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Abstract

Credit risk being the most common problem facing credit card issuers has attracted a lot of 

interest in research. Default risk manifestations are more severe in card holders who have missed 

payments above 60 days and progression to default in the next one year is more rapid than in 

cardholders who missed payments less than 60 days. Default probability also hastens when 

average amount past due is more than KES 15000. The study has also found out that cardholders 

who utilize there card limits below 50% are less risk to default in the next twelve months.

We performed a retrospective cohort study at a large data set obtained from the local bank, and 

use Logit Model to identify predictors of default and risk factors among cardholders followed for 

a period of eighteen months, and in particular to determine the impact of financial and non- 

financial on the outcomes among cardholders. Results showed that, 72% of the cardholders who 

had average amount past due KES 15000defaulted within a period of twelve months.
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Chapterl

1.1 Background

The word ‘credit’ comes from the old Latin word ‘credo’, which means, ‘trust in’, or ‘rely on’. If 

you lend something to somebody, then you have to have trust in him or her to honor the 

obligation. Access to credit comes with its own obligations, borrowers must pay the price of 

creating the impression of trust; repaying according to the agreed terms; and paying a risk 

premium for the possibility they might not repay. This gives rise to concepts like: 

creditworthiness; borrowers’ willingness and ability to repay; and credit risk; the potential 

financial impact of any real or perceived change in borrowers’ creditworthiness.

According to Anderson (2007) Scoring refers to the use of a numerical tool to rank order cases 

(people, companies, fruit, countries) according to some real or perceived quality (performance, 

desirability, saleability, risk) in order to discriminate between them, and ensure objective and 

consistent decisions (select, discard, export, sell). Available data is integrated into a single value 

that implies some quality, usually related to desirability or suitability. Scores are usually 

presented as numbers that represent a single quality, based on this concept he defines credit 

scoring as the use of statistical models to transform relevant data into numerical measures that 

guide credit decisions.

Credit scoring is therefore a technique mainly used in to assist credit-grantors in making lending 

decisions. Its aim is to construct a classification rule that distinguishes between ‘good’ and ‘bad’ 

credit risks according to some specified definition. The rule is developed on a sample of the past 

applicants, whose performance is known. As such a scoring model evaluates an applicant’s 

creditworthiness by bundling key attributes of the applicant and aspects of the transaction into a 

score and determines, alone or in conjunction with an evaluation of additional information,
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whether an applicant is deemed creditworthy. In brief, to develop a model, the modeler selects a 

sample of consumer accounts (either internally or externally) and analyzes it statistically to 

identify predictive variables (independent variables) that relate to creditworthiness. The model 

outcome (dependent variable) is the presumed effect of, or response to, a change in the 

independent variables.

Fundamentally, the aim of credit scoring is to provide banks with intelligence about the borrower 

(or applicant) that allows them to assess risk and potential reward. Particular common aims can 

be categorized as follows: either as part o f a Decision process, or Probability estimation.

1.2 Decision process

Application scoring: use scores to decide who to accept for a loan or other financial product and 

who to reject.

Behavioral scoring: Use scores to determine how well-behaved existing borrowers are and 

therefore to anticipate any problems in the future.

Fraud detection: Use scores to detect unusual credit use which may be the result of fraud. 

Cross-selling: Decide who to target for additional financial products.

1.3 Probability estimation

Predict probability of default, Measurement of expected profitability or return as well as capital 

requirement calculations as per requited by regulatory authorities.

1.4 Statement of the problem

In recent years Kenyan banks have been faced with influx in number of credit applications and as 

result they have been faced with credit risk, the risk arising from the obligor (debtor) failure to
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meet the agreement to repay the debt upon advancement of the credit. The approach applied by 

credit analysts to monitor on whom to consider and good or a bad customer been subjective on 

the personal opinion of the analyst. This therefore has left banks with a serious challenge on the 

objective method on which to monitor the behavior of their customers and be able to identify 

those customers who are more likely to default in the next one year. In the long run the bank 

faces a high risk of reviewing and approving addition credit to customers who are very likely to 

default.

The risk of default is major risk that card issuers and banks are facing and this study focuses on 

how an objective approach with fewer inconsistencies can be applied on regular basis to 

discriminate low risk customers from high risk customers.

Predictive variables to be considered include, but are not limited to, prior credit performance, 

current level of indebtedness, card utilization, employee status, and number of days account has 

been delinquent.

1.5 Main objective

To determine the customers’ behavioral characteristics that predicts the probability of a customer 

defaulting on his financial obligation with the bank.

1.6 Specific objectives

i. To determine the financial behavioral factors associated with a bad customer (defaulter).
ii. To determine a combination of non-financial behavioral factors that can be used to

predict the probability of default.
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Chapter 2

Literature Review

The traditional methods of deciding whether to grantor or extend credit to a particular individual 

use human judgment of the risk of default based on experience of previous decisions. Due to 

increased demand for credit combined with increased creditors competition and advanced 

computing technology have opened the application of statistical models in credit decisions. 

Behavioral/performance scoring is the monitoring and predicting the repayment behavior of a 

consumer to whom credit has already been granted.

The objective of credit scoring models is to assign loan customers to either good credit or bad 

credit (Lee et al, 2002), or predict the bad creditors (Lim & Sohn, 2007). Therefore, scoring 

problems are related to classification analysis (Anderson, 2003). Probably the earliest use of 

statistical scoring to distinguish between “good” and “bad” applicants was by (Durand, 1941), 

who analyzed data from financial services, such as commercial and industrial banks, and finance 

and personal finance companies. Statistical models called scorecards or classifiers, use predictor 

variables from application forms and other sources to yield estimates of probability of defaulting.

The categorization of good and bad credit is of fundamental importance, and is indeed the 

objective of a credit scoring model (Lim & Sohn, 2007; Lee et al, 2002). The need of an 

appropriate classification technique is thus evident. But what determines the categorization of a 

new applicant? From the review of literature, characteristics such as gender, age, marital status, 

dependents, having a telephone, educational level, occupation, time at present address and 

having a credit card are widely used in building scoring models (Hand et al. 2005; Lee and Chen 

2005; Sarlija et al., 2004; Banasik et al. 2003; Chen & Huang, 2003; Lee et al., 2002; Orgler
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1971; Steenackers and Goovarts 1989). Time at present job, loan amount, loan duration, house 

owner, monthly income, bank accounts, having a car, mortgage, purpose of loan, guarantees and 

others have been also used in building the scoring models (Lee and Chen, 2005; Greene 1998; 

Sarlija et al., 2004; Orgler 1971; Steenackers and Goovarts 1989). In some cases the list of 

variables has been extended to include spouse personal information, such as age, salary, bank 

account and others (Orgler, 1971). Of course, more variables are less frequently used in building 

scoring models, such as television area code, weeks since the last county court judgment, worst 

account status, time in employments, time with bank and others (Bellotti and Crook, 2009; 

Banasik and Crook, 2007; Andreeva, 2006; Banasik et al. 2003).

