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Abstract

This project demonstrates that telephone call center call-arrival data can be effectively

modelled as a nonhomogenous Poisson process with cyclic rate. The data was from an

Israeli bank telephone call center collected through the year 1999 and made freely ac-

cessible online. The theory underlying the assumptions of a Poisson process has been

presented where it has been shown that time-sampling a Poisson process results in

a nonhomogenous Poisson process and the method of maximum likelihood presented

and applied to estimate the parameters of an exponential-polynomial-trigonometric

rate function (EPTF). An analysis of this data confirmed that a nonhomogenous

Poisson process with an EPTF-type rate was a good fit with a confidence of 90%.

Key Words: Nonhomogenous Poisson process (NHPP); Cumulative rate function;

Mean Value function; Intensity function; Exponential-Polynomial-Trigonometric rate

function (EPTF)



Acknowledgments

Though this project is the author’s personal work, it would not have been completed

without the academic, spiritual, or moral support from many individuals.

First and foremost, I want to thank God the creator; Jesus Christ the saviour; and

Holy Spirit the companion & comforter, for allowing me to live in this world, blessing

me with knowledge, and guiding me throughout my MSc candidature.

Next, I would like to express my heartfelt thanks to my supervisor Prof. Moses

Manene, who has been a critical reviewer of my work, very meticulous, diligent, the

first filter for all my forays into this project. I am motivated by your passion for re-

search and academic excellence. Thanks for your keen interest in seeing me through

this project.

I also want to thank Prof. Peter Waiganjo of the School of Computing and Infor-

matics, University of Nairobi. Thank you for sowing the seeds for this project by

initially interesting me with Traffic modelling of a matatu stage. Were it not for the

lack of data and the short period allowed for the project work, I would have happily

proceeded with it.

I would also like to thank Prof. Avishai Mandelbaum and the Industrial Engineer-

ing and Management team at the Technion University, Haifa, Israel, for making the

Anonymous Bank Telephone Call center data used in this project publicly accessible.

In the same line I would like to thank Prof. J. R. Wilson, a distinguished faculty

member of the Department of Industrial and Systems Engineering, North Carolina

State University for publicly availing software used in solving the system of m+4

equations in Chapter 3 and for silently challenging me to write the software for sim-

ulating an NHPP with cyclic rate by not providing the complementary simulation

package.



The support of two very important people in my life, my father, David N. Nyamu,

and mother, Alice W. Nyamu, cannot be overstated. Thank you for raising me up

until now. Without your love and sacrifices so far, I would not have been able to be

what I am today.

I want to thank my dear siblings, Janette Wandia, Joan Njeri , Elizabeth Wanjiku,

James Njoka & Grace Nyakio and brothers in law Edward Kipsang & the late James

Maina Ichagichu for every way you have shaped me - it has not been a bed of roses

but I know you love me dearly. Thank you!

Many thanks to my friends Wallace Muchiri, Ego Obi, Richard Ngamita, Hongli Lv,

Elliott Friedman, and Rodrigo Ribeiro for all the support you have given me at one

time or another. I look forward to meeting with you some day in future if God allows.

Finally, and very importantly, I would like to thank my mentors at Google SRE-Dub

& especially Mr. John Looney for rousing my academic interest so that I decided to

advance my studies.



Dedication

I wish dedicate this project to my parents,

Mr & Mrs. David N. Nyamu,

&

small siz,

Grace N. Nyamu.



Contents

1 Introduction 1

1.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 General Outline of the Project . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5

2.1 Review of Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Framework of Important Topics . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 15

3.1 Description of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Call Center Arrivals as a Poisson Process . . . . . . . . . . . . . . . . 17

3.2.1 Arrivals as a collection of three Random Variables . . . . . . . 17

3.2.2 Arrivals as a Binomial process with large n and small p . . . . 19

3.2.3 The Poisson Process . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 The Nonhomogenous Poisson Process . . . . . . . . . . . . . . 21

3.3 Method of Maximum Likelihood for the parameters of the cyclic rate

NHPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Simulation of Cyclic Rate NHPP . . . . . . . . . . . . . . . . . . . . 25

4 Data Analysis 27

4.1 Arrival Counts Data as a Poisson Process . . . . . . . . . . . . . . . . 27

4.1.1 Test of Time Dependence . . . . . . . . . . . . . . . . . . . . 28

i



4.1.2 Test of the Independence of Arrivals . . . . . . . . . . . . . . 29

4.1.3 Test that Interarrival times are exponential i.i.d . . . . . . . . 32

4.2 Maximum Likelihood Estimation of Parameters . . . . . . . . . . . . 34

4.3 Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions & Further Work 41

5.1 Some Challenges Encountered . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A Proofs 45

B Code Snippets 47

B.1 Generate {U} for ui ∼ Unif(0, 1) rv . . . . . . . . . . . . . . . . . . 47

B.2 Generate {X} for xj = F−1
X (uj) . . . . . . . . . . . . . . . . . . . . . 47

C Program Input and Output 51

C.1 Input to MP3MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C.2 Output from MP3MLE . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ii



List of Figures

2-1 Framework of important topics . . . . . . . . . . . . . . . . . . . . . 14

3-1 Event history of an incoming call (Sakov (2001)[9]). Number of callers

in thousands (’000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4-1 Barplot of arrival counts for regular weekday calls in the month of

November 1999 between 08:15am and 08:30am. . . . . . . . . . . . . 28

4-2 Scatterplot of raw inter-arrival times for November 1999 between 08:15am

and 08:30am. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4-3 Scatterplot of log inter-arrival times for November 1999 between 08:15am

and 08:30am. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4-4 Scatterplot of power inter-arrival times for November 1999 between

08:15am and 08:30am. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4-5 Exponential Q-Q plots for 01 November 1999 between 08:15am and

08:30am. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4-6 Graphs of the Estimated Intensity function . . . . . . . . . . . . . . . 36

4-7 Graph of Simulated and Observed Arrival counts over 2hr intervals for

the first approx 2.5 days . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-8 Graph of Arrival counts over 2hr intervals for the workdays of Nov 1999. 39

4-9 Graph of Cumulated Arrival counts over 2hr intervals for the first two

working days of Nov 1999. . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



List of Tables

4.1 A sample of the arrival time trajectories of the Simulated and Observed

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



Chapter 1

Introduction

Modelling is the process of generating conceptual representations which can be more

easily manipulated for the purpose of understanding underlying relationships of eco-

nomic or other interest. The resulting models which come closest to observed reality

are then applied in areas such as forecasting/prediction, training/education, planning

and decision making to name a few.

