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Chapter 1

INTRODUCTION

1.1 Rift Valley Fever

Rift Valley fever, (RVF), is a vector borne disease transmitted by mosquitoes to livestock

and wild animals. It is spread by the bite of infected mosquitoes, typically the Aedes,

Culex and Anopheles genera. RVF virus is a member of the Phlebovirus genus, one of

the five genera in the family Bunyaviridae. Aedes and Culex are believed to be the main

vectors. Rift Valley fever virus can be transferred vertically from females to their eggs

in some species of the Aedes mosquitoes.While humans can be infected with RVF, we

restrict our focus in this study to livestock populations. The virus was first identified in

1931 during an investigation into an epidemic among sheep on a farm in the Rift Valley

of Kenya. Since then, outbreaks have been reported in sub-Saharan and North Africa. In

1997-98, a major outbreak occurred in Kenya, Somalia and Tanzania and in September

2000, RVF cases were confirmed in Saudi Arabia and Yemen, marking the first reported

occurrence of the disease outside the African continent and raising concerns that it could

extend to other parts of Asia and Europe. A major outbreak of this fever occurred again

in Kenya in 2006 Nov- 2007 March. The estimated number of cases among humans was
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75,000 out of which 700 were reported and 158 numbers of deaths confirmed. Rift Valley

Fever is associated with the Great Rift Valley System that runs from Zambezi River in

Malawi to Lebanon. Most of this valley falls within the former Rift Valley Province.

 

Figure 1.1: Rift Valley Fever Distribution in Kenya,[7]
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1.2 Impact of Rift Valley Fever

While Rift Valley fever was originally associated with livestock, recent outbreaks in Kenya

have resulted in increased fatality rates among humans, thereby presenting an increased

threat to public health. It primarily affects animals but it also has the capacity to infect

humans. Infection can cause severe disease in both animals and humans. The disease

also results in significant economic losses due to death and abortion among RVF-infected

livestock, not to mention morbidity and mortality in humans.

Epidemics of this disease usually emerge after above average and widespread rainfall. Be-

low is the transmission cycle of the Rift Valley Fever.

Figure 1.2: Rift Valley Fever Life Cycle,[8]
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In this research we will develop a mathematical model that will best capture how this dis-

ease interacts with livestock. It is known that livestock particularly living in the high risk

areas have in one way or the other through interaction with infected vectors, been infected

with the Rift Valley Fever. Several deaths have been reported in livestock and to some ex-

tent humans. The disease causes serious effects on rural people’s food security, particularly

those communities that depend on their livestock for food and household nutrition and on

direct and indirect losses to livestock producers in the country. Psycho-social distress that

communities go through is enormous, which involves the thinking about the loss of their

livestock and crop production. Socially, the status of most livestock producers is eroded

in their communities.

Cessation of lucrative trade in ruminants results in serious economic losses to the popula-

tions who totally depend upon this income. Therefore, there is need to reduce these kinds

of deaths by understanding how this disease is transmitted to livestock and what can be

done to ensure there is no further loss of life.

This model will be used to simulate the impact of prevention and control options for the

disease. Hopefully, the health and economic costs associated with Rift Valley fever virus

can be understood and contained.
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1.3 Definition of Terminologies

The Basic Reproduction Number

The reproduction number R0 is defined as the average number of secondary cases aris-

ing from an average primary case in an entirely susceptible population. The reproduction

number is used to predict whether the epidemic will spread or die out. Any epidemiolog-

ical model has a disease free equilibrium (DFE) at which the population remains in the

absence of the disease. The basic reproduction number is such that if R0 < 1 then the

DFE is locally asymptotically stable and the disease dies out but if R0 > 1 then the DFE is

unstable and the epidemic spreads. At the endemic equilibrium, the average replacement

number is one.

Metzler Matrices

A Metzler matrix is a matrix in which all the off-diagonal components are non nega-

tive (equal to or greater than zero). Many non-linear systems , ẋ = Ax are modeled by a

system of ordinary differential equations with constant coefficients. A necessary condition

to keep xi(t) ≥ 0 for all i and all t is that ẋ ≥ 0 when xi = 0 and xj ≥ 0 for all i not equal

to j. The condition will be fulfilled for the linear system above if and only if a ij ≥ 0 for

all i not equal to j. A matrix that satisfies this condition is called a Metzler matrix. Many

compartmental models with constant coefficients are a special subset of Metzler matrices.
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Stability

Consider the differential equation ẋ = f(t, x), x ∈ Rn then a point x is Liaponouv stable

if and only if for all ε > 0 there exists δ > 0 such that if |x−y| < δ then |f(x, t)−f(y, t)| < ε

for all t ≥ 0. A point x is quasi-asymptotically stable iff there exists δ > 0 such that

if |x− y| < δ then |ϕ(x, t)− ϕ(y, t)| → 0 as t→∞. A point x is asymptotically stable

if it is both liaponouv stable and quasi-asymptotically stable.

Local Asymptotic Stability

A point x∗ is an equilibrium point of the system if f(x∗) = 0. x∗ is locally stable if all

solutions which start near x∗ (meaning that the initial conditions are in a neighborhood of

x∗) remain near x∗ for all time. The equilibrium point x∗ is said to be locally asymptot-

ically stable if x∗ is locally stable and, furthermore, all solutions starting near x∗ tend

towards x∗ as t→∞.

Global Asymptotic Stability

The system ẋ = f(t, x) is globally asymptotically stable if for every trajectory x(t),

we have x(t)→ x∗ as t→∞ (implies x∗ is the unique equilibrium point).

Positively Invariant

Consider the system ẋ = f(t, x) and let x(t, x0) denote the trajectory of the system with

an initial point x0. Further let Ω= {x ∈ Rn|ϕ(x) = 0{, where ϕ(x) is real-valued function

that characterizes the set Ω. The set Ω is said to be positively-invariant if x0 ∈ Ω, then

x(t, x0) ∈ Ω∀t ≥ 0.

6



Compartmental Models

Compartmental models are often used to describe transport of material in biological sys-

tems. A compartment model contains a number of compartments, each containing well

mixed material. Compartments exchange material with each other following certain rules.

