 

1.1 Spatial and Spatio-temporal statistics 

This chapter will introduce spatial and spatio-temporal statistics in a view to demonstrate the 

applicability of these methods in this project. Additionally, the chapter will introduce the 

Bayesian approach to statistics and how it can be incorporated into spatio-temporal models. 

Spatial statistics is a branch of Mathematics and includes any analytic approach that studies 

objects based on their location and distance. This field of study is based on the First Law of 

Geography as stated by Tobler (1970): “Everything is related to everything else, but near things 

are more related than distant things”. This law points out to the existence of a positive correlation 

between closer entities and a weakening of the correlation as the distance between them 

increases. The law also weakens the independence assumption among observed data. Until 

recently, there has not been a theory of spatial-temporal processes separate from the already 

well-established theories of spatial statistics and time series analysis. However, there has been a 

very rapid growth of research in spatial-temporal data over the last decade due in part to 

increases in computing power and the availability of spatial data and other spatial tools. Further, 

there has been an increasing adoption of Bayesian methods in the analysis of such data. Bayesian 

analysis involves using current information to update our prior knowledge on the parameters of 

interest. 

Spatial data has been categorized into different classes. Cressie (1993) gives three types of such 

data namely spatial point process, geostatistical, and lattice data. 

Spatial point process (sometimes called space-time or spatio-temporal point process) data refers 

to observations made in a specified study region and at a specified time. Examples of such data 

include disease incidences, crime rates, or vehicle accidents. The spatial locations are normally 

captured using variables such as longitude, latitude, and elevation, though sometimes only one or 

two spatial coordinates are available or of interest. Some other variables such as distance from 

the sea or some other geographical feature can be used. In this data structure, the locations are 

sampled from a random process for which we seek inference. Spatial point process data can be 

used to answer whether observations are similar at all locations and to come up with a predictive 
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model that accounts for spatial and temporal correlation(s) among observed data and provides 

point estimates for the defined study region. 

Geostatistical data refers to observations made from a fixed number of sites. Results from the 

analysis of such data can then be used to make inference on regions or sites that were not 

included in the sample. For instance, suppose that rainfall data was made from a number of sites 

within a country, the geostatistical modeling can be used to predict rainfall quantities in areas 

where no measurements were made. 

The last type of spatial data, known as lattice, is a type of data that consists of aggregate number 

of counts or measures of a variable of interest for a specified region. Examples include the 

number of students admitted to secondary school from a given county, or the number of deaths 

due to road accidents in a given county or district. Analysis of lattice data gives rise to fairly 

accurate estimates of regions with small sample sizes. 

Spatio-temporal modeling becomes important whenever we have data collected across time, say 

years, months, or days, as well as space. Space refers to the geographical regions or point 

coordinates of the data while the time element refers to the different time-periods in which data 

is collected. Consequently, data analysis on spatio-temporal data must account not only for 

spatial dependence among the covariates, but also recognize the fact that the data forms a time 

series trend that must be included in the model. In short, the data analysis process must consider 

spatial and temporal correlations. 

In spatial statistics, the following questions are normally of interest; 

 Are observations likely to occur in all locations? If not, which locations are more (or less) 

likely to record the observations. 

 Are the covariates more likely to occur in certain locations than others? 

 Does an observation either inhibit or promote the occurrence of another variable at 

another nearby point; 

 If observations in one location indeed affect the observations in nearby locations, what is 

the possible range of influence on neighbors; 
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Spatial data consists of observations made at distinct points on a surface, rather than a curve, and 

data is collected in two dimensions as opposed to one dimension as in time series data. It is under 

this background that we can speak of underlying, latent processes that we would like to model. 

The inferences which we would like to make relate to these processes, which may or may not be 

directly observable. For instance, using climate data for example, we could seek to establish the 

influence of climate on animal migration, or obtain the optimal weather conditions for growth of 

specific crops, and so on. Indeed, researchers should use observed data to make predictions even 

in areas that were not included in the sample through an interpolation procedure. Several 

interpolation techniques have been developed to predict unknown values for any spatial data, 

such as elevation, rainfall, chemical concentrations in the air, and so forth. A major underpinning 

of these processes is that observations made in any location are heavily dependent on those made 

among the neighbors. The inverse distance weighted (IDW) and natural neighbor are some of the 

most frequently used weighting methods. For this project, a Matern covariance that is a function 

of the distances between an entity and its neighbors will be used. 

1.2 Trends in the Kenya Certificate of Primary Education examinations 

The Kenya Certificate of Primary Education (KCPE) is an examination that has been 

administered by the Kenya National Examination Council (KNEC) since 1985 when the current 

8-4-4 education systems was launched. Under this system, children attend primary education for 

a minimum of 8 years, 4 years of secondary education, and 4 years of university education.  

Today the KCPE examination is used as an eligibility criterion for joining high school. 

Previously, the maximum marks possible was 700 based on 7 subjects, however, the system was 

revised in 2001 and the total examinable subjects was reduced to 5, implying a maximum score 

of 500 marks. Pupils are examined in 5 subjects namely Maths, English, Swahili, Social Studies, 

and Religious Studies (Christian/Islamic/Hindu). Previously, analysis of pupil performance in 

KCPE was done either at district or province level, however, since the establishment of counties 

in 2009, analyses have changed and are today done at county level. 

Studies have shown interesting relationships in performance in KCPE examinations in the 47 

counties of Kenya both in individual subjects and in terms of aggregate and average scores. 

Generally, counties located in the arid and semi-arid lands (ASAL) such as Mandera, Garissa, 

and Wajir have had poor results while those found in fertile lands such as Elgeyo Marakwet, 
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Nandi, Uasin Gishu, and Kirinyaga have had higher scores. Additionally, the number of persons 

sitting for the examination has also been low in counties located in ASAL areas as opposed to 

those in other areas.  

The low enrolment rates in arid areas can be attributed to the low population density in the 

counties. For instance, Mandera, Wajir and Garissa have population densities of 39.47, 11.68 and 

14.10 respectively, while Nandi, Uasin Gishu and Elgeyo Marakwet have population densities of 

261.07, 267.30  and 122.12 respectively. A low population density implies a smaller percentage 

of persons enrolling for examination. Another factor that could explain the low enrolment rates 

in ASAL areas is the low educational aspirations of persons living in these areas. Studies show 

that persons living in rural areas have low educational aspirations as compared to their urban 

counterparts (Xu, 2009). Additional studies have found out that rural students place less value on 

academics and are usually focused more on non-academic qualities. It is known that most parts 

of arid and semi-arid lands can be considered as rural areas and this leads to low educational 

aspirations and less value of academics among locals. The net effect of the two factors is a low 

pupil enrolment rate and low average student scores in the affected counties. 

Student performance in KCPE examination has been seen to be affected by poverty index. It is 

known that strong, secure relationships in early childhood help stabilize a child’s behavior and 

provides the key ingredients to building lifelong social skills. A child who grows up with such 

relationships learns healthy, proper emotional responses to daily events. However, children 

raised in poor households normally fail to acquire these responses and this goes on to affect their 

performance in school. For instance, pupils who lack emotional stability may so easily get 

frustrated and give up on classroom tasks.  

