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ABSTRACT

Multivariate or cluster failure time data are common in survival analysis and

�nding an appropriate method to model the correlation among the observations

is a very important issue for valid and reliable statistical inference. The primary

objective of this project was to review various models for clustered survival data

with focus on frailty models and their properties. Semi parametric Cox marginal

and frailty models were used to analyze observed right censored data from a

multicenter clinical trial. A simulation study was conducted to assess the impact

of frailty distribution mis-speci�cation on parameters estimates. Di�erent set-

tings in terms of the number of centers and true heterogeneity parameter were

considered.

From the observed data, the estimated heterogeneity parameters were small

yielding insigni�cant center e�ect. From the simulation study, the regression co-

e�cient was less a�ected by mis-speci�cation of the frailty distribution and initial

simulation settings compared to the heterogeneity parameter. In conclusion, in

the absence of center e�ect, event times were homogenous between and within

the centers. From simulation study, gamma frailty model would be a practical

choice in real data analysis with time to event endpoint when the regression pa-

rameters are of primary interest and when the choice of frailty distribution is not

straightforward.

Key words: Frailty, Heterogeneity parameter, Regression parameter.
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Chapter 1

General Introduction

1.1 Background

Survival analysis also referred to as "time to event analysis" is a statistical

method for data analysis where the outcome variable of interest is the time

to the occurrence of an event. It is applied in a number of �elds such as public

health, social science and engineering. In medical science, time to event can be

time until tumor recurrence in a cancer study, time to death or time to infec-

tion. In the social sciences, interest can lie in analyzing time to events such as

job changes and so forth. In the engineering sciences, survival analysis is called

failure-time analysis since the main focus is in modeling the lifetimes of machines

or electronic components. Although di�erent disciplines may emphasize slightly

di�erent approaches and techniques, survival analysis is the name that is most

widely used and recognized (Xin, 2009).
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One important survival analysis technique is the non-parametric methods de-

veloped by Kaplan and Meier (1958). These methods work well for homogeneous

samples, but do not determine whether or not certain variables are related to

the survival times. This shortcoming led to the development of methods such as

univariate Cox proportional hazards (PH) model for analyzing survival data in

the presence of covariates or prognostic factors.

Multivariate or cluster failure time data are also common in survival analysis

and �nding an appropriate method to model the correlation among the obser-

vations is a very important issue for valid and reliable statistical inference. For

instance, in randomized controlled trials, subjects are recruited at multiple study

centers with an aim to provide adequate sample sizes to enhance generalizability

of study results. However, factors that vary by center, patient characteristics and

medical practice patterns potentially lead to clustering or dependence between

outcomes at each center (Demissie, 2009). Therefore, data analysts must choose

when and how to incorporate center e�ects into the analysis to avoid misleading

study outcomes.

In the presence of clustered survival data, a natural framework for estimat-

ing the unexplained variability is through a frailty (random e�ects) model. The

introduction of random e�ects in survival data modelling dates back to Beard

(1959), who, in modelling mortality, introduced it in a univariate setting and

called it longevity factor. Vaupel et al. (1979) on the other hand introduced

frailty models as a generalization of the Cox's proportional hazards model allow-
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ing for random e�ects as a result of unobserved heterogeneity of each individual

or a group of people. In this model, the unobserved frailty shared by individual

members in a cluster acts multiplicatively as a factor on the hazard function

and is normally modelled parametrically (Li et al., 2007; Legrand et al., 2006;

Govindarajulu et al., 2009; Ha and Gilbert, 2010).
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1.2 Problem statement and consequence of ignor-

ing the frailty

Although more heterogeneous trials lead to more general conclusions as they are

based on a wider patient population, Duchateau et al. (2002) noted that hetero-

geneity decreases the power to detect clinically important treatment di�erences.

Ha et al,. (2012) further noted that such heterogeneity may alter the reporting

and interpretation of the treatment e�ect. It is therefore important to �nd out

what factors cause this heterogeneity as it might help to improve the quality of

patient care (Legrand et al., 2006). These factors include patient-speci�c factors

and center-speci�c factors.

The objective of the Cox proportional hazard model is to assess the e�ects

of the covariates by estimating their coe�cients. However, the covariates do not

always fully account for the true di�erences in risk especially in clustered survival

data. Therefore, including the unobserved frailty term in the model enhances

correct measure of covariates e�ect avoiding underestimation or overestimation

of the parameters.

Many frailty distributions amongst them the lognormal and the power vari-

ance function family comprising of gamma, Inverse Gaussian, positive stable and

compound Poisson distributions have been studied by di�erent authors. However,

some of these distributions are not used in practice due to software limitations.

Moreover, there is lack of sound estimation procedures for more complex frailty

models. Additionally, due to the latent nature of the frailty term, it can be dif-
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�cult to determine an appropriate frailty distribution for a particular data set.

Thus, mis-speci�cation of this unobserved covariate can occur, leading to biased

estimates, reduced e�ciency of the model estimates hence misleading conclusions

(Li et al., 2007; Moreno, 2008).
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1.3 Study objectives

With the problem and consequence associated with ignoring the frailty in clus-

tered survival data, it is important in practice to examine to what extent mis-

speci�cation of the frailty distribution a�ects the validity of the regression co-

e�cients and heterogeneity parameter estimates. In this regard, the primary

objective of this project is to review various survival models for clustered data

with focus on frailty models and their properties. To achieve this, the problem

is broken down into speci�c sub-sections as follows:

1. Apply semi-parametric frailty models and marginal models to observed clinical

trial data and compare parameter estimates and assess the estimated heterogene-

ity parameters.

2. Investigate the impact of frailty distribution mis-speci�cation on the param-

eters of interest i.e. treatment log hazard e�ect and heterogeneity parameter as

well as assess the sensitivity of these parameter estimates in terms of bias with

respect to varying baseline hazard distributions and simulation settings.
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1.4 Report outline

This project report is organized as follows: In chapter 2 literature review on

previous studies on frailty model applications is presented. Chapter 3 reviews

statistical methods for survival data. Chapter 4 discusses the properties of vari-

ous frailty distributions as well as some baseline hazard distributions. In Chapter

5, estimation methods and their properties for parametric and semi-parametric

frailty models are presented while descriptions of a case study and corresponding

results are found in chapter 6. In chapter 7, a simulation scheme and simulations

results for the parameters of interest are presented while chapter 8 provides the

discussion. In chapter 9, the conclusion, limitations of the study and recommen-

dations for further research are provided. The last sections present the references

and appendix respectively.
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Chapter 2

Critical Literature Review on

Studies on Previous Multi-center

Clinical Trials Studies

2.1 Introduction

Several studies on multi-center clinical trials have been conducted and this chap-

ter presents a critical review on a few studies aimed at identifying areas where

a particular study performed well, its limitations and gaps for possible improve-

ments based on: study objectives, statistical methods and simulations schemes,

results and conclusions.
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2.2 Previous case studies

The �rst study considered was by Duchateau and Janssen, (2008) involving peri-

operative breast cancer multi-center clinical trial study data. In this study, a

semi-parametric marginal model and semi-parametric frailty models were �tted

and parameters of interest compared . Additionally, a simulation study was con-

ducted to investigate how the bias and the spread of the estimated heterogeneity

parameter θ around its true value was in�uenced by

(i) the size of the multi-centre trial (which is determined by the number of clus-

ters and the number of patients per cluster (ni = n))

(ii) the event rate h0(t) (assumed to be constant over time: h0(t) = h0)

(iii) the size of the true heterogeneity parameter θ

(iv) the size of the true treatment e�ect β (expressed in terms of the hazard ratio

HR = exp(β)).

In their simulation scheme, the number of centres varied between 15 and 30

centers with 20, 40 or 60 patients per center. They studied two types of breast

cancer trials: the early breast cancer clinical trial with a low yearly constant

hazard rate set at h0 = 0.07 and metastatic breast cancer clinical trial with a

high yearly constant hazard rate set at h0 = 0.22. They assumed an accrual

period of 5 years (with constant accrual rate) and a further follow-up period of

3 years. Time at risk for a particular patient consisted of the time at risk before

the end of the accrual period (ranging from 0 to 5 years) plus the follow-up time.

This resulted in approximately 30% and 70% of the patients having the event in
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the early breast cancer and metastatic breast cancer clinical trial, respectively,

at the end of the study with the remaining patients censored. As true values for

the heterogeneity parameter, 0, 0.1, and 0.2 were used as this is the most likely

range of values to be observed in breast cancer clinical trials. For each parameter

setting 6500 data sets were generated.

To investigate the robustness of the gamma frailty distribution assumption

with respect to the lognormal distribution (model mis-speci�cation), the gamma

frailty model was used to �t clustered data generated from a lognormal frailty

model. The results revealed that the downward bias of the variance estimator

was more pronounced in the mis-speci�ed model, for both the mean and the

median of the variance estimates. Increasing the magnitude of θ from 0.1 to 0.2

lead to further discrepancy. They conclude that for small values of θ working

with a mis-speci�ed model still lead to acceptable estimates for the heterogeneity

parameter but robustness was an issue for large values of θ.

One limitation of this study was the assumption of a constant accrual rate

i.e. patients were enrolled into the study at a �xed rate. This is in contrast to

real life clinical trials where patients within the same center and across di�erent

centers are normally enrolled into the study in a random manner at some point

during the accrual period. In this regard, it would have been more appropriate

to accrue patients following a random uniform distribution.

From this study, it is further noted that for both observed and simulated data,

the heterogeneity parameter θ from the frailty models was estimated using the
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Penalised Partial Likelihood (PPL) technique and the p-value of the loglikelihood

ratio test for H0 : θ = 0 versus the alternative hypothesis H0 : θ > 0, assessed

based on a χ2
1 distribution. The use of the χ2

1 distribution was inappropriate

in this case since the value for θ in the null hypothesis is at the boundary of

the parameter space. Although they acknowledged the problem of using χ2
1

distribution, they did not provide an alternative test method. In such a problem

a likelihood ratio test based on χ2
0:1 distribution is more appropriate because the

test involves comparing a model with and without frailties.

Another study was conducted by Tundo, (2009) on frailty models for the

between center variation in survival following rectum cancer diagnosis. The ob-

jectives of this study were to evaluate the performance of di�erent regression

outcome approaches for right-censored survival data in the presence of small

centers. Speci�cally, the survival models considered in this study were the fully

parametric exponential model, the semi-parametric Cox model with a dummy

per center (�xed e�ects model), the semi-parametric frailty models with correct

lognormal and mis-speci�ed gamma distributed frailties. A simulation study was

also conducted where the survival times of the patients were randomly simulated

out of center speci�c exponential distributions with each center having its ap-

pointed log hazard rate. Censoring times for the patients were generated from a

uniform distribution with zero as the lower limit and 5 as upper limit assuming

that everybody is censored or died within 5 years. To obtain the observation

time or censored failure time the minimum of the survival and censoring time
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per patient was taken. The PPL estimation method was employed in this study.

The root mean squared error (RMSE) was used as a measure of evaluating the

performance of the di�erent models.

Based on observed and simulated data, the overall performance of the frailty

models was far much better than that of the �xed e�ects model or the fully para-

metric exponential model especially in handling centers with no events. In this

study, convergence problems were experienced in �tting �xed e�ects models with

many small centers. The strength of this study is that unlike most simulation

studies on multi-center clinical trials in literature where the centers are taken to

be of equal size, centers of varying sizes were used re�ecting the situation in real

life multi-center clinical studies.

Some limitations of this study were ambiguities and inconsistences in di�erent

sections of the report making it hard for the reader to understand or replicate the

work. For instance, it was not stated in the study objectives what the parameter

of interest were i.e. either the log hazard or the heterogeneity parameter or both.

Furthermore, the choice of models and the initial parameters for example the true

heterogeneity parameter for the two frailty densities considered in the simulation

study was not clearly motivate. In this project, a mis-speci�ed gamma frailty

model was �tted and concluded that the models with mis-speci�ed gamma and

correct lognormal distributed frailties did not di�er substantially. However, it

was not indicated in the report how the mis-speci�cation aspect came about.

Additionally, there was no standardization of heterogeneity parameters used in
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the simulation of frailties. For this reason, it was not possible to compare the

results of correctly and mis-speci�ed models.

Glidden and Vittingho� (2004) conducted a study on Modelling clustered

survival data from multi-center clinical trials. They surveyed approaches to

multi-centrer clinical trials for censored time to event data. A simulation study

was undertaken to compare the performance of the three centre-speci�c models

i.e. strati�ed, �xed e�ects Cox models and the frailty model with respect to bias,

root mean squared error (RMSE) and empirical coverage of 95 per cent con�dence

intervals. Simulation settings varied with respect to total sample size (N =100,

400), number of subjects per centre (n=2, 10, 20), magnitude of intra-center

dependence and the frailty distribution. The frailty distribution considered in

this study were generated from the gamma, inverse Gaussian and positive stable

densities. For each of the frailty distributions, the choice of parameters values

was motivated by values that gave Kendall's τ of 0.50. A Weibull baseline hazard

function with shape parameter 1.3 and scale parameter 5.0 respectively. They

also examined the performance of the marginal Cox model in the setting of no

centre e�ects.

From a broad range of simulation settings, they found that the frailty model

approach compared favorably with competing methods (�xed e�ects and strat-

i�ed approaches). With a small number of centres, the frailty model was only

slightly less e�cient than the population averaged (marginal) model and gave

con�dence intervals with considerably better coverage properties. No results are
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presented for the �xed e�ects model with N =400 and n=2 because the models

did not reliably converge. A problem also encountered by Tundo, (2009). In

addition, their simulation results suggested that regression coe�cient estimates

were minimally a�ected by frailty distribution mis-speci�cation (gamma frailty

model �tted to inverse Gaussian generated frailties). The shortcoming of their

simulation study is that they did not standardize the mean and variance of the

generated frailties thus making comparability impossible.

2.3 Summary

From the above reviewed literature and others not included, there should be con-

sistency between the study objectives and methods used. In case of simulation

studies, it is important to standardize the parameters to allow for comparison

and reduce chances of biased results. It is also important that the choice of ini-

tial parameters are clearly motivated and proper formal tests used depending on

the problem and the methods used. In summary, we can examine the studies in

terms of:

(i)Determinants of bias and the spread of estimated parameters.

(ii) Estimation techniques.

(iii)Performance measures in terms of bias.
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Chapter 3

Statistical Methods for Survival

Data

3.1 Introduction

The analysis of survival data requires special techniques because the data are

almost always incomplete due to censoring and familiar parametric assumptions

might be unjusti�able. For instance in biomedical research, the investigators

follow patients until they reach a pre-speci�ed endpoint for example, death or

disease progression. However, some patients withdraw from the study or the

study comes to an end before the endpoint is reached. In these cases, the sur-

vival times are censored i.e. subjects survived to a certain time beyond which

their status is unknown. The uncensored survival times are often referred to as

event times. There are at least three types of possible censoring schemes. Right
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censoring is the most common type of censoring. For right censored data, all

that is known for some individuals is a time beyond which the subject is still

alive. In the left censoring, a failure time is only known to be before a certain

time while interval censoring data re�ects uncertainty as to the exact time the

units failed within an interval (Demissie, 2009).

3.2 Relationships between S(t), f (t) and h(t)

Let T be a random variable denoting the survival time. The distribution of

survival times is characterized by any of three functions: the survival function

(S(t)), the probability density (f(t)) or the hazard function (h(t)). The survival

function is de�ned as the probability that the survival time is greater or equal

to t and is de�ned for both discrete and continuous T . Similarly, the probability

density and hazard functions are easily speci�ed for discrete and continuous T .

