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ABSTRACT 

This project illustrates how the mathematics of Markov Stochastic Processes can be 

used, through the framework of multiple state models, in the actuarial modeling of 

certain types of Long Term Insurance. Such situations arise when benefits are payable 

upon a change in the status of the insured or while the insured maintains a given status. 

Examples include long term medical care insurance, life insurance, annuities, pensions, 

and  disability income insurance. 

This markov stochastic processes considered both the time-continuous and time-discrete 

cases, with constant forces of transition being assumed. However, the project  focused on 

calculations of expected present values of payment streams, and in particular, on 

calculations of net single and annual premiums of long term medical care stand lone and 

LTC rider benefits insurance products for the National Hospital Insurance Fund from 

which the entire data for the four state markov model were derived. 

This project is structured as follows:  chapter one describes the introduction and 

background of the use of markov stochastic processes in modeling insurance products, 

statement of the problem, the research objectives, significance and rationale/justification 

of the study. Chapter two describes the two state, three state, and four state markov 

models and processes using Chapman-Kolmogorov equations, Kolmogorov forward 

differential equations and theoretical and empirical literature reviewed based on similar 

studies by other actuarial scientists on multi state LTC pricing and reserving models. 

Chapter three describes the methodology with particular emphasis on the four state 

markov model, the estimation of the maximum likelihood estimates, parametric 

graduation of transition rates and probabilities, the calculations of premiums using the 

equivalence principle, and reserves calculations using Thiele’s differential equations. 

Chapter four outlines the applications of the four-state multiple state markov model 

comprising healthy, outpatient and in patient sicknesses and death states within a 

continuous time-discrete state stochastic process framework with the actuarial pricing 

and reserving calculations of streams of benefit payments for the National Hospital 

Insurance Fund of Kenya. Finally, chapter five outlines the summary of research 

findings, conclusions, and recommendations based on the study findings and discusses 

opportunities for further research.  
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DEFINITIONS AND INTERPRETATIONS 

(I)  “Agreement” This Agreement and all or any Annexes and endorsements 

hereto 

(II) Commencement The date on which an eligible employee or eligible 

dependant becomes a Member on or after the effective date. 

(III) Civil Servants A public official who is a member of the civil service 

employed by the Government of Kenya and is actively in service.  

(IV) Disciplined Services The Kenya Police, the Administration Police, the Prisons 

Service and the National Youth Service. 

(V) Customary and Reasonable Charges Means charges for medical care made 

by a service provider which shall be considered by NHIF to be customary and 

reasonable to the extent that they do not exceed the general level of charges 

being made by other service providers of similar standing in the locality where 

the charge is incurred when providing like or comparable treatment, services 

or supplies to individuals of the same sex and of comparable age, for a similar 

disease or injury.  

(VI) Dependant Means a declared legal spouse of the Member and / or unmarried 

child or legally adopted child who relies on a Member for support, provided 

always that such children are aged below 21 years of age at the date of 

enrollment or 25 years if enrolled into full time formal education. 

(VII) Effective Date The date that this medical insurance cover commences as 

shown on the contract data page.  

(VIII) Eligible Employee An employee is eligible for membership under this cover 

upon entering Full Time Active Service of the GOK. 

(IX) Eligible dependant A dependant will be eligible if s/he is declared as a  

Dependant by the Principal Member at the commencement of the Medical 

Cover. 

(X) Employer The GOK as indicated in the Contract Data Page. 
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(XI) Exclusion Category of treatment, conditions, activities and their related or 

consequential expenses that are excluded from this contract for which NHIF 

shall not be liable. 

(XII) Full Time Active Service An employee (other than a temporary employee) is 

considered to be in Full Time Active service on any day if the employee is 

performing or is capable of performing, in the customary manner, all of the 

regular duties of employment. 

(XIII) Government  Government of the Republic of Kenya. 

(XIV) General Patient A member or dependant who has been admitted to a hospital 

and has been assigned a standard ward bed and is receiving treatment under 

the care of the hospital’s panel of physicians. 

(XV) Hospital / Facility Means an institution, which is legally licensed as a health 

care provider and is recognized by NHIF. 

(XVI) In patient. A member who has been admitted to a hospital, is assigned a bed 

and given diagnostic tests or receives treatment for a disease or injury. 

(XVII) In Force The cover is in effect for the medical benefits specified in the Annex. 

(XVIII) In-Patient Treatment Treatment which requires admission in and stay in 

a hospital or day care surgery.  

(XIX) Limit of Indemnity This is NHIF’s liability as limited in events and amount 

to the limits and sub limits specified in the Annex as applying to each item or 

type of cover provided. The overall maximum limit stated thereon is the 

maximum amount recoverable under this contract as a whole by any Member 

during any one period of insurance and in total respect of any one covered 

claimer event. 

(XX) Member An eligible employee who has completed a membership application 

form or whose name is on the list given by the employer.  

(XXI) Optical Service Eye care, eye examination, eye follow up, care and 

prescription of glasses. 
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(XXII) Out Patient Treatment Treatment that does not require admission and stay in 

hospital or day care. 

(XXIII) Period of Insurance The period from the Effective date to the renewal 

date and each twelve-month period, or any such period as may be agreed 

between the parties, from the renewal date thereafter. 

(XXIV) Physician Means a qualified medical practitioner licensed by the 

competent medical authorities of the country in which treatment is provided 

and who in rendering such treatment is practicing within the scope of his or her 

licensing and training. 

(XXV) Proportion of Expenses covered As indicated on the contract data page 

(XXVI) Insured Means Civil Servants and Disciplined Services 

(XXVIII)KEPI Kenya Expanded Programme on Immunization 
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1.0 CHAPTER ONE: INTRODUCTION AND BACKROUND 

1.1 Introduction 

In the 2012 Unites States of America Presidential elections, one of the key campaign 

issues was the US national health service financing in which the current US President 

Barrack Obama sponsored a bill, known in US political parlance as Obamacare, in the 

US Congress. This legislation provides for universal health care financing for all 

Americans irrespective of age, gender, race and income. In the last one month the US 

Federal Government has been shut down with the US Congress refusing to raise the US 

debt ceiling and American private insurance companies and private medical firms 

lobbying aggressively against “Obamacare” legislation. 

In Kenya, the last coalition government attempted to bring about a similar initiative 

through the Ministry of Health and the National Hospital Insurance Fund but there was 

a lot of resistance from the public and trade unions like the Central Organization of 

Trade Unions. Their main concerns revolved around the issues of the correct pricing in 

terms of premium rates and the corruption and governance criteria of the funds. At the 

time of writing this project, some former officials of N.H.I.F. are facing court cases over    

corruption allegations. This project is therefore an actuarial attempt to scientifically 

calculate the premium rates and reserves using the multi-state stochastic markov 

processes in continuous time-discrete state space.  

In probability theory, a Markov chain is a stochastic process that refers to the sequence 

(or chain) of states such a process moves through (Baier, et al, 1999). The changes of 

state of the system are called transitions, and the probabilities associated with various 

state-changes are called transition probabilities. The process is characterized by a state 

space, a transition matrix describing the probabilities of particular transitions and an 

initial state or initial distribution across the state space. By convention, it is assumed 

that all possible states and transitions have been included in the definition of the 

processes, so there is always a next state and the process goes on forever.   

A discrete-time random process involves a system which is in a certain state at each 

step, with the state changing randomly between steps(Markov, A. 2006). The steps are 

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Transition_matrix
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often thought of as moments in time, but they can equally well refer to physical distance 

or any other discrete measurement; formally, the steps are the integers or natural 

numbers, and the random process is a mapping of these to states.  

The Markov property states that the conditional probability distribution for the system 

at the next step (and in fact at all future steps) depends only on the current state of the 

system, and not additionally on the state of the system at previous steps. Since the 

system changes randomly, it is generally impossible to predict with certainty the state of 

a Markov chain at a given point in the future(Markov,A, 1906). However, the statistical 

properties of the system's future can be predicted. In many applications, it is these 

statistical properties that are important.   

A continuous-time Markov chain(Markov,A, 1906) is a mathematical model which 

takes values in some finite or countable set and for which the time spent in each state 

takes non-negative real values and has an exponential distribution. It is a random 

process with the Markov property which means that future behavior of the model (both 

remaining time in current state and next state) depends only on the current state of the 

model and not on historical behavior. The model is a continuous-time version of the 

Markov chain model, named because the output from such a process is a sequence (or 

chain) of states.  Some traditional problems in actuarial mathematics are conveniently 

viewed in terms of multistate processes. It is assumed that, at any time, an individual is 

in one of a number of states. These properties of Markov chains can be used to model 

Long Term Care insurance products since the defined states of the insured lives such as 

healthy, moderately sick(outpatient), severely sick(inpatient), and dead.  The 

individual's presence in a given state or transition from one state to another may have 

some financial impact. The main task in this project then is to quantify this impact, 

usually by estimating the expected value of future cash flows.  

The simplest situation involves only two states: "alive" and "dead."  As shown in Figure 

2.1, an individual may make only one transition. For a simple life annuity, benefits are 

payable while the annuitant is in state 1 and cease upon transition to state 2. In the case 

of a whole life insurance policy, premiums are payable while the insured is in state 1, 

and the death benefit is paid at the time of transition to state 2. Approaches to 

calculating actuarial values in these cases are simple and well-known (Bowers et al. 

https://en.wikipedia.org/wiki/Integers
https://en.wikipedia.org/wiki/Natural_numbers
https://en.wikipedia.org/wiki/Natural_numbers
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_chain
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2004). A more complicated situation arises for processes with additional states.  Figure 

2.7 illustrates the three-state process commonly used to describe the state of an 

individual insured under a disability income policy. In this case, premiums are payable 

while the insured is in state 1, and benefits are payable while the insured is in state 2 

(usually after a waiting period). Actuarial calculations for this example are more 

difficult because the individual can make repeat visits to each of states 1 and 2. For this 

reason it is often assumed that transitions from state 2 to state 1, that is recoveries, are 

not possible. A multistate model provides an intuitively pleasing description of the 

possible outcomes in numerous other areas. In examining a long-term-care system, we 

can represent the several levels of care available as states of a multistate model. 

Ongoing costs could then be associated with each state. We could use a multistate 

process in a life insurance context to describe the movement of individuals among 

various risk categories such as smoking status and blood pressure grouping(Norris J.R. 

1997). Pension plans can also be modeled within a multi-state framework. In the 

simplest case, states would be required for working plan members, retirees, and those 

who have died. A more complicated model might require a disabled state and three 

retired states that reflect the status of a joint and last survivor annuity.  

1.2 Background  

Many authors have used multistate models to analyze actuarial problems. Much of this 

work has drawn on the theory of stochastic processes to obtain new results of interest 

and to generalize results of more traditional methods. Such models are most tractable 

when it is assumed that the process satisfies the Markov property. Under this 

assumption, generalizations of a number of standard results from life contingencies can 

be done (Hoem 1988). The expected value and variance of the loss function in a 

Markov model setting has been modeled before(Pittacco et al 19993). The stochastic 

properties of the profit earned on an insurance policy were examined by Habberman 

(1999), who also analyzed the distribution of surplus. Tolley and Manton(2004) 

proposed models for morbidity and mortality that include various risk factors in the 

model state space. In modeling the mortality of individuals infected with the HIV virus, 

Panjer and Ramsay used a Markov process with states that represent the stages of 

infection. Waters (1984) discusses the development of formulas for probabilities and the 

estimation of parameters in a Markov model. The use of more general stochastic models 
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has been considered by among others Hoem(1969), Hoem(1973) and Aalen (1987), 

Ramsay (1984), Seal (2000), Jones (1999)and Waters (1994).  

In Kenya and other developing economies, most insurers offer separate insurance 

policies which provide financial support to policy-holders upon sickness, disability or 

death of the policyholder. The most common traditional life insurance products are the 

term life insurance policy, and the endowment policies. Another important type of 

insurance products are the long-term care annuity products including the disability 

insurance and the elder care insurance products, which are crucial to the social security 

system in an economy.  

In the literature of life insurance and long-term care insurance, studies have been done 

on the valuation of insurance policies or portfolios of such products. For example, 

Beekman (1990) presented a premium calculation procedure for long term care insurance 

by studying the random variable of first time loss of independence of Activities of Daily 

Living (ADL). The data used was based on the result of a survey to the non-

institutionalized elderly people in Massachusetts in 1974. Parker (1997) introduced two 

cash flow approaches to evaluate the average risk per policyholder for a traditional term 

life and endowment insurance portfolio and decomposed the total riskiness into the 

insurance risk and the investment risk by conditioning on the survivorship and the 

interest rate, respectively. An Ornstein-Uhlenbeck process was applied to model the 

interest rate.   

 

Figure 1.1: The Pools for ABC Insurance Company 

In general, the insurance risk (also called the mortality r i sk)  of an insurance portfolio 

results from mortality, disability or sickness. The average insurance risk per policy tends 

to zero as the number of contracts in the insurance portfolio goes to infini ty under 
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independent mortality assumption. Therefore, the insurance risk can be managed by risk 

pooling within the insurance company. The insurance risk for an insurance portfolio 

with a large size is relatively small compared to the investment risk which comes from 

the fluctuations and the correlations of the periodic interest rates according to Parker 

(1997). Marceau and Gaillardetz (1999) presented the reserve calculation for a life 

insurance portfolio under stochastic mortalities and AR(1) interest rate assumptions.  

However, it is not accurate to evaluate the insurance risk of the insurance company by 

separately evaluating the risk of each insurance portfolio consisting of only one type of 

insurance product. There might be some policyholders who are insured simultaneously by 

different types of insurance products (Figure 1.1) .  Therefore, independent mortality 

assumption does not hold in these cases. 

In considering an insurance portfolio one key issue that needs to be addressed for valuation 

purposes is the methodology for calculating the transition probabilities including the 

assumptions of the forces of transition. This has a huge impact on the valuation results. 

A few papers discussing the health insurance cases have been published since 1980s. 

Waters (1984) gave the basic concepts of the transition probabilities, the forces of 

transition and their relationships. Ramsay (1984) studied the ruin probability of the 

surplus of a sickness insurance contract which pays the benefit only if the duration of 

the sickness exceeds certain period. Waters (1990) illustrated a method of calculating 

the moment of benefit payments for a sickness insurance contract by introducing the 

semi-Markov chain to model the transition process. In Jones (1994), a Markov chain 

model was presented to calculate the transition matrix of a multi-state insurance 

contracts consisting of three states with one-direction transitions only (e.g. healthy, 

permanently disabled and deceased). Constant and piecewise forces of transition were 

assumed in the paper. Levikson and Mizrahi (1994) priced a long term care contract with 

three different care levels assuming that the policyholders health status could only either 

remain unchanged or deteriorated.  

1.3 Statement of the Problem 

The Long Term Care (LTC) system in Kenya and other developing economies is largely 

unfunded and characterized by an absence of risk pooling or a sophisticated user pays 
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mechanism. The system, therefore, stands somewhat isolated from many of its 

counterparts overseas which combine private funding mechanisms such as private LTC 

insurance with their respective State and publicly funded welfare programs. With the 

exception of a limited number of accident compensation policies where LTC is insured 

if attributable to accidents. Kenyan insurers do not currently engage in any form of LTC 

insurance business. As such, the task of pricing and reserving for private LTC insurance 

contracts for introduction into the Kenyan market is made difficult due to a lack of 

historical experience, adequate data and consensus on appropriate modeling 

methodology and assumptions.  

The primary objective of this project, therefore, is to develop and test a multiple state 

model for pricing and reserving LTC insurance using currently available Kenyan data. 

