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Chapter 1

INTRODUCTION

1.1 Rift Valley Fever

Rift Valley fever, (RVF), is a vector borne disease transmitted by mosquitoes to livestock
and wild animals. It is spread by the bite of infected mosquitoes, typically the Aedes,
Culex and Anopheles genera. RVF virus is a member of the Phlebovirus genus, one of
the five genera in the family Bunyaviridae. Aedes and Culex are believed to be the main
vectors. Rift Valley fever virus can be transferred vertically from females to their eggs
in some species of the Aedes mosquitoes.While humans can be infected with RVF, we
restrict our focus in this study to livestock populations. The virus was first identified in
1931 during an investigation into an epidemic among sheep on a farm in the Rift Valley
of Kenya. Since then, outbreaks have been reported in sub-Saharan and North Africa. In
1997-98, a major outbreak occurred in Kenya, Somalia and Tanzania and in September
2000, RVF cases were confirmed in Saudi Arabia and Yemen, marking the first reported
occurrence of the disease outside the African continent and raising concerns that it could
extend to other parts of Asia and Europe. A major outbreak of this fever occurred again

in Kenya in 2006 Nov- 2007 March. The estimated number of cases among humans was



75,000 out of which 700 were reported and 158 numbers of deaths confirmed. Rift Valley
Fever is associated with the Great Rift Valley System that runs from Zambezi River in

Malawi to Lebanon. Most of this valley falls within the former Rift Valley Province.

Sudan Ethiopia

Uganda

Tanzaria, United Republic of

Figure 1.1: Rift Valley Fever Distribution in Kenya,[7]



1.2 Impact of Rift Valley Fever

While Rift Valley fever was originally associated with livestock, recent outbreaks in Kenya
have resulted in increased fatality rates among humans, thereby presenting an increased
threat to public health. It primarily affects animals but it also has the capacity to infect
humans. Infection can cause severe disease in both animals and humans. The disease
also results in significant economic losses due to death and abortion among RVF-infected
livestock, not to mention morbidity and mortality in humans.

Epidemics of this disease usually emerge after above average and widespread rainfall. Be-

low is the transmission cycle of the Rift Valley Fever.
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Figure 1.2: Rift Valley Fever Life Cycle,[§]



In this research we will develop a mathematical model that will best capture how this dis-
ease interacts with livestock. It is known that livestock particularly living in the high risk
areas have in one way or the other through interaction with infected vectors, been infected
with the Rift Valley Fever. Several deaths have been reported in livestock and to some ex-
tent humans. The disease causes serious effects on rural people’s food security, particularly
those communities that depend on their livestock for food and household nutrition and on
direct and indirect losses to livestock producers in the country. Psycho-social distress that
communities go through is enormous, which involves the thinking about the loss of their
livestock and crop production. Socially, the status of most livestock producers is eroded

in their communities.

Cessation of lucrative trade in ruminants results in serious economic losses to the popula-
tions who totally depend upon this income. Therefore, there is need to reduce these kinds
of deaths by understanding how this disease is transmitted to livestock and what can be

done to ensure there is no further loss of life.

This model will be used to simulate the impact of prevention and control options for the
disease. Hopefully, the health and economic costs associated with Rift Valley fever virus

can be understood and contained.



1.3 Definition of Terminologies

The Basic Reproduction Number

The reproduction number R, is defined as the average number of secondary cases aris-
ing from an average primary case in an entirely susceptible population. The reproduction
number is used to predict whether the epidemic will spread or die out. Any epidemiolog-
ical model has a disease free equilibrium (DFE) at which the population remains in the
absence of the disease. The basic reproduction number is such that if Ry < 1 then the
DFE is locally asymptotically stable and the disease dies out but if Ry > 1 then the DFE is
unstable and the epidemic spreads. At the endemic equilibrium, the average replacement

number is one.

Metzler Matrices

A Metzler matrix is a matrix in which all the off-diagonal components are non nega-
tive (equal to or greater than zero). Many non-linear systems ,# = Az are modeled by a
system of ordinary differential equations with constant coefficients. A necessary condition
to keep x;(t) > 0 for all 7 and all ¢ is that # > 0 when 2; = 0 and z; > 0 for all i not equal
to j. The condition will be fulfilled for the linear system above if and only if a ¢; > 0 for
all i not equal to j. A matrix that satisfies this condition is called a Metzler matrix. Many

compartmental models with constant coefficients are a special subset of Metzler matrices.



Stability

Consider the differential equation & = f(t,z),x € R™ then a point x is Liaponouv stable
if and only if for all € > 0 there exists § > 0 such that if |z —y| < d then |f(x,t)— f(y,t)| <€
for all ¢t > 0. A point z is quasi-asymptotically stable iff there exists § > 0 such that
if |z —y| <0 then |p(z,t) — v(y,t)] — 0 as t — co. A point x is asymptotically stable

if it is both liaponouv stable and quasi-asymptotically stable.

Local Asymptotic Stability

A point z* is an equilibrium point of the system if f(z*) = 0. z* is locally stable if all
solutions which start near * (meaning that the initial conditions are in a neighborhood of
x*) remain near x* for all time. The equilibrium point x* is said to be locally asymptot-
ically stable if 2* is locally stable and, furthermore, all solutions starting near z* tend

towards xz* as t — 0.