Businesses which attract large customer numbers automate and decentralise ser-

vice delivery to their customers in a bid to provide scalable service. One way of doing

this is to provide telephone call centers where a customer need only make a telephone

call and receive service without being physically present to transact. Having a call

center has the following challenges:

a) Authentication: Is the caller the true owner of the identity?;

b) Accounting: Can a complete history of all transactions with the system be

reconstructed for each caller?;

c) Authorisation: What transactions can be completed over the phone?; and

d) Data management: Where and how to store the vast amounts of data collected.

The opportunities that a call centre creates are:
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a) Automation: Thousands of computer software agents can be easily employed

round the clock to serve callers; and

b) Advertising & Entertainment: Customers in queue can receive adverts and be

entertained as they wait to be served.

Brown et al. (2005)[1] described telephone call centers as technology-intensive

operations where the largest percentage of cost of operations goes to human resource

thus necessitating adherence to a sharply defined balance between agent efficiency

and service quality for well-run call centers.

In this project, we shall focus on the customers’ interaction with the system,

specifically in the arrival of calls to the call center - the business wants to learn most

about the customer! According to Gans et al. (2003), large call centers generate

vast amounts of data and make use of special purpose computers to mediate call flow

and records generated at each stage that can in theory for each caller be used to

reconstruct a detailed call history. They also cited some reasons why call centers do

not store or analyse such records, namely:

a) Historically high cost of maintaining large databases (data management prob-

lem);

b) Software for managing such databases only performs rudimentary (summary)

statistics; and

c) Ignorance on how and why more detailed analysis should be carried.

A telephone call center arrival can be described as any call made to the call center

over the telephone network. Historically, arrival counts have been shown to conform

to a Poisson process whose parameter is the rate. In this project, arrival counts will

be extracted from the call accounting records of an Anonymous bank1 in Israel.

Funaki and Matoba (1999)[3] noted that the Poisson process was a model that

had seen successful usage in modelling many actual systems such as patient arrivals

1The bank is called ‘Anonymous’ for confidentiality reasons.
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at a hospital, database transactions and occurrences of typhoons. However, the re-

strictions in the properties of the Poisson process made it inadequate for many other

real world systems which possessed the characteristics of the Poisson process but

with its parameters dependent on a time-point t and the length of the interval τ -

such systems they described as nonhomogenous (or nonstationary) Poisson processes

(NHPP).

1.1 Statement of the Problem

Gans et al. (2003)[7] noted that accurate estimation and forecasting of parameters

were prerequisites for consistent service levels and efficient operation and that though

a lot had been done in statistical inference and forecasting, comparatively little had

been devoted to stochastic processes, especially in the area of queueing and call centers

particularly.

The purpose of this project will be to investigate how well the nonhomogenous

Poisson process explains call center data but with a rate that exhibits cyclic and

seasonal trends. It is hoped that this will add to our understanding of the stochastic

processes applicable to call center data.

1.2 Objectives

The main objective of this project will be to generate a nonhomogenous Poisson

process model with a rate function that fits the observed trend in the Anonymous

Bank call center data. This will be accomplished by achieving the following specific

objectives:

• Justify arrival count data as Poisson processes;

• Test call center arrival data for the properties of a Poisson process;

• Estimate the rate parameter to arrive at a model;
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• Conduct a goodness-of-fit test for the model.

1.3 General Outline of the Project

Chapter 2 will largely be a review of important papers that prepare the motivation for

this project. A summary of research gaps will be provided at the end. Chapter 3 will

discuss the call center data and justify arrival count data as a Poisson process. The

characteristics of Poisson processes and nonhomogenous Poisson processes will also

be discussed in this section. The method of Maximum Likelihood Estimation (MLE)

for the rate function of the nonhomogenous Poisson process will be presented. A few

tests whether call center arrival data comes from a nonhomogenous Poisson process

and MLE (numerically using software) will be conducted leading to the estimation

of the rate parameter. A goodnes-of-fit test will afterwards be performed. Chapter

4 will discuss the results of the goodness-of-fit test and compare a few others and

finally, Chapter 5 will conclude the project and give further direction for future work.
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Chapter 2

Literature Review

A review of existing papers that motivate and inform this project are presented in this

chapter. The previous works discussed here are in no way exhaustive but sufficient

for conducting this project. A framework bringing together all the efforts of this

literature review is added in the last section.

2.1 Review of Past Work

Gans et al.,(2003)[7] offered an overview of the state of research on telephone call

centers by first discussing how call centers functioned, then by surveying the research

devoted to their operations. Large call centers generated vast amounts of data and

make use of special purpose computers to mediate call flow - records were generated

at each stage and thus in theory, a detailed call history for each caller could be

reconstructed. They also cited some reasons why call centers do not store or analyse

such records, namely:

a) Historically high cost of maintaining large databases (data management prob-

lem);
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b) Software for managing such databases only performs rudimentary (summary)

statistics; and

c) Ignorance on how and why more detailed analysis should be carried.

Further, they stated that the performance of call centers in peak hours could

be extremely sensitive to changes in calling rate and service time, thus accurate

estimation and forecasting of parameters would be prerequisites for consistent service

level & efficient operation. They identified four categories of call center data:

a) Operational: reflects physical process by which calls are handled;

b) Marketing/Business data: record transactions that took place over a customers

entire history with the company;

c) Human resource: record the history and profile of agents - skill of the agent

data is fed into the computer assigning calls to the agent to enable the software

to autonomously route request needing specialised skills to human agents with

the skills; and

d) Psychological: collected from customer, agent or manager surveys, they record

subjective perceptions of the service level & work environment.

In their discussion on data models, they made three sets of distinctions:

a) Descriptive models: these organise and summarise the data being analysed, eg.

histograms;

b) Theoretical models: objectively test whether or not the phenomenon being

observed conforms to known mathematical and statistical theories; and

c) Explanatory models: these fall in between the two above and are often created

in the context of regression and time-series analysis. These models identify and
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capture relationships in terms of explanatory variables but do not develop or

test mathematical theory to explain the relationships.

They also gave a clear distinction of estimation and prediction by stating that

estimation is the use of existing data to make inferences about parameter values of a

model whereas prediction is the use of estimated parameters to forecast the behaviour

of a sample outside the original dataset.

Referring to future developments, the most pressing practical needs, in their opin-

ion, was for:

a) Improvements in the forecasting of arrival rates: further development of models

for estimation & prediction will depend, in part, on access to rich data sets.

They held that the randomness of Poisson arrival rates would be explained by

uncaptured covariates so the ’richer’ the data the better;

b) Procedures for predicting waiting time;

c) Parallel, descriptive studies to validate or refute the robustness of initial find-

ings;

d) Studies of the abandonment of queues to explain impatience;

e) Opportunity to further develop and extend the scope of explanatory models;

and

f) Analysis of integrated operational, marketing, human resources and psycholog-

ical data.