In Leung (2004), a discrete time multiple state model was developed for projecting the 

needs and costs of LTC in Australia. In this project, I relax the assumption of discrete 

time and model the underlying process in a continuous time Markov framework. The 

purpose of this project is to enable calculation of transition intensities for application in 

Thiele's differential equation for pricing and reserving. This project concentrates on a 

generalization of Thiele’s differential equation of multi-state markov model in 

designing different types of long term care (LTC) insurances  including a whole life 

stand-alone LTC policy and  LTC rider policy cover. The modeling framework and 

results presented in this project may be used as a starting point for the development of 

LTC insurance policies in Kenya.   

1.4 Research Objectives 

In this project, the general objective is to use the multistate markov framework to model 

LTC insurance products in the Kenyan insurance industry.   

In particular, the project intends to achieve the following specific objectives: 

1.  Estimate the transition probabilities of the t-year probability ab

xt p of a life aged 

(x) making a transition from state a to state b of a four state Markov model using 

Chapman-Kolmogorov and Forward Kolmogorov differential equations. 
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2. Calculate and graduate the  maximum likelihood markov transition intensities or 

forces of transition    using the Compertz-Mekahem methods of graduation 

3. Calculate benefit premiums for a set of illustrative hypothetical LTC insurance 

products including a whole life stand-alone LTC policy and a LTC rider cover 

using the equivalence principle/equation of value 

4. Calculate the reserves of an illustrative hypothetical LTC whole life stand-alone 

policy using Thiele’s differential equations 

1.5 Justification of the Study 

Current premium rates for the various LTC products varies from one insurer to another. 

This is due to a lack of standard premium rate and its corresponding incident rate for the 

various products sold. Some insurers charge higher premiums which results in the low 

uptake rates of the product whereas others charge relatively low premium which also 

results in the company running at a loss. This calls for the need to find a rigorous and 

accurate formula for costing an LTC benefit product. This has necessitated the 

determination of an accurate pricing formula. Pricing LTC products is a key objective 

of any insurance industry that sells such a product. The project which considers the 

various premiums and incidence rates for different age groups will serve as a platform 

for insurers to know which group of people are most likely to suffer one condition than 

the other. The idea of knowing that one must insure against conditions of not being able 

to carry out one's normal duties, by virtue of suffering a major illness makes the project 

very justifiable. 

1.6 Significance of the Study 

It is very significant for an insurance company to value or price its products correctly 

such that such premium calculation is as accurate as possible. This indeed is true 

especially for Long Term Care products whose impact on the insured and the 

underwriter lasts for a long duration. Pricing of premium for the purchase of any 

insurance forms the basics of any quality insurance in any insurance company. Thus the 

data from the survey would therefore be of immense importance to the various 

insurance companies in the country. These include the National Hospital Insurance 
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Fund from which the current data is obtained, Britam, Panafric Life, Lion, Pacis, C.I.C., 

Old Mutual, among others. The correct pricing and reserving of LTC products will 

increase their sales and thereby increase the premium income of insurers. The 

regulatory bodies such as Insurance Regulatory Authority(I.R.A.) and professional 

insurance associations such as The Actuarial Society of Kenya(T.AS.K.), and 

Association of Kenyan Insurers(A.K.I.)  will benefit immensely from an accurate 

valuation of LTC products in Kenya. At the end of the project, the various insurance 

companies will have a better and scientific means of pricing and reserving the LTC 

products.   
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2.0 CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction  

In this chapter the focus will be on the markov models in continuous time and discrete 

state space two state, three and four state markov models.  The chapter will begin with 

the derivation and solution of the Kolmogorov forward and the Kolmogorov backward 

equations by using the Chapman-Kolmogorov equations. Then focus will shift to 

various versions of two, three and four state models with emphasis of the derivation and 

solution of transition intensities/forces,     , from one state to another, say, from 

healthy to outpatient sickness using the Chapman-Kolmogorov equations and 

Kolmogorov forward equations.  

The three state process is commonly used to describe the state of an individual insured 

under a disability income policy. In this case, premiums are payable while the insured is 

in state 1, and benefits are payable while the insured is in state 2 (usually after a waiting 

period).  We will derive the probabilities of transition from one state to another via the 

forces of intensities. 

In this project, the four state multi state models from alive/healthy through out-patient 

sickness, in-patient sickness all the way to death with recovery from either of the two 

cases of sickness will be used to model the medical data from N.H.I.F. in order to 

calculate premiums and reserves. The focus will be on deriving the probabilities of 

transition from one state to another via the forces of intensities.   

2.2 Chapman-Kolmogorov Equations 

A Markov chain  
TttX


is called homogeneous, if it is time homogenous i.e. the following 

equation holds for all s,t S such that   0][0  iXPandiXP ts (Scott W.F., 1999)
 

iXjXPiXjXP thtShs   [][
                                                               (2.1)    

 

For homogeneous Markov chain we use the notation : 

hssPhP

hssphp ijij





,(:)(

),(:)(

                                                                                                (2.2)
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Remarks that can be made are that a homogeneous Markov chain is characterized by the fact 

that the transition probabilities and therefore also the transition matrices, only depend on the 

size of the time increment and that for homogeneous Markov chain one can simplify the 

Chapman – Kolmogorov equations to the semi group property.  

 

)()()( tPsPtsP                                                       (2.3)                                                                  
 

   
 

The semi – group property is popular in many different areas e.g. in quantum mechanics. The 

mapping. )(),(: tPtRMTP n 
  

Defines a one parameter semi – group.  

 

2.3 Kolmogorov Forward and Backward Differential Equations 

In the following section, we will only consider Markov chains on a finite state space (Lecture 

notes, UoN, 2012). Thus point wise convergence and uniform convergence. Will coincide on S. 

This enables us to give some of the proofs in  a simpler form.  

Definition: Let  
TttX


be a Markov chain with finite state space S and T SNforR  we 

define.  





Nk

jkjN tsptsp ),().(

                                                                                                  (2.4)

 

Definition:  Let.  
TttX


be a Markov chain in continuous time with finite state space S 

 
TttX


is called regular if  

Sjiallfor
t

tttp

t
t

Siallfor
t

tttp

t
t

ij

ij

it

i

















),(

0

lim
)(

),(1

0

lim
)(





                                                    (2.5)

 

are well defined and continuous with respect to t. 

The functions )()( kandt jii  are called transition rates of the Markov chain . Furthermore 

we define ii by  Siallfortt iii  )()(   
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Remark that can be made is that the insurance model and the regularity of the Markov chain is 

used to derive the differential equations which are satisfied by the mathematical reserve 

corresponding to the policy. 

Now, one can understand the transition rates as derivatives of the transition probabilities. For 

example we get for ji   

tsji

ijij

ij

ji

stp
ds

d

t

ttptttp

t

t

tttp

t
t

















),(

),(,(

0

lim

),(

0

lim
)(

 

 

 

Hence, 
dtti )( can be understood as the infinitesimal transition rate from i to j in the time 

interval [t,t+dt]can be understood as the infinitesimal probability of leaving state i in the 

corresponding time interval . Let us define 























)(

;

)(

)(

..........)()()(

;;:;

..........)()()(

.........)()()(

)(
2

1

321

232221

131211

t

t

tn

ttt

ttt

ttt

t

nn

n

nnn 











         (2.6) 

                                                                                     (Scott W.F., 1999)
 

   In a sense . A generates the behavior of the Markov chain. That is the homogeneous Markov 

chain the following equation holds. 

  
t

tP








1)(

0

lim
)0(

                                                          (2.7)

 

)0( is called the generator of one parameter semi group. We can reconstruct P(t) 

by 

  





0 !

)exp()(
n

n
n

n

t
ttP

                                                      (2.8)

 

Based on the transition rates we can prove Kolomogorov differential equations. These connect 

the partial derivatives of withp ji  
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Theorem (Kolmogorov): 

 Let  
TttX


be a regular Markov chain on a finite state space S. Then the following statements 

hold. :  (Backward differential equations) 

   

),()(),(

),()(),()(),( 1,

tsPstsP
ds

d

tspstspstsp
ds

d

ik

kjikjiji



 




 

The Kolmogorov Forward differential equations are  

 

)(),(),(

)(),()(),(),(

ttsPtsP
ds

d

ttspttsptsp
dt

d

jk

kjkijijji



 




 

Proof:  

The major part of the proof is based on the equations of Chapman and Kolmogorov.  

We will prove the matrix version of the statement. This will help to highlight the key properties. 

Let sssetands  :0   

`  

 

0),()(

),(),(1(
1

(

),(),(),((
1),(),(
















sfortsPs

tPsP
s

tPsPtP
ss

tsPtp






 

Where we used the Chapman – Kolmogorov equation and the continuity of the matrix 

multiplication. 

Analogous one can prove the forward differential equation. Let 0.t  

0)(),(

)1),((
1

),(

),(),(),((
1),(),(
















tforttsP

tttP
t

tsP

tsPtttPtsP
tt

tsPttsP
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An important remark is that the primary application of Kolmogorov’s difficult equations is to 

calculate the transition   probabilities jip based on the rates  .
 

Now the definition that we let  
TttX


be a regular Markov chain on a finite state space S.  We 

denote the conditional probability to stay during the interval [s,t] in j by  

 



 












 

ts

sjj jXjXPtsp
,

),(


  

where s, t R , s  t   and  Sj  

In setting of a life insurance, this probability can for example be used to calculate the 

probability that the insured survives 5 years. The following theorem illustrates how this 

probability can be calculated based on the transition rates.  

Theorem: Let  
TttX


be a regular Markov chain

(Scott W.F., 1999)
.  














 

 jk

t

jkjj dtsp
8

)(exp),(   

     Holds for 0][,  jXPifts s  

Proof: We define   .0),(),( ],[   tLetjXtsKbytsK stsjj  We have 

P|A CB =P[B|C]P[A|BC] and thus  

  


jjp (s,t)+ )t = jtttKtsKP jj ),(),([ 
                    (2.9)

 

                        
                                                      

= ),(),([]),([ tsKjXtttKPjXtsKP jsjsj   

                                                     = ]),([]),([ jXtttKPjXtsKP tjsj   

                                                     = ]),([),( jXtttKPtsP tjjj   

Where we used the Markov property and the relation 

    ).,(),( tsKjXtsKjX jtjs   

The previous equation yields. 
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























)(),(),(

]),([1(),(),(),(

totttptsp

jXtttKPtsptspttsP

jk

kjjj

tjjjjjjj

          (2.10)

 

where we used that the rates  are well defined. Now taking the limit we get the differential 

equation  

    







jk

jkjjjj ttsptsp
dt

d
)(),(),( 

                  (2.11)

 

               

 

Solving this equation with the boundary condition 


 1),( ssp jj  yields the statement of the 

theorem.  

2.4 A One-Direction Two-State Markov Model 

This is a one direction two state markov chain process from a state of being alive to 

dead state estimated using the force of transition  
(Scott W.F., 1999)

.  

The probability that alive at a given age will be dead at any subsequent age is governed 

by the age –dependent transition intensity         , in a way made precise by 

assumption 2 below. 

 

 

 

 

Figure 2.1: A one-way two-state markov model  

The states   ,    and        are experienced at times s, t, and t+h as shown in the timeline in 

figure 2.2 below.  

 

 

 

 

State 1: alive  

 

State 2: dead 
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Consider  

 

Figure 2.2: A time dependent transaction for deriving forward Kolmogorov equation  

 

There are three assumptions underlying the simple two-state model: 

Assumption 1 

The probabilities that a life at any given age will be found in either state at any 

subsequent age depend only on the ages involved and on the state currently occupied. 

This is the Markov assumption. So, past events do not affect the probability of a future 

event. In particular, the past history of an individual –for example m current state of 

health, spells of sickness, occupation –is excluded from the model.  

Assumption 2 

For a short time interval of length    

                                                                                                       (2.12) 

In other words, the probability of dying in a very short time interval    is equal to the 

transitions intensity multiplied by the time interval, plus a small correction term. This is 

equivalent to assuming              

Remember that a function      is said to be                
    

 
    in other words if 

     tends to zero “faster” than    itself. Where we are not concerned about the precise 

form of    , we can use the term      in an equation to denote any function that is    . 

For the purpose of inference, we restrict our attention to ages between     and     and 

introduce a further assumption. 

 

Time  
S t     

State         
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Assumption 3 

                                

Our investigation will consist of many observations of small segments of lifetimes i.e. 

single years of age. Assumption 3 simplifies the model by treating the transition 

intensity a constant for all individuals aged   last birthday. This does not mean that we 

believe that the transition intensity will increase by a discrete step when an individual 

reaches age   , although this is a consequence of the assumption. 

Now by the Chapman –Kolmogorov equation:   

                       
 

        

For the two state one direction markov model  

                                                 

                                  

                                                    

 
 

  
          

   

                   

 
                         

                                                 

                                          

 
 

  
            

   

                   

 
 

                         

                                                                                                                   (2.13) 

Thus Kolmogorov forward differential equations are: 
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                                                                                                         (2.14) 

In the matrix form we have: 

Therefore      
          

                            
       
  

  

                                                                                                                                (2.15) 

 

2.5 A Two Directional Two State Markov Model 

This is a two directional tow state markov model in which there is transition by the lives 

being studied from healthy state to the sick state    and backwards through the force of 

transition     (Lecture notes, UoN 2012). 

 

 

 

 

Figure 2.3: A two-directional two-state markov model 

 

 

 

 

Figure 2.4: A time dependent transaction for deriving forward Kolmogorov equation  

 

By Chapman –Kolmogorov equation 

                              

 

 

State1: healthy  State 2: sick  

    

    

 

   

t 
Time  

State     

 k 

 

   

t+h 
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(2.16) 

 
 

  
            

   

                   

 
 

    
                                   

                                                 

                                           

                                                                    

(2.17)  

 
 

  
            

   

                   

 
 

   
                                  

                                                 

                                           

                                                             

    
                                                                                                  (2.18) 
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                                   (6) 

In the matrix form: 

 
   
         

      

   
         

      
   

                

                
  
       
       

  

In the compact form:  

                   Where    
       
       

 (22)  

The solution to (6) is:                    

 The initial condition is obtained by letting t= 1                                                 

                            

      
    

  

 
             

    

  

 
    

Comparing we have  

             and      

    
    

  
 
                     (23) 

The eigen-values of Q are obtained by solving the equation: 

             
          
          

    

                  

                               

                 

                      

                          

The corresponding Eigen –vectors are: 
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  (10) 

          ,   
       
       

  
  
  
    

  
  
                             

      (24)       
  
  
   

  
  
  

Thus the matrix based on the eigenvectors is: 

            
  

 
   

   
        

 
   

   

   
  

 

  
   
   

    
   

       
 
    
     

                                                                                                                                                                                                             

                                                                                                                               (2.19) 

From (2.18),  

             
  

  
 

     

  
      

  

  

 
      

Since Q has distinct eigen- values, it can be expressed as: 

                  

           
  

  

 
               

     

  

 
                                        (2.20) 

Where  

   
    
    

   
    
  

         
      

  
  

  

  
     

  

 

   

  
 

      
 

  

 

   

 

  

    
       
  

  

Therefore   
     

  

 
                                                                                             (2.21) 
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                                                                                                  (2.22) 

But  

                    and                     

    
                                                                  

                       

    
                                                                                                    (2.23) 

Where the Integrating factor                            
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When t =j then we have:                       
   

       
             

               
   

       
             

    
   

       
                 

 
           

       
                

  
   

       
              

                      
   

       
             

   

       
             

          
   

       
 

   

       
                                                                      (2.24) 

From (2.18) 
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                                                                            (2.25) 

 

2.6 A Two-State One-Direction Markov Model 

This is  a markov process with two states in one direction without the possibility of 

returning back to the initial condition. The interest is to estimate the transition forces 

from the state of being active to dead    and from active to retired      
(Scott W.F., 

1999)
.  