Global Asymptotic Stability
The system & = f(t,z) is globally asymptotically stable if for every trajectory z(t),

we have z(t) — z* as t — oo (implies z* is the unique equilibrium point).

Positively Invariant

Consider the system @ = f(t,z) and let z(¢,zo) denote the trajectory of the system with
an initial point xy. Further let Q= {z € R"|¢(x) = 0{, where ¢(x) is real-valued function
that characterizes the set €). The set (2 is said to be positively-invariant if zy € €2, then

x(t, o) € QVt > 0.



Compartmental Models

Compartmental models are often used to describe transport of material in biological sys-
tems. A compartment model contains a number of compartments, each containing well
mixed material. Compartments exchange material with each other following certain rules.
Compartments are represented by boxes and the connections between the compartments
are represented by arrows. Every compartment (that is every box) has a number of connec-
tions leading to the box (inflows) and a number of arrows leading from the box (outflows).
Material can either flow from one compartment to another, it can be added from the outside
through a source like birth or new infection, or it can be removed through a drain where
the drain in our case is death. Modeling of dynamical systems plays a very important role
in applied science, and compartment models are among the most important tools used for

analyzing dynamical systems. A few examples of compartmental models are listed below:

e SIR Model: The SIR model labels these three compartments S = number suscepti-
ble, I = number infectious, and R = number recovered. This is a good and simple

model for many infectious diseases.

Birth— |S| — |I| — — Death

e SEIR Model: The SEIR model labels four compartments S = number susceptible,
E = number exposed, I = number infectious, and R = number recovered. For many
important infections there is a significant incubation period during which the indi-
vidual has been infected but is not yet infectious themselves. During this period the

individual is in compartment E (for exposed).



Birth— |S| — |E| — |[I] — — Death

e SIRS Model: The SIRS model labels these four compartments S = number sus-
ceptible, I = number infectious, R = number recovered and back to S, that is the

recovered become susceptible.

Birth—>—>—>—>

1.4 Statement of the Problem

This model will focus on the interaction between vectors(Aedes and Culex mosquito) and
livestock hosts. We will use ordinary differential equations to describe the propagation of
the disease in livestock host and the mosquitoes (Aedes and Culex). We shall define the
basic reproduction ratio and analyze the local and global stability for both the Disease
Free Equilibrium and Endemic Equilibrium using dynamical systems approach.

Below is the compartmental model showing how this vector borne disease interacts with
livestock and vectors(Aedes and Culex mosquito). From which we will derive the differen-

tial equations that governs the transmission process.



Then analysis and simulation of this disease will follow.
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Figure 1.3: Proposed Compartmental Model

1.5 Objective of the Study

The objectives of this study are listed as follows:

e Formulate a deterministic model that describes the transmission of Rift Valley Fever

in Livestock in Kenya.



Show that the system is positively invariant.

Find the basic reproduction number.

Investigate and study the stability of the model at the Disease Free Equilibrium and

Endemic Equilibrium.

Numerical Simulation using MATLAB.

1.6 Significance of the Study

This study will have the following significance:

e Minimize deaths that results from Rift Valley Fever hence saving lives of livestock

population as a result of a much more predictable model for future cases.

e Give me an opportunity to apply and learn more mathematical theories and their

application in models biological systems.

e The model will provide a foundation for further research in epidemiology.

10



Chapter 2

LITERATURE REVIEW

Holly D. Gaff, David M. Hartley and Nicole P. Leahy presented and explored a novel
mathematical model of the epidemiology of Rift Valley Fever (RVF). Their model was an
ordinary differential equation model for two populations of mosquito species, those that
could transmit vertically and those that could not, and for one livestock population. They
analyzed the model to find the stability of the disease-free equilibrium and tested particular
model parameters which affected the stability most significantly. This model was the basis
for future research into the predication of future outbreaks. One population of vectors
represented the Aedes mosquitoes which could be infected either vertically or via a blood
meal from an infectious host. The other vector population was able to transmit RVFV
to hosts but not to their offspring; here they considered it to be a population of Culex
mosquitoes. Once infected, mosquito vectors remain infectious for the remainder of their
lifespan. Infection was assumed not to affect mosquito behavior or longevity significantly.
Hosts, which represented various livestock animals, could become infected when fed upon
by infectious vectors. Hosts would then die from RVFYV infection or recover, where upon

they would have lifelong immunity to reinfection.

11



They computed the basic reproduction ratio and proved that when the reproduction num-
ber is less than 1, if the disease was introduced, there were insufficient new cases per case,
and the disease could not invade the population. But when the reproduction number was
greater than one, there exists an endemic equilibrium, which was also globally asymptoti-

cally stable.