Insights can be gained from parallel research, pertaining to small business and corporate loans, 

by identifying other variables, such as main activity of the business, age of business, business 

location, credit amount, and different financial ratios, for example, profitability, liquidity, bank 

loans and leverage have been used in scoring applications (Emel et al. 2003; 11 Bensic et al, 

2005; Zekic-Susac et al. 2004; Min and Lee, 2008; Min and Jeong, 2009; Lensberg et al. 2006; 

Cramer, 2004; Liang 2003).

In some cases the final selection of the characteristics was based on the statistical analysis used, 

i.e. stepwise logistic regression, regression or neural network (Lee and Chen, 2005; Nakamura, 

2005; Kay & Titterington, 1999; Lenard, et al., 1995; Steenackers and Goovarts 1989; Orgler 

1971). However, to the best of our knowledge, none of the research reviewed in this paper has 

clearly established a theoretical reason why such variables have been chosen. In addition, in most 

cases, authors have stated that a particular set of data was provided by a particular institution. 

Therefore, the selection of the variables used in building scoring models depends on the data
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providers and the data availability as stated by those authors. It is the view in this paper that such 

variables are implicitly deemed influential.

Classification models for credit scoring are used to categorize new applicants as either accepted 

or rejected with respect to these characteristics. These need to be contextualized to the particular 

environment, as new variables are appropriately included (see, for example, the inclusion of 

corporate guarantees and loans from other banks within the Egyptian environment in the 

investigation by (Abdou and Pointon, 2009). The classification techniques themselves can also 

be categorized into conventional methods and advanced statistical techniques. The former 

include, for example, weight of evidence, multiple linear regression, discriminant analysis, probit 

analysis and logistic regression. The latter comprise various approaches and methods, such as, 

fuzzy algorithms, genetic algorithms, expert systems, and neural networks (Hand & Henley, 

1997). On the one hand, the use of only two groups of customer credit, either “good” or “bad” is 

still one of the most important approaches to credit scoring applications (Kim & Sohn, 2004; Lee 

et al, 2002; Banasik et al, 2001; Boyes et al, 1989; Orgler, 1971). On the other hand, the use of 

three groups of consumer credit may become one of the approaches for classification purposes in 

credit scoring models. Some have used “good” or “bad” or “refused” (Steenackers & Goovaerts, 

1989), whilst others have used “good” or “poor” or “bad” (Sarlija et al, 2004). (Lim & Sohn, 

2007) argue that the way existing models are used is quite worrying, especially at the time when 

the middle of the repayment term occurs, when it is important to be able to re-evaluate the 

creditability of borrowers with high default risks for the remaining term.

Although most literature presents probability of default based on application attributes of the 

applicants. It has been examined that after acceptance of an applicant, their future behavior
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possess potential indication of their future repayment ability for granted credit. Indeed it has 

been cited that behavior of the customer are key indicators to default (Anderson, 2007)

Xhe quantitative approach has been applied by large number of studies utilizing various 

statistical techniques based on credit applicants’ information that are obtained from lending 

institutions. The key objective of these studies is to reveal the distinctive indicators among the 

defaulters and non-defaulters.

Through the review of studies we can conclude that the evolution of credit scoring can be 

categorized into broad statistical techniques as follows;

2.1 Linear Regression

Linear regression has been used in credit scoring applications, as the two class problem can be 

represented using a dummy variable.

(Orgler, 1970) used regression analysis for commercial loans; this model was limited to the 

evaluation of existing loans and could be used for loan review and examination purposes. Later 

on, (Orgler, 1971) used a regression approach for evaluating outstanding consumer loans. He 

came to the conclusion that information not included on the application form had greater 

predictive ability than information included on the original application form, in assessing future 

loan quality. The use of regression analysis extended such applications to include further aspects 

(see, Henley, 1995; Hand & Henley, 1997; Hand & Jacka, 1998) as quoted by (Thomas, 2000).

2.2 Discriminant analysis

This is a statistical technique that is used to determine group membership, in this case good and 

bad groups. (Fisher, 1936) used discriminant analysis to differentiate groups in a population 

through measurable attributes, when the common characteristics of the members of the group are
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unobservable. (Durand, 1941), recognized that the same approach could be used to distinguish 

between good and bad loan. Much of the approach has been used in bankruptcy prediction field, 

notably (Beaver, 1966) empirical study. The author analyzed thirty financial ratios among failed 

and survived firms. Employing univariate analysis, three financial ratios i.e., total debt / total 

assets, net income/total assets and cash flow/total debt were found significant in determining 

financial distress of a company. (Altman, 1968) Study extended the work of (Beaver, 1966) by 

employing multivariate discriminant analysis to the prediction of corporate bankruptcy with what 

he called the “z-score”. Using accounting data of 66 healthy and bankrupt companies, Altman 

calculated the financial ratios used by accountants and analysts to assess the solvency of business 

firms; he ended with up discriminant function to distinguish healthy companies from those with 

high probability of bankruptcy. He ended up with 5 variables suggesting a cutting point of z- 

score greater than 2.99 falls into —non-bankrupt category while firms having a z-score below 

1.81 are all bankrupt. In his work the z-score is defined as:

z - s c o r e  =  0 .1 7 1 7 ^  +  ,0847^ 2 +  3 .1 0 7 ^  +  .4202f4 +  .998Z-

These variables best discriminated between healthy and bankrupt companies were:

Working Capital
x i = Total assets

Retained Earnings 
Total assets

X* =
EBIT

3 Total assets

X ,
M arket Value o f  shares 

Total assets
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Working Capital 
Total assets

Thus by obtaining the “z-score” for a particular company one can classify the company into 

healthy or bankrupt.

(Bandyopadhyay, 2006), using logistic and z-score approaches developed a model with high 

classification power of 91% to predict default for Indian firms. The new z-score model 

developed in his paper depicted not only a high classification power on the estimated sample, but 

also exhibited a high predictive power in terms of its ability to detect bad firms in the holdout 

sample. In the logit analysis, the empirical results reveal that inclusion of financial and non- 

financial parameters would be useful in more accurately describing default risk. 

(Bandyopadhyay, 2006), uses two approaches Multiple Discriminate Analysis (MAD) for 

developing z-score models for predicting corporate bond default in India and Logistic regression 

model to directly estimate the probability of default.

