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Abstract 

Price forecasting is more sensitive with vegetable crops due to their highly nature of perish-

ability and seasonality and is often used to make better-informed decisions and to manage price 

risk. Further, to improve domestic market potential for smallholder producers, who are the 

biggest suppliers in the market and in line with the government‟s Agriculture Sector 

Development Strategy (ASDS). Three autoregressive models are used to predict and model the 

wholesale prices for selected vegetables in Kenya shillings per kilogram. The models are; 

Autoregressive Moving Average (ARMA), Vector Autoregressive (VAR), Generalized 

Autoregressive Condition Heterostadicity (GARCH) and the mixed model of ARMA and 

GARCH. This time series data for tomato, potato, cabbages, kales and onions for markets in 

Nairobi, Mombasa, Kisumu, Eldoret and Nakuru wholesale markets are considered as the 

classical national average. The result indicates the models are valid in predicting. Based on the 

model selection criterion the best forecasting models in ARIMA are; Potato ARIMA (1,1,0), Cabbages 

ARIMA (2,1,2), tomato ARIMA (3,0,1), onions ARIMA (1,0,0), Kales ARIMA (1,1,0) . Further, the 

mixed model of ARMA (1, 1) and GARCH (1, 1) model is also identified best model in 

forecasting.  

Key words; Tomato, Potato, Cabbages, Kales and Onions 
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1.0 Introduction 

A time series is the collection of observations made sequentially over time and methods of 

analyzing this data of time series constitute an important area of statistics (Chatfield, C., 2005). 

Several objectives for a time series data analysis are classified as explanation, description, 

control and prediction. 

1.1 Back ground 

In Kenya, the agriculture sector is the mainstay in the Kenyan economy, contributing 30% of the 

GDP and accounting for 80% of employment. The total domestic value in the horticulture sector 

in 2012 amounted to Ksh 217 billion occupying an area of 662,835 ha with a total production 

quantity of 12.6 million tons. As compared to 2011, the total value, area and production 

increased by 6%, 9% and 38% respectively (HCDA, 2012). Vegetables contributed 38% to the 

domestic value of horticulture with 287,000 ha under production and producing 5.3 million tons 

valued at Ksh 91.3 billion. Production increased by 13% while there was a slight reduction in 

value by 4% from 2011 levels. The increased production is occasioned by favorable weather 

conditions that resulting to high yield, thus reducing the value of vegetables. However, there was 

a drop in prices for commodities like cabbages, tomatoes, kales and carrots thereby reducing the 

overall value for the year. Vegetable production and consumption is becoming more and more 

popular due to health concerns and the search for alternative economic opportunities. The fast 

growing industry consists of a wide array of crops and products including potatoes, tomatoes, 

onions, cabbage, etc. Together with fruits, vegetables account for about 73% of horticultural 

retail trades at most retail outlets sales today (USAID-KHCP, June 2012). 
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1.2 Statement of the problem 

In Kenya, there is stiff competition for vegetables between the formal and informal market 

outlets, yet many smallholder producers sell vegetables at low prices, not competitive enough to 

ensure positive returns. It is suggested that market information flow between vegetable producers 

and market actors‟ impact on the price that farmers receive for their vegetables. Access and use 

of market information could explain why some are able to sell competitively while others are 

not. Knowledge of the flow and use of market information on prices would be useful in; 

designing effective price information, dissemination strategies to help farmers sell their 

vegetables at profitable prices and realize positive returns. The domestic market faces numerous 

challenges such as: Inadequate market information for smallholders, insufficient data on market 

flows, and lack of awareness on the use of available data by actors among others (USAID- 

KHCP, 2012). 

1.3 Overall objectives 

To inform on proper planning mechanism of the identified vegetables in stabilizing food security 

and improved marketing 

1.3.1 Study objectives 

1. To identify trends relationship and inform on proper planning 

2. To compare the different time series models  in modeling wholesale prices 

3. To analyze seasonal price variation and develop a model to forecast the weekly prices at 

wholesale level 

4. To investigate the performance of parametric models in modeling selected vegetable 

wholesale prices 
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1.4 Research questions 

1. Does the inequality coefficient used be the selection criteria determine the best model?  

2. Does a positive linear trend influence the time series data? 

3. Does the seasonal variation have effect on the prices 

4. Does the time series data became stationary after the first order differencing? 

5. Does the Autocorrelation function (ACF) and the Augmented Dickey-Fuller (ADF) tests 

show that the time series data was stationary or not stationary? 

1.5 Justification: 

These crops were selected partly because of their relative importance in the horticulture industry; 

they constitute 71% of the vegetables produced in Kenya and partly due to data availability. 

Further, to improve domestic market potential for smallholder producers, who are the biggest 

suppliers in the market and in line with the government‟s Agriculture Sector Development 

Strategy (ASDS), these smallholder producers need to develop a business approach to maintain 

and grow their market share. The main purpose of agricultural commodity price forecasting is to 

allow producers to make better-informed decisions and to manage price risk (Ticlavilca et al., 

(2010)). Price forecasting is more sensitive with vegetable crops due to their highly nature of 

perish-ability and seasonality (Fenyves et al., 2008). 
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2.0 Literature Review 

In Kenya the increase in the demand for vegetables is driven mainly by increasing wealth and the 

need of consumers for fiber, low cholesterol, low fat and high vitamins A and C (Love, 1991). 

On the supply side, the desire for more profits will motivate producers to expand the supply of 

vegetables. Vegetable prices play a major role in coordinating the supply and demand of these 

products. Hence, modeling of their prices will be useful to producers, consumers, processors, 

rural development planners and other people involved in the vegetable market. Fildes & Lusk 

(1984) considers a range of methods and analyze their comparative performance over a random 

selection of series. Four different models of univariate time series are compared by Assis. et al,. 