Brown et al.,(2005)[1] described a call center as a service network in which agents

provided telephone services and customers seeking these services got delayed in tele-

queues. Queueing theoretic models were exploited to ensure balance between agent

efficiency and service quality where the inputs are system primitives such as number
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of agents working, rate of call arrivals, service time, waiting time and the outputs are

performance measures such as distribution of time that customers wait “on hold” and

the fraction of customers that abandon the queue before being served - the number

of agents is a control parameter that can be manipulated to attain desired efficiency-

quality trade-off.

They noted that common call center models & practice assumed that the arrival

process was Poisson with a rate that remained constant for blocks of time (eg. half-

hours), and with a separate queueing model fitted for each block of time. They argued

that the time-inhomogenous Poisson process was a more natural model for capturing

changes in arrival rate where the arrival rate function could be approximated as be-

ing piecewise constant. To test whether the process was homogenous within blocks,

a subset of blocks was chosen and which covered the same time interval on various

days were sampled. By postulating the null hypothesis that arrival rate is constant

within the intervals, and using ordered arrival times, they gave a formula to con-

struct independent standard exponential variables which were used throughout their

discussion.

The test for the null hypothesis that arrivals of given types of calls form an inho-

mogenous Poisson process with piecewise constant rates was done as follows:

1. The duration of a day was broken up into relatively short blocks of time, short

enough so arrival rate doesn’t change significantly within a block;

2. Arrivals are then considered within a subset of blocks

The Kolmogorov-Smirnov test statistic was used in combination with the exponential

Q-Q plots to ascertain goodness-of-fit to the exponential distribution.

They further discussed the statistical prediction of the system load based on a

combination of observed arrival times to the system and service times as of great

importance to any operations manager of a call center.
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Brown et al.,(2004)[4] showed that assuming arrivals to a queue follows a Poisson

process was not always valid in practice. Further, they developed statistical pro-

cedures to test that a stochastic process is an inhomogenous Poisson process and

showed that call arrivals to a real-life call center followed a Poisson process with an

inhomogenous arrival rate over time. The procedure they outlined is presented below:

1. Test that arrivals do not depend on exact time clock: they chose specific time

intervals over the days of 5 months and performed a χ2 test of uniformity.

2. Test that arrivals have no serial dependence: proposed independence by looking

at correlation of various transformation of inter-arrival times.

3. Test of the exponentiality of inter-arrival times: for a homogenous Poisson

process, inter-arrival times have an exponential distribution with scale 1
λ
. A χ2

test was performed to show this.

4. Test to show that Poisson arrival rates are not easily “predictable”: by hypoth-

esising that the Poisson rate was a function of certain covariates eg. time of

day, call type and day of the week and was ultimately rejected.

They derived statistical models that could be used to construct predictions of the

inhomogenous arrival rate, and provided parameter estimates in the models. Realistic

calculations or simulations of the performance of a queueing system could thus be

constructed. They also constructed two tests of call center arrival processes designed

to determine whether the process was inhomogenous Poisson.

Lee et al. (1991)[5] described techniques for identification, estimation and simu-

lation of a nonhomogenous Poisson process (NHPP) whose rate function contained

a cyclic component as well as a long-term evolutionary trend. The techniques there

discussed could be applied whether the oscillation frequency was known or not. They

modelled the instantaneous arrival rate using an exponential function whose expo-

nent is the sum of polynomial and trigonometric components, ie., an exponential-
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polynomial-trigonometric function (EPTF). Maximum likelihood estimates of the

unknown continous parameters of this function were obtained numerically, and the

degree of the polynomial component determined by a likelihood ratio test. Spectral

analysis of event series was used to gain an initial estimate of the oscillation frequency.

A piecewise linear majorizing function (a piecewise linear function which provides a

tight upper bound - thus a thinning algorithm) was used to approximate the fitted

rate function as clearly as possible.

Their original motivation for the study was a simulation study conducted earlier

on the effects of sea conditions and supply ship availability on petroleum exploration

operations at an off-shore drilling site.

This paper will be the foundation on which an EPTF type rate function will be

derived for the call center data.

Massey et al., (1996)[6] also investigated ways to estimate the parameters of a

nonhomogenous Poisson process but with linear rate over a finite interval based on

the number of counts in measurement sub-intervals. They compared 3 parameter

estimation methods:

a) Ordinary least squares (OLS);

b) Iterative weighted least squares (IWLS); and

c) Maximum likelihood (ML);

all constrained to yield a non-negative rate function.

The theoretically optimal weighted least squares (TWLS) was used as the refer-

ence point. Overall, ML performed as well as IWLS and was found to be significantly

more effective than OLS. Explicit formulas for OLS variances and the asymptotic

TWLS variances (with increasing measurement intervals) revealed the statistical pre-

cision of the estimators and the influence of the parameters and method: in their
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words, “knowing how variance depends on interval length helps determine how to

approximate general arrival-rate functions by piecewise linear ones.”

They noted that the major difficulty with the nonhomogenous Poisson process

was that it had infinitely many parameters, ie., it was parameterised by it’s arrival

rate λ(t). They considered the linear Poisson process model because they wanted to:

a) Understand how different estimation procedures perform when the model is

approximately valid.

b) Determine whether a linear model is appropriate, ie., a model is invalid if the

arrival process is not poisson or if arrival-rate function over the designated sub-

interval is non-linear.

Funaki & Matoba (1999)[3] posited that the parameters of the mean rate function

Λ(t) should be estimated in order to model a system with NHPP but it’s parametric

representation was oft unknown. They mentioned that Law & Kelton proposed a

nonparametric estimation with piecewise constant intensity function requiring many

sample datasets for statistically accurate values and contrasted it with their method

which would be a piecewise estimation method covering the case of only a few sample

data sets.

Their method gave a pseudo-estimator by using sample data of the adjacent in-

tervals but could theoretically gain more statistical accuracy compared to the Law &

Kelton nonparametric method and with fewer sample data sets.

They further defined the nonhomogenous (nonstationary) Poisson process as one

where the Poisson distribution of the number of events had a mean dependent on

both the time point t ant eh length of the interval τ , making it applicable to many

real-world cases. The NHPP would be fully specified by the mean function, Λ(t), thus

the estimation for NHPP is equivalent to identifying the parameters of the mean rate

function, Λ(t). The method of maximum likelihood estimation for Λ(t) was used when

11



it’s parametric representation was known before hand using some collected sample

data; but in practice, its parametric representation is unknown for lack of knowledge

about the determinants eg. cyclic factors.

They also discussed various smoothing algorithms ie. a) Local averaging; and

b) Piecewise polynomial smoothing in the attempt at nonparametric regression with-

out the Poisson process basis which their proposed estimator was completely drawn

from but with similarities to local averaging algorithms.