T discrete

For a discrete random variable T taking well-ordered values 0 ≤ t1 < t2 < ..., let

the probability mass function be given by P (T = tj) = f(tj), j = 1, 2, ..., then

the survival function is

s(t) =
∑
j|tj

f(tj)

=
∑

f(tj)I(tj>t) (3.1)
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where the indicator function

I(tj>t) =


0, if tj < t.

1, if tj ≥ t.

hj = h(tj) = P (T = tj|T ≥ tj) =
f(tj)

S(tj)
=
S(tj)− S(tj+1)

S(tj)
= 1− S(tj+1)

S(tj)

Thus

1− h(tj) =
S(tj+1)

S(tj)

and taking the product on both sides, we get

∏
j|tj<t

(1− h(tj)) =
S(t2)

S(t1)
× S(t3)

S(t2)
× ...× S(tj+1)

S(tj)
= S(t) (3.2)

Since S(t1) = 1 and S(t) = S(tj+1).

∏
j|tj<t

(1− h(tj)) = S(t)

Moreover,

f(tj) = h(tj)S(t)

Therefore substituting for S(t) in the equation above, we have

f(tj) = h(tj)

j−1∏
i=1

(1− h(ti) (3.3)
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T continuous

For an absolutely continuous variable T , the hazard function gives the instan-

taneous failure rate at t given that the individual has survived up to time t.

i.e.

h(t) = lim
∆t→0

Pr(t < T ≤ t+∆t|T > t)

∆t
(3.4)

T is nonnegative and represents the future lifetime of an individual. Thus

h(t) = lim
∆t→0

Pr(t < T ≤ t+∆t|T > t)

Pr(T > t) ∗∆t

h(t) = lim
∆t→0

Pr(t < T ≤ t+∆t)/∆t

Pr(T > t)

h(t) =
f(t)

1− F (t)
(3.5)

The hazard rate, h(t), is obtained from the conditional probability that an event

occurs in the interval [t, t + ∆t] given that the event did not occur yet before

time t. By de�nition;

S(t) = 1− F (t) (3.6)

Therefore

h(t) =
f(t)

S(t)

and

f(t) = F
′
(t) = −S ′

(t) (3.7)

Therefore

h(t) =
−S ′

(t)

S(t)
(3.8)
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h(t) =
−d
dt
ln(S(t))

−
∫
h(t)dt = ln(S(t)) (3.9)

After integrating and exponentiating we have

S(t) = exp(−
∫
h(t)dt)

S(t) = exp(−H(t))

H(t) = −ln[S(t)] (3.10)

These three functions give mathematically equivalent speci�cation of the dis-

tributions of the survival time T. If one of them is known, the other two are

easily determined. One of these functions can be chosen as the basis of statisti-

cal analysis according to the particular situation. The survival function is most

useful for comparing the survival progress of two or more groups while the hazard

function gives a more useful description of the risk of failure at any time point

(Qi, 2009).

3.3 Non-parametric methods

In general, survival data can be conveniently summarized through estimates of

the survival function and hazard function. The estimation of the survival dis-

tribution provides estimates of descriptive statistics such as the median survival

time. These methods are said to be non-parametric methods since they require
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no assumptions about the distribution of survival time. To compare the survival

distribution of two or more groups, the log-rank tests can be used (Collet, 1994).

3.3.1 The Kaplan-Meier estimate of the survival function

In clinical trial studies, individual's data is normally available on time to death or

time to last seen alive. The Kaplan-Meier (K-M) estimator (1958) for the survival

curves which is a non-parametric method is usually used to explore such data.

For example, Suppose that r individuals have failures in a group of individuals,

let 0 ≤ t(1) < ... < t(r) < ∞ be the observed ordered death times. Let rj be

the size of the risk set at t(j), where risk set denotes the collection of individuals

alive and uncensored just before t(j). Let dj be the number of observed events

at t(j), j = 1, ..., r. Then the K-M estimator of S(t) is de�ned by

Ŝ(t) =
∏

j:t(j)<t

(1− dj
rj
) (3.11)

This estimator is a step function that changes values only at the time of each

event. For further illustration purposes, the maximum likelihood for a K-M

estimator for discrete case will be shown next. Suppose that the distribution is

discrete, with τj at �nitely many speci�ed points 0 ≤ τ1 < τ2 < ... < τj. As

described in Section 3.2, the survival function S(t) may be expressed in terms of

the discrete hazard function hj as

S(t) =
∏

j|τj<t

(1− hj) (3.12)
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To derive the full likelihood from a sample of n observations, we collect all the

terms corresponding to the τj . Let bi = j if the ith individual dies at τj : Using

equation (3.3), the contribution to the total log likelihood is

loghbi +
∑
k<bi

log(1− hk)

Let ei = j if the ith individual is censored at τj ; using the equation above, the

log likelihood contribution to the total likelihood is

∑
k<ei

log(1− hk)

Then the total log likelihood is given by

l =
∑
deathi

loghbi +
∑
deathi

[
∑

log(1− hk)] +
∑

censori

[
∑
k≤ei

log(1− hk)]

=
∑
j

djloghj +
∑
k

[
∑
j>k

dj]log(1− hk) +
∑
k

[
∑
j≥k

cj]log(1− hk)

=
∑
j

djloghj + (rj − dj)log(1− hj) (3.13)

where dj is the number of observed death at τj, cj is the number censored at

[τj, τj+1) and rj is the number of living and uncensored at τj. hj is the solution

of

∂l

∂hj
=
dj
hj

− rj − dj
1− hj

= 0

By solving the above equation, the maximum likelihood estimate of hj is given

by

ĥj = dj/rj (3.14)
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This maximizes the likelihood since the total log likelihood function is concave

down (Qi, 2009). Substitituing for hj in equation (3.12), the K-M estimator of

the survival function is

Ŝ(t) =
∏

j|τj<t

(1− dj
rj
)

Therefore, the K-M estimator is the maximum likelihood estimator. The K-M

estimator gives a discrete distribution. If the observations are known to come

from unknown continuous distribution, then the maximum likelihood estimator

does not exist (Johansen, 1978). One shortcoming of the K-M method is that it

does not control for covariates and it requires categorical predictors.

3.4 Conditional and Marginal Cox models

In the presence of dependence induced by cluster e�ects, two distinct approaches

are available i.e. the conditional (or cluster-speci�c) and the marginal (or population-

averaged) models. These two approaches di�er in estimation methods as well as

interpretation, (Glidden and Vittingho�, 2004).

3.4.1 Marginal Cox Proportion Hazard model

The marginal model (Cox proportional hazards mode) is a popular model in

survival data and was proposed by Cox (1972). This model does not take the

clustering into account and acts as if the event times are independent of each

other, even if they belong to the same cluster,(Duchateau and Janssen, 2008).

The hazard rate is expressed as

23



h(t|x) = h0exp(x
t
jβ) (3.15)

where h0 is the baseline hazard function at time t, x is the vector of explanatory

variables and β is a vector of unknown regression coe�cients. When the baseline

hazard h0 is speci�ed, the models is commonly referred to as parametric Cox

PH model. On the other hand, this model is referred to as a semi-parametric

Cox PH model when no parametric form is imposed on h0, Collet (1994). In

this case, parameters can be estimated by partial likelihood method presented

by Cox (1972). Although the estimates are less e�cient compared to the maxi-

mum likelihood estimates (for parametric baseline hazard), unspeci�ed baseline

hazard serves as a remedial virtue against mis-speci�cation (Keele, 2007). The

corresponding survival functions are related as follows:

S(t|x) = S0(t)
exp(

∑n
i=1 βixi) (3.16)

As earlier mentioned, the marginal Cox PH model leave the structure of the intra-

cluster association unspeci�ed but adjust for it in the inference. The regression

coe�cients are assumed to be the same for all individuals hence interpreted at

population averaged level as the log-hazard ratio; the hazard ratio is the measure

of e�ect. The hazard ratio of two individuals with di�erent covariates x and x∗

is

(ĤR) =
h0(t)exp(β̂

′x)

h0(t)exp(β̂′x∗)

= exp(
∑

β̂′(x− x∗)) (3.17)
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This hazard ratio is time-independent, the reason why this model is called the

proportional hazards model.

3.4.2 Conditional models for survival data

The Fixed e�ects Cox model

This model assumes that the cluster e�ect is modeled by a �xed e�ect and is

formulated as follows

hij(t) = h0(t)exp(x
t
ijβ + ci) (3.18)

where ci is the �xed e�ect for the i
th cluster. This model is often over-parameterized

and therefore the �rst cluster is set as the reference cluster i.e. c1 = 0. An advan-

tage of this method is that it does not put constraints on the distribution of the

center-e�ects hence no chances of mis-speci�cation (Tundo, 2009). According to

Glidden and Vittingho� (2004), the �xed e�ects model is most appropriate when

the cluster e�ects are of essential interest. A major drawback of this approach

is the large number of parameters that have to be estimated especially in the

presence of many small clusters (Tundo, 2009).

The strati�ed Cox model

Strati�ed models are conditional models formulated as follows

hij(t) = hi0(t)exp(x
t
ijβ) (3.19)

where hi0 is the baseline hazard for the ith cluster. This model assumes that the

baseline hazards are completely unrelated nuisance functions and could have dif-
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ferent shapes with some or the entire hazard functions unequal. It also assumes

that regression coe�cients are the same in each stratum. The ease of compu-

tation and the applicability across a wide variety of settings make the strati�ed

Cox model an appealing tool, especially if clustering is of no essential interest or

if frailties act non-proportionally on the baseline risk. However, a major draw-

back of this approach is that it results to discarding a considerable amount of

information from the sample. Glidden and Vittingho�, (2004) noted that for a

�xed sample size, the loss of information increases with the number of clusters.

Frailty models (Random e�ects models)

In frailty models, the variability of survival times can be divided into two parts.

One part is the observed risk factors, known as covariates and the other part

is unobserved risk factors, known as frailty. Including the frailty term in the

model allows to correctly measure the covariate e�ects avoiding underestimation

or overestimation of the parameters (Li et al., 2007). The advantage of frailty

models over other conditional models is that they use a single parameter to index

the degree of dependence; in contrast to the �xed e�ects model, where the number

of parameters to describe cluster e�ects grow with the number of clusters. Frailty

models are used to make adjustments for overdispersion/underdispersion. When

unobserved or unmeasured e�ects are ignored, the estimates of survival may

be misleading. Therefore, corrections for this overdispersion/underdispersion is

needed in order to allow for adjustments for those important frailties.
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3.4.3 Univariate frailty models

The univariate frailty model presents the population as a mixture in which base-

line hazard is common to all individuals but each individual has his/her own

frailty. Suppose we have a sample of j observations in a study. Some of these

observations fail earlier than others due to unobserved heterogeneity. The propor-

tional hazards model assumes that conditional on the frailty, the hazard function

for an individual at time t > 0 is

hj(t) = h0(t)exp(x
t
jβ +Wjψ), j = 1, ..., n; (3.20)

where Wj is a frailty term from a probability distribution. If Wj could be mea-

sured and included in the model, then ψ would go to 0 and we would obtain the

marginal Cox PH model. The hazard function conditional on both covariates

and frailty can be rewritten as

hj(t) = h0(t)ujexp(x
t
jβ), j = 1, ..., n (3.21)

where uj = exp(Wj). This shows that the hazard of an individual also depends on

an unobservable random variable, uj , which acts multiplicatively on the hazard

rate. If frailty is not taken into account, then uj = 1.

3.4.4 Shared frailty models

This frailty model allows the individuals in the same cluster to share the same

frailty value (Ulviya, 2013). In this regard, a random e�ect is introduced for

each cluster so that subjects from one cluster are more alike than subjects from
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di�erent clusters. The random e�ect describes the unobserved in�uences common

to all subjects of that particular cluster (Legrand et al., 2006) and the variance

of these random e�ects is a measure of the heterogeneity in the outcome between

clusters. The conditional hazard function at time t for the jth subject in the ith

cluster is given by

hij(t) = h0(t)exp(x
t
ijβ + wi), j = 1, ..., ni (3.22)

where h0 is the baseline hazard at time t (can either be speci�ed parametrically

with a distribution or left unspeci�ed). xtij is the vector of subject speci�c co-

variates and β is the corresponding vector of regression coe�cients (unknown

parameters). wi is the random e�ect for center i. Though the random e�ects w
′
is

,i=1,...,G are unobserved, it is assumed that they are independent and identi-

cally distributed from a density fW (•). The corresponding frailty model can be

re-written as follows

hij(t) = h0(t)exp(wi)exp(x
t
ijβ)

hij(t) = h0(t)uiexp(x
t
ijβ) (3.23)

where ui = exp(wi) is known as the frailty and acts multiplicatively on the hazard

rate for the jth patient in the ith center (Nguti, 2003). Model (3.22) is called the

shared frailty model because subjects in the same cluster all share the same frailty

factor (Duchateau and Janssen, 2008). For this model, regression coe�cients are

interpreted conditional on the center random e�ect. In this project, main focus

will be on shared frailty models with the assumption that the center random

e�ect operates at a group (center) level.
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Heterogeneity parameter

In frailty models, θ is estimated to get an idea on heterogeneity in the outcome

between clusters. When θ is large and di�ers signi�cantly from zero; it re�ects

heterogeneity between clusters and a strong association among individuals in

the same cluster. On the other hand, when θ is equal to zero, the frailties are

identically equal to one which implies that the cluster e�ects are not present

and events are independent within and across centers (Glidden and Vittingho�,

2004). The likelihood ratio test comparing the models with and without frailties

is normally used for testing the null hypothesis θ = 0 versus the alternative

hypothesis θ > 0. Since the null hypothesis is at the boundary of the parameter

space, a mixture of chi-square distribution with 0 and 1 degree of freedom was

used as suggested by Duchateau and Janssen (2008).

Kendall's τ measures of dependence

Most dependence measures have been developed for bivariate data, we describe

the measures for such data. For two randomly chosen clusters i and k of size

two, the event times are (Ti1, Ti2) and (Tk1, Tk2). The assumption is that the

covariate information is the same in each cluster.

Kendall's τ (Kendall, 1938) is a global measure of dependence and is de�ned

as

τ = E[sign((Ti1 − Tk1)(Ti2 − Tk2))] (3.24)

where sign(x) = −1, 0,1 for x < 0, x = 0, x > 0. An alternative formulation for
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continuous distributions (Genest and MacKay, 1986) is given by

τ = P ((Ti1 − Tk1)(Ti2 − Tk2) > 0)− P ((Ti1 − Tk1)(Ti2 − Tk2) < 0

= 2P ((Ti1 − Tk1)(Ti2 − Tk2) > 0)− 1

2p− 1

3.5 Handling ties in survival data

In survival analysis, it is common for the data sets to contain ties in events that is,

two or more individuals share the same time. Usually, time is considered to be a

continuous variable, in which case the probability of a tie is zero. In practice, the

accuracy of measurement is often more limited and two observed times can have

the same value. For instance when the measurement unit is in years, two people

that died in the same year will have the same event time recorded, even though

it is very unlikely that they died at the same moment of time. One assumption

of the Cox proportional hazards model is that there are no tied data, however

in real applications, tied event times are commonly observed and a modi�cation

of Cox's partial likelihood function needed to handle these ties. The following

hypothetical data set was used to demonstrates on how to handle ties between

event times:
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Table 3.1: Demonstration of Ties between Event Times

id. Fail Trans Event

1 12 10 1

2 12 8 1

3 16 NA 1

4 9 NA 1

5 20 7 0

6 9 5 1

7 11 NA 0

In Table 3.1, id represents the identi�cation number of the patients. The Fail

column is the lifetime or censoring time for each individual; the transpl column

represents the time that the patients get a heart transplant where NA indicates

that the particular patient never got a transplant before the end of study. The

last column Event is an indicator variable in which 1 means the patient died

at the fail time and 0 means the patient did not die before the end of the

study and therefore was censored. In this data set, patients 1 and 2, as well as

4 and 6 have the same failure time. Therefore there are ties between patients

1 and 2 and between patients 4 and 6. Several methods have been developed

to perform survival analysis with tied data. The exact method (Allison, 2010),

Breslow approximation (Breslow, 1974), Efron approximation (Efron, 1977) and

the discreet method are the most commonly used methods. The following section
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presents details and an illustration of how to handle ties for each of the above

named methods using the hypothetical data set in Table 3.1.