(2010), namely the exponential smoothing, autoregressive integrated moving average (ARIMA), 

generalized autoregressive conditional heteroskedasticity (GARCH) and the mixed ARMA and 

GARCH models.  

Dieng, A., (2008) investigates the performance of parametric models in forecasting selected 

vegetables prices in Senegal and makes recommendations to potential users. In his case two 

forecasting approaches are used and evaluated using both qualitative and quantitative methods, 

these consist of parametric and non-parametric models. The study finding suggested that, among 

the parametric models ARIMA model is a worthy technique to use in generating price models for 

both producers and consumers. However, the study recommended additional research to test the 

forecasting accuracy of parametric against non-parametric models with respect to other crops. 

Moghaddasi,R and Badr, B.R (2008) in their economic model paper aimed to assess the 

statistical accuracy of alternative wheat prices forecast over the last 40 years. The model 

performance was evaluated and compared using common criteria‟s such as; root mean square 

error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and their 
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inequality coefficient. The study findings revealed the supremacy of time series models (unit root 

and ARIMA (3, 2, 5)) in predicting wheat prices. 

Structure models emphasize the importance of explanatory variables describing the peculiar 

characteristics of the commodity market. Bourke (1979) study expanded the analysis of Beef 

forecasting model by applying both Box-Jenkins methodology and structural techniques in 

generating prediction. He indicated that for the period of 1966 to 1975, more accurate quarterly 

and monthly price projection can be obtained using the Box-Jenkins approach than those derived 

from econometric structure methods. The absolute and relative accuracy evaluation procedures 

have been the two major approaches used in forecast evaluation by Moghaddasi, R and Badr, 

B.R (2008). Absolute accuracy of forecast is evaluated using statistical measures describing the 

differences between the predicted and actual realized values. Empirical results on structural 

models are estimated using ordinary least squares (OLS). 

By performing unit root tests and rejection of the null hypothesis of a unit root under both the 

ADF test and the Phillips-Perron (PP) test is taken as evidence of stationary. ARIMA time series 

models outperformed the structural models in prediction when using historical information than 

developing an econometric structure. Assis et al,.(2010) compared different univariate time 

series models in forecasting monthly average cocoa beans prices namely the exponential 

smoothing, ARIMA, GARCH and the mixed ARIMA & GARCH models. RMSE, MAPE, MAE 

and their inequality coefficient were used as the selection criteria to determine the best model. 

The study revealed the time series data was influenced by a positive linear trend factor whereas a 

regression test showed non-existence of seasonal factors.  
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The wholesale prices for vegetables are characterized by large seasonal variation the degree and 

timing of the changes are different (Fenyves et al., 2008). Due to the price fluctuations, vegetable 

producers normally have large losses, therefore the adaption of production to seasons, market 

research and technological development should all be improved.  Among the seasonal 

decomposition models of forecasting, Seasonal Autoregressive Integrated Moving average 

(SARIMA) method could enable producers achieve better market positions by adopting the 

practice. The SARIMA model is an extension of the ARIMA model into capturing both seasonal 

and non-seasonal behaviour of a time series data (Sampson et al., 2013). 

2.1 Types of time series modeling methods 

a) Univariate modeling method: This is a type of modeling which generally uses only time 

as an input variable with no other outside explanatory variable.(Celia et al., 2003).Some 

of the few employed methods are exponential smoothing, ARIMA and Autoregressive 

Conditional Heteroscedastic (ARCH) (Elham et al., 2010). 

b) Multivariate modeling method: When two or more variables are used to measure a 

person, place or thing. Variables may or may not be dependent on each other. 

Fatimah and Roslan (1986) confirmed the suitability of univariate models in agriculture prices 

forecasting whereas Mad Nasir (1992) noted, the ARIMA models have the advantage of 

relatively low research cost when compared with econometric/structural models. ARCH is one of 

the initial time series models allowing for heteroscedasticity as introduced by Engle (1982). The 

idea was extended by Bollerslev (1986) into GARCH which gives more careful results than 

ARCH models. 



- 7 - 
 

Zhou et al., (2006) proposed a new traffic network prediction model based on non-linear time 

series mixed model of ARIMA and GARCH. They established that, the proposed mixed models 

outperformed the existing Fractional Autoregressive Integrated Moving Averages (FARIMA) 

model in terms of prediction and accuracy. Therefore the objective of this research is to compare 

the modeling performance of the different time series methods in modeling wholesale prices for 

Potato, cabbages, onions, tomatoes and kales in Kenya. 
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3.0 Methodology 

3.1 Data Overview 

The wholesale price data is gathered from the Ministry of Agriculture, Livestock and 

Fisheries (MALF) in the agribusiness department which was collected by extension officers in 

the various wholesale markets. The data was available on weekly prices and covered the four 

year period from 2010 to 2013. Under this study, the average wholesale prices for five Nairobi, 

Mombasa, Kisumu, Eldoret and Nakuru markets are considered as the classical national average. 

The time series data is measured in Kenya shillings per Kilograms (Ksh/Kg) and the data ranged 

from week 1 in January 2010 until week 208 in December 2013. 

3.2 Methods 

The study follows the Box-Jenkins (1970) methodology for modeling, generally known as 

ARIMA model by PadhanPurna Chandra (2012) in the Journal of Agriculture and Social 

Science. Let tY be a discrete time series variable which takes different variable over a period of 

time. The corresponding AR (p) model of tY series, which is the generalizations of the 

autoregressive model, is expressed as; 

 t 0 1 t-1 2 2AR(p); = + Y + .....t p t p tY Y Y      
                                              (3.1) 

Where tY  is the response variable at time t, 1, t 2, ....t t pY Y Y   are the respective variables at 

different time lags; 0 1, ,.... p   are the coefficients and t  is the error factor. Similarly, the 

MA (q) model which is the generalization of the moving average model is specified as; 

t 1 1MA (q);  Y= .......t t t qt q        
     ,

2~ (0, )t tWN 
        (3.2)        
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Where, t  is the constant mean of the series, 1 2, ,......, q   , the coefficients of the estimated 

error term and t  is the error term. 

