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Abstract— The effective earth radius factor (k-factor) is an important parameter in the plan-
ning and design of both terrestrial microwave and UHF/VHF line-of-sight links. It is for this
reason that the structure and variations in the effective earth radius factor in the first 200m of
the atmosphere is critical to radio link planners and optimization engineers alike. The atmo-
spheric composition changes from time to time, place to place and even with height and hence
the need for accurate determination and prediction of the k-factor. The four thirds (4/3) value
given for the median k-factor in average temperate climate should only be used for gross plan-
ning but where data is available, the actual values of the same should be determined. This will
ensure well designed links with minimum outage experienced due to k-factor related problems,
i.e., diffraction (k-type) fading and thus avoiding expensive reverse engineering and optimization
procedures. In this presentation, three years radiosonde measurements data sourced from the
South African Weather Service (SAWS) has been processed and only k-factor statistics for the
first 200 m above ground level considered for further analysis. Both non-parametric and paramet-
ric methods have been used to model solutions for the distribution characteristics of the k-factor
across seven locations in South Africa. For the non-parametric approach, the kernel density esti-
mate has been used. The so-called ‘curve-fitting’ method (Gaussian distribution modelling) has
been used for the parametric technique. The Integral of Squared Error (ISE) has been applied
to optimize the solutions in both cases. Using the foregoing procedures, both median (k50%) and
k-factor values exceeded 99.9% of the time (ke) have been determined. From the results, the
kernel estimates are found to out-perform the curve-fitting method in terms of the ISE. Also,
we observe that both techniques give very close values and so the error performance may be the
only key performance indicator between both. The Rectangular kernel is observed to produce
superior ISE performance in five out of the seven locations considered. It thus comes out as the
more favourable kernel compared to the other three kernels used, i.e., Gaussian, Triangular and
Epanechnikov kernel. It is also observed that with the optimum choice of the window width or
bandwidth, h, there is little to choose from in terms of the kernel function, K(k). Finally, we
draw comparisons between the measured, curve-fitting and kernel values of the k-factor obtained.

1. INTRODUCTION

Clear air research advances in the recent past has been vigorous in South Africa. Palmer and
Baker [1–4] have developed a cumulative distribution model for predicting the effective earth radius
factor for South Africa. Afullo et al. [5–10] have also reported on the refractivity and k-factor
statistics for Maun in Botswana and Durban in South Africa. For Botswana, they found the all
year median value of the k-factor to be 1.1 and that of the effective value to be 0.61 for 0–200m
height range and 0.7 for the 0–500m range. They also found median and effective k-factor values of
1.21 and 0.5 respectively for Durban, 0–500 m height range. Most recently, Fulgence [11] has also
worked on refractivity and k-factor ranges for Central Africa; particularly in Rwanda and Tanzania.
Also, in Nigeria, there has been a continued campaign for the determination of refractivity and
refractivity gradient statistics mainly within the first 300 m of the atmosphere [12, 13].

2. ATMOSPHERIC RADIO REFRACTION

Electromagnetic waves propagating in the atmosphere do not travel in straight line but are bent
(refracted) either towards or away from the earth’s surface depending on the value refractive index.
The refractive index, n, is defined as the ratio of the ratio of the velocity of the propagation of an
electromagnetic wave in a vacuum to that of the velocity in a medium. It is given by [10]:

n =
c

v
=
√

µε = 1 + N × 10−6 (1)

where c is the speed of a radio wave in a vacuum (free space), v is the speed of a radio wave in air,
µ is the relative permeability, ε is the relative permittivity, N is the radio refractivity and n is the
refractive index.
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The radio refractivity changes with height above ground level. Its vertical gradient is particularly
of great importance in the determination of the point k-factor statistics. The following equation is
used to calculate the k-factor [2]:

k =
[
1 +

(
dN

dh

)
/50π

]−1

(2)

where k is the effective earth radius factor and dN
dh is the vertical refractivity gradient.

3. PARAMETRIC AND NON-PARAMETRIC DATA TECHNIQUES

Parametric methods of data modelling are described by quantities commonly referred to as pa-
rameters which normally give a brief summary of the data structure. Of the many parameters
used, the mean, median, standard deviation and variance always feature at the top. Such methods
are therefore based on distributional assumptions of the data characteristics. The curve-fitting
approach adopted in this paper, therefore falls in this category of data modelling.