Since the model incorporates both vertical and horizontal transmission the reproduction
number for the system is the sum of the reproduction ratio values for each mode of trans-
mission determined separately,Ry = Ry v + Ro g where the first term on the Left Hand
Side is the reproduction number for the vertical transmission route and the second term in
the Left Hand Side is the reproduction number for the horizontal transmission route.Using

the concept of Metzler matrices and further simplification of the system they found:

Ry = b +./( €2 €151221 €3332323
" dy (doKoy + €2)(do Ko + yo + o) “di(dy +€1)  ds(ds + €3)

For this study they analyzed the resulting model by computing the fundamental repro-
duction ratio and sensitivity of model output to variation or uncertainty in biological
parameters using the technique of Latin hypercube sampling to test the sensitivity of the
model to each input parameter in an approach successfully applied in the past to many
other disease models.

However their model was too complicated to perform rigorous mathematical analysis.

12



Ling Xue, H. M. Scott, Lee W. Cohnstaedt, Caterina Scoglio used a network-based meta
population approach to model Rift Valley fever epidemics.They proposed a new compart-
mentalized model of RVF and the related ordinary differential equations to assess disease
spread in both time and space; with the latter driven as a function of contact networks.
Humans and livestock hosts and two species of vector mosquitoes are included in the model.
The model is based on weighted contact networks, where nodes of the networks represent
geographical regions and the weights represent the level of contact between regional pair-
ings for each set of species. The inclusion of human, animal, and vector movements among
regions is new to RVF modeling. The benefit of their proposed model was twofold: not only
could their model differentiate the maximum number of infected individuals among differ-
ent provinces, but also it could reproduce the different starting times of the outbreak in
multiple locations. The exact value of the reproduction number was numerically computed
and upper and lower bounds for the reproduction number were derived analytically. Here
is a brief description of their model: The main vectors are the Aedes and Culex mosquitoes
and the main hosts are the livestock and humans. They use an SEI compartmental model
in which individuals are either in a susceptible (S) state, an exposed (E) state, or an in-
fected state (I) for both Aedes and Culex mosquitoes, and an SEIR compartmental model
in which individuals are either in a susceptible (S) state, an exposed (E) state, an infected

state (I), or a recovered (R) state for both livestock and human populations.

13



Infectious Aedes mosquitoes can not only transmit RVFV to susceptible livestock and
humans but also to their own eggs. Culex mosquitoes acquire the virus during blood meals
on an infected animal and then amplify the transmission of RVF'V through blood meals on
livestock and humans. Direct livestock-to-human contact is the major (though not only)
way for humans to acquire the infection. The mosquitoes will not spontaneously recover
once they become infectious. Livestock and humans either perish from the infection or
recover. All four species have a specified incubation period. The model is based on a daily
time step.

Using the concept of Metzler matrices and further simplification of the system they found:

Ry=4/( €2 €1512 021 n €3/332323
(doKy + €)(do Ko + v + o) “di(dy + €1)  ds(ds + €3)

For this study they analyzed the resulting model by computing the fundamental repro-
duction ratio and the infection spreads due to movement of the four populations. The
sensitivity analysis was estimated using the least square approach. However their model

was too complicated to perform rigorous mathematical analysis.

Tianchan Niu(et al) described the foundations of a mathematical approach to access the
spatial spread of an introduced RVF. Their approach was based on a previous model of
RVF transmission in a small local population and multispecies epidemic models incorpo-
rating spatial structure more generally. A single Aedes mosquito was used to represent
initial infection. Their RVF model considered Aedes mosquitoes, livestock (e.g., cattle,
sheep, and goats), and Culex mosquitoes on a single patch. They identified the need to
include spatial variation. This was accomplished within the framework of their compart-
mental model which models the epidemiological dynamics of arbitrary numbers of species

occupying an arbitrary number of patches. Their approach included patch-specific contact

14



rates, incubation periods, and other biological factors. They also described a method for
computing the stability of the disease-free equilibrium in terms of the basic reproduction
ratio. They constructed and analyzed a mathematical model of RVF that includes both
pathogen propagation within and spreading across different regions via the movement of
humans, livestock, and mosquitoes. They analyzed their model to determine the stability
and sensitivity of disease-free equilibrium. They used numerical methods to determine the

reproduction number.

Egil AJ Fischer (et al) developed a mathematical model that captured the probability of a
RVFV outbreak and the probability of persistence of the infection during consecutive years.
They applied their model to create risk maps of the Netherlands showing high risk areas for
RVF outbreak and for persistence of RVF in livestock. For these maps they considered host
species to be cattle, sheep and goats, and considered vector species to be Aedes Mosquitoes
and Culex Mosquitoes. They conducted an uncertainty analysis of the input parameters,
which yielded knowledge about influential input parameters and data gaps, which could
help focus future research and improve the accuracy of the model predictions. Their model
described the local spread of the infection in a predefined small area in which all hosts and
vectors mix homogeneously. In this study 5 by 5 kilometre area grids were used, based on
the highest possible resolution for modelled mosquito abundances. They assumed constant
host population sizes and no effect of temperature on host related parameters. Given that
activity and survival of mosquitoes during winter months and especially how that affects
the virus is poorly understood they assumed a period of stasis during winter, i.e. the
number of susceptible and infected vectors and the number of susceptible, infected and
recovered hosts at the beginning of the vector season is equal to the situation at the end
of the previous vector season implying that the infection cannot die out during the winter

in their model. For convenience they assumed stasis of the host as well. To test the effect

15



of stasis of the host they performed a sensitivity analysis to evaluate its impact and they
found a reappearing epidemic after a stasis period very quickly returning to the pattern of

a continued epidemic.