When ( tY ) in the data is replaced with ( 1t t tY Y Y    ), then the ARMA models become the 

ARIMA (p,d,q) models, where p is order of autocorrelation (Indicates weighted moving average 

over past observations), d is order of integration (differencing) and q is order of moving 

averaging. By combining the models in (3.1) and (3.2), this is referred as ARMA model, which 

have the general form of; 

0 1 1 2 2 1 ....1.....t t t p t p t t t qqY Y Y Y                    
                                   (3.3)

 

If tY  is stationary at level or I(0) or at first difference I(1) then this determines the order of 

integration. To identify the order of p and q the ACF and PCF is applied.  

3.3 Stationary versus non-stationary 

ARIMA model is generally applied for stationary time series data. The stationary and non- 

stationary properties are checked by applying ADF test and the results are estimated with the 

first difference. The ADF statistic is a negative number and the more negative it is, the stronger 

the rejection of the hypothesis that there is a unit root at some level of confidence.  

ARIMA forecasting model involves four different but interrelated steps as; 

a) Identification: The first step of applying the model is to identify appropriate order of 

ARIMA (p,d,q) model. Identification of ARIMA model involves selection of order of 

AR(p), MA(q) and I(d). The order of d is estimated through I(1) or I(0) process. 

The model specification and selection of order p and q involves plotting of ACF and partial 

PACF or correlogram of variables at different lag length. 
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The significance level of individual coefficients is measured by Box-Pierce Q statistics and 

jointly together by Ljung-Box LB statistics. The Box-Pierce Q statistics is defined as; 

2 2

1

~
m

k m

k

Q  



                                                                                             (3.4)

 

And Ljung Box (LB) Statistics is defined as  

2
2

1

( 2) ~
m

k
m

k

LB n n
n k






 



                                                                                         (3.5)

 

Where n=sample size and m is lag length. 

b) Model estimation: Once the order of p, d and q are identified, next step is to specify 

appropriate regression model and estimate. With the help of R software various order of 

ARIMA model has been estimated to arrive at the optimal model. For instance by 

ARIMA (2,1,1) it means the series is stationary at first difference and follows AR (2) and 

MA (1) process.  

c) Diagnostic checking: According to PadhanPurna Chandra (2012) this is done by 

checking on the residual term obtained from ARIMA model by applying ACF and PACF 

functions. 

d) Forecasting: Forecasted values are obtained by estimating appropriate model 
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3.4 ARIMA model frame work 

 

 

 

 

 

 

 

 

 

The coefficient of variation (V) is used to measure the index of instability of the time series data 

as defined by 

V
Y




                                                                                                               (3.6) 

Where  is the standard deviation, and 

1

1 n

t

t

Y Y
n 

               , is the mean change in price                                               (3.7)      

A complete stable data has V=1, but unstable data is characterized by V<1 (Telesca et al., 

(2008)). Regression analysis is used to test whether the trends and seasonal factors exist in the 

time series data.  
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3.5 Regression model 

The existence of linear trend factors was tested through the regression equation. 

0 1t tY t         , where 
2~ (0, )t WN 

                                                 (3.8)
 

Where, tY is the various time series data of the study, t  is the linear trend factor of time, 0 1& 

are the parameters and t  is the error of the model with an assumption of white noise (WN). 

The hypotheses of the model are 

0 1: 0H    (Non-existence of linear trend factor) 

1 1: 0H    (Linear trend factor exists) 

3.6 SARIMA Model 

SARIMA model takes into account the seasonal characters of the time series data (Fenyves et al., 

2008). The model is used in the analysis of stochastic but not stationary time series and 

complements ARIMA models. The model is useful when the time series data exhibit seasonality-

periodic fluctuations that recur with about the same intensity each year (Martinez,et al., 

2011).The SARIMA model is denoted by; 

ARIMA(p,d,q) (P,D,Q)S , as written in lag form by (Halim and Bisono, 2008) 

1 2

1 2

1 2

2

2

2

1 2

2

( ) ( )(1 B) (1 ) ( ) (

( ) 1

( ) 1

( ) 1

)

...

...

...

( ) 1 ...

s d s D

t t

p

p

q

s

p

s s s ps

q

p

S S S QS

B B B Y B B

B

B

B

B B B

B B B

B B B

B B B B

  

   

   

   

  

    

 

 

 

  

  

  

     
                                        (3.9)
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With p= non-seasonal AR order, d= non-seasonal differencing, q=non-seasonal MA order, 

P=seasonal AR order, D=seasonal differencing, Q= seasonal MA order, and S= time span of 

repeating seasonal pattern (in a weekly data s=52).  

t
Y , represents the time series data at period t, B  , represent backward shift operator 

t  , represents white noise error at period t 

To avoid fitting an over parameterized model, the Akaike Information criterion (AIC) is 

employed in selecting the best model (Sampson et al., 2013). The model with the minimum 

values of AIC is considered as the best. In addition, RMSE, MAE and MAPE are employed for 

comparison of the best models selected. 

3.7 Vector Auto-Regression (VAR) 

The vector auto-regression (VAR) model proposed as proposed by Sims (1980) is one of the 

successful, flexible, and easy to use models in the analysis of multivariate time series. The model 

often provides superior models to those from univariate time series models and is based on 

elaborate theories of simultaneous equations. VAR model extends the univariate autoregressive 

(AR) model to dynamic multivariate time series by allowing more than one evolving variable 

(Zhang Haonan 2013).All variables in a VAR model are treated symmetrically in a structural 

sense as each variable has an equation explaining its evolution based on its own lags and the lags 

of the other model variables (Walter, 2003). 