3.5.1 Exact method

This method assumes that the ties occur as a result of imprecise measurement

of continuous time, hence there exists an underlying ordering for the tied events.

As a result, when calculating the partial likelihood for the �tted model, all the

possible orderings need to be taken into consideration (Allison, 2010). In the

hypothetical data set, there exists a tie between patient 1 and patient 2. The

assumption of the exact method is that because of the limit of �neness of the

measurement, patient 1's event time can either be before or after patient 2's event

time, which gives us two possibilities. The partial likelihood will include both

possibilities and therefore includes the sum of all the possibilities of all possible

orderings (Xin, 2011). From the data set, at time 12

L12 =
1

2
(

eβx1

eβx1 + eβx2 + eβx3 + eβx5
)(

eβx2

eβx2 + eβx3 + eβx5
)

+
1

2
(

eβx2

eβx1 + eβx2 + eβx3 + eβx5
)(

eβx1

eβx1 + eβx3 + eβx5
) (3.25)

The partial likelihood contribution shown above consists of the sum of two prod-

ucts. If we compare each product with Cox's partial likelihood in Section 5.1,

the �rst product is for the possibility that patient 1 fails before patient 2 and

the second is for the possibility that patient 2 fails before patient 1. The exact

method is a very precise method; however, since it is based on permutations,
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this method can become computationally infeasible when there is a multitude of

time points that contain a large number of ties (Xin, 2011; Allison, 2010).

3.5.2 Breslow approximation

This approximation method assumes that event times are continuous and the

hazard of event is constant in the interval (ti, ti+1) (Breslow, 1974). Furthermore,

an individual whose censoring time falls in the interval (ti, ti+1) is assumed to

have been censored at the start of the interval, that is at time ti. Letting xj be

the vector of covariates for the jth individual, set Di consist of di individuals who

failed at time ti. Also, letting Ri be the risk set at time ti, such that Ri contains

all the individuals that are alive or at risk at time ti, the partial likelihood for

the Breslow approximation (Hertz-Picciotto and Rockhill, 1997) is:

L(β) =
k∏

i=1

exp[(
∑

j∈Di
xj)β]

[
∑

j∈Ri
exp(xjβ)]di

(3.26)

Consequently, the contribution to the partial likelihood for time 12 can be

approximated by:

L(β) =
eβx1eβx2

[eβx1 + eβx2 + eβx3 + eβx5 ]2
(3.27)

The Breslow approximation is obtained by setting the denominators of each ratio

in L12 to e
βx1+eβx2+eβx3+eβx5 which includes all the patients in the risk set at the

�rst event time. The calculation is much simpler than the partial likelihood for

the exact method. However, the Breslow approximation becomes more complex

as the number of ties at a particular time point becomes large relative to the

number of patients in the risk set (Kalbeisch and Prentice, 2002).
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3.5.3 Efron approximation

The Efron approximation is more accurate than the other approximations (Alli-

son, 2010; Kalbeisch and Prentice, 2002). However as the percentage of ties in-

creases, the performance of all approximations becomes worse since their partial

likelihoods will become more di�erent from the exact partial likelihood. The par-

tial likelihood function for the Efron's approximation (Hertz-Picciottoand Rock-

hill, 1997) is:

L(β) =
k∏

i=1

exp[(j ∈ Dixj)β]∏di
l=1[

∑
j∈Ri

exp(xjβ)− l−1
di

∑
j∈Di

exp(xjβ)]
(3.28)

As a result, the contribution to the partial likelihood for time 12 can be approx-

imated by:

eβx1eβx1

[eβx1 + eβx2 + eβx3 + eβx5 ][(eβx1 + eβx2 + eβx3 + eβx5)− 1
2
(eβx1 + eβx2)]

Compared to the Breslow approximation, the partial likelihood of the Efron

approximation is closer to the exact method since the denominators are not

simply treated as the same term eβx1 + eβx2 + eβx3 + eβx5 as in the Breslow

approximation. At the same time, the calculation for the Efron approximation

still remains simpler than the exact method.

3.5.4 Discrete method

The method is also an exact method but based on a di�erent model. With the

assumption that time is really discrete, there is no underlying ordering as in

the exact method as assumed in the original Cox proportional hazards model
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(Allison,2010; Cox, 1972). In the hypothetical data set when there is a tie at

time 12 between patient 1 and patient 2, the discrete method treats these events

as if they did happen at the same time point. Cox proposed a similar model for

discrete-time data, which is sometimes called the proportional odds model (Cox,

1972; Allison, 2010). However, since it is still computationally time-consuming,

another approximation was developed by Kalbeisch and Prentice (1973). Let di

be the number of individuals who fail at time ti. Let q be one subset of di and

Qi be a set that includes all possible q, i.e., Qi is the set of all subsets of size di

from the risk set at time ti. Let sq =
∑d

j zqj, which is the sum of the covariate

values for a speci�c subset q. Then the partial likelihood for the discrete method

proposed by Kalbeisch and Prentice (1973) is:

L(β) =
k∏

i=1

exp[(
∑∑

j ∈ Dixj)β]∑
q∈Qi

exp(s∗qβ)

Similar to the Breslow and Efron approximations, the calculation of the discrete

method is simpler than the exact method. However, when the percentage of

events is large in the study and the measurement unit is imprecise so there are

many ties, the estimated parameters from this approximation are more likely to

be biased (Xin,2011; Kalbeisch and Prentice, 1973). In this project, the Breslow

approximation method was used to handle ties in the observed and simulated

data sets.
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Chapter 4

Statistical Frailty Distributions and

Parametric Baseline Distributions

4.1 Introduction

There are various frailty models that have been developed and suggested in the

literature and any distribution with a positive random variable can be used to

model frailty (Ulviya, 2013). Several authors have noted that unlike standard

random e�ects models, inferential methods have been less developed in frailty

models because of censoring and truncation. The frailty distributions most often

applied are the gamma distribution (Clayton, 1978; Vaupel et al., 1979; Oakes,

1982; Hougaard, 2000; Wienke et al., 2002; Wienke et al., 2003a; Hanagal and

Sharma, 2012), the positive stable distribution (Hougaard, 1986b), the power

Variance function (PVF) distribution (Hougaard, 1986a), the inverse Gaussian
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distribution (Hougaard, 1984), the compound Poisson distribution (Aalen, 1988)

and the log-normal Distribution (McGilchrist and Aisbett, 1991). This chapter,

presents details and properties of various frailty distributions.

4.2 Gamma distribution

Gamma frailty model belongs to the power variance function family (Hougaard,

1986b) and can be expressed in terms of its Laplace transform from which prop-

erties such as mean and variance are easily derived (Duchateau and Janssen,

2008). Assuming a two-parameter gamma density with δ > 0 and γ > 0 as

shape and scale parameters respectively, the density function is given by

fU(u) =
γδuδ−1exp(−γu)

Γ(δ)
(4.1)

with δ > 0 and γ > 0. The corresponding Laplace transform is given by

L(s) =

∫ ∞

0

exp(−us)fU(u)du (4.2)

=

∫ ∞

0

exp(−us)γ
δuδ−1exp(−γu)

Γ(δ)
du

=
γδ

Γ(δ)

∫ ∞

0

exp− u(s+ γ)uδ−1du

Letting y = u(s+ γ) ; u = y
(s+γ)

and du = dy
(s+γ)

Substituting for u and du we get

=
γδ

Γ(δ)

∫ ∞

0

exp− y(
y

(s+ γ)
)δ−1 dy

(s+ γ)
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=
γδ

(s+ γ)δΓ(δ)

∫ ∞

0

exp− y(y)δ−1dy

Where Γδ =
∫∞
0
exp− y(y)δ−1dy

Hence

L(s) = (
γδ

(s+ γ)δΓ(δ)
) ∗ Γδ

=
γδ

(s+ γ)δ

= γδ(s+ γ)−δ (4.3)

L(s) exists in the neighbourhood of zero and the mean and variance can be

obtained by using the �rst and second derivatives of the Laplace transform.

L(1)(s) = −δγδ(s+ γ)−δ−1 (4.4)

L(2)(s) = δ(δ + 1)γδ(s+ γ)−δ−2 (4.5)

Evaluating these derivatives at s=0, the expected mean and variance are;

E(U) = (−1)L(1)(0) = δ/γ (4.6)

V ar(U) = L(2)(0)− (−L(1)(0))2

=
δ(δ + 1

γ2
− (

δ

γ
)2

=
δ2 + δ − δ2

γ2
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=
δ

γ
(4.7)

In gamma frailty models, restriction δ = γ is used, which results in expectation

of 1. The variance of the frailty variable is then 1
γ
. Assuming that the frailty

term u is a gamma with E(U) = 1 and V ar(U) = θ, then δ = γ = 1/θ (Ulviya,

2013). The distribution function of the frailty term u is therefore a one-parameter

gamma distribution given by

fU(u) =
u1/θexp(−u/θ)

θ1/θΓθ
(4.8)

where θ > 0 and u > 1 indicates that individuals in group i are frail, whereas u <

1 indicates that individuals are strong and have lower risk. The corresponding

Laplace transform is given by;

L(s) = (1 + θs)1/θ (4.9)

Once the frailty is integrated out, accounting for unobserved heterogeneity is re-

duced to estimating the variance of the frailty term. The variance θ of the frailty

term represents the heterogeneity among clusters while the mean is constrained

to 1 in order to make the average hazard identi�able (Duchateau et al., 2002;

Nguti, 2003; Glidden and Vittingho�, 2004; Duchateau and Janssen, 2008). The

ease of interpretation coupled with the analytic simplicity and variety of forms

as the parameter varies has popularized the use of the gamma frailty model

in the correlated failure time analysis (Li et al., 2007). However, there are no

known biological reasons which make the gamma distribution preferable than

other distributions (Hougaard, 1995).
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4.3 Inverse Gaussian distribution

The inverse Gaussian density function is given by

fU(u) = (α/2π)1/2u−3/2exp(
−α
2uµ2

(u− µ)2) (4.10)

with µ > 0 and α > 0. The corresponding Laplace transform is

L(s) =

∫ ∞

0

exp(−su)( α
2π

)1/2u−3/2exp(
−α
uµ2

(u− µ)2)du

= (
α

2π
)1/2exp(

α

µ
)

∫ ∞

0

u−3/2exp(−(
α

2µ2
+ s)u)exp(− α

2u
)du

= exp(
α

µ
)exp(−2(

α

2
)1/2(

α

2µ2
)1/2)

= exp(
α

µ
− (

α2

µ2
+ 2αs)1/2) (4.11)

The �rst and second derivatives of the Laplace transforms are given by

L(1)(s) = −αexp(α
µ
)exp(−(

α2

µ2
+ 2αs)1/2)(

α2

µ2
+ 2αs)−1/2 (4.12)

L(2)(s) = α2exp(
α

µ
)exp(−(

α2

µ2
+ 2α)1/2)(

α2

µ2
+ 2αs)−1+

α2exp(
α

µ
)exp(−(

α2

µ2
+ 2αs)1/2)(

α2

µ2
+ 2αs)−3/2 (4.13)

Evaluating the derivatives at s = 0 we have

E(U) = −L1(0) = µ (4.14)

V ar(U) = L(2)(0)− (−L1(0))2 = µ3/α (4.15)
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Substituting µ = 1 in equation (4.11) we obtain the following simpli�ed Laplace

transform

L(s) = exp[α(1− (1 + 2α−1s)1/2)]

For µ = 1 we have that θ = V ar(U) = 1/α (so α = ∞ corresponds with no

heterogeneity(θ = 0)).

4.4 Positive stable distribution

In general, the stable distributions have the property that, with Y1, ..., Yn inde-

pendent and identically distributed (iid) random variables, for each n there ex-

ists a normalising constant c(n) such that D(
∑n

i=1 Yi) = D(c(n)Yi) whereD(Y )

means the distribution (law) of Y. The constant c(n) takes form n1/θ with

θ ∈ (0, 2] θ being called the characteristic exponent (Duchateau and Janssen,

2008). The standard normal density function is a stable density. For iid standard

normal distributed random variables Y1, ..., Yn we have D(
∑n

i=1 Yi) = D(n1/2Yi)

i.e. θ = 2. The stable distributions on the positive half line have θ ∈ (0, 1]

(θ = 1) corresponds to the degenerate distribution. To link this with frailty

distributions let U = Y1 and the density function is then given by

fU(u) = − 1

πu

∞∑
k=1

Γ(kθ + 1)

k!
(−u−θ)ksin(θkπ) (4.16)

with 0 < θ < 1. This density function has in�nite mean and the variance is

therefore also undetermined. Although an in�nite mean is more di�cult to work

with, it is actually one of the main reasons why this density function was pro-
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posed (Duchateau and Janssen, 2008). Only density functions with in�nite mean

have the property that the heterogeneity parameter is independent from the co-

variate information (Hougaard ,1986b). Furthermore, it is often stated as an

attractive property of the positive stable frailty distribution that the proportion-

ality property for the conditional hazard is inherited by the population hazard

(Duchateau and Janssen, 2008).

The Laplace transform has the simple form

L(s) = exp(−sθ) (4.17)

Since L(s) does not exist in the neighbourhood of zero, the mean does not exist.

This is shown by taking the right limit of L(s) for s → 0 we get that the mean

is in�nite:

lim
s→0

L(1)(s) = −θ lim
s→0

exp(−sθ)
s1−θ

= −∞ (4.18)

4.5 The power variance function distribution

The family of the power variance function distributions was introduced as an

extension of the positive stable distribution by Hougaard (1986b). It contains

the gamma, inverse Gaussian and positive stable distributions; they are obtained

for choices of the parameters at the boundary of the parameter space (Duchateau

and Janssen, 2008). The density function is given by

fU(u) = exp(−ν
θ
(
u

µ
+

1

ν − 1
))

× 1

πu

∞∑
k=1

(ν/θ)kν(u/ν)k(ν−1)Γ(1− k(ν − 1))sin(πk(ν − 1))

k!(ν − 1)k
(4.19)
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with µ > 0, θ > 0 and 0 < ν ≤ 1. The corresponding Laplace transform given

by Aalen (1992) is

L(s) = exp[
ν

θ(1− ν)
(1− (1 +

θµs

ν
)1−ν)] (4.20)

with the �rst and second derivatives given by

L(1)(s) = −L(s)µ(1 + θµs

ν
)−ν

L(2)(s) = L(s)µ2((1 +
θµs

ν
)−2ν + θ(1 +

θµs

ν
)−ν−1)

Assuming that the derivatives above exist in the neighbourhood of zero (not the

case for the positive stable distribution), we can evaluate them at s = 0 to �nd

E(U) = (−1)L(1)(0) = µ (4.21)

V ar(U) = L(2)(0)− (−L(1)(0))2 = θµ2 (4.22)

4.6 The compound Poisson distribution

In some application, a proportion of the subjects is not susceptible for the event

under consideration and to model this, a frailty term U for which P (U = 0) is

positive is used. We therefore consider a distribution of the frailty term that has

two parts: the positive probability at zero and a continuous subdensity on the

positive real line. With µ > 0, θ > 0, and ν > 1 we have

P (U = 0) = exp(
−ν

θ(ν − 1)
) (4.23)
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and

fU(u) = exp(−ν
θ
(
u

µ
+

1

ν − 1
))

× 1

πu

∞∑
k=1

(ν/θ)kν(u/ν)k(ν−1)Γ(1− k(ν − 1))sin(πk(ν − 1))

k!(ν − 1)k
(4.24)

The corresponding Laplace transform is

L(s) = exp[
ν

θ(1− ν)
(1− (1 +

θµs

ν
)1−ν)] (4.25)

4.7 Lognormal distribution

The use of lognormal distribution in frailty models originates from the link with

generalized mixed models with a standard assumption that the random e�ects wi

follow a zero-mean normal distribution with variance σ2 (Duchateau and Janssen,

2008). The corresponding lognormal frailty distribution is given by

fU(u) =
1

u
√
2πσ2

exp(− logu
2

2σ2
) (4.26)

The mean and variance are expressed as

E(U) = exp(σ2/2) (4.27)

V ar(U) = exp(σ2)(exp(σ)− 1) (4.28)

It is noted that the mean and variance of the lognormal frailty density are both

functions of the parameter σ2. Although lognormal frailty distribution has no

explicit evaluation of the Laplace transform, it allows a relatively simple exten-

sion to the multivariate case with general variance-covariance matrix which is far
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more complex to pursue with other distributions (Nguti, 2003).