 

 

 

 

 

 

 

 

Figure 2.5: A two-state one directional markov model 

Note that the term active is usually applied to individuals in employment, in order to 

differentiate them from individuals who are healthy but who have retired. 

We need to derive the following two equations: 

   
   

   

       
       

                                                                                                    (2.26) 

 

   
   

   

       
       

                                                                                                     

(2.27) 

 

0= active  

1 = dead  2=retired  
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Again by the Chapman-Kolmogorov equation  

                              

 

                

 

   

                

                                                                     

                             

                                               

 
 

  
            

   

                   

 
                    

 
 

        

 

  
                    

                         

But              and                                         

                                                

                               

 

  
                          

            

          
   

         
                        

           and          
   

          
   

  
   

         
          

   
         

 
   

         
             

 
   

         
                 

Replacing 1 by 2 and vice versa we have: 

         
   

         
                as required to show.                                   (2.28) 
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The term in brackets is the probability of having left the active state  and the fraction 

gives the conditional  probability of each  decrement having occurred , given that  have 

of them has occurred. 

   
         

                          
            

  
 where           (2.29)              

 

2.7 A Two State Markov Model With Three Decrements 

This is a one directional three state markov model with the forces of decrements of 

retirement, withdrawal, and death represented by transition forces   ,     and     

respectively (Scott W.F., 1999).  

 

 

 

  

 

 

 

Figure 2.6: A two state markov model with three forces of decrement 

By the Chapman Kolmogorov equation:   

                              

 

 

                               

 

 

                                                         

                    

State 1: active member  

State 2: retired 

member  

State 3: withdrawn  State 4: dead  
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                                                                                                                      (2.30)     

Next we have                                  

Hence                                                            

                   

             
                                           

                                            

    
                      and                           

 

 
                     (2.31) 

In general  
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                                                                             (2.32) 

                                                 

                    

   
      
      

 and    
          

   
 

                    

   
 

      
 
      
      

 

   
  

 
       
       

 

   
                                                                        (2.33) 

 

2.8 A Three State Markov Model Calculation of Transition Probabilities 

A life may be in the healthy state or the sick state on a number of separate occasions before 

making the one-way transition to the dead state.   Alternatively, a life may pass from the 

able/healthy state to the dead state without ever having been in the sick state(Lecture Notes 

UoN, 2012).  

                                                                                                                                                                                                                          

 

 

 

 

 

 

 

Figure 2.7: A three state markov sickness model 

 

 

State 1: alive 

(healthy)  

State 2: disabled 

(sick)  

State 3: dead  
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Now, by the Chapman-Kolmogorov equation  

                    

 

           

                          

           

                                                          

                                                       

    
          

   

                   

 
 

                                                            

                                                                    

                                                             

    
                                                

                                 

                                                                    

    
                                          

    
         

         
                                                                        (2.34) 

Where  

   
                

                
   

  

 

 

2.9 A Four State Markov Model – Version I 

In the second type of the four state markov process, a life move from healthy to a sick 

and infected state. Then death can occur as a result of the infection or death could also 

occur from causes not related with the disease infection(Lecture Notes UoN, 2012). 
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Figure 2.8: A four state markov model 

From the Chapman-Kolmogorov equation  

                               

 

   

 

                                                                   

                    

                                                   

                      

 
 

  
                                            

                        

                                                                   

                    

                                                                    

                                                                

State 1: healthy  State 2: infected  

State 4: dead not 

from disease  

State 3: dead from 

disease  

     

     

     V(x)-p(x) 
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Next  

                                                                   

                    

                                                                 

                                                 

 

  
                                                                                                  (3.41) 
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                                                                                                                       (3.42) 

All these models from the two state to the four state model version I are reviewed as a 

prelude to the four state model discussed in the methodology chapter three with healthy, 

out patient, in patient and death states which is the actual model that was applied in his 

study to the medical data obtained from e N.H.F. in Kenya. 

 

2.11 Empirical Review 

The use of Markov chains in life contingencies and their extension has been proposed 

by several authors, in both the time-continuous case and the time-discrete case; for 

example, see Amsler (1968), Amsler (1988), Haberman (1983), Haberman (1984), 

Hoem (1969), Hoem (1988), Jones (1993), Jones (1994), Wilkie (1988). The earliest 

paper, by Walker (1990), provides a brief introduction to the issues surrounding LTC 

insurance pricing and provides specimen net single and annual renewable premiums for 

a LTC benefit using illustrative morbidity rates for males, females and couples. Walsh 

and de Ravin (1995) perform similar calculations based on data sourced from the 1993 

ABS survey of Disability, Ageing and Carers and calculated premium rates directly 

from prevalence rate data. The mathematical methodologies are not detailed in their 

respective papers, but it is clear that in both papers, calculations are based on an 

inception-annuity approach framework. 
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There has been a great deal of research which makes use of Multiple State models to 

provide a powerful tool for application in many areas of Actuarial Science, particularly 

in the Actuarial Assessment of sickness insurance and disability income benefits. 

The early history of these models has been described by Seal (1977) and Daw (1979) in 

some detail and our purpose here is merely to outline the key historical developments in 

terms of the theory and its practical applications to insurance problems. The problem is 

the following: 

Given two states A and B such that individuals in state A have mutually exclusive 

probabilities, possibly dependent on the time spent in state A, and the possibility of 

leaving state A because if (i) death or (ii) passage to state B, then what is the probability 

of an individual passing to state B and dying there within a given period?  

Bernoullis state A consisted of individuals who had never had smallpox, while state B 

comprised those who had contracted smallpox and would either die from it, almost 

immediately, or survive and no longer be suffering from that disease. In solving this 

problem, Bernoulli started with Edmund Halleys (Breslau) life table and effectively 

produced the first double decrement life table with one of the related single decrement 

tables as well as considering the efficacy of inoculation and deriving a mathematical 

model of the behaviour of smallpox. During the next 50 years, there were a number of 

contributions from other authors on the subject, including Jean dAlembert and Jean 

Trembley.  

Lambert (1772) explained how numerical data could be used to study Bernoullis 

problem and laid the practical foundations for the double decrement model and life 

table. He obtained an approximate formula for the rate of mortality and thereby setting 

down a practical connection between the double decrement model and the underlying 

single decrement models. Despite this progress by the early 1 800s there were two 

outstanding problems, namely (i) deriving accurate practical formulae for application to 

numerical data, linking the discrete and continuous cases; and (ii) obtaining exact 

results in a convenient form (d
¶
Alembert had derived an exact results in terms of an 



 

33 

 

integral that was difficult to evaluate). These problems were attacked successfuly and 

independently by Cournot (1843) and Makeham (1867). They were the first to set down 

the fundamental relations of multiple decrement models: in modern notation: 

for k = 1, 2,…, m 

            (3.43)                                                                                                                                      

Makeham (1867) also contains an analysis of the 
„
partial forces of mortality for 

different causes  of death, suggesting an interpretation of his well –known formula for 

the aggregate force of mortality to represent separate contributions from m + n causes of 

death. Makeham went on to use connection between forces of decrement to interpret the 

prior development of the theory; he demonstrated that the earlier results of Bernoulli 

and d
¶
Alembert satisfied this addictive law for the forces of decrement and this 

multiplicative law for the probabilities (or corresponding functions).  

In an internal report in 1875 (which was not placed in the public domain) on the 

invalidity and widows pension scheme for railway officials, Karup described the 

properties and use of singe decrement probabilities and forces of decrement in the 

context of an illness-death model (with no recoveries permitted), i.e. the 
„
independent 

or pure
¶
 probabilities of mortality and disablement. Hamza (1900) represents an 

important development by providing a systematic approach to disability benefits in both 

the continuous and discrete cases. Hamza
’
s paper is significant, setting down a notation 

which has been widely adopted in the following decades and which forms the basis for 

the notation we have utilized.  

Pasquier took a dramatic step forward by providing a rigorous, mathematical discussion 

of the invalidity or sickness process with the introduction of a three state-death model in 

which recoveries were permitted. He derived the full differential equations for the 

transition probabilities and showed that these lead to a second-order differential of 

Riccati type which he then solved for the case of constant forces of transition. Du 

Pasquier work is very significant, presenting an early application of Markov Chains, 

and laying the foundations for modern actuarial applications to disability insurance, 

long-term care insurance and critical illness.  
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Despite the interest and importance of these problems to actuaries and the consistent 

contribution made to the actuarial literature since the mid-nineteenth century, these 

contributions have essentially been rediscovered and renamed as the Theory of 

competing risk by Neyman (1950) and Fix and Neyman (1951), and other statistical 

workers. 

Applications of semi-Markov models to actuarial (and demographic) problems was 

done by Hoem (1972); the first application of semi-Markov processes to disability 

benefits appears in Janssen (1966). As far as disability benefits are concerned, the 

mathematics of Markov and semi-Markov chains provides both a powerful modelling 

tool and a unifying point of view, from which several calculation techniques and 

conventional procedures can be seen in a new light (seeHaberman (1988), Waters (1984), 

Waters (1989), Continuous Mortality Investigation Bureau (1991), Pitacco (1995)). 

 

2.12 Critical Review  

A range of methodologies have been applied to pricing LTC insurance including 

inception annuity approaches (Gatenby 1991) or risk renewal approaches (see Beekman 

1989). Though an explicit and systematic use of the mathematics of multiple state 

(Markov and semi-Markov) models dates back to the end of the 1960s, it must be 

stressed that the basic mathematics of what we now call a Markov chain model were 

developed during the eighteenth century (see Seal (1977)); seminal contributions by D. 

Bernoulli and P.S. de Laplace demonstrate this for the time-continuous case. Moreover, 

the well known paper of Hamza (1900) provides the actuarial literature with the first 

systematic approach for disability benefits, in both the continuous and discrete case. 

Keyfitz and Rogers provide a method for determining transition probabilities under a 

Markov process. The approach was developed by assuming that forces of transition are 

constant within age intervals of a fixed length. Transition probability matrices were then 

calculated re-cursively for time periods that are multiples of this age interval.  

Multiple state models are prevalent in the actuarial literature in areas including Life 

Insurance (see Pitacco 1995), Permanent Health Insurance (PHI) in the UK (see Waters 

1984, Sansom and Waters 1988, Haberman 1993, Renshaw and Haberman 1998, 
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Cordeiro (2001) and Disability Income Insurance (see Haberman and Pitacco 1999). It 

is therefore unsurprising that the suitability of multiple state modeling for LTC 

insurance has been well recognized and consequently applied. For instance, Levikson 

and Mizrahi (1994) consider an `upper triangular' (UT) multiple state model in the 

general Markovian framework where three care levels are considered and the insured 

life proceeds through the deteriorating stages of ADL failure until death. Premium 

calculation is subsequently performed via a representation of the discounted value of 

future benefits in a particular care level as a random variable. Similar frameworks have 

been studied by Alegre et al (2002), who also consider a LTC system with no recoveries 

and premium calculations derived by calculating annuity values in discrete time for a 

life in a LTC claiming state. Moreover, the valuation of LTC annuities to price LTC 

insurance in continuous time has been discussed by Pitacco (1993) and Czado and 

Rudolph (2002). 

 The chosen methodology in this project is a multiple state modeling approach within a 

continuous time Markov framework with premiums and reserves calculated by means of 

applying generalizations of Thiele's differential equations. This choice is motivated by 

the benefits of multiple state modeling being an accurate representation of the 

underlying insurance process, a greater degree of flexibility and scope for scenario 

testing and the ease of monitoring actual experience against expected at a practical level 

(Gatenby and Ward 1994, Robinson 1996 and Society of Actuaries Long-Term Care 

Insurance Valuation Methods Task Force 1995). 

Despite the wide range of methodologies considered abroad, only limited literature 

concerning pricing LTC insurance contracts in Kenya, especially the use of multi state 

modeling within a markov framework and application of Chapman-Kolmogorov and 

Thiele’s differential equations, has been published. This project therefore intends to fill 

this research gap. 
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CHAPTER THREE: METHODOLOGY 

3.1 Introduction 

This chapter focuses on the estimation of probabilities of transition from one state to 

another using the type II four state markov model which involves the  healthy, out 

patent sickness , in patient sickness and death.  Then the parametric estimation of the 

maximum likelihood estimates of the forces of transition

 

,  , from one state to another, 

the general case, then the properties of the maximum likelihood estimators, the 

alternative derivation of the maximum likelihood estimates. The parametric graduation 

methods of Compertz and Mekahem with their logarithmic modification including the 

Perks formula with be outlined.  The use of the equivalence principle in calculating 

premiums for some hypothetical Long Term Care insurance products will be described. 

Finally, the use Thiele’s differential equation in calculating reserves will be explained.    

3.2 A Four State Markov Model  – Version II 

Just like in the case of the three state markov process, in the four state process, a life may be 

in the healthy state, outpatient or in patient sick state on a number of separate occasions 

before making the one-way transition to the dead state(Lecture Notes UoN, 2012).   

Alternatively, a life may pass from the able/healthy state to the dead state without ever having 

been in the sick state.  

 

 

 

 

 

 

 

 

 

Figure 3.1: A four state markov model 

State 1: healthy  State 3: out-patient  State 4: in-patient  

State 2: dead  
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By Chapman –Kolmogorov equation  

                     
 

        

In this case we shall use: 

                       
 
                                                           (3.35) 

                                                                   

                    

                                                                                                                                                              (3.36) 

                                                                

                     

 
 

  
                                                         

             

                                                                 

                                     

                                                                                                                                              

(3.37) 

                                                    

                      

 
 

  
                                                        

                                                                   

                    

                                                           

                     

                                                                                                                                                                      

(3.38)  
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(3.39) 

 

  
                                           

                          

                                                                                                                                   (3.40) 

 

Where   

   

               
 
   
   

         
   
   
   

              
   

   
              

  

 

3.3 The four state model data suitability 

In this study the analysis of the frequency of attendance data of patients who are 

members of the National Hospital Insurance Fund will be modeled using the four state 

markov model version II. This is because the data which are records of all the members 

and their ages (including the principal civil servants members and all their legal 

dependants), the out patient, in patient attendants and deaths on a monthly basis for the 

entire 2012 year. These data fits the four state version II model better because all the 

death records are captured within the healthy and sickness states within the model. This 

is unlike the four state model version I where some deaths could be attributed to other 

exogenous causes such as accidents and murders.  
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3.4 Estimation Using Markovian Models 

We observe n independent and identically distributed lives obeying this model (Lecture 

notes, UoN, 2012). Let    be the actual death of the     life. In other words          

are independent and identically distributed random variables with     Suppose that 

subject   enters the experiment at  

 

 

 

Figure 3.2: Force of transition/intensity 

Time    and leaves at time    if he has not died by this time(Scott W.F., 1991). Let us 

make the simplifying assumption that              where                  

            We wish to estimate the one and only unknown parameter of the model, 

namely  . 

First of all, we know that     . So it is best to consider each of the variables   
  which 

in distribution, equals       given that      . What do we observe? We observe that 

random variables       
     and            where                

Note that    
                    , by assumption. Note also that   is neither 

discrete nor continuous; it is a mixture. It is easy to find the joint distribution of        . 

Clearly,   has a density on        and a discrete mass at    .( recall the notation    for a 

mass of size 1 at the point c) . Indeed,  

                                                        

                                                                  (3.1)                   

We can compactify this as  

                                                   

Since we have assumed independence, we can write the joint probability as  

                                          
 
                      (3.2) 

0 1 
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 Here the variables           take the values in                 respectively, while the 

         take values 0 or 1 each. Thus, the likelihood corresponding to the 

observations                    is                 
 
       

 
    

The maximum likelihood estimation    is defined by                         

 And is easily found to be  

   
   
 
   

   
 
   

    /  
       

     

 
    

 

 
             

   
                                       (3.3)                                                                                                                                                      

 Note that    is a veritable statistic for it is just a function of the observations. 