Let 1 2( , ,... ) 't t t ntY y y y denote an ( 1n ) vector of time series variables then a VAR model with 

p lags is then expressed as follows:  

1 1 2 2 3 3 ... ,t t t t p t p tY c Y Y Y Y              1,2,...,pt                                              (3.10) 
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Where 
i  is a ( n n ) coefficient matrix, 

t is an ( 1n ) unobservable zero mean white noise 

vector process i.e. ( ( ( 0))tE   , and c  is an ( 1n ) vector of constants (intercepts)  

3.8 GARCH Model 

The natural frequency of data to feed a GARCH estimator is daily data, weekly or monthly data 

may be used. There is volatility throughout the day and highly depends on the particular market 

where the trading happens, and possibly on the specific asset. The estimation of the model is 

mostly about estimating how fast the decay happens. The standard structure of a GARCH (p, q) 

models is specified by the three equations as stated by Assis et al,.(2010); 

t t tY x                                                                                                                   (3.11) 

2

t t tV 
,   

where tV is i.i.d. N (0, 1)                                                                            (3.12)  

2 2 2

1 1

q p

t i t i j t j

i j

      

 

                                                                                (3.13) 

With 0 1 1 1 10, , 0; 1and         

Where; p is the order of GARCH term, q  is the order of ARCH term, and 2 1t   . Equations 

(3.11) and (3.13) respectively are called mean equation and conditional variance equation. The 

mean equation is indicated as a function of exogenous variables ( tx ) with an error term ( t ). 

The variance equation is a function of mean ( ), ARCH ( 2

t i 
) and GARCH term (

2

t j  ), where 

( , , )    are the parameters of the process. 
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3.9 The mixed model ARIMA and GARCH 

The combination of ARIMA (p,d,q) and GARCH (p,q) is written as; 

1 1

( ) ( )
p q

d d

t i t i t j t j

i j

Y Y    

 

      ,                                                                      (3.14) 

2 2 2

1 1

q p

t j t j i t i

j i

      

 

                                                                                       (3.15) 

The multivariate forecasting approach is used to generate samples of forecast models as 

suggested by Ramanathan (2002) where the model selection criterion are used to choose the best 

models.  

3.10 Model selection criterion 

Model selection criteria allow the best model to be fit the data by striking a balance and finding a 

model that neither under-fits nor over-fits the data. This is the motivation for model selection 

criteria (Burnham & Anderson, 2002). 

A. Akaike's Information Criterion (AIC) 

The intent of AIC is to measure the mathematical distance between the true population and the 

fitted model, by using the so called Kullback-Leibler discrepancy. To differentiate between 

models with different numbers of parameters, AIC adds two times the number of model 

parameters to the estimated Kullback-Leibler discrepancy. Thus, when two models of differing 

complexity fit a data set equally well; AIC chooses the simpler model by penalizing the complex 

model for having more model parameters. The rule of parsimony advice a researcher to choose 

the simplest model that adequately describes the behavior of the population. Use of AIC 

generally supports this rule (Gosky, R and Gosky, S, 2009). 
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The AIC function can be defined as follows; 

2 f
n

ESS
AIC e

n

 
  
 

                                                                                                   (3.16) 

Where; 

n=Number of observations 

f=Number of parameters and  

ESS=Error sum of square.  

Or; 2log( ) 2(p q)AIC L                                                                                      (3.17) 

Where (L) indicates the likelihood of the data with a certain model, p and q indicate the lag 

orders of AR and MA term (Zhang Haonan, 2013).  

B. Final Prediction Error(FPE) is defined as; 

ESS n f
FPE

n n f

 
  

 
                                                                                                    (3.18) 

C. Generalized Cross Validation(GCV) defined by; 

2

1
ESS f

GCV
n n



    
     
    

                                                                                             (3.19) 

 GCV estimates prediction error, but does not control the probability of selecting irrelevant 

predictors of the target variable 

D. Hannan–Quinn Information Criterion (HQIC) stated as; 

 
2

ln
f

n
ESS

HQ n
n

 
  
 

                                                                                             (3.20) 

E. Schwarz Information Criterion [Schwarz, 1978] - (SIC) stated as; 

f
n

ESS
SIC n

n

 
  
 

                                                                                                     (3.21) 
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3.11 Model forecast Accuracy Criteria 

A. Root mean square error (RMSE) defined as; 

        

ESS
RMSE

n
                                                                                                 (3.22) 

This measures the “mean prediction error”, “Perfect” fit (RMSE=0). The Root Mean Square 

Error (RMSE) (also called the root mean square deviation, RMSD) is frequently used to measure 

the difference between values predicted by a model and the values actually observed from the 

environment that is being modeled. These individual differences are also called residuals. 

Predicted errors/residue= Actual value-Predicted value 

B. MAE-mean absolute error 

       

1

ˆn

t tt
Y Y

MAE
n







                                                                                          (3.23) 

C. MAPE-mean absolute Percentage Error 

       

1

ˆ

100%

n
t t

t t

Y Y

Y
MAPE

n





 


                                                                              (3.24) 

Where,   

tY  =the actual observation value at time t 

ˆ
tY = the forecast observation value at time t 

n = the total number of observations and  

ESS = the error sum of squares   



- 18 - 
 

4.0 Data Analysis and Results 

The wholesale price data used in the analysis is on weekly basis and covered the four year period 

for potato, cabbages, tomato, onions and kales. The average price for Nairobi, Mombasa, Kisumu, 

Eldoret and Nakuru markets is considered as the classical national average for each of the 

vegetables. 