16



Chapter 3

THE MODEL

3.1 Compartmental Model and Differential Equations

We will use an SIS Compartmental Model in which individuals are either in a susceptible
(S) state or an infected (I) state for livestock populations. Livestock either die from the
infection or recover. The infected host(livestock) who recover become susceptible again
as Rift Valley Fever has no permanent immunity. We will use an SI Compartmental
Model for Aedes and Culex mosquitoes (vector) populations. Infectious Aedes and Culex
mosquitoes transmit Rift Valley Fever vector to susceptible livestock. We assume that
once mosquitoes become infected with Rift Valley Fever they do not recover. They remain
infected until death. Aedes mosquito will have vertical transmission to their eggs whereas

Culex Mosquito will not.

17



The size of host populations is N, = Sp+1, for livestock host. The size of vector population
is Ng = S + 14 for Aedes Mosquito and No = S¢ + I for Culex Mosquito.
The compartmental model showing the interaction of Rift Valley Fever in humans and

livestock is given in figure 3.1.
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Figure 3.1: Compartmental Model
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The system of Ordinary Differential Equations representing the populations is given below:

Livestock Population Model

dS(j;t(t> = Ap — abaSi(t) If]if(j) — abeSL(t) va(j) — prSp(t) + o IL(t)
d]Cth(t) = abaSL(t) I}if(j) + abeSL(t) ]](i,(ct) —upIp(t) — v Ip(t) — ol (t)

Aedes Mosquito Population Model

dS(t I (t
c?t( ) = >\A — abLSA(t) ?\T(L) — ,uASA(t)
dI4(t - Ta(t Ir(t
2; ) = )\ANA(,OA }if(A) +(lbLSA(t) jV(L) — /,LA]A(t)

Culex Mosquito Population Model

ngt(t) = Ao —abpSc(t) I]L\g) — peSc(t)
dlgt(t) — abySe() IJLV(? ~ pele(®)

The parameters are described in the table below:

19



Table 3.1: Description of Parameters

’ ‘ Parameter ‘ Description

1 ]S, Susceptible Livestock

2 | Sa Susceptible Aedes Mosquitoes

3 | S¢ Susceptible Culex Mosquitoes

4 | Iy Infected Livestock

5 | Ia Infected Aedes Mosquitoes

6 | Ic Infected Culex Mosquitoes

7T | pr Death rate of livestock in a population

8 | pa Death rate of Aedes Mosquitoes in a population

9 | uc Death rate of Culex Mosquitoes in a population

10 | Ap Birth rate of Livestock

11 | Ay Number of Aedes Mosquitoes eggs laid per day

12 | A¢ Number of Culex Mosquitoes eggs laid per day

13 | by, Probability a susceptible vector gets infected after biting an infected livestock

14 | by Probability a susceptible livestock gets infected after an infectious bite by Aedes M
15 | be Probability a susceptible livestock gets infected after an infectious bite by Culex M
16 | vz Recovery rate of infected livestock

17| o Disease induced death in Livestock

18 | pa Probability of vertical infection of Aedes Mosquito eggs

We assume that births and deaths are equal. Given that we have disease induced death in
the livestock population model, the livestock population then cannot be constant. The total
mosquito population is constant. To prove this we will add up the differential equations
in the Livestock population model and the vector (Aedes and Culex Mosquito) population
model. We shall omit the independent variable ¢, for brevity in the preceding sections.This

yields the following:

20



Livestock Population Model:

ds dl
d_tL_'_d_tL:)\L_NLML_UIL ............... (31)

Aedes Mosquito Population Model:

dSA d]A IA -
Rt T L Y A — NA) = NAfA oo
7 + 7 A+ Aapa Ni A) AltA

Culex Mosquito Population Model:

21



3.2 Disease Free State

The disease free state implies that I, = 0, I, = 0 and I = 0. This also implies that
dN
Np = Sp, Ny =S4 and Ng = S¢. From equation (3.1) we have that d_tL = AL — urNp

dN
which implies that d_tL + pur N = Ap. The integrating factor is el redt — eiit therefore
d t t d t tgss : t Apettt
—(Npettty = ettt thus | —(Npett') = | Apett'dt implying that Npettt = ——+ K
dt dt \ ML
where K is any arbitrary constant. Thus Ni = =% + Ke #1. At ¢ = 0, N.(t) = N?. This