The known drawback of using discriminant analysis in credit scoring is the assumptions 

associated with it. Major one being high misclassification errors when predicting rare group, so 

equal sample for each group is usually used (Anderson, 2007). While linear Discriminant 

Analysis was the original, logistic regression is now preferred because of fewer assumptions.

2.3 Probit Regression

Probit model has been used in credit-scoring applications for many years. The idea of probit was 

published in 1934 by Chester Bliss in an article in science on how to treat data such as the 

percentage of pest killed by pesticide. The method was carried forward in toxicological 

applications. (Grablowsky & Talley, 1981), noted that probit analysis was first pioneered for the
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analysis of “toxicology problems” by (Finney, 1952) who used it to “determine the relationship 

between the probability that an insect will be killed and the strength of the dose of poison 

administrated”. However, early in the 1930s the term “Probit” was developed and stood for 

probability unit (Pindyck & Rubinfeld, 1997; Maddala, 2001). The probit model applies the 

inverse cumulative distribution function or quantile function associated with the standard normal 

distribution. (Grablowsky & Talley, 1981), stated that, under probit analysis, normal 

distributions of the “threshold values” are assumed, while multivariate normal distributions and 

equal variances are assumed under discriminant analysis; and using a likelihood ratio test, 

estimates of coefficients under a probit function can be tested individually for significance 

because of their uniqueness. But, this is not the case for discriminant coefficients, which cannot 

be individually tested, whilst this is possible in a regression as well as under a probit function, 

but the latter is much more difficult than that for a linear, logistic or Poisson regression model. 

Finally, they note that multicollinearity can cause, under probit analysis, incorrect signs for 

coefficients, although the probability values from the likelihood ratio tests are not affected. 

Otherwise, this problem is not an issue under discriminant analysis.

The application of probit analysis in credit scoring has also been investigated and compared with 

other statistical scoring models (Abdou, 2009c;Guillen & Artis, 1992; Banasik et al, 2003; 

Greene, 1998); also classification results were very close to other techniques (Green, 1998), and 

better than techniques, such as discriminant analysis, linear regression and the Poisson model 

(Guillen & Artis, 1992). Furthermore, probit analysis is used as a successful alternative to 

logistic regression.
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2.4 Logistic regression

Logistic regression model differs from linear regression model is that the outcome variable in 

logistic regression is binary (0 or 1). (Wiginton, 1980) gave one of the first published accounts of 

logistic regression applied to credit scoring in comparison with discriminant analysis. He 

concluded that logistic regression gave superior classification. (Srinivasan & Kim, 1987), 

included logistic regression in comparative study with other methods, but in this case dealing 

with corporate credit granting problem. (Leonard, 1993), also applied logistic regression to a 

commercial loan evaluation process exploring several models, including a model using random 

effects for bank branches.

The simple logistic regression model can easily be extended to two or more independent 

variables. The additional of more variables, the harder it is to get multiple observations at all 

levels of all variables. For this reason the use of maximum likelihood estimation method has 

enable logistic regression to handled more than one independent (Freund & William, 1998). On 

theoretical grounds it might be supposed that logistic regression is a more proper statistical 

instrument than linear regression, given that the two classes “good” credit and “bad” credit have 

been described (Hand & Henley, 1997).

The application of logistic regression has been extensive in credit scoring applications (see for 

example: (Crook, et al, 2007), (Abdou, et al, 2008) and (Desai, et al, 1996). In building the 

scoring models, statistical techniques such as discriminant analysis, regression analysis, probit 

analysis and logistic regression, have been evaluated (Sarlija et al, 2004; Banasik et al, 2001; 

Greene, 1998; Leonard, 1992; Steenackers & Goovaerts, 1989; Boyes et al, 1989; Orgler, 1971). 

Other methods are: mathematical programming, nonparametric smoothing methods, Markov
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chain models, expert systems, neural networks, genetic algorithms and others (Hand & Henley, 

1997). Also, case studies have been the subject of investigation in the credit scoring literature 

(see, for example: Lee & Chen, 2005; Lee et al, 2002; Banasik et al, 2001; Leonard, 1995; Myers 

& Forgy, 1963).
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Methodology

3.1 Study area

This is a panel study carried out on credit cardholders for a local bank over a period of eighteen 

months.

3.2 Study population

The populations consist of credit cardholders from the local bank who have not defaulted at the 

end of learning period which in this case is 6 months.

3.3 Study procedure

Behavioral scoring is associated with the account management of the existing consumers which 

are refreshed at regular intervals usually monthly for assessment of consumer credit risk 

(Anderson 2007). A sample of customers is chosen so that data available on their performance on 

either side of an arbitrarily chosen observation point in this case March 2010. The period prior to 

the observation time is called the performance or observation period and is usually 6 to 12 

months in length (Thomas et al., 2001). Typical performance data would be average, maximum 

and minimum levels of balance, credit turnover, and debit turnover. Some of the characteristics 

are indicators of delinquent behavior; overdrawn amount, value of cash withdrawals, number of 

missed payments, times in over credit limit, number of cash withdrawals among others.

The period after the observation point is the outcome period, which is usually taken as 12 

months, and the customer, is classified as -a good or a bad depending on their status at the end of 

this outcome period (Thomas etal, 2001). Basel II defines a bad customer to be someone who is 

90 days past due or in excess of the agreed limit at this point. One of the disadvantages of 

behavioral scoring is the need for two years 20 worth of history to build a scorecard.



Consequently the population that the scorecard is then applied to may be quite different from that 

it was built on. One way used to reduce this is to take a shorter observation period and/or 

performance period of six months.

3.4 Data Source

The data used for this study are obtained from internal local bank’s database which is dynamic in 

nature, the data frequently changes in the banking systems: these are credit card status, number 

of cash withdrawal, value of cash withdrawn and other past bad indicators.

3.5 Data Cleaning

Missing data was addressed through ignoring the variables with high percentage of NULLS or 

dealing with NULLs as separate attribute in categorical variables. When Inclusion of 

characteristics with missing values in the scorecard is done, then “missing” can then be treated as 

a separate attribute, grouped, and used in regression as an input. The scorecard would then be 

allowed to assign weights to this attribute. In some cases this assigned weight may be close to the 

“neutral” or mean value, but in cases where the weight is closer to another attribute, it may shed 

light on the exact nature of the missing values. (Siddiqi, 2006) acknowledges the importance of 

missing data in the credit scorecards, he noted that missing values may be part of a trend, linked 

to other characteristics, or indicative of bad performance. Missing values are not usually random. 

For example, those who are new at their work may be more likely to leave the “Years at 

Employment” field blank on an application form. If characteristics or records with missing 

values are excluded, none of these insights can be made. Therefore he recommendes that missing 

data be included in the analysis, and be assigned points in the final scorecard. His approach

21

V



recognizes that missing data holds some information value, and that there is business benefit in 

including such data in your analysis.