Frenkel et al.,(2003)[2] considered a nonhomogenous Poisson process with an in-

tensity function λ(t) parameterized in two forms: log-linear with λ(t) = eα+βt and

Weibull-type λ(t) = αββtβ−1. The Method of Maximum Likelihood was applied for

parameter estimation. They showed that there was one and only one solution to

maximum likelihood equation of the log-linear form of λ(t).

They considered the test of the hypothesis for two cases of the intensity function:

1. Case of the known intensity function: testing the hypothesis that the given

sample path is a realization of NHPP could be carried out on the basis of: Let

t1, t2, ..., tn be the instants of event occurences in NHPP. Consider the following

time-transformed process: T1, T2, ..., Tn where Ti =
∫ ti

0
λ(v) dv. This process

is a standard Poisson process with λ(t) = 1 if the original process is NHPP.

Therefore, the intervals between events in the transformed process formed a

sample of i.i.d. standard exponential random variables.

2. Case of unknown intensity function: whose parameters are estimated from the

sample path, it turned out that the intervals between adjacent times Ŵi =
∫ ti

0
λ̂(v) dv were not i.i.d. exponential random variables. They demonstrated

that their sum, i.e. the value of Ŵn, was always equal to n.

They also suggested the following computer intensive procedure for testing the

hypothesis that the sample path belongs to NHPP with intesity function equal to the

12



estimated λ̂(t):

1. Simulate N trajectories of the NHPP with intensity function λ̂(t). Subject each

trajectory to the time-transformation described above.

2. Compute for each simulation run the actual values of test statistics S1, S2, S3

for the intervals between the adjacent transformed time instants. S1 denotes

Laplace-type statistic, S2 denotes Kolmogorov-Smirnov statistic, and S3 denotes

the coefficient of variation of the transformed time intervals.

3. Based on 2, compute the upper and lower α-critical values for these statistics:

Si(α), Si(1− α).

4. For the given sample path, compute the actual transformed time instants and

the actual values of the above statistics, S1, S2, S3. Reject the hypothesis if at

least one of these values fall outside the inverval [Si(α), Si(1− α)], for i = 1, 2,

3.
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2.2 Framework of Important Topics

Figure 2-1: Framework of important topics
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Chapter 3

Methodology

In this chapter, we start with a description of data from the Israeli Anonymous Bank

Call center data1 made publicly accessible on the Technion website link given on the

footnote. We also provide a quick overview of how this data was collected in the call

center. Secondly, we present a justification to the use of Poisson related processes in

modelling arrival data. The nonhomogenous Poisson process is then shown to be a

generalised realisation of the homogenous Poisson process. The properties of both the

homogenous (or stationary) Poisson and nonhomogenous (or nonstationary) Poisson

process will be briefly discussed. Finally, the method of Maximum Likelihood for

the parameters of a exponential-polynomial-trigonometric function (EPTF) will be

presented.

1Faculty of Industrial Engineering and Management, Technion, Haifa. (2000, Feb). 12 month
Telephone Call-Center for ‘Anonymous Bank’ in Israel, (Jan-1999)-(Dec-1999). Retrieved February
12, 2014, from the Faculty of Industrial Engineering and Management, The Technion - Israel Institute
of Technology, website: http://ie.technion.ac.il/serveng/
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3.1 Description of Data

Sakov et. al.,(2001)[9] defined a call center as a service network which consisted of

callers (customers), servers (or agents - these provided telephone-based services) and

queues. Brown et. al.,(2005) discussed the mediation of calls through this call center

in the following sequence:

a) A customer called one of several telephone numbers associated with the call

center.

b) The customer would then be connected to a special purpose computer called a

VRU/IVR2.

c) A customer would be immediately forwarded to an available agent if the VRU

didn’t provide the required service, else, placed in a tele-queue to wait for an

agent to become available.

d) Customers in the tele-queue were served on a FCFS3 basis and queue position

distinguished by time of arrival to the queue.

Approximately 450,000 calls were made to the Anonymous Bank call center in 1999

and each call proceeding past the VRU conceptually passed through three stages

which generated distinct data: a) Arrival stage: triggered by call’s exit from VRU

generating arrival time record; b) Queueing stage: call enters this stage if no ap-

propriate server is available - data generated here was queue entry time, queue exit

time and manner of queue exit; and c) Service stage: the caller was serviced - data

generated was start and end time of service. Figure 3-1 below visually summarises

the flow of calls through the call center system.

2VRU/IVR: Voice Response Unit/Interactive Voice Response: 65% of callers completed transac-
tions at the VRU wheareas the rest indicated they wanted to speak to an agent

3FCFS: First Come First Served
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Figure 3-1: Event history of an incoming call (Sakov (2001)[9]). Number of callers in
thousands (’000).

3.2 Call Center Arrivals as a Poisson Process

I will present two approaches that justify the call center arrivals as a Poisson process:

(a) Arrivals as a collection of three random variables; and

(b) Arrivals as a Binomial process with large n and small p

3.2.1 Arrivals as a collection of three Random Variables

The three types of random variables that can be observed from the arrivals are:

(a) Sequence of interarrival times: {X} = (X1, X2, . . .) where X1 is the time of the

first arrival and Xi the time between the (i−1)st and ith arrival for i∈{2, 3, . . .}.

Assuming that customers do not generally influence one another to make calls

to a call center, the interarrival times can be assumed to form an independent-

and-identically-distributed (iid) sequence. This establishes that the sequence of

17



iterarrival times is a renewal process thus allowing us to completely specify the

probabilistic behaviour of the process upto a single, positive parameter, λ.

The renewal assumption also implies the ‘memoryless property’:

P{X > t + s |X > t} = P{X > s} s, t∈[0,∞)

The exponential distribution is the only continous distribution possessing this

property:

fX(x) =











λe−λx if x ≥ 0

0 otherwise

(3.1)

Equation 3.1 is the density function for the sequence of interarrival times with

rate parameter λ.

(b) Sequence of arrival times: {T} = (T0, T1, . . .) where Tn is the time of the nth

arrival, n ∈ N+ and T0 = 0 is not an arrival. Thus, the nth arrival time is the

sum of the first n−interarrival times:

Tn =
n

∑

i=1

Xi , n ∈ N

thus the sequence of arrival times, {Tn}, is the partial sum process associated

with the sequence of interarrival times, {Xn}. The distribution function of Tn

is the nth-fold convolution of the exponential distribution and thus is a gamma

(or Erlang) distribution with parameters n and λ ie., fn+1 = fn ∗ f1

fn(t) =











λe−λx λtn−1

(n−1)!
, x ≥ 0

0 , x < 0

(c) The counting process, {N} = N(t) : t ≥ 0 where N(t) is the number of arrivals

in (0, t], t∈[0,∞). The counting process distribution can be formed via an

inverse relation between {N} and {T}, ie.,
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Since N(t) ≥ n ⇐⇒ Tn ≤ t, for t ∈ [0,∞), n ∈ N+

∴ P{N(t)≥n} = P{Tn≤t}

1− e−λt
∑n−1

k=0

(λt)k

k!
=

∫ t

0

fn(s)ds

but P{N(t) = n} = P{N(t)≥n} − P{N(t)≥n+ 1}

= e−λt

[

∑n

k=0

(λt)k

k!
−

∑n−1

k=0

(λt)k

k!