In this project, application focused on frailty models with gamma and lognor-

mal distributions and θ was used to denote the heterogeneity parameter for both

distrutions.

4.8 Baseline hazard distributions for parametric

frailty models

The risk of an event occurring can be constant over time or with more complicated

hazard rates that increase and decrease over time or that increase or decrease at

faster or slower rates. Exactly how the hazard rate varies with time is generally

referred to as time dependency. The logic of parametric duration models is that

they assume a particular shape for the hazard rate. Below are some of the

commonly used baseline hazards distributions:

4.8.1 Exponential

For the exponential model, the hazard rate is characterized by:

h(t) = λ (4.29)

This implies that the conditional probability of an event is constant over time

(and that events occur according to a Poisson process). That is, the risk of an

event occurring is �at with respect to time (Jenkins, 2008). The corresponding
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cumulative hazard is given by;

H(t) = λt (4.30)

Recall from the section (3.2) that H(t) = −ln[S(t)]. As a result, we have

S(t) = e−H(t) = e−λt (4.31)

This means that the density is

f(t) = S(t)h(t) = λe−λt (4.32)

Having de�ned h(t), f(t), and S(t) and their relationships in section (3.2), it

is easy to construct the sample likelihood for the exponential model as shown

below:

L =
N∏
i=1

{f(t)}di{S(t)}1−di

L =
N∏
i=1

{λe−λt}di{e−λt}1−di (4.33)

4.8.2 Weibull

The baseline hazard, h(t) can be chosen to follow a Weibull(λ, ρ) distribution

which is more general and �exible than the exponential distribution. The Weibull

baseline hazard allows for hazard rates that are non-constant but monotonic

(Jenkins, 2008). The probability density function is given by

f(t) = λρtρ−1exp(−λtρ) (4.34)
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Where λ > 0 and ρ > 0 are shape and scale parameters respectively. The corre-

sponding survival function is given by;

S(t) = Pr(T > t) =

∫ ∞

t

λρxρ−1exp(−λxρ)dx (4.35)

Using integration by substitution, we let u = λxρ thus, λρxρ−1dx = du and sub-

stituting in equation (4.35) above

S(t) =

∫ ∞

λtρ
exp(−u)du

= − exp(−u)|∞λtρ

= exp(−λtρ) (4.36)

The corresponding hazard is given by;

h(t) =
f(t)

S(t)
=
λρtρ−1exp(−λtρ)

exp(−λtρ)
(4.37)

= λρtρ−1

and the cumulative hazard is

H(t) =

∫ t

0

h(x)dx (4.38)

=

∫ x

0

λρxρ−1dx

= λtρ

The hazard rises if ρ > 1 , constant if ρ = 1 and decreases if ρ < 1. Exponential

distribution is a special case of Weibull distribution when the shape parameter
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λ is 1. The likelihood function for the Weibull model is constructed as follows:

L =
N∏
i=1

{λρtρ−1exp(−λtρ)}di{exp(−λtρ)}1−di (4.39)

4.8.3 Gompertz

Gompertz (1825) idea of exponential aging, postulated that h(t) satis�es the

simple di�erential equation

dh(t)

dt
= ρh(t) (4.40)

Solving this

dh(t)

h(t)
= ρdt∫

dh(t)

h(t)
=

∫
ρdt

The Gompertz distribution is characterized by the fact that the log of the hazard

is linear in t, so

lnh(t) = ρt+ c

h(t) = λeρt (4.41)

where λ = eXβ and ρ is the shape parameter. The corresponding survival func-

tion is

S(t) = e−λρ−1(eρt−1) (4.42)

The Gompertz model is useful for monotone hazard rates that either increase or

decrease exponentially with time. The shape parameter satis�es the following

conditions:

•Ifρ < 1, then the hazard is monotonically decreasing with time.
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•Ifρ > 1, then the hazard is monotonically increasing with time.

•Ifρ = 1, then the hazard is �at and we have the exponential model.

In other words, this implies that a person's probability of dying increases at a

constant exponential rate as age increases. This distribution provides a remark-

ably close �t to adult mortality in contemporary developed countries (Rodriguez,

2010). The corresponding cumulative hazard is given by;

H(t) =

∫ t

0

h(x)dx

=

∫ t

0

λeρxdx

=
λ

ρ
(eρt− 1) (4.43)

4.8.4 Log-logistic

In the log-logistic model, the hazard rate is characterized by:

h(t) =
λ

1
ρ t[(1

ρ
)− 1]

ρ[1 + (λt)
1
ρ ]

(4.44)

Similar to the Weibull model, the log-logistic model has two parameters, λ, the

location parameter and ρ, the shape parameter. The log-logistic allows for non-

monotonic unimodal hazards - in this case inverted U-shapes (Jenkins, 2008).

The shape parameter satis�es the following conditions:

•Ifρ < 1, then the conditional hazard �rst rises, then falls.

•Ifρ ≥ 1, then the hazard is declining.

For the log-logistic model, the hazard can never be monotonically rising and the
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corresponding survival function is:

S(t) =
1

1 + (λt)
1
ρ

(4.45)

with a density function :

f(t) = h(t) ∗ S(t) =
λ

1
ρ t[(1

ρ
)− 1]

{ρ[1 + (λt)
1
ρ ]2}

(4.46)

the corresponding cummulative hazard function is given by:

H(t) = 1 + (λt)
1
ρ (4.47)

Having de�ned h(t), f(t) and S(t), it is easy to construct the likelihood for the

log-logistic model as shown below

L =
N∏
i=1

{
λ

1
ρ t[(1

ρ
)− 1]

{ρ[1 + (λt)
1
ρ ]2}

× 1

1 + (λt)
1
ρ

}di{ 1

1 + (λt)
1
ρ

}1−di (4.48)

The expected duration for the log-logistic has a closed form solution when ρ < 1

(Klein and Moeschberger, 2003).

4.8.5 Lognormal

The hazard function of the log-normal distribution increases from 0 to reach a

maximum and then decreases monotonically, approaching 0 as t → ∞. Using

the lognormal distribution with parameters µ and σ; w = ln(x) N(µ, sigma)

S(t) = 1− ϕ(
lnt− µ

σ
) (4.49)
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where ϕ is the standard Normal cdf and µ = Xβ. The density function is:

f(t) =
1

σt
√
2π
e

(lnt−µ)2

2σ2 (4.50)

h(t) =
f(t)

S(t)
=

1
σt

√
2π
e

(lnt−µ)2

2σ2

1− ϕ( lnx−µ
σ

)
(4.51)

The hazard rate is similar to that for the log-logistic for the case where ρ < 1,

i.e. it �rst rises and then falls.

4.8.6 Exponential power

Using the exponential power density with survival function;

S(t) = exp(1− eλt
α

) (4.52)

h(t) =
−d
dt
lnS(t)

h(t) =
−d
dt

(1− eλt
α

)

h(t) = α(exp(1− eλt
α

)) (4.53)

From the relationships shown in chapter 2, the corresponding cumulative hazard

is given by

H(t) = −ln(S(t)))

H(t) = −ln(exp(1− eλt
α

))

H(t) = eλt
α − 1 (4.54)
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4.8.7 Generalized Gamma Model

The generalized gamma model has a quite complicated speci�cation involving

two shape parameters (Jenkins, 2008). The density of the generalized gamma

distribution is:

f(t) =
λρ(λt)ρκ−1e−(λt)ρ

Γκ
(4.55)

where

λi = e−(xiβ)

and ρ andκ are the two shape parameters. The two shape parameters allow for

quite a �exible hazard rate including a U-shape. An attractive characteristic

of the generalized gamma model is that it nests several of the other parametric

models as special cases: Weibull, exponential, log-normal, and the standard

gamma (Balakrishnan and Peng, 2006). Thus, this model is good for adjudicating

between (some) competing parametric models. The shape parameters work in

the following way:

•Ifκ = 1, then the Weibull distribution is implied.

•Ifκ = ρ = 1, the exponential is implied.

•Ifκ = 0, the log-normal is implied.

•Ifρ = 1, the gamma distribution is implied.

Among these parametric distributions, only the exponential, the Weibull and

the Gompertz model share the assumption of proportional hazards with the Cox

regression model (Bender et al., 2005). The characteristics of these distributions

are summarized in Table 4.1.
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Table 4.1: Summary of characteristics of the exponential, the Weibull and the

Gompertz distribution

Characteristic Exponential Weibull Gompertz

Parameter scale parameter scale parameterλ > 0 scale parameterλ > 0

λ > 0 shape parameter ρ > 0 shape parameter α ∈ (−∞,∞)

Range [0,∞) [0,∞) [0,∞)

Hazard function h0(t) = λ h0(t) = λρxρ−1 h0(t) = exp(αx)

Cummulative hazard H0(t) = λt H0(t) = λtρ H−1
0 (t) = 1

α
(log(α

λ
t + 1)

Inverse cumm H−1
0 (t) = λ−1t H−1

0 (t) = (λ−1t)1/ρ H0(t) = 1
α
(exp(αt) − 1)

hazard

Density f0(t) = λexp(−λt) f0(t) = λρtρ−1exp(−λtρ) f0(t) =

function λexp(αt)exp( λ
α
(1 − exp(αt)))

Survival function S0(t) = exp(−λx) S0(t) = exp(−λtρ) S0(x) = exp( λ
α
(1 − exp(αt)))

Mean E(T ) = 1
λ

E(T ) = 1
ρ√

λ2
Γ( 1

ρ
+ 1) E(T ) = 1

λ
G( λ

α
) where

G(x) =
∫∞
x

1
y
exp(−y)dy
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According to Bender et al. (2005), the e�ect of covariates in the Cox model have

to be translated from the hazards to the survival times. This is because the

standard software packages for Cox models require the individual survival time

data, not the hazard function. Table 4.2 presents the formulas for the survival

time and the hazard function of Cox models using the exponential, the Weibull

and the Gompertz distribution.

Table 4.2: Formulae for the survival time and the hazard function of Cox models

using the exponential, the Weibull and the Gompertz distribution.

Characteristic Cox-Exponential Cox-Weibull Cox-Gompertz

Survival time T = − log(U)

λexp(β′x)
T = (− log(U)

λexp(β′x)
)1/ρ T = 1

α
log(1− α log(U)

λexp(β′x)
)

Hazard function h(t|x) = λexp(β
′
x) h(t|x) = λρxρ−1exp(β

′
x) h(t|x) = λexp(αt)exp(β

′
x)
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Chapter 5

Estimation Methods

5.1 Introduction

In survival analysis, estimation methods vary depending on the model of inter-

est and the amount of information available i.e. parametric or semi-parametric

model, conditional or marginal Cox proportional hazard model. This chapter

presents the various estimation methods for survival models.

5.2 Estimation in semi-parametric Cox PH model

By �tting the Cox proportional hazards model, we wish to estimate the vector

of regression coe�cients, β. A popular estimation approach was proposed by

Cox (1972) in which a partial likelihood function that does not depend on h0(t)

is obtained for β. Partial likelihood is a technique developed to make inference

about the regression parameters in the presence of nuisance parameters (h0(t)) in
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the Cox PH model. In this section, we will construct the partial likelihood func-

tion based on the proportional hazards model. Let t1, t2, ..., tn be the observed

survival time for n individuals. Let the ordered death time of r individuals be

t(1) < t(2) < ... < t(r) and let R(t(j)) be the risk set just before t(j) i.e. the group

of individuals who are alive and uncensored at a time just prior to t(j). The con-

ditional probability that the ith individual dies at t(j) given that one individual

from the risk set on R(t(j)) dies at t(j) is;

P(individual i dies at t(j)|one death from the risk set R(t(j)) at t(j))

P(individual i dies at t(j))/P(one death at t(j))

≃
lim∆t ↓ 0P{individualidiesatt(j), t(j) +∆t)}/∆t

lim∆t ↓ 0
∑

k∈R(t(j))
P{individualkdiesat(t(j), t(j)+∆t)}/∆t∆

=
hi(tj)∑

k∈R(t(j))
hk(t(j))

=
h0(t(j))exp(β

′xi(t(j)))∑
k∈R(t(j))

h0(t(j))exp(β′xk(t(j)))

=
exp(β′xi(t(j)))∑

k∈R(t(j))
exp(β′xk(t(j)))

Then, the partial likelihood function for the Cox PH model is given by

L(β) =
r∏

j=1

exp(β′xi(t(j)))∑
k∈R(t(j))

exp(β′xk(t(j)))
(5.1)

in which xi(t(j)) is the vector of covariate values for individual iwho dies at t(j).

Note that this likelihood function is only for the uncensored individuals. Let
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t1, t2, ..., tn be the observed survival time for n individuals and δi be the event

indicator, which is zero if the ith survival time is censored, and one otherwise.

The likelihood function in equation (5.1) can be expressed by;

L(β) =
n∏

i=1

[
exp(β′xi(t(i)))∑

k∈R(t(i))
exp(β′xk(t(i)))

]δi (5.2)

where R(ti) is the risk set at time ti: The partial likelihood is valid when there

are no ties in the dataset i.e. there are no two subjects who have the same event

time.

5.3 Estimation in semi-parametric frailty models

5.3.1 The Expectation-Maximization (EM) Algorithm

In a semi parametric approach, the baseline hazard is unspeci�ed and the frailties

(ui) are unobserved. For these reasons, it is di�cult to maximize the likelihood

to estimate the parameters (Nguti, 2003). One solution to this kind of problem

is the Expectation-Maximization (EM) algorithm which is typically used in the

presence of unobserved (latent) information. The EM algorithm iterates between

the expectation and maximization step.

Expectation step

In the expectation step, the expected values of the unobserved frailties con-

ditional on the observed information and the current parameter estimates are

obtained.

Maximization step
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In the maximization step, the expected values obtained in the E-step are consid-

ered to be the true information and new estimates of the parameters of interest

are obtained by maximization of the likelihood, given the expected values. The

applicability of the EM algorithm for a particular problem depends on two con-

ditions. First, it should be easy to obtain expected values for the unobserved

information. Second, the maximization of the likelihood, conditional on the ex-

pected values of the unobserved information, should be straightforward as the

EM algorithm is based on performing these two steps iteratively. The execution

of the EM algorithm is computer intensive and slow.

5.3.2 The Penalized Partial Likelihood (PPL)

An alternative estimation method is the Penalized Partial Likelihood (PPL) pre-

sented by Therneau and Grambsch (2000) where the random e�ect is treated as

a penalty term. The PPL approach is preferred over EM algorithm since it is

faster and is implemented in most standard software.