3.6 Data Handling

Candidate variable construction was undertaken in which variable categorization was done and 

transformation carried out on the selected variables. Categorization of attributes was performed 

based on three criteria for binding attributes:

• Attributes with small number of observations were combined together

• Attributes with same default rate

• Based on business logic.

Numeric variables were also transformed into categories by creating bins with different 

default rates and combined adjacent groups with similar default rates.

The learning period data were subjected to overtime transformation as follows:

Average(x): Average (amount past due in six months)

Sum(x): sum (no of rejected card payments, in six months)

Ratio(x:y): ratio (repayment amount to card limit)

3.7 Study Design

The study begins by selecting individuals from 18 months panel data such an individual meets 

the following criteria:

i. That an individual i is a good customer (has not defaulted) in the first six month period, 

which we consider the learning period and has not become a bad customer at the
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observation point (at the end of six months). Default refers to the 90 days past due 

without repayment by the individual/.

ii. The selected individuals are then observed for the next twelve months to identify if they 

become bad or not and the number of days they take to become a bad customer. The 

twelve month period is the performance period.

Therefore, we define T to be a random variable for an individual’s survival time and denote t 

to be any specific value of interest for random variableT.

We denote n  to define a (0, 1) random variable indicating either an individual has become 

bad within the 12 months period or not (censored). Such that:

( 1 , i f  default/failurejr — <
( 0 , if non default/  censor e d

3.8 Data layout

The learning data is such individuals and their characteristics are observed and variables of 

interest taken at regular time period such that an individual i is observed six times as shown in 

the Table 3.4a data layout.
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Individual period n *7 X-, x a

1 * 1 1 * 1 2 * 1 3 • *lp

2 t2 712 * 2 1 * 2 2 *23 •• * 2 P

i * : 1 * : 2 * i3 - • * :P

n *„1 * n 2 *n3 • *»p

Table 3 - 1 :  data layout

These data consists of covariates Xijls which are derived from the learning period of six months

and the random variables T and jt are obtained from the performance outcome.

3.9 The scorecard

A scorecard links the borrower characteristics to a credit score using a statistical model. In this 

regard a credit score is a linear combination of weighted variables values. Thus for p borrower 

characteristics we have

5 =  ooQ +  I f =1 cot x t (3.1)

Where:



5 =  credit score

xv  „ .,xpare the borrower characteristics

iov ..., iOp are the weights on each characteristicsw 0 is a constant term  

Expressed in vector notation:

s — ol>q + &> • X (3.2)

Where X =  (x1 ( a and u) = (wt , are vectors of borrower characteristics and weights

respectively. The vector of weights form a scorecard which is used to score a customer. The 

credit score is linked to the risk of default. We use binary outcome n  €E {0,1}.

3.9.1 Credit score and Probability of default

The risk possessed by a customer is quantified by assigning a probability of default to the credit 

score r  using a link function:

P(? =  0/s) =  1 -  f ( s ) (3.3)

Such that increasing scores reflect deterioration in creditworthiness, thus the link function should 

increase with increase in the score.

3.9.2 Log-odds function

The log-odds link function is used to link the scores,

This gives us the link function

s —
P(y  =  1 / s  
P(y =  0 / s ) )

(3.4)
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P(y = l/s) = f0(s) = -------— (3.5)1 + e

The log-odds link function two properties:

• Greater resolution at extreme probabilities

• present in logistic regression

3.10 Logistic regression

Model-building techniques used in statistics are aimed at finding the best fitting and reasonable 

model to describe the relationship between an outcome (dependent or response) variable and a 

set of independent (predictor or explanatory) variables. These independent variables are often 

called covariates. The traditional method used is often linear regression model where the 

outcome variable is assumed to be continuous.

Logistic regression model differs from the linear regression model in that the outcome variable in 

logistic regression is binary or dichotomous. This distinction is reflected on their assumptions. In 

credit scoring problems we are normally interested on how several customers behavioral 

characteristics are related to the default or non-default of the customer. The outcome variable is 

default which is coded with a value of zero to indicate no default or 1 to indicate that the 

customer has defaulted.

In all regression problems the key quantity is the mean value of the outcome variable, given the 

value of the independent variable. Tftjs quantity is called the conditional mean and expressed as 

E(Y/x), where Y denotes the outcome variable (default or non-default) and x  denotes a value of 

the independent variables (covariates).
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Many distributions functions have been proposed in modeling binary outcome data for example 

Linear Discriminant Analysis (LDA), today logistic regression is the most preferred because:

(i) there are fewer assumption violations, especially as it does not demand normally

distributed independent variables;

(ii) it works better where group sizes are very unequal;

(iii) Mathematically the resulting models are easier to interpret due to its mathematical

In this study we consider a collection of p  behavioral covariates denoted by the vector 

xT = ( x lJx 2, . . . ,xp). Then our conditional probability that the customer has defaulted be

denoted by

P(Y  =  1 /* ) = rr(ar). Then the logit o f the multiple logistic regression model is expressed as

W here (3, w here j  =  1,2,... p, are  coefficients o f the p covariates of the customers.obtained 

from the learning data set.

and the logistic regression model is now expressed as:

simplicity.

g { x )  = log
P ( y =  1 / s  
P ( y  = 0 / s )

j  -  s — P0 + P'1*1 +  02*2 +  +  (3.6)

(3.7)
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3.10.1 Fitting multiple logistic regression model

Considering n independent customers, (*{<yj), i = 1,2, Fitting the model requires that we 

obtain estimates of the vector P7 =  (P0,Pi> Pp) using maximum likelihood estimation 

method. From P(yi =  0) = 1 -  7r(x) andPCy  ̂ = 1) = n(x), the likelihood function becomes:

n ti

UP) = f(yi>y2> — yni P )= P) = ]” [*(*)* C1 -  *(*))1'*  (3-8)
i- 1 i= 1

Taking the logarithm of both sides of (3.8), we obtain the log likelihood function

n

In 1(3) =  + (1 -  y4) ln ( l  -  tt(x)) } (3.9)
i=l

The model which best fits the data has values of P that maximize the likelihood equation (3.9). 

This is achieved by differentiation of this equation with respect to 3&, 3*,..., 3p.The method 

yields p +  1 likelihood equations

The likelihood equation that result are expressed as

n

t=i

and

n

2 ^ x ij\y i ~  71( * ) ]  =  0 . f o r / =  1,2, ...,p
:= 1

Therefore, jj denotes the solution to these equations, and the fitted values for the multiple 

logistic regression model are fr^xf)
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The form of logistic regression is defined as:

p 0 0  =
ePo+0i Xt'+PtX2+-+PpXp 

 ̂ + e 0o'rP._X._ + 8.X2+... + j3pX? (3 .1 0 )

The logit function (3.10) can be transformed into:

f l W  =  In ( ^ 7̂ )  =  +  PZXZ +  -  +  (3pXp +  e (3 .11 )

Logistic regression use Maximum Likelihood Estimation (MLE) to estimate the values of the 

unknown parameters which maximizes the probability of obtaining the observed set of data. The 

maximum likelihood estimators of these parameters are chosen to be those values that maximize 

the function.