4.1 Testing for normality of the data -QQ-Norm 

From the overall data results only potato data seems to be normal

 
Figure 1: QQ-Norm Potato prices 

 

 
Figure 2: QQ-Norm Cabbage prices 

 

 
Figure 3: QQ-Norm Tomato prices 

 

 
Figure 4: QQ-Kale prices 

 
Figure 5: QQ-Norm onions prices 
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4.2 Plotting of the time series- Overall observations 

 

From the plotted results, the time series data is volatile and not stable 

Figure 6: Time series for the data 

4.3 Testing normality Transformed data 

 

 
Figure 7: Testing normality of the data 

After transforming the data through truncation of the first thirty seven (37) observations only potato data 

looked to be normal. 
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4.4 Regression model 

The existence of linear trend factors was tested by fitting a Linear Regression 

a. Potato 

The model equation was presented as; Price (Ksh/Kg) = 24.018+0.035 time (weeks). This means 

for every one unit increase in time (week), an average prices increase by Ksh 0.035 and from the 

results of adjusted R-squared only 9.2% of the data is explained by the model thus regression 

model is not the best fit. 

b. Cabbages 

The model equation was presented as; Price (Ksh/Kg) = 13.373+0.016 time (weeks). This means 

for every one unit increase in time (week), an average prices increase by Ksh 0.016,from the 

results of adjusted R-squared only 5.2% of the data is explained by the model thus regression 

model is not the best fit. 

c. Tomato 

The model equation was presented as; Price (Ksh/Kg) = 40.735+0.124 time (weeks). This means 

for every one unit increase in time (week), an average prices increase by Ksh 0.124, from the 

results of adjusted R-squared, only 16.85% of the data is explained by the model thus regression 

model is not the best fit. 

d. Onions 

The model equation was presented as; Price (Ksh/Kg) = 51.863+0.089 time (weeks). This means 

for every one unit increase in time (week), an average prices increase by Ksh 0.089, and from the 

results of adjusted R-squared, only 11.97% of the data is explained by the model thus regression 

model is not the best fit. 
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e. Kales  

The model equation was presented as; Price (Ksh/Kg) = 20.021+0.033 time (weeks). This means 

for every one unit increase in time (week), an average prices increase by Ksh 0.033 and from the 

results of the adjusted R-squared, only 3.11% of the data is explained by the model thus 

regression model is not the best fit. 

4.5 Data summary and descriptive analysis 

Table 1: Overall Summary-208 weeks 
Variable Potato Cabbages Tomatoes Onions Kales 

Min 12.86 8.53 24.28 37.15 8.47 

1st Qu 24.90 12.21 43.27 50.60 15.90 

Median 27.14 13.71 51.22 59.95 19.59 

Mean 27.69 15.00 53.69 61.14 23.48 

3rd Qu 30.93 17.41 63.50 67.42 29.97 

Max 48.20 27.49 118.68 128.00 58.00 

variance 46.07 15.37 322.92 230.54 110.58 

S.t.d 6.79 3.92 17.97 15.18 10.52 

C.V 0.25 0.26 0.33 0.25 0.45 

Model ARIMA(2,1,0), ARIMA(1,1,1) ARIMA (2,1,1) ARIMA (1,1,6) ARIMA (2,1,3) ARIMA (1,1,13) 

 

For all the five vegetables in the data,  stationary of the data was achieved on the first 

differencing, potato data generates two models i.e ARIMA (2,1,0), ARIMA (1,1,1) whereas for 

Kales the model generated is ARIMA (1,1,13) of which the researcher beliefs that 13 variables 

are too many, thus the desire to transform the data. 
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Table 2: Overall Summary-Transformed data 
Variable Potato Cabbages Tomato Onions Kales 

Min 15.18 8.53 28.72 37.15 8.47 

1st Qu 25.84 12.00 45.28 51.63 15.85 

Median 27.82 13.73 52.48 60.15 20.00 

Mean 29.15 15.02 56.09 62.03 23.67 

3rd Qu 32.28 17.54 63.80 67.46 28.84 

Max 48.20 27.49 118.68 128.00 58.0 

Var 38.67 17.19 287.78 237.66 119.56 

S.t.d 6.23 4.15 16.96 15.42 10.93 

C.V 0.21 0.28 0.30 0.25 0.46 

Model 
ARIMA (1,1,0) ARIMA (2,1,2) ARIMA (1,1,6) ARIMA (2,1,3) ARIMA (1,1,0) 

 

Data transformation is achieved by truncating the first 37 observations that were missing most of 

the first observations. Based on ARIMA models and comparing the two data sets, the 

transformed data seems to give the best models estimate where kales model was identified as 

ARIMA (1, 1, 0). Using the coefficient of variation (V) to test the stability of the time series 

data, the results showed that the V value were less than one (V<1), thus this study concludes the 

time series data is not stable (Telesca et al., 2008).  

Table 3: Estimated ARIMA model forecast by Model criterion 

Vegetable AIC RMSE MAE MAPE 

Potato 1,1,0 3,1,6 3,2,6 3,2,6 

Cabbages 2,1,2 2,0,5 2,0,4 2,0,4 

Tomato 1,1,6 3,0,1 3,1,6 3,1,6 

Onions 2,1,3 3,1,6 1,0,0 1,0,0 

Kales 1,1,0 3.0.3 3,2,1 3,1,5 

 

Based on the three model selection criterion (AIC, RMSE, MAE and MAPE), the best fit models 

are potato ARIMA (1,1,0), cabbages ARIMA (2,1,2), tomato ARIMA (3,0,1), onions ARIMA 

(1,0,0) and kales ARIMA (1,1,0). 
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4.6 Testing for stationary of the time series data 

The ADF test was conducted to test for the stationary of the data on the selected vegetables using 

the transformed data and was tabulated as; 

Table 4: Testing for stationary of the time series data 
Vegetable ADF-test Lag order p-value hypothesis( 1H ) Decision 

Potato  -3.2247 5 0.086 Stationary Fail to reject 0H  

Cabbages -2.3719 5 0.421 Stationary Fail to reject 0H  

Tomatoes -4.4473 5 0.01 Stationary Fail to reject 0H  

Onions -2.0523 5 0.5544 stationary Fail to reject 0H  

Kales -2.9501 5 0.1796 stationary Fail to reject 0H  

 

From the ADF test results, the time series data was not stationary. As the more negative it is, the 

stronger the rejection of the hypothesis that there is a unit roots at some level of confidence, but 

after first order differencing was carried out, the data became stationary. 