 

3.5 The general case of Markovian maximum likelihood estimates 

When in state, the chain remains there for an exponentially distributed amount of time 

(sojourn time) with a particular parameter(Scott W.F., 1991). 

                     

   

 

 At the end of this time, the chain jumps to some other state   with probability 
      

    
 an 

observation consists of a sequence of states          and the corresponding sojourn 

time’s        The likelihood of the observation is  

        
        

        

     
       

        
        

     
     

                                                                 

   

 

                                                                                                                                (3.4)             

Where                      and                            
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Are the total sojourn time in state   and the total number of jumps from state   to 

state , respectively, for the sequence of our observations 

Two things may happen when we observe a Markov chain, either we stop observing at 

some predetermined time or the Markov chain reaches an absorbing state and, a fortiori, 

we must stop the observation . For instance, in the Markov chain figure 4.8, there are 

three absorbing states:       and two transient ones: 1, 2. if we start with       we 

may be  

 

 

 

 

 

 

Figure 3.3: Three Absorbing States  

Lucky and observe that 1,2,1,2,1,2,1,2,1,2,1,2…… 

For long time, at some point we will get bored and stop, or we may observe either of the  

 Following trajectories           ,             ,           and             

The likelihoods in each case are  

                 
      

                
        

      

                 
      

                
        

      

               

               

  
      

  
      

              

              

  
      

  
      

  
      

  
      

 

The quantities                     take values 0 or 1 and amongst them, only one is 

1. So we can summarize the likelihood in  

                   
                      

        
        

        
        

         

b 2 1 

a 

c  
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                                                                                                                                               (3.5) 

This is an expression valid for all trajectories. Clearly, where as it may be possible to 

estimate       with the observation of one trajectory alone, this is not the case with the 

remaining parameters; we need independent trials of the Marko chain. Thus, if we run 

the Markov chain  times, independently trials of to time, a  moment of reflection shows 

the form of likelihood remains the same as in the last display, provided we interpret 

     as the total sojourn time in state    over all observations. Same interpretation 

holds for the quantities                        . 

 Thus the general expressions are valid, in the same manner, for   independent trials. To 

do this, recall that                   and write the log likelihood as       

                               

So, for a fixed pair of distinct states   
     

       
       

      

      
 

Setting this equal to zero obtains the MLE estimator         
      

    
                    (3.6) 

 

3.6 MLE estimators of the Markov chain rates 

                                        

    
                                    

                                        
  

                                                                                       

(Lecture Notes UoN, 1999). 

So    is the extra random variable that completes our model. Now lets define random 

variable    as follows:                                                        . 

Notice    and    are not independent, since:           i.e if no death has been 

observed , the life must have survived to     . 

             i.e an observed death must have occurred between   

           . 
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Another definition is that            where    is called the waiting time, it has a 

mixed distribution, with a probability mass at the point      . 

Again, the pair         comprises a statistic, meaning that the outcome of our 

observation is a sample          drawn from the distribution of        . 

Let            be the joint distribution       . 

It is easily written down by considering the two cases               

If      no death has been observed and the life is known to have survived for the 

period of                            

If      , the life is known to have survived for the period                from 

                before dying at age         

Therefore,           has a distribution that is specified by the following expression 

which is a combination of a probability mass (corresponding to    ) and a probability 

density (corresponding to     ) (Scott W.F., 1991). 

           
                

                      
                                                                   (3.7) 

 

 
  
 

  
 

             

     

 

         

             

  

 

                 

  

              
  
 

      
                                                                                        (3.8) 

Now assume that      is a constant             (this is the first time we have 

needed assumption 3) and           takes on the simple form: 

                   

 We can then write down an expression for the joint probability function, provided that 

we can assume that the lifetimes of all the lives involved are statistically independent. 

The joint function of all the         by independence is  
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                                                            (3.9) 

In other words , define random variables          to be the total number of deaths and 

the total waiting time , respectively , and the joint probability function of all the         

can be simply expressed in terms of                                .  

For known transition intensity, we can calculate the likelihood of nay combination of 

deaths and waiting time. However, in practice the value of the transition intensity is 

unknown. We use statistical inference to calculate the value of the transition intensity 

that is most plausible given the observed data i.e. the maximum likelihood estimates of  

.  

 The probability function immediately furnishes the likelihood for                   

which yields the maximum likelihood estimates (MLE) for   

   
 

 
Now we need to prove that the likelihood is maximized by       

 

 
. The solution 

is that the likelihoods is 

                  So that                .  

Differentiating  

 

  
        

 

 
                                                                                                           (3.10) 

And setting      
 

 
      

 

 
 

Which is the maximum since
  

   
      

 

  
   

It is reassuring that the mathematical approach produces a result that is intuitive , i.e. 

that the maximum likelihood estimates of the hazard rate is the number of observed 

deaths divided by the total time for which lives were exposed to the hazard.  

The measurements of the total time for which lives are exposed to the hazard is one of 

the fundamental techniques covered by this course. It enables accurate assessment of 
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risks, from the probability of a policyholder dying to the probability of a claim under a 

motor insurance policy(Lecture Notes UoN, 2012).  

3.7 Properties  of The Maximum Likelihood Estimator 

The estimate  , being a function of the sample of the samples values d and v, can itself 

be regarded as a sample value drawn from the distribution of the corresponding 

estimator:    
 

 
 

 So, the estimator    is a random variable and the maximum likelihood estimate   is the 

observed value of that random variable(Lecture Notes UoN, 2012). 

It is important in application to be able to estimate the moments of the estimator    , for 

example to compare the experience with that of a standard table. At least, we need to 

estimate                   . 

In order to derive the properties of the estimator    we will use two results that link the 

random variables       . 

The following exact results are obtained 

                  and                                                                 (3.11) 

Note that the first of these can also be written as               

In the case that the               are known constants, this follows from integrating 

/summing the probability function of         over all possible events to obtain: 

      

     

 

                   

And then differentiating with respect to     , once to obtain the mean and twice to obtain 

the variance 

We will show how to use this to prove result (1) above in moment, but first we need to 

derive two other results. (The derivation of result (2) is covered in the question & 

answer bank). 
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We can how that  

                
     
 

                                                                                                            (3.12) 

As a solution, since      if the life is not observed to die, we only need to consider 

the probability of death occurring  

                                 

     

 

 

We are assuming constant transition intensity(Lecture Notes UoN, 2012). 

                Hence             
     
 

    

In order to show that  

                           
         

     

 

 

The solution will be as follows:  

                             

     

 

                               

Hence  

             
     
 

              
                                                     (3.13) 

              

Proof of (1) 

Differentiating (*) with respect to    gives; 

         
     
 

     
     
 

                
                                                

(Because the limits of the integrals don’t depend on  , this just  involves differentiating 

the expressions inside the integral with respect to                      
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Multiplying throughout by   then gives: 

         
     
 

      
     
 

                   
                                (3.14)                   

We can see that the first term is       and the expression is curly brackets is       

So                  As required (Lecture Notes UoN, 2012). 

 

3.8 The Distribution of   

To find the asymptotic distribution of   consider: 
 

 
       

 

 
         
 
     

(Lecture Notes UoN, 1999). 

                                                                                                                                             (3.15) 

                                                       

So, by the central limit theorem:  

 

 
                

 

  
      
 
        and   

 

 
                 

    

           

Then note that (not rigorously):                    
 

 
 
 

 
 

  

 
                              

By the law of large numbers,           (technically, this refers to “convergence in 

probability “) and         
 

     
          

    

  
                                                (3.16) 

           
    

       
             

    

                
                 

    

     
  

But we know that                       

So, asymptotically:             
 

    
                                                                     (3.17)                               

3.9 Alternative Derivation of   

In this section we describe another way of deriving the asymptotic distribution of , the 

maximum likelihood estimator of . 
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 We start from the likelihood function: 

         

 The log likelihood is then  

              and differentiating this with respect to   gives: 

     

   
 

 

 
   setting this equal to 0 and solving for   yields the required maximum 

likelihood estimate:     
 

 
 

We can check that this does maximize the likelihood, by examining the sign o the 

second derivative of the log likelihood. 

      

   
  

 

  
                                                                                               (3.18) 

The corresponding maximum likelihood estimator is:    
 

 
 

Where D and V are random variables denoting the number of deaths and the total 

waiting time, respectively. 

3.10 Exact Calculation of The Central Exposed to Risk   
  

Central exposed to risk (or waiting times) are very natural quantities, intrinsically 

observable even if observation may be incomplete in practice, that is, just record the 

time spent under observation by each life. Note that this is so even if lives are 

observed for only part of the year of age [x, x +1]  whatever reason(Lecture Notes UoN, 

2012). 

 

(a)Working with complete data  

The procedure for the exact calculation of    
  is obvious: record all dates of birth, 

record all dates of entry into observation, record all dates of exit from observation and 

then compute. If we add to the data above the cause of the cessation of observation, we 

have dx as well, and we have finished. The central exposed to risk   
 for a life with age 

label x is the time from  Date A to Date  B where: Date A is the latest of: the date of 
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reaching age label x  of the start of the investigation and the date of entry. Date B is the 

earliest of; the date of reaching age label x +1, the end of the investigation and the date 

of exit (for whatever reason). 

(b) Census approximation of   
  from available data  

We will consider how to calculate   
  approximately when the exact dates of entry to 

and exit from observation have not been recorded. Suppose that we have death data of 

the form:      Total number of deaths age x last birthday during calendar years 

          2(Scott W.F., 1991). 

That is, we have observations over N+1 calendar years of all deaths between ages x and 

x +1. 

However, instead of the times of entry to and exit from observation of each fife being 

known, we have instead only the following census data: 

      = Number of lives under observation aged x last birthday at time t  where t  1  

January in calendar years K, K + 1,..., K + N,K + N + 1 

Now define P x , t  to be the number of lives under observation, aged x last birthday, at 

anytime t .  Note that: 

  
         

     

 

 

During any short time interval         there will be    , lives each contributing a 

fraction of a year dt to the exposure.   So, integrating         over the observation  

period gives the total central exposed to risk for this age. In other words.  
 is the area  

under the     "curve" between                                        .   

The problem is that we do not know the value of     for all  .  So we cannot work out the 

exact value of the integral. We have the values of     only if t is a 1 January  

(a census date), so we must estimate   
 from the given census data. The problem 

 reduces to estimating an integral, given the integrand at just a few points (in this case,  

integer spaced calendar times). This is a routine problem in numerical analysis.  

The simplest approximation, and the one most often used, is that     is linear  

between census dates, leading to the trapezium approximation(Scott W.F., 

1991). 
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The area of a trapezium is: 

      
 

 
                                     

 

 

 

 

 

 

Figure 3.5: A trapezium of census data 

In this case the base of the trapezium is equal to 1, ie the period between census dates, the 

length offside A is     the number of policies in force at the start of the year (at time) 

and the length of side B is 

      the number of polices in force at the end of the year  at time    . 

Now, using the trapezium approximation 

  
       

     

 
    

 

 
             

   
                                                             (3.19) 

This is the method used by the CMIB. It is easily adapted to census data available at 

more or less frequent intervals, or at irregular intervals(Lecture Notes UoN, 2012). 

Example: Estimate based on the following data: 

Calendar year  Population aged 55 last birthday on 1 January  

2001 46,233 

2002 42,399 

2003 42,618 

2004 42,020 

 

Solution: Using the census approximation, the central exposed to risk for the 5 year 

period 1 January 2001 to 1 January 2004 is:  

B 
A 

Base  
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3.11   Estimating transition intensities 

Define   as the number of transitions from state i  to state j ,  and let   denote the 

"waiting time" in state i .  These random variables have realizations       depending 

on whether we are discussing estimators or estimates) (Scott W.F.1991). We state the 

following important results: that the vector   is the maximum likelihood estimator of 

the true value,  and that the asymptotic distribution of the vector  of maximum 

likelihood estimators is multivariate  Normal with mean equal to the vector of true 

transition intensities,   the variance matrix has diagonal elements(Lecture Notes UoN, 

2012). 

   

     
 

     
 

      
 and off-diagonal elements zero. Hence the asymptotic distribution of the 

component  

                                          . 

Now the asymptotic posterior distribution of    is  approximately  

                   (Scott W.F., 1991). 

We now label the N lives from k = 1 to k = N ,  since the symbol i  may be used to index 

the states. We can use an example to illustrate the methodology: In a certain 

investigation, 40 "active" lives become "ill" and there were 8,176 years of exposure 

among the "active" lives. (Some "ill" lives recovered, and some of the "active" lives and 

"ill" lives died). Estimate the force of transition from the "active" to the "ill" state (this 

being assumed to be the same at all ages) and give an approximate 95% confidence 

interval(Scott W.F.1991). 
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The solution will be as follows:  

     
   

  
 

  

     
          

is the M.L.E. of    . The estimated s.d. of      is                        

         so an approximate 95% confidence interval for    is               

                              (Scott W.F., 1991). 

 

3.12 Graduation by Parametric Formula 

There are usually three methods of carrying out a graduation which are graduation by 

parametric formula, graduation by reference to a standard table and graphical graduation 

(Lecture notes, UoN, 2012). The most appropriate method of graduation to use will depend on 

the quality of the data available and the purpose for which the graduated rates will be used.  

The general methodology of graduation is essentially the same under each method.  Once we 

have decided on the appropriate method, we will choose a model of represent the underlying 

force (or rates) of mortality or transition, fit the model to the crude observed rates and test the 

graduation for adherence to data and ( if necessary) smoothness.  Each method can produce 

many possible graduations.  The graduation chosen will be the one whose adherence and 

smoothness best meet the requirements for which the rates are intended(Lecture Notes UoN, 

2012).  

Graduation is a compromise between adherence to data (goodness of fit) and smoothness.  The 

balance that we want between these two conflicting objectives is a subjective choice and will 

depend on how the graduated rates will be used.  For example if we are constructing a standard 

table of national population mortality, we will be interested in maximizing the accuracy.  We 

will put more emphasis on adherence and less emphasis on smoothness. If the rates are to be 

used to calculate premiums and reserves for a life insurance company, we will want to ensure 

that the rates (and hence the premiums and reserves) progress smoothly from age to age to avoid 

sudden changes and inconsistencies.  We will put more emphasis on smoothness and less 

emphasis on adherence.  The mortality rates at ages around the accident hump will be less 

important in this situation are few policy holders are  likely to be in the age range 18-22 years. 

In this study however, we will focus on graduation by formula because of its pragmatic nature.  
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The method of graduation most often used for reasonably large experiences is to fit a parametric 

formula to the crude estimates(London, D. 1985). 

The underlying assumption is     (or   ) can be modeled using an appropriate mathematical 

formula with unknown parameters.  The parameters are typically calculated automatically by a 

computer using numerical methods. 

If the formula used does not include enough parameters, it will not be flexible enough to follow 

the crude rates closely, which may result in over graduation.  If too many parameters are 

included, sudden bends may appear in the graduated curve, which may result in under 

graduation. 

For different values of the parameters, we can assess the smoothness and adherence to data of 

the fitted model.  (In practice we will not need to check smoothness if the number of parameters 

is sufficiently small). 

We will choose the values of the parameters that provide the most appropriate model, according 

to some pre-defined criterion in respect of goodness of fit. Two simple (but useful) formulae 

are: 

Gompertz (1825)      =                                                                    (3.20) 

Makeham (1860)      = A + Bc
2(66)

 

                                                                                                       (Scott W.F., 1999) 

In practice, it is usually found that    follows an exponential curve quite closely over middle 

and older ages (in human populations) so most successful formulae include a Gompertz term. 