3.11 Variable selection
/

3.11.1 Initial Characteristic Analysis

This involves the assessment of characteristics (variables) individually as a predictor to the 

performance of default. This is done to screen out illogical or non-predictive characteristics. As a 

result univariate analysis approach is performed on each variable. On categorical data with few 

integer values, a contingency table of outcome (d=0, 1) versus the values of k levels of 

independent variable is applied. The likelihood ratio chi-squ re test with k — 1 degrees of 

freedom is exactly equal to the vaftie of the likelihood ratio test for the significance of the 

coefficients for the k — 1 design variables in univariable logistic regression model that contains 

that single independent variable. In the case of continuous variable, the univariate analysis 

involves fitting the univariable logistic regression model to obtain the estimate of the coefficient,
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standard error, the likelihood ratio test for the significance of the coefficient and the univariable 

Wald statistic.

On completion of univariable analyses, we selected variables for the multivariable analysis, 

based on the univariate test for any variable that had a p-value <0.25 to be included for the 

multivariable model along with all variables of known credit risk importance. The strongest 

characteristics are then grouped. This applies to attributes in both continuous and discrete 

characteristics, and is done for an obvious reason. The grouping is done because it is required to 

produce the scorecard. Although a scorecard can be produced using continuous (ungrouped) 

variables, however, grouping provides a number of advantages:

• It provides an easier way to deal with outliers in interval variables and rare cases

• Grouping simplifies the understanding of relationships; as a result gain more knowledge 

of the portfolio. A chart displaying the relationship between attributes of a characteristic 

and performance is a much more powerful tool than a simple variable strength statistic. It 

allows users to explain the nature of this relationship, in addition to the strength of the 

relationship.

• It allows for nonlinear dependencies to be modeled by linear models

• It allows unprecedented control over the development process by shaping the groups; one 

shapes the final composition of the scorecard.

• The process of grouping characteristics allows the user to develop insights into the 

behavior of risk predictors and increases knowledge of the portfolio, which can help in 

developing better strategies for portfolio management.

30



Finally when the strongest characteristics are grouped and ranked, variable selection is done. At 

the end of initial characteristic analysis, we have a set of strong, grouped characteristics, 

preferably representing independent information types, for use in the regression step.

The strength of a characteristic is gauged using four main criteria:

• Predictive power of each attribute. The weight of evidence (WOE) measure is used for 

this purpose.

• The range and trend of weight of evidence across grouped attributes within a 

characteristic.

• Predictive power of the characteristic. The Information Value (IV) measure is used for 

this.

• Operational and business considerations (e.g., using some logic in grouping postal codes,

or grouping debt service ratio to coincide with corporate policy limits).
/

The first step into performing initial characteristic analysis is to perform initial grouping of 

variables, and rank order them by IV, this can be done by using a number of binning techniques. 

In this study, we started by binning variables into a large number of equal groups and calculation 

of WOE and IV for attributes and characteristics were done. The spreadsheet software was then 

used to fine-tune the groupings for the stronger characteristics based on principles outlined in the 

next section. Similarly for categorical characteristics, the WOE for each unique attribute and the 

IV of each characteristic were calculated. Sometime were then spent fine-tuning the grouping for 

those characteristics that surpass a minimum acceptable strength.

31



3.11-2 Weight of Evidence (WOE)

The WOE, as mentioned previously, measures the strength of each attribute, or grouped 

attributes, in separating good and bad accounts. It is a measure of the difference between the 

proportion of goods and bads in each attribute (i.e., the odds of a person with that attribute being 

good or bad). The WOE is based on the log of odds calculation:

Distr Good/Distr Bad (3.12)

This is a measure of odds of being good for a particular attribute in a selected characteristic.

A more user-friendly way to calculate WOE, and one that is used in this study is:

Distr Good 
Distr Bad )]*  100 (3.13)

The negative value from equation (3.13) implies that the particular attribute is isolating a higher 

proportion of bads than goods.

3.11.3 Information Value (IV)

Information Value, or total strength of the characteristic, comes from information theory, and is 
measured using the formula:

Z, . /Distr Good.
(Distr Good. -  Distr Bad.)*  In ------------- —

‘ V Distr Badt
(3.14)

(Siddiqi, 2006)Based on this methodology, one rule of thumb regarding IV is:

• Less than 0.02 : unpredictive

• 0.02 to 0.1: weak

• 0.1 to 0.3: medium

• 0.3 +: strong
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The application of IV measure is widely used in the industry, and different practitioners have 

different rules of thumb regarding what constitutes weak or strong characteristics. In this regard, 

this study will consider all these characteristics which have met this threshold or not and find out 

the validity of the rule of thumb on IV suggested by (Siddiqi, 2006). (Anderson R. , 2007) noted 

that weak characteristics may: (i) provide value in combination with others; or (ii) have 

individual attributes that could provide value as dummy variables. They should thus not be 

discarded indiscriminately. Further, he quoted (Mays, 2004) who mentioned that even if these 

characteristics are not considered for the model, they should still be retained for future analysis.

In cases where the scorecard is being developed using non-grouped characteristics, statistics to 

evaluate predictive strength include R-square and Chi-square. These methods use goodness-of-fit 

criteria to evaluate characteristics. The R-squared technique uses a stepwise selection method 

that rejects characteristics that do not meet incremental R-square increase cutoffs. A typical 

cutoff for stepwise R-squared is 0.005. Chi-square operates in a similar fashion, with a minimum 

typical cutoff value of 0.5. The cutoffs can be increased if too many characteristics are retained 

in the model.

As with the technique using grouped variables, the objective here is to select characteristics for 

logistic regression (or another modeling step). Once these variables are identified we began with 

a model containing all of the selected variables in input variables are replaced by WOE.

3.11.4 Logical Trend

The statistical strength, derived in terms of WOE and IV, is not the only factor in choosing a 

characteristic for further analysis, or designating it as a strong predictor. In grouped scorecards, the 

attribute strengths must also be in a logical order, and make operational sense.
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In other words groupings in this characteristic must have linear relationship with WOE; that is, they 

should denote a linear and logical relationship between the attributes in a characteristic and proportion of 

bads. This should conform to business experience in the credit. Establishing such logical (not necessarily 

linear) relationships through grouping is the purpose of the initial characteristic analysis exercise. The 

process of arriving at a logical trend is one of trial and error, in which one balances the creation of logical 

trends while maintaining a sufficient IV value.