Compartments are represented by boxes and the connections between the compartments

are represented by arrows. Every compartment (that is every box) has a number of connec-

tions leading to the box (inflows) and a number of arrows leading from the box (outflows).

Material can either flow from one compartment to another, it can be added from the outside

through a source like birth or new infection, or it can be removed through a drain where

the drain in our case is death. Modeling of dynamical systems plays a very important role

in applied science, and compartment models are among the most important tools used for

analyzing dynamical systems. A few examples of compartmental models are listed below:

• SIR Model: The SIR model labels these three compartments S = number suscepti-

ble, I = number infectious, and R = number recovered. This is a good and simple

model for many infectious diseases.

Birth−→ S −→ I −→ R −→ Death

• SEIR Model: The SEIR model labels four compartments S = number susceptible,

E = number exposed, I = number infectious, and R = number recovered. For many

important infections there is a significant incubation period during which the indi-

vidual has been infected but is not yet infectious themselves. During this period the

individual is in compartment E (for exposed).
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Birth−→ S −→ E −→ I −→ R −→ Death

• SIRS Model: The SIRS model labels these four compartments S = number sus-

ceptible, I = number infectious, R = number recovered and back to S, that is the

recovered become susceptible.

Birth−→ S −→ I −→ R −→ S

1.4 Statement of the Problem

This model will focus on the interaction between vectors(Aedes and Culex mosquito) and

livestock hosts. We will use ordinary differential equations to describe the propagation of

the disease in livestock host and the mosquitoes (Aedes and Culex). We shall define the

basic reproduction ratio and analyze the local and global stability for both the Disease

Free Equilibrium and Endemic Equilibrium using dynamical systems approach.

Below is the compartmental model showing how this vector borne disease interacts with

livestock and vectors(Aedes and Culex mosquito). From which we will derive the differen-

tial equations that governs the transmission process.
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Then analysis and simulation of this disease will follow.
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Figure 1.3: Proposed Compartmental Model

1.5 Objective of the Study

The objectives of this study are listed as follows:

• Formulate a deterministic model that describes the transmission of Rift Valley Fever

in Livestock in Kenya.
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• Show that the system is positively invariant.

• Find the basic reproduction number.

• Investigate and study the stability of the model at the Disease Free Equilibrium and

Endemic Equilibrium.

• Numerical Simulation using MATLAB.

1.6 Significance of the Study

This study will have the following significance:

• Minimize deaths that results from Rift Valley Fever hence saving lives of livestock

population as a result of a much more predictable model for future cases.

• Give me an opportunity to apply and learn more mathematical theories and their

application in models biological systems.

• The model will provide a foundation for further research in epidemiology.
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Chapter 2

LITERATURE REVIEW

Holly D. Gaff, David M. Hartley and Nicole P. Leahy presented and explored a novel

mathematical model of the epidemiology of Rift Valley Fever (RVF). Their model was an

ordinary differential equation model for two populations of mosquito species, those that

could transmit vertically and those that could not, and for one livestock population. They

analyzed the model to find the stability of the disease-free equilibrium and tested particular

model parameters which affected the stability most significantly. This model was the basis

for future research into the predication of future outbreaks. One population of vectors

represented the Aedes mosquitoes which could be infected either vertically or via a blood

meal from an infectious host. The other vector population was able to transmit RVFV

to hosts but not to their offspring; here they considered it to be a population of Culex

mosquitoes. Once infected, mosquito vectors remain infectious for the remainder of their

lifespan. Infection was assumed not to affect mosquito behavior or longevity significantly.

Hosts, which represented various livestock animals, could become infected when fed upon

by infectious vectors. Hosts would then die from RVFV infection or recover, where upon

they would have lifelong immunity to reinfection.
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They computed the basic reproduction ratio and proved that when the reproduction num-

ber is less than 1, if the disease was introduced, there were insufficient new cases per case,

and the disease could not invade the population. But when the reproduction number was

greater than one, there exists an endemic equilibrium, which was also globally asymptoti-

cally stable.

Since the model incorporates both vertical and horizontal transmission the reproduction

number for the system is the sum of the reproduction ratio values for each mode of trans-

mission determined separately,R0 = R0,V + R0,H where the first term on the Left Hand

Side is the reproduction number for the vertical transmission route and the second term in

the Left Hand Side is the reproduction number for the horizontal transmission route.Using

the concept of Metzler matrices and further simplification of the system they found:

R0 =
b1q1

d1

+

√
(

ε2
(d2K2 + ε2)(d2K2 + γ2 + µ2)

(
ε1β12β21

d1(d1 + ε1)
+

ε3β32β23

d3(d3 + ε3)
)

For this study they analyzed the resulting model by computing the fundamental repro-

duction ratio and sensitivity of model output to variation or uncertainty in biological

parameters using the technique of Latin hypercube sampling to test the sensitivity of the

model to each input parameter in an approach successfully applied in the past to many

other disease models.

However their model was too complicated to perform rigorous mathematical analysis.
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Ling Xue, H. M. Scott, Lee W. Cohnstaedt, Caterina Scoglio used a network-based meta

population approach to model Rift Valley fever epidemics.They proposed a new compart-

mentalized model of RVF and the related ordinary differential equations to assess disease

spread in both time and space; with the latter driven as a function of contact networks.

Humans and livestock hosts and two species of vector mosquitoes are included in the model.

The model is based on weighted contact networks, where nodes of the networks represent

geographical regions and the weights represent the level of contact between regional pair-

ings for each set of species. The inclusion of human, animal, and vector movements among

regions is new to RVF modeling. The benefit of their proposed model was twofold: not only

could their model differentiate the maximum number of infected individuals among differ-

ent provinces, but also it could reproduce the different starting times of the outbreak in

multiple locations. The exact value of the reproduction number was numerically computed

and upper and lower bounds for the reproduction number were derived analytically. Here

is a brief description of their model: The main vectors are the Aedes and Culex mosquitoes

and the main hosts are the livestock and humans. They use an SEI compartmental model

in which individuals are either in a susceptible (S) state, an exposed (E) state, or an in-

fected state (I) for both Aedes and Culex mosquitoes, and an SEIR compartmental model

in which individuals are either in a susceptible (S) state, an exposed (E) state, an infected

state (I), or a recovered (R) state for both livestock and human populations.
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Infectious Aedes mosquitoes can not only transmit RVFV to susceptible livestock and

humans but also to their own eggs. Culex mosquitoes acquire the virus during blood meals

on an infected animal and then amplify the transmission of RVFV through blood meals on

livestock and humans. Direct livestock-to-human contact is the major (though not only)

way for humans to acquire the infection. The mosquitoes will not spontaneously recover

once they become infectious. Livestock and humans either perish from the infection or

recover. All four species have a specified incubation period. The model is based on a daily

time step.