Apart from emotional stability, poverty levels affect the social economic status of parents. Even 

with the introduction of free primary education (FPE) in 2003, poor households are finding a 

challenge as they cannot afford other educational costs such as uniform, stationery, examination 

fees and other charges levied by the schools. Consequently, children from poor households area 

not able to compete with other children effectively.  Indeed, it has been shown that counties with 

high poverty indices have the lowest student performance in KCPE. For instance, according to a 

recent audit of wealth and poverty in Kenya, Kajiado is the richest county. Only 12% of people 

in the county are classified as poor. However, in Turkana, which is considered the poorest county 
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according to the same audit, 94% of the residents are considered poor. Ranked in terms of mean 

average student marks in the 2012 KCPE examination, Kajiado comes 13
th

 while Turkana is 27
th

 

(Jagero, 2013).  

However, poverty index alone is not sufficient in explaining spatial variations in the performance 

of counties in KCPE examination as some counties that have low poverty indices are seen to 

have performed dismally and vice versa. For instance, West Pokot county which ranks 40
th 

out of 

47 counties on the poverty index ranks 9
th

 in the KCPE ranking while Lamu, ranking 6
th

 on the 

poverty index, ranks 42
nd

 in KCPE performance. Consequently, there is need to include other 

covariates in the model such as those pertaining to temporal phenomena. 

There have been changing patterns of enrolment for KCPE examination in Kenya for the past 

two decades. One notable change is the progressive increase in enrolment rates because of the 

introduction of free primary education (FPE) in 2003 as shown below; 

 

Figure 1: Enrolments by Year and Grade, Kenya 

The introduction of FPE has ensured that children from poor families are able to attain primary 

education and putting the country into the roadmap to attaining one of the milestones of the 

millennium development goals. Although FPE has led to an increase in school attendance and 

corresponding enrolment in KCPE examination, it has been noted that some disparities still exist 
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between urban and rural schools, and between children from poor and rich families. Importantly, 

children from poor families have been seen to be more likely to be over-age by the time they sit 

for their final examination. Over-age among children from poor families is caused by repetition 

of grades while some children have stunted growth and thus are enrolled into school late. 

Repetition of classes is common in areas that have low completion rates and this augments the 

number of persons not completing primary education. In addition, it has been shown that the 

more over-age a child is, the more it is likely that they will underachieve in their final 

examination as shown in the graph below; 

 

Fig. 2: Percentage of KCPE candidates achieving minimum scores of 380 and 320, by age 

Further, where over-age persons share classes with younger children they may have 

psychological problems such as self-esteem hence affecting their concentration and cognitive 

abilities. 

Apart from being less likely to get good grades, over-age persons are also likely to drop out of 

school. This stems out of the fact that these persons normally have an average age of between 14 

and 15. At this age, most children normally enter the job market. Their chances of continuing 

with education are thus severely reduced. Over-age among children in any grade is prevalent 

among poor households, and since most of these families are located in rural areas, enrolment in 

any grade and the eventual number of persons sitting for KCPE examination is lowest in counties 

predominantly consisting of rural areas. 
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In contrast, being over-age can be beneficial to children particularly where a large proportion of 

children in a class are over-age. Over-age children have better cognitive abilities and hence grasp 

new concepts faster than younger children. This may lead to over-age children performing better 

than younger children and the concept may be used to explain anomalies observed in 

examination performance in which some counties that are expected to perform poorly record 

unexpectedly better results. For instance, West Pokot county which consists mostly of rural areas 

ranked number 8 out of 47 counties in the 2012 KCPE exam when it would have been expected 

to perform much worse. 

Generally, performance in the KCPE examination has been observed to differ from county to 

county and from individual to individual. 

Bayesian Methods 

There are two major approaches to statistics in use today: frequentist/classical approach and 

Bayesian approach.  The former is the most commonly used method. Under the frequentist 

approach, emphasis is on the probability of the data, given the hypothesis i.e. data is treated as 

random (different outcome for every study) while the hypothesis is fixed (either true, 1, or false, 

0). The word frequentist is used since it is concerned with the frequency with which one expects 

to observe the data, given some hypothesis about some phenomenon. The p-values used by 

frequentists is usually the expression of the probability of the data given the hypothesis. 

Contrary to frequentists’ approach, Bayesian inference focuses on the probability of the 

hypothesis given the data. The approach treats data as fixed (this is the only data available) and 

the hypotheses as random (the hypothesis might be true or false, with some probability between 

0 and 1). Bayes’ theorem is central to calculating this probability. While parameters are treated 

as constants by frequentists, Bayesians treat them as random variables that take on different 

values which are updated as more evidence becomes available (through data collection). 

From a general perspective, the goal of Bayesian statistics is to represent prior uncertainties 

about model parameters with a probability distribution and to update this prior information with 

current data that produces a posterior distribution for the parameter that contains less uncertainty. 

This approach results into a subjective view of statistics as opposed to the classical view. From 

the Bayesian perspective, any quantity for which the true value is uncertain, including model 
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parameters, can be represented with probability distributions. From the classical perspective, 

however, parameters are considered as fixed entities and not as probability distributions. Only 

the data are random, and thus, probability distributions can only be used to represent the data. 

The process of repeating the test and updating our posterior probability is the basic concept in 

Bayesian statistics. From Bayesian thinking, we begin with some prior probability for some 

event of interest, and then use data collected to obtain a posterior probability which can be used 

for subsequent analyses. In Bayesian milieu, this is a suitable method for carrying out scientific 

research, i.e. we continue gathering data to evaluate a specific scientific inquiry rather than begin 

a new (blind) one each time the query is encountered, because previous research gives us priori 

information concerning the merit of the hypothesis. 

1.3 Problem Statement 

The last two decades have seen an increasing interest in school performance as parents ‘shop 

around’ for the best schools for their children, particularly after the introduction of free primary 

education. Today, it is theoretically possible for parents to choose a good school for their 

children and this process has been made easier by annual publications of school performance 

soon after release of national examination results. This choice is normally based on factors such 

as school size, trends in examination performance over the past few years, school categorization 

(district, provincial or national), its location (rural/urban), years of existence, and admission 

points. In practice, however, a parent may not make a good school choice due to latent factors or 

some unforeseen events. For instance, it is known that good schools normally fill up very fast 

and unless quality control checks are instituted, they may experience a decline within a few 

years. A time series model may thus be used to model and predict performance thus help parents 

and other stakeholders in making informed decisions. However, this aspect is normally 

overlooked in many analyses. A time series trend also implies that the relationship in 

examination results observed between any two time-periods becomes weaker as time increases. 

In addition, from Tobler’s law as mentioned above, when a district or county performs well (or 

poorly) in examination, then its neighbors are also more likely to have more or less similar 

results. This law points to spatial dependence in school performance among schools which 

should be used when analyzing school performance, and consequently when choosing a school. 
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Student performance in examinations, e.g. in terms of aggregate counts of passes and one or 

more covariates, is frequently characterized by spatial and/or temporal characteristics that need 

to be taken into consideration in the inferential process. For this reason, the modeling process has 

to incorporate not only the spatial dependence of the variables of interest but also check for time 

series trends i.e. one has to account for temporal correlations as well as spatial correlations in the 

data. 

It is known that students differ in gender, culture, religion, language, home environment, 

financial status of parents etc., whereas the schools differ in size of students, quality of teacher, 

learning facilities available, location of the school, government policies etc. This project will 

focus on the hitherto less researched area of spatial dependence in students’ performance. 