3.11.5 Business logic

Other than statistical measures and logical trends, business logic contributes a very important 

component in developing credit risk scorecards. Characteristics included in the model must have 

business sense for the scorecard to be predictive and meet business requirements. Most of the 

business logics are embedded in the internal lending institution’s policies and manuals that guide 

the day to day operations of lending. The business rules may define what portfolios to be treated 

in a special way or not, as well as define characteristics that are known to affect the performance 

of default.

Upon undertaking the above steps, a multivariable logistic regression model was fitted; the 

importance of each variable included in the model was verified by an examination of the Wald 

statistic for each variable. Variables that did not contribute to model based on these criteria were 

eliminated. The new model was compared to the old, larger model using the likelihood ratio test. 

Further the estimated coefficients for the remaining variables were compared to those from the 

full model —'
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Chapter 4

Exploratory Data analysis

The panel data consists of customers followed from October 2010 to March 2012, with the 

following variables being measured; number of transactions, Number of cards, Amount in 

arrears, outstanding balance, employment status, Overdue cycles, number of cash withdrawals 

among others are selected and analyzed over six months period. The figure 4-1 shows the 

breakdown of periods for behavioral modeling.

Observation point:

Figure 4 - 1 : period dates for behavioral modeling

Exploratory data analysis of data provides the purpose of formulating hypotheses worth testing, 

complementing the tools of conventional statistics for testing hypotheses. It is the 

approach/philosophy for data analysis that employs a variety of techniques (mostly graphical) to

• maximize insight into a data set

• uncover underlying structure

• extract important variables

35



• detect outliers and anomalies

• test underlying assumptions

• develop parsimonious models and

4.1 Financial Characteristics

EDA is carried on financial characteristics to achieve the bulleted desired results, this involves 

obtaining the counts of goods and bads from each characteristic, deriving both their good and 

bad distributions, the bad rate as well as WOE and IV. The total number of cardholders was 

8,283 with 7,076 being good and 1,207 being bad. These numbers of goods and bads are same in 

all the characteristics. The distribution good and distribution bad columns give the column wise 

percentage distribution of good and bad cases respectively.

4.1.1 Estimated Average Days past due

The estimated average past due days was categorized into three attributes based on business
/

logic, given that credit card and other credit facilities are billed on monthly basis. With this in 

mind a cardholder who has not yet defaulted can be delinquent once or twice, that is he might 

have missed at most two repayments during the learning period. Table 4-1; shows that 99% of 

good cases and 75% of bad cases fall into (0-29) days past due group. The bad rate is highest 

among the cardholders whose days past due range is (59-89). Both the bad rate and WOE are 

sufficiently different from one group to the next. These attributes therefore identify and separate 

good cases from bad cases and as a result this characteristic is a candidate for the modeling of the 

scorecard. The positive sign on the WOE for attribute (0-29) implies that the case with this 

attribute likely to be a good cardholder. The IV for this characteristic is sufficiently strong.
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Lower
Limit

Higher
Limit

Count GOOD BAD Distribution
Good

Distribution
Bad

Bad Rate WOE IV

0 29 7,892 6,981 911 99% 75% 12% 26.78 0.06
29 59 307 82 225 1% 19% 73% (277.80) 0.49
59 89 84 13 71 0% 6% 85% (346.63) 0.20

8,283 7,076 1,207 100% 100% 15% 0.75
Table 4 -1: Estimated average days past due in the last 6 months by grouping

4.1.2 Number of cash withdrawals

The credit cards normally charge various types interest depending on the nature of 

transactions/card usage. If the cardholder choses to make cash withdrawal then he faces higher 

interest rate compared to someone who uses it for purchases of goods and payments of services. 

It is on this background that credit card issuer may find necessary to determine how this behavior 

relates to default. Table 4-2; shows analysis on how number cash withdrawals are related to good 

and bad customers. It is evident that the WOE of is sufficiently different from those who have 

not used and those that have used their credit cards for cash withdrawal. These two attributes 

therefore separates the good and bad customers. IV for this characteristic is low and suggests a 

weak relationship.

Lower Higher Count GOOD BAD Distribution Distribution Bad WOE IV
Limit Limit Good Bad Rate

0 0 5,708 4,934 774 70% 64% 14% 8.38 0.00
1 99999 2,575 2,142 433 30% 36% 17% (16.98) 0.01

8,283 7,076 1,207 100% 100% 15% 0.01
Table 4 - 2: Number of Cash withdrawals over the last 6 months

4.1.3 Overdrawn Amount

Overdrawn amount is the utilization of the card above the set limit by the card holder. In 

banking, consumption of more than what is allocated is considered a sign of bad behavior and 

the logical trend expected is that, the more one overdraws above their limit, the higher one is 

expected to default. This has been verified by this study as clearly indicated in Table 4-3. Bad
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rate and WOE are different from each attribute and meets the logical trend requirement. It also 

concur with the business logic that card holder who has not exceeded their limits have higher 

odds of being good while those who have exceeded their limit by (15,000 to 25,000) have lower 

odds of being bad compared to have (25,000 & above). This characteristic therefore becomes a 

candidate for modeling stage and is also supported by strong value of IV.

Lower
Limit

Higher Limit Count GOOD BAD Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

0 0 6347 5695 652 80% 54% 10% 39.87 0.11
0 5,000 1702 1298 404 18% 33% 24% (60.14) 0.09

5,000 15,000 187 73 114 1% 9% 61% (221.43) 0.19
15,000 25,000 37 9 28 0% 2% 76% (290.36) 0.06
25,000 & Above 10 1 9 0% 1% 90% (396.58) 0.03

8283 7076 1207 100% 100% 15% 0.48
Table 4 - 3: Overdrawn amount on the credit card

4.1.4 Total Number of transactions

The number of transaction refers to the number of times that card has been used in the last six 

months in this study. In business sense it is expected that those card holders who do not conduct 

any transactions with their cards are not likely to default on their payments. Under normal 

circumstances, it is expected that the higher the number of transactions the higher the chances of 

default. However, Table 4-4 indicates otherwise. It indicates that those cases that have number of 

transactions (0 -  20), have higher odds of defaulting compared to those who have transactions 

above 20. The reason could be that these customers are large corporates who occasionally record 

high number of transaction and are less likely to default. For this it may be difficult to ascertain 

the behavior of these card holders since they company meets the charges on their behalf. The IV 

for this attribute is weak and thus variable should be excluded from the modeling stage.
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'Lower Limit Higher Limit Count GOOD BAD Distribution Good Distribution Bad Bad Rate WOE IV
0 20 6,711 5,664 1,047 80% 87% 16% (8.04) 0.01
21 40 1,067 941 126 13% 10% 12% 24.21 0.01
41 & above 505 471 34 7% 3% 7% 85.99 0.03

8,283 7,076 1,207 100% 100% 15% 0.05
Table 4 - 4: Number of transactions in the last 6 months.