Using the concept of Metzler matrices and further simplification of the system they found:

R0 =

√
(

ε2
(d2K2 + ε2)(d2K2 + γ2 + µ2)

(
ε1β12β21

d1(d1 + ε1)
+

ε3β32β23

d3(d3 + ε3)
)

For this study they analyzed the resulting model by computing the fundamental repro-

duction ratio and the infection spreads due to movement of the four populations. The

sensitivity analysis was estimated using the least square approach. However their model

was too complicated to perform rigorous mathematical analysis.

Tianchan Niu(et al) described the foundations of a mathematical approach to access the

spatial spread of an introduced RVF. Their approach was based on a previous model of

RVF transmission in a small local population and multispecies epidemic models incorpo-

rating spatial structure more generally. A single Aedes mosquito was used to represent

initial infection. Their RVF model considered Aedes mosquitoes, livestock (e.g., cattle,

sheep, and goats), and Culex mosquitoes on a single patch. They identified the need to

include spatial variation. This was accomplished within the framework of their compart-

mental model which models the epidemiological dynamics of arbitrary numbers of species

occupying an arbitrary number of patches. Their approach included patch-specific contact
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rates, incubation periods, and other biological factors. They also described a method for

computing the stability of the disease-free equilibrium in terms of the basic reproduction

ratio. They constructed and analyzed a mathematical model of RVF that includes both

pathogen propagation within and spreading across different regions via the movement of

humans, livestock, and mosquitoes. They analyzed their model to determine the stability

and sensitivity of disease-free equilibrium. They used numerical methods to determine the

reproduction number.

Egil AJ Fischer (et al) developed a mathematical model that captured the probability of a

RVFV outbreak and the probability of persistence of the infection during consecutive years.

They applied their model to create risk maps of the Netherlands showing high risk areas for

RVF outbreak and for persistence of RVF in livestock. For these maps they considered host

species to be cattle, sheep and goats, and considered vector species to be Aedes Mosquitoes

and Culex Mosquitoes. They conducted an uncertainty analysis of the input parameters,

which yielded knowledge about influential input parameters and data gaps, which could

help focus future research and improve the accuracy of the model predictions. Their model

described the local spread of the infection in a predefined small area in which all hosts and

vectors mix homogeneously. In this study 5 by 5 kilometre area grids were used, based on

the highest possible resolution for modelled mosquito abundances. They assumed constant

host population sizes and no effect of temperature on host related parameters. Given that

activity and survival of mosquitoes during winter months and especially how that affects

the virus is poorly understood they assumed a period of stasis during winter, i.e. the

number of susceptible and infected vectors and the number of susceptible, infected and

recovered hosts at the beginning of the vector season is equal to the situation at the end

of the previous vector season implying that the infection cannot die out during the winter

in their model. For convenience they assumed stasis of the host as well. To test the effect

15



of stasis of the host they performed a sensitivity analysis to evaluate its impact and they

found a reappearing epidemic after a stasis period very quickly returning to the pattern of

a continued epidemic.

16



Chapter 3

THE MODEL

3.1 Compartmental Model and Differential Equations

We will use an SIS Compartmental Model in which individuals are either in a susceptible

(S) state or an infected (I) state for livestock populations. Livestock either die from the

infection or recover. The infected host(livestock) who recover become susceptible again

as Rift Valley Fever has no permanent immunity. We will use an SI Compartmental

Model for Aedes and Culex mosquitoes (vector) populations. Infectious Aedes and Culex

mosquitoes transmit Rift Valley Fever vector to susceptible livestock. We assume that

once mosquitoes become infected with Rift Valley Fever they do not recover. They remain

infected until death. Aedes mosquito will have vertical transmission to their eggs whereas

Culex Mosquito will not.
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The size of host populations isNL = SL+IL for livestock host. The size of vector population

is NA = SA + IA for Aedes Mosquito and NC = SC + IC for Culex Mosquito.

The compartmental model showing the interaction of Rift Valley Fever in humans and

livestock is given in figure 3.1.
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Figure 3.1: Compartmental Model
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The system of Ordinary Differential Equations representing the populations is given below:

Livestock Population Model

dSL(t)

dt
= λL − abASL(t)

IA(t)

NA

− abCSL(t)
IC(t)

NC

− µLSL(t) + γLIL(t)

dIL(t)

dt
= abASL(t)

IA(t)

NA

+ abCSL(t)
IC(t)

NC

− µLIL(t)− γLIL(t)− σIL(t)

Aedes Mosquito Population Model

dSA(t)

dt
= λA − abLSA(t)

IL(t)

NL

− µASA(t)

dIA(t)

dt
= λAN̄AϕA

IA(t)

NA

+ abLSA(t)
IL(t)

NL

− µAIA(t)

Culex Mosquito Population Model

dSC(t)

dt
= λC − abLSC(t)

IL(t)

NL

− µCSC(t)

dIC(t)

dt
= abLSC(t)

IL(t)

NL

− µCIC(t)

The parameters are described in the table below:
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Table 3.1: Description of Parameters

Parameter Description

1 SL Susceptible Livestock
2 SA Susceptible Aedes Mosquitoes
3 SC Susceptible Culex Mosquitoes
4 IL Infected Livestock
5 IA Infected Aedes Mosquitoes
6 IC Infected Culex Mosquitoes
7 µL Death rate of livestock in a population
8 µA Death rate of Aedes Mosquitoes in a population
9 µC Death rate of Culex Mosquitoes in a population
10 λL Birth rate of Livestock
11 λA Number of Aedes Mosquitoes eggs laid per day
12 λC Number of Culex Mosquitoes eggs laid per day
13 bL Probability a susceptible vector gets infected after biting an infected livestock
14 bA Probability a susceptible livestock gets infected after an infectious bite by Aedes M
15 bC Probability a susceptible livestock gets infected after an infectious bite by Culex M
16 γL Recovery rate of infected livestock
17 σ Disease induced death in Livestock
18 ϕA Probability of vertical infection of Aedes Mosquito eggs