]

= e−λt (λt)
n

n!

Ross (2009)[8] offers two other properties of the increments of a counting pro-

cess:

(a) Independent increments: A counting process possesses independent incre-

ments if the numbers of events that occur in disjoint time intervals are

independent.

(b) Stationary increments: A counting process possesses stationary increments

if the distribution of the number of events that occur in any interval of time

depends only on the length of the time interval.

3.2.2 Arrivals as a Binomial process with large n and small

p

The arrivals can also be thought of as a sequence of independent Bernoulli variables,

where any customer,(x), either calls (x = 1) with a probability p or doesn’t call

(x = 0) with a corresponding probability of 1 − p. The mass function associated

with Bernoulli variables is given by:

fX(x) = px(1− p)1−x =











p , x = 1

(1− p) , x = 0
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If we have more than one caller, say k callers, and a total customer base n, then

this becomes a ‘Bernoulli n-trials’ experiment. An instance with k callers from a

customer base of n potential callers has a probability of pk(1 − p)n−k for each single

arrangement. All such arrangements combined give the total probability of k callers

from n potential callers given below:

fX(x) =

(

n

k

)

pk(1 − p)n−k

Now, the population, n, of potential callers is very large (ie., n → ∞) and from

previous experience, a very small percentage of that population actually makes calls

to the call center, thus p → 0. In this case the binomial distribution approximates to

the Poisson distribution: (Let µ = np:)

fX(x) = e−np (np)
k

k!

3.2.3 The Poisson Process

The counting process N(t), t≥0 is said to be a Poisson process having rate λ, λ > 0

if:

1. N(0) = 0.

2. The process has stationary and independent increments.

3. The number of events in an interval of length t is Poisson distributed with mean

λt. ie., for all s, t≥0

P{N(t+ s)−N(s) = n} = e−λt (λt)
n

n!
, n = 0, 1, . . . (3.2)

The Poisson process thus has stationary increments and that E[N(t)] = λt.
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An arbitrary counting process is a Poisson process if it satisfies the above three

conditions.(Ross 2009[8])

3.2.4 The Nonhomogenous Poisson Process

The counting process {N(t), t≥0} is a nonhomogenous (or nonstationary) Poisson

process with intensity function λ(t), t≥0, if:

1. N(0) = 0.

2. {N(t), t≥0} has independent increments.

3. P{N(t+ h)−N(t)≥2} = o(h).

4. P{N(t+ h)−N(t) = 1} = λ(t)h+ o(h).

Definition 3.1 A function g(·) is said to be o(h) if:

lim
h→0

g(h)

h
= 0

Proposition 3.2.1. Let {N(t), t≥0} be a Poisson process with rate λ. An event that

occurs at time t, independently of what has occurred before, has a probability of oc-

curence of p(t). Let Nc(t) denote the number of counted events by time t, the counting

process {Nc(t), t≥0} is a nonhomogenous Poisson process with intensity function λ(t)

= λ·p(t).

The following statements are true of the above proposition

1. Nc(0) = 0

2. The number of counted events in (s, s + t) depends only on the number of

events of the Poisson process within that interval, which is independent of what
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occurred before s. As a consequence, the number of counted events in the

interval is independent of the process of counted events prior to s, thus the

independent increment property.

3. Let Nc(t, t+ h) = Nc(t+ h)−Nc(t), with N(t, t+ h) similarly defined

P{Nc(t, t+ h)≥2} ≤ P{N(t, t+ h)≥2} = o(h)

4. We compute P{Nc(t, t+ h) = 1} by conditioning on N(t, t+ h).

P{Nc(t, t+ h) = 1} = P{Nc(t, t+ h) = 1|N(t, t+ h) = 1}P{N(t, t+ h) = 1}

+ P{Nc(t, t+ h) = 1|N(t, t+ h)≥2}P{N(t, t+ h)≥2}

= P{Nc(t, t+ h) = 1|N(t, t+ h) = 1}λh+ o(h)

= p(t)λh+ o(h)

The above shows that time sampling a Poisson process results in a nonhomogenous

Poisson process.

Proposition 3.2.2. If {Ni(t), i = 1, . . . , k}, represents the number of type i events

occurring by time t then {Ni(t), i = 1, . . . , k}, are independent Poisson random vari-

ables with expectation:

E[Ni(t)] = λ

∫ t

0

Pi(s)ds (3.3)

Suppose that {N(t), t≥0} is a nonhomogenous Poisson process with bounded in-

tensity function λ(t)≤λ, for all t≥0. Let {M(t), t≥0} be a nonhomogenous Poisson

process with intensity function µ(t) = λ− λ(t), t≥0, independent from {N(t), t≥0},

then {N(t), t≥0} can be regarded as the process of time-sampled events of the Pois-

son process {N(t)+M(t), t≥0}, where an event of the Poisson process that occurs at

time t is counted with probability p(t) = λ(t)/λ. Consequently from proposition 3.2.2
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N(t) is a Poisson random variable with mean

E[N(t)] = λ

∫ t

0

λ(x)

λ
dx =

∫ t

0

λ(x)dx

Thus, a Poisson process starting at time s, N(t + s) −N(t) is the number of events

over t time units and the mean would be
∫ t

0
λ(x)dx giving us a definition for the

function m(t): (Ross (2009)[8])

m(t) =

∫ t

0

λ(x)dx (3.4)

The above equation is called the mean value function or the cumulative rate

function of the nonhomogenous Poisson process. This function is of particular in-

terest throughout this project since it fully describes the nonhomogenous Poisson

process (see Funaki and Matoba (1999)[3]).

3.3 Method of Maximum Likelihood for the pa-

rameters of the cyclic rate NHPP

In this project, a nonhomogenous Poisson process displaying cyclic rate is assumed to

be an exponential-polynomial-trigonometric function (EPTF) of degree m and with

the form:

λ(t) = exp{hΘ(m, t)} (3.5)

hΘ(m, t) =
m
∑

i=0

αit
i + γsin(ωt+ φ)
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where:

Θ = [αo, α1, . . ., αm, γ, φ, ω] : vector of unknown parameters

m
∑

i=0

αit
i : general trend over time

γsin(ωt+ φ) : cyclic effect of the process

Numerical methods have to be used to obtain the maximum likelihood estimates of

the parameters. Consider a sequence of n events occurring at the epochs t1, t2, . . ., tn

in a fixed time interval (0, s] according to a NHPP with an intensity function of the

form of Equation (3.5), then the log-likelihood function of Θ, given N(s) = n and

t = (t1, t2, . . ., tn), is:

L(Θ|n, t) =
m
∑

i=0

αiTi + γ
n

∑

j=1

sin(ωtj + φ)−

∫ s

0

exp{hΘ(m, z)}dz (3.6)

where

Ti =
n

∑

j=1

tij for i = 0, 1, . . .,m;

The value of m is an unknown parameter and the appropriate value is usually deter-

mined by a likelihood ratio test[10].