298
A A A A
implies that N? = 22 + K. Hence K = N? — 2% Therefore N = =2 4+ e (N9 — 22,
123 KL KL 1259

dN dN
Similarly from equation (3.2) we have that A 4 — paN4 which implies that AL

dt dt
d
waN4s = Aa. The integrating factor is el nadt — onat therefore %(NAe“At) = Ase”4? thus
d )\AGHAt
/E(NAG‘HAt) = /)\Ae“Atdt implying that Net4! = . + K where K is any arbi-
A
A
trary constant. Thus N} = CA L Ke it At t = 0, Na(t) = NY. This implies that
27\
A A A A
N9 =22 4 K. Hence K = N9 — 22 Therefore N = =2 + e M (NG — —A).
A A A A
na Ha 27\ 47\

dN, dN,
Finally from equation (3.3) we have that d_tc = A\¢ — pcNe which implies that d_tc +

d
ucNe = Ao. The integrating factor is el ot — cnct therefore E(Nce“ct) = A"t thus

d
/—(Nce“ct) = /)\ce"ctdt implying that Ngetc! =

Ceﬂ/ct

+ K where K is any ar-

dt He
A
bitrary constant. Thus N§ = =< 4+ Ke ', At t = 0, No(t) = N2. This implies that
Hc
A A A A
NG = 2% 4 K. Hence K = NG — Z¢  Therefore N¢ = 224 e M (NG — —C)
Ko Ho e e
A A A
Att=0, Nf =22 Ny =22 and N = 2€
wr 2] He
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3.3 Positively Invariant

We have a dynamic population thus Sy can be obtained once we know [} and likewise
for S4 and S¢ given that N = Sp + I, Ny = Sy + I4 and Nog = S¢ + Ic. Thus we
will analyze the dynamics of I, I4 and Io. Also of importance, all parameters are non

negative. Let 6; = ur + v + 0 We will be looking at the following system of differential

equations:

dl I I

d_tL = (abAN—i+abCN—i)(NL—]L>—5L]L ............... (34)

dl 4 - I I

— = MN — br—(Ng—Ta) —ppadlag....cccoo. .. 3.5
o AASOANA+CLLNL(A A) = pala (3.5)
dl I

d_tc — abLFLL(NC —I)—pele. oo (3.6)

We define the region K as follows:

K ={(Ip,14,1c)[0 < I, < Np, 0< 14 < Ny, 0< Ic < Ne}

We want to show that K is positively invariant.

23



Proof
Iy

dl I
When [, = 0 equation (3.4) becomes —L_ (abag— + abo—C)NL > 0 and the livestock
dt Na Ne¢

1
population can only increase. When I, = Nj, equation (3.4) becomes d_tL = —0,N, <0

and the livestock population can only decrease. Similarly when /4 = 0, equation (3.5)
dl 4 I

becomes e abLFN 4 > 0 hence an increase in the Aedes mosquito population.
L

dl _
When I4 = N, equation (3.5) becomes d_; = —(uaNa — MaNaps) < 0 implying a

decrease in the Aedes Mosquito population. Finally, when /o = 0, equation (3.6) becomes

dl I
d_tc = abLN—LNC > 0 indicating an increase in the Culex mosquito population. When
L

dl,
I = N¢ equation (3.6) becomes d—tc = —ucNe < 0 indicating a decrease in the Culex
Mosquito Population. The vector fields cannot cross the positive orthant to the negative

hence positively invariant as shown in the region K of figure 3.2.
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3.4 Calculation of the Basic Reproduction Number

The basic reproduction number, R is defined as the average number of secondary cases
arising from an average primary case in an entirely susceptible population[10]. Ry is used
to predict whether the epidemic will spread or die out. In this section we will analyze the
dynamics of I, I4 and I so as to be able to obtain Ry. Let us thus look at the following

- 1
system of differential equations. Let Ay = A4aNap AN Thus

A
dl I 1,

d_tL = (abAN—IZ + abCN—Z)(NL — ]L) — 5L]L

dly 15

—— =ab;—=(Nyg—1,) — — A1

di CLLNL( A A) (MA A) A

dl I

d_tc = abLN—LL(Nc —Io) — pele

The above system can be represented in matrix form as I = fI + vl where f is the matrix

of the infection rates and v is the matrix of the transition rates so that;

I, Ic
(abAN—A +IabCN—C)(NL — [L) 5.1
L
= abLFL(NA_[/Q y U= _(MA_AA>IA
1
abL—L(NC — [C) _,UCIC
Np,
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Now let:
Ia Ic

fl = (abAN—A + ach—C)(NL — [L)
fo = aby AL (N — L)
2 =0 LNL A A

I
fs = abLFLL(NC —1o)

Next we define F the Jacobian of f at (0,0,0). Let aby = Sa, abc = fc and aby, = .

Thus

of Ofi Of
ol;, 01 ol,
ofs 0fs 0fs
al; 01, O0lc
ofs Ofs 0fs
ol L ol A 6]0

This implies that:

o B fo
Na  Ne
F = % 0 0 |,and we obtain V the Jacobian of v at (0,0,0). That is:
L
AL
— 0 0
Np
Let:
V1 = _5L]L
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Thus:

(%1 8?]1 (%1

olp, 014 0l
Vo _ 81}5 (%1;1 8@2
B oI, dlx Ol
(%3 0v3 81)3
ol L ol A ol C

This implies that:

or, 0 0
V:_ O HA_AA 0
0 0 pe

We will now use Gauss Jordan elimination method to obtain V!

Thus we have:

oL, 0 011 0 O
- 0 [LA—AA 0 010
0 0 pe |0 0 1

Dividing row 1 by ¢, and row 2 by us — A4 and row 3 by ¢ yields the following:
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1oolg O 0
1
- 0100 —A 0
HaA — g ]
00 0] o0 0 —
He
Thus: .
—(— 0 0
;)
. 1
V- = 0 — 0
,MA—AA
0 0 _(i)
2%

Now we are going to obtain the metzler matrix that is (—FV~1).