Makeham’s formula is interpreted as the addition of accidental deaths, independent of age, to a 

Gompertz term representing senescent deaths.  

The most recent standard tables produced for us by UK life insurance companies used formulae 

of the form.  

  = pollynomial1 + exp (polyinomial2)  

Which includes Gompertz and Makeham as special cases(London, D. 1985). The formulae were 

of the form: 

    =f (                               Where  

Polynomial (1) =    +   x +   x2 + …. +   x
r -1
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Polynomial (2)=     +        +       + ….         

In other words, a formula with (r +s) parameters was fitted for each table of the form    = 

polynomial1 + exp (polynomial2). 

The researcher chose to use a Perks formula specification, a(x), to graduate transition 

intensities to sickness states. Moreover, an additional parameter, H, was included for 

the purposes of a more suitable fit.   
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Graduations using the Gompertz-Makeham and Logit Gompertz-Makeham formula of 

type (r,s) have been investigated previously using health and disability related data ( 

CMIR 6 (1983) and CMIR 17 (1991)). Generally, the LogitGompertz-Makeham 

formula is expressed as: 
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is the Gompertz-Makeham formula of type (r,s) (Forfar et al 1985). 

A LogitGompertz-Makeham formula, LG M  ( 1 , 2 )  ,  was found to fit sufficiently well 

here for recovery intensities, that is: 
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3.13 Calculation of Premiums using the equivalence principle 

So far we have shown that multiple state models are a natural way of modeling cash 

flows for insurance policies and we have also shown how to evaluate probabilities for 

such models given only the transition intensities between pairs of states. The next stage 

in our study of multiple state models is to calculate premiums and policy values for a 
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policy represented by such a model and to show how we can evaluate them(Lecture 

Notes UoN, 1999). 

To do this we can generalize our definitions of insurance and annuity functions to a 

multiple state framework. We implicitly use the indicator function approach, which 

leads directly to intuitive formulae for the expected present values, but does not give 

higher moments.  

Suppose we have a life aged currently in state i   of a multiple state model. We wish 

to value an annuity of 1 per year payable continuously while the life is in some state 

(which may be equal to )(London, D. 1985). 

The EPV of the annuity, at force of interest  per year, is 

 

 

 Where I is the indicator function 

 

Similarly, if the annuity is payable at the start of each year, from the current time, 

conditional on the life being in state j, given that the life is currently in state i, the 

expected present value is 

                                                                                       (3.23) 

Annuity benefits payable more frequently can be valued similarly. For insurance 

benefits, the payment is usually conditional on making a transition. A death benefit is 

payable on transition into the dead state; a critical illness insurance policy might pay a 

sum insured on death or earlier diagnosis of one of a specified group of illnesses(Scott 

W.F., 1999). 

Suppose a unit benefit is payable immediately on each future transfer into state , given that the 

life is currently in state  (which may be equal to ). Then the expected present value of the 

benefit is  

.                                                                              (3.24) 
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To derive this, we consider payment in the interval  so that the amount of the 

payment is 1, the discount factor (for sufficiently small dt)is, and the probability 

that the benefit is paid is the probability that the life transfers into state k in  

given that the life is in state  at time 0. In order to transfer into state k in  the 

life must be in some state j that is not  immediately before (the probability of two 

transitions in infinitesimal time being negligible), with probability  then transfer 

from j  to k  during the interval  with probability .  Summing (that is, 

integrating) over all the possible time intervals gives equation (3.24). 

 

Other benefits and annuity designs are feasible; for example, a lump sum benefit might 

be paid on the first transition from healthy to sick, or premiums may be paid only during 

the first sojourn in state 0. Most practical cases can be managed from first principles 

using the indicator function approach(Lecture Notes UoN, 2012). 

 

In general, premiums are calculated using the equivalence principle and we assume that 

lives are in state 0 at the policy inception date(London, D. 1985). 

Example 3.1: Suppose an insurer issues a 10-year disability income insurance policy to 

a healthy life aged 60. Calculate the premiums for the following two policy designs 

using the model and parameters given from Example: Assume an interest rate of 5% per 

year effective, and that there are no expenses. 

(a) Premiums are payable continuously while in the healthy state. A benefit of $20000 

per year is payable continuously while in the disabled state. A death benefit of $50000 

is payable immediately on death. 

(b) Premiums are payable monthly in advance conditional on the life being in the 

healthy state at the premium date. The sickness benefit of $20000 per year is 

payable monthly in arrear, if the life is in the sick state at the payment date. A death 

benefit of $50000 is payable immediately on death(Dickson et al, 2009).. 

 

Solution :(a) We equate the EPV of the premiums with the EFV of the benefits. 

The computation of the EPV of the benefits requires numerical integration. All values 

below have been calculated using the repeated Simpson's rule, with h = 1/12. Using 
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Table 8.1,  Let P denote the annual rate of premium. Then the EPV of the premium 

income is  

                                                               (Scoot W.F., 1999) 

And numerical integration gives  Next, the EPV of the sickness 

benefit is  and numerical integration gives

  

. Last, the EPV of the death benefit is 

 

Using numerical integration, we find  .  

Hence, the annual premium rate is  

 

We now need to find the EPV of annuities payable monthly, and we can calculate these 

from Table 8.1. First, to find the EPV of premium income we calculate 

 

 

And to find the EPV  of the sickness benefit we require 

Note that the premiums are payable in advance, so that the final premium payment date 

is at time 9 However, the disability benefit is payable in arrear so that a payment will be 

made at time 10if the policyholder is disabled at that lime.  

 The death benefit is unchanged from part (a), so the premium is $3257.20per year, 

or $271.43per month(Dickson et al, 2009).  
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3.14 Policy values or Reserves and Thiele's differential equation 

The definition of the time t policy value for a policy modeled using a multiple 

state model is the expected value at that time 

of the future loss random variable - with one additional requirement. For a 

policy described by a multiple state model, the future loss random variable, and 

hence the policy value, at duration t years depends on which state of the model the 

policyholder is in at that time. We can express this formally as follows: a policy value is 

the expected value at that time of the future loss random variable conditional on the 

policy being in a given state at that time(Dickson et al, 2009). We use the following 

notation for policy values(Scott W.F.1991). 

Notation
)(itV denotes the policy value at duration t for a policy which is in state i at that 

time. A policy value depends numerically on the basis used in its calculation, that is the 

transition intensities between pairs of states as functions of the individual’s age, the 

force of interest, the assumed expenses, and the assumed bonus rates in the case of 

participating policies. The key to calculating policy values is Thiele’s differential 

equation, which can be solved numerically using Euler’s method(Dickson et al, 2009).  

Notation, 
)(itV  denotes the policy value at duration t for a policy which is in state i at 

that time. The key to calculating policy values is Thiele's differential equation, which 

can be solved numerically using Euler's, or some more sophisticated, method. To 

establish some ideas we start by considering the disability income insurance model. 

 

Suppose we consider a policy with a term of n years issued to a life aged x. Premiums 

are payable continuously throughout the term at rate P per year while the life is healthy, 

an annuity benefit is payable continuously at rate B per year while the life is sick, and a 

lump sum, 5, is payable immediately on death within the term. Recovery from sick to 

healthy is possible and the disability income insurance model is appropriate(Scoot W.F., 

1999). We are interested in calculating policy values for this policy and also in 

calculating the premium using the equivalence principle. For simplicity we ignore 

expenses in this section, but these could be included as extra 'benefits' or negative 

'premiums' provided only that they are payable continuously at a constant rate while the 

life is in a given state and/or are payable as lump sums immediately on transition 
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between pairs of states. Also for simplicity, we assume that the premium, the benefits 

and the force of interest per year, are constants rather than functions of time(Dickson et 

al, 2009).. 

 

Example 3.2: Show that, for  ,  

 

(a)  

And derive expressions for                                                                    (3.25) 

(b) Show that, for  

(c)  

And             (3.26)               

(d) Suppose that  

 

And  ,  ,  and 

 

where =  

Calculate using Euler’s method with a step size 

of 1/12 given that 

 

 

Calculate P using the equivalence principle  

Solutions:(a) The policy value equals 

EPV of future benefits — EPV of future premiums 

Conditional on being in state 0 at time t 
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= EPV of future disability income benefit +EPV of future death benefit — EPV of 

future premiums conditional on being in state 0 at lime / 

This leads directly to formula (3.45). 

The policy value for a life in state I is similar, but conditioning on being in state 1 at 

time t so that 

                                                                   (3.27) 

                                                                                                                          

where the annuity and insurance functions are defined(Dickson et al, 2009).. 

(b)We could derive formula (3.27) directly. To do this it is helpful to think of , as the 

amount of cash the insurer is holding at time t. given that the policyholder is in state 0 

and that, in terms of expected values, this amount is exactly sufficient to provide for 

future losses(Scoot W.F., 1999) 

. 

Let be such that and let be small. Consider what happens between 

times  and Premiums received and interest earned will increase the insurer's cash 

to  

Recall that  h) 

So that   

This amount must be sufficient to provide the amount the insurer expects to need at 

time this amount is a policy value of and possible extra amounts of   

 if the policyholder dies: the probability of which is  and  

  if the policyholder falls sick: the probability of which is 

 

Hence  

 

Rearranging, dividing by h and letting  gives formula                       (3.28)  
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(c)(i) Euler's method for the numerical evaluation of and, is based on replacing 

the differentials on the left-hand sides of formulae (3.27) and (3.28) by discrete time 

approximations based on a step size h. which are correct up to 0(h). We could write, for 

example, 

 

Putting this into formula (3.47) would give a formula for in terms of  and 

.This is not ideal since the starting values for using Euler's method are  

 

and so we will be working backwards, calculating successively policy values at durations 

 

for this reason, it is more convenient to have formulae for and in 

terms of, and,  We can achieve this by writing  

 

 

And   

Putting these expressions into formulae (3.26)and(3.27), multiplying 

through by h, rearranging and ignoring terms which are o(h). Gives the 

following two (approximate) equations  

 (3.29) 

And                                                                                                                   

(3.30)                                                                                                                                  

These equations, together with the starting values at time n and given 

values of the step size, h, and premium rate P, can be used to calculate 

successively 
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1)  

2)  

 

For  

 

3)   

4)  

 

(c)(ii) Let P*be the premium calculated using the equivalence principle.  

Then for this premium we have by definit ion . Using the results in 

0part (i)  and assuming  is (approximately) a linear function of p we 

have 

 

So that  

 

Using Solver or Goal Seek in Excel, setting to be equal to zero, by varying P. The 

equivalence principle premium is $5796.59. Using the techniques of Example 3.2 gives 

 

and hence an equivalence principle premium of $5772.56. The difference arises because 

we are using two different approximation methods(Dickson et al, 2009).. 

The above example illustrates why, for a multiple state model, the policy value at 

duration / depends on the state the individual is in at that time. If in this example, the 

individual is in state 0 at time 10. Then it is quite likely that no benefits will ever be 

paid and so only a modest policy value is required. On the other hand, if the individual 

is in state 1 ,  it is very likely that benefits at the rate of $100000 per year will be paid 

for the next 10 years and no future premiums will be received. In this case, a substantial 

policy value is required the difference between the values of   and in part (c), 
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and the fact that the Latter are not much affected by the value of the premium, 

demonstrate this point(Scoot W.F., 1999) 

. 

3.15  Thiele's differential equation - the general case 

Consider an insurance policy issued at age x and with term  years described by a 

multiple state model with states, labeled 0,1 , 2,..., n. Let us denote the transition 

intensity between stales i and/  age y, 6,   denote the force of interest per year at time t 

and denote the rate of payment of benefit while the policyholder is in state , and 

Denote the lump sum benefit payable instantaneously at time t on transition from 

state i to state j. 

 We assume that and are continuous functions of . Note that premiums 

are included within this model as negative benefits and expenses can be included as 

additions to the benefits(Dickson et al, 2009).. 

For this very general model, Thiele's differential equation is as follows. 

 

                    (3.31) 

                                                                                                                                        

At time t the policy value tor a policy in state  is changing as a result of  interest being 

earned at rate and Benefits being paid at rate    . The policy value will also change if 

the policyholder jumps from state i to any other state j at this time.  

Formula (3.50) can be derived more formally by writing down an integral equation for 
and differentiating it(Dickson et al, 2009). We choose a small step size hand replace the 

left-hand side by 
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Multiplying through by h rearranging and ignoring terms which are 0(h),we have a formula for. 

in terms of the policy values at duration t. We can then use Euler's method, starting with 

   to calculate the policy values at durations  
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CHAPTER FOUR: APPLICATIONS, DATA PRESENTATION AND ANALYSIS 

4.1 Introduction 

In Kenya, the lack of a scientifically modeled national health financing insurance can be 

attributed to the lack of complete, comprehensive and reliable data. This is particularly 

problematic in the case of LTC insurance given the unusually broad range of services 

and modes of disability associated with LTC (Eagles 1992). Clearly choice of data will 

influence the modeling methodology. In this chapter, therefore, a case study of National 

Hospital Insurance Fund (N.H.I.F.) is undertaken for the purposes of both introducing 

the current and available data sets in Kenya and, more importantly, in justifying the 

choice of data used in this project. The choice of N.H.I.F. was particularly informed by 

the fact it is the only LTC insurer with a scheme of more than 200,000 principal 

members. Other private insurers have schemes in tens of thousands which the researcher 

found to be insufficient for the purpose of multi state modeling.    

4.2 Data Requirements 

Ideal data for LTC insurance pricing is a longitudinal data set that tracks both levels of 

disability and LTC utilization patterns of a large representative population. As discussed 

by Meiners (1989), the benefit of longitudinal data for LTC pricing is primarily to 

enable an understanding of LTC utilization changes as the cohort ages.  

Many nations, including Kenya, lack a systematic LTC data-reporting program enabling 

comprehensive information to be collected across service sectors, care programs and 

jurisdictions (Reif 1985). Given that Kenya currently has no private insurance coverage 

for LTC, there is clearly a need to gather data on virtually all aspects of LTC insurance 

covers including costs, risk management, marketing and underwriting. From a pure 

actuarial pricing and reserving perspective, utilization/demand data for LTC segregated 

by age and sex in conjunction with changes to utilization(ie functional changes) as a 

function of age are essential. The following sections discuss and evaluate the various 

options for obtaining this information.  
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4.3 Kenyan Long Tern Care Data 

In order to access LTC insurance, the researcher approached N.H.I.F. with a request to 

provide time-segregated claims for the year 2012 on a monthly basis, according to 

various levels of disability with healthy/able being  free of any claim records of the civil 

servants scheme with over 200,000 principal scheme members. Outpatient claims had 

low medications requirements, possibly normal check-ups and claims which involved 

some   pharmaceutical purchases and minor surgery such as tooth removals. In patient 

claims were characterized by in patient hospitalization for more than 3  months 

sometimes with critical illnesses such as cancer, diabetes and high blood pressure being 

involved.  Recoveries from both out patient and in patient claims were subtracted from 

the last expenses, meaning death cases since LTC covers were primarily concerned with 

sickness benefits. Death claims were assumed to be covered by other insurance classes 

such as life and endowments and term assurances.  

4.4 Approximation from 1-step Transition Probabilities 

The researcher used Ms Excel 2007 and Matlab 7.0.4  to model the data in terms of 

Chapman-Kolmogorov equations and calculate the 1-step transition probabilities at 10-

yearly age intervals and the results are reported in Tables 4.1 and 4.2 females and males 

(from the healthy/able state) respectively.  The calculation was done using the 

maximum likelihood estimates of the t year probability ab

xt p of a life aged (x) making 

a transition from state a to state b using the formulae in the four state markov model in 

chapter four.  