Data on primary school examination obviously exhibit some very important spatial variations or 

similarities that, if explored further, can add vital information to models used to explain school 

or regional performance in terms of aggregate counts or mean scores. Despite a considerable 

quantity of research into factors affecting school performance, only a small proportion of studies 

have focused on spatial and time dependence in examination performance, and this is the main 

motivation of this project. This information can help parents in determining the best schools for 

their children while government institutions and other stakeholders can use the data for planning 

purposes.  

1.4 Objective 

The objective of this project is to analyze and model the examination scores of pupils in KCPE 

from 2006 to 2010 in the 47 counties of Kenya based on spatial and temporal characteristics. 

Specific Objectives 

 Formulate a model accounting for time and space covariates in KCPE examination scores 

in Kenya 

 Compute the probability of a student obtaining threshold marks in KCPE for each county 

 To construct a spatial dependence map for KCPE examination scores in the 47 counties 

of Kenya 
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1.5 Significance of the Study 

This study aims to build a spatio-temporal model explaining examination performance over five 

years in all the 47 counties of Kenya. Previous studies have overlooked space and time attributes 

in the analyses and this is the motivation for this project. To policymakers, the study will give an 

understanding of these two critical covariates and explain their influence in student performance 

across time and space. 

1.6 Organization of this Project 

This project involves model development, computation, and inferences based on a Bayesian 

spatio-temporal analysis of examination scores data. The two methods are combined to come up 

with a model that can be used as both a predictive and an analytic tool. Chapter 1 makes an 

introduction into spatio-temporal methods and Bayesian inference, chapter 2 entails a literature 

review of the topic under study, chapter 3 gives the background and applications of Bayesian 

inference and spatio-temporal methods, chapter 4 gives the methodology, and chapter 5 gives the 

results, discussion, and recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Spatio-temporal Modeling 

There is a growing body of spatio-temporal models due to the vital need for them due in part to 

the availability of many datasets having spatial and temporal measures. Spatial measures include 

altitude, longitude, and distance above sea level (elevation). The increasing availability of 

applications in the vast field of social science has also necessitated the uptake of spatio-temporal 

methods. Typical examples of spatial data include rainfall data, epidemiological data and 

pollution data. In spatio-temporal data, observations are linked to the aforementioned spatial 

measures and assigned to a specific time during which the data was collected, such as day, 

month, year, or decades. Applications of spatio-temporal methods include disease mapping, 

environmental pollution monitoring, weather prediction and control of disease spread. Usually, 

the interest is to explore spatial and temporal dependence or to come up with predictive models 

that incorporate the two elements. 

The field of spatial statistics has experienced significant growth over the past two decades and 

this has partly been pushed by the increasing availability and need for spatial data. 

Spatio-temporal models are regularly implemented by combining time series models with 

spatial-based methods. The latter refers to methods used to analyze how data are correlated with 

respect to time and is used to examine spatial continuity or roughness in data. In a time series 

context, several approaches have been developed and these include autoregressive moving-

average model (ARMA), autoregressive (AR) processes for stationary data and random walk  

(RW) models. Combined together, space-time methods provide dynamic models that can be used 

in making more precise forecasts than a purely spatial or temporal model. 

2.2 School Performance Modeling  

Due to the increasing significance of school performance among various stakeholders in the 

education sector, models of student performance have gained ground in the past few years. These 

studies have employed logistic models, probit analysis, linear regression, and multilevel logistic 

regression analysis. The studies have mainly focused on factors such as gender difference, 

teaching styles employed by teachers, class environment, socio economic factors, and family 

education background. 
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Studies into spatial characteristics of student performance have taken different approaches. For 

instance, Maliki et al (2009) examine whether examination performance between students 

learning in rural schools and urban schools differ. Additionally, they analyze other covariates 

such as sex, school type (public/private) and performance in mathematics. Using a sample size of 

600 students from the Bayelsa state of Nigeria, the authors employed t-test analyses to examine 

mean differences in performance for different categories. From their findings, the authors 

conclude that performance differs according to school location. Saha (2011) has also examined 

the influence of location of school on school examination results. Using a logistic regression 

approach and subsequent Wald statistic to determine significant coefficients, the authors 

concluded that performance indeed varies by school location. 

Xu (2009) also investigated how various factors affect student performance. Using a sample size 

of 633 students drawn from both urban and rural schools, Xu embarks on a study aimed at 

investigating the linkage between student achievement, school location, and homework 

management strategies. The author contends that students’ capacity to regulate their own 

learning exhibits some spatial pattern in which students attending rural schools are seen to have 

poor homework management strategies. This is attributed to low educational aspirations among 

rural students. Additionally, these pupils place less value on academics as compared to their 

urban counterparts. To explore this concept further, the author collected information among 

sampled students regarding their homework management strategies. In the exploratory analysis, 

crosstabs and correlations were used. Exploratory analyses are then used and these include a one-

way analysis of variance (ANOVA) which is used to examine mean differences within subjects 

and a multivariate analysis of variance (MANOVA) to estimate the effects of school location and 

student achievement on the various categories of homework management.  

From this study, Xu finds out that compared to rural school students, urban students have more 

motivation and engagement during homework. The findings of this study can be used as a 

generalization to explain poor performance among rural school students. This generalization is 

based on a study that was conducted by Zimmerman and Kitsantas (2005) in which they 

investigated the role of students’ homework practice in the achievement of specific learning 

processes, perceptions of academic responsibility, and academic attainment. From the study, the 

researchers concluded that student academic achievement is positively associated with the 
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quality of homework practices. However, both studies do not include temporal dependence in 

pupil’s performance over time. 

Fotheringham, Charlton and Brunsdon (2001) have also investigated spatial variations in school 

performance using a geospatial analysis method known as geographically weighted regression 

(GWR). This is a geostatistical procedure put forward by the same authors to model spatial 

nonstationarity. GWR extends the traditional linear regression structure by allowing local 

variations in rates of change so that the different model coefficients are used with respect to 

spatial variations (Brunsdon, Fotheringham and Charlton, 1996). 

In application of the GWR, Fotheringham et al (2001) examine spatial variations in school 

performance among 3687 schools in northern England. From the analysis, the authors conclude 

that there exists a great deal of spatial variation in school performance that cannot be explained 

by the classic regression framework. In the latter method, the coefficients are only averages 

across a geographical area and can hide many interesting relationships. Spatial results can help 

researchers get the actual extent of spatial stationarity or non-stationarity. Additionally, they 

concluded that the results can help us examine the nature of relationships with respect to other 

covariates and this would not be possible using a global framework. 

Research into factors affecting student performance has also focused on the school catchment 

area. This is as a realization of the fact that the catchment area is a spatial attribute and is linked 

to other factors such as socio-economic status. The correlation could be crucial in explaining 

area profile and school performance (Martin and Atkinson, 2001). Gibbons (2002) used a panel 

data on primary schools in England to explore this correlation through estimation of the 

relationship of location, local interactions, and community characteristics to primary school 

performance. Using a dataset containing basic school characteristics and test scores and another 

dataset on local area characteristics, the author uses various spatial methods including the K-

nearest neighbor to investigate spatial dependence and correlation between school performance 

and underlying catchment area characteristics. From the study, it is found out that the 

background of the pupils’ influences school performance. It is observed that the distribution of 

various socio-economic determinants such as parental income and unemployment levels can be 

linked to school performance. The analysis suffers from one flaw because schools, especially 

those in which children perform well, usually attract pupils from other neighborhoods or 



14 
 

locations. For such schools, pupil performance may not be directly linked to the characteristics of 

their neighborhoods unless the catchment area is sufficiently comprehended. 