2
[

Lm+1(Θ̂m+1|n, t)− Lm(Θ̂m|n, t)
]
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For a given value of m,m≥0, we obtain m+ 4 likelihood equations:

∂L(Θ|n, t)

∂αi

= Ti −

∫ s

0

ziexp{hΘ(m, z)}dz = 0, i = 0, 1, . . .,m,

∂L(Θ|n, t)

∂ω
=

n
∑

j=1

tjcos(ωtj + φ)−

∫ s

0

z·cos(ωz + φ)exp{hΘ(m, z)}dz = 0,

∂L(Θ|n, t)

∂γ
=

n
∑

j=1

tjsin(ωtj + φ)−

∫ s

0

sin(ωz + φ)exp{hΘ(m, z)}dz = 0,

∂L(Θ|n, t)

∂φ
=

n
∑

j=1

tjcos(ωtj + φ)−

∫ s

0

cos(ωz + φ)exp{hΘ(m, z)}dz = 0, (3.7)

The above system of nonlinear equations is solved numerically using special-purpose

software, yielding the maximum likelihood estimates of the parameters (Lee et al.

1991[5]).

3.4 Simulation of Cyclic Rate NHPP

Once the parameters have been estimated, a trajectory of arrival times of the fitted

exponential-polynomial-trigonometric rate function (EPTF) will be generated by the

method of inversion: for j∈(1, 2, . . . , n)

a) Generate {U}= {u1, u2, . . . , un} for uj ∼ unif(a = 0, b = 1), (see Appendix B.1,

page 47)

b) Generate {X} = {x1, x2, . . . , xn} where xj = F−1
X (uj), (see Appendix B.2,

page 47)
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An NHPP with a rate function λ(z), z∈[0, S], the cummulative distribution function

of the next event time τi+1 conditioned on the observed value τi = ti is

Fτi+1|τi(ti+1|ti)≡P{τi+1≤t|τi = ti} =











1− exp
[

−
∫ t

ti
λ(z)dz

]

, if t≥ ti

0 , otherwise.

We then generate a random number ui+1 from the uniform distribution as discussed

in the method of inversion above and compute τi+1:

τi+1 = ti+1 = F−1
τi+1|τi

(ui+1|ti).

which is equivalent to the solution of ti+1 in the equation:

∫ ti+1

ti

λ(z)dz = −ln(1− ui+1).

and the value of ti+1 determined by a binary (bisection) search over the interval

(ti, S)([10]).

The results of the simulation run will then be used together with the observed values

to ascertain the goodness of fit of the model.
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Chapter 4

Data Analysis

In this chapter, I will proceed to empirically show that the telephone call center arrival

counts data comes from a Poisson process - the theory was presented in the previous

chapter. I will then proceed to estimate the parameters of the process using a special

software package created for that purpose and check how well the resulting model fits

the actual data by means of a nonparametric goodness-of-fit test and the cumulative

distribution plot.

4.1 Arrival Counts Data as a Poisson Process

Brown et. al., (2004)[4] described the test of arrival counts in three parts: a) Time

dependence of arrivals: the arrivals do not depend on exact time clock; b) Indepen-

cence of arrivals; and c) Interarrival times are exponential iid. The theory behind this

test has been explained in the previous chapter and important derivations shown.
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4.1.1 Test of Time Dependence

According to Brown et. al., (2004)[4], we should choose a short time interval over

which λ(t) can be presumed nearly constant on any given day. If λ(t) = λdate is a

constant over this interval on each day, then the counts within this time interval over

many days will be approximately uniformly distributed as a function of the clock

time - the null hypthesis. Figure 4-1 below is a barplot of arrival counts for regular

weekday calls in the month of November 1999.

Figure 4-1: Barplot of arrival counts for regular weekday calls in the month of Novem-
ber 1999 between 08:15am and 08:30am.

The test statistic has 14 df under the null hypothesis and a χ2 = 20, P-value = 0.1301.

We have therefore established uniformity. Inspection of other 15-minute intervals with

1-minute sub-intervals gives similar results.
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4.1.2 Test of the Independence of Arrivals

Brown et. al., (2004)[4] established the independence by looking at correlations of

transformations of inter-arrival times. As such, we shall determine the correlations

of the raw inter-arrival times, and the corresponding power-transforms:

f(x) =











xλ , λ 6=0

ln(x) , λ = 0

Figure 4-2: Scatterplot of raw inter-arrival times for November 1999 between
08:15am and 08:30am.
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The coefficients of determination, R2, between inter-arrival times and their or-

dering within that interval are a) 0.2163969 b) 0.03291567 c) 0.01201348 whereby

a) 21.64% b) 3.29%; and c) 1.2% of the variation is explained for the days shown in
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figure 4-2 respectively. These are lower than the threshold needed to conclude that

inter-arrival times are dependent on ordering.

Figure 4-3: Scatterplot of log inter-arrival times for November 1999 between
08:15am and 08:30am.
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The coefficients of determination, R2, between inter-arrival times and their order-

ing within that interval are a) 0.1957118 b) 0.171809 c) 0.1173514 whereby a) 19.57%

b) 17.18%; and c) 11.74% of the variation is explained for the days shown in fig-

ure 4-3 respectively. These are lower than the threshold needed to conclude that the

transformed inter arrival times are dependent on ordering.
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Figure 4-4: Scatterplot of power inter-arrival times for November 1999 between
08:15am and 08:30am.
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The coefficients of determination, R2, between inter-arrival times and their or-

dering within that interval are a) 0.2238258 b) 0.02650988 c) 0.00713507 whereby

a) 22.38% b) 2.65%; and c) .714% of the variation is explained for the days shown in

figure 4-4 respectively. These are lower than the threshold needed to conclude that

the transformed inter arrival times are dependent on ordering.