The calculation was done using the maximum likelihood estimates  of the year 

probability of a life aged (x)  making  a transition form state a to state b using an 

equation of the form :   

           (4.1) 

Where  
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Several observations can be made with transition intensities or forces of transition and 

probabilities for both males and females generally behaving as expected with transition 

probabilities to sickness states increasing with age. Transition through disability levels is 

reasonably progressive. That is, given that a transition out of the sickness state occurs, there is a 

higher probability of moving to a lower sickness like out patient than directly to a more severe 

sickness level such as the in patient sickness level. At higher ages, however, transition to the in 

patient sickness exceeding other out patient sickness levels. This seems reasonable owing to the 

effects of ageing and chronic frailty.  

Table 4.1: Male one-step transition probabilities 

 Healthy Outpatient Inpatient Dead 

Healthy     

20 0.990045 0.005229 0.001793 0.001199 

30 0.988251 0.006233 0.002137 0.001313 

40 0.983648 0.008726 0.002992 0.001742 

50 0.971556 0.01486 0.005095 0.003562 

60 0.940283 0.029544             0.01013 0.010245 

70 0.897377 0.04365 0.015034 0.029305 

80 0.702715 0.119224 0.046477 0.077222 

Outpatient 20  0.15      0.844587      0.002142 0.001199 

30 0.15 0.843664 0.002554 0.001313 

40 0.15 0.841226 0.003575 0.001742 

50 0.15 0.834462 0.006088 0.003562 

60 0.15 0.815941 0.012106 0.010245 

70 0.15 0.785242 0.017965 0.029305 

80 0.15 0.652276 0.05554 0.077222 

In patient 

20 0 0 0.1 0.002825 

30 0 0 0.1 0.005195 

40 0 0 0.1     0.01009 

50 0 0 0.1 0.018562 

60 0 0 0.1 0.031897 

70 0 0 0.1 0.055423 

80 0 0 0.1 0.105596 

Dead  

0 0 0 0 
20 

30 0 0 0 0 

40 0 0 0 0 

50 0 0 0 0 

60 0 0 0 0 

70 0 0 0 0 

80 0 0 0 0 

 

 



 

68 

 

Secondly, transition probabilities out of the sickness state appear higher for males than females. 

Transition out of the healthy/able state to outpatient and inpatient sickness states appears higher 

for females than males. Again, mortality in the inpatient sickness state is higher for males than 

females.  

These last two points above are particularly interesting as they form the basis of an a priori 

expectation that the likelihood of LTC utilization by females will be higher than by males in the 

Kenyan population, therefore resulting in more expensive premiums for females. 

 

Table 4.2: Female 1-step transition probabilities 

 Healthy Outpatient Inpatient Dead 

       

Healthy 

0.991502 0.004906 0.001299 0.000417 

20 0.990264 0.005612 0.001486 0.000492 

30 0.986776 0.007486 0.001983 0.000893 

40 0.97731 0.012414 0.00329 0.002231 

50 0.95288 0.024985 0.006659 0.005772 

60 0.920111 0.037427 0.010481 0.015529 

70 0.745522 0.088349 0.033458 0.048903 

80 0.15 0.845614 0.001624 0.000417 

  Out patient 20 0.15 0.844967 0.001858 0.000492 

30 0.15 0.84305 0.002479 0.000893 

40 0.15 0.837712 0.004113 0.002231 

50 0.15 0.823774 0.008324 0.005772 

60 0.15 0.800804 0.013102 0.015529 

70 0.15 0.654558 0.041825 0.048903 

80 0 0.15 0.846652 0.000417 

 In patient 

20 

0 0.15 0.846155 0.000492 
30 0 0.15 0.844634 0.000893 

40 0 0.15 0.840339 0.002231 

50 0 0.15 0.829065 0.005772 

60 0 0.15 0.808763 0.015529 

70 0 0.15 0.670198 0.048903 

80     

Dead  0 0 0 0 
20 

30 0 0 0 0 

40 0 0 0 0 

50 0 0 0 0 

60 0 0 0 0 

70 0 0 0 0 

80 0 0 0 0 
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4.5 Calculating Transition Intensities from Transition Probabilities 

The researcher imposed a Markov assumption to describe the process in the model. That is, we 

consider a stochastic process   0),(tS < t <  with state space { 1, 2,...,6} where S(t) 

represents the state of the process at timet.  0),(tS < t <   is a continuous time Markov chain 

if for statesg,h{1, 2,...6} and  tx, , ≥, 

Pr{S(  tx ) h  | S ( x ) = g , S ( r )  f o r  0 ≤  r x } = P r { S ( x + t ) = h | S (x )=g } .  

In other words, the future development ofS(t) can be determined only from its present state and 

without regard to the process history. We denote gh

xt p Pr{S(x + t) = h | S(x) = g},  

gg

xt p Pr{S (x + u) = g u [ x, x + t] |  S(x) = g}and assume a closed system whereby 

1
6

1




gh

xh

t p for all  x ≤ 0  r and t ≥ 0. The transition probabilities also obey the Chapman - 

Kolmogorov equations: 



6

11

. lh

txu

gl

xt

gh

xu pppt                                  (4.2) 

  

The existence of transition intensity functions is also assumed such that 
t

p gh

xt
t

gh

x  0lim or, 

alternatively, that )(top gh

x

gh

xt   Transition and occupancy probabilities are related to 

transition intensities via the relations: 

)( 1

hl

lx

gh

xt

lh

x

gl

xt

hl

gh

xt ppp
dt

d




  and













 





t

gl

gl

rx

gg

xt drp
0

exp     

     

Where these equations are better known as the Kolmogorov forward equations (Cox and Miller 

1965). The assumption that there is constant force of transition in the transition intensities for 

each age in the data is required. Consequently, if P(t) is defined to be the matrix of transition 

probabilities over t years and Q to be the matrix of constant transition intensities per annum, 

then it can be shown directly from the Chapman-Kolmogorov equations (Jones 1992b) that 
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P(t) = exp (Qt). Thus, calculating transition intensities requires finding the infinitesimal 

generator Q for the transition probability matrix P(t). 

The researcher chose to use a Schur-Parlett method purely because of its 

straightforward implementation through software such as MS-EXCEL and MATLAB, 

which was used by the researcher. 

The method initially requires the computation of a Schur decomposition P =UTU
`
 

,where U is a unitary matrix (ie its entries are complex and its inverse is the conjugate-

transpose), U* is the conjugate transpose of U, and T is an upper triangular matrix. We 

can then determine functions of matrices (including natural logarithms) using the 

formula: 

f(P) = Uf(T)
U*                                                                                                                                                        (4.3)

 

Parlett (1974) proposes a recursive relationship for determining the matrix F, defined as 

f(T), which is derived from equating elements (i,j) where i<j,( ie strictly upper 

triangular) in the commutivity relation FT=TF. The elements (i,j) in the commutivity 

result satisfy 

 
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j
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j
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kjikkjtk fttf  

and as long as ti, ~ t jj(ie the eigen values are distinct), then: 
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][

                                                               (4.4)

 

Thus, starting with )( iiii tff  , all other elements of F can be calculated one super 

diagonal at a time. Tables 4.3 and 4.4 report the calculated annual transition intensities 

calculated from 1-step transition probabilities at 10-yearly age intervals for males and 

females respectively. As anticipated, there were a number of calculated transition 

intensities which are negative and thus have no physical interpretation. They remain 

useful, however, as starting values for our constraining algorithm. We will refer to these 
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`unconstrained estimates' as jx for the transition intensity at age x from state i to state j 

constituting matrix generator Q x  . The researcher found the Schur-Parlett approach to 

give satisfactory results over the majority of the age range. We note, however, that the 

computational procedure was unstable at the extremely high ages.  

Table 4.3 :Male unconstrained transition intensities calculated from 1-step transition 

probabilities in 10 yearly age intervals. 

 Healthy Outpatient  Inpatient Dead 

Healthy     

20  0.005552 0.001896 0.001198 

30  0.006628 0.002262 0.001308 

40  0.009315 0.003172 0.001725 

50  0.016034 0.005429 0.003511 

60  0.032798 0.010957 0.01013 

70  0.050588 0.016731 0.029426 
80  0.172025 0.058298 0.078928 

Out patient  20 0.163936  0.0023 0.001197 

30 0.16419  0.002744 0.001306 

40 -0.164851  0.00385 0.001721 

50 0.166644  0.006599 0.003498 

60 -0.171567  0.013363 0.010091 

70 0.179329  0.020487 0.029352 

80 0.225628  0.07359 0.078519 

In patient 20 

 

20 

0.00399 

0.17751  0.001197 

30 0.00485 0.177686  0.001305 

40 -0.00469 0.178158  0.001716 

50 0.00397 0.179494  0.003484 

60 -0.00311 0.183309  0.010051 

70 -0.00494 0.190219  0.029274 

80 0.00469 0.227448  0.07813 

Dead20 

20 

0 0 0  

30 0 0 0  

40 0 0 0  
50 0 0 0  

60 0 0 0  

70 0 0 0  

80 0 0 0 
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Table 4.4: Female unconstrained transition intensities calculated from 1-step transition 

probabilities in 10 yearly age intervals. 

 Healthy Outpatient  Inpatient Dead 

Healthy     

20  0.005238  0.000415 

30  0.005998 0.001357 0.000486 

40  0.008025 0.001553 0.000875 

50  0.01342 0.002075 0.002177 

60  0.027604 0.003457 0.00562 

70  0.042664 0.007069 0.015295 

80  0.123111    0.01133 0.047905 

Out patient 20 -0.163707  0.041157 0.000414 

30 0.163882  0.001728 0.000484 

40 0.164386     0.001978 0.000869 

50 -0.16578     0.002643 0.002161 

60 0.16951     0.004409 0.005571 

70 -0.175197     0.009048 0.015189 

80 0.217371     0.014566 0.047106 

In patient20 

20 

    0 

0 

0.0061

02 

0.0040

74 

0.0005

62 

0.0051

5 

0.0077

5 

0.0061

9 

0.0074

2 

0.0060

4 

0.0093

5 
 

-0.177359    0.054786 0.000413 
30           0          0.006047   

40               0 -0.177491  0.000482 

50 0 0.177885  0.000863 

60 0 -0.178994  0.002143 

70 0 0.181963  0.005517 

80 0 0.18715  0.015072 

Dead 

20 

 0.230334  0 0.046253 

30 0 0 0  
40 0 0 0  

50 0 0 0  

60 0 0 0  

70 0 0 0  

80 0 0 0 

 

 

 

 

 

Transition intensities which are positive are required. Determining an appropriate 

method to deal with this requires care as adjusting negative 'transition intensities' to 

non-negative values will inevitably force other transition intensities, particularly those 

complementary to transition intensities that are negative, to compensate accordingly. 

The researcher implemented this approach by estimating 


Q  using Israel et al's (2001) 

algorithm instead of our original Schur-Parlett method. Tables 4.5 and 4.6 show the 

eigen values n .,........., 21 for the transition probability matrices estimated from data at 

10-yearly age intervals for both males and females respectively.  
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Table 4.5  Eigen values for transition probability matrices estimated from the N.H.I.F. 

survey data in 10-yearly age intervals - Males. 

 Age                                           
1  2  3  4  

10 0.999821 0.838121 0.848222 1 

20 0.998724 0.836277 0.846855 1 

30 0.998483 0.834203 0.84593 1 

40 0.997715 0.828986 0.843431 1 

50 0.995003 0.81566 0.836371 1 

60 0.986077 0.782183 0.816708 1 

70 0.96448 0.737629 0.784764 1 

80 0.534709 0.646476 0.721884 1 

 

Table 4.6:  Eigen values for transition probability matrices estimated from N.H.I.F. data 

in 10-yearly age intervals - Females. 

Age 
1  2  3  4  

10 0.999838 0.839261 0.847249                                   1 

20 0.999496 0.838461 0.846717 1 

30 0.999287 0.83703 0.845997 1 

40 0.998546 0.833052 0.843896 1 

50 0.996327 0.82245 0.838032 1 

60 0.990413 0.795729 0.821848 1 

70 0.977043 0.760464 0.795421 1 

80 0.567567 0.624489 0.706487 1 

 

The researcher chose to implement a simple constraining algorithm to constrain the 

transition intensities to lie in the non-negative region. That is, we estimate Q using 



 minQ || P – exp )(Q ||                                                                                  (4.5)  



 

74 

 

such that the elements ( i ~ j) of Q are non – negative. 

The procedure incorporates a least squares routine, using the unconstrained transition 

intensities as starting values and exp (Q)  evaluated using a Taylor series expansion used by 

Moler and Van Loan (1978) for series computations of matrix exponentials, thus:  

Exp(Q) = ........
!

1
......

!2

1
1

!

1 2

0






n

n

n Q
n

QQQ
n

 

Tables 4.7 and 4.8 show the annual constrained transition intensities calculated using the 

above algorithm at 10-yearly age intervals for both males and females respectively. 

Interestingly, the constraining procedure results in Q having the non-negative off diagonal 

entries estimated as zero and recovery transitions only occurring progressively by one state 

- a likely feature of estimating transition intensities from transition probabilities estimated 

using Rickayzen and Walsh's (2002) framework. 

Figures 4.4 and 4.5 illustrate the constrained transition intensities for both males and 

females from the healthy/able state estimated using the simple constraining algorithm 

described above. 

Several important observations may be made here among them the fact that Qs no 

longer contains any negative `transition intensities'. Secondly, the constraining 

procedure does not impact on the unconstrained negative intensities in isolation. All 

elements of the transition intensity matrix will be affected. However, a comparison of 

the unconstrained transition intensities against the resulting constrained transition 

intensities for both males and females reveals only marginal differences to other 

elements as a result of the constraining procedure. 
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Table 4.7: Female constrained transition intensities in 10 yearly age intervals. 

  Healthy Outpatient Inpatient Dead 

Healthy 20  0.005219 0.001353 0.000416 

 30  0.005978 0.001551 0.000487 

 40  0.008004 0.002078 0.000875 

 50  0.013394 0.003471 0.002177 

 60  0.027578 0.007069 0.005631 

 70  0.042624 0.011333 0.015317 

 80  0.122889 0.041199 0.048004 

Outpatient 20 0.16252  0.002092 0.000444 

 30 0.162691  0.002321 0.000522 

 40 0.163172  0.002919 0.000939 

 50 0.16452  0.00461 0.002345 

  60 0.168141  0.009264 0.005796 

 70 0.173658  0.014801 0.015443 

  80 0.214095  0.055272 0.047636 

 In patient  20 0 0.170766  0.0001 

 30 0 0.17114  0.0001 

 40 0 0.172247  0.0001 

 50 0 0.174135  0.0001 

 60 0 0.17685  0.003165 

  70 0 0.181535  0.012649 

 80 0 0.219895  0.043193 

Dead 20 0 0 0  

 30 0 0 0  

 40 0 0 0  

 50 0 0 0  

 60 0 0 0  

 70 0 0 0  

 80 0 0 0  
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Table 4.8: Male constrained transition intensities in 5 yearly age intervals. 