Aside from spatial analysis, the inclusion of time-series methods in the analysis of KCPE exam 

scores has also been important in explaining the observations over the years. For instance, from 

2003, the number of pupils sitting for the examinations increased sharply following the 

introduction of free primary education in Kenya. For instance, standard 1 intake increased from 

970,000 in 2002 to 1,300,000 in 2003, resulting in a 35% increase. Prior to the introduction of 

FPE, intake had been constant for close to 10 years. Enrolment among persons sitting for KCPE 

examination also increased although not by the same margin as that observed in class 1. 

Further temporal analysis of KCPE results has also shown a drop in performance among 

candidates who sat for the examination in 2007. To investigate this observation, Ogeto (2012) 

studied the impact of post-election violence (PEV) on pupils' performance in KCPE in public 

primary schools in Esise division, Nyamira county, Kenya. Using a sample size of 360 pupils, 

the author concludes that PEV had negative impact on learners' enrolment which decreased 

gradually from 2535 in 2007 to 2179 in the year 2012. The PEV also had an impact of teaching 

staff. Generally, the effect of the PEV was a progressive decline in performance from 2008, 2009 

and 2010.  

2.3 Bayesian Methods 

The use of Bayesian methods in modeling of spatial data gained attention in the 1990s due to the 

availability of simulation methods that were incorporated into software such as R and WinBugs. 

Previously, analysis of spatial data had been based on spatial modifications to the linear 

regression model. Under this method, for instance, spatial modeling was done though the 

response variable and a number of covariates. The advent of MCMC methods in Bayesian 

computation resulted into other simpler yet effective ways of modeling spatial dependence. 

Recent developments have further enhanced spatial modeling. These developments include that 

of the Integrated Nested Laplace Approximation (INLA), which has been developed by Rue 

(2007) to model data drawn from both a Gaussian and non-Gaussian field. 

Bayesian methods have gained application in various disciplines among them the analysis of 

examination results. Moussavi and McGinn (2009) describe a Bayesian Network model to 
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diagnose the causes of low effectiveness of certain schools. Generally, studies on student 

performance have revealed that school performance differs from region to region while at the 

individual student level, it differs based on gender and other demographic, socio-economic, and 

cultural factors. 

The aim of this study is to build a tool that can be used by policymakers for two purposes:  

i. to explain learning outcomes in terms of conditions and latent processes within schools; 

and  

ii. to estimate the probabilities that given interventions will affect those conditions and 

processes and their influence on learning outcomes. 
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CHAPTER 3: METHODOLOGY 

3.1 Background on Gaussian Models 

Spatio-temporal models are part of a group collectively known as Latent (unobservable) 

Gaussian models (LGMs). In this project, latent variables include spatial aspects of the dataset, 

i.e. the spatial element attached to the response variable (county). LGMs are a flexible and 

widely used class of statistical models. The fundamental part of these models is an unobserved 

multivariate Gaussian random variable x, whose density  ∏      is determined by a vector of 

parameters   . Some of the elements in the random vector   are observed indirectly from data  . 

An assumption of conditional independence is made on data   with respect to the latent field  , 

i.e. 

                                                                = ∏                                                                         

 

The elements of a latent Gaussian model are then taken as: 

 the likelihood of the data       ; 

 the Gaussian density of the random vector  ,        ; 

 the prior distribution of the parameter vector      ; 

the posterior distribution can then be obtained as follows: 

 

                                                                 )  ∝  f (         ∏                                                        

 

It is assumed throughout the computation process that the parameters of interest are found in the 

posterior marginal for   .  

The latent Gaussian field   presents a flexible process that can be used to include spatial and 

time dependence among other potential covariates in a statistical model. Previously, the typical 

tool for making Bayesian inference on Gaussian field-based models was the Markov Chain 

Monte Carlo (MCMC). However, the complexity of the latent field, the (frequently) high 

dimensionality of the latent field  , and the strong correlation within   and between     and   

results into problems during the convergence process and in the mixing properties of the Markov 

chain. Although block update strategies have been devised as a solution to this problem, MCMC 
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methods still remain significantly slow. A new method based on the deterministic 

approximations to the posterior marginals of interest has been devised that completely evade the 

MCMC process. This new approach offers several advantages over the conventional MCMC 

approach and the main one is the computational advantage- since the approach is simulation free, 

the parameters of interests can be obtained in a few seconds or minutes while for a similar 

computation, MCMC algorithms would require hours or even days. In addition, the new 

approach is more accurate with respect to the computational time as compared to MCMC 

processes that would have to run for a much longer time for any bias to be identified. This 

method is referred to as integrated nested Laplace approximation (INLA). 

INLA was  proposed by Rue, Martino and Chopin (2009) to perform approximate fully Bayesian 

inference on the class of latent Gaussian models (LGMs). It makes use of deterministic nested 

Laplace approximations and, as an algorithm tailored to the class of LGMs, it provides a faster 

and more accurate alternative to simulation-based MCMC schemes. 

Under INLA, the approximation of posterior marginals of the latent Gaussian field,             

           proceeds in three steps:  

 The initial step approximates the posterior marginal of θ using the Laplace 

approximation; 

 In the second step, the simplified Laplace approximation, ∏         is computed for 

particular values of θ; 

 At the final step, the first two steps are combined through numerical integration; 

The usage of MCMC methods for dynamic computations such as spatio-temporal or time-series 

models is only possible through simulation and requires complicated sampling schemes to ensure 

efficiency (Gamerman, 1998). Furthermore, the inclusion of random effects such as spatial 

covariates might require an extensive reparametrization of the model. On the other hand, INLA 

can be run within a user-friendly R environment with generic functions. All code is available 

freely available from www.r-inla.org and from http://cran.r-project.org/ (R Development Core 

Team). All analyses in this project were done using INLA version 0.0 on R-package version 

3.0.1. 

http://www.r-inla.org/
http://cran.r-project.org/
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3.2 Bayesian Inference  

The foundation of Bayesian statistics is Bayes’ theorem. Suppose we observe a random variable 

y and wish to make inferences about another random variable  , where   is drawn from some 

distribution p( ). From the definition of conditional probability, 

                                                                   
        

    
                                                                          

From the definition of conditional probability, we can express the joint probability as follows: 

                                                                                                                                                 

Combining these two formulas gives Bayes’ theorem 

                                                                  
           

    
                                                                      

The formula contains three important elements: 

     : this is the prior distribution of the possible    values and is the probability 

that a model is true before any data are observed. It must come from prior 

information, not from the current data 

       : this is the posterior distribution of   based on the observed data or 

current   information and this refers to the probability that a model is true after 

observed data have been taken into account. 

     : this is the marginal distribution of the data or the normalizing constant; and 

       is the sampling density for the data—which is proportional to the 

Likelihood function, only differing by a constant that makes it a proper density 

function (normalizing constant); 

The prior provides information that exists prior to the estimation process and its inclusion 

ultimately produces a posterior probability that is also no longer a single quantity; instead, the 

posterior becomes a probability distribution as well.  
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Bayes’ theorem can also be expressed in terms of probability distributions as follows: 

                                                                             
          

    
                                                             

where   represents the data. 

