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ABSTRACT 

 

Despite there being nationwide reduction in TB Cases incidence, there has been an increase in 

TB infection cases in various areas in the country  The use of registered numbers of reported new 

cases of TB is not enough to explain the distribution pattern and the determinants of the disease.  

Spatial statistics as method of analysis is a possible way to have the knowledge on the areas 

where the disease infection and distribution pattern is high.   

 

In this study we apply Integrated Nested Laplace Approximation (INLA). INLA is a new tool for 

Bayesian inference on Latent Gaussian fields which substitute Markov Chain Monte Carlos 

(MCMC) simulations with deterministic approximations to the posterior marginals of interest.  

Its main benefits are the extreme speed and the high accuracy of the results.  Moreover INLA can 

be easily implemented through the INLA-program and its R-interface. 

 

The study shows that TB prevalence is distributed different within the different provinces with 

Nyanza province having the largest number of the population with TB with a proportion of over 

15% followed by Rift Valley province with a prevalence of between 10% to 15%, the province 

with the least number of people with TB is North Eastern province with a prevalence of less than 

2%.  The study shows that there some areas in the country that have lesser health facilities, with 

North Eastern recording a negligible number of health facilities, this could imply that there may 

be more TB cases in the region, but due to lack of health facilities not all the active cases are 

registered 

The main factors that affect the spread of TB from the study include; poverty, proportion taught 

on spread and control of TB, urban residence, all these factors are significant each lying in the 

0.5 quant.  This implies that the government needs to put in place policy to improve the living 

standards of urban residents as well as the per capita income of her population. 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND INFORMATION 

Disease maps have a long history; Snow (1854) used maps to determine the spread of cholera.   

Mapping of TB epidemic in Kenya will provide a rapid visual summary of complex geographic 

information and may identify subtle patterns in the data that are missed in tabular presentations.   

In this study, maps will be used variously for descriptive purpose, to generate hypotheses as to 

etiology, for surveillance to highlight areas at apparently high risk, and this could aid policy 

formation and resource allocation.  Maps help place disease clusters and results of point-source 

studies in proper context (Wilkinson et al., 1997). 

 

Disease maps typically show standardized morbidity ratios for geographical areas such as 

counties and districts.  This can be calculated as the ratio of the observed positive cases or 

outcome of interest, in this study the observed positive case will be a TB reactive patient, to the 

expected number of number of positive cases (outcome) calculated by applying disease (TB) to 

the total population for the area of the study.  Homogeneity within aggregate groups is important 

for meaningful interpretation.  Openshaw (1984) described the modifiable area unit problem as, 

where there are different scales of measurements and different aggregation strategies that lead to 

different but equally valid maps that emphasize different features of the data.  The main aim is to 

choose geographic units that are as small as possible and the choice will be dictated by the 

availability of data. 

 

Bayesian statistics (Clayton and Kaldor, 1987) have been used to remove part of the random 

component from the map to give smoothed estimates of the relative risk in each area.  Such 

estimates are a compromise between the local value of the standard morbidity ratio and the mean 

value for the map as a whole.  Smoothing is greatest for the least-stable estimates.  Although 

map smoothing on average produces a more stable and realistic map, an important issue is the 

extent to which disease (TB) excesses any truly high-risk areas for example those more sparsely 

populated might be smoothed away.  The degree of smoothing will determine the trade-off 
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between high-risk areas correctly identified and areas without excess risk correctly identified 

(Richardson et al., 2004).  

Most recently, Bayesian methods have become commonplace in epidemiology and the 

pharmaceutical industry, and they are becoming more widely accepted in Public Health practice. 

As early as 1993, review articles appeared extolling the virtues of MCMC in medical 

applications (Gilks et al., 1993).  This increase in use has been facilitated by the implementation 

of software which provides a platform for the posterior distribution sampling which is necessary 

when relatively complex Bayesian models are employed.  Basic ideas in Bayesian modeling stem 

from the extension of the likelihood paradigm to allow parameters within the likelihood model to 

have distributions.  These distributions are called prior distributions.  Thus parameters are 

allowed to be stochastic.  By making this allowance, in turn, parameters in the prior distributions 

of the likelihood parameters can also be stochastic.  Hence a natural parameter hierarchy is 

established.  These hierarchical models form the basis of inference under the Bayesian paradigm.  

By combining the likelihood (data) model with suitable prior distributions for the parameters, a 

posterior distribution is formed which describes the behavior of the Bayesian Disease Mapping 

parameters after having seen the data. 

 

The processes for mapping disease differ from random in the variation in the receptiveness of the 

study area to receive a point.  In this study we shall apply approximate Bayesian inference using 

integrated nested Laplace approximations for latent Gaussian models.   The map will provide an 

initial description of the geographic variation of TB risk in Kenya, and might help in choice and 

design of intervention, which is crucial for reducing the burden of TB in Kenya.  Effective 

control requires evidence based utilization of resources.  The type and degree of interventions 

need to be based on epidemiological patterns of TB risk.  TB risk varies in space and time and 

hence it is important to describe the spatiotemporal variability of TB risk to guide control 

initiatives. 

 

In the last decade maps have been used at different geographical scales in Sub Sahara Africa.  In 

this study, analysis will seek to establish, to predict and map TB risk in Kenya using districts 

(old districts), as the referenced prevalence point.  Existing risk maps are based on a theoretical 
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expert opinion or cultural and economic factors, (prior information) but these have limited 

information as they fail to provide insight into the transmission of TB in Kenya.  It is important 

to characterize TB risk based on empirical evidence using TB specific indicator, in this case, TB 

prevalence infection in persons aged 15-49 years and assess its relationship with other risk 

factors.  Prediction of risk based on point referenced data present some challenges when the data 

is sparsely distributed; such data exhibit autocorrelation, such that locations close to each other 

have similar risk.  Hence models used should allow for spatial correlation, if otherwise the 

significance of the risk factors is overrated.  Analysis of point reference data could be carried out 

using geostatistical models to attain optimal prediction.  This approach allows simultaneous 

modeling of related issues such as risk assessment, spatial dependence, prediction and 

quantification of uncertainty.  Accurate prediction can as well be introduced by including 

environmental factors likely to influence TB transmission. 

 

In this study will apply the model-based geostatistical approach to analyze and predict TB risk in 

Kenya using referenced data from 71 districts in Kenya through the Ministry of Public Health 

and Sanitation, Division of Leprosy and TB.  We shall adopt a Bayesian framework for inference 

and prediction, implemented using Integrated Nested Laplace Approximation INLA which 

replaces MCMC method.  INLA is a new tool for Bayesian inference on Latent Gaussian fields 

which substitute MCMC simulations with deterministic approximations to the posterior 

marginals of interest.  Its main benefits are the extreme speed and the high accuracy of the 

results. Moreover, INLA can be easily implemented through the INLA-program and its R-

interface.  Many models currently used in survival analysis can be cast into the Latent Gaussian 

fields framework and therefore be easily computed and analyzed.   

 

Kenya ranks 13th on the list of 22 high-burden tuberculosis countries in the world and has the 

fifth highest burden in Africa.  According to the World Health Organization’s (WHO’s) Global 

TB Report 2009, Kenya had approximately more than 132,000 new TB cases and an incidence 

rate of 142 new sputum smear-positive (SS+) cases per 100,000 population. Kenya’s National 

Division of Leprosy, TB & Lung Disease (DLTLD) began to implement the WHO-

recommended DOTS (Direct observation therapy) the internationally recommended strategy for 
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TB control, strategy in 1993 and reported 100 percent DOTS coverage by 1996.  In 2005, the 

DOTS case detection rate reached WHO’s target of 70 percent and rose to 72 percent in 2007. 

The DOTS treatment success rate also met WHO’s target of 85 percent in 2007.  Data from the 

national program show that Kenya had met the target for the treatment success rate in 2007. 