0 Ba Be
p Na(pa —Aa) Nepe
~FV = L 0 0
NﬁLéL
L
N6, 0 0

The spectral radius of the Metzler Matrix, p(—FV ™), is defined as the largest eigenvalue

of the Metzler Matrix[10].

Thus:

Y Ba Be

p Na(pa —ANa)  Nepc
—FV Y =|(-Fy ) =)\ =| L — =
p=FV) = [(=FV ) = A W A 0

L

—-A
NL(SL 0
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Br Br

0 —\ Na(pa —Aa)| B )\ Nope | PL 0
NL5L NL(SL
Thus
Ba [ BL ] Be [ BL ]
-3 — — A+ A=0
Na(pa —Aa) | Npop Nepe [ Nioyp,
which yields the following
BaBL Bebr )1
=[N — ( + =0
[ (Na(pa — Aa))(NLdr)  Neopeo(Npor)
The p(—FV~1) = EV = a [ Ba + bo } . Thus the basic reproduction
Nidr [ Na(pa —Aa)  Nepe

number, Ry = (EV)? and it will be given as

Ro

_ B [ Ba Be ]
Npdp [ Na(ppa —Aa)  Nepe

From the expression above for Ry, Nﬂ—L(S is the Livestock contribution to the Ro whereas

LOL
6—’4 is the Aedes contribution to Ry and finally is the Culex contribution
Na(pa —Aa) Nejpic
to the Ry.
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3.5 Global Stability of the Disease Free Equilibrium

The local dynamics of a general SIS and SI model is determined by the reproduction
number Ry. If Ry < 1, then each infected individual in its entire period of infectiousness
will produce less than one infected individual on average. This means that the disease
will be wiped out of the population. If Ry > 1, then each infected individual in its entire
infectious period having contact with susceptible individuals will produce more than one
infected individual implying that the disease persists in the population. If Rqg = 1, and
this is defined as the disease threshold, then one individual infects one more individual.
For Ry < 1 the disease free equilibrium is locally asymptotically stable while for Ry > 1
the disease free equilibrium becomes unstable. By using the theory of Lasalle-Lyapunov
function V', we will show the global asymptotic stability. The disease free equilibrium point
is (Ip,14,1c) = (0,0,0). ,
Theorem 3.1
If Ry < 1, then the disease-free equilibrium (I, I4, Ic) = (0,0,0) of the system is globally
asymptotically stable on K.
Proof
We construct the following Lasalle-Lyapunov function V' (I, I, Ic) on the positively in-
variant compact set K. Thus on K, V(Ip, I, I¢) is continuous and non negative.
We define
V(I 1a,1c) = po(pa — Aa)Ip + f/,—AMC]A + ff—c(lm —Aa)lc

A c
Note that pa > Ay
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The system of ordinary differential equations given by equations 3.4, 3.5 and 3.6 can be

written as
I —0L
)
14 = N,
[' 6L
C —_—
N

5
This can be written as I = A(I) where A = %
L
Br
N,
Iy,
Ba  Be
14 If we define v = {,uc(,uA —Ay), N—A;LC, No
Ic
along the trajectories is given by V = vTA(I) as
5
TA(I = — A 5_A ﬁ_c —A ﬁ
v A = |pe(pa — Aa), N, o NC(MA 4) N,
br
L Ng
[ Br Ba B Be 1
— 1o —A — = = — (s — A
Ko L(gA A) + N, NAMC + N, No (;A A)
N—AMC(MA —Aa) = pelpa - AA)N—A
be B !
c C
—(pa— A — po——(pua — A
] N, (= A — peg=(ia = Aa) |

Ba Po

Ny N¢
—(pa—A~Aa) 0

0 —Hc

32

B e
Ny N¢

—([}JA—AA) 0 and [ =
0 e

(ta — Aa)|, then the derivative

Ba Pe ]
Ny N¢
—(na—~A4) 0 |=
0 —Hc




—Hedn(pa = M) + pednlpa = Aa) (NLéLNiL(ij - AA)) Frednliia = (Ncizﬁzém)
0
0

TADT = | uedy (ua — A (—1+ Prpa 4+ Pebu >,o,0}
vAD [NC sla = Aa) NpopNa(pa —Aa)  NepeNpir

UTA(]>T - :uC’éL(,uA - AA) [(R(Q) - 1)7 07 0]

v A(DT = pedr(pa—Aa)(Ro+1) [(Ro — 1),0,0] which is strictly decreasing when Ry < 1.
Thus V < puedp(pa — Aa)(Ro +1)(Ro — 1)1,

We define the set £ = {([L,IA,IC) € K|V(IL,IA,IC) = 0}. The largest invariant set is
contained in the set E for which I, =0 or I, =0 or Io = 0. Thus V < 0 when Ry < 1.
If I, =0 or Ry = 1 then V = 0. Thus by Lasalle’s invariance principle the disease free

equilibrium is globally asymptotically stable on K.
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3.6 Stability of the Endemic Equilibrium

When Ry > 1 then the unique endemic equilibrium exists and is asymptotically stable.
Let (I, 13, 1}) denote the endemic equilibrium. In order to obtain the expressions for
I7, I, I we equate the RHS of equations 3.4, 3.5 and 3.6 to zero and express I, I}, I/
as shown below. For N, N4, No we substitute them with the expressions of Nj, N}, N

obtained in section 3.2.