We assume that births and deaths are equal. Given that we have disease induced death in

the livestock population model, the livestock population then cannot be constant. The total

mosquito population is constant. To prove this we will add up the differential equations

in the Livestock population model and the vector (Aedes and Culex Mosquito) population

model. We shall omit the independent variable t, for brevity in the preceding sections.This

yields the following:
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Livestock Population Model:

dSL
dt

+
dIL
dt

= λL −NLµL − σIL . . . . . . . . . . . . . . . (3.1)

Aedes Mosquito Population Model:

dSA
dt

+
dIA
dt

= λA + λAϕA
IA
NA

N̄A)−NAµA . . . . . . . . . . . . . . . (3.2)

Culex Mosquito Population Model:

dSC
dt

+
dIC
dt

= λC −NCµC . . . . . . . . . . . . . . . (3.3)
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3.2 Disease Free State

The disease free state implies that IL = 0, IA = 0 and IC = 0. This also implies that

NL = SL, NA = SA and NC = SC . From equation (3.1) we have that
dNL

dt
= λL − µLNL

which implies that
dNL

dt
+ µLNL = λL. The integrating factor is e

∫
µLdt = eµLt therefore

d

dt
(NLe

µLt) = λLe
µLt thus

∫
d

dt
(NLe

µLt) =

∫
λLe

µLtdt implying that NLe
µLt =

λLe
µLt

µL
+K

where K is any arbitrary constant. Thus N∗
L =

λL
µL

+Ke−µLt. At t = 0, NL(t) = N0
L. This

implies that N0
L =

λL
µL

+K. Hence K = N0
L −

λL
µL

. Therefore N∗
L =

λL
µL

+ e−µLt(N0
L −

λL
µL

).

Similarly from equation (3.2) we have that
dNA

dt
= λA − µANA which implies that

dNA

dt
+

µANA = λA. The integrating factor is e
∫
µAdt = eµAt therefore

d

dt
(NAe

µAt) = λAe
µAt thus∫

d

dt
(NAe

µAt) =

∫
λAe

µAtdt implying that NAe
µAt =

λAe
µAt

µA
+ K where K is any arbi-

trary constant. Thus N∗
A =

λA
µA

+ Ke−µAt. At t = 0, NA(t) = N0
A. This implies that

N0
A =

λA
µA

+K. Hence K = N0
A −

λA
µA

. Therefore N∗
A =

λA
µA

+ e−µAt(N0
A −

λA
µA

).

Finally from equation (3.3) we have that
dNC

dt
= λC − µCNC which implies that

dNC

dt
+

µCNC = λC . The integrating factor is e
∫
µCdt = eµCt therefore

d

dt
(NCe

µCt) = λCe
µCt thus∫

d

dt
(NCe

µCt) =

∫
λCe

µCtdt implying that NCe
µCt =

λCe
µCt

µC
+ K where K is any ar-

bitrary constant. Thus N∗
C =

λC
µC

+ Ke−µCt. At t = 0, NC(t) = N0
C . This implies that

N0
C =

λC
µC

+K. Hence K = N0
C −

λC
µC

. Therefore N∗
C =

λC
µC

+ e−µCt(N0
C −

λC
µC

).

At t = 0, N∗
L =

λL
µL

, N∗
A =

λA
µA

and N∗
C =

λC
µC

.
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3.3 Positively Invariant

We have a dynamic population thus SL can be obtained once we know IL and likewise

for SA and SC given that NL = SL + IL, NA = SA + IA and NC = SC + IC . Thus we

will analyze the dynamics of IL, IA and IC . Also of importance, all parameters are non

negative. Let δL = µL + γL + σ We will be looking at the following system of differential

equations:

dIL
dt

= (abA
IA
NA

+ abC
IC
NC

)(NL − IL)− δLIL . . . . . . . . . . . . . . . (3.4)

dIA
dt

= λAN̄AϕA
IA
NA

+ abL
IL
NL

(NA − IA)− µAIA . . . . . . . . . . . . . . . (3.5)

dIC
dt

= abL
IL
NL

(NC − IC)− µCIC . . . . . . . . . . . . . . . (3.6)

We define the region K as follows:

K = {(IL, IA, IC)|0 ≤ IL ≤ NL, 0 ≤ IA ≤ NA, 0 ≤ IC ≤ NC}

We want to show that K is positively invariant.
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Proof

When IL = 0 equation (3.4) becomes
dIL
dt

= (abA
IA
NA

+ abC
IC
NC

)NL ≥ 0 and the livestock

population can only increase. When IL = NL equation (3.4) becomes
dIL
dt

= −δLNL ≤ 0

and the livestock population can only decrease. Similarly when IA = 0, equation (3.5)

becomes
dIA
dt

= abL
IL
NL

NA ≥ 0 hence an increase in the Aedes mosquito population.