The PPL for normal random e�ects

The use of PPL method for the lognormal frailty is motivated by the Laplace

approximation to the full likelihood similar to the arguments used in the context

of generalized linear mixed models (McGilchrist, 1993). The full likelihood is

presented as follows;

lfull(h0(·), θ, β) = logf(z, u|h0(·), θ, β)

= logf(z, |h0(·), β, u) + logf(u|θ)
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= lfull,1(h0(·), β) + lfull,2(h0(θ) (5.3)

In PPL approach, logf(u|θ) part of the likelihood is considered to be a penalty

term such that if the actual value of the random e�ect is far away from its 0 (zero)

mean, the absolute value of the logarithm of the density function evaluated at

this value will be large and the penalty term has a large negative contribution

to the full data loglikelihood.

Taking the random e�ects (wi
′s) as another set of parameters in the �rst part

of the likelihood, this likelihood part can be transformed into a partial likelihood

expression as follows;

lPPL(θ, β, w) = lpart(β, w)− lpen(θ, w) (5.4)

The �rst part lpart(β, w) represents the conditional likelihood of the data given

the frailties, the second part lpen(θ, w) stands for the distribution of the frailties.

The frailties are thus in both parts of the penalized partial likelihood. The

second term penalizes random e�ects that are far away from the mean value zero

by reducing the penalized partial likelihood. This corresponds to shrinking the

random e�ects towards the zero-mean.

if ηij = xtijβ + wi and η = (η11, ..., ηcns);

lpart(β, w) =
G∑
i=1

ni∑
j=1

δij[ηij − log(
∑

qw∈R(yij)

exp(ηqw))] (5.5)

lpen(θ, w) = −
G∑
i=1

logfW (wi) (5.6)

so for random e�ects wi, i = 1, ..., G with mean 0 normal density and variance θ
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we get

lpen(θ, w) =
1

2

G∑
i=1

(
w2

i

θ
+ log(2πθ))

Maximization in PPL approach is a double iterative process that alternates be-

tween an inner and an outer loop until convergence. In the inner loop, the

Newton-Raphson procedure is used to maximize, for a provisional value of θ, β

and w, (best linear unbiased predictors, BLUPs) (Duchateau et al., 2002). For

both gamma and lognormal frailty distributions, this step is identical.

In the outer loop of a lognormal distribution, the restricted maximum likeli-

hood estimator (REML) for θ is obtained using the best linear unbiased predic-

tors, BLUPs. Details are as follows. Let l denote the outer loop index and k the

inner loop index. Let θ(l) be the estimate for θ at the lth iteration in the outer

loop. Given θ(l), β(l,k)and w(l,k) are the estimates and predictions for β and w

at the kth iterative step in the inner loop. Starting from initial values β(1,0) and

w(1,0),θ(0) and θ(1), the kth iterative step for Newton-Raphson, given θ(l), is given

by

β(l,k)

w(l,k)

 =

β(l,k−1)

w(l,k−1)

− V

 0

(θ(l))− w(l,k−1)

+ V

[
X Z

]
dlpart(β,w)

dη

where

V =

V11 V12

V21 V22
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is the inverse of the square (p+ s) -dimensional matrix A with A given by

A =

A11 A12

A21 A22

 =

X t

Zt

 (
−d2lpart(β,w)

dηdηt
)

[
X Z

]
+

0 0

0 (θ(l))−1IG


Once the Newton-Raphson procedure has converged for the current value of θ(l),

a REML estimate for θ is given by

θ(l+1) =

∑G
i=1(w

(l,k)
i )2

G− r

where r = trace(V22)/θ
(l). This outer loop is iterated until the absolute di�erence

between two sequential values for θ, |θ(l) − θ(l−1)| is su�ciently small.

The penalized partial likelihood for the gamma frailty

The penalised partial likelihood can be written in the same way as for the normal

random e�ects equation (5.25) but with penalty function given by

lpen(θ, w) =
1

θ

G∑
i=1

(wi − exp(wi)) (5.7)

Since a REML estimate is not available, the outer loop of a gamma frailty distri-

bution is based on the maximization of a pro�led version of marginal likelihood

(Duchateau et al., 2002; Duchateau and Janssen, 2008). For gamma frailty

model, PPL and EM algorithm lead to the same estimates.

5.4 Estimation in parametric frailty model

When a parametric baseline hazard is assumed, maximum likelihood estimates

can be obtained by maximizing the likelihood function. This not only makes
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estimation easier, but also describe explicitly the e�ect of the frailty on hazard

ratios over time. Survival data consists of event times and censored observations

and the likelihood function under random right censoring is given by;

L =
n∏

j=1

[(1−Hj(t))fj(t)]
δj [(1− Fj(t))hj(t)]

1−δj (5.8)

where δj is the censoring indicator, h and H are the density function and the

cumulative distribution function of the censoring time respectively. f and F are

the density function and the cumulative distribution function of the event time

respectively. The distribution of censoring times in the likelihood function can

be ignored because it does not depend on the parameters of interest related to

the survival function (Ulviya, 2013). Therefore, the likelihood function for the

jth subject assuming right censoring is of the form;

L =
n∏

j=1

(fj(t)
δj(Sj(t))

1−δj

Following the idea above, the likelihood function for the jth subject in the ith

cluster is given by;

Li =
n∏

j=1

(fij(t)
δij(Sij(t))

1−δij (5.9)

From the relationships given in section (3.2), we can rewrite the conditional

likelihood function in equation(5.4) as;

Li =
n∏

j=1

(hij(t)
δij(Sij(t)) (5.10)

From these relationships, we can derive the forms of the conditional and marginal

likelihood functions of the frailty models. From section (3.4.4), the Cox PH model
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with frailties is given by;

hij(t) = h0(t)uiexp(x
t
ijβ) (5.11)

Equation (5.6) can be rewritten as

fij(t)

Sij(t)
= h0(t)uiexp(x

t
ijβ) (5.12)

Integrating both sides of the equation (5.7), we get an expression for the survival

function. ∫ ∞

0

fij(t)

Sij(t)
dt =

∫ ∞

0

h0(t)uiexp(x
t
ijβ)dt

−ln(Sij(t)) = H0(t)uiexp(x
t
ijβ)

Therefore,

Sij(t) = exp(−H0(t)uiexp(x
t
ijβ)) (5.13)

The conditional likelihood function for the ith subgroup is then given by

Li(ψ, β|ui) =
ni∏
j=1

(h0(tij)uiexp(x
t
ijβ))

δijexp(−H0(tij)uiexp(x
t
ijβ)) (5.14)

where ψ is a vector of parameters of the baseline hazard. It follows that the

marginal likelihood function for the ith cluster is

Li(ψ, θ, β) =

ni∏
j=1

∫ ∞

0

(h0(tij)uexp(x
t
ijβ))

δijexp(−H0(tij)uexp(x
t
ijβ))f(u)du

(5.15)

where f(u) is the probability distribution function of frailties u1, ..., uG. The fol-

lowing section illustrates derivation of the marginal loglikelihood for the gamma

frailty model.

63



5.4.1 Parametric Cox proportion hazard model with gamma

frailty

To obtain the marginal loglikelihood for the gamma frailty model, �rst we inte-

grated out the gamma frailties in the conditional survival likelihood. This leads

to explicit and simple marginal likelihood function which only contains the pa-

rameters of interest. The marginal likelihood function for the ith cluster is given

by

Li(ψ, θ, β) =

ni∏
j=1

∫ ∞

0

(h0(tij)ue
(xt

ijβ))δije(−H0(tij)uexp(x
t
ijβ)) × u1/θ−1eu/θ

Γ(1/θ)θ1/θ
du (5.16)

where ψ contains the baseline hazard parameters. For the exponential baseline

hazard ψ =(λ) ,ψ =(λ and ρ) for the Weibull baseline hazard and ψ =(λ and α)

for the Gompertz baseline hazard. Rearranging the terms in equation (5.11), we

obtain the following expression

Li(ψ, θ, β) =

ni∏
j=1

h0(tij)
δijexp(xtijβ)

δij

∫ ∞

0

u1/θ+di−1eu/θexp(−
∑ni

j=1H0(tij)uexp(x
t
ijβ))

Γ(1/θ)θ1/θ
du

=

ni∏
j=1

h0(tij)
δijexp(xtijβ)

δij
Γ(1/θ + di)θ

(1/θ+di)

Γ(1/θ)θ1/θ

×
∫ ∞

0

u1/θ+di−1exp− u(1/θ +
∑ni

j=1H0(tij)uiexp(x
T
ijβ))

Γ(1/θ + di)θ(1/θ+di)
du (5.17)

where di =
∑ni

j=1 δij.

We integrate out the frailty term u, so as to make the problem more tractable.

The term under the integral is the moment generating function (mgf) of a gamma
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distribution with a pdf Γ(1/θ + di, 1/θ). Using this fact, we can derive the

expression for marginal likelihood function as;

Li(ψ, θ, β) =

ni∏
j=1

h0(tij)
δijexp(xtijβ)

δij
Γ(1/θ + di)θ

(1/θ+di)

Γ(1/θ)θ1/θθ(1/θ+di)(1/θ +
∑ni

j=1H0(tij)exp(xtijβ))
(1/θ+di)

×
∫ ∞

0

u1/θ+di−1e−u(1/θ+
∑ni

j=1 H0(tij)e
xtijβ)[1/θ +

∑ni

j=1H0(tij)e
xt
ijβ](1/θ+di)

Γ(1/θ + di)
du

=

ni∏
j=1

h0(tij)
δijexp(xtijβ)

δij
Γ(1/θ + di)

Γ(1/θ)θ1/θ(1/θ +
∑ni

j=1H0(tij)e
xt
ijβ)(1/θ+di)

×
∫ ∞

0

u1/θ+di−1e−u(1/θ+
∑ni

j=1 H0(tij)e
xtijβ)[1/θ +

∑ni

j=1H0(tij)e
xt
ijβ](1/θ+di)

Γ(1/θ + di)
du

(5.18)

It is observed that the term under the integral is the pdf of Γ(1/θ + di, 1/θ +∑ni

j=1H0(tij)e
xt
ijβ), which integrates to 1. Thus the obtained marginal likelihood

function is

Li(ψ, θ, β) =
Γ(1/θ + di)

∏ni

j=1 h0(tij)
δijexijT

βδij

(1/θ +
∑ni

j=1H0(tij)e
xt
ijβ)(1/θ+di)Γ(1/θ)θ1/θ

(5.19)

Taking the logarithm of this expression and summing over the G clusters. We

obtain the marginal loglikelihood function, l(ψ, θ, β).

l(ψ, θ, β) =
G∑
i=1

[dilog(θ)− log(Γ(1/θ)) + log(Γ(1/θ) + di)− (1/θ + di)log(1+

θ

ni∑
j=1

H0(tij))exp(x
t
ijβ)) +

ni∑
j=1

δij(x
t
ijβ + log(h0(tij)))]
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By maximizing this loglikelihood function, we can obtain maximum likelihood

estimatesfor ψ, θ, β. We consider parametric forms of baseline hazards so that

the marginal likelihood is also parametric and we can use classical maximum

likelihood techniques to estimate the parameters of interest. As an illustration,

we work out the Hessian matrix for the frailty model with Weibull baseline

hazard with respect to the parameters ζ = (λ, ρ, θ, β) and one covariate. First

we show the contribution to the �rst derivative of the marginal loglikelihood of

a particular cluster i which can then be summed over all clustered to obtain the

�rst derivative of the marginal loglikelihood. As earlier shown, the hazard and

cumulative hazard functions for the Weibull distribution are given by

h0(t) = λρtρ−1

and

H0(t) = λtρ

respectively. The corresponding marginal loglikelihood function for gamma frailty

with Weibull baseline hazard rate is

l(λ, ρ, θ, β) =
G∑
i=1

[dilog(θ)− log(Γ(1/θ)) + log(Γ(1/θ) + di)− (1/θ + di)log(1+

θ

ni∑
j=1

λtρexp(xtijβ)) +
ni∑
j=1

δij(x
t
ijβ + log(λρtρ−1))] (5.20)

The maximum likelihood estimates can be obtained by setting each of the �rst-

order derivatives to 0 and solving for the parameter of interest.

The �rst partial derivative of the scale parameter λ is given by;

66



∂lmarg,il(ζ)

∂λ
=

−(di + 1/θ)θ
∑ni

j=1 t
ρ
ijexp(xijβ)

1 + θ
∑ni

j=1 λt
ρexp(xijβ)

+ diλ
−1

=
−(diθ + 1)

∑ni

j=1 t
ρ
ijexp(x

t
ijβ)

1 + θ
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)

+ diλ
−1 (5.21)

The �rst partial derivative of the shape parameter ρ is given by;

∂lmarg,il(ζ)

∂ρ
=

−(diθ + 1)
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)logtij

1 + θ
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)

+

ni∑
j=1

δij(logλ+logρ+(ρ−1)logtij)

=
−(diθ + 1)

∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)logtij

1 + θ
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)

+

ni∑
j=1

δij(1/ρ+ logtij) (5.22)

The �rst partial derivative of the variance parameter estimate θ is given by;

∂lmarg,il(ζ)

∂θ
=

−(di + θ−1)
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)

1 + θ
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)

+ θ−2log(1 + θ

ni∑
j=1

λtρijexp(x
t
ijβ))

−I(di > 0)

di−1∑
l=0

(θ + lθ2)−1 + diθ
−1 (5.23)

The partial �rst derivative of the regression parameter estimate β is given by;

∂lmarg,il(ζ)

∂β
=

−(diθ + 1)
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)xij

1 + θ
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ)

+

ni∑
j=1

δijxij (5.24)

The corresponding second derivatives for for the parameters of interest are given

by;
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The second partial derivative of the scale parameter λ is given by;

∂2lmarg,il(ζ)

∂λ2
=

(di + 1/θ)(
∑ni

j=1 t
ρ
ijexp(xijβ))

2

(1 + θ
∑ni

j=1 λt
ρexp(xijβ))2

+ diλ
−2

=
(di + 1/θ)

(1/θ +
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ))

2
(

ni∑
j=1

tρijexp(x
t
ijβ))

2 − diλ
−2 (5.25)

The second partial derivative of the shape parameter ρ is given by

∂2lmarg,il(ζ)

∂ρ2
=

(di + 1/θ)

(1/θ +
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ))

2
+ [(

ni∑
j=1

λtρijexp(x
t
ijβ)logtij)

2

−(1/θ +

ni∑
j=1

λtρijexp(x
t
ijβ))

ni∑
j=1

λtρijexp(x
t
ijβ)(logtij)

2]− diρ
−2 (5.26)

The second partial derivative of the regression parameter β is given by

∂2lmarg,il(ζ)

∂β2
=

(di + θ−1)

(θ−1 +
∑ni

j=1 λt
ρ
ijexp(x

t
ijβ))

2
[(

ni∑
j=1

λtρijexp(x
t
ijβ)xij)

2

−
ni∑
j=1

λtρijexp(x
t
ijβ)x

2
ij(θ

−1 +

ni∑
j=1

λtρijexp(x
t
ijβ))] (5.27)

The marginal loglikelihood function for gamma frailty with exponential baseline

hazard rate is;

l(ψ, θ, β) =
G∑
i=1

[dilog(θ)− log(Γ(1/θ)) + log(Γ(1/θ) + di)− (1/θ + di)log(1+

θ

ni∑
j=1

λtexp(xtijβ)) +
ni∑
j=1

δij(x
t
ijβ + log(λ))]

The parameters of interest can be obtained by solving the �rst partial derivatives

in a similar manner as above.
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Chapter 6

Soft-Tissue Sarcoma Clinical-Trial

Data Analysis

6.1 Introduction

Soft-Tissue Sarcomas (STS) are a rare and heterogeneous group of tumors of

mesenchymal origin. STS occur mainly in support and connective tissues of the

body such as fat cells, muscle, tendons, nerves, blood vessels or lymph vessels

(Cancer.Net, 2013). STS can start in any part of the body with about 60% be-

ginning in arms or legs, 30% start in the torso or abdomen while 10% occur in the

head or neck. STS accounts for about 1% of all adult cancers and about 15% of

all cancers in children (Cancer.Net, 2013). There are over 50 di�erent subtypes

of STS which exhibit great di�erences in terms of genetic alterations pathogen-

esis, histopathological features and clinical behaviours. Unlike most other types
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of cancer which are usually named for the part of the body where the cancer

began, the speci�c types of sarcoma are named according to the normal tissue

cells they most closely resemble (Garcia et al., 2004). However, for the purpose

of treatment, all the subtypes are grouped under the heading STS.