On the other hand, non-parametric techniques make no assumptions as to the basic form of the
variable under study. Of these, the two most common ones are the histograms and kernel density
estimates. The kernel method performs better than the histogram and was actually introduced to
counter the limitations associated with histograms. With kernel density estimation, a ‘bump’ is
placed on each data point. The shape of this bump is determined by the kernel function, K(k)
and the overall data distribution is determined by the choice of the bandwidth, h. A very small
value of h will result in estimates that are spiky in nature and difficult to interpret while a very big
choice will result in over-smoothed estimates which will obscure fine details of the data structure,
e.g., bi-modality.

4. MODELLING AND CHARACTERIZATION

Two different approaches were adopted for the task, i.e., the curve-fitting method and the kernel
density estimation.
4.1. Curve-fitting Method
Previous work on the effective earth radius factor for Botswana by Afullo et al. [9] revealed that
the distribution of the k-factor is bell-shaped, centred almost on a median value, uk. From this
observation, Afullo and Odedina [10] later developed an algorithm for modelling the probability
density function (pdf) of the k-factor. They proposed the following pdf, f(k) [10],

f(k) = Ae−∝(k−µk)2 (3)

They found that the relationship between A and ∝ is that of a normal (Gaussian) distribution. Us-
ing the algorithm in [10] and radiosonde data measurements obtained from South African Weather
Service (SAWS), three-year Gaussian distribution models of the k-factor for seven locations in
South Africa have been developed.
4.2. Kernel Density Estimation
Kernel density estimate of a variable k is given by [14, 15]:

f(k) =
1

nh

n∑

i=1

K

(
k −Xi

n

)
(4)

where h is the window width, bandwidth or smoothing parameter (depends on literature), n is the
number of samples and Xi is the ith observation. Optimal kernel models are only possible when
the value of the h chosen is such that the error performance (typically the Integral Squared Error,
ISE) is at the minimum. The ISE is given by [6]:

ISE =

∞∫

−∞
[f(k)− f∗(k)]2dk (5)

Optimal bandwidth determination has been a subject of great research, but no single plug-in method
will give the optimum value of h. Thus all the formulae for computing the optimum value of the
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window width will only give an estimate of the optimum h to start with. Several iterations may be
the only sure way to get the global minimum error, thus the optimum value of h. Silverman’s rule-
of-thumb gives a good starting point for optimizing h. This rule is based on a Gaussian distribution
assumption and is summarized by the following expression [14]:

h = (4/3n)0.2 ∗ σ (6)

where n is the number of samples and σ is a robust estimate of the sample standard deviation. The
kernels used in this presentation and their efficiencies are shown in Table 1 below [6, 17].

Table 1: Kernels used and their efficiencies.

Kernel Kernel function, K(k) Efficiency (%)

Epanechnikov 100

Triangular 98.6

Gaussian 95.1

Rectangular 93

5. RESULTS AND DISCUSSIONS

Results for the curve-fitting and kernel methods are presented. Figures 1–7 show the curve-fitting
plots for the seven locations. Due to space considerations, only the kernel that produces the
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Figure 1: Bloemfontein Gaussian curve-fitting esti-
mate, 200 m a.g.l.
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Figure 2: Cape Town Gaussian curve-fitting esti-
mate, 200 m a.g.l.
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Figure 3: Durban Gaussian curve-fitting estimate,
200m a.g.l.
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Figure 4: Polokwane Gaussian curve-fitting esti-
mate, 200 m a.g.l.
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best ISE performance for each location is plotted in this presentation. These plots are presented
in Figures 8–14. Table 2 shows the Gaussian distribution models of the k-factor for the seven
locations. From the results in Table 2, the curve-fitting median k-factor for Bloemfontein is found
to be 1.24, while it is 1.29 and 1.27 for Cape Town and Durban respectively. It is found to be
1.23 for Polokwane, 1.19 for Pretoria, 1.17 for Upington and 1.20 for Bethlehem. A tabulation of
the curve-fitting parameter A, median k-factor, µk and ISE values for the curve-fitting method are
presented in Table 3.