When IA = NA equation (3.5) becomes
dIA
dt

= −(µANA − λAN̄AϕA) ≤ 0 implying a

decrease in the Aedes Mosquito population. Finally, when IC = 0, equation (3.6) becomes

dIC
dt

= abL
IL
NL

NC ≥ 0 indicating an increase in the Culex mosquito population. When

IC = NC equation (3.6) becomes
dIC
dt

= −µCNC ≤ 0 indicating a decrease in the Culex

Mosquito Population. The vector fields cannot cross the positive orthant to the negative

hence positively invariant as shown in the region K of figure 3.2.
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Figure 3.2: Domain of Study
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3.4 Calculation of the Basic Reproduction Number

The basic reproduction number, R0 is defined as the average number of secondary cases

arising from an average primary case in an entirely susceptible population[10]. R0 is used

to predict whether the epidemic will spread or die out. In this section we will analyze the

dynamics of IL, IA and IC so as to be able to obtain R0. Let us thus look at the following

system of differential equations. Let ΛA = λAN̄AϕA
1

NA

. Thus

dIL
dt

= (abA
IA
NA

+ abC
IC
NC

)(NL − IL)− δLIL

dIA
dt

= abL
IL
NL

(NA − IA)− (µA − ΛA)IA

dIC
dt

= abL
IL
NL

(NC − IC)− µCIC

The above system can be represented in matrix form as İ = fI + vI where f is the matrix

of the infection rates and v is the matrix of the transition rates so that;

f=


(abA

IA
NA

+ abC
IC
NC

)(NL − IL)

abL
IL
NL

(NA − IA)

abL
IL
NL

(NC − IC)

 , v=


−δLIL

−(µA − ΛA)IA

−µCIC
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Now let:

f1 = (abA
IA
NA

+ abC
IC
NC

)(NL − IL)

f2 = abL
IL
NL

(NA − IA)

f3 = abL
IL
NL

(NC − IC)

Next we define F the Jacobian of f at (0, 0, 0). Let abA = βA, abC = βC and abL = βL.

Thus

F=


∂f1

∂IL

∂f1

∂IA

∂f1

∂IC
∂f2

∂IL

∂f2

∂IA

∂f2

∂IC
∂f3

∂IL

∂f3

∂IA

∂f3

∂IC



This implies that:

F =


0

βA
NA

βC
NC

βL
NL

0 0

βL
NL

0 0

, and we obtain V the Jacobian of v at (0, 0, 0). That is:

Let:

v1 = −δLIL

v2 = −(µA − ΛA)IA

v3 = −µCIC
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Thus:

V = −


∂v1

∂IL

∂v1

∂IA

∂v1

∂IC
∂v2

∂IL

∂v2

∂IA

∂v2

∂IC
∂v3

∂IL

∂v3

∂IA

∂v3

∂IC



This implies that:

V = −


δL 0 0

0 µA − ΛA 0

0 0 µC


We will now use Gauss Jordan elimination method to obtain V−1

Thus we have:

−


δL 0 0

0 µA − ΛA 0

0 0 µC

1 0 0

0 1 0

0 0 1



Dividing row 1 by δL, and row 2 by µA − ΛA and row 3 by µC yields the following:

28



−


1 0 0

0 1 0

0 0 0

1

δL
0 0

0
1

µA − ΛA

0

0 0
1

µC



Thus:

V−1 =


−(

1

δL
) 0 0

0 −(
1

µA − ΛA

) 0

0 0 −(
1

µC
)



Now we are going to obtain the metzler matrix that is (−FV−1).

−FV−1 =


0

βA
NA(µA − ΛA)

βC
NCµC

βL
NLδL

0 0

βL
NLδL

0 0



The spectral radius of the Metzler Matrix, ρ(−FV−1), is defined as the largest eigenvalue

of the Metzler Matrix[10].

Thus:

ρ(−FV−1) = |(−FV−1)− λ| =

∣∣∣∣∣∣∣∣∣∣∣

−λ βA
NA(µA − ΛA)

βC
NCµC

βL
NLδL

−λ 0

βL
NLδL

0 −λ

∣∣∣∣∣∣∣∣∣∣∣
=
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−λ

∣∣∣∣∣∣∣
−λ 0

0 −λ

∣∣∣∣∣∣∣−
βA

NA(µA − ΛA)

∣∣∣∣∣∣∣
βL
NLδL

0

βL
NLδL

−λ

∣∣∣∣∣∣∣+
βC

NCµC

∣∣∣∣∣∣∣
βL
NLδL

−λ
βL
NLδL

0

∣∣∣∣∣∣∣ = 0

Thus

−λ3 − βA
NA(µA − ΛA)

[
− βL
NLδL

]
λ+

βC
NCµC

[
βL
NLδL

]
λ = 0

which yields the following

−λ
[
λ2 −

(
βAβL

(NA(µA − ΛA))(NLδL)
+

βCβL
NCµC(NLδL)

)]
= 0

The ρ(−FV−1) = EV =

√
βL
NLδL

[
βA

NA(µA − ΛA)
+

βC
NCµC

]
. Thus the basic reproduction

number, R0 = (EV )2 and it will be given as

R0=
βL
NLδL

[
βA

NA(µA − ΛA)
+

βC
NCµC

]
. . . . . . . . . . . . . . . (3.7)

From the expression above for R0,
βL
NLδL

is the Livestock contribution to the R0 whereas

βA
NA(µA − ΛA)

is the Aedes contribution to R0 and finally
βC

NCµC
is the Culex contribution

to the R0.
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3.5 Global Stability of the Disease Free Equilibrium

The local dynamics of a general SIS and SI model is determined by the reproduction

number R0. If R0 ≤ 1, then each infected individual in its entire period of infectiousness

will produce less than one infected individual on average. This means that the disease

will be wiped out of the population. If R0 > 1, then each infected individual in its entire

infectious period having contact with susceptible individuals will produce more than one

infected individual implying that the disease persists in the population. If R0 = 1, and

this is defined as the disease threshold, then one individual infects one more individual.

For R0 ≤ 1 the disease free equilibrium is locally asymptotically stable while for R0 > 1

the disease free equilibrium becomes unstable. By using the theory of Lasalle-Lyapunov

function V , we will show the global asymptotic stability. The disease free equilibrium point

is (IL, IA, IC) = (0, 0, 0). ,

Theorem 3.1

If R0 ≤ 1, then the disease-free equilibrium (IL, IA, IC) = (0, 0, 0) of the system is globally

asymptotically stable on K.

Proof

We construct the following Lasalle-Lyapunov function V (IL, IA, IC) on the positively in-

variant compact set K. Thus on K, V (IL, IA, IC) is continuous and non negative.