Table 5: Testing for stationary of the time series data after first differencing 
Crop ADF test Lag order p-value Hypothesis ( 1H ) Decision 

Potato -5.2525 5 0.01 stationary reject 0H  

Cabbages  -5.5792 5 0.01 stationary reject 0H  

Tomato -4.9373 5 0.01 stationary reject 0H  

Onions -5.3517 5 0.01 stationary reject 0H  

Kales -4.6186 5 0.01 stationary reject 0H  
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4.7 Box-Ljung test & Box-Pierce test 

Table 6: Test of independent versus dependent 
Crop Chi-square df p-value Null hypothesis Decision 

Potato  127.786 1 < 2.2e-16 Independent Reject 0H  

Cabbages 138.533 1 < 2.2e-16 Independent Reject 0H  

Tomato 130.577 1 < 2.2e-16 Independent Reject 0H  

Onions 145.809 1 < 2.2e-16 Independent Reject 0H  

Kales 149.302 1 < 2.2e-16 Independent Reject 0H  

 

Notice, from the results the p-values for the Box-Ljung tests are all below 0.05 indicating 

significance for the coefficients. 

Table 7: Box-Pierce test 
Crop Chi-square df p-value Null hypothesis Decision 

Potato 125.570 1 < 2.2e-16 Independent Reject 0H  

Cabbages  136.130 1 < 2.2e-16 Independent Reject 0H  

Tomatoes 128.312 1 < 2.2e-16 Independent Reject 0H  

Onions 143.280 1 < 2.2e-16 Independent Reject 0H  

Kales 146.713 1 < 2.2e-16 Independent Reject 0H  

 

Still, from the results, the p-values for the Box-Pierce tests are all well below 0.05 indicating 

significance for the coefficients 

4.8 Fitting the mixed model of ARMA and GARCH  

Shifting gears in an attempt to find some sort of pattern in the data by the use of different models 

to assess the price volatility for accurate measurement and to give reliable forecast. We started to 

model the conditional volatility as GARCH (1, 1) process since previously has been shown to be 

parsimonious representation of conditional variances that adequately fits many high-frequency 

time series (Bollerslev (1987) and Engle (1993)). Four GARCH (p,q) models are selected and 

compared, namely GARCH(1,1), GARCH(1,2), GARCH(2,1) and GARCH(2,2). Using the 
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model selection criteria suggested by Ramanathan (2002), the GARCH (1, 1) model was selected 

as the best model in most of the selected vegetables among the other models. 

4.9 Estimating the parameters-GARCH Model 

1. The mixed model of ARMA (1, 1) & GARCH (1, 1) -Potato 

This analysis uses the potato wholesale prices weekly data, on the mixed model of ARMA (1, 1) 

& GARCH (1, 1). The model is fitted to the time series data using R‟s garchFit function after 

installing the fGarch package. The mixed model is fitted, assuming t-distribution errors and the 

conditional distribution equals the standard deviation (”std”) and the results are; 

Table 8: Standard errors analysis based on Hessian matrix 

 Coefficient(s) Estimate Std. Error t-value Pr(>|t|) 

   0.766 0.763 1.004 0.315 

  0.976 0.028 35.093 0.000 

MA(1) 0.004 0.072 0.050 0.960 

  2.137 1.194 1.790 0.074 

1  0.310 0.222 1.396 0.163 

1  0.468 0.140 3.351 0.001 

   2.998 0.719 4.169 0.000 

 

In the output,   is denoted by AR1, the mean is mean, and   is called omega. =0.976 and is st

atistically significant, implying there is a small amount of positive autocorrelation. 1 =0.310 and 

is not significant, whereas 1 =0.468 and is highly significant which implies some volatility. 
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Table 9: Standardized Residuals Tests-Potato 

Standardized Residuals Tests Statistic     p-Value   

Jarque-Bera Test Chi^2 17,315.57 0.000 

Shapiro-WilkTest  W 0.634 0.000 

Ljung-Box Test Q(10) 3.872 0.953 

Ljung-Box Test Q(15) 7.433 0.944 

Ljung-Box Test Q(20) 11.502 0.932 

Ljung-Box Test for squared residuals Q(10) 0.209 0.999 

Ljung-Box Test for squared residuals Q(15) 0.352 1.000 

Ljung-Box Test for squared residuals Q(20) 0.457 1.000 

LM Arch Test TR^2 0.250 1.000 

 

 

In the output garchfit, the normalized log-likelihood is the log-likelihood divided by n, where 

n=171. The AIC and BIC values have also been normalized by dividing by n. The Jarque-Bera 

test of normality strongly rejects the null hypothesis that the white noise innovation process { t } 

is Gaussian thus the t-model is the suitable model. The Ljung-Box test with an R in the second 

column are applied to the residuals(R=residuals), while the Ljung-Box tests with squared 

residuals ( 2R ) are applied to the squared residuals. None of the tests is significant, which 

indicates that the model fits the data well. The LM ARCH test indicates the same non-

significance results. 