For a continuous process, the marginal distribution, sometimes referred to as the marginal 

likelihood, or simply the likelihood, can be written as: 

                                                                     ∫                                                                         

Computation of the likelihood frequently presents problems as it often involves very large 

summations or multidimensional integral and this inhibited the development of Bayesian 

methods for almost half a century. Consequently, computations were limited to simple problems 

in which the integration was tractable. However, in the early 1990s, a solution was found in form 

of the Markov Chain Monte Carlo process (MCMC) in which integration was conducted through 

simulation. For instance, if we are to create a sample form the posterior distribution, then the 

integral: 

                                                                   ∫                                                                           

can be approximated by: 

                                                           
∑                  

 
   

∑             
 
   

                                                          

where the function        provides the posterior parameter that the researcher is interested 

in, such as the posterior mean. 

The marginal is used as a normalizing constant to make the posterior density proper. Hence, the 

posterior, likelihood and the prior are normally linked proportionally as shown: 

                                                                                                                                            

The following is a general process for fitting Bayesian models: 



20 
 

a) A probability distribution for   is formulated as     , which is known as the prior. The 

prior distribution expresses the researcher’s beliefs about the parameter of interest before 

examining the data; 

b) Given the observed data y, the researcher choose a statistical model        to describe 

the distribution of   given  ; 

c) The researcher then computes the posterior distribution and hence updates his belief 

about   by combining information from the prior distribution and the data        . This 

is used to describe the conditional probability of the data given a particular model. 

3.2.1 Prior Distributions in Bayesian Methods 

A prior distribution of a parameter is the probability distribution that represents a researcher’s 

uncertainty about the parameter before the current data are examined. Multiplying the prior 

distribution and the likelihood function together leads to the posterior distribution of the 

parameter. We can use the posterior distribution to carry out all inferences but cannot carry out 

any Bayesian inferences or perform any modeling without using a prior distribution. 

The choice of a prior has always been a source of controversy, with frequentists asserting that the 

insistence on a prior could somehow result into biasness in the computation process, or that the 

choice of a prior depends on the researcher’s intentions and that the benefits of Bayesian 

computation are negated by the requirement to state a prior. Fortunately, the fears are not based 

on facts. Priors are simply an expression of the researcher’s degree of belief in the parameters in 

the absence of new data. Priors are critical for continuous scientific knowledge and for 

improving results from small sample studies. As a field of study matures, more and more data is 

made available and this influences the type of priors chosen in successive experiments, resulting 

into more precise and well-founded conclusions. It is unreasonable to omit priors as they have 

little influence on the posterior, especially when little information is available regarding the 

parameters. The resulting posterior is normally a tradeoff between the prior and the collected 

data.  

Different priors can be adopted depending on current knowledge regarding the parameters and 

on the likelihood. For example, consider an ongoing vaccination process. In this case, choice of 

prior to model the disease outbreak will be well informed and will heavily influence the 

posterior. However, in an initial vaccination, information on priors will be vague and thus their 
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influence on the prior will be limited. Indeed, the choice of a prior must be based on the evidence 

available, either through previous research, literature reviews, or the researcher’s own judgment 

of the situation. 

Cox and Hinkley (1974) have proposed three techniques for coming up with priors: 

a) An empirical Bayesian approach proposes that the prior should be based on previous data 

b) An objective approach proposes the prior should be based on rational belief about the 

parameter, or on mathematical properties, that in some sense maximizes information gain 

(Berger, 2006). 

c) A subjective approach proposes that the choice should simply quantify what is known or 

believed before the experiment takes place, and is an expression of the level of belief by 

the researcher; 

Various types of priors can be used to cater for different situations regarding the researcher’s 

level of belief. These include objective/subjective priors, informative priors, non-informative 

priors, improper priors, conjugate priors, and Jeffrey’s priors. A Gaussian prior that can be 

regarded as an informative prior will be used in this project.  

3.2.2 Challenges in Bayesian Inference 

A historical problem that has previously hindered adoption of Bayesian methods is the 

computation of the marginal distribution,     . One solution has always been to use conjugate 

priors, i.e. priors that make the posterior function come out with the same function as the prior. 

The computation process is not complicated. Examples of conjugate priors/likelihood are: 

Prior Likelihood 

Normal Normal  

Gamma Poisson 

Gamma  Gamma 

Gamma Beta 

Beta Binomial 

Dirichlet Multinomial 

Normal (µ unknown, σ
2

 known) Normal 
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Normal (µ unknown, σ
2

 unknown) Normal 

Multivariate normal (µ unknown, V known) Multivariate normal 

 

A second solution is to approximate the actual functions with other functions that are easier to 

work with, and then show that the approximation is reasonably good under typical conditions.   

A third problem normally encountered is in the determination of a practical prior. For a start, a 

researcher should use a plain or vague prior and update the parameters as more information 

becomes available. In the event that scientists cannot agree on the prior to use, then different 

priors can be used and then the robustness of the posterior can be assessed against changes in the 

prior. Another solution is to mix the two priors to create a joint prior that accounts for 

uncertainty. In summary, for most applications, specification of the prior turns out to be 

technically unproblematic, although it is conceptually very important to understand the 

consequences of one’s assumptions about the prior. Thus, the main reason that Bayesian analysis 

can be difficult is the computation of the likelihood. However, the computation is tractable in 

many situations via a number of methods such as Markov chain Monte Carlo (MCMC) and 

through the integrated nested Laplace approximation (INLA). 

The use of Bayesian methods in this project is to take represent prior uncertainties about model 

parameters with a probability distribution and to update this prior information with current data 

that produces a posterior distribution for the parameter that contains less uncertainty. 

Consequently, a prior distribution and a likelihood distribution will be assigned and using the 

data on student scores, the prior information regarding these parameters will be updated. 

3.3 Data description 

The data used for this study refers to the KCPE scores of all primary schools in the 47 counties 

of Kenya from 2006 to 2010. Additionally, the data contains KCPE scores from South Sudan. 

The scores have been collapsed into different categories such as gender, range of marks, county, 

and year. The number of pupils in each category is also given. 

In view of the scope of this project, a response variable was created out of the row data. The aim 

was to conduct a spatio-temporal analysis of the number of students attaining 350 marks and 
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above. This cutoff mark used was because in most counties in Kenya, a score of 350 marks (out 

of 500) guarantees admission into a good secondary school. The response variable was created 

by aggregating the number of students scoring 350 marks and above for every county in each of 

the five years. This resulted into lattice data pertaining to all 47 counties in Kenya. Data on the 

performance of students from South Sudan was dropped during the data management process. 

3.4 Models used in the Project 

This project concentrates on spatio-temporal modeling and associated inference with the aim of 

establishing a framework, where student performance in different parts of the country can be 

quantified through space and time. The model involves a Gaussian Field (GF), affected by a 

measurement error, and a state process characterized by a first order autoregressive dynamic 

model and spatially correlated covariates. Traditionally, this kind of relation has been efficiently 

modeled through Markov chain Monte Carlo (MCMC) techniques within the Bayesian 

framework, which pose computational problems and also take hours to converge. The goal of the 

project is to put forward an efficient estimation and spatio-temporal prediction approach. 