WHO estimates there were around 2,000 cases of multidrug-resistant (MDR) TB in Kenya in 

2007, although only 4.1 percent of these cases were diagnosed and notified.  There is a policy 

supporting MDR-TB diagnosis, treatment and a laboratory testing facility. 

 

Kenya continues to treat more and more TB patients each year.  However, widespread co-

infection with HIV (close to 48 percent of new TB patients) makes TB treatment difficult.  While 

the number of new cases appears to be declining, the number of patients requiring re-treatment 

has increased.  The government placed the National Leprosy and Tuberculosis Program (NLTP) 

expanded to National Division of Leprosy, TB & Lung disease (DLTLD) and the national 

HIV/AIDS program in the same division in the Ministry of Health (MOH) to better address 

TBHIV/ AIDS co-infection.  This resulted in increased collaborative TB-HIV/AIDS activities 

across the country.  In 2007, the government demonstrated increased political commitment by 

upgrading the then-NLTP to a division within the MOH (DLTLD) and increased funding for TB 

control.  With donor support, a greater proportion of TB patients benefited from improved DOTS 

services.  The DLTLD implements TB-HIV/ AIDS treatment services, community-based DOTS 

(C-DOTS), and public-private mix (PPM) DOTS, as well as activities to address MDR-TB. 

 

According to WHO/TB 1997, the re-emergence of infectious and communicable disease such as 

tuberculosis in Africa has been blamed on various problems such as poor epidemic surveillance; 

lack of medicine and medical services, weak health systems and poor health conditions.  An 

estimated cumulative tuberculosis death stood at 30 million during the period 1990-1999 of 

which 6 million occurred in sub-Saharan Africa.  Tuberculosis is perhaps the most important 

contagious disease in the World that causes millions of avoidable deaths worldwide.  
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1.1 STATEMENT OF THE PROBLEM 

Despite there being nationwide reduction in TB Cases, there has been an increase in TB infection 

cases in various areas in the country. The use of registered numbers of reported new cases of TB 

is not enough to explain the distribution pattern and the determinants of the disease.  Spatial 

statistics is a possible way to have the knowledge on the areas where the disease infection and 

distribution pattern has a high occurrence rate.  

 

1.2 OBJECTIVES 

The overall objective in this study is to identify the distribution patterns and determinants of 

TB prevalence in Kenya 

The specific objectives that will be considered in the study are: 

1. To examine the distribution pattern of TB using maps. 

2. To examine the factors leading to spread and infection of TB. 

3. To detect whether the set of locations observed contains clusters of events reflecting 

areas with associated increase in the likelihood of occurrence.  

 

1.2.1 JUSTIFICATION OF THE STUDY 

There will be additional knowledge added to the body of investigating disease prevalence.  The 

method of data collection using geographic referencing (district are geo-referenced) is the best 

and most effective way of collecting TB data.  There is need to identify the hotspots for TB 

prevalence in Kenya especially in most vulnerable locations for proper planning and 

administration. 
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CHAPTER 2: LITERATURE REVIEW 

Kazembe (2006), a model-based geostatistical methods were applied to analyze and predict 

malaria risk in areas where data was not observed.  Topographical and climatic covariates were 

added in the model for risk assessment and improved prediction. A Bayesian approach was used 

for model fitting and prediction.  The results; Bivariate models showed a significant association 

of malaria risk with elevation, annual maximum temperature, rainfall and potential 

evapotranspiration (PET).  However in the prediction model, the spatial distribution of malaria 

risk was associated with elevation, and marginally with maximum temperature and PET.  The 

resulting map broadly agreed with expert opinion about the variation of risk in the country, and 

further showed marked variation even at local level.  High risk areas were in the low-lying lake 

shore regions, while low risk was along the highlands in the country. The map provided an initial 

description of the geographic variation of malaria risk in Malawi, and might help in the choice 

and design of interventions, which is crucial for reducing the burden of malaria in Malawi. 

 

Kazembe et al., (2006), this paper used Pediatric ward register data from Zomba district, Malawi, 

between 2002 and 2003, as a case study.  Two spatial models were developed.  The first was a 

Poisson model applied to analyze hospitalization and minimum mortality rates, with age and sex 

as covariates.  The second was a logistic model applied to individual level data to analyze case-

fatality rate, adjusting for individual covariates.  Rates of malaria hospitalization and in-hospital 

mortality decreased with age.  Case fatality rate was associated with distance, age, wet season 

and increased if the patient was referred to the hospital.  Furthermore, death rate was high on 

first day, followed by relatively low rate as length of hospital stay increased.  Both outcomes 

showed substantial spatial heterogeneity, which may be attributed to the varying determinants of 

malaria risk, health services availability and accessibility, and health seeking behaviour.  The 

increased risk of mortality of children referred from primary health facilities may imply 

inadequate care being available at the referring facility or the referring facility is referring the 

more severe cases which are expected to have a higher case fatality rate.  Improved prognosis as 

the length of hospital stay increased, suggest that appropriate care when available can save lives. 
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Reducing malaria burden may require integrated strategies encompassing availability of adequate 

care at primary facilities, introducing home or community case management as well as 

encouraging early referral, and reinforcing interventions to interrupt malaria transmission. 

 

Marshall (1990), mapping disease and mortality rates using empirical Bayes estimators.  A new 

empirical estimator with parameters simplify estimated by moments is compared by iterative 

alternatives suggested by Clayton and Kaldor (1987).  These methods are shrinkage estimators,   

in which the crude disease rate is shrunk towards an overall regional rate, and are in this sense 

global and invariant to spatial configuration.  However it seems unjustifiable in effect, to ignore 

the spatial aspect of the problem.  A local shrinkage estimator is therefore also suggested in 

which the crude rate is shrunk towards a local, neighborhood rate.  Comparison of the estimators 

is done by some simulation experiments and an example showing infant mortality in Auckland, 

New Zealand is presented.  When disease is relatively rare a global estimator gives the lowest 

total mean-square error, but for diseases that are more common and where the underlying spatial 

pattern is not uniform the local estimator performs best. 

 

Ying (2003), the study uses hierarchical spatial models for the analysis of the geographical 

distribution of a non-rare disease.  The work is motivated by the need for ascertaining regional 

variations in health services outcomes and resource use and for assessing the potential sources of 

these variations.  The models discussed in this paper readily accommodate random spatial effects 

and covariate effects.  Bayesian inferential framework and implementation of a hybrid Markov 

chain Monte Carlo method for full Bayesian model inference is discussed.  This paper presented 

statistical methods for small area mapping of non-rare disease rates whose binomial sampling 

variation could not be approximated by a Poisson model.  It discussed Bayesian spatial modeling 

and spatial smoothing of relative odds ratios where local information relevant to the rate odds for 

each individual area and ‘global’ information relevant to the overall dispersion of the underlying 

spatial disease rates are integrated via a Markov random field Gaussian prior. Specifically, the 

hyperparameter characterizes extra-binomial variation while depicts the degree of spatial 

autocorrelation within the data, that is, the inclination for areas of immediate neighbors to have 

similar disease rates.  The model framework readily accommodates covariate effects, which 
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makes it possible to quantify the influence of geographically structured risk factors on disease 

occurrence and to further investigate residual variation in small-area disease risks that likely 

result from latent or unexplained covariate effects.  To enable meaningful and reliable 

comparison of spatial disease rate odds, the paper discussed full Bayesian inference.  The full 

Bayesian methods enabled the researcher to thoroughly investigate various properties of the 

posterior distribution of any model parameter and to adequately assess the uncertainty associated 

with risk prediction.  Methodological innovations in Markov chain Monte Carlo algorithms have 

enabled Bayesian statisticians to select, among various Bayesian computational tools, suitable 

algorithms for their particular analytic or application purposes. 

 

Cressie and Chan (1989), spatial modeling of regional variables; accumulated sudden infant 

death syndrome data, from 1974-1978 and 1979-1984 for counties of North Carolina.  After a 

spatial exploratory data analysis, Markov random –field model was fitted to the data.  The spatial 

trend was to capture the large scale variation in the data, and the variance and spatial dependence 

were to capture the small-scale variation.  The principal feature of these data was that they come 

as counts from known or estimated base.  It can be shown that probabilities can numerically 

represent a set of rational beliefs, that there is a relationship between probability and information, 

and that Bayes rule provides a rational method for updating beliefs in light of new information. 