All the shown coefficients of determination are very close to 0 thus indicating a

strong lack of linear correlation of the inter-arrival times with ordering hence estab-

lishing the independece of inter-arrival times.
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4.1.3 Test that Interarrival times are exponential i.i.d

A homogenous Poisson process with a rate, λ, has interarrival times from an expo-

nential distribution with scale 1
λ
. The data from our interval will be normalised so as

to be from an exponential distrubtion with 1
λ
= 1. Let

λday : denotes constant Poisson rate over a specified interval for the day

Tday,j : denote time of thejtharrival on the indicated day

Gday,j : Tday,j − Tday,j−1

Jday : denotes the number of calls during the interval for that day

we define the below inter-arrival time transformations for j = 1, 2, . . . , Jday:

Hday,j =
JdayGday,j

b− a

Rij = (J(i) + 1− j)

(

−log

(

L− Ti,j

L− Ti,j−1

))

We test the {H} and {R} under the null hypothesis that they are approximately

exponentialy distributed with rate = 1. (see Brown et. al.,(2004)[4] and Brown et.

al.,(2005)[1]).
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Figure 4-5: Exponential Q-Q plots for 01 November 1999 between 08:15am and
08:30am.
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The plots in figure 4-5 indicate that {H} and {R} are exponentially distributed

with λ=1 because of the relatively good alignment along and about the 45◦ line.

We conclude that the interarrivals are thus independent and identically distributed

variables from an exponential distribution with λ = 1.
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4.2 Maximum Likelihood Estimation of Parame-

ters

Special purpose software (MP3MLE 1), was used to solve the m + 4 system of non-

linear equations 3.7 in Chapter 3 and the output is shown below:(see Appendix C.1

page 51 for input to the software and Appendix C.2 page 51 for the full output)

FINAL PARAMETER ESTIMATES

Polynomial coefficients

alpha( 0) = -0.99045

alpha( 1) = 0.19064E-02

alpha( 2) = -0.89508E-06

alpha( 3) = 0.12335E-09

Trigonometric parameters

amplitude (gamma( 1)) = 1.0716

phase (phi( 1)), in radians = -1.7428

phase (phi( 1)), in time units = -0.27738

frequency (omega( 1)), in radians = 0.41985E-02

frequency (omega( 1)), in time units = 0.66821E-03

1Edward P. Fitts Department of Industrial & Systems Engineering, North Carolina State Uni-
versity, Raleigh, NC 27695-7906. (2005, Jul). MP3MLE software for fitting to sample arrival-time
data a nonhomogeneous Poisson process whose rate function may exhibit multiply periodic effects or
a long-term trend (or both).. Retrieved April 04, 2014, from the Edward P. Fitts Department of In-
dustrial & Systems Engineering, North Carolina State University website: http://www.ise.ncsu.edu/
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The estimated rate function is thus:

λ̂(t) = exp(hΘ̂(4, t))

= exp(−0.99045 + 0.0019064t− 0.00000089508t2 − 0.00000000012335t3

+ 1.0716·sin(−1.7428t+ 0.0041985))

Figure 4-6 below shows graphs of the intensity function over various sub-intervals for

the first two and a half days of November 1999.
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the actual realisations via graphical means (see Figures 4-7, and 4-9). A summarised

trajectory of the arrival times for both the Simulated and Observed arrivals is shown

below:

Table 4.1: A sample of the arrival time trajectories of the Simulated and Observed
process.

Simulated Observed

16.5650 1.0167

20.8910 1.2500

27.6364 2.5500

31.3094 10.2167
...

...

3699.9458 3670.8667

3699.9693 3670.9500

3699.9713 3671.9500

3699.9823 3672.0333
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Figure 4-7: Graph of Simulated and Observed Arrival counts over 2hr intervals for
the first approx 2.5 days
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Below is a graph showing the Call arrivals trend for the whole month of November

1999.
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Figure 4-8: Graph of Arrival counts over 2hr intervals for the workdays of Nov 1999.
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4.3 Goodness-of-Fit Test

The Kolmogorov-Smirnov nonparametric goodness-of-fit test was conducted for the

simulated and observed arrival time. We fail to reject the null hypothesis that the

data comes from the same distribution at α = 0.01. The output is shown below:
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Two-sample Kolmogorov-Smirnov test

data: montharrs$arrivaltime[1:5000] and simonarrs

D = 0.0316, p-value = 0.01362

alternative hypothesis: two-sided

The above is further confirmed by a graph of the cumulated arrival counts (Figure 4-9

below)

Figure 4-9: Graph of Cumulated Arrival counts over 2hr intervals for the first two
working days of Nov 1999.
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Chapter 5

Conclusions & Further Work

In Chapter 2, Literature Review, Gans et. al.,(2003)[7] opined that one of the most

pressing needs was to see improvements in in the forecasting of arrival rates. This

project has been an attempt at making this possible. I have shown how call arrivals

to a Call Center can be modelled as a nonhomogenous Poisson process. Assumptions

have been stated and theory adequately developed towards the empirical realisation

of a Stochastic model that fits the observed data with a confidence of 90%.

The contents of previous chapters is summarised below:

• In Chapter 1, I opened with a discussion of Telephone call centers and a few

challenges encountered. I then isolated the challenge of modelling call center

arrivals; compiled a number of objectives based on this and drew up an outline

of what would be contained in the rest of this document.

• In Chapter 2, I did a comprehensive literature review of past work that would

guide the project. I also drew up a framework of methods and their interactions

that would serve to give a snapshot view of how everything comes together.
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• In Chapter 3, I built a theoretical argument for the Telephone call center arrival

data as a Poisson process. I also generalised the Poisson process as a nonho-

mogenous Poisson process by proving that the nonhomogenous Poisson process

is a time-sampled Poisson process. I also presented a summary of using the

method of Maximum Likelihood from the Lee et. al.,(1991)[5] paper for param-

eter estimation and a simulation algorithm, the method of inversion, presented

to illustrate how the parameter estimates will be used in simulating the arrival

process.

• In Chapter 4, I tested the Telephone call center data to confirm whether it fits

the assumptions of a Poisson process. I then run the data through special pur-

pose software that computed parameter estimates by solving a set of nonlinear

equations. Finally, I conducted a simulation using the parameter estimates and

did a nonparametric goodness-of-fit test to gauge how well the model fits the

observed process.

5.1 Some Challenges Encountered

The MP3MLE special-purpose software could only handle a maximum of 5000 ob-

served arrival times hence limiting the accuracy of estimates to the time span of the

5000 epochs. The software is also old (1994) and written in Fortran - a language not

specifically designed for statistical work. I also had to manually iterate estimates of

frequency for input to the software.

An ‘R’ package that can model a nonhomogenous Poisson process with cyclic rate

does not seem to exist (before Apr 2014) but it appears this will be in the works soon.

42



I also found a package, SAPP1, that could model an EPF2 and ETF3 rate but did

not include both polynomial and trigonometric components in the same function. I

also had to write software that uses the parameter estimates to simulate the nonho-

mogenous Poisson process with cyclic rate.