We define

V (IL, IA, IC) = µC(µA − ΛA)IL +
βA
NA

µCIA +
βC
NC

(µA − ΛA)IC

Note that µA > ΛA
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The system of ordinary differential equations given by equations 3.4, 3.5 and 3.6 can be

written as


İL

İA

˙IC

 =


−δL

βA
NA

βC
NC

βL
NL

−(µA − ΛA) 0

βL
NL

0 −µC




IL

IA

IC



This can be written as İ = A(I) where A =


−δL

βA
NA

βC
NC

βL
NL

−(µA − ΛA) 0

βL
NL

0 −µC

 and I =


IL

IA

IC

. If we define vT =

[
µC(µA − ΛA),

βA
NA

µC ,
βC
NC

(µA − ΛA)

]
, then the derivative

along the trajectories is given by V̇ = vTA(I) as

vTA(I) =

[
µC(µA − ΛA),

βA
NA

µC ,
βC
NC

(µA − ΛA)

]

−δL

βA
NA

βC
NC

βL
NL

−(µA − ΛA) 0

βL
NL

0 −µC

=


−µCδL(µA − ΛA) +

βL
NL

βA
NA

µC +
βL
NL

βC
NC

(µA − ΛA)

βA
NA

µC(µA − ΛA)− µC(µA − ΛA)
βA
NA

βC
NC

(µA − ΛA)µC − µC
βC
NC

(µA − ΛA)

=
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−µCδL(µA − ΛA) + µCδL(µA − ΛA)

(
βLβA

NLδLNA(µA − ΛA)

)
+ µCδL(µA − ΛA)

(
βCβL

NCµCNLδL

)
0

0



vTA(I)T =

[
µCδL(µA − ΛA)

(
−1 +

βLβA
NLδLNA(µA − ΛA)

+
βCβL

NCµCNLδL

)
, 0, 0

]

vTA(I)T = µCδL(µA − ΛA) [(R2
0 − 1), 0, 0]

vTA(I)T = µCδL(µA−ΛA)(R0+1) [(R0 − 1), 0, 0] which is strictly decreasing whenR0 < 1.

Thus V̇ ≤ µCδL(µA − ΛA)(R0 + 1)(R0 − 1)IL

We define the set E =
{

(IL, IA, IC) ∈ K|V̇ (IL, IA, IC) = 0
}

. The largest invariant set is

contained in the set E for which IL = 0 or IA = 0 or IC = 0. Thus V̇ < 0 when R0 < 1.

If IL = 0 or R0 = 1 then V̇ = 0. Thus by Lasalle’s invariance principle the disease free

equilibrium is globally asymptotically stable on K.

33



3.6 Stability of the Endemic Equilibrium

When R0 > 1 then the unique endemic equilibrium exists and is asymptotically stable.

Let (I∗L, I
∗
A, I

∗
C) denote the endemic equilibrium. In order to obtain the expressions for

I∗L, I
∗
A, I

∗
C we equate the RHS of equations 3.4, 3.5 and 3.6 to zero and express I∗L, I

∗
A, I

∗
C

as shown below. For NL, NA, NC we substitute them with the expressions of N∗
L, N

∗
A, N

∗
C

obtained in section 3.2.

(
βAI

∗
A

N∗
A

+
βCI

∗
C

N∗
C

)(N∗
L − I∗L) = δLI

∗
L . . . . . . . . . . . . . . . (3.8)

βLI
∗
L

N∗
L

(N∗
A − I∗A) = (µA − ΛA)I∗A . . . . . . . . . . . . . . . (3.9)

βLI
∗
L

N∗
L

(N∗
C − I∗C) = µCI

∗
C . . . . . . . . . . . . . . . (3.10)

We can express equation 3.10 as follows

I∗C =
βLI

∗
LN

∗
C

βLI∗L +N∗
LµC

(3.11)
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Equation 3.9 can be written as

I∗A =
βLI

∗
LN

∗
A

βLI∗L +N∗
L(µA − ΛA)

(3.12)

Substituting the expressions of equations 3.11 and 3.12 in equation 3.8 yields the following

expression

[
βAβLI

∗
LN

∗
A

βLI∗L +N∗
L(µA − ΛA)

+
βCβLI

∗
LN

∗
C

βLI∗L +N∗
LµC

]
(N∗

L − I∗L)− δLI∗L = 0 . . . . . . . . . . . . . . . (3.13)

which can be expressed as

[δLβ
2
L + βAβ

2
LN

∗
A + βCβ

2
LN

∗
C ]I∗2

L +

[δLβLN
∗
LµC + δLβLN

∗
L(µA − ΛA) + βAβLN

∗
AN

∗
LµC + βCβLN

∗
CN

∗
L(µA − ΛA)− βAβ2

LN
∗
AN

∗
L −

βCβ
2
LN

∗
CN

∗
L]I∗L+

δLN
∗
L

2µC(µA − ΛA)− βAβLN∗
AN

∗
L

2µC − βCβLN∗
CN

∗
L

2(µA − ΛA) = 0 . . . . . . . . . . . . . . . , (3.14)

and equation 3.14 becomes
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[
I∗L +

δLβLN
∗
LµC + δLβLN

∗
L(µA − ΛA) + βAβLN

∗
AN

∗
LµC + βCβLN

∗
CN

∗
L(µA − ΛA)− βAβ2

LN
∗
AN

∗
L − βCβ2

LN
∗
CN

∗
L

2(δLβ2
L + βAβ2

LN
∗
A + βCβ2

LN
∗
C)

]2
=
βAβLN

∗
AN

∗
L
2µC + βCβLN

∗
CN

∗
L
2(µA − ΛA)− δLN∗

L
2µC(µA − ΛA)

δLβ2
L + βAβ2

LN
∗
A + βCβ2

LN
∗
C

+[
δLβLN

∗
LµC + δLβLN

∗
L(µA − ΛA) + βAβLN

∗
AN

∗
LµC + βCβLN

∗
CN

∗
L(µA − ΛA)− βAβ2

LN
∗
AN

∗
L − βCβ2

LN
∗
CN

∗
L

2(δLβ2
L + βAβ2

LN
∗
A + βCβ2

LN
∗
C)

]2
. . . . . . . . . . . . . . . . . . (3.15)

Let

ω = δLβ
2
L + βAβ

2
LN

∗
A + βCβ

2
LN

∗
C

ω1 = βAβLN
∗
AN

∗
L

2µC + βCβLN
∗
CN

∗
L

2(µA − ΛA)− δLN∗
L

2µC(µA − ΛA)