The flexible modeling of disease could require switching between a variety of relatively complex 

models.  In this case it is convenient to have an efficient and flexible posterior sampling method 

which could be applied across a variety of models. The efficient algorithms for this purpose were 

developed within the fields of physics and image processing to handle large scale problems in 

estimation.  

 

Owino et al., (2008), the study used Durbin modeling to answer the listed questions: where are 

the poor and what are their characteristics.  Petrucii et al., (2004), mapping poverty in Ecuador, 

the study applies autologistic regression model adjusting for literacy, household size, mortality 

rates, temperature, land among other covariates.  The results were used for poverty alleviation 

programs, emergency response and food aid. 
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Integrated nested Laplace approximation (INLA) provides a fast and yet quite exact approach to 

fitting latent Gaussian models which comprise many statistical models, including models with 

temporal or spatial dependence structures (Rue et al.,2009).  As a result, many complex models 

that previously required the use of time-consuming Markov chain Monte Carlo (MCMC) 

calculations can be fitted fast and conveniently.  Log Gaussian Cox processes, a particularly 

flexible class of spatial point process models are a special case of latent Gaussian models.  Rue et 

al., (2009), Illian et al.,(2012) and Illian and Rue (2010), showed that complex point process 

models, including hierarchically marked point processes may conveniently be fitted with INLA. 

Standard approaches to parameter estimation for complex models based on MCMC, for example, 

would be very cumbersome and computationally prohibitive.  Fitting spatial point process 

models to some spatial patterns is computationally intensive due to – amongst other things – the 

large number of individual points in the data set (Burslem et al., (2001); Waagepetersen (2007); 

Waagepetersen and Guan (2011); Law, Illian et al.,( 2009)).  In some applications difficulties 

arise since point patterns with only a very small number of points can be collected, due to 

logistic limitations (e.g. for reasons of accessibility).  These patterns are sometimes too small to 

justify the modeling of a single pattern.  However, if replicates exist, a joint model of all 

replicates with a factor that accounts for variability among replicates caused by different 

conditions on different days may be more suitable.  Mixed effect models for replicated point 

patterns have recently been considered in a frequentist approach for Gibbs processes (Illian and 

Hendrichsen (2010)).  In that approach, parameter estimation was based on the pseudolikelihood 

of a Gibbs process as well as maximum quasi-likelihood optimization. 

 

The aim of this study is to use the geostatistical method to a situation in which the stochastic 

variation is known to be latent Gaussian.  In current geostatistical practice, the most widely 

implemented methodology for coping with latent Gaussian problems is trans-Gaussian kriging 

(Cressie, 1991), which consists of applying standard Gaussian methods after marginal non-linear 

transformation.  In contrast the proposal is to embed linear kriging methodology within a more 

general distributional framework, analogous to the embedding of the Gaussian linear, model for 

mutually independent data within the framework of the generalized linear model (Nelder and 

Wedderburn (1972); McCullagh and Nelder (1989)). 
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CHAPTER 3 : METHODOLOGY 

3.1 DATA DESCRIPTION 

Data used in this study were obtained from the register of public, private and mission health 

facilities in Kenya between 2009 and 2010.  There are over 5,000 health facilities in the region 

and these facilities are managed by the Ministry of Public Health and Sanitation, Private Investor 

and Mission Organization (The Kenya National Health facility database, 2008).  Only the geo-

reference health facilities will be mapped. 

 

For this study, cases with primary diagnosis as TB positive from the hospital register were used. 

The register included patient age in years, area of residence; number taught about TB control and 

infection, Tested for HIV, poverty index will be used from the KNBS database.  Based on the 

location of the facility in the province, each case was matched to one of the districts in the 

province. Only geo-referenced cases were included in the spatial analysis, using districts as the 

spatial unit. The population at risk for the age 15-24 years and 25-49 year and, residential 

district, projected from 2008 census were obtained from KNBS office.  Data used in the study is 

hospital routine data collected by the Ministry of Health and Sanitation Division of Leprosy and 

TB through different Government health facilities across the nation. The data contain both 

qualitative and quantitative variables. 

3.2 MODELS 

3.2.1 BAYESIAN INFERENCE  

The Bayesian methods provide, parameter estimates with good statistical properties of the 

observed data, prediction for missing data and forecast of future data.  It also provides a 

computational framework for model estimation, selection and validation. Thus, this method goes 

beyond the formal task of induction for which the method is derived.  The numeric values of 

population characteristics are typically expressed in terms of a parameter    and a numeric 

description of the subset make up a data set  x .  We note that before the dataset is obtained, the 

numeric values of both the population characteristics and the data set are uncertain.  After a data 

set x  is obtained the information it contains can reduce our uncertainty in the purpose of 

Bayesian inference.  The sample space S  is the set of all possible datasets, from which a single 
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data set x  will result.  The parameter space   is the set of possible parameter values, from 

which we hope to identify the value that best represents the true population characteristics. The 

Bayes’ rule does not tell us what our beliefs should be, but rather tells us how they should 

change after realizing new information. 

 

The assumption of spatial correlation at a hierarchical level above the likelihood is a fundamental 

assumption often made in Bayesian small health data modeling.  This means that the correlation 

appears in prior distributions rather than in the likelihood itself.  Often parameters are given such 

priors and the interpretation of prior distribution is that they provide additional ‘data’ for a 

problem and hence they can be used to improve estimation of parameters. A prior distribution is 

improper if its normalizing constant is infinite, while impropriety is a limitation of any prior 

distribution, it is not necessarily the case that an improper prior will lead to impropriety in the 

posterior distribution.  The posterior distribution can often be proper even with an improper prior 

specification.  Prior distribution and likelihood provide two sources of information about a 

research problem.  The likelihood informs about the parameter through the data, while the prior 

distributions inform via prior assumptions.  For a large sample size, the likelihood will contribute 

more to the relative risk estimation.  The product of the likelihood and the prior distributions is 

called the posterior distribution.  This distribution describes the behavior of the parameters after 

the data are observed and prior assumptions are made.  For statistical hypothesis testing, the use 

of simulation approach is most suitable because of the complexity inherent in spatial processes; it 

is sometimes difficult to derive a legitimate test statistic whose probability distribution is known. 

An alternative approach is to use the computer to simulate multiple random spatial patterns, the 

spatial statistic is calculated for each, and then displayed as a frequency distribution.  This 

simulated sampling distribution can then be used to assess the probability of obtaining our 

observed value for the index if the pattern had been random. 

 

Likelihood function 

Likelihood for data 
 nxxx ,..., 21  
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functions.  It is assumed that the sample values  x  given the parameters are independent, and 

hence we take the product of individual contribution in (3.1).  Thus, the data is assumed to be 

conditionally independent.  It is important to note that in many spatial applications the data 

would not be unconditionally independent and would be in fact correlated.  This is important in 

disease mapping application which will be employed in this study.  The logarithm of the 

likelihood is  
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and this is useful in model development. 

        

 

Posterior distribution  

The product of the likelihood and the prior distribution is called the posterior distribution. This 

distribution describes the behaviour of the parameters after the data are observed and prior 

assumptions are made. 

The posterior is defined as   

  

CgxLxg /)()|()|(    (3.3) 

                                                                                          

where  

  dgxLC )()|(



 (3.4) 

 

where ( )g  is the prior distribution of   .  Equation (3.3) can be equivalently represented as  
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 )()|()|(  gxLxg  . (3.5) 

   

In this study our model representation reduces to  

 

 )()|()|(  gxLxg   (3.6) 

   

where )(g  is a gamma distribution with parameters ,  , that is  
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


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


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
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),θβexp(θ
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α

otherwise,

0β,α;0θ 

 

(3.7) 

 

 

and we write  

 ),(~  G .  