I also encountered some difficulty in procuring queueing data from local (Kenyan)

Banks - there was reluctance to release this. However, I was able to get anonymised

Bank data from an Israeli University site, The Technion University, which has been

used for an impressive number of publications.

5.2 Further Work

In addition to the Gans et. al.,(2003)[7] ‘list of most pressing needs’ given in Chapter

2, I think that:

1. User education on the importance of data-driven decision making should be

emphasized especially in the Management Sciences: This would probably see

a greater appreciation of Statistical Methods in many aspects of Management.

Gans et. al.,(2003)[7] had noted that data in some call centers is not stored

because of ignorance on the part of the Management.

2. More modern, and freely available Software packages to model and simulate

Stochastic process ought to be developed to aid research and development ef-

forts.

1
Statistical Analysis of Point Processes, The Institute of Statistical Mathematics, Tokyo http:

// jasp.ism.ac.jp/ ism/ sapp/ index e.html , Available at http:// cran.r-project.org/web/ packages/
SAPP/ .

2EPF: Exponential-Polynomial-Function
3ETF: Exponential-Trigonometric-Function
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5.3 Concluding Remarks

Soli Deo Gloria!
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Appendix A

Proofs

Proof that {Xn} are (i.i.d)

Proof. X2 is the first arrival time after T1 = X1 thus it is independent of X1 but with

the same distribution. Similarly, X3 is the first arrival time after T2 = X1 + X2, so

X3 is independent of X1 and X2. By induction, Xn is independent of any Xn−1.

‘Memoryless property’ of i.i.d exponential variables

Proof.

P (X > s+ t|X > t) =
P ({X > s+ t}∩ {X > t})

P (X > t)

=
P (X > s+ t)

P (X > t)

P (X > s+ t) = P (X > s)P (X > t), by independence

∴

P (X > s+ t)

P (X > t)
= P (X > s) (A.1)
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Proof that gamma p.d.f is an nth-fold convolution of

exponential random variables

Proof.

f2(t) =

∫ t

0

f1(s)f1(t− s)ds

=

∫ t

0

λe−λ(t−s)λe−λsds

= λe−λtλt

by induction on n

fn+1(t) =

∫ t

0

fn(s)f1(t− s)ds

=

∫ t

0

λe−λs (λs)
n−1

(n− 1)!
× λe−λ(t−s)ds

= λe−λt λn

(n− 1)!

∫ t

0

sn−1ds

= λe−λt λn

(n− 1)!

[

tn

n

]

= λe−λt (λt)
n

n!
.

46



Appendix B

Code Snippets

B.1 Generate {U} for ui ∼ Unif (0, 1) rv

univalues <- runif(5000,min=0,max=1)

write(univalues, file="unifvalues.txt",sep="\n")

B.2 Generate {X} for xj = F−1
X (uj)

def rhs( unifval ):

return -1 * math.log(1 - unifval)

def rateFunction(x, params):

coefficients = params[0]

amplitude = params[1][0]

phase = params[1][1]

frequency = params[1][2]
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value = float()

power = 0

for c in coefficients:

value += (c * pow(x, power))

power += 1

value += amplitude * math.sin(frequency * x + phase)

return math.exp(value)

def simulate(unifile, paramfile, outfile, s):

sanitise = lambda x: float(x.strip())

params = getParams(paramfile)

tmevals = [0]

tmelen = len(tmevals)

ufile = open(unifile, "r")

unifvalues = ufile.readlines()

unifvalues = map(sanitise, unifvalues)

# Pre-compute Right-Hand side values

rhss = map(rhs, unifvalues)

# Loop through remaining uniform values

for lnrhs in rhss:

# Enter bisect loop to converge on value of t_i+1

upper = s

lower = tmevals[-1]

while True:

mid = (lower + upper) / 2.0

area = IntegrateMidrule(tmevals[-1], mid, rateFunction, params)

# Solution found
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if abs(area - lnrhs) <= 0.0001:

tmevals.append(mid)

break

# No solution

if ’%.4f’%lower == ’%.4f’%upper: break

if (area > lnrhs):

upper = mid # Upper bound moves down

else:

lower = mid # Lower bound moves up

writeOutfile(outfile, tmevals[1:], "w")
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Appendix C

Program Input and Output

C.1 Input to MP3MLE

’Call Arrivals at Call Center’

3700.0 5000

3 10 1 0

0.004037388

C.2 Output from MP3MLE

*** Estimation Program mp3mle ***

Version 1.0 - July 1994

Call Arrivals at Call Center

Number of observations = 5000

Length of observation interval = 3700.0
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No. of trigonometric components to be included in rate function = 1

Maximum allowable order of polynomial in rate function = 3

Initial estimate of frequency( 1) (in radians/unit of time) 0.40374E-02

Ratio-test level of significance = 10

Ratio-test level of significance assigned = 10

Initial parameter estimates

gamma0(1)= 1.14495

phi0(1)= 1.53764

omega0(1)= 0.403739E-02

Fit zero order polynomial

alpha(0)= 0.531549E-01

gamma(1)= -1.11191

phi(1)= 1.19262

omega(1)= 0.427422E-02

Fit polynomial of order 1

alpha(0)= -0.159200E-01

alpha(1)= 0.372615E-04

gamma(1)= -1.11460

phi(1)= 1.23519

omega(1)= 0.424868E-02

Fit polynomial of order 2

alpha(0)= -0.390376

alpha(1)= 0.585129E-03
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alpha(2)= -0.144837E-06

gamma(1)= -1.09587

phi(1)= 1.22689

omega(1)= 0.429133E-02

Fit polynomial of order 3

alpha(0)= -1.02245

alpha(1)= 0.197282E-02

alpha(2)= -0.932599E-06

alpha(3)= 0.129626E-09

gamma(1)= -1.07126

phi(1)= 1.41716

omega(1)= 0.418860E-02

Fit polynomial of order 4

alpha(0)= -2.95893

alpha(1)= 0.774415E-02

alpha(2)= -0.641267E-05

alpha(3)= 0.215499E-08

alpha(4)= -0.252517E-12

gamma(1)= -1.10336

phi(1)= 1.68077

omega(1)= 0.410742E-02

Final estimates do not pass the likelihood ratio test.

FINAL PARAMETER ESTIMATES
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Polynomial coefficients

alpha( 0) = -1.0225

alpha( 1) = 0.19728E-02

alpha( 2) = -0.93260E-06

alpha( 3) = 0.12963E-09

Trigonometric parameters

amplitude (gamma( 1)) = 1.0713

phase (phi( 1)), in radians = -1.7244

phase (phi( 1)), in time units = -0.27445

frequency (omega( 1)), in radians = 0.41886E-02

frequency (omega( 1)), in time units = 0.66664E-03

Value of log-likelihood function -2150.9
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