ω2 = δLβLN
∗
LµC+δLβLN

∗
L(µA−ΛA)+βAβLN

∗
AN

∗
LµC+βCβLN

∗
CN

∗
L(µA−ΛA)−βAβ2

LN
∗
AN

∗
L−

βCβ
2
LN

∗
CN

∗
L

Therefore

I∗L = −
[
δLβLN

∗
LµC + δLβLN

∗
L(µA − ΛA) + βAβLN

∗
AN

∗
LµC + βCβLN

∗
CN

∗
L(µA − ΛA)− βAβ2

LN
∗
AN

∗
L − βCβ2

LN
∗
CN

∗
L

2ω

]
+

[
4ωω1 + ω2

2

4ω2

] 1
2

=
1

2ω

[
−δLβLN∗

LµC − δLβLN
∗
L(µA − ΛA) − βAβLN

∗
AN

∗
LµC − βCβLN

∗
CN

∗
L(µA − ΛA) + βAβ

2
LN

∗
AN

∗
L + βCβ

2
LN

∗
CN

∗
L) +

√
4ωω1 + ω2

2

]

Let ω3 = −δLβLN∗
LµC − δLβLN∗

L(µA − ΛA) +
√

4ωω1 + ω2
2

I∗L =
1

2ω

[
ω3 −N∗

L
2δLµC(µA − ΛA)

(
βAβLN

∗
AN

∗
LµC + βCβLN

∗
CN

∗
L(µA − ΛA)

N∗
L
2δLµC(µA − ΛA)

)
+ βAβ

2
LN

∗
AN

∗
L + βCβ

2
LN

∗
CN

∗
L)

]
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I∗L =
1

2ω

[
ω3 −N∗

L
2δLµC(µA − ΛA)R2

0 + βAβ
2
LN

∗
AN

∗
L + βCβ

2
LN

∗
CN

∗
L)
]

I∗L =
1

2ω

[
ω3 + (βAβ

2
LN

∗
AN

∗
L + βCβ

2
LN

∗
CN

∗
L)

[
− N∗

L
2δLµC(µA − ΛA)

βAβ2
LN

∗
AN

∗
L + βCβ2

LN
∗
CN

∗
L)
R2

0 + 1

]

Let α2 =
N∗
L

2δLµC(µA − ΛA)

βAβ2
LN

∗
AN

∗
L + βCβ2

LN
∗
CN

∗
L)

Thus

I∗L =
1

2ω

[
ω3 + (βAβ

2
LN

∗
AN

∗
L + βCβ

2
LN

∗
CN

∗
L)(1− α2R2

0)
]

I∗L =
1

2ω

[
ω3 + (βAβ

2
LN

∗
AN

∗
L + βCβ

2
LN

∗
CN

∗
L)(1 + αR0)(1− αR0)

]
. . . . . . . . . . . . . . . (3.16)

The endemic equilibrium will thus be

I∗L =
1

2ω

[
ω3 + (βAβ

2
L

λA
µA

λL
µL

+ βCβ
2
L

λC
µC

λL
µL

)(1 + αR0)(1− αR0)

]
. . . . . . . . . . . . . . . (3.17)
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I∗A =
βLI

∗
LµLλA

µA(µLβLI∗L + λL(µA − ΛA))
. . . . . . . . . . . . . . . (3.18)

I∗C =
βLI

∗
LλCµL

µC(µLβLI∗L + λLµC)
. . . . . . . . . . . . . . . (3.19)

Theorem 3.2

The endemic equilibrium given by equations 3.17, 3.18 and 3.19 is locally asymptotically

stable on K.

Proof

We first obtain the Jacobian computed at the endemic equilibrium using the relations given

by equations 3.8, 3.9 and 3.10. Thus

J(I∗L, I
∗
A, I

∗
C) =


−(βA

I∗A
N∗
AI

∗
L

+ βC
I∗C

N∗
CI

∗
L

) δL
I∗L
I∗A

δL
I∗L
I∗C

(µA − ΛA)
I∗A
I∗L

−βL
I∗L

N∗
LI

∗
A

0

µC
I∗C
I∗L

0 −βL
I∗L

N∗
LI

∗
C



38



To determine the stability of the endemic equilibrium (I∗L, I
∗
A, I

∗
C), we use the Routh-

Hurwitz stability criteria on the characteristic equation of a third degree polynomial given

by P (λ) = λ3 + a1λ
2 + a2λ+ a3. We say that J(I∗L, I

∗
A, I

∗
C) is Hurwitz iff a1, a2, a3 > 0 and

a1a2 − a3 > 0.

The coefficient a1 = −trace(J(I∗L, I
∗
A, I

∗
C)), a2 = sum of all the principal minors of J(I∗L, I

∗
A, I

∗
C)

and a3 = −determinant(J(I∗L, I
∗
A, I

∗
C))

The trace of J will be given as

trace J = −a1 = −(βA
I∗A

N∗
AI

∗
L

+ βC
I∗C

N∗
CI

∗
L

)− βL
I∗L

N∗
LI

∗
A

− βL
I∗L

N∗
LI

∗
C

< 0, a2 will be

a2 =

∣∣∣∣∣∣∣∣
−(βA

I∗A
N∗
AI

∗
L

+ βC
I∗C

N∗
CI

∗
L

) δL
I∗L
I∗C

µC
I∗C
I∗L

−βL
I∗L

N∗
LI

∗
C

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
−(βA

I∗A
N∗
AI

∗
L

+ βC
I∗C

N∗
CI

∗
L

) δL
I∗L
I∗A

(µA − ΛA)
I∗A
I∗L

−βL
I∗L

N∗
LI

∗
A

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
−βL

I∗L
N∗
LI

∗
A

0

0 −βL
I∗L

N∗
LI

∗
C

∣∣∣∣∣∣∣∣

=

[
βA

I∗A
N∗
AI

∗
L

+ βC
I∗C

N∗
CI

∗
L

] [
βL(

I∗L
N∗
LI

∗
C

+
I∗L

N∗
LI

∗
A

)