4.1.5 Total value of transactions

The total value of transaction of the last six months shows some illogical pattern, Table 4-5 gives 

WOE of this characteristic with the IV of 0.02. The WOE trend indicates that the cases whose 

value of transactions are (0 -10,000) have higher odds of being good cases while cases whose 

value are contained in (10,000 to 60,000) are likely to be defaulters. However, those cases whose 

values of transactions are above 60,000 are most likely to be good. This can be either be false or 

true depending on the credit analysts opinion. To clearly determine the nature of the relationship, 

this characteristic would be included in the model for the scorecard and to find out if this 

behavior has an impact in the scorecard.

Lower
Limit

Higher
Limit

Count GOOD BAD Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

0 10000 5,311 4,551 760 64% 63% 14% 2.12 0.00
10000 30000 1,722 1,451 271 21% 22% 16% (9.07) 0.00
30000 40000 293 235 58 3% 5% 20% (36.94) 0.01
40000 60000 365 307 58 4% 5% 16% (10.22) 0.00
60000 &above 592 532 60 8% 5% 10% 41.37 0.01

8,283 7,076 1,207 100% 100% 76% (12.73) 0.02
Table 4 - 5: The total value of transaction in the last six months

4.1.6 Average amount past due

The average amount that the customer has missed repayment in the last six months has a very 

high correlation to default. Table 4-6 shows the relationship between the average amount past 

due and the performance of the cardholder. The customers who have average past due balance (- 

15,000 and below) have higher odds of defaulting, this attribute is predictive. The cases with past

39



due amount above (-5,000) have higher odds of being good customers. The bad rates and WOE 

are significantly different in each attribute. The characteristic has a very strong IV value of 0.6 

and therefore this characteristic is a candidate for modeling.

Lower
Limit

Higher
Limit

Count GOOD BAD Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

Below (15,000) 123 35 88 0% 7% 72% (269.06) 0.18
(15,000) (5,000) 391 161 230 2% 19% 59% (212.52) 0.36
(5,000) &above 7,769 6,880 889 97% 74% 11% 27.77 0.07

8,283 7,076 1,207 100% 100% 15% 0.60
Table 4 - 6: Average amount past due in the last 6 months

4.1.7 Outstanding balance

The current outstanding balances in the credit cards determine the performance of the 

cardholders. Table 4-7 describes the relationship on how different attributes in this characteristic 

relates to the default of a case. Attributes of balance (below 40,000) have higher odds of being

bad customer than good. However, on the other hand cases with outstanding balance (above
/ '

5,000) have higher odds of being good customers. This is further supported by the significant 

differences in both bad rates and WOE for each attribute. The IV above 0.1 indicates that these 

characteristic has a moderate relationship with default, and should be included in the modeling 

stage.

Lower
Limit

Higher
Limit

Count GOOD BAD Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

(40,000) &below 1,337 1,058 279 15% 23% 21% (43.56) 0.04
(40,000) (20,000) 1,640 1,334 306 19% 25% 19% (29.62) 0.02
(20,000) (15,000) 824 692 132 10% 11% 16% (11.18) 0.00
(15,000) (5,000) 1,924 1,680**" 244 24% 20% 13% 16.08 0.01
(5,000) &above 2,558 2,312 246 33% 20% 10% 47.20 0.06

8,283 7,076 1,207 100% 100% 15% 0.12
Table 4 - 7: Outstanding balance at the observation point
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4.1.8 Card utilization

Card utilization is the ratio of outstanding balance to the credit card limit. The attributes assigned 

to this ratio has shown bad rate and WOE are sufficiently different from one group to 

another. These attributes can therefore identify and separate customers into the good and 

bad group. Table 4-8 shows how cases that have utilization above 100% have higher odds 

of becoming bad compared to other categories of this characteristic. In this regard this 

characteristic is selected for modeling of the scorecard.

Lower
Limit

Higher
Limit

Count GOOD BAD Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

100% &above 499 297 202 4% 17% 40% (138.31) 0.17
100% 50% 2,719 2,260 459 32% 38% 17% (17.45) 0.01
50% below 5,065 4,519 546 64% 45% 11% 34.49 0.06

8,283 7,076 1,207 100% 100% 15% 0.25
Table 4 - 8: Card utilization at the observation point

4.2 Non-Financial characteristics

Non-fmancial characteristics refer to those characteristics that are already categorical and they do 

not change overtime. Most of these characteristics are derived from the variables at the 

observation point.

4.2.1 Employee category

The characteristic of employee category has distinctive and sufficiently different bad rate and 

WOE. The measures indicate that non-bank employees are highly to default compared to their 

counterpart employed in the bank. The IV for this characteristic is sufficiently strong enough and 

therefore a candidate to development of the credit risk scorecard. Table 4.2-1 illustrates how 

these two attributes are related to the credit card performance.
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Bank
Employee

Count GOOD BAD Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

No 5,163 4,137 1,026 58% 85% 20% (37.43) 0.10
Yes 3,120 2,939 181 42% 15% 6% 101.88 0.27

8,283 7,076 1,207 100% 100% 15% 0.37
Table 4.2 -1: Bank Employee category

4.2.2 Brand Name

The credit card performance has weak relationship with the credit card brand name; this is 

illustrated by the IV value in Table 4.2-2. Regardless of the weak relation the WOE indicates the 

direction and strength of the attributes in this characteristic. It can be deduced that Visa Gold 

cardholders have higher odds of default compared to the other two brand names. This variable to 

our opinion should be a candidate for modeling.

Brand Name Count Good Bad Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

Others 1,026 915 111 13% 9% 11% 34.08 0.01
Internl. Classic 6,236 5,342 894 75% 74% 14% 1.91 0.00
Visa Gold 1,021 819 202 12% 17% 20% (36.88) 0.02

8,283 7,076 1,207 100% 100% 15% 0.03
Table 4.2 - 2: Credit card brand name

4.2.3 Card General status

General status of the card does not have any relationship with the performance of the credit card. 