This application consists in representing a GF with Matern covariance function as a Gaussian 

Markov Random Field (GMRF). The Matern covariance function is used to define statistical 

covariance between two points that are d units from each other. The covariance function is in 

itself a function of the distance between a geographical point or area and its neighbors and it is 

used to link elements within a random field. For this project, this is represented by the distance 

between the central point in a county and that of its neighbors. A big advantage of moving from 

a GF to a GMRF stems from the good computational properties that the latter enjoys. 

Additionally, when dealing with Bayesian inference for GMRFs, it is possible to employ the 

Integrated Nested Laplace Approximation (INLA) approach as opposed to the computationally 

bulky MCMC methods resulting into computational advantages (Cameletti, Lindgren, Simpson 

& Rue, 2011b). 

This methodology employs the following models: bym model, besag model, and the iid model. 

These models are explained below: 

3.4.1 Besag model for spatial effects 

The proper version of the besag model for random vector            is defined as 
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                                                         (
 

  
∑   

   

 

   
)                                                                  

where    is the number of neighbours of node        indicates that the two nodes   and   are 

neighbours,     is an extra term added on the diagonal controlling the “properness"     is a 

“precision-like" (or scaling) parameter. 

3.4.2 Model for correlated random effects: iid  

The iid model is used to represent the correlated random effects arising from temporal effects. 

The model accounts for heterogeneity across time, i.e. the random effect of time on the 

observations. The random effects model is more efficient in spatial statistics than a fixed effects 

model because of correlations among observations and due to the random effects of time. This 

randomness arises from the contribution of several temporal attributes on the observations. In the 

INLA package, the model is specified as follows: 

y ~ f(i, model="iid",n = <length>) + ... 

3.4.3 Random walk of order 1: rw1 

This study will use one type of latent model known as random walk which is a random process 

consisting of a sequence of discrete steps of fixed length. A distribution is said to follow a 

random walk if the first differences (difference between two successive observations) are 

random. In a random walk model, the series itself is not random, however, its differences are. 

The differences are independent, identically distributed random variables with a common 

distribution. The implication of using this model is that examination score in any one year in a 

county depends largely on the results of the previous year. 

A random walk of order 1 model is defined as follows: 

                                                                                                                                                       

where 

    is the value in time period t, 

     is the value in time period t-1 (one time period before) 
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    is the value of the error term in time period t. 

Since the random walk was defined in terms of first differences, it may be easier to see the model 

expressed as: 

                                                                                                                                                       

In INLA, the random walk of order 1 (RW1) for the Gaussian vector                  is 

constructed assuming independent increments: 

                                                                                                                                            

In INLA, the rw1 model is specified inside the f() function as follows: 

f(<whatever>, model="rw1", values=<values>, cyclic=<TRUE|FALSE>, hyper = <hyper>) 

3.4.4 The Besag-York-Mollie model for spatial effects: bym 

This model is simply the sum of a besag model and an iid model. The benefit is that this allows 

us to get the posterior marginals of the sum of the spatial and iid model; otherwise it offers no 

advantages. 

3.4.5 Gaussian Prior 

Since the spatio-temporal process follows a Gaussian distribution, a similar distribution is 

attached to the prior. 

The normal/Gaussian distribution has density given by: 

                                                     (
 

  
)

 

 
   ( 

 

 
      )                                                            

for continuous   where 

 : is the mean 

 : is precision (thus variance is given by 
 

 
 ) 
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3.4.6 Negative Binomial Likelihood 

The dependent variable in this analysis, Y, is a count variable and represents the number of 

students scoring at least 350 marks for each of the 47 counties from 2006 to 2010. The 

assumption we make is that Y follows a negative binomial distribution, and this is the likelihood. 

Since Y is a count variable, a Poisson distribution could be used too. However, preliminary 

analysis of the data shows that it does not meet the requirements for a Poisson process, i.e. mean 

and variance are not equal. The response variable is assumed to be independently and identically 

distributed for all areas, i.e. does not follow any spatial patterns (unstructured component). A 

second assumption for the model is that it belongs to the Gaussian family. This assumption is 

validated by the principle that every distribution can be represented as a Gaussian distribution. 

The negative Binomial distribution is 

                                                                 
      

           
                                                        

for responses y = 0,1,2,…, where 

 :  number of successful trials (size), or dispersion parameter. This must be 

positive but not necessarily an integer. This refers to the number of students 

scoring ≥350 marks in every county 

    probability of success in each trial- refers to the probability of scoring ≥350 

marks in any county; 

In INLA, the negative binomial likelihood is specified as follows: 

family = nbinomial 

Required arguments: y and E (by default E = 1) 

The two arguments y and E represent the response variable and expected values (for each 

county) respectively. 
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3.5 The Spatio-temporal Model 

The model consists of both time and space elements. Time is assumed to follow a random walk 

of order 1 (RW1) process while space will be modeled using the aforementioned bym model. 

The general model accounting for both the spatio and temporal attributes can thus be stated as 

follows; 

                                                                                                                                  

where 

         is the temporal effect 

          is a process based on fixed effects, i.e. independent of both space and time 

          is an error term  

In INLA, the model incorporating the iid, rw1, and the besag models is formulated as; 

                                                               

Since the bym model is a sum of the besag and iid modes, the models can also be formulated as, 

                                                               

In the model,           since no covariates were included in the analysis while         is 

represented by the bym model. The bym model is a sum of a besag model and an iid model that 

have been explained in earlier sections. These two models account for spatial and time 

dependence respectively. Additionally, a second model is used in which time is assumed to 

follow a rw1 process in which differences between subsequent observations are assumed 

independent, identically distributed random variables with a common distribution.  
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CHAPTER 4: DATA ANALYSIS AND DISCUSSION 

4.1 Exploratory Data Analysis 

We begin by justifying the inclusion of time and space in our model. In this analysis, we explore 

the significance of both time and space covariates through a time-series plot of the response 

variable and a scatterplot of Y against the size of each county respectively. 

 

Fig 3. Time series plot of students obtaining threshold marks in 47 counties over five years 

Next, we justify the inclusion of location attribute in the model. This is done by drawing a two-

way scatterplot of the dependent variable against area of each county. 
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Fig. 4. Scatterplot of students obtaining threshold marks per county against area of county 

The correlation between Y and Area of County was also calculated and found as -0.505. A 

histogram for the response variable is shown below. 
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Fig. 5: Distribution of students obtaining threshold marks per county 

The final section of this exploratory analysis involves a summary statistic for the dependent 

variable and the results are as shown below: 

observations mean median s.d. minimum maximum 

235 7200.106 7103 4788.44 435 22013 
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4.2 Confirmatory Analysis  

This section focuses on space-time modeling using the various models stated earlier. The first 

model assumes that the time process follows an rw1 process while the second model makes an 

added assumption that the time process follows an iid process. A Gaussian prior with parameters 

(0,0.01) and negative binomial likelihood distributions are used. The use of a negative binomial 

for the likelihood is because the response variable, Y, refers to count data, i.e.  number of 

students scoring at least 350 marks per county. For count data, Poisson likelihood could have 

been used but the requirement for such a model is that the mean must be equal to the variance. 

This condition is not met since the mean for Y is 7200 while the variance is 22929148. 