 
Healthy Outpatient  In patient Dead 

Healthy     

20  0.005535 0.001894 0.001198 

30  0.006611 0.002262 0.001307 

40  0.009299 0.003174 0.001725 

50  0.016017 0.005431 0.003514 

60  0.032777 0.010964 0.010139 

70  0.050562 0.016749 0.029442 

80  0.171942 0.058377 0.07903 

Outpatient 

20    0.16274 
 

0.002654 0.001293 

30 0.162984  0.003072 0.001412 

  40 0.163619  0.004112 0.001864 

50 0.165353  0.006806 0.00371 

 60 0.170124  0.013593 0.010323 

70 0.177647  0.020748 0.029616 

80 0.221915  0.074159 0.079062 

In patient    0.0001 

 20 0 0.171054   

 30 0 0.171502  0.0001 

 40 0 0.172716  0.0001 

50 0 0.174649  0.001143 

60 0 0.178058  0.007668 

70 0 0.184316  0.026776 

80 0 0.216654  0.075003 

Dead20  0 0 0 

30  0 0 0 

40  0 0 0 

50  0 0 0 

60  0 0 0 

70  0 0 0 

80  0 0 0 

The study also noted that several transition intensities have the tendency to change 

direction abruptly at the extremely high ages. Recovery intensities appear to be 

increasing as a function of age for both males and females. This initially seems counter 
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intuitive. However, if one considers the conditional probability that a recovery transition 

occurs given a departure from the life's current state, it is easily verifiable that this 

quantity is indeed decreasing as a function of age - which is consistent with the 

underlying recovery process. A further reason lies with the Rickayzen and Walsh's 

(2002) feature of recovery transition probabilities which are constant for each age. 

Finally, the researcher noted that although the constraining procedure produces a matrix 

Q that has row-sums 0 and non-negative off diagonal entries, it no longer satisfies P(1) 

= exp(Q) exactly.  Overall, the method used here to constrain the transition intensities is 

not critical as these intensities must ultimately be graduated in order to apply Thiele's 

differential equation approach. 

4.6 Graduating Transition Intensities to Sickness States 

The graduation by mathematical formulae is pursued purely because of the need for 

functional forms for the constrained transition intensities for use in the Thiele's 

differential equations pricing and reserving framework. Graduation by mathematical 

formulae is discussed in detail in Benjamin and Pollard (1980), London (1985) and  

Forfar et al (1988). The graduation of transition intensities are in three parts. The start is 

to graduate transition intensities to the levels of sickness states, then graduate recovery 

transition intensities and finally graduate mortality transition intensities. Furthermore, 

smoothness and goodness of fit criteria are discussed here in relation to the absence of 

exposed to risk information. 

The transition intensities considered are  342423141312 ,,,,, xxxxxx and for both males 

and females. The choice of formulae was directly influenced by the functional forms 

used to estimate the original 1-step transition probabilities in discrete time from which 

these intensities were derived. The researcher estimated transition probabilities to 

sickness levels states according to a logistic type function motivated by Perks (1932). 

The researcher chose to use a Perks formula specification, a(x), to graduate transition 

intensities to sickness states. Moreover, an additional parameter, H, was included for 

the purposes of a more suitable fit.  
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Table4.9. Parameter estimates for graduating transition intensities to sickness states for 

males using Perks specification. 

Parameters 
 

 
 

 
 

 

 

 
 

 

 
 

 
 

 

A 0.001716 0.001192 

 

-0.00174 

 

0.001762 0.002586 -0.00208 

B       

0.000112 

0.0000422 

 

0.0000316 

 

       

0.000053 

    

0.0000265 

    

0.0000447 

C          

1.097952 

1.093898 

 

          

1.090271 

       

1.093061 

    

1.097779 

      

1.098795 

D           

0.000127 

           -

0.000048 

            -

0.00019 

       -

0.0001 

    

0.001027 

      

0.001346 

K 110 110 110 110  110 110 

H        

0.006186 

       0.002114            

0.001342 

0.002894      

0.001114 

     

0.000185 

Table 4.10; Parameter estimates for graduating transition intensities to sickness states 

for females using Perks specification  

Parameters 
 

 
 

 
 

 
 
 

 
 

 
 

A 

0.005823 0.001667 0.001234 

 

 

0.002054 

 

-0.01028 

 

 

 

-0.00027 

 

B 
0.000125 0.0000313 0.0000219 

0.000832 

 

-0.01985 

90 
-0.00035 

C 
1.097723 1.097345 1.097263 

1.092977 

 

1.091327 

 

1.089583 

 

D 
0.001315 0.001196 0.001006 

0.000041 

 

0.0000803 

 

0.0000693 

 

K 
110 110 110 

110 

 

110 

 

110 

 

H 
0.004864 0.001246 0.000901 

0.000066 0.003899 

 

0.001207 
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4.7 Graduating Recovery Transitions 

The transition intensities considered here are those concerning recovery p32, psi and 

1 u . Graduations using the Gompertz- Makeham and Logit Gompertz-Makeham 

formula of type (r,s) have been investigated previously using health and disability 

related data ( CMIR 6 (1983) and CMIR 17 (1991)). Generally, the Logit Gompertz-

Makeham formula is expressed as: 

)(1

)(
)(

5,

5,

5,

xGM

xGM
xLGM

r

r

r








 Where  













r

i

r

ri

ri

i

i

i

r xxxGM
1

5

1

115, exp)( 

       (4.7)

 

is the Gompertz- Makeham formula of type (r,s) (Forfar et al 1985). 

A LogitGompertz-Makeham formula, LG M  ( 1 , 2 )  ,  was found to fit sufficiently well 

here for recovery intensities, that is: 

)exp(1

)exp(

321

321
0

x

xji

x 







                           (4.8) 

Female recovery transition intensities had the tendency to change direction abruptly at 

extremely high ages. Note, however, that male recovery transition intensities did not 

have this problem. The researcher chose to extrapolate over the higher ages for the 

female graduations. This was chosen purely to remain consistent with formulae used to 

graduate male recovery intensities. In any case, for our ultimate purpose of pricing 

calculations, it is anticipated that the impact of this assumption will be minimal. 

The parameters },,{ 321  were estimated using unweighted least squares. The 

parameter estimates for graduating recovery transition intensities for both males and 

females by mathematical formula as specified in equation (4.8) are presented in Tables 

4.11 and 4.12 respectively. 
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Table 4.11; Parameter estimates for graduating recovery transition intensities for 

males using a L G M  ( 1 , 2 )  specification. 

Parameter 
 

 
 

 

1  0.207171 0.215534 

2  -30.05004 -26.27263 

3  0.326204 0.282975 

 

Table 4.12: Parameter estimates for graduating recovery transition intensities for 

females using a LGM (1,2) specification. 

Parameter  
 

 
 

 

1                                                        

0.19639                       

  

0.22901 

2  19.6237 

 

  

67.1497 

3    0.211458 0.744763 

 

4.8 Graduating Mortality Transition Intensities 

The final set of transition intensities to be considered are those concerning mortality - 

is:   )exp( 4321

0 6

x

i

x

       (4.9) 

Again, the parameters  
4321 ,,,  were estimated using un weighted least 

squares. The parameter estimates for graduating mortality transition intensities for both 

males and females by mathematical formula as specified in equation 4.9 are presented 

in Tables 4.13 and 4.14 respectively. 
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Table 4.13. Parameter estimates for graduating mortality transition intensities for males 

using a GM (2,2) specification. 

  Transition Intensity 

Parameter 
 

 

lix 

 

 

lix 

 

 

lix 

Yl 0.0066 0.007678 0.007857 

72 -0.000378 -0.000451 -0.000467 

73 -7.189564 -6.869178 -6.750137 

74 0.062122 0.058743 0.056746 

 

Table 4.14 Parameter estimates for graduating mortality transition intensities for 

females using a GM (2.2) specification. 

  Transition Intensity 

Parameter 
 

 

lix 

 

 

 

lix 

 

 

 

lix 

Yl  0.004367 

 -0.000031 -0.00024 

-10.1279 -7.66023 

 0.089905

 0.061344 

 

0.004367 0.000805 

-0.00011 -7.06937 

0.059315 

 

72 0.00024 

-10.1279 -7.66023 

 0.089905

 0.061344 

 

-0.00024 -0.00011 - 

73 -10.1279 -7.66023 

 

7.06937 

74 0.089905 0.061344 0.059315 

 

4.9 Smoothness and Goodness of Fit Criteria 

One of the main advantages of graduating by mathematical formulae is that the resulting 

graduations are smooth. There is therefore no issue concerning smoothness here except 

in the case where two curves have been blended for graduating transitions to sickness 

states. As already discussed, the researcher endeavoured to ensure a smooth transition 

across both curves by forcing endpoints of both curves to meet and first derivatives at 

end points to be equal.  

The researcher chose to use the Theil Inequality Coefficient (TIC) (Theil 1958) which 

is a scale invariant statistic typically used to assess econometric forecast samples. It is 

expressed as: 
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                                                 (4.10) 

and lies between 0 and 1 with 0 being a perfect fit. Graduated curves with a coefficient 

of 10% or less were accepted. Table 4.15 reports the TIC for the graduated transition 

intensities for both males and females. 

Overall, the reported TIC are generally low suggesting that the graduated curves 

provide a good fit to the observed transition intensities. Furthermore, it is interesting to 

note that the inequality coefficients for males appear to be better than the female 

counterparts despite there being no intuitive reason as to why this should occur. Three 

reported inequality coefficients for females ( and ) are slightly greater than 10% 

suggesting that the formula specification for these transition intensities was sub-optimal. 

The researcher chose not to change the formula specification for these three transition 

intensities and to retain consistency with the other intensities as the  reported 

coefficients were only marginally greater than 10%.
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Table 4.15: Theil Inequality Coefficient (TIC) for graduated transition intensities 

Transition intensity  Male TIC Female TIC 

 
0.02317 0.034338 

 
0.00861 0.031603 

 
0.01514 0.02387 

 
0.01406 0.02537 

Recovery intensity    

 
0.06229 0.07065 

 
0.04052 0.11509 

Mortality intensity    

 
0.04469 0.01787 

 
0.05063 0.04332 

 
0.05801 0.11178 

 

4.10  The Premium Pricing Calculations  

In this section, the focus is on pricing of LTC products. The LTC benefit types and benefit 

triggers and the application of Thiele's differential equations as a framework for pricing and 

reserving LTC policies in Kenya is analyzed. 

The pricing methodology adopted in this project is essentially an application of Thiele's 

differential equations to derive formulae concerning the expected development of the 

mathematical reserve for a closed LTC insurance portfolio.  

If we let ),( urVi  denote the expected present value (EPV) of LTC benefits in the time interval (r, 

u), given that the policyholder is in state i at time r with a prevailing force of interest of  over 

the period ),( ur .  
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In general, for a multiple state model with n states, let )(tB jk denote the benefit payable at time 

t upon transition from state j to state k, and let b j (t) denote the rate of benefit payment at time t 

if the policyholder is in state j. 

Then, ),( urVi may be expressed as: 

  








 
 u

r ij

jij

ij

x

ii

rx

rt

i

ii

rxrt

u

r

rt

i utVtBpedttbpeurV ),()()(),( 1

)()(     (4.11) 

which leads to the generalisations of Thiele's differential equations: 

)),()(()(),(),( 


 
ij

jij

ij

rxiii utVrBrburVurV
dr

d
      (4.12) 

For i = 1,2,...,n (see Hoem (1969)). 

Now turning to the issue of pricing some illustrative LTC products, lets consider first a whole 

life stand-alone LTC policy where premiums are payable continuously at rate P per annum 

while the life is healthy/able (ie no sickness) and an annuity is payable to the policyholder at 

rate A per annum while enduring out or inpatient sickness state. That is, A per annum is paid to 

the policyholder when in need of LTC. Note that no death benefit is payable. For the purposes 

of premium calculation, we require the expected present value at time t=0 of a unit payment 

while the individual is in each of the able and LTC claiming states. 

Therefore, consider first, the case where: 

b, (t) = 1, b2 (t) = b3 (t) = b4 (t) = b5 (t) = b6 (t) = 0, and B ij (t) = 0 

for all i and j which allows us to calculate the present value of a unit payment, payable as long as 

the life is healthy/able - which ultimately translates to the calculation of premiums. 

Thus we have the following equations: 
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Solving for VI (0, u) gives the expected present value of a unit payment to the individual while 

in the able/healthy state, say EPV I .  

We also do the same for: 0)(,0)()()( 214  tBandtbtbtb ij  
for all i and j which allows us 

to calculate the EPV of a unit payment while the individual is in the out patient state, say EPV2. 

And 0,0)()(2)(,1)( 413  jiBandtbtbtbtb
 
for all i and j which allows us to calculate 

the EPV of a unit payment while the individual is in the in patient state, say EPV3. 

Using the principle of equivalence, the net annual premium, P, may be calculated as: 

P x EPV I = A x (EPV4 + EPV3) (1.04) 

Note that the system of Thiele's differential equations may not be solved analytically. We 

therefore solve numerically. Note also that u is required to be sufficiently large to mimic a whole 

of life assurance. 
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A nominal rate of interest of 8% per annum is assumed where premiums are increasing at an 

assumed inflation rate of 4% per annum and benefits are similarly increased by 4% per annum 

whether the insured is claiming or not. Thus a 4% effective net interest rate per annum is 

appropriate for comparative purposes. The benefit level used was the one given by N.H.I.F. as 

illustrated in the Annex I. Table 4.16 reports the net annual premium for a whole of life stand-

alone LTC policy calculated at 5 yearly age intervals. 

Table 4.16: Net annual premiums (Kshs) for a whole of life stand-alone LTC policy calculated 

using Thiele's differential equations for both males and females compared to other studies. 

Age Male Female 

20 6800 10080 

25 7250 11430 

30 9370 12200 

35 10840 14560 

40 12830 18730 

45 15550 21960 

50 19510 28890 

55 24590 37070 

60 32420 48520 

 

This pricing framework may easily be extended to other LTC product types. For instance, 

consider a LTC rider benefit policy where premiums are payable continuously at rate P per 

annum while able (ie no sickness) and an annuity is payable to the policyholder at rate A per 

annum while enduring out patient or in patient sickness. In addition, a sum assured, S, is payable 

immediately on death from any live state. 

That is, we need to consider the case where b 1 ; (t )= 0 for i = 1,2,...,5 and B
j4

 (t) =1 for 
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j=1, 2,...,5 which allows us to calculate the EPV of a unit payment when the individual transits to 

the dead state, say EPV4.Again, using the principle of equivalence, the calculation of the net 

annual premium for this rider benefit policy may be calculated as: 

P x EPV, = A x (EPV2 + EPV3) + S X EPV4         (4.14) 

Table 18 presents the net annual premium for a LTC rider benefit policy, calculated at 5 yearly 

age intervals using the same basis as the stand-alone policy with a sum assured, S, of Kshs 2,000, 

000. 

Table 4.17 Net annual premiums(Kshs) for a LTC rider benefit policy calculated using Thiele's 

differential equations for both males and females.  

Age Male Female 

20 8290 11200 

25 9570 12160 

30 12225 14340 

35 13904 17330 

40 16058 21340 

45 22646 27440 

50 29140 34420 

55 36850 45060 

60 48780 60300 

65 67650 83480 

 

The premium rates for the LTC rider benefit policy are clearly heavier than the stand alone LTC 

policy reflecting the addition of the death benefit. Moreover, they are proportionally higher at the 

older ages as expected. 

In contrast to net annual premiums, the single premium for a LTC rider benefit policy where 

premiums are payable continuously at rate P per annum while healthy/able and an annuity 
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payable to the policyholder at rate A per annum while enduring out patient or in patient sickness 

state with sum assured S, payable immediately on death from any live state, may be calculated 

directly by including all benefit payments and sums assured concurrently. 

Table 4.18 presents the single premium for both a LTC stand alone policy and LTC rider benefit 

policy, calculated at 5 yearly age intervals using the same bases as per calculations for net annual 

premiums(Kshs). 