From this table, Bethlehem is found to produce the worst error performance for the curve-fitting
method while Durban is the best. The initial estimate is the first estimate obtained using values
from the measured pdf. The final estimate represents the best estimate in that it is the one where
minimum error is achieved. Kernel results of the median k-factor, h and ISE values are presented in
Table 4. The kernel median k-factor is seen to vary between 1.21 to 1.22 for Bloemfontein, 1.26 to
1.27 for Cape Town, 1.25 to 1.26 for Durban, 1.25 to 1.26 for Polokwane, 1.20 to 1.21 for Pretoria,
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Figure 5: Pretoria Gaussian curve-fitting estimate,
200m a.g.l.
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Figure 6: Upington Gaussian curve-fitting estimate,
200 m a.g.l.
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Figure 7: Bethlehem Gaussian curve-fitting esti-
mate, 200 m a.g.l.
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Figure 8: Bloemfontein Gaussian kernel density es-
timate, 200 m a.g.l.

Figure 9: Cape Town Epanechnikov kernel density
estimate, 200 m a.g.l.

Figure 10: Durban rectangular kernel density esti-
mate, 200 m a.g.l.
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Figure 11: Polokwane rectangular kernel density es-
timate, 200 m a.g.l.

Figure 12: Pretoria-rectangular kernel density esti-
mate, 200 m a.g.l.

Figure 13: Upington rectangular kernel density es-
timate, 200 m a.g.l.

Figure 14: Bethlehem rectangular kernel density es-
timate, 200 m a.g.l.

Table 2: Three-year curve-fitting distribution models.

Location Gaussian distribution Model
Bloemfontein 1.2e−4.53(k−1.24)2

Cape Town 1.2e−4.53(k−1.29)2

Durban 1.37e−5.90(k−1.27)2

Polokwane 1.64e−8.45(k−1.23)2

Pretoria 1.8e−10.18(k−1.19)2

Upington 1.41e−6.25(k−1.17)2

Bethlehem 2.4e−18.10(k−1.20)2

Table 3: Three-year curve-fitting parameters and ISE values.

Location

Initial estimates from
measurements

Final estimates from
curve fitting

uk A ISE uk A ISE
Bloemfontein 1.22 1.82 0.23 1.24 1.2 0.19
Cape Town 1.29 1.60 0.13 1.29 1.2 0.11

Durban 1.27 1.33 0.102 1.27 1.37 0.101
Polokwane 1.26 1.52 0.11 1.23 1.64 0.09
Pretoria 1.20 2.04 0.14 1.19 1.8 0.13
Upington 1.18 1.36 0.14 1.17 1.41 0.13
Bethlehem 1.16 1.96 0.46 1.20 2.4 0.38
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Table 4: Three-year kernel bandwidth, median k-factor and ISE values.