Moreover, )eθ(Poisson~θ|x
ii

 where 
i

e  is the relative risk so that 

   

 !/)exp()()|(
1

ii

x
n

i

i xeexL i  


 (3.8) 

   

and the posterior distribution for fixed  , is  
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1

1

1 
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


 

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
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x
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n

i

i

 
(3.9) 

   

which is a gamma distribution with parameters  
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The posterior and the prior distributions belong to the same family and hence the Gamma family 

is said to be conjugate to the Poisson. 

 

In Bayesian inference if there is more than one level, then in the second level the prior’s are 

referred to as hyper-priors and the corresponding parameters are called hyper-parameters. 

Illustration for a Poisson distribution is as follows:  For the first level 

 )eθ(Poisson~θ|x
ii

  

 ),(~,|  G   

and for the second level we have  

 )(~|  h   

 )(~|  h  
 

 

   

3.2.2 MARKOV CHAIN MONTE CARLO (MCMC) METHODS  

Models in disease mapping have two or more levels and the resulting complexity of the posterior 

distribution of the parameters requires the use of sampling algorithms.  In addition, the flexible 

modeling of the disease (TB) could require switching between a variety of relatively complex 

models.  In this case, it is convenient to have an efficient and flexible posterior sampling method 

which could be applied across a variety of models. 

MCMC methods are a set of methods which use iterative simulation of parameter values within a 

Markov chain.  The convergence of this chain to a stationary distribution, which is assumed to be 

the posterior distribution, must be assessed. 

 

A major limitation towards more widespread implementation of Bayesian approaches is that 

obtaining the posterior distribution often requires the integration of high-dimensional functions. 
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This can be computationally very difficult, but several approaches short of direct integration 

have been proposed (Smith (1991); Evans and Swartz (1995); Tanner (1996)).  We focus here on 

MCMC methods, which attempt to simulate direct draws from some complex distribution of 

interest.  MCMC approaches are so-named because one uses the previous sample values to 

randomly generate the next sample value, generating a Markov chain (the transition probabilities 

between sample values are only a function of the most recent sample value).  The realization in 

the early 1990’s (Gelfand and Smith (1990)) that one particular MCMC method, the Gibbs 

sampler, is very widely applicable to a broad class of Bayesian problems has sparked a major 

increase in the application of Bayesian analysis, and this interest is likely to continue expanding 

for some time to come.  MCMC methods have their roots in the Metropolis algorithm 

(Metropolis and Ulam (1949); Metropolis et al., (1953)), an attempt by physicists to compute 

complex integrals by expressing them as expectations for some distribution and then estimate 

this expectation by drawing samples from that distribution.  The Gibbs sampler (Geman and 

Geman (1984)) has its origins in image processing.  Excellent and detailed treatments of MCMC 

methods are found in Tanner (1996) and Draper (2000).   

 

Monte Carlo Integration  

The origin of Monte Carlo approach was a method developed by physicist to use random 

numbers generated to compute integrals.  Suppose we wish to compute a complex integral  

 


b

a

dxxh )(  (3.10) 

If we can decompose )(xh into the production function )(xp  and a probability density function 

)(xf  defined over the interval ),( ba , then we note that 

   

b

a

XpEdxxfxp )()()(  (3.11) 
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so that the integral can be expressed as an expectation of )(Xp over the density )(xf .  Thus, if 

we draw a large number nXX ,...,1 of random variables from the density )(xf , then equation 

(3.11) can be approximated by 

   

   )(
1

)(
1





n

i

ixp
n

XpE . (3.12) 

   

This is referred to as Monte Carlo integration. 

Monte Carlo integration can be used to approximate posterior of marginal posterior distributions 

required for a Bayesian analysis.  Consider the integral 

 


b

a

dxxfxypyI )()|()(
 

             )|( XypE  

)(ˆ)|(
1

1

yIxyp
n

n

i

i  


 

 

 

 

 

 

(3.13) 

where )(ˆ yI is the estimate of )(yI  and  ix  are draws from the density )(xf .  The estimated 

Monte Carlo standard error is given by  

   

 

  



n

i

i yIxypyISE
1

2))(ˆ)|(()(ˆ . (3.14) 
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The Markov chain 

Let tX  denote the value of a random variable at time t , and let the state space refer to the range 

of possible values of X .  The random variable is a Markov process if the transition probabilities 

between different values in the state space depend only on the random variable’s current state. 

Let nXXX ,...,, 21  be random variables, we say that tX  satisfies Markov condition if  

   

 )|(),...,|( 101 itjtitkjt sXsXPsXsXsXP   . 
(3.15) 

 

Thus, for a Markov random variable the only information about the past needed to predict the 

future is current state of the random variable, knowledge of the values of earlier state do not 

change the transition probability.  A Markov chain refers to a sequence of random variables 

),...,( 1 nXX  generated by a Markov chain.  A particular chain is defined most critically by its 

transition probabilities,  

  

)|( 1 itjtij sXsXPP    (3.16) 

 

which is the probability that a process  tX  at state is  at time t  moves to state js  at time 1t  . 

Let  

 )()( jtj sXPt π  (3.17) 

denote the probability that the chain is in state j at time t , and let )(tπ denote the row vector of 

the state space probabilities at time t .  We start the chain by specifying a starting vector )0(π .  

Often all elements of )0(π  are zero except for a single element of  1, corresponding to the 

process starting in that particular state.  As the chain progresses, the probability values get spread 

out over the possible state space. 



 

 19  

 

The probability that the chain is in  state is , at time 1t  is given by the Chapman-Kolmogorov 

equation, which sums over the probabilities of being in particular state at the current step and the 

transition probability from that state into state is , 

 

 )()1( 1 iti sXPt  π  

           = )()|( 1 ktkti

k

t sXPsXsXP    

          =
)(tp

k

kki 
 

 

          

 

           (3.18) 

   

Successive iteration of the Chapman- Kolmogorov equation describes the evolution of the chain, 

we can more compactly write the Chapman- Kolmogorov equation in matrix form as follows. 

Define the probability transition matrix P as the matrix whose thji ),(  element is ijp .  The 

Chapman- Kolmogorov equation becomes 

 

 Ptt )()1( ππ   (3.19) 

 

Using the matrix form, we immediately see how to quickly iterate the Chapman- Kolmogorov 

equation, as  

 2

)2())2(()1()( PtPPtPtt  ππππ . 

 

(3.20) 

Continuing in this fashion shows that  

 t

Pt )0()( ππ  . 
(3.21) 

Defining the n step transition probability 
)(n

ijp as the probability that the process is in the j  

given that it started in state i  n  steps ago, that is 
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)|(
)(

itjnt

n

ij sXsXPp    

 

(3.22) 

it immediately follows that 
)(n

ijp is just the thij  element of nP . 

A Markov chain is said to be irreducible if there exists a positive integer ijn  such that 0
)(


n

ijp  

for all ji, , that is, all states communicate with each other, as one can always go from any state.  

 

3.2.3 THE GIBBS SAMPLER 

The Gibbs sampler is a special case of Metropolis-Hastings sampling.  The task remains to 

specify how to construct a Markov chain whose values converge to the target distribution.  Key 

to the Gibbs sampler is that one only considers univariate conditional distribution – the 

distribution when all of the random variables but one are assigned fixed values.  Such conditional 

distributions are far easier to simulate than complex joint distributions and usually have simpler 

forms (often being normal, or other common prior distributions).  Thus, one simulates n  random 

variables sequentially from the n  univariate conditionals rather than generating a single n  

dimensional vector in a single pass using the full joint distribution. 

 

To introduce the Gibbs sampler, consider a bivariate random variable ),( yx , and suppose we 

wish to compute one or both marginals, 

 )(xf  and )(yf . 

