UNIVERSITY OF NAIROBI

DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING

ANNUAL REPORT 2012

1. INTRODUCTION:

The department runs B.Sc., M.Sc. and Ph.D. programs in Electrical & Electronic Engineering. The undergraduate B.Sc. program consists of five years of study, and contributes to knowledge in both fundamental and applied areas of Electrical Engineering. It provides a diverse curriculum that instills our students the skills, talents and creativity necessary for the varied and rapidly changing requirements. This enables them to serve a wide variety of other fields that require leadership, teamwork, decision making and problem solving abilities.

2. COURSES

2.1 BSC COURSE

2.1.1 GENERAL

The undergraduate students complete a total of 76 course units distributed as follows (including laboratories):

First Year	14
Second Year	16
Third Year	16
Fourth Year	16
Fifth Year	14
TOTAL	76

Each semester course unit has a total of 45 contact hours including lecturers and tutorials, while a laboratories course unit has 60 hours per semester. The program incorporates a practical "fourth term" assignment of eight weeks at the end of the second year of study. For the third and fourth years of study, there is industrial attachment during the long vacations.

In the course codes, the first integer after FEE denotes the year study. The second integer denotes as far as is possible, the subject area while the last integer denotes the semester in which the course is taught; I for the first and 2 for the second semester. Where the last integer is 0 it means that this is a course which is done throughout the two semesters such as the Engineering Project in the fifth year of study.

In order to cover this syllabus, service courses shall be provided by the following Departments.

	C: 1			<u> </u>	
Ι.	CIVII	Engineering	, and	Construction	Engineering

2. Mechanical and Manufacturing Engineering

3. School of Mathematics

4. Department of Physics

FEE 252

FEE 241/2, FEE 251, FEE 261/2, FEE 121/2.

FEE 111/2, FEE 121/2, FEE 271/2, FEE 471/2, FEE 571

FEE 101/2

5. Board of Common Undergraduate Courses (BCUC). CCS 001, CCS 008, CCS 010

2.1.2 BSC COURSE UNITS

FIRST YEAR

- FEE 101 Physics A
- FEE III Applied Mathematics A
- FEE 121 Pure Mathematics A
- FEE 131 Computer Science I
- FEE 141 CCS 001: Communication Skills
- FEE 151 CCS008:Elements of Philosophy
- FEE 161 Mechanical Workshop Technology
- FEE 102 Physics B
- FEE 112 Applied Mathematics B
- FEE 122 Pure Mathematics B
- FEE 132 Computer Science II
- FEE 142 Electrical Measurements
- FEE 152 CCS010: HIV/AIDS
- FEE 162 Electrical Workshop Technology

SECOND YEAR

- FEE 201 Physical Electronics A
- FEE 221 Electrical Circuit Theory I A
- FEE 231 Computer science III
- FEE 241 Engineering Drawing A
- FEE 251 Thermodynamics for EE
- FEE 261 Mech. of Mach. & Str. of Mat. A
- FEE 271 Mathematics II A
- FEE 281 Laboratory IIA
- FEE 202 Physical Electronics B
- FEE 222 Electric Circuit Theory I
- FEE 232 Computer Science IV
- FEE 242 Engineering Drawing B
- FEE 252 Fluid Mechanics for EE
- FEE 262 Mech. of Mach. & Str. of Mat. B
- FEE 272 Mathematics II B
- FEE 282 Laboratoty II B

THIRD YEAR

- FEE 301 Analogue Electronics A
- FEE 321 Electrical Circuit Theory IIA
- FEE 331 Digital Electronics A
- FEE 341 Electrical Machines I A
- FEE 351 Electromagnetic Fields A
- FEE 361 Mechanical Engineering for EE
- FEE 371 Mathematics III A
- FEE 381 Laboratory III A
- FEE 302 Analogue Electronics B
- FEE 322 Electric Circuit Theory II B
- FEE 332 Digital Electronics B
- FEE 342 Electrical Machines I B
- FEE 352 Electromagnetics Fields B

- FEE 362 Insrumentation
- FEE 372 Mathematics III B
- FEE 382 Laboratory III B

FOURTH YEAR

- FEE 401 Electronics A
- FEE 411 Control System A
- FEE 421 Telecomms. & Electroacoustics A
- FEE 431 Electrical Power Systems I A
- FEE 441 Electrical Machines II A
- FEE 451 Electrodynamics& Ins. Mat. A
- FEE 471 Statistics
- FEE 481 Laboratory IV A
- FEE 402 Electronics B
- FEE 412 Control System B
- FEE 422 Telecomms. & Electronacoustics B
- FEE 432 Electrical Power Systems I B
- FEE 442 Electrical Machines II B
- FEE 452 Electrodynamics& Ins. Mat. B
- FEE 472 Numerical Methods
- FEE 482 Laboratory IV B