In this chapter, after presenting the the study design of a randomized multi-

center Soft-Tissue Sarcoma clinical trial we will apply exploratory data analy-

sis techniques (non-parametric methods) and statistical analysis methods(semi-

parametric survival models), present the corresponding results and compare the

main methods: semi-parametric marginal Cox model and frailty models(gamma

and lognormal frailty models ).

6.2 Study design

The data analyzed in this chapter came from a randomized phase III, open la-

bel, multicenter study conducted by the National Cancer Institute of Canada-

Clinical Trial Group (NCIC-CTG) between April, 2003 and July, 2012. The

study enrolled 450 patients from 36 centers. Patients enrolled were between

18 and 63 years of age and had histological evidence of high grade Soft-Tissue

Sarcoma with advanced unresectable or metastatic disease (2=Intermediate and

3=High). Histological types considered were 1=Leiomyosarcoma, 2=Synovial

sarcoma, 3=Liposarcoma, 4=Others. Eligible patients were randomized to re-
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ceive either a single agent treatment or a combination of two treatment agents

using minimization technique. Treatment was administered until progression of

the disease, unacceptable levels of toxicity or patient's refusal, up to a maximum

of 6 cycles of chemotherapy. Overall Survival (OS), the primary endpoint of inter-

est was computed from the date of randomization to the date of death, whatever

the cause. The secondary endpoint was Progression-Free Survival (PFS) com-

puted from the date of randomization to the �rst documented date of progression

or death. Patients that were alive and progression-free at the time of the analy-

sis were censored at the date of last follow-up. Randomization was strati�ed by

center, performance status, age group and presence of liver metastases.

6.3 Data description

The variables in the data and their coding are presented in Table 6.1. The data

are right censored and all the variables considered were categorical except age

which was continuous.
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Table 6.1: Summary of variables in the data set

Variables Description Codes/values

HOSPNO Hospital identi�er

PATID Patient identi�cation number

AGE Age of patients Years

CenPFS Progression status 1=Censored, 2= Event

Censur Survival status 1=Alive, 2=Dead

Timepro Progression free survival Days

Timesur Overall survival Days

Trt1 Treatment arms 1= A, 2= B

Grad-rand (Tumor grade) Tumor grade 2=Intermediate, 3=High

Qval114 (Perform status ) Performance status 0=Able to carry out normal activities

1=Restricted in some or all activities

Qval132 (liver meta) Presence of liver metastases 0=No , 1= Yes

at baseline

Hisloc Histological type 1=Leiomyosarcoma,2=Synovial

sarcoma, 3=Liposarcoma,4=Others
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6.4 Exploratory data analysis (EDA)

A total of 450 patients were enrolled across 36 centers. However, 12 centers with

2 or less patients were dropped from the analysis to avoid estimation-related

problems in subsequent statistical analysis. For this reason, the total number of

patient reduced to 427 with 49.6% of the patients randomized to treatment A and

50.4% randomized to treatment B. As observed in Table A1 in the Appendix, the

remaining 24 centers accrued between 5 and 38 patients with mean and median

of 15 and 18 patients respectively. In this study, the mean age was 45.2 years

with a standard deviation of 10.6 years. In the analysis age was categorized

into two groups whereby 57% of the patients were younger than 50 years and

43% were 50 years old or more. Four hundred (94%) patients had an event in

PFS while 350 (82%) patients had an event in both PFS and OS. There was no

missing data for either of the endpoints or covariates of interest.
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6.4.1 Kaplan-Meier survival curves
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Figure 6.1: Kaplan Meier OS curves and PFS curves by treatment

Figure 6.1 shows Kaplan-Meier OS and PFS survival curves by treatment. The

estimated median OS time was 12.7 months with 95% con�dence interval (CI)

[10.4, 14.4] in treatment A and 14.3 months in treatment B with a 95% CI [12.7,

16.8]. Similarly, the median PFS was 4.5 months with 95% CI [2.8, 5.6] and 7.5

months with 95% CI [6.8, 8.4] for arms A and B respectively. The survival curves

were crossing suggesting violation of proportional hazard assumptions.

Figure 6.2 presents Kaplan-Meier OS and PFS curves strati�ed by centers. From

the plot, there seems to be variability in the outcome between centers for the

OS. Similar observations were made from PFS curves strati�ed by centers. Based

on a classical log rank test, the P-values were 0.711 and 0.344 for OS and PFS

endpoints respectively.
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Figure 6.2: Kaplan Meier OS curves and PFS curves strati�ed by centers

6.5 Semi-parametric marginal and frailty models

6.5.1 Comparison of parameter estimates for OS

Table 6.2 presents the marginal (population averaged) and center-speci�c model

(gamma and lognormal frailty models) results for OS endpoint. It is observed

that for all the covariates, the Hazard Ratio (HR) with the corresponding 95%

con�dence interval (CI) were close for the three models but slightly higher for

the marginal model. However, it is important to bear in mind that parameter

interpretation for marginal and frailty models di�ers and examining their mag-

nitude alone is of no relevant consequence. For example, in the case of marginal

model, on average, the risk of an individual in arm B dying was 0.786 times lower

compared to an individual in arm A. On the other hand, for either of the frailty

models, for a given center, the risk of an individual in arm B dying was 0.785

times lower compared to an individual in arm A (evaluated at reference levels

of other covariates). The corresponding 95% CIs did not contain the value 1;
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Table 6.2: Overall survival Hazard Ratio (95% CI) from frailty and marginal Cox

models

Gamma frailty Lognormal frailty Marginal Cox model

parameter HR (95% CI) HR (95% CI) HR (95% CI)

Treatment: B 0.785 (0.634, 0.973) 0.785 (0.633, 0.972) 0.786 (0.635, 0.973)

Hisloc: 1 0.841 (0.642, 1.103) 0.840 (0.640, 1.103) 0.842 (0.644, 1.101)

Hisloc: 2 0.919 (0.667, 1.266) 0.916 (0.664, 1.263) 0.923 (0.671, 1.270)

Hisloc: 3 0.579 (0.401, 0.836) 0.577 (0.400, 0.834) 0.583 (0.404, 0.840)

Tumor grade: 2 0.764 (0.616, 0.949) 0.764 (0.615, 0.949) 0.765 (0.617, 0.949)

Liver meta: 0 0.716 (0.535, 0.960) 0.715 (0.534, 0.959) 0.717 (0.536, 0.960)

Perform status: 0 0.565 (0.456, 0.699) 0.563 (0.455, 0.698) 0.566 (0.457, 0.701)

Age ≥ 50 1.157 (0.925, 1.447) 1.156 (0.924, 1.448) 1.158 (0.927, 1.447)
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therefore, there is a signi�cant di�erence between the treatment arms. All other

parameter estimates can be interpreted in a similar manner.

6.5.2 Assessing the heterogeneity parameter for OS

The similarity between the marginal and shared frailty models could be further

attributed to the fact that for the frailty models, the heterogeneity parameters

were very small i.e. 0.005 and 0.008 for gamma and lognormal frailty model

respectively. Furthermore, the random e�ects estimates for all the centers were

not signi�cantly di�erent from 0. A formal test for the need of center e�ect

was conducted by comparing the partial log-likelihood for the models with and

without the frailty term. For the lognormal frailty, the change in the partial log-

likelihood was -2 (-1836.376 +1836.3) = 0.152 which was compared to a mixture

of chi-square with zero and one degree of freedom (χ2
0:1). Based on the resulting

P-value, 0.348, there was no su�cient evidence to reject the null hypothesis of

homogeneity between the centers. Similarly, for the gamma frailty model, the

change in partial log-likelihood with inclusion of the frailty was 0.305 and com-

pared to (χ2
0:1) , the resulting P-value was 0.291. From these results, there was

no su�cient evidence to reject the null hypothesis; suggesting that events were

independent within and across centers.
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6.5.3 Comparison of parameter estimates and assessing

the heterogeneity parameter estimate for PFS

Table 6.3: PFS Hazard Ratio (95% CI) from frailty and marginal Cox models

Gamma frailty Lognormal frailty Marginal Cox model

parameter HR (95% CI) HR (95% CI) HR (95% CI)

Treatment: B 0.703 (0.551, 0.826) 0.700 (0.550, 0.823) 0.699 (0.554, 0.848)

Hisloc: 1 0.969 (0.751, 1.251) 0.967 (0.749, 1.249) 0.930 (0.715, 1.210)

Hisloc: 2 0.922 (0.679, 1.252) 0.919 (0.676, 1.249) 0.956 (0.695, 1.315)

Hisloc: 3 0.700 (0.505, 0.970) 0.697 (0.503, 0.967) 0.601 (0.417, 0.865)

Tumor grade: 2 0.816 (0.665, 1.000) 0.816 (0.665, 1.001) 0.727 (0.587, 0.902)

Liver meta: 0 0.766 (0.581, 1.010) 0.766 (0.581, 1.010) 0.709 (0.533, 0.943)

Perform status: 0 0.709 (0.580, 0.867) 0.708 (0.579, 0.866) 0.674 (0.545, 0.834)

Age ≥ 50 0.901 (0.728, 1.114) 0.900 (0.728, 1.114) 0.966 (0.773, 1.208)

Table 6.3 presents the results for the PFS endpoint. The HR (95% CI) for

most covariates obtained under marginal model were relatively lower (narrower)

compared to frailty models (gamma and lognormal). Furthermore, the estimated

heterogeneity parameters for gamma and lognormal frailty models were 0.023

and 0.029 respectively. Although the estimated heterogeneity parameters were

larger for PFS compared OS, all the center random e�ects estimated were not

signi�cantly di�erent from 0 (Table A6 and A7 in the Appendix). Additionally, a
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formal test for the need of center random e�ect was conducted by comparing the

partial log-likelihood for the models with and without the frailty term. Based

on a mixture of chi-square with zero and one degree of freedom the resulting P-

values were 0.157 and 0.145 for gamma and lognormal frailty models respectively.

Therefore, we failed to reject the null hypothesis of homogeneity between centers.

For both OS and PFS, it was observed (Table A2 and A3 in the Appendix) that

the standard error for the estimated heterogeneity parameter was available for

lognormal frailty model and missing for gamma frailty model and a comparison of

the parameter estimates is not straightforward because these two frailty densities

have di�erent means. For instance, considering PFS endpoint, the estimated

frailty mean was exp(0.029/2) = 1.015 for lognormal frailty model and 1 for the

gamma frailty model.
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Chapter 7

Simulation Study

7.1 Introduction

This chapter presents a simulation study that was undertaken to evaluate the

performance and robustness of parametric frailty models with respect to bias

of the treatment log hazard (β̂1) and the heterogeneity parameter (θ̂) estimates

around the trues initial values. The simulated data was designed to re�ect some

aspects of the observed clinical trial data analysed in chapter 6 with respect to

PFS endpoint. Details of the simulation study and results are presented in the

following sections.

7.2 Simulation scheme

Three baseline hazard distributions were considered i.e. exponential, Weibull

and the Gompertz distributions. First, assuming a �xed constant event rate λ,
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time to event (survival time) for each patient was randomly generated from an

exponential distribution expressed by

Tij =
log(U)

λuiexp(β1 ∗ treatment)
(7.1)

For a Weibull baseline hazard, the survival time for subject j in center i corre-

sponded to;

Tij = (
log(U)

λuiexp(β1 ∗ treatment)
)1/ρ (7.2)

For the Gompertz baseline hazard, the survival time for each subject was gener-

ated as follows

Tij =
1

α
log(1− αlog(U)

λuiexp(β1 ∗ treatment)
) (7.3)

where U is a random variable following a uniform distribution in the interval [0,1]

(Bender et al., 2005). The true treatment log hazard β1, was as estimated from

the observed data in chapter 6. Patients were assumed to have been accrued

into the study at some point during an 84 month period with their entry time

generated from a uniform distribution between time zero and 84 months; an

approach suggested and applied by Morden et al. (2011). A follow-up period of

24 months was considered. Time at risk for a particular subject was calculated

as the time at risk before the end of accrual period plus the follow-up time. A

patient j in center i with time to event longer than time at risk was censored with

time to censoring equal to time at risk such that xij = Min(Tij, Cij) where Cij

is the censoring time independent of Tij and δij = I(Cij > Tij) is the censoring

indicator as described by Moreno, (2008). The frailties were generated from

three distributions. First, a one-parameter gamma with mean 1 and variance θ
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was considered. The second frailty distribution considered was a transformation

of lognormal distribution which according to Duchateau and Janssen (2008) is

expressed as

fU(u) =
1

u
√
2πσ2

exp(−(logu− µ)2

2σ2
) (7.4)

The mean and variance are expressed as;

E(U) = exp(µ+ σ2/2) = 1

V ar(U) = exp(2µ+ σ2)(exp(σ)− 1) = θ

Where µ = −log(θ + 1)/2 and σ2 = (θ + 1) were used to ensure a lognormal

distribution with mean 1 and variance θ. The third distribution considered was

a discrete distribution. For this distribution, the frailty was sampled from two

values i.e. x1 and x2 with probabilities 0.2 and 0.8 respectively. For each initial

value of θ, x1 and x2 were obtained by solving the following set of constrained

mean and variance equations.

E(X) =
2∑
1

prob(xi)xi = 1 (7.5)

V ar(X) =
2∑
1

prob(xi)(xi − E(X))2 = θ (7.6)

Though not a frailty distribution, the discrete distribution was considered so as

to study the impact of extreme mis-speci�cation of the frailty distribution on the

parameters of interest. The mean and variance were �xed to 1 and θ respectively

for the three distributions to allow for comparability. In this simulation study,

three values of θ were considered as true values of the heterogeneity parameter
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i.e. 0.02, 0.2 and 2 to study the impact of increasing or decreasing the variance

of the frailty distributions. 1000 datasets were generated for each parameter

setting where N is the �xed sample size and c is the number of centers under

consideration. The multiplicative frailty model in section (3.4.4) was �tted to

the simulated data. The mean, median, percent relative bias (RB %), standard

deviation (SD) and the mean of the standard error (SE) were determined to

describe the spread and the bias of around. The RB % and SD for are respectively

de�ned as;

RB% = |β1 − β1
β1

| ∗ 100

and

SD = {
∑
i

(β̂1
(i)

− β1)
2/999}1/2

where β1 =
∑

i β̂1
(i)
/1000 is the mean of β̂1

(i)
s estimated in the ith simulation.

Similarly, the mean, median, per cent relative bias (RB %) and standard de-

viation (SD) for the heterogeneity parameter were obtained as above replacing

accordingly.

7.3 Statistical software

Statistical analysis was conducted using SAS version 9.3 and R version 3.0.1.