 

 

The idea behind the sampler is that it is far easier to consider a sequence of conditional 

distributions, 

 )|( yxf  and )|( xyf ,  

than it is to obtain the marginal by integration of the joint density ),( yxf  , for example  

 






 dyyxfxf ),()( . (3.23) 
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The sampler starts with some initial value 0y  for y and obtains 0x  by generating a random 

variable from the conditional distribution  

 )|( 0yyxf   (3.24) 

The sampler then uses 0x to generate a new value of 1y , drawing from the conditional 

distribution based on the value 0x , 

 )|( 0xxyf  . (3.25) 

In general, the sampler proceeds by drawing tx  from  

 )|(~ 1 tt yyxfx  (3.26) 

and drawing ty  from    

 )|(~ tt xxyfy  . (3.27) 

 

Repeating this process K  times, generates a Gibbs sequence of length K , where a subset of 

points ),( jj yx  for Kj 1  are taken as the simulated draws from the full joint distribution, 

one samples the chain after a sufficient burn-in to remove the effects of initial sampling values at 

set time points following the burn-in.  The Gibbs sequence converges to a stationary distribution 

that is independent of the starting values, and this stationary distribution is the target distribution 

we are trying to simulate (Tierney, 1994).  The Gibbs sampler can be easily fitted using R 

software. Below is a theoretical illustration. 

Take ),...,( )0()0(

1

)0(

Kxxx   from )()0( xf  with 0)( )0( xf , and iterate for ,...2,1t  

 

 
.1   Generate ),...,|(~ )1()1(

211

)(

1

 t

K

tt xxxfx .  

    

 
.k   Generate ),...,,,...,|(~ )1()1(

1

)(

1

)(

1

)( 



t

K

t

k

t

k

t

kk

t

k xxxxxfx .  

    

 

.K   Generate ),...,|(~
)(

1

)(

1

)( t

K

t

KK

t

K xxxfx  . 
                    (3.28) 
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Under mild regularity conditions, the distribution of ')(

1 ),...,( t

K

tt xxx   denoted by )()( xf t  will 

converge to )(xf . 

 

3.2.4 MODEL BASED GEOSTATISTICAL APPROACH   

Geostatistical methodology is applied to solve the problem of predicting the realized value of a 

linear function of a Gaussian spatial stochastic process based on observations ( )i i iY S x Z   at  

sampling locations  ix , where  the  iZ   are mutually independent , zero -mean Gaussian random 

variables . 

The theoretical framework for our extension of geostatistical methods is that, conditionally on 

the unobserved process )(XS  observations at sample locations ix  form a generalized linear 

model with the corresponding values ( )iS x appearing as an offset effect in the linear predictor.  

We use a Bayesian inferential framework implementing via the INLA (which replaces Markov 

chain Monte Carlo method), to solve the prediction problem for non linear functions, making a 

proper allowance for the uncertainty in the estimation of any model parameters. 

Kriging refers to a widely used method for interpolation or smoothing spatial data.  Given a set 

of data ,,..,1, niyi 
 

at spatial locations the kriging predictor for the underlying spatial 

surface, )(XS  say takes the form 

 
i

n

i

i yXwXS )()(ˆ

1




  
 

(3.29) 

 

Where the kriging weighs  )(Xwi  are derived from the estimated mean and covariance structure 

of the data.  For a model based derivation, we can assume that the data are generated by the 

model 

 
iii ZXSY  )(    ,    ,,...,1 ni   (3.30) 
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where  is a constant mean effect, )( iXS is a stationary Gaussian process with   0)(  XS  and 

)())(),(( 2 XXXSXSCov   , where 2  and   are variance and correlation function 

respectively and iZ  are mutually independent.  An equivalent formulation is that, conditionally 

on )( iXS , the iY  are mutually independent and  

 
)),((~)(|

2

 iii XSNXSY  . (3.31) 

   

These distributional assumptions are often not made explicit.  However the linear predictor 

(3.29) might be regarded as a natural choice under Gaussian assumptions, since it then minimizes  

  

]))()(ˆ[( 2XSXSE 
 

(3.32) 

 

The bald statement that kriging is linear prediction conceals a large body of methodology, 

collectively known as geostatistics in acknowledgment of its origin in mineral exploration.  

Much of the early development of geostatistical methodology was undertaken by Matheron et al., 

(1970).  More recent text book accounts include Journel and Huijbregs (1978) and Isaaks and 

Srivastava (1989).  Parallel independent development in stochastic process prediction (Whittle, 

1963) and in the analysis of spatial variation (Matern, 1960) eventually led to placing of 

geostatistical methods within the wider setting of spatial statistics.  This is further explained in 

Cressie (1991) and Ripley (1981). 

 

The aim of this study is to use the geostatistical method to a situation in which the stochastic 

variation is known to be latent Gaussian.  In current geostatistical practice, the most widely 

implemented methodology for coping with latent Gaussian problems is trans-Gaussian kriging 

(Cressie, 1991), which consists of applying standard Gaussian methods after marginal non-linear 

transformation.  In contrast, the proposal is to embed linear kriging methodology within a more 

general distributional framework, analogous to the embedding of the Gaussian linear, model for 

mutually independent data within the framework of the generalized linear model (Nelder and 

Wedderburn, 1972; McCullagh and Nelder, 1989). 
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Spatial Correlation 

Within spatial application it is often found that correlation will exist between spatial units.  This 

correlation is geographical and relates to the basic idea that locations close together in space 

often have similar values of outcome variables while locations far apart are often different.  This 

spatial autocorrelation must be allowed for in spatial analyses.  This may have an impact on the 

structure and form of the likelihood models that are assumed for spatial data.  The assumption 

made in the construction of conventional likelihoods is that the individual contribution to the 

likelihood is independent and this independence allows the likelihood to be derived as a product 

of probabilities. 

 

3.2.5 INTEGRATED NESTED LAPLACE APPROXIMATION (INLA) 

INLA provides a fast and yet quite exact approach to fitting latent Gaussian models which 

comprise many statistical models, including models with temporal or spatial dependence 

structures.  As a result, many complex models that previously required the use of time-

consuming MCMC calculations can be fitted fast and conveniently.  Log Gaussian Cox 

processes, a particularly flexible class of spatial point process models are a special case of latent 

Gaussian models.  A complex point process models, including hierarchically marked point 

processes may conveniently be fitted with INLA.  Standard approaches to parameter estimation 

for complex models based on MCMC, for example, would be very cumbersome and 

computationally prohibitive.  Fitting spatial point process models to some spatial patterns is 

computationally intensive due to – amongst other things – the large number of individual points 

in the data set.  

 

3.3  MODEL FITTING IN INLA 

A log Gaussian Cox process is a hierarchical Poisson process with random 

intensity ))(exp()( ss it  , where  ( ) :   R }
t

ds s   denotes a Gaussian field.  This type of 

model is a special cases of the more general class of latent Gaussian models, for which 

deterministic Bayesian inference can be performed using the INLA-methodology.  
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In general, latent Gaussian models can be described as a subclass of structured additive 

regression models, in which the predictor can be expressed in terms of linear and non-linear 

effects of covariates.  Explicitly, the mean ( )j jE y   of observations is linked to a predictor. 

  

 

)()( ,,0  
y

jyyjjj CfZg 



  

 

 

 

(3.33) 

   

where 0  denotes an intercept, while the sets }  and { (.)}f  denote linear  effects of 

covariates { }z  and non-linear effects of covariates{ }c , respectively.  By assigning Gaussian 

priors to all random terms in (3.33), we obtain a latent Gaussian model.  Here, we fit a log 

Gaussian Cox process to a specific two-dimensional point pattern tx  discretising the observation 

window S into N grid cells 
1{ }N

i ts 
where each cell has area | |is .  For each time point 1,..., ,t T  

let tiy  denote the observed number of points in grid cell is .  Conditional on the 

intensities ))(exp()( ss it  ,
 
the joint pattern of replicates can be described as a superposition 

of realizations from independent Poisson processes, that is, 

   

  

)))(exp((~)(| ttiitti ssPoissonsny  . 