FIFTH YEAR

- FEE 501 Applied Electronics A
- FEE 511 Control Engineering A
- FEE 560 Engineering Project
- FEE 571 Mathematical Methods
- FEE 591 Laboratory V A
- FEE 502 Applied Electronics B
- FEE 512 Control Engineering B
- FEE 560 Engineering Project
- FEE 582 Management for Engineers
- FEE 592 Laboratory V B

Elective Courses in Fifth Year (two per Semester)

Light Current

- FEE 521 Telecommunications A
- FEE 551 Microwaves and Antennas A
- FEE 522 Telecommunications B
- FEE 552 Microwaves and Antennas B

Heavy Current

- FEE 531 Electrical Power Systems II A
- FEE 541 Power Electronics & VariableMachine Drives A
- FEE 532 Electrical Power Systems II B
- FEE 542 Power Electronics & VariableMachine Drives B

2.2 MSC. COURSE

2.2.1 GENERAL

The MSc students complete a total of 9 course units in Part I of the program, distributed as follows:

	common	option	total
First Semester	2	3	5
Second Semester	1	3	4
TOTAL	6	3	9

Each semester course unit has a total of 60 contact hours including lecturers and tutorials. The students proceed to Part II (Thesis phase) after successfully completing Part I by passing all the course units for their option.

Course codes have the first integer after FEE as 6 denoting Masters. The other digits are applied as shown in the next section.

2.2.2 MSC. COURSE UNITS

a.	Core courses	FEE 600-607,650
b.	Electronic Engineering Option	FEE 610-618
c.	Electrical Engineering Option	FEE 620-629
d.	Control Engineering Option	FEE 630-635

Common Core Courses

FEE 600 Engineering Mathematics FEE 601 Software Engineering FEE 650 Research Methodology

Core Courses in Electronic Engineering

FEE 602 Analogue Electronics FEE 603 Digital Electronics FEE 604 Signal Analysis

Core Courses in Electrical Engineering

FEE 605 Electrical Power Systems FEE 606 Electrical Machines FEE 607 Power Electronics

Options in Electronic Engineering

Option 1: Optics, Fields and Waves

FEE 610 Optical Electronics and Lasers FEE 611 Antennas and Wave propagation

FEE 612 E/M Theory and High Frequency Devices

Option 2: Telecommunications

FEE 613 Communication Systems

FEE 614 Digital Transmission

FEE 615 Computer Communication Network

Option 3: Electronics

FEE 616 Digital Signal Processing FEE 617 Computer Architecture

FEE 618 Electronic Instrumentation

Options in Electrical Engineering

Option 1: High Voltage, Switchgear & Insulation

FEE 620 High Voltage Engineering FEE 621 Switchgear and Protection FEE 622 Insulating Materials

Option 2: Electrical Power Systems Operations & Planning

FEE 623 Electrical Power Systems, Operation and Control FEE 624 Electrical Power Transmission and Distribution Systems

FEE 625 Electrical Power Systems Planning and Management

Option 3: Electronic Machine Design, Control and Power Plants

FEE 626 Electrical Machine Design

FEE 627 Electrical Machine Drives and Control

FEE 628 Electrical Power Plant Equipment and Auxiliaries

Options in Control Engineering

Option 1: Optimal, Linear and Non-linear Control

FEE 630 Linear Control Systems

FEE 631 Optimal Control

FEE 632 Non-Linear Control and Stability

Option 2: Automation, Digital and Adaptive Control

FEE 633 Digital Control

FEE 634 Adaptive Control, Learning Systems and Estimation

FEE 635 Robotics and Automation

3. STUDENT ENROLMENT

3.1 UNDERGRADUATE

	Male	Female	Total
First Year	135	30	165
Second Year	127	14	141
Third Year	126	21	147
Fourth Year	129	22	151
Fifth Year	79	17	96
TOTAL	596	104	700