Age Male Female Male Female 

20 135570 182170 175530 204300 

25 154920 201460 191360 234540 

30 166460 224380 211030 286880 

35 179300 256550 232580 293110 

40 193460 282390 258030 332890 

45 208770 317140 286160 378430 

50 224680 357540 312330 427560 

55 241390 392300 346350 482370 

60 255680 476660 376090 536530 

65 277220 479880 466610 589860 
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4.11 Reserving for illustrative LTC products 

Having solved for the net annual premium, P, we may calculate the development of the reserve 

for each state -  All we need to specify are the 

boundary conditions given as: 

                                                   (4.15)  

For illustrative purposes, we present results for the reserve profile for an LTC stand-alone policy 

at different states in  figure 4.1 . 

Overall, the results in Figure 4.1 show that the behavior of  is largely as expected.  

Reserves for non-LTC claiming states  begin at zero and gradually build 

before falling and ultimately releasing the entire reserve at the end of the policy term. Reserves 

in LTC claiming states, however, begin at very high levels and gradually fall to zero at the end of 

the policy term. 

 

Insurers are likely to be most concerned with as the vast majority of LTC policies would 

ordinarily be affected while the individual is in the healthy state . In each of the reserve profiles 

calculated here,  has a zero reserve at both contract issue and termination which is 

directly attributable to the equivalence principle. An interesting point to note is that the reserve 

levels for both the outpatient and inpatient states   and  begin at a positive non-

zero level.  
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Figure 4.1:  Reserve (Kshs-‘000s) profile for a LTC stand alone 

policy at different states  
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This chapter summarizes the study findings according to the research objectives. Conclusions of 

major study results are then outlined. Finally, recommendations based on the study findings are 

made to the N.H.I.F. Board, the Insurance Regulatory Authority (I.R.A), The Ministry of Health 

and actuarial scientists and practitioners on the pricing of Long Term Care Products offered by 

the national LTC insurer. 

5.2 Summary of the Study Findings 

The study used the four state multi state modeling framework to calculate transition intensities 

and probabilities of N.H.I.F. members transitioning from the healthy through to out and in 

patient sickness states up to death.  

The forces of transition, recovery and mortality were estimated using the maximum likelihood 

approach with the crude estimates of the same being graduated using parametric methodologies 

of Compertz-Mekahem with their logarithmic modifications using logistic variations and Perks 

formula. 

The membership data sample was categorized according to gender with all the calculations and 

estimates of transition intensities, probabilities, graduations, and pricing being based on ea ch 

gender. 

The study analysis was able to price the net and single premiums  for whole life stand alone 

and LTC rider benefit policies.  

In doing this, a nominal rate of interest of 8% per annum was assumed where premiums were 

increasing at an assumed inflation rate of 4% per annum and benefits similarly increased by 4% 

per annum whether the insured was claiming or not. Thus a 4% effective net interest rate per 

annum was appropriate for comparative purposes. 

The study found that transition intensities or forces of transition and probabilities for both males 

and females generally behaved as expected with transition probabilities to sickness states 
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increasing with age. Transition through sickness/disability levels was reasonably progressive. 

That is, given that a transition out of the sickness/disabled state occurs, there was a higher 

probability of moving to a lower sickness/disability level than directly to a more severe 

sickness/disability level. At higher ages, however, transition to the in patient sickness exceeding 

outpatient sickness/disability levels. This seems reasonable owing to the effects of ageing and 

chronic frailty.  

Secondly, transition probabilities out of the sick/disabled state appear higher for males than 

females. Transition out of the healthy/able state to outpatient and inpatient sickness states 

appears higher for females than males. Again, mortality in the inpatient sickness state is higher 

for males than females.  

These last two points above are particularly interesting as they form the basis of an a priori 

expectation that the likelihood of LTC utilization by females will be higher than by males in the 

Kenyan population, therefore resulting in more expensive premiums for females. 

On the reserving calculations, the study findings revealed that the reserve behavior is largely as expected.  

Reserves for non-LTC claiming states begin at zero and gradually build before falling and ultimately 

releasing the entire reserve at the end of the policy term. 

 The study found that for LTC claiming states of outpatient and inpatient the reserves begin at a positive 

non zero level since the premiums are not required to be paid by the insured during these states. 

5.3 Conclusions 

Based on the study findings, the research concludes that the male premium rates are uniformly 

less than female premium rates. Again, the transition intensities or forces of transition and 

probabilities for both males and females generally behaved as expected with transition 

probabilities to sickness states increasing with age. 

Transition through sickness/disability levels was reasonably progressive because of treatment so 

that there was a higher probability of moving to a lower sickness/disability level than directly to in 

patient sickness/disability level. At higher ages, however, transition to the inpatient sickness 
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exceeded the out patient sickness/disability levels. This seems reasonable owing to the effects of 

ageing and chronic frailty.  

Secondly, transition probabilities out of the sick/disabled state appear higher for males than 

females. Transition out of the healthy/able state to outpatient and inpatient sickness states appears 

higher for females than males. Again, mortality in the in-patient sickness state is higher for males 

than females.  

The two observations made form the basis of an a priori expectation that the likelihood of LTC 

utilization by females will be higher than by males in the Kenyan population, therefore resulting 

in more expensive premiums for females. Although the study did not investigate the nature of 

sicknesses for both in and out patient hospital attendances, the conclusion that female utilization 

of the medical insurance facility could be attributed to other visits such as prenatal, maternity and 

postnatal medical care.    

Overall, the study concluded that the net annual premium rates for both males and females 

calculated using Thiele's differential equations within a multiple state model framework appear 

both reasonable and consistent with past LTC studies with higher rates expected at higher ages.  

 The study concluded that the reserves  for the non LTC claiming state  begin at zero and gradually build 

up  and ultimately releases the entire reserve at the end of the policy term.  

 The study concludes that for LTC claiming states of outpatient and inpatient, the reserves begin at a 

positive non zero level since the premiums are not required to be paid by the insured during these states. 

5.4 Recommendations  

The non-existence of adequate data in Kenya has been, and will be, a significant obstacle in the introduction 

of private LTC insurance in Kenya. It is possible, however, to develop a model for pricing LTC insurance 

using the currently available data in Kenya.  This can be done via the application of Thiele's differential 

equations for a multiple state model. This model, despite its complexity, offers a significant degree of 

modeling flexibility and robustness which makes it preferable to traditional annuity inception approaches. 
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This study, to the researcher’s knowledge, represents the first stochastic model developed for the purposes 

of pricing reserving LTC in Kenya.  

The researcher therefore recommends this pricing and reserving model for the development and design of 

the LTC products in the Kenyan insurance industry.  

There are, however, a number of limitations here, largely a result of inadequate data. In particular, the 

researcher acknowledges the inconsistency of a continuous time Markov chain with the discrete state 

model framework. The focus to a great extent in this project has been the development of a model which, 

when adequate data becomes available, will produce increasingly accurate results.  

The study recommends that a comparative study using both the multi state and multiple decrement 

approaches be done in order to arrive at more accurate results in the pricing and reserving of LTC products 

in the Kenyan insurance industry.  

The study recommended that reserves   for non LTC claiming states  begin at zero and gradually build up  

and ultimately release  the entire reserve at the end of the policy term.  

 For LTC claiming states of outpatient and inpatient, the study recommends that reserves begin at a 

positive non zero level since the premiums are not required to be paid by the insured during these states. 

5.5 Room for Further Research  

Once appropriate LTC specific data become available for Kenya, the following extensions to this study 

could be undertaken: One is to allow for all possible modes of recovery in the multiple state model; 

secondly, other scholars and actuarial scientists could allow for lapses in the multiple state model. 

It is possible to allow for duration in the multiple state models by implementing a semi-Markov 

assumption as opposed to a Markov assumption. That is, allow transition intensities to depend on both age 

and the duration of stay in the current state.  

For comparative purposes, the technical actuarial bases used to price several illustrative LTC products 

come from a survey of earlier relevant literature. The model bases here, however, may be easily modified 

at the insurer's discretion in another scholarly research. 
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N.H.I.F.’s MEMBERS’ SERVICES LTC INSURANCE COVER 

Characteristics of the cover 

1. Employees actively in civil service and disciplined services are eligible for cover 

2. Only the principle member, spouse and three (3) children are covered. (Additional 

children can be covered at an extra premium as stipulated in annex II)  

3. Dependant children are eligible for cover upto 18 years of age. However with proof that 

the child is enrolled in full time learning institution, they are covered upto 25 years of 

age. Children with disabilities are also covered past 18 years of age. 

4. Medical cover commences immediately upon registration and payment of full premium 

for new employees. No waiting period is imposed.  

5. Annual medical checkup for the member is required for the principal member. 

6. Out-patient visits will attract a co-payment of KES 100 and KES 200 in government and 

other facilities per visit .  

7. Out-patient dental and optical cover available only on referral basis. 

8. Out-patient facilities shall be based on choice made by member with an option of 

changing after three months except in cases of emergency, travel on duty or transfer. In 

order to change outpatient facility, one must fill in a consent form which will be available 

online or at the NHIF offices. 

How to Register As an NHIF Member 

1. Fill in an NHIF 2 Application form (available at any NHIF office & on our website). 

Online registration is also acceptable (please see instructions below).  

2. Attach colored passport size photos of contributor and all declared dependant(s) 

3. Attach photocopies of identification cards for contributor and spouse (If married) 

4. Attach copies of birth certificate of child(ren) or birth notification for child(ren) below 

six (6) months,adoption certificate where applicable. Also include details of additional 

children you may wish to cover in the enhanced scheme and you are willing to pay 

additional premiums.  

5. Submit duly filled application form to the nearest NHIF office 
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BENEFITS PACKAGE 

1. In-patient cover 

Under this cover, members will access: 

 Hospital accommodation charges 

 Nursing care 

 Diagnostic, laboratory or other  medically necessary facilities and services 

 Physician’s, surgeon’s, anesthetist’s, or physiotherapist’s fees 

 Operating theater charges 

 Specialist consultations or visits  

 Drugs, dressing and medications prescribed by treating physician for in-hospital use 

 Day care services such as surgery and other medical services deemed fit by the physician  

 Pre-hospitalization procedures such as laboratory, x-ray or other medical diagnostic 

procedures which results in a member being admitted on the same day the tests are done.  

 Ambulance services for transportation and transfer of a sick member/dependant to 

another facility 

2. Out-patient cover 

The out-patient cover shall include: 

 Consultation 

 Laboratory investigations and X-ray services 

 Drugs administration and dispensing 

 Dental health care services 

 Radiological examinations 

 Nursing and midwifery services 

 Minor surgical services 

 Physiotherapy services 

 Optical care 

 Occupational therapy services 
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 Referral for specialized services 

 

3. Maternity cover and reproductive health 

 Consultation  and treatment for both mother and child 

 Normal and caesarian section  

 Family planning services excluding fertility treatment 

4. Dental cover 

 Dental consultation  

 Cost of filling  

 X-rays 

 Extractions including surgical extractions together with anaesthetics fees, hospital 

and operating theatre cost. 

The cover does not include:  

 The cost of replacement or repairs of old dentures, bridges and plates unless 

damage arises directly from accidental, external and visible means  

 Orthodontic treatment of cosmetic nature  

 

5. Optical Cover  

 Cost of eyeglasses  (limited to a pair per family unless proven medically  

necessary) 

 Frames  

 Eye testing fees  

The cover does not include:  

 The cost of frames replacement unless directly caused by an injury to an eye  

 Replacement of lenses unless necessitated in course of further treatment  

6. Ex-gratia payments 

NHIF shall not be liable for Ex-gratia payments upon the limits being exhausted. 
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7. Group life cover 

NHIF shall pay death benefit upon the demise of a member  

8. Last expense  cover  

NHIF shall, upon written notification of death of a member while this cover is in force, 

pay to the client or such other person or persons as the client may in writing direct, the 

amount specified in the Annex I to cater for the funeral expenses. 

EXCLUSIONS  

1. Expenses incurred by a member as a result of:  

 Investigations, treatment, surgery for obesity or its sequel, cosmetic or beauty treatment 

and /or surgery 

 Massage unless necessary for treatment i.e following an accident 

 Stays at sanatoria, old age homes, places of rest etc 

 Treatment by chiropractors, acupuncturitst and herbalists, stays and /or maintenance or 

treatment received in nature cure clinics or similar establishments or private beds 

registered within a nursing home, convalescent and /or rest homes 

 Claim for expenses incurred whilst the member was outside territorial limits of kenya 

unless a kenyan who is temporarily abroad and needs emergency treatment for illness 

or injury that occurs during the period of travel provided six weeks is not exceeded. 

 Fertility treatment related to infertility and impotence 

 Vaccines other than those of KEPH 

 

2. Charges recoverable under any Work Injury Benefits Act or any other medical plan 
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ANNEX I: N.H.I.F.’s LIMITS OF LIABILITY 

CIVIL 

SERVICE JOB 

GROUPS 

DISCIPLINED 

FORCES 

GRADES 

STATE LAW 

OFFICE 

GRADES 

IN-PATIENT 

LIMIT (KES) 

OUT-

PATIENT 

LIMIT(KES) 

A-G PG,1,2,3 - No Limit  No Limit  

H  PG 4 - No Limit  No Limit  

J PG 5 - No Limit  No Limit  

K  PG 6 SL 1 No Limit  No Limit  

L PG 7 SL 2 No Limit  No Limit  

M  PG 8 & 9 SL 3 No Limit  No Limit  

N PG 10 SL 4 1,130,000 80,000 

P PG 11 SL 5 1,250,000 80,000 

Q  PG 12 SL 6 1,500,000 100,000 

R,S,T  PG 13,14  SL 7,8,9 2,000,000 150,000 

 

DENTAL & OPTICAL COVER 

CIVIL 

SERVICE JOB 

GROUPS 

DISCIPLINED 

FORCES 

GRADES 

STATE LAW 

OFFICE 

GRADES 

DENTAL 

COVER 

OPTICAL 

COVER 

A-M PG1-9 SL 1-3 10,000  10,000 

N-Q  PG 10-12 SL 4-6 20,000 20,000 

R-T PG 13-14 SL 7-9 30,000 30,000 
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GROUP LIFE & LAST EXPENSE 

CIVIL 

SERVICE JOB 

GROUPS 

DISCIPLINED 

FORCES 

GRADES 

STATE LAW 

OFFICE 

GRADES 

GROUP LIFE 

(KES) 

LAST 

EXPENSE 

(KES) 

A-G PG,1,2,3 - 200,000 40,000 

H  PG 4 - 200,000 40,000 

J PG 5 - 200,000 50,000 

K  PG 6 SL 1 250,000 50,000 

L PG 7 SL 2 250,000 50,000 

M  PG 8 & 9 SL 3 300,000 60,000 

N PG 10 SL 4 300,000 70,000 

P PG 11 SL 5 350,000 80,000 

Q  PG 12 SL 6 400,000 80,000 

R,S,T  PG 13,14  SL 7,8,9 500,000 100,000 
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ANNEX II: N.H.I.F.’s ADDITIONAL DEPENDANT(S) 

Additional dependant(s’) premium for in-patient and out-patient limits within the unit per annum 

JOB GROUP PREMIUM OF EACH 

ADDITIONAL DEPENDANT 

(ONE) (KES)  

OPTION 1 

PREMIUM OF UNLIMITED 

ADDITIONAL DEPENDANT(S) 

(KES) 

OPTION 2 

A-G,PG,1,2,3 3,500 6,000 

H,PG 4 3,500 6,000 

J, PG 5 3,500 6,000 

K, PG 6, SL 1 3,500 6,000 

L, PG 7,SL 2 3,500 6,000 

M, PG 8,9,SL 3 3,500 6,000 

N, PG 10,SL 4 6,000 12,000 

P, PG 11,SL 5 6,000 12,000 

Q, PG 12,SL 6 6,000 12,000 

R,S,T,PG 13,14 

& SL 7,8,9 

9,000 20,000 

 

 

 

 