 

(3.34) 

   

We assume that the log-intensity of the Poisson processes can be described by the linear 

predictor 

 
0( ) ( ) ( ( )),t i t t i t is z s f c s   

 

        (3.35) 
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in which the off -set 0  represents an intercept common to all time points while the factor t  

accounts for variation in intensity across different time points.  As in (3.33), the set 

{ } accounts for linear effects of covariates { (.)},tz   which may or may not vary with time.  We 

also include potentially smooth effects of covariates{ (.)}tc  , in which the functions { (.)}f  are 

estimated based on all replicates.  

The primary aim in using the INLA-methodology is to find posterior estimates of all the random 

terms in the log-intensity in (3.35), numerically.  These terms are collected in a latent 

field,     (.),,,0 yt fζ , and assigned Gaussian priors such that the resulting model can be 

viewed as a latent Gaussian model.   

 

We shall consider the problem of modeling the distribution of a set of continuous variables 

dxx ,...,1  which we will collectively denote by the vector x .  A standard approach to the problem 

of density distribution estimation involves a parametric model in which a specific form for the 

density is proposed which contains a number of adaptive parameters.  Values for these 

parameters are then determined from an observed data set    ND xx ,...,1  consisting of N data 

vectors.  The most widely used parametric model is the normal, or Gaussian distribution given 

by  

  

      
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




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1
expπ2),|p(

d
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(3.36) 

   

 

Where μ  is the mean,   is the covariance matrix, and  denotes the determinant of  .  One 

technique for setting the values for these parameters is that of maximum likelihood which 

involves consideration of the log probability of the observed data set given parameters, that is 
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(3.37) 

 

 in which it is assumed that the data vectors nx  are drawn independently from the distribution.   

When viewed as a function of μ  and  , the quantity ),|( μDp  is called the likelihood 

function.  Maximization of the likelihood with respect to μ   and   leads to the set of parameter 

values which are most likely to have given rise to the observed data set.  For the Gaussian 

distribution (3.36) the log likelihood (3.37) can be maximized analytically, leading to the 

intuitive result (3.36) that the maximum likelihood solution μ̂  and ̂ are given by  
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(3.38) 
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 (3.39) 

 

             

   

corresponding to the sample mean and sample covariance respectively. 

As an alternative to maximum likelihood, we can define priors over of μ   and   using Bayes’ 

theorem, together with the observed data, to determine the posterior distribution. The posterior 

distribution is given below 

 

 ),|(π),(π)|,(π θζyθζyθζ 
 

 

                

),ζ|y(π)|(π)(π
i

ii
θθζθ 

. 

(3.40) 

The posterior marginals of each element j  of the latent field can be expressed by 
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θyθyθy djj )|(),|()|(    (3.41) 

   

where the vector denotes the hyper-parameters of the model.  Here, (3.41) includes the 

parameters used in defining prior distributions for the precision (inverse variance) of the 

Gaussian priors, in which 

   

 
jj d   )()|( y|θy  (3.42) 

   

where equation (3.42) is the posterior marginals of the hyper- parameters. 

Applying the INLA-methodology, the marginals in (3.41), (3.42) are estimated combining 

analytical approximations with numerical integration.  The first step in this procedure is to 

estimate )|( yθ  using Laplace approximation.  The Laplace approximation is given by 

 

 

yθζ

yθζ
yθ

,|(~
)|,(

)|(~

G


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)(*
θζζ                             (3.43) 

   

where the full conditional ),|( yθζ of the latent field is approximated by a Gaussian distribution 

),,|(~ yθζG  
evaluated at the mode )(*

θζ .  Secondly, estimates of the marginals ),|( yθj  in 

(3.41) can be found either using a Laplace or a simplified Laplace approximation.  Alternatively, 

the marginals can be estimated using a Gaussian approximation derived from  ),|(~ yθζG .  

Although the Gaussian approximation might provide some inaccuracies in estimating the 

marginals, this approach is used here to speed up calculations.  The third and final step in 

approximating the marginals of the latent field is to use numerical integration with respect to θ .  

In order to do this the Laplace approximation )|(~ yθ  is explored numerically to find support 

points for the numerical integration.  The resulting approximation to (3.41) is given by 
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( | ) ( | , ) ( | )y y yj jG k k kk

       
, (3.44) 

                                                                          

Where )|(~ yk  is found by numerical integration in (3.42), ),|(~ ykjjG   is the Gaussian 

approximation derived from ),|(~ yθζG  and k  denotes the area weight corresponding to 

integration point  k .  The resulting approximation has been shown to be very accurate (Rue et 

al. 2009) and is also computationally more efficient than using MCMC- approaches. 

 

Poisson regression 

Let  ilkY  be the total number of TB cases observed in thk  age group, thj  urban residents, thi  

residential district , and ijkN  the corresponding population at risk.  Then )(~ ijkijk PoissonY  , 

given all the random effects.  The Poisson models for hospital TB tested patients has the form 

   

 
ijkijiijkijk sxxN   210)log()log(  (3.45) 

 

where )log( ijkN  is an offset, is
 
and  ijk are random effects that allow for spatially structured 

variation and unstructured heterogeneity respectively. 

 

Inference model 

For the spatial model, a Bayesian approach was used for inference. The following prior 

distribution was specified for the parameters in (3.45).  A conditional autoregressive (CAR) prior 

was chosen to model the spatial autocorrelation effects; the unstructured heterogeneity 

component was assigned a zero mean Gaussian process with heterogeneity variance
2

 .  The 

fixed effects β  were assigned diffuse priors.  The calendar effect was assigned second order 

random walk priors for flexible smoothing, that is, 
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21 ftttt ffNff    for 1t , (3.46) 

    

where  
2

f  is a smoothing variance and tf   denote all elements of f  except tf   The variance 

components ),,( 222

fes   are assumed to follow an inverse Gamma with parameters 0.001 and 

0.001.  The Bayesian model was implemented in R-INLA. 

 

Issues of spatial Scale –Prior Choice 

In an analysis of a spatial pattern, it is crucial to bear in mind the spatial scales that are relevant 

for a specific spatial data set.  Here, we assume that social behaviour among the individual 

operates at a local spatial scale and that the association with environmental covariates operates 

on the scale of the variation in these covariates and hence often on a larger spatial scale. The 

large-scale spatial effect in (3.45) is included as a spatially structured error term to account for 

any spatial autocorrelation unexplained by covariates in the model.  The choice of the inverse 

gamma prior for the precision of the spatially structured effect determines the smoothness of the 

spatial effect and, through this, the spatial scale at which it operates.  To avoid overfitting, and in 

order to obtain a model describing a generally interpretable trend we choose the prior so that the 

spatial effect operates at a similar spatial scale as the covariate.  This ensures that the spatially 

structured effect does not operate on a smaller scale than the covariate as it would otherwise be 

likely to explain the data better than the covariates, rendering the model rather pointless. We 

approach this by repeatedly fitting a simple model. 