]
+ β2

L

I∗2
L

N∗
L

2I∗AI
∗
C

− δL(µc + (µA − ΛA))

a2 > 0 iff

[
βA

I∗A
N∗
AI

∗
L

+ βC
I∗C

N∗
CI

∗
L

] [
βL(

I∗L
N∗
LI

∗
C

+
I∗L

N∗
LI

∗
A

)

]
+β2

L

I∗2
L

N∗
L

2I∗AI
∗
C

> δL(µc + (µA−ΛA))

and finally we obtain a3 we have the upper 2× 2 block of J(I∗L, I
∗
A, I

∗
C) given by
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M =

 −(βA
I∗A

N∗
AI

∗
L

+ βC
I∗C

N∗
CI

∗
L

) δL
I∗L
I∗A

(µA − ΛA)
I∗A
I∗L

−βL
I∗L

N∗
LI

∗
A


Hence the determinant of M is given by

det(M) =
βLβA
N∗
LN

∗
A

+ βLβC
I∗C

N∗
LN

∗
CI

∗
A

− δL(µA − ΛA), and det(J(I∗L, I
∗
A, I

∗
C)) = −a3 =

−βL
I∗L

N∗
LI

∗
C

[
βLβA
N∗
LN

∗
A

+ βLβC
I∗C

N∗
LN

∗
CI

∗
A

− δL(µA − ΛA)

]
+ µC

I∗C
I∗L

[
βLδL

I∗2
L

N∗
LI

∗
AI

∗
C

]

−a3 = −βL
I∗L

N∗
LI

∗
C

[
βLβA
N∗
LN

∗
A

+ βLβC
I∗C

N∗
LN

∗
CI

∗
A

− δL([µA − ΛA]− µC
I∗C
I∗A

)

]
< 0

To prove the Routh-Hurwitz stability criteria we compute a1a2 − a3 as

a1a2 − a3 =
βLβ

2
AI

2
A

N∗
LN

∗
A

2I∗CI
∗
L

+
βLβAβCI

∗
C

N∗
LN

∗
AN

∗
CI

∗
L

+
βAβ

2
L

N∗
AN

∗
L

2I∗C
+

βLβAβCI
∗
A

N∗
LN

∗
AN

∗
CI

∗
L

+
βLβ

2
CI

2
C

N∗
LN

∗
C

2I∗AI
∗
L

+

βCβ
2
L

N∗
CN

∗
L

2I∗A
+
βCβ

2
LI

∗
LI

∗
C

N∗
CN

∗
L

2I∗2
A

+
β3
LI

∗2
L

N∗
L

3I∗2
A I

∗
C

+
βAβ

2
LI

∗
LI

∗
A

N∗
AN

∗
L

2I∗2
C

+
β3
LI

∗2
L

N∗
L

3I∗AI
∗2
C

+
βLI

∗
L

N∗
LI

∗
A

(
βLβC
N∗
LN

∗
C

+
βLβA
N∗
LN

∗
A

−

δL(µA−ΛA))+
βLI

∗
L

N∗
LI

∗
C

(
βLβC
N∗
LN

∗
C

+
βLβA
N∗
LN

∗
A

−δLµC)+[
βLβC
N∗
LN

∗
C

+
βLβA
N∗
LN

∗
A

−δL(µc+(µA−ΛA)][
βAI

∗
A

N∗
AI

∗2
L

+

βCI
∗
C

N∗
CI

∗
L

] > 0

The requirements of Routh-Hurwitz stability criteria are satisfied hence this proves that

the endemic equilibrium is locally asymptotically stable.

40



Chapter 4

NUMERICAL ANALYSIS

In this section we shall explore the behavior of RVF when introduced into a naive envi-

ronment and conduct numerical simulations of an isolated system (that is, no immigration

or emigration). The model uses a daily time step and is solved by a fourth order Runge-

Kutta scheme. For each simulation, we start with 100 susceptible livestock animals, 100

susceptible Culex mosquitoes, 99 susceptible Aedes mosquitoes, 1 infected Aedes mosquito

and 1 infected Culex mosquito. We will run simulations to assess the expected vector and

host species prevalence. We start by defining the the values of the parameters as
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Table 4.1: Parameters with estimated values for numerical simulations
Parameter Value
µL 0.0028
µA 0.05
µC 0.05
λL 0.0028
λA 0.05
λC 0.05
bL 0.0021
bA 0.02
bC 0.0003
γL 0.14
σ 0.0312
a 10000
N̄A 15
ϕA 0.05

R0 = 0.0020544 < 1 indicating that the epidemic will be wiped out of the population.

R0 = 0 when bA = bC = 0. When ϕA = 0, R0 = 0.0020679. The numerical solution of the

system with initial conditions IL = 0, IA = 1, IC = 1, NL = 100, NA = 100 and NC = 101

over a period of two years is graphically shown below
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Figure 4.1: Numerical Solution of the System Showing (IL, IA, IC) vs time
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Chapter 5

CONCLUSION

In this study, we developed a mathematical model of Rift Valley Fever in Livestock in

Kenya. Our model captures the disease induced deaths in Livestock as RVF is known to

cause deaths in Livestock. Mathematical analysis was done and it was established that in

the absence of the disease a disease free equilibrium will always exist if R0 ≤ 1. We also

established that the endemic equilibrium exists in the presence of the disease that is when

R0 > 1 with the infectious population greater than zero. Reducing the vertical transmis-

sion in the Aedes Mosquito population R0 increases slightly. Reducing the infection in

the vector population reduces R0 greatly. Thus the best methods of controlling RVF is

to target the Aedes Mosquito and the Culex Mosquito. R0 is a threshold that completely

determines the global dynamics of disease transmission.

This model is a simplified representation of the complex biology involved in the epidemi-

ology of RVF. There is still a lot of details that could be incorporated into our model.

Some of the details that we could include in the model to make it better are the exposed

compartment and recovered compartment. Seasonal effects on mosquito population may

also be incorporated. Data for disease, vector and animal migration from RVF endemic
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regions need to be collected so that we can further test the validity of our model. Further

the global stability of the endemic equilibrium is in general unclear hence much studies

need to be done in order to understand it. We hope this model and these results will act

as a base for further investigation on this disease in Kenya.
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