Table 10: Model information criterion ARMA (p, q) & GARCH (p, q)-Potato  

ARMA GARCH AIC BIC SIC HQIC 

1,1 1,1 4.438 4.567 4.435 4.490 

1,2 1,2 4.391 4.557 4.386 4.458 

2,1 2,1 4.432 4.597 4.427 4.499 

2,2 2,2 4.414 4.616 4.406 4.496 

 

Based on the summarized information criterion statistics for Potatoes, the mixed model of 

ARMA (1, 2) and GARCH (1, 2) is identified as the best model since they have the lowest 

results based on AIC, BIC. SIC and HQIC. 
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2. The mixed model of ARMA (1, 1) & GARCH (1, 1) -Cabbages 

Table 11: Standard Errors analysis based on Hessian matrix-Cabbages 

 Coefficient(s) 
Estimate Std. Error t-value Pr(>|t|) 

   
0.780 0.327 2.387 0.017 

  
0.939 0.025 38.220 0.000 

MA(1) 
(0.253) 0.087 (2.892) 0.004 

  
0.311 0.208 1.495 0.135 

1  
0.594 0.272 2.181 0.029 

1  
0.506 0.119 4.259 0.000 

   
3.835 1.216 3.154 0.002 

 

Similarly in the mixed model of ARMA (1, 1) and GARCH (1, 1) model output for cabbages,   

is denoted by AR1, the mean is mean, and   is called omega. =0.939 and is statistically 

significant, implying there is a small amount of positive autocorrelation. 

Table 12: Standardized Residuals Tests-Cabbages 

Standardized Residuals Tests Statistic p-Value 

Jarque-Bera Test Chi^2 63.385 0.000 

Shapiro-WilkTest W 0.956 0.000 

Ljung-Box Test Q(10) 15.600 0.112 

Ljung-Box Test Q(15) 27.284 0.027 

Ljung-Box Test Q(20) 34.052 0.026 

Ljung-Box Test for squared residuals Q(10) 4.075 0.944 

Ljung-Box Test for squared residuals Q(15) 10.726 0.772 

Ljung-Box Test for squared residuals Q(20) 18.815 0.534 

LM Arch Test TR^2 5.212 0.951 

 

Both 1  and 1 are statistically significant, where 1 =0.594, 1 =0.506 and implies persistent 

volatility clustering. The Jarque-Bera test of normality strongly rejects the null hypothesis that 

the white noise innovation process { t } is Gaussian thus the t-model is best fitting.  



- 28 - 
 

The Ljung-Box test applied to the 2R residuals indicates none of the tests is significant. Thus the 

model fits the data well as similarly indicated by LM ARCH test non-significance results.  

Table 13: Model information criterion ARMA (p, q) & GARCH (p, q) -Cabbages 

ARMA GARCH AIC BIC SIC HQIC 

1,1 1,1           3.770              3.898         3.767      3.822  

1,2 1,2           3.777              3.943         3.772      3.845  

2,1 2,1           3.773              3.939         3.768      3.840  

2,2 2,2           3.796              3.998         3.788      3.878  

 

Based on the summarized information criterion statistics for cabbages, the mixed model of ARMA (1, 1) 

and GARCH (1, 1) is identified as the best model as has the lowest results based on AIC, BIC, SIC and 

HQIC model selection criterion. 

Prediction of the mixed ARMA (1, 1) and GARCH (1, 1) models-Cabbages 

Table 14: Prediction of mixed ARMA (1, 1) and GARCH (1, 1) models-Cabbages 

Time (Week) Mean Forecast Mean Error Standard Deviation 

1 15.188 0.927 0.927 

2 15.041 1.289 1.121 

3 14.903 1.625 1.301 

4 14.773 1.951 1.474 

5 14.652 2.273 1.644 

 

Based on the prediction results, the model is only able to predict one week ahead with minimum 

variations. 

  



- 29 - 
 

3. Mixed model of ARMA (1, 1) and GARCH (1, 1) -Onions 

Table 15: Standard Errors analysis based on Hessian matrix-Onions 

Coefficient(s) 
Estimate Std. Error t value Pr(>|t|) 

  
2.786 1.012 2.754 0.006 

  
0.957 0.017 55.399 0.000 

MA(1) 
0.050 0.074 0.676 0.499 

  
13.595 12.701 1.070 0.284 

1  
1.000 0.819 1.222 0.222 

1  
0.454 0.198 2.286 0.022 

   
2.229 0.212 10.512 0.000 

 

In the mixed model of ARMA (1, 1) and GARCH (1, 1) model output for onions,  =0.957 & is 

statistically significant. Implying small amount of positive autocorrelation, 1  
is not statistically 

significant though 1  
is statistically significant indicating some volatility, 1 =1.00 and 1 =0.454. 

Table 16: Standardized Residuals Tests-Onions 

Standardized Residuals Tests  Statistic p-Value 

Jarque-Bera Test Chi^2 2,070.39 0 

Shapiro-WilkTest W 0.764 0 

Ljung-Box Test Q(10) 9.785 0.46 

Ljung-Box Test Q(15) 10.946 0.756 

Ljung-Box Test Q(20) 20.923 0.402 

Ljung-Box Test for squared residuals Q(10) 3.425 0.97 

Ljung-Box Test for squared residuals Q(15) 4.27 0.997 

Ljung-Box Test for squared residuals Q(20) 7.394 0.995 

LM Arch Test TR^2 3.524 0.991 

 

The Jarque-Bera test of normality strongly rejects the null hypothesis that the white noise 

innovation process { t } is Gaussian, thus the t-model is the best fitting. The Ljung-Box test 
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applied to the squared residuals ( 2R ) indicates none of the tests is significant, which implies the 

model fits the data well.  

 

Table 17: Model information criterion ARMA (p, q) & GARCH (p, q) -Onions  

ARMA GARCH AIC BIC SIC HQIC 

1,1 1,1 5.750 5.879 5.747 5.803 

1,2 1,2 5.741 5.907 5.736 5.808 

2,1 2,1 5.752 5.917 5.747 5.819 

2,2 2,2 5.762 5.965 5.755 5.844 

 

Based on the summarized information criterion statistics for onions, the mixed model of ARMA 

(1, 1) and GARCH (1, 1) is identified as the best model since has the lowest results based on 

AIC, BIC, SIC and HQIC. 