 

If small scale inter-individual spatial behaviour is of specific interest in an application it may be 

modelled by the constructed covariate to account for local spatial behaviour.  However, the 

approach we take here is currently the only way to incorporate local structures into a complex 

model that may be fitted with INLA.  The choice of grid size is also linked to issues of spatial 

scale.  Here we apply the same grid and grid resolution as used in the data collection of locations 

of the TB Patients in Kenya. 
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3.4 ANALYSIS SOFTWARE 

Analysis software used in the study is R-INLA.  The Integrated Nested Laplace Approximation 

(INLA) approach proposed by Rue et al., 2009, is a computationally effective alternative to 

MCMC for Bayesian inference.  INLA is designed for latent Gaussian models; a very wide and 

flexible class of models ranging from (generalized) linear mixed to spatial and spatio-temporal 

models.  Combined with the Stochastic Partial Differential Equation (SPDE) approach (Lindgren 

et al., 2011); one can accommodate all kinds of geographically referenced data, including areal 

and geostatistical ones, as well as spatial point process data.  The implementation interface 

covers stationary spatial models, non-stationary spatial models, and also spatio-temporal models, 

and is applicable in epidemiology, ecology, environmental risk assessment, as well as general 

geostatistics 
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CHAPTER 4: DATA ANALYSIS AND RESULTS 

4.1 DESCRIPTIVE ANALYSIS 

Table 4.1: TB prevalence per district 

Prevalence level( Old Districts) 

District Proportion  District Proportion  

Nandi 0.010391832 Moyale 0.000000486 

Turkana 0.010703612 Isiolo 0.00000178 

Kirinyaga 0.010711705 Marsabit 0.000001784 

Tana River 0.010864852 Tharaka 0.00000194 

Buret 0.011353426 Keiyo 0.00000243 

Gucha 0.011525033 Koibatek 0.0000034 

Samburu 0.011672984 Trans Mara 0.00000551 

Kakamega 0.014444989 Baringo 0.00000567 

Suba 0.014750608 Embu 0.000006004 

Taita Taveta 0.015570415 West Pokot 0.00000632 

Makueni 0.015579164 Mt. Elgon 0.00000665 

Lugari 0.015888511 Mandera 0.000011178 

Machakos 0.015903258 Garissa 0.000014426 

Butere Mumias 0.016386006 Wajir 0.00002268 

Mwingi 0.020102577 Mbeere 0.000650301 

Bondo 0.020586128 Laikipia 0.002275805 

Trans Nzoia 0.021078919 Narok 0.002600065 

Nyando 0.023342246 Muranga 0.002601519 

Bungoma 0.023856268 Maragua 0.002929506 

Uasin Gishu 0.023998547 Kilifi 0.00293339 
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Vihiga 0.024491003 Teso 0.003246796 

Nyandarua 0.025628422 Meru South 0.003732298 

Nakuru 0.026117004 Meru Central 0.003903568 

Busia 0.027563761 Kuria 0.004383249 

Kisii North 0.033239023 Lamu 0.004863879 

Kisumu 0.033880084 Kajiado 0.005031601 

Homa Bay 0.035822233 Kitui 0.006818504 

Rachuonyo 0.037442713 Bomet 0.00714049 

Migori 0.043927888 Malindi 0.007789497 

Nyeri 0.046379191 Kericho 0.008115546 

Mombasa 0.054002914 Marakwet 0.008269808 

District Proportion District Proportion 

Siaya 0.062730515 Central Kisii 0.009415809 

Kiambu 0.065024314 Thika 0.0097438 

Nairobi 0.170261384 Meru North 0.009904871 

Kwale 0.010225896 

   

Table 4.2: TB prevalence per province 

Province Proportion  

Central 0.163018457 

Coast 0.106250843 

Eastern 0.076606535 

Nairobi 0.170261384 

North Eastern 0.000048284 

Nyanza 0.331045529 

Rift Valley 0.148772969 

Western 0.125883984 
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Table 4.1 and Table 4. 2 display a summary of the proportion of residents with TB. Nyanza 

Province has a prevalence of 0.33 of the total population while North Eastern Province has 

0.00048284 of the total population infected with TB.  

Table 4.3 shows a summary of Health Facilities in Kenya.  The composition and distribution of 

health facilities across the country shows that Nairobi as a district has the highest number of 

health facilities followed by Nakuru and Machakos respectively.  The districts with the least 

number of health facilities include; Moyale and Mtelgon with a total count of 21 health facilities. 

Figure 4.1 presents a summary of the Health Facility per Province .The province with the largest 

number of health facilities is Rift Valley followed by Eastern and Nyanza Province respectively.   

 

Table 4.3: Health facilities in Kenya 

Health Facilities In Kenya 

District(Old) Number of Facilities District(Old) Number of Facilities 

BARINGO 120 NAIROBI 272 

BOMET 69 NAKURU 202 

BONDO 50 NANDI 126 

BUNGOMA 77 NAROK 66 

BURET 70 NYAMIRA 106 

BUSIA 48 NYANDARUA 69 

BUTERE/MUMIAS 60 NYANDO 48 

CENTRAL KISII 67 NYERI 146 

EMBU 67 RACHUONYO 61 

GARISSA 66 SAMBURU 49 

GUCHA 56 SIAYA 83 

HOMA BAY 53 SUBA 43 

ISIOLO 46 TAITA TAVETA 64 

KAJIADO 119 TANA RIVER 79 

KAKAMEGA 80 TESO 26 

KEIYO 59 THARAKA 22 

KERICHO 86 THIKA 113 
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Health Facilities In Kenya 

District(Old) Number of Facilities District(Old) Number of Facilities 

KIAMBU 98 TRANS MARA 82 

KILIFI 53 TRANS NZOIA 59 

KIRINYAGA 100 TURKANA 103 

KISUMU 79 UASIN GISHU 145 

KITUI 133 VIHIGA 54 

KOIBATEK 44 WAJIR 58 

KURIA 44 WEST POKOT 61 

KWALE 67 MARSABIT 40 

LAIKIPIA 87 MBEERE 43 

LAMU 30 MERU CENTRAL 101 

LUGARI 37 MERU NORTH 69 

MACHAKOS 147 MERU SOUTH 62 

MAKUENI 143 MIGORI 109 

MALINDI 46 MOMBASA 93 

MANDERA 40 MOYALE 21 

MARAGUA 57 MT ELGON 21 

MARAKWET 67 MURANGA 68 

MWINGI 99     

 (Source Kenya National Health Facility Database 2008) 
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Figure  4.1: Summary of health facilities in Kenya 

  

 

 

Figure  4.2: Poverty rate in Kenya per district 

 

 

Figure 4.2 gives a summary of the poor district with the leading district being Turkana followed 

by Wajir and Kwale respectively. Proportion of poor in the respective district will be a covariate 

in our model to test if it is significant or otherwise. 
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4.2  INLA  ANALYSIS 

Results from INLA 

1. We first fitted a Bayesian logistic regression and below are the summary results.   

Table  4.4: Results from INLA-R 

Fixed Effects Mean SD 0.025 

quant 

0.5 quant 0.975 

quant 

kld 

Intercept -0.958 0.553 -2.065 -0.951 0.106 2.596e-04 

Urban 0.007 0.004 -0.001   0.007 0.015 2.294e-05 

Child taught 0.040 0.012   0.017   0.040 0.063 3.217e-05 

Propoor -0.164 0.254 -0.664 -0.164 0.333 1.745e-05 

TB positive 

taught 

-0.015 0.024 -0.062 -0.015 0.031 4.314e-04 

Prop taught 0.832 0.770 -0.655   0.823 2.370 4.314e-04 

Tested for HIV -0.015 0.019 -0.052 -0.015 0.021 1.471e-04 

Age 25-49 Years -0.008 0.018 -0.043 -0.008 0.028 1.8072e-04 

Age 15-24 Years 0.708 0.052   0.605   0.708 0.808 1.495e-06 

 

 

The model has no random effects 

The model has no hyperparameters 

Expected number of effective parameters (stddev): 9.006(0.00) 

Number of equivalent replicates 44.30 

Deviance Information Criterion: 996.48 

Effective number of parameters: 8.973 

Marginal likelihood:-547.86 

Posterior marginals for linear predictor and fitted values computed 

 

2. We then fitted a Bayesian Logistic regression with additional random effects (geo 

locations) below are the results. 
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Table 4. 5: Results from INLA -R with random effects 

Fixed Effects Mean SD 0.025 

quant 

0.5 quant 0.975 

quant 

kld 

Intercept -0.678 0.572 -1.819 -0.671 0.425 5.341e-04 

Urban 0.007 0.004 -0.002 0.007 0.015 2.864e-05 

Child taught 0.028 0.013 0.003  0.028 0.053 1.012e-04 

Propoor -0.400 0.279 -0.950 -0.399 0.144 3.766e-06 

TB positive taught -0.006 0.024 -0.054 -0.006 0.042 3.822e-04 

Prop taught 0.408 0.802 -1.145   0.401 2.004 5.227e-04 

Tested for HIV -0.010 0.019 -0.047 -0.0101 0.026 6.741e-05 

Age 25-49 Years -0.006 0.018 -0.041 -0.006 0.030 1.209e-04 

Age 15-24 Years 0.641 0.060   0.522   0.641 0.758 6.427e-06 

 

Random effects: 

Maximum KLD 

Longitude and latitude give a random walk 1 model. 