I I
BA A+5(J C

(s CVNF = T3) = 0pDf oo (3.8)
NA NC L L L

ﬁ [* * *

]LV*L (NS =13 = (pa — AT (3.9)
L
I*

BZLV*L (N =I5 = pell. oo (3.10)
L

We can express equation 3.10 as follows

=L o 3.11
© " Bul; + Nipc (3.11)
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Equation 3.9 can be written as

o Bl Ni
A7 Buli + Ni(pa — An)

(3.12)

Substituting the expressions of equations 3.11 and 3.12 in equation 3.8 yields the following

expression

BaBrl; N3 BeBrlf NG

Ny —If) =06l =0............... 3.13
Brlp + Ni(pa—Aa) Bl + Nipc (Ni = 1i) = ouli (3:13)

which can be expressed as

0087 + BaBEN; + BeBENEI+

008N} e + OLBLNT (1ta — Aa) + BaBLNANF e + BeBLNENT (1ta — Au) — BaBEN;NG —
BeBINEN L+

SN 2uc(pa — Aa) — BaBLNiAN e — BeBLNEN (pa — Aa) = 0. , (3.14)

and equation 3.14 becomes
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-IE n SLBLNFue + 00BN} (A — Aa) + BaBLNANG e + BeBLNENG (na — Aa) — BaBiNANT — BCB%NBNE]Q
i 2(0187 + BaBIN; + BcBiNE)

_ BABLNAN; 2o + BeBLNENF2(ia — Ax) — 0L N7 2o (pa — Aa) n

B 5183 + BaBEN: + BcBENG

[0LBLNF e 4+ 60BN} (a — Aa) + BABLN AN ic + BeBLNENG (na — Aa) — Bafi NANT — ﬁcﬁ%NéNﬁr

206067 + BaBiN} + BeBiNG)

Let
w = 01,07 + BaBi N4 + BeSiNE
w1 = BaBLNAN;2uc + BeBrNENF2(pa — Aa) — LN 2uc(pua — Aa)

wy = 8rBL N} e +0LBLNG (a—Na)+BaBLNiNG e+ BeBLNENF (ua—Aa)—BaBi NiNG —

BeBINENT

Therefore

e — [5L5LN2MC + 01BN (a — Aa) + BaBLNAN e + BeBLNENT (a — Aa) = BaBiNAN] — BeBiNENT
L 2w

1
n 4w + w22
4u?

1
=20 [*5L5LNZNC —O6LBLNT (kA — Aa) — BABLNANG e — BeBLNEN] (1ta — Aa) + BABLNANG + BoBENENT) + /4wwr +w§}

Let W3 = _5L6LN[*,,U/C — 5L6LNE(,UA - AA) + \/ 4&)&)1 + w%

BABLNAN] e + BeBLNENT (11a — Aa)
N;25ppc(pa — Aa)

1
I} = — |ws — Ni20ppuc(pa — Aa) (

L )+ BABENANG + BB NeN;)
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I} = o [ws = Ni*6wpc(a = M) RS + BaBENINT + Bofi NENT)]

N;20ppe(pa — Aa)

1 N * N
I} = 5~ |ws + (BABLNANL + BeBLNENT) " BABENAN; + ﬁcﬁiNéNz)Rg o
L L

2w

Let o? = Ni20ppc(pa — M)
BaBENiN} + BcBiNENT)
Thus

1 * * * *
Ii =5 [ws + (BABENANG + BeBiNENT) (1 — o R2)]

Ir = % [ws + (BABELNANT + BeBENENT) (1 + aRo)(1 — aRo)] ..o (3.16)

The endemic equilibrium will thus be
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BrliprAa

I* =

AT pa(ur Bl + M (pa — Aa))

15 = ﬁL[zAC’,uL

C T G B T Foepe)
Theorem 3.2

The endemic equilibrium given by equations 3.17, 3.18 and 3.19 is locally asymptotically

stable on K.

Proof

We first obtain the Jacobian computed at the endemic equilibrium using the relations given

by equations 3.8, 3.9 and 3.10. Thus

[ I 1¢
_<5AN*I* N*T*
ATL C*L

+ Bc

)

I; I;
5, =L 5, =L
"1 "Iz,
17
— 0
ﬁLAEIZ
I*
0 o L
NI |
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To determine the stability of the endemic equilibrium (I}, %, I5), we use the Routh-
Hurwitz stability criteria on the characteristic equation of a third degree polynomial given
by P(\) = A* + a1 A% + ag\ + az. We say that J(I}, I}, 1%) is Hurwitz iff ay, ag, a3 > 0 and
ajas —ag > 0.