Locations Bandwidth, h

Kernel

Gaussian Triangular Epanechnikov Rectangular

Median ISE Median ISE Median ISE Median ISE

Bloemfontein

0.007 1.21 0.0332 1.21 0.0334 1.21 0.0331 1.22 0.0334

0.008 1.21 0.0330 1.21 0.0332 1.21 0.0332 1.22 0.0343

0.009 1.21 0.0329 1.21 0.0333 1.21 0.0333 1.22 0.0349

Cape Town

0.006 1.27 0.0149 1.26 0.0147 1.26 0.0146 1.25 0.0147

0.007 1.27 0.0147 1.26 0.0148 1.26 0.0148 1.25 0.0158

0.008 1.27 0.0148 1.26 0.0150 1.26 0.0153 1.25 0.0160

Durban

0.006 1.26 0.0153 1.25 0.0153 1.26 0.0152 1.25 0.0149

0.007 1.26 0.0151 1.25 0.0152 1.26 0.0153 1.25 0.0159

0.008 1.26 0.0152 1.25 0.0154 1.26 0.0155 1.25 0.0163

Polokwane

0.006 1.26 0.0211 1.25 0.0205 1.25 0.0197 1.25 0.0193

0.007 1.26 0.0203 1.25 0.0201 1.25 0.0198 1.25 0.0195

0.008 1.26 0.0200 1.25 0.0200 1.25 0.0199 1.25 0.0208

Pretoria

0.006 1.20 0.0107 1.20 0.0107 1.21 0.0104 1.21 0.0099

0.007 1.20 0.0105 1.20 0.0106 1.21 0.0105 1.21 0.0111

0.008 1.20 0.0104 1.20 0.0107 1.21 0.0107 1.21 0.0112

Upington

0.005 1.20 0.0131 1.21 0.0129 1.20 0.0121 1.20 0.0113

0.006 1.20 0.0126 1.21 0.0130 1.20 0.0127 1.20 0.0128

0.007 1.20 0.0127 1.21 0.0130 1.20 0.0132 1.20 0.0149

Bethlehem

0.006 1.17 0.0567 1.18 0.0562 1.18 0.0555 1.17 0.0546

0.007 1.17 0.0556 1.18 0.0560 1.18 0.0556 1.17 0.0576

0.008 1.17 0.0552 1.18 0.0559 1.18 0.0563 1.17 0.0569

Table 5: Median (k50%) values compared, 200 m a.g.l.

Location Measured Curve-fitting Kernel

Bloemfontein 1.22 1.24 1.21–1.22

Cape Town 1.29 1.29 1.26–1.27

Durban 1.27 1.27 1.25–1.26

Polokwane 1.26 1.23 1.25–1.26

Pretoria 1.2 1.19 1.20–1.21

Upington 1.18 1.17 1.19–1.20

Bethlehem 1.16 1.20 1.17–1.18

Table 6: keff (k99.9%) values compared, 200m a.g.l.

Location Measured Curve-fitting Kernel

Bloemfontein 0.51 0.53 0.52–0.53

Cape Town 0.49 0.51 0.50–0.51

Durban 0.53 0.55 0.55–0.56

Polokwane 0.63 0.64 0.63–0.64

Pretoria 0.66 0.68 0.67–0.68

Upington 0.49 0.50 0.52–0.53

Bethlehem 0.73 0.75 0.76–0.77

1.19 to 1.20 for Upington and finally 1.17 to 1.18 for Bethlehem. It is observed that the Rectangular
kernel produces the best error performance in five of the seven locations, i.e., Durban, Polokwane,
Pretoria, Upington and Bethlehem. The Gaussian kernel produces the best error performance for
Bloemfontein while the Epanechnikov kernel is the best for Cape Town. It observed that, in the
neighbourhood of the optimum h for each kernel, the values of the k-factor obtained are the same.
The resulting plots are so close that discerning the difference between them is difficult. For each
kernel, the optimum value of h is the one where the minimum error is obtained. Median k-factor
results obtained from measurements, curve-fitting and kernel methods are tabulated in Table 5 for
ease of comparison. Modelling k-factor values exceeded 99.9% of the time are compared against
the measured ones in Table 6. From the curve-fitting models, the values are; 0.53 for Bloemfontein,
0.51 for Cape Town, 0.55 for Durban, 0.64 for Polokwane, 0.68 for Pretoria, 0.5 for Upington and
0.75 for Bethlehem. For the kernel models, the values vary between 0.52 to 0.53 for Bloemfontein,
0.5 to 0.51 for Cape Town, 0.55 to 0.56 for Durban, 0.63 to 0.64 for Polokwane, 0.67 to 0.68 for
Pretoria, 0.52 to 0.53 for Upington and 0.76 to 0.77 for Bethlehem.

6. CONCLUSION

Both kernel and normal distribution models of the effective earth radius factor for South Africa
have been determined. From these models, median and effective values of the k-factor have been
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obtained. These modelling results have also been compared with those obtained using measure-
ments. It is observed that the curve-fitting, kernel and measured values obtained are quite close to
each other. Also, the kernel models are found to follow the measured probability density function
estimate as much as possible and as such their error performance is far much superior compared
to the curve-fitting ones. The rectangular kernel is seen to produce progressively lower errors and
is proposed as the best kernel for modelling the k-factor in South Africa. The results obtained in
this presentation will go a long way in making sure that diffraction (k-type) fading is adequately
addressed during link budgeting to counter any interference associated with k-factor variations for
both UHF/VHF and terrestrial microwave links. In particular, both median and effective k-factor
values obtained will be used by radio link planners to determine optimum antenna heights required
to attain adequate path clearance in South Africa. The results will also serve as a benchmark for
extension to cover the rest of the country by way of making predictions (interpolation) or more
direct measurements to cover more areas for a longer period.
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