Speci�cally, lifetest procedure in SAS was used to obtain the Kaplan-Meier sur-

vival curves and log-rank test. The semi parametric Cox marginal and frailty

models were �tted using phreg procedure using PPL estimation method. All
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simulations were conducted in R and Survreg function in Survival Package used

to �t parametric frailty models. Ties in the observed and simulated data were

handled using the Breslow method, the default method in both SAS and R.

Statistical tests were conducted at 5% level of signi�cance and 95% con�dence

intervals computed where necessary.

7.4 Simulation Results

7.4.1 Comparison of gamma and lognormal generated frail-

ties

The simulated data consisted of a �xed sample size of 450 patients. For simplicity,

two settings that varied with respect to number of centers (c) were considered,

i.e. 10 centers each having 45 patients and 25 centers each having 18 patients.

The true treatment log hazard (β) = −0.353 was estimated from a proportional

hazard model with treatment as the only covariate. Randomization for each pa-

tient to receive either the treatment or control was generated from a binomial

distribution with success probability 0.5. Three baseline hazard distributions

considered were: Exponential, Weibul and the Gompertz distribution. For the

exponential baseline hazard a constant event rate, λ = 0.180 was chosen. For the

Weibull baseline hazard a scale parameter λ = 2 and shape parameter ρ = 0.8

were chosen. On the other hand, a scale pamameter λ = 1.5 and shape parame-

ter ρ = 5 were chosen for the Gompertz distribution. All these parameters were

84



chosen such that approximately 8% of all patients were censored. Figure 7.1
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Figure 7.1: Lognormal and gamma distributed frailties in 10 centers over 1000

iterations

above presents the histograms of generated frailties under gamma and lognor-

mal frailty densities with mean 1 and variances (θ): 0.02. 0.2 and 2 over 1000

iterations. It is observed that for a given value of θ, these two distributions have

approximately similar shapes but deviate from each other with increasing size of

θ. Additionally, these densities become more left skewed for larger variances. For
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a particular variance (θ), the range of generated lognormal frailties was wider

compared to that of gamma distributed frailties. Speci�cally, for θ = 2, the

range of lognormal was twice the range of gamma frailties. When the number of

centers was increased to 25 (Figure B.1 in the Appendix), a similar trend was

observed but the range reduced accordingly for each variance θ.

Simulation study results of correctly speci�ed lognormal frailty model (log-

normal frailty model �tted to clustered data generated from a lognormal distri-

bution) were not evaluated. This is because by default, a lognormal frailty model

�tted in Survreg function has a mean E(Û) ̸= 1 while the mean of generated log-

normal frailties was constrained to 1. Moreover, as noted earlier, the mean and

variance of lognormal distribution are linked which led to in�ated bias.
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7.4.2 Simulation results: Regression coe�cient

Table 7.1: Simulation results for estimated β1 from correctly speci�ed gamma (True

β1 = −0.353)

Centers =10 Centers = 25

θ=0.02 θ=0.2 θ=2 θ=0.02 θ=0.2 θ=2

True frailty distribution: gamma

Baseline hazard: Exponential

Mean -0.356 -0.355 -0.354 -0.353 -0.354 -0.354

Median -0.355 -0.351 -0.356 -0.351 -0.355 -0.350

RB% 0.979 0.554 0.253 0.088 0.653 0.476

SD 0.096 0.101 0.105 0.099 0.101 0.103

SE 0.097 0.098 0.102 0.097 0.100 0.105

Baseline hazard: Weibull

Mean -0.356 -0.354 -0.354 -0.353 -0.356 -0.354

Median -0.355 -0.352 -0.356 -0.351 -0.354 -0.349

RB% 0.978 0.556 0.253 0.088 0.553 0.382

SD 0.098 0.101 0.105 0.099 0.101 0.104

SE 0.097 0.098 0.102 0.097 0.100 0.105

Baseline hazard: Gompertz

Mean -0.355 -0.354 -0.355 -0.353 -0.355 -0.354

Median -0.353 -0.352 -0.353 -0.351 -0.355 -0.352

RB% 0.977 0.559 0.511 0.089 0.453 0.368

SD 0.094 0.101 0.102 0.099 0.101 0.099

SE 0.096 0.096 0.099 0.097 0.100 0.101

Table 7.1 presents the simulation results for log hazard estimated from correctly

speci�ed gamma frailty model (gamma frailty model �tted to clustered data gen-

erated from a gamma distribution) with three baseline distributions. Generally,

the mean and median of the estimated β were close to true β with a 0.08 % to

0.9 % bias range. Additionally, the di�erences in terms of the RB% and SD for

the three baseline distributions were very negligible suggesting that the baseline

hazard distribution did not a�ect the estimation of the regression parameter.

It was further noted that for a particular true θ, the RB% slightly increased
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when the number of centers increased from 10 to 25 except for true θ = 0.02

where a decrease was observed. Considering a 10 center scenario, the RB % de-

creased with increasing magnitude of true θ. However, for a 25 center scenario,

no particular trend was observed. The standard error (SE) estimates over 1000

simulations were very close to the SD and both were increasing with an increase

in size of true.

7.4.3 Impact of frailty mis-speci�cation on regression co-

e�cient

To assess the impact and sensitivity to mis-speci�cation of the frailty distribu-

tion on regression coe�cient, a gamma frailty model was �rst �tted to clustered

data generated from a lognormal distribution. From the results presented in

Table 7.2, it was observed that the mean and median of the estimated β were

very similar. In general, the RB% ranged between 0.7% and 1.58%. A cross

the two center settings i.e. 10 and 25, the RB% corresponding to θ = 0.02 and

θ = 0.2 decreased when the centers increased from 10 to 25. On the other hand,

a slight decrease was observed for true θ = 2. Furthermore, the bias from this

mis-speci�ed model and the correctly speci�ed model did not vary substantially

suggesting robustness of the gamma frailty with respect to lognormal distribu-

tion.
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Table 7.2: Simulation results for estimated β1 from Misspeci�ed gamma frailty model

(True β1 = −0.353)

Centers =10 Centers = 25

θ=0.02 θ=0.2 θ=2 θ=0.02 θ=0.2 θ=2

True frailty distribution: Lognormal

Baseline hazard: Exponential

Mean -0.358 -0.359 -0.358 -0.356 -0.357 -0.358

Median -0.350 -0.357 -0.357 -0.358 -0.355 -0.358

RB% 1.427 1.639 1.289 0.751 1.188 1.038

SD 0.099 0.100 0.096 0.099 0.101 0.101

SE 0.097 0.098 0.098 0.097 0.100 0.101

Baseline hazard: Weibulll

Mean -0.357 -0.358 -0.356 -0.356 -0.357 -0.357

Median -0.354 -0.358 -0.356 -0.358 -0.355 -0.348

RB% 1.383 1.587 1.060 0.751 1.187 1.316

SD 0.099 0.100 0.090 0.099 0.101 0.101

SE 0.097 0.098 0.102 0.097 0.099 0.104

True frailty distribution: discrete

Baseline hazard: Exponential

Mean -0.348 -0.333 -0.291 -0.349 -0.334 -0.292

Median -0.347 -0.334 -0.291 -0.347 -0.334 -0.292

RB% 1.489 5.677 17.46 1.24 5.465 17.31

SD 0.094 0.092 0.099 0.095 0.092 0.095

SE 0.096 0.096 0.099 0.096 0.096 0.099

Baseline hazard: Weibull

Mean -0.347 -0.333 -0.297 -0.348 -0.334 -0.297

Median -0.347 -0.334 -0.296 -0.350 -0.332 -0.299

RB% 1.435 5.589 15.79 1.322 5.431 15.66

SD 0.094 0.091 0.090 0.096 0.093 0.093

SE 0.097 0.096 0.096 0.098 0.098 0.098

89



When the gamma frailty model was �tted to the data generated from a dis-

crete distribution, the estimated regression parameter was somewhat sensitive to

mis-speci�cation as observed in Table 7.2 with a bias range of 1.24 % to 17.46%.

Within a particular center scenario, i.e. either 10 or 25, the RB% substantially

increased with an increase in size of the true θ. On the other hand for a partic-

ular θ, the RB% decreased by a small margin when the centers increased from

10 to 25. This implied that the regression coe�cient was not greatly a�ected by

center size. It is also noted that under the mis-speci�ed models, the SE and SD

tended to be smaller compared to correctly speci�ed model.

For the mis-speci�ed models, only the exponential and Weibull baseline distribu-

tions were considered. Similar to the correctly speci�ed model, the RB did not

vary signi�cantly for the two mis-speci�ed models across the two baseline hazard

distributions suggesting that the baseline hazard did not a�ect the estimation of

the regression parameter.
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7.4.4 Simulation results: Heterogeneity parameter

Table 7.3: Simulation results for estimated θ from correctly speci�ed gamma frailty

model.

Centers =10 Centers = 25

θ=0.02 θ=0.2 θ=2 θ=0.02 θ=0.2 θ=2

True frailty distribution: gamma

Baseline hazard: Exponential

Mean 0.017 0.179 2.005 0.019 0.201 1.976

Median 0.013 0.160 1.984 0.009 0.186 1.942

RB% 13.26 6.513 0.266 4.410 0.711 1.165

SD 0.019 0.068 0.308 0.021 0.091 0.498

Baseline hazard: Weibull

Mean 0.017 0.128 1.892 0.019 0.201 1.978

Median 0.013 0.113 1.815 0.009 0.186 1.943

RB% 13.89 6.95 5.504 4.415 0.713 1.097

SD 0.018 0.018 0.713 0.022 0.091 0.499

Baseline hazard: Gompertz

Mean 0.016 0.113 1.871 0.019 0.201 1.949

Median 0.013 0.114 1.804 0.009 0.186 1.929

RB% 13.90 6.23 6.419 4.414 0.713 2.561

SD 0.018 0.192 0.088 0.021 0.091 0.469

From Table 7.3, simulation results for estimated θ obtained under correctly spec-

i�ed gamma frailty model are presented. It was observed that the RB% range

was between 0.27% and 13.9%. For a 10 centers scenario, the RB% decreased

with increasing size of true θ. However, this trend was not observed in 25 centers

scenario. Furthermore, for a particular true θ, the RB% decreased when the

number of centers increased from 10 to 25. The standard deviation (SD) was

increasing with an increase in magnitude of true θ and number of centers. For a

particular true θ in either 10 or 25 center setting, the RB% for the exponential

baseline hazard was slightly lower compared to the other baseline hazards. On

the other hand, the relative bias remained within the same range with negligible
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di�erences for the Weibull and Gompertz baseline hazards models.

7.4.5 Impact of mis-speci�cation on heterogeneity param-

eter

Table 7.4: Simulation results for estimated θ from mis-speci�ed frailty models.

Centers =10 Centers = 25

θ=0.02 θ=0.2 θ=2 θ=0.02 θ=0.2 θ=2

True frailty distribution: Lognormal

Baseline hazard: Exponential

Mean 0.017 0.267 0.970 0.018 0.163 0.918

Median 0.013 0.243 0.949 0.009 0.154 0.905

RB% 14.11 33.29 51.50 10.46 18.74 54.09

SD 0.018 0.160 0.275 0.019 0.067 0.214

Baseline hazard: Weibull

Mean 0.017 0.266 969 0.018 0.163 0.915

Median 0.013 0.243 0.949 0.009 0.152 0.905

RB% 14.11 33.27 51.50 10.48 18.73 54.10

SD 0.018 0.168 0.274 0.194 0.069 0.213

True frailty distribution: Discrete

Baseline hazard: Exponential

Mean 0.002 0.003 0.003 0.004 0.004 0.005

Median 0.000 0.000 0.000 0.000 0.000 0.000

RB% 89.47 98.69 99.84 77.96 97.88 99.77

SD 0.006 0.006 0.007 0.010 0.009 0.010

Baseline hazard: Weibull

Mean 0.002 0.002 0.002 0.004 0.004 0.005

Median 0.000 0.000 0.000 0.000 0.000 0.000

RB% 87.16 98.66 99.86 77.16 97.56 99.74

SD 0.006 0.006 0.005 0.010 0.009 0.010

Similar to the regression coe�cient, sensitivity to mis-speci�cation of the frailty

distribution was assessed with respect to the estimated heterogeneity parameter

θ. From Table 7.4, moderate to high RB% was observed for each of the assumed

true θ. The RB% was much higher for the two mis-speci�ed models compared
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to the correctly speci�ed frailty model. Speci�cally, for a gamma frailty model

�tted to discrete generated frailties, serious downward bias was observed with a

RB% ranging between 77.16% and 99.8%. Additionally, the RB% increased with

an increase in size of true θ.

For gamma frailty model �tted to lognormal generated frailties, the RB%

ranged between 10.46% and 54.10%. For θ = 0.02, the bias was close to that

of correctly speci�ed gamma frailty model. These observations were consistent

with results of generated frailties whereby for θ = 0.02 and θ = 0.2, the range

of frailties for the two distributions were close whereas for θ = 2, the range was

much wider for lognormal frailties compared to gamma distributed frailties. A

slight decrease in RB% was also observed when the number of centers increased

from 10 to 25. These results show that the mis-speci�ed gamma frailty model

was not successful in estimating the underlying true heterogeneity parameter.

Similar to correctly speci�ed gamma frailty model, the standard deviation (SD)

generally increased with an increase in size of initial θ.

For a particular value of true θ, the RB% was quite similar for exponential

and Weibull distributions for each of the mis-speci�ed models with no substantial

variation across the two center settings.
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Chapter 8

Discussion

From Expolatory Data Anaysis (EDA), the patients' baseline characteristics in

the observed data were well balanced between the treatment groups as expected.

This was important in ensuring there was no allocation bias to in�uence the

treatment outcome. It was also observed that some centers accrued less than 5

patients. This small centers were dropped to avoid estimation-related problem

in subsequent statistical analysis.

Exploring the survival function, the Kaplan-Meier OS and PFS survival

curves by treatment were crossing suggesting violation of proportional hazard

assumptions. In this regard, alternative methods such as the Accelerate Failure

time (AFT) model which do not require proportion hazard assumptions to hold

can be used.

Additionally, the Kaplan-Meier survival curves for both OS and PFS strati�ed

by centers suggested some variability in outcome between centers. These plots
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were similar to those from a previous study on Heterogeneity in disease free

survival between centers: lessons learned from an EORTC breast cancer trial

conducted by Legrand et al. (2006). From this previous study, such plots are

di�cult to interpret, �rst due to the large number of curves and second because

the precision in the estimation of each curve, which depends on the number of

events observed in each center, should also be taken into account (for example,

through con�dence bands).

From the statistical analysis results, parameter estimates (HR) and corre-

sponding 95% con�dence intervals from the frailty models and marginal Cox PH

model were close. This similarity was attributed to the fact that none of the

center random e�ect was signi�cant. Furthermore, based on the mixture of chi-

square likelihood ratio test with 0 and 1 degrees of freedom, the heterogeneity

parameter estimates for both gamma and lognormal frailty models were very

small and insigni�cant hence, there was no su�cient evidence to reject the null

hypothesis of no center e�ect.

The PPL estimation method was used in the analysis of observed data using

semi-parametric frailty models both OS and PFS. From results, it was observed

that the standard error for the estimated heterogeneity parameter was available

for lognormal frailty model and missing for gamma frailty model. This was due

to the di�erence in the outer loop for the two frailty distributions i.e. a REML

estimate is available for in the case of lognormal density whereas such an estimate

is not available for gamma frailty distribution (Duchateau and Janssen, 2008).
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Furthermore, a comparison of the parameter estimates between these two frailty

models is not straightforward due to the di�erences in means and variances.

A simulation study was conducted with an aim to investigate the impact

of frailty distribution mis-speci�cation on estimated regression and the hetero-

geneity parameter. PFS was the endpoint of interest and several settings with

respect to number of centers and true heterogeneity parameter were considered.