 

Prediction of mixed ARMA (1, 1) and GARCH (1, 1) model- Onions 

Table 18: Prediction results of mixed ARMA (1, 1) & GARCH (1, 1)-onions 

Time (weeks) Mean Forecast Mean Error Standard Deviation 

1                 60.111            5.096                             5.096  

2                 60.339            8.814                             7.166  

3                 60.556          12.825                             9.393  

4                 60.765          17.357                           11.911  

5                 60.964          22.579                           14.826  

 

Based on the prediction results, the model is only able to predict one week ahead with minimum 

variation in wholesale price for onions. 
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4. Mixed model of ARMA (1, 1) and GARCH (1, 1) -Tomatoes 

Table 19: Standard Errors analysis based on Hessian matrix-Tomatoes 

Coefficient(s) Estimate Std. Error t-value Pr(>|t|) 

          4.803          2.391             2.009         0.045  

          0.908          0.047           19.426         0.000  

MA (1)         0.043          0.068             0.633         0.527  

       11.397       11.589             0.983         0.325  

1          0.162          0.157             1.035         0.301  

1          0.770          0.184             4.177         0.000  

          2.686          0.762             3.526         0.000  

 

In the mixed ARMA (1, 1) and GARCH (1, 1) model output for tomatoes,  =0.908 and is statist

ically significant, implying a small amount of positive autocorrelation. 1  
is not statistically sign

ificant, 1  is statistically significant indicating some volatility, with 1 =0.162 and 1 =0.770 . 

Table 20: Standardized Residuals Tests-Tomatoes 

Standardized Residuals Tests   Statistic p-Value 

Jarque-Bera Test Chi^2 892.143 0.000 

Shapiro-WilkTest W 0.863 0.000 

Ljung-Box Test Q(10) 9.156 0.517 

Ljung-Box Test Q(15) 14.530 0.486 

Ljung-Box Test Q(20) 19.797 0.471 

Ljung-Box Test for squared residuals Q(10) 3.208 0.976 

Ljung-Box Test for squared residuals Q(15) 3.870 0.998 

Ljung-Box Test for squared residuals Q(20) 4.411 1.000 

LM Arch Test TR^2 3.551 0.990 

 

The Jarque-Bera test of normality strongly rejects the null hypothesis that the white noise 

innovation process { t } is Gaussian thus the t-model is best fit. The Ljung-Box test applied to 

the squared residuals ( 2R ) indicates none of the tests is significant, which indicates the model 

fits the data well.  



- 32 - 
 

Table 21: Model information criterion ARMA (1, 1) and GARCH (1, 1) - Tomatoes 

ARMA GARCH AIC BIC SIC HQIC 

1,1 1,1 6.784 6.913 6.781 6.836 

1,2 1,2 6.759 6.924 6.754 6.826 

2,1 2,1 6.793 6.958 6.788 6.860 

2,2 2,2 6.782 6.984 6.774 6.864 

 

Based on the summarized information criterion statistics for tomatoes, the mixed model of 

ARMA (1,2) and  GARCH (1, 2) is identified as the best fit model since has the lowest results 

based on table 21.  

Prediction of mixed model ARMA (1, 1) and GARCH (1, 1)-Tomatoes 

Table 22: Prediction results of ARMA (1, 1) and GARCH (1, 1)-Tomatoes 

Time (weeks) Mean Forecast Mean Error Standard Deviation 

1                 59.231            8.540                             8.540  

2                 58.604          12.059                             8.910  

3                 58.034          14.552                             9.241  

4                 57.517          16.510                             9.539  

5                 57.046          18.122                             9.809  

 

From the results, the mixed model of ARMA (1, 1)  and GARCH (1, 1) gives higher deviation in 

the mean price forecast compared to ARMA (1,2)  and GARCH (1, 2) mean prediction which 

have smaller week to week price deviation. 
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Prediction of mixed models ARMA (1, 2) and GARCH (1, 2)-Tomatoes 

Table 23: Prediction results of ARMA (1, 2) and GARCH (1, 2)-Tomatoes 

Time (weeks) Mean Forecast Mean Error Standard Deviation 

1                 59.402            8.175                             8.175  

2                 60.012          11.355                             8.382  

3                 59.079          14.277                             8.900  

4                 58.280          16.318                             9.191  

5                 57.596          17.951                             9.556  

 

 

5. Mixed model of ARMA (1, 1) and GARCH (1, 1) -Kales 

Table 24: Standard Errors analysis based on Hessian matrix-Kales 
 Coefficient(s) Estimate Std. Error t-value Pr(>|t|) 

   1.392 0.485 2.868 0.004 

  0.918 0.028 33.245 0.000 

MA (1) 0.062 0.078 0.799 0.424 

   1.806 1.768 1.021 0.307 

1  1.000 0.854 1.171 0.241 

1  0.653 0.100 6.532 0.000 

   2.238 0.240 9.316 0.000 

 

In the mixed ARMA (1, 1) and GARCH (1, 1) model output for kales,  =0.918 and is statistically 

significant, implying an amount of positive autocorrelation. 1 , is not statistically significant though 1  

is highly significant indicating some volatility, 1 =1.000 and 1 =0.653. 
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Table 25: Standardized Residuals Tests-Kales 

Standardized Residuals Tests Statistic p-Value 

Jarque-Bera Test Chi^2 7537.387 0.000 

Shapiro-WilkTest W 0.679 0.000 

Ljung-Box Test Q(10) 4.485 0.923 

Ljung-Box Test Q(15) 11.441 0.721 

Ljung-Box Test Q(20) 19.946 0.461 

Ljung-Box Test for squared residuals Q(10) 0.547 1.000 

Ljung-Box Test for squared residuals