3.2 MSC

	Male	Female	Total
First Year	7	1	8
Second Year	19	1	20
TOTAL	26	2	28

3.3 Ph.D

	Male	Female	Total
Enrolled	0	0	0
TOTAL	0	0	0

4. INTERNATIONAL STUDENTS

	Male	Female	Total
Undergraduate	3	0	3
MSc	2	0	2
Ph.D	0	0	0
TOTAL	5	1	6

5. NUMBERS OF GRADUANDS

5.1 Undergraduate

	Male	Female	Total
Graduated	80	16	96

5.2 Masters

Male Female Total Graduated 1 0 1

5.3 Ph.D

Male Female Total Graduated 1 0 1

6. RESEARCH

Some of the reported publications and conference presentations are listed below

	Title	Authors	Journal	Conference
1.	A Robust Image Watermarking	Felix O Owalla,		16 th IEEE Mediterranean
	Scheme, Invariant to Rotation	Elijah Mwangi		Electrotechnical
	Scaling and Translation Attacks			Conference, Tunisia, 25 th
				March 2012 – 28 th March
				2012 pp 379-382
2.	Parameter Optimization In	K.V. Rop, D.B.O.	International Journal of	1st Annual International
	Design Of A Rectangular	Konditi, H.A.	Technical and Physical	Interdisciplinary
	Microstrip Patch Antenna Using	Ouma, S. Musyoki	Problems of Engineering	Conference, Catholic
	Adaptive Neuro-Fuzzy Inference		(IJTPE) Issue 12, September	University of Eastern Africa
	System Technique		2012, No.3 Vol 4 pp16~23,	(CUEA), June 26-30, 2012
			Serial No: 0012-0403-0912	
3.	An Improved Enhanced of	Kiragu Henry,		IET Image Processing
	Degraded Binary Text	Mwangi Elijah		Conference (IPR 2012),
	Document Images Using			London 2-4 th July 2012
	Morphological and Single Scale			10.1049/cp 2012.040, pp 1-
	Retinex Operations			6
4.	Distribution of Electromagnetic	G M. Nyaory D.		Proc. of KSEEE-JSAEM
	Field Radiation from a	B.O. K'Onditi, H.		2012 International
	Rectangular Cavity-Backed Slot	A. Ouma, S.		Engineering Conference,
	Antenna, ADI-FDTD	Musyoki		AICAD, Juja, Nairobi,
	Perspective,			August 2012
5.	Analysis of Electromagnetic	George M. Nyaory	Journal Of Information	September 2012
	Field Radiation from a	Dominic B.O.	Engineering and	
	Rectangular Cavity-Backed Slot	K'Onditi,	Applications	
	Antenna Using ADI-FDTD	Heywood A.	(JIEA@iiste.org), Vol 2, No.	
	Method	Ouma, Stephen	8, September 2012, pp1~8.	
		Musyoki	ISSN 2224-5782(print) ISSN	
			2225-0506 (online).	
6.	Aircrafts identification using	Dickson Wambaa		IEEE-CS, South Africa
	moments invariants feature	Elijah Mwangi		October 2012
	extraction and Bayesian			
	Decision theory classification.			
7.	Distributed Slack Bus Model for	Musau, P.M,	International Journal of	October 2012
	a Wind-Based Distribution	Abungu, N.O	Emerging Technology and	
	Generation using Combined		Advanced Engineering	
	Participation Factors			

8.	An Experimental Prototype for	Nganga, Obadiah		The Seventh JKUAT
	Low Head Small Hydro Power	Burugu G. N.		Scientific, Technological
	Generation using Hydram	Nyakoe		and Industrialisation
		Dr. Nicodemus		Conference
		Abungu,		November, 2012
		WanjauKabecha		
		-		
9.	Combined Economic and	Emmanuel	International Journal of	December 2012
	Emission Dispatch Solution	DarteyManteaw,	Scientific and Research	
	Using ABC_PSO Hybrid	Dr. Nicodemus	Publications, Volume 2, Issue	
	Algorithm with Valve Point	AbunguOdero	12 ISSN 2250-3153	
	Loading Effect			
10.	Multi-objective	Manteaw, E.D,	International Journal of	December 2012
	environmental/economic	Abungu, N.O	Scientific and Research	
	dispatch solution using hybrid		Publications	
	ABC_PSO algorithm			

7. DEPARTMENTAL FULL-TIME STAFF

1.	Associate Professor	4
2.	Senior Lecturer	8
3.	Lecturer	4
4.	Graduate Assistant	6
5.	Technologist	16
6.	Secretary	2
7.	Cleaner	2
	TOTAL	42

8. OTHER NOTABLE ACTIVITIES

- (i). *Change of Head of Department*: In March 2012 Prof. Vitalice K Oduol was succeeded by Dr. H OumaAbsaloms, after successfully completing two terms as the department head.
- (ii). *Curriculum Development*: Department was involved into exploration of starting programs in Biomedical Engineering, Petroleum and Mining Engineering and Instrumentation and Control.
- (iii). *Curriculum Review*: The review of the BSc and MSc programs was taken a further notch with the initial draft being put together for discussion in the first quarter of 2013
- (iv). *Collaborations*: Initial discussions for collaborations with several institutions were carried out. The institutions included: Centurion Systems, Siemens, African Cotton & Textile Industries Federation (ACTIF) Centre of Excellence, Johns Hopkins University- Centre for Bioengineering Innovation and Design,