From the results of correctly speci�ed gamma, the estimated mean and median

of the treatment log hazard were very close to the true treatment e�ect. As a

result, the RB% was small with no major discrepancies with respect to number

of centers or true heterogeneity parameter considered. On the other hand, low

to moderate percentage RB was observed in the estimation of the heterogeneity

parameter.

To investigate the impact of mis-speci�cation of the frailty distribution, two

scenarios were considered. First, a gamma frailty model was �tted to clustered

data generated under lognormal distribution (mis-speci�ed model). The esti-

mated mean and median of the treatment log hazard were very similar. Ad-

ditionally, the RB% was relatively small and comparable to that of correctly

speci�ed model. This indicated that frailty distribution mis-speci�cation did not

greatly a�ect the regression coe�cient estimate despite the fact that di�erent

frailty distributions can lead to noticeably di�erent association structures.

These �ndings were similar to those rom a previous study examining the

gamma frailty model in multi-center clinical trial (cohort study). Glidden and
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Vittingho� (2004) found by simulation that regression coe�cient estimates were

minimally a�ected by frailty mis-speci�cation. However, their assumed true

frailty distribution was inverse Gaussian. Their study also di�ered from this

one in terms of center size and initial simulation parameters.

For the heterogeneity parameter, the RB% was somewhat large and more

pronounced as compared to correctly speci�ed model. Besides, this bias was in-

creasing with an increase in magnitude of true heterogeneity parameter but was

less a�ected by the number of centers. These study �ndings were consistent with

results from a perioperative breast cancer clinical trial study whereby Duchateau

and Janssen, (2008) which investigated the robustness of the gamma frailty distri-

bution assumptions with respect to the lognormal distribution. Results revealed

downward bias of the variance estimator in the misspeci�ed model (gamma frailty

model �tted to clustered data generated from the lognormal frailty model). How-

ever, their study di�ered from this one in terms of true θ considered as well as

number of centers.

In the second scenario of mis-speci�ed models, gamma frailty model was

�tted to data simulated from a discrete distribution. From the results, it was

evident that the regression coe�cient was somewhat sensitive to the extreme

frailty mis-speci�cation. The bias was much larger compared to other �tted

models particularly for large true heterogeneity parameters.

Likewise, large RB% was observed for the heterogeneity parameter. Specif-

ically, the relative bias was more pronounced for large θ and slightly in�uenced
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by the number of centers considered. These results showed lack of �t of the

continuous gamma frailty distribution approximation for the discrete frailties.

This clearly indicated that a discrete frailty distribution was an extreme and

inappropriate choice.

For the three baseline hazards distributions considered in this study, there was

no substantial di�erence in the percent relative bias particulary for the regression

coe�cient. Therefore, any of them could be appropriate for inference in this

particular study.
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Chapter 9

Conclusion

The primary objective of this project was to review various survival models for

clustered data with focus on frailty models and their properties. Speci�cally,

semi-parametric gamma and lognormal frailty models and marginal models were

�tted to observed clinical trial data with an objective to compare the parameter

estimates and assess the estimated heterogeneity parameters. Based on study

results, the parameter estimates from the two frailty models considered were

almost identical to those estimated from a marginal Cox PH model. Furthermore,

with no su�cient evidence to reject the null hypothesis of homogeneity between

the centers in frailty models, we concluded that events were independent within

and across centers. Therefore, for this particular study, either of the marginal

or frailty models could be used for statistical inference. However, this may not

hold in other studies and the choice of model should be driven by the scienti�c

objectives of the study i.e. a marginal model should be used when population
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average risk is of interest whereas a frailty model would be more appropriate

when interest lies on center speci�c risk.

This study also sought to assess the impact of frailty distribution mis-speci�cation

on the parameters of interest i.e. treatment log hazard and the heterogeneity pa-

rameter as well as assess sensitivity of these parameter estimates in terms of

bias with respect to varying baseline hazard distributions and choice of initial

parameters (center size and true heterogeneity parameters). Assuming a gamma

frailty distribution when the true frailty distribution is lognormal, the regression

coe�cient (treatment e�ect) estimate was minimally a�ected in terms of relative

bias. On the other hand, results showed lack of �t of the continuous gamma

frailty distribution approximation for the discrete distributed frailties. This was

a clear indication that the discrete distribution was an extreme and inappropriate

choice. For the heterogeneity parameter, assuming a gamma distribution when

the true frailty distribution is either lognormal or discrete, robustness was an

issue particularly for large values of true θ. There was no substantial di�erence

in the percent relative bias for the three baseline hazards particulary for the

regression coe�cient therefore, any of them could be used for inference in this

particular study.

From the simulation study, we concluded that the heterogeneity parameter

was more sensitive to mis-speci�cation of the frailty distribution and choice of

initial parameters (center size and true heterogeneity parameters) compared to

regression parameter estimate. In this regard, the gamma frailty model can be
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a practical choice in real data analysis when the regression parameters are of

primary interest, as in multi-center clinical trial with survival data when the

choice of underlying frailty distribution is not straightforward.

9.1 Limitations and recommendations for further

research

This project was limited to investigating only the center random e�ect since the

software used did not allow for more than one random e�ect i.e. some gaps

remain, especially in the use of frailty models for treatment-by-center interac-

tion. Thus development of computation and theory for such extended multifrailty

models is a useful area for future development. Furthermore, in the simulation

study, treatment was the only covariate and therefore we recommend future test-

ing of the frailty models with baseline hazard adjusted for other patient-speci�c

covariates so as to evaluate the models in more details.

In this study only the gamma and the lognormal frailty densities have been

used. It might be of interest to consider other frailties distributions in future

studies. The simulation study was conducted under the assumptions that all

center had equal number of patients was considered for ease of computation;

however this is not often the case in real life multicenter clinical trials. In this re-

gard, we recommend an extension of this study considering centers with unequal

number of patients.
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Although the �ndings from the simulations are not necessarily limited to the

parameter settings studied, the conclusions are highly relevant for Soft-Tissue

Sarcoma clinical trials. Therefore, for other types of tumors and diseases, di�er-

ent parameter settings might be more relevant.

In this project, only frequentists survival analysis techniques were applied for

analysis and estimation of the parameters of interest. In this regard, this project

can be extended in future by considering methods such as Bayesian survival

analysis techniques which incorporate prior information available into the study

to estimate the parameters of interest.
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Appendix

Table A1: Distribution of patients in centers by treatment received

treatment A treatment B

Center No. n (%) n (%) Total

101 3 (42.86 ) 4 (57.14) 7

147 15(53.57) 13 (46.43) 28

227 14 (53.85) 12 (46.15) 26

301 12 (48.00) 13 (52.00) 25

302 20 (52.63) 18 (47.37) 38

304 4 (40.00) 6 (60.00) 10

310 16 (47.06) 18 (52.94) 34

335 5 (62.50) 3 (37.50) 8

406 11 (55.00) 9 (45.00) 20

508 7 (63.64) 4 (36.36) 11

510 5 (41.67) 7(58.33) 12

527 7 (33.33) 14 (66.67) 21

528 6 (66.67) 3 (33.33) 9

530 16 (48.48) 17 (51.52) 33

601 7 (46.67) 8 (53.33) 15

609 6 (40.00) 9 (60.00) 15

610 8 (57.14) 6 (42.86) 14

613 12 (54.55) 10 (45.45) 22

622 9 (40.91) 13 (59.09) 22

661 5 (45.45) 6 (54.55) 11

1765 5 (50.00) 5 (50.00) 10

3039 5 (55.56) 4(44.44) 9

6998 3 (60.00) 2 (40.00) 5

7802 11 (50.00) 11 (50.00) 22
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Table A2: Parameter Estimates(SE) for Overall survival

Gamma frailty Lognormal frailty Marginal model

parameter Estimate(SE) Estimate (SE) Estimate (SE)

Treatment: B -0.242 (0.109) -0.242 (0.109) -0.241(0.109)

Hisloc :1 -0.173(0.138) -0.174(0.139) -0.172 (0.137)

Hisloc: 2 -0.085(0.164) -0.088(0.164) -0.080 (0.163)

Hisloc: 3 -0.546(0.187) -0.549 (0.188) -0.540 (0.187)

Tumorgrade :2 -0.269(0.111) -0.269 (0.111) -0.268 (0.109)

Livermeta: 0 -0.334(0.149) -0.335(0.149) -0.332 (0.149)

Perform status:0 -0.572(0.109) -0.574(0.109) -0.569(0.109)

Age ≥ 50 0.146 (0.114) 0.145(0.115) 0.146 (0.114)

Hospno (θ) 0.005(-) 0.008 (0.022) -

Table A3: Parameter Estimates(SE) for PFS survival

Gamma frailty Lognormal frailty Marginal model

parameter Estimate(SE) Estimate (SE) Estimate (SE)

Treatment B -0.353 (0.103) -0.356 (0.103) -0.357 (0.109)

Hisloc: 1 -0.031 (0.130) -0.034 (0.131) -0.072 (0.134)

Hisloc :2 -0.081 (0.156) -0.085 (0.157) -0.045 (0.163)

Hisloc: 3 -0.357 (0.166) -0.360 (0.167) -0.509 (0.186)

Tumorgrade :2 -0.204 (0.104) -0.203 (0.104) -0.318 (0.109)

Liver meta: 0 -0.267 (0.141) -0.266 (0.141) -0.344 (0.145)

Perform status:0 -0.344 (0.103) -0.345 (0.103) -0.394 (0.108)

Age ≥50 -0.105 (0.108) -0.105 (0.109) -0.034 (0.114)

Hospno (θ) 0.023 (-) 0.029 (0.027) -
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Table A4: OS hospital speci�c random e�ects :gamma frailty model

HOSP NO. Estimate Exponentiated estimate Exp 95% CI

101 0.00548 1.005 [0.879, 1.151]

147 0.1129 0.982 [0.861, 1.120]

227 -0.0644 0.938 [0.821, 1.071]

301 -0.00893 0.991 [0.870, 1.130]

302 0.0147 1.015 [0.893, 1.153]

304 0.0135 1.014 [0.887, 1.159]

310 -0.0187 0.981 [0.862, 1.118]

335 0.0118 1.012 [0.885, 1.157]

406 0.00887 1.009 [0.884, 1.151]

508 0.0100 1.010 [0.883, 1.155]

510 -0.00129 0.999 [ 0.874, 1.142]

527 0.00511 1.005 [0.881, 1.146]

528 -0.0109 0.989 [0.864, 1.132]

530 0.0195 1.020 [0.896, 1.160]

601 0.000249 1.000 [0.876, 1.143]

609 0.0201 1.020 [0.894, 1.165]

610 -0.00975 0.990 [0.866, 1.132]

613 0.0201 1.020 [0.895, 1.163]

622 0.00852 1.009 [0.885, 1.149]

661 -0.0190 0.981 [0.858, 1.122]

1765 0.0116 1.012 [0.885, 1.157]

3039 0.000387 1.000 [ 0.874, 1.144]

6998 0.00309 1.003 [0.876, 1.148]

7802 -0.00546 0.995 [0.872, 1.135]

111



Table A5: OS hospital speci�c random e�ects: lognormal frailty model

HOSP NO. Estimate Exponentiated estimate Exp 95% CI

101 0.00982 1.010 [0.842, 1.211]

147 -0.0315 0.969 [0.817, 1.149]

227 -0.1061 0.899 [0.759, 1.065]

301 -0.0154 0.985 [0.830 ,1.168]

302 0.0241 1.024 [0.867 ,1.210]

304 0.0245 1.025 [0.855, 1.228]

310 -0.0315 0.969 [0.820, 1.146]

335 0.0214 1.022 [0.852 ,1.225]

406 0.0153 1.015 [0.852, 1.210]

508 0.0180 1.018 [0.850, 1.220]

510 -0.00255 0.997 [0.834, 1.193]

527 0.00855 1.009 [0.847 ,1.200]

528 -0.0196 0.981 [0.819 ,1.174]

530 0.0330 1 1.034 [0.872, 1.225]

601 0.000229 1.000 [0.838 ,1.194]

609 0.0359 1.037 [0.867 ,1.239]

610 -0.0174 0.983 [0.823, 1.174]

613 0.0352 1.036 [0.870 ,1.234]

622 0.0144 1.015 [0.854 ,1.206]

661 -0.0334 0.967 [0.810, 1.154]

1765 0.0210 1.021 [ 0.852 ,1.224]

3039 0.000552 1.001 [0.835, 1.199]

6998 0.00556 1.006 [0.838 ,1.207]

7802 -0.00981 0.990 [0.833, 1.178]
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Table A6: pfs hospital speci�c random e�ects :gamma frailty model

HOSP NO. Estimate Exponentiated estimate Exp 95% CI

101 0.0155 1.016 [0.770, 1.340]

147 -0.2117 0.809 [0.631 ,1.038]

227 -0.1965 0.822 [0.639 ,1.057]

301 0.0131 1.013 [0.796 ,1.290]

302 0.0120 1.012 [0.804 ,1.275]

304 0.0133 1.013 [0.772 ,1.330]

310 -0.00030 1.000 [0.791, 1.263]

335 0.0246 1.025 [0.779, 1.349]

406 0.0821 1.086 [0.845, 1.394]

508 0.0834 1.087 [0.832 ,1.420]

510 0.0555 1.057 [0.811 ,1.378]

527 0.0208 1.021 [0.794 ,1.313]

528 -0.0216 0.979 [0.743 ,1.289]

530 0.0568 1.058 [0.838 ,1.336]

601 -0.0939 0.910 [0.700 ,1.184]

609 0.0537 1.055 [0.814 ,1.367]

610 -0.0496 0.952 [0.732 ,1.237]

613 -0.00206 0.998 [0.778, 1.280]

622 0.0975 1.102 [0.862 ,1.410]

661 -0.1250 0.883 [0.671, 1.161]

1765 0.0453 1.046 [0.797, 1.373]

3039 0.0394 1.040 [0.790, 1.369]

6998 0.0518 1.053 [0.794, 1.396]

7802 -0.0380 0.963 [0.748, 1.240]
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Table A7: pfs hospital speci�c random e�ects :lognormal frailty model

HOSP NO. Estimate Exponentiated estimate Exp 95% CI

101 0.0186 1.019 [0.750, 1.384]

147 -0.2249 0.799 [0.622, 1.026]

227 -0.2099 0.811 [0.629 ,1.045]

301 0.0156 1.016 [0.783 ,1.318]

302 0.0143 1.014 [0.793, 1.298]

304 0.0163 1.016 [0.754 ,1.370]

310 -0.00005 1.000 [0.779 ,1.283]

335 0.0301 1.031 [0.760 ,1.397]

406 0.0990 1.104 [0.835, 1.459]

508 0.1039 1.109 [0.820, 1.502]

510 0.0679 1.070 [0.796, 1.439]

527 0.0242 1.025 [0.779 ,1.347]

528 -0.0254 0.975 [0.723, 1.314]

530 0.0658 1.068 [0.829, 1.376]

601 -0.1050 0.900 [0.684, 1.185]

609 0.0647 1.067 [0.801 ,1.421]

610 -0.0566 0.945 [0.715, 1.249]

613 -0.00219 0.998 [ 0.764, 1.304]

622 0.1176 1.125 [0.855, 1.480]

661 -0.1394 0.870 [0.655, 1.155]

1765 0.0554 1.057 [0.780, 1.432]

3039 0.0485 1.050 [0.773 ,1.426]

6998 0.0650 1.067 [0.775 ,1.469]

7802 -0.0433 0.958 [ 0.732, 1.253]
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Figure 9.1: Lognormal and gamma distributed frailties in 25 centers over 1000

iterations
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