Table 4.2-3 illustrates the nature of relation, even though the bad rate and WOE indicate 

sufficiency in the two attributes, the IV is close to zero. In this regard the variable general status 

is not selected for modeling purposes.
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'’Gen-Status Count Good Bad Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

" buck 36 27 9 0% 1% 25% (67.00) 0.00
norm/noau 8,247 7,049 1,198 100% 99% 15% 0.37 0.00

'’Grand Total 8,283 7,076 1,207 100% 100% 15% 0.00
Table 4.2 - 3: General status of the card

4.2.4 Authorization Status

The authorization status of the credit card has negligible value of IV. The bad rate and WOE has 

relatively predictive. But due to IV value the variable is not predictive if it were included in the 

modeling. Therefore it is dropped based on result indicated in Table 4.2-4.

Aut-Status Count Good Bad Distribution
Good

Distribution
Bad

Bad
Rate

WOE IV

NOAU 39 31 8 0% 1% 21% (41.40) 0.00
NORM 8,244 7,045 1,199 100% 99% 15% 0.23 0.00
Total 8,283 7,076 1,207 100% 100% 15% 0.00

Table 4.2 - 4: Authorization status of the card
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Chapter 5

Credit Scoring Model

Once a list of characteristics for inclusion in the scorecard is obtained, these characteristics are 

then regressed again as a group, to obtain final regression parameters.

The process involves combining statistical modeling technique with business considerations in 

“designing” a scorecard that is strong and stable. In this study the characteristics from financial 

and non-financial are combined to represent different independent information types that 

together form a risk profile.

At this stage, logistic regression is performed with the strongest set of characteristics chosen 

from the initial characteristics analysis, and that all weak criteria have been eliminated. All tests 

for significance are followed in selecting the final composition of the scorecard. The scorecard 

produced has measurable strength and impact. Most importantly, it is a useful business tool that 

can be used by Risk Managers and other decision makers to create risk-adjusted strategies for 

monitoring their card holders.

5.1 Logit Model

The logit model confirmed only three financial and one non-financial characteristic to be 

predictive classifying a customer on default or non-default. The four characteristics are therefore 

used for developing the scorecard. Current outstanding balance on the card account, value of 

transaction, overdrawn amount on credit cards and credit card brand type are not predictive 

enough in estimating the cardholder default in the next one year. Table 5-1 illustrates the 

characteristics that meet business logic and statistically significant.

44



Coefficients: Estim ate Std. Error z va lue Pr(>|z|)

(Intercept) -2.02363 0.06022 -33.602 < 2e-16
PD Days 0-29 0

30-59 2.22307 0.1812 12.269 < 2e-16
60-89 2.64993 0.35783 7.406 1.31E-13

Amount Past Due <5000* 0
5000-15000 1.05963 0.15945 6.646 3.02E-11

Above 15000 1.1306 0.29707 3.806 0.000141
Card Utilization <50% 0

50% -100% 0.6039 0.09394 6.429 1.29E-10
>=100% 1.65353 0.16586 9.969 < 2e-16

Employee Category No 0
Yes -1.64742 0.12066 -13.653 < 2e-16

Table 5-1:  Logistic regression model output 
*excluded attribute

The model attributes have small standard errors compared to the respective coefficients 

estimates. P-values are smaller than 5%, indicating that these characteristics are predictive 

enough and conclude that they are statistically significant. These results can assist banks to 

predict those customers who are likely to default in the next one year. From the twelve 

characteristics only four have statistical significance in explaining default in the next twelve 

months.

5.2 Model Assessment

5.2.1 Deviance and Pearson Chi-Square

The residual deviance for the model is 3767.5 on 5790 degrees of freedom and null deviance of

4751.1 on 5797 degrees of freedom. The change in deviance between the null and residual is 

1083.6 on 7 degrees of freedom. With 7 degrees of freedom, a x 1 = f  083.6 has a P-value very 

close to zero. Such a small P-value indicates that such a large change in deviance is not 

attributable to chance alone. That is Days Past Due, Amount Past Due, Utilization and 

Employment status of a cardholder are significant explanatory variables in the prediction of
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whether cardholder will default in the next one year or not. Table 5-2 gives the model assement 

statistics.

(Dispersion parameter for binomial family taken to be 1) 
Null deviance: 4751.1 on 5797 degrees of freedom 
Residual deviance: 3767.5 on 5790 degrees of freedom 
AIC: 3783.5_____________________________________
Number of Fisher Scoring iterations: 6_______________

Table 5 - 2: Model Fit statistics

5.2.2 The Receiver Operating Characteristic (ROC) Curve and K-S statistic

The ROC curve is the plot of X  = Pr[SpP < S Cut_o ff] against Y = Pr[Srp < SCut_o ff] as the

cut-off is varied, where X= sensitivity, the true positive rate, or hit rate and Y =  1 — specificity, 

which is the false positive rate, or false alarm rate. The results for the model with four 

characteristics are shown in figure 5-1.

R O C  C u r v e

Figure 5 -1: ROC curve of the model of the four characteristics
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The Receiver Operating Characteristic (ROC) curve for the model indicates that inclusion of the 

four variables in the model yields a better model compared to a random model whose line would 

be 45° from the origin.

5.2.3 Kolmogorov-Smirnov (K-S)

This measures the maximum (deviation) between the cumulative distributions of bads and goods. 

The K-S statistic gives a value of 0.413, this could be used as a cutoff point at which to reject a 

cardholder whose PD is above this point.

5.3 The Scorecard

The scorecard is developed using the Table 5.1 three columns. The following procedure was 

followed to develop the scorecard:

i. Observing the category with the highest value in each characteristic and summing over 

these values.

ii. Calculate the point value

iii. Multiply each coefficient by this point value from step (ii) to obtain the score.

Characteristic Attributes Estim ate Score
Past Due Days 0-29 0 0
Past Due Days 30-59 2.43402 170
Past Due Days 60-89 2.69408 189
Amount Past Due Less than 5000 0 0
Amount Past Due Between 5000 &15000 1.08345 76
Amount Past Due Above 15000 1.2897 90
Card Utilization less than 50% 0 0
Card Utilization Between 50% & 100% 0.56371 39
Card Utilization Above 100% 1.49746 105
Bank Employee No 0 0
Bank Employee Yes 1.66267 116

Table 5 - 3: The scorecard
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Table 5 - 3: The scorecard

sum
The highest 
score
point value

7.14391

500
69.99



Chapter 5

Conclusions

This study has found out that average past due days on card, average amount past due in the last 

six months and card utilization are the key three financial characteristics that can be used to 

determine the probability of default in the next one year of the credit card holder.

Besides, the status of whether a cardholder is a bank employee or not has proved to be one of the 

non-fmancial characteristic that can be applied in monitoring the performance of the cardholder.

Recommendations

The project has only identified four key characteristics that can be used to estimate the 

probability of default of customer in the next twelve months. However, there are other 

characteristics that need to be studied to find out how they affect the default. These include 

different category of credit card types, total number of transactions and the duration the customer 

has been using the card- banking relationship.
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