The coefficient a; = —trace(J (I}, Iy, I})), as = sum of all the principal minors of J (I}, I}, I)

and a3 = —determinant(J (I}, I}, %))

The trace of J will be given as

]*
trace J = —a C <0 ill b
race —(Baei~ NA = T Pe Nl I*) BL N* o T — B N* 75, < 0 2 will be
fc Ii I¢ [Z
o, L 17
_ (MWF+%WQ) o (mwﬁ+%wg) 'T
@ = 5 L | F 3 I
_ _ANA _
pe—r I BL NI (a —Aa) It Br NI
I7
- 0
NI
I*
0 _
/BL N*]*
It I I , I?
— L5 A
[6AN*[* + Bc NEIZ} |:5L(N*I* NEI}“)] + 57 NPT L(pe + (pa —Aa))

> 0 iff - L > 67, (e —A
as i {BAN*]* + 5CN5]}£] {/BL(NEIE - N*I* )] +5LN*QI* T L(fte+ (ppa—Aa))

and finally we obtain ag we have the upper 2 x 2 block of J(I}, I}, I}) given by
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I I¢ Iy

_ Py

M wAN;;J* +”BCN*1;) by

B (s — Ag) 5L
HA A I* LN*I*

Hence the determinant of M is given by

BrbBa I¢ . e e
det(M) = NTN + 5LBCN*N*[* Or(pa — Aa), and det(J (I}, 14, 1})) = —az =
Iy BrbBa It I} I;?
_ ) —A b
oy {NENA TP T p(pa A>] THoTy {BL LN
I7 BrBa I ]C
o or, —A
BLN*I* [N*N* BLﬂCN*N*IA (lrra = Aa] = IA) <0

To prove the Routh-Hurwitz stability criteria we compute ajas — ag as

BLBAI n BrBaBclf n BB n BrBabcly n BLBEIE

we T T NINRIAT  NpNANelp | NaNpl | NiNANalp | NINGIGTE
S BoMilile B BaSHILT | GMP  Buli Bufo | fuba

NNy NeNpeI? ' NIl '+ NiNpI2 | N[ | NiI, NiNs | NiNG

Brl; , Brbe ﬁL@A BrBc | Brba Bal}

51 (pa—A —5 O (et (pra—A )] [ A4
[*

bele 91>0

Nely

The requirements of Routh-Hurwitz stability criteria are satisfied hence this proves that

the endemic equilibrium is locally asymptotically stable.
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Chapter 4

NUMERICAL ANALYSIS

In this section we shall explore the behavior of RVF when introduced into a naive envi-
ronment and conduct numerical simulations of an isolated system (that is, no immigration
or emigration). The model uses a daily time step and is solved by a fourth order Runge-
Kutta scheme. For each simulation, we start with 100 susceptible livestock animals, 100
susceptible Culex mosquitoes, 99 susceptible Aedes mosquitoes, 1 infected Aedes mosquito
and 1 infected Culex mosquito. We will run simulations to assess the expected vector and

host species prevalence. We start by defining the the values of the parameters as
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Table 4.1: Parameters with estimated values for numerical simulations

Parameter | Value
L 0.0028
1A 0.05
1%, 0.05
AL 0.0028
Aa 0.05
Ao 0.05
by, 0.0021
ba 0.02
be 0.0003
o 0.0312
a 10000
Ny 15

YA 0.05

Ro = 0.0020544 < 1 indicating that the epidemic will be wiped out of the population.
Ro =0 when by = b = 0. When p4 =0, Ry = 0.0020679. The numerical solution of the
system with initial conditions I, =0, [, =1, Ic =1, N, =100, Ny = 100 and Ng = 101

over a period of two years is graphically shown below

42



120 T T T T T

100 F PR === == =S == === =SS s =S S

80+ ¢ A

60 - A

Populations

40+ o

20 i

0 I | | I | I I | I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time in years

Figure 4.1: Numerical Solution of the System Showing (I, I4, [¢) vs time

43



Chapter 5

CONCLUSION

In this study, we developed a mathematical model of Rift Valley Fever in Livestock in
Kenya. Our model captures the disease induced deaths in Livestock as RVF is known to
cause deaths in Livestock. Mathematical analysis was done and it was established that in
the absence of the disease a disease free equilibrium will always exist if Ry < 1. We also
established that the endemic equilibrium exists in the presence of the disease that is when
Ry > 1 with the infectious population greater than zero. Reducing the vertical transmis-
sion in the Aedes Mosquito population Ry increases slightly. Reducing the infection in
the vector population reduces Ry greatly. Thus the best methods of controlling RVF is
to target the Aedes Mosquito and the Culex Mosquito. Ry is a threshold that completely

determines the global dynamics of disease transmission.

This model is a simplified representation of the complex biology involved in the epidemi-
ology of RVF. There is still a lot of details that could be incorporated into our model.
Some of the details that we could include in the model to make it better are the exposed
compartment and recovered compartment. Seasonal effects on mosquito population may

also be incorporated. Data for disease, vector and animal migration from RVF endemic
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regions need to be collected so that we can further test the validity of our model. Further
the global stability of the endemic equilibrium is in general unclear hence much studies
need to be done in order to understand it. We hope this model and these results will act

as a base for further investigation on this disease in Kenya.
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