Consequently, negative binomial distribution likelihood is assigned to Y. 
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Four models were fitted to the data and subsequently the deviance information criterion (DIC) was used to determine the best fit. The 

models are shown below 

Model 1: bym model + rw1 model 

Fixed effects: 

              mean     sd 0.025quant 0.5quant 0.975quant kld 

(Intercept) 0.0843 0.0404     0.0064   0.0838      0.165   0 

 

Random effects: 

Name   Model 

ID.area   BYM model  

year   RW1 model  

 

Model hyperparameters: 

                                                     mean      sd        0.025quant 0.5quant  0.975quant 

size for the nbinomial observations (overdispersion) 2.679e+00 2.438e-01 2.167e+00  2.697e+00 3.106e+00  

Precision for ID.area (iid component)                1.766e+03 1.802e+03 1.052e+02  1.224e+03 6.512e+03  

Precision for ID.area (spatial component)            2.024e+02 1.787e+03 4.875e+00  3.362e+01 1.304e+03  

Precision for year                                   1.890e+04 1.863e+04 1.347e+03  1.343e+04 6.830e+04  

 

Expected number of effective parameters (std. dev): 14.33(6.723) 

Number of equivalent replicates : 16.40  

 

Deviance Information Criterion: 4471.34 
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Model 2: bym model + rw1 model + iid model 

Fixed effects: 

              mean     sd 0.025quant 0.5quant 0.975quant kld 

(Intercept) 0.0828 0.0408     0.0044   0.0822     0.1645   0 

 

Random effects: 

Name   Model 

ID.area   BYM model  

ID.year   RW1 model  

ID.year1   IID model  

 

Model hyperparameters: 

                                                     mean      sd        0.025quant 0.5quant  0.975quant 

size for the nbinomial observations (overdispersion) 2.831e+00 2.754e-01 2.308e+00  2.826e+00 3.387e+00  

Precision for ID.area (iid component)                2.439e+03 2.903e+03 2.056e+02  1.565e+03 9.997e+03  

Precision for ID.area (spatial component)            4.374e+01 1.295e+02 3.104e+00  1.600e+01 2.545e+02  

Precision for ID.year                                2.142e+04 2.367e+04 1.774e+03  1.433e+04 8.366e+04  

Precision for ID.year1                               2.485e+04 2.964e+04 2.015e+03  1.591e+04 1.022e+05  

 

Expected number of effective parameters (std. dev): 15.69(7.675) 

Number of equivalent replicates : 14.98  

 

Deviance Information Criterion: 4471.34 
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Model 3: rw1 model + iid model 

Fixed effects: 

             mean     sd 0.025quant 0.5quant 0.975quant kld 

(Intercept) 0.094 0.0403     0.0157   0.0937     0.1739   0 

 

Random effects: 

Name   Model 

ID.year   RW1 model  

ID.year1   IID model  

 

Model hyperparameters: 

                                                     mean      sd        0.025quant 0.5quant  0.975quant 

size for the nbinomial observations (overdispersion) 2.685e+00 2.381e-01 2.256e+00  2.671e+00 3.191e+00  

Precision for ID.year                                1.902e+04 1.866e+04 1.345e+03  1.354e+04 6.836e+04  

Precision for ID.year1                               1.870e+04 1.856e+04 1.212e+03  1.320e+04 6.747e+04  

 

Expected number of effective parameters (std. dev): 1.114(0.0933) 

Number of equivalent replicates : 210.98  

 

Deviance Information Criterion: 4479.89 

 

Model 4: besag model 

Fixed effects: 

              mean     sd 0.025quant 0.5quant 0.975quant kld 

(Intercept) 0.0828 0.0401     0.0058   0.0821     0.1634   0 
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Random effects: 

Name   Model 

ID.area   Besags ICAR model  

 

Model hyperparameters: 

                                                     mean     sd       0.025quant 0.5quant 0.975quant 

size for the nbinomial observations (overdispersion)   2.8987   0.2982   2.3184     2.9010   3.4840   

Precision for ID.area                                 63.5997 291.1838   3.0347    17.1225 398.0938   

 

Expected number of effective parameters (std. dev): 15.60(7.916) 

Number of equivalent replicates : 15.07  

 

Deviance Information Criterion: 4471.52
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Model DIC 

bym + rw1 4471.34 

bym + rw1 + iid 4471.34 

rw1 + iid 4479.89 

besag 4471.52 

 

The posterior means of student scores was computed over the five-year period and for each 

county. The 2 plots are shown below;  

 

 

Fig. 6: Means of the posterior distribution over the five-year period 
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Fig. 7: Means of the posterior distribution in the 47 counties

The posterior means of student scores was computed in the 47 counties and the plot is as shown 

below; 
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Fig. 8: Map showing standardized posterior means per county 

In line with this study, a national trend plot indicating the probability of a student scoring the 

threshold marks (greater than 350) in each county was constructed. In Bayesian inference, focus 

is normally on the posterior parameters (posterior mean, or  , in this case). Consequently, the 

trend plot below shows the probability that the mean (based on standardized z-scores) is greater 

than one. This corresponds to the probability of a student scoring the threshold marks in any 

county and is as shown. 
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Fig. 9: Map showing probabilities of scoring threshold marks per county 
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4.3 Discussion 

Figure 3 shows a time-series model used to justify the use of a time series model. A time series 

model is justified whenever a temporal ordering is observed in the data, that is, a cyclic trend or 

regularity in the data at regular time intervals. From the diagram, a regular trend is observed in 

each of the five years. The pattern is recurring but the magnitude is increasing every year. The 

increase in magnitude implies an increase in the number of pupils obtaining the threshold marks 

as defined in the project. 

In order to show significance of location/area in analysis, a plot of the response variable against 

county area was made as shown in Figure 4. The plot shows a negative correlation between the 

two. Normally, a strong positive correlation is expected since an increase in geographical size 

implies an increase in the number of student talking examination. However, it is known that in 

Kenya, population density in any county increases with decrease in size. For instance, from the 

2009 population census, Garissa county has a size of 45,720 km sq and a population of 623,060 

persons while Kisii county, with a size of 1,317 km sq has a population of 1,152,282 persons. 

Consequently, there exists a negative correlation between size of county and the number of 

pupils sitting for examination in Kenya. The existence of a correlation (-0.51) between county 

size and number of pupils obtaining the threshold marks implies that the incorporation of spatial 

attributes in the model would increase its predictive and analytic role. 

Further exploratory analysis of the data through summary statistics and scatterplot is shown. The 

summary is made to determine the likelihood distribution. The mean is found to be 7200.16 

while the standard deviation is 4788.44. The smallest number of students scoring at least 350 

marks was recorded in Kajiado (435) while the highest number was recorded in Embu (22,013). 

Generally, most counties had observations ranging between 1000 and 11,000 as shown in  the 

plot in Figure 6.  

The confirmatory analysis involved computing the deviance information criterion (DIC) to select 

the best fit for the data. The DIC values are based on a trade-off between model complexity and 

the fit. Hence, a smaller DIC value implies less trade-off and hence a better fit. 

The models are as follows; 

Model 1 
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The model was a sum of the bym model and rw1 model. As stated earlier, the bym accounts for 

both spatial and time dependence (besag + iid). The model also included the assumption that 

followed an rw1 process. 

Model 2 

The model was a sum of the bym, iid and rw1 model. 

Model 3 

This model is a sum of the rw1 and iid models. This is a purely temporal model and is aimed at 

examining whether time alone is enough to explain the dependent variable. 