Model hyperparameters: 

Table 3.1 

Table 4.6: Random effects 

 Mean SD 0.025 quant 0.5 quant 0.975 quant 

Precision for 

latitude 

18656.736 18519.282 1266.764   13185.610 67556.664 

Precision for 

longitude 

141.184    340.562      6.676      56.852    799.836 

 

 

Expected number of effective parameters (stddev): 12.08(1.85) 

Number of equivalent replicates: 33.03  

Deviance Information Criterion (DCI): 985.25 

Effective number of parameters: 13.07 
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Marginal Likelihood:  -1535.71  

Posterior marginals for linear predictor and fitted values computed 

From the two results the model, the second one with spatial effect is more efficient with a DIC of 

985.25 as compared to the model with no spatial effects DIC of 996.48. And hence the model 

with additional spatial effect is more precise. 

 

 

Interpretation of the results 

For the random effects precision for latitude with mean of 18656.736 and  SD 0f 18519.282 lies 

between 0.5 quant and 0.975 quant which implies that the latitude effect is highly significant to  

the distribution of TB epidemic in Kenya. 

The other random effect longitude with mean of 141.184 and a SD of 340.562.  The mean lies 

between 0.5 quant and 0.975 which implies that it is highly significant it explains over 50% and 

just below 97%. The model yields a maximum KLD-Kullback Leibler Deviance between the 

Gaussian and the simplified laplace approximation to the marginal posterior density. 

Fixed effects; The intercept has a mean of -0.677839790 and a SD of 0.571899092 .The mean 

lies  slightly above  0.5 quant and yields a kld of 5.340830e-04.The intercept is significant  at  

just about 50%. 

 

The effect on urban resident has a mean of 0.006515052 and a SD of  0.004254495 and  yields a 

KLD of 2.864264e-05 . The mean for the Urban resident effects to patients with TB in Kenya 

lies in the 0.5 quant which implies that the effect is significant at 50%. The effect on if children 

have been taught about TB and how it could be controlled has a mean of 0.027931627 and a SD 

of 0.012829047 which has a kld of 1.011701e-04 .The effect is significant and lies in the 0.5 

quant. 

 

The effect on the proportion poor per district has a mean of -0.400422160 and a SD of 

0.279144267 which has kld of 3.765746e-06. The mean lies approximately in the 0.5 quant 

which implies that it is significant. 
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The effect on the patients with TB being taught has a mean of -0.005741851 and a SD of 

0.024453863 which has KLD of 3.822112e-04.The mean lies in the 0.5 quant which implies that 

it is significant at 50% 

The effect the total proportion of the population taught has a mean of 0.408466779 and a SD of 

0.802411793 with a KLD of 5.226588e-04.  The mean lies just above the 0.5 quant which 

implies that it is significant. 

 

The effect on patients tested for HIV has a mean of -0.010080341 and a SD of 0.018805976 

with a KLD of 6.741331e-05 . The mean does not lie in any of the 3 quantrants and hence it is 

not significant. 

 

The age effect on age (25-49 years) has a mean of -0.005848474 and a SD of 0.018238842 with 

a KLD of 1.209031e-04.the mean lies in the 0.5 quant which implies that it is significant. 

The other age group of (15-24 years) has a mean of 0.640508475 and a SD of 0.060348362   

with KLD of 6.426770e-06.  The mean lies in the 0.5 quant and this implies that it is significant. 

The age between 15 to 24 years has a higher mean than the age between 25 to 49 years , this 

implies that persons between age 15 to 24 have a high likelihood of being infected with TB as 

compared to persons aged 25 to 49 years.  
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Figure 4. 3: Distribution of TB prevalence 

Key: 

       –less than 2 %( North Eastern) 

       –2- 5 %( Eastern, Central ,Nairobi, Western) 

      –5-10% (Coast) 

      –l0-15% (Rift Valley) 

    – More than 15% (Nyanza) 

Figure 4.3, illustrates that Nyanza province has the highest population in Kenya with TB 

prevalence at over 15%, this is followed by Rift valley with a prevalence of between 10% to 15 

%, followed by coast province with a prevalence of 5% to 10 %.  The province with the least 



 

 42  

 

number of TB infections is North Eastern with less than 2% followed by Eastern, Central Nairobi 

and Western provinces all with a prevalence of between 2% and 5 %. 

 

 

Figure 4.4: Distribution of health facilities in Kenya 

 

Figure 4.4 illustratess the distribution of health facilities in Kenya as per the Kenya National 

health facility database 2008.  From figure 4.4 entire of North Easter province has fewer 

facilities has compared to other regions in the country. 

The distribution is skewed towards the major cities and highly productive parts of the country 

with North Eastern province have a negligible number as well as the bounder to South Sudan 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS  

Urban residence effect is significant and lies in the 0.5 quant.  This could be the fact that  most of 

the urban centres in Kenya for example Nairobi has a larger population living in slum areas 

where ventilation is poor and hence could cause the infection and spread of TB. 

 

The proportion poor effect is significant, the mean lies in the 0.5 quant and this implies that 

poverty could greatly influence the infection and spread of TB in Kenya.  The effect of Age (25-

49 years) is significant and lies in the 0.5 quant.  This implies that TB is most likely to affect the 

active members of the society this is as well confirmed by the result found for age (15-24 Years) 

Most of the population infected by TB lie in 15 to 24 years age group which has a higher mean.  

.The effects on; children taught, TB infected persons taught on the infection and spread of TB 

and control are significant and falls in the 0.5 quant.  This implies that if more people are 

knowledgeable on the control and spread of communicable diseases the less the burden of the 

disease 

 

The total population taught is significant. This implies that if the total population in various 

districts is well informed on measure to be taken in the control of TB the less the number of TB 

cases in Kenya. 

The effect on the patients tested for HIV is not significant and this implies that testing for HIV 

does not have any effects on TB prevalence in Kenya as per the data collected and analyzed  

 

Figure 4.3 shows that Nyanza province has the largest proportion of people with TB of more 

than 15%; this province is followed by Rift Valley province with prevalence of 10% to 15%, 

followed by Coast province with a prevalence of 5% to 10%.  The province with the least 

number of TB incidences is North Eastern province with a prevalence of less than 2%. This 

implies that TB is clustered and different geographical regions have different prevalence level  

 

Mapping the distribution of health facilities in the country, from figure 4.4 we find that the 

spread of health facilities is not evenly distributed with North Eastern province having a 
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negligible number of health facilities.  This implies that most of the TB infected cases in the 

regions where there are few or no health facilities could fail to be represented and hence the 

regions with few health facilities may tend to report few events of TB infections as to compared 

to the regions with more health facilities.  Hence the government should ensure proportional 

distribution of health facilities to be able to register all the patients with TB  

 

From figure 4.2 shows a graphical representation of poverty distribution per district 2005-2006. 

The poorest district is Turkana and the richest Nairobi.   

 

The random effects precision for latitude and longitude is significant and lies between 0.5 quant 

and 0.975 quant., this implies that TB prevalence varies significantly within different 

geographical location. 

 

5.2 RECOMMEDATIONS 

The government should ensure that there is a continuous education on the infection, spread and 

control of TB at all levels (primary schools, secondary schools, universities, churches and other 

social gatherings). This will ensure that the population is well informed on the different ways 

they could get tested on time and be cured. 

 

Poverty is a great contributor of disease burden; and hence the government should put measures 

in place to upgrade the standards of living and encourage the citizens to participate in initiative 

which will improve their per capita income.  

 

For there to be good and proper reporting of TB cases, the government should ensure that health 

facilities are proportional to the population per a certain region. 
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