Model 4 

This model only includes the besag model and the objective of its formulation is to examine 

whether space alone could explain the dependent variable. As opposed to the second model, this 

is a purely spatial model. 

As expected, the DIC values for model 1 and model 2 were equal since the bym model also 

included the iid model. Consequently, both models are a sum of the bym, rw1 and iid models. 

Both models had a DIC value of 4471.34. 

Model 3 only accounted for temporal effects and its formulation was meant to examine whether 

space was insignificant in explaining the number of students scoring at least 350 marks. The DIC 

value for the temporal model was 4479.89. 

Model 4 only accounted for spatial effects and its formulation was meant to examine whether 

space alone could be used to explain the dependent variable. This model had a DIC value of 

4471.52. 

The model with the lowest DIC value should be the best fit for the data. Model 1 and model 2 

have the lowest values and are hence chosen. However, since model 2 is just a repeat of model 1 

albeit with an additional model for the iid process, we chose latter model over the former. Hence, 

the best model for the response variable is a sum of the bym and rw1 model i.e. a sum of both 

spatial and temporal effects. Further analysis in this study will employ this model. 
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Model 1 is made up of three components: the random component (rw1), the spatial effect 

component (besag), and the time component (iid). From the output, the spatial component has 

the smallest precision component followed by the temporal component and last is the random 

effect component. Since variance is given by the reciprocal of precision, the spatial component 

has the largest variance while the temporal component has the least variance. Consequently, the 

temporal component is most significant in modeling and predicting pupil scores in KCPE 

examination. 

The significance of temporal effects in student performance has been shown in numerous studies. 

Indeed, most schools attempt to predict exam results or scores based on the results of subsequent 

year(s). In most cases, result of any year is strongly related to that of the previous year and this is 

shown in our model. Models explaining examination performance should therefore include 

temporal attributes 

Analysis of the posterior means over the five-year period is shown in Figure 6. The plot shows 

stability in performance over the period with a slight increase in 2008. Ogeto (2012) has found 

out in his paper that performance in KCPE dropped in 2008 due to post-election violence (PEV) 

and this led to a progressively declining negative index in the 2008, 2009 and 2010 

examinations. However, it is known that the PEV began more than a month after pupils had 

cleared their examination, that is, from December 2008 to February 2009. Consequently, the 

PEV could not have had an effect on examination results. Besides, the sample used by Ogeto was 

only drawn from Esise division, Nyamira county, and is therefore not representative of the entire 

county. Ogeto makes a similar finding that performance in KCPE dropped progressively from 

2008 onwards up to 2010. Further research would be recommended to investigate the effect of 

the campaign period and seubsequent PEV on performance in KCPE. 

Analysis was also done on the posterior means over the 47 counties and the graph is shown in 

Figure 7. The graph shows varying levels of performance in each of the counties. For instance, 

Nakuru (20) and Kajiado (40) counties show a relatively poor performance over the period while 

Kisumu (25) and Trans Nzoia (10) have comparatively higher number of students attaining the 

threshold score. The plot also shows mid-sized counties recording higher numbers of students as 

compared to smaller counties, i.e. from county no 30 onwards. A complete list of the numbering 

used for the 47 counties is shown in the appendix. 
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In line with the objective of this project, a plot of the posterior means for the entire country was 

made. From the map in Figure 8, counties in the central part of the country are seen to have 

higher means as compared to other parts of the country. These counties include Kirinyaga, 

Embu, Meru, Nyandarua, and so on. In contrast, counties located on the western part of the 

country such as Kisumu, Siaya, Homa Bay, and Busia and those located in the coastal region 

such as Lamu and Kilifi have lower means. Various studies, including a four-year survey by the 

Millennium Cities Initiatives, have found that infant mortality rates are highest in areas with low 

academic performance. Specifically, the lake and coastal regions have been observed to have 

high mortality rates as compared to other parts of the county. Hence, it can be hypothesized that 

a correlation exists between infant mortality and academic performance. 

Further analysis of the probability of a student obtaining at least 350 marks is made as shown in 

Figure 9. The map is an extension of the previous one in which the posterior means for each 

county were computed and plotted. Similar to previous findings in this project, it is observed that 

pupils enrolled in schools around the lake and coastal regions have the lowest probabilities of 

obtaining at least 350 marks in the KCPE examinations. The highest probabilities are observed in 

counties around the central part of the county. 

4.4 Implications for Policy and Future Research  

A direct implication of findings from this project is that education should be promoted in the 

areas that recorded low numbers of students scoring 350 marks and above. These are the lake 

and coastal regions. Interventions could include construction of more classrooms or schools, 

hiring of more teachers and encouraging more parents to take their children by offering 

incentives such as school feeding programs. 

This research demonstrated the need to incorporate spatial and temporal attributes when creating 

models for school performance. A limitation of the research was that analysis was at county level 

while it is known that examination results are not homogenous in any county. Consequently, 

useful information was lost in the process of aggregating the data at county level. Hence, in 

future research, analyses should be based on school-level data as opposed to county-level. 
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Appendix 

County dimensions and numbering as used in the study 

COUNTY 

ID 

COUNTY County Length County Area 

1 Turkana 15.04684 5.676985 

2 Marsabit 11.97416 6.176831 

3 Mandera 7.355154 2.117196 

4 Wajir 9.838408 4.609589 

5 West Pokot 5.030271 0.740481 

6 Samburu 8.311013 1.713014 

7 Isiolo 10.18141 2.05982 

8 Baringo 5.964266 0.877177 

9 Keiyo-Marakwet 4.063527 0.245208 

10 Trans Nzoia 2.387265 0.201983 

11 Bungoma 3.075944 0.245741 

12 Garissa 11.28113 3.641823 

13 Uasin Gishu 3.717922 0.271894 

14 Kakamega 4.08931 0.242844 

15 Laikipia 5.358738 0.786753 

16 Busia 2.682712 0.147514 

17 Meru 4.284992 0.56055 

18 Nandi 2.986884 0.233172 

19 Siaya 2.924506 0.285189 

20 Nakuru 6.474904 0.604913 

21 Vihiga 1.364576 0.045428 

22 Nyandarua 3.587821 0.265942 

23 Tharaka 3.090717 0.21696 

24 Kericho 2.979811 0.170724 

25 Kisumu 3.115223 0.217291 

26 Nyeri 3.050349 0.270857 
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27 Tana River 11.60308 3.074107 

28 Kitui 9.028668 2.483477 

29 Kirinyaga 1.874547 0.12001 

30 Embu 3.339148 0.229668 

31 Homa Bay 3.410303 0.386329 

32 Bomet 2.631657 0.229037 

33 Nyamira 1.504872 0.071882 

34 Narok 6.86177 1.454091 

35 Kisii 1.67694 0.106043 

36 Murang'a 2.536662 0.206462 

37 Migori 3.01159 0.257126 

38 Kiambu 3.085721 0.209126 

39 Machakos 5.79204 0.505507 

40 Kajiado 7.280366 1.774001 

41 Nairobi 1.615813 0.057278 

42 Makueni 5.753765 0.649311 

43 Lamu 11.26831 0.501665 

110 Kilifi 6.858123 1.017021 

111 Taita Taveta 5.572639 1.395854 

135 Kwale 5.64662 0.671356 

141 Mombasa 1.979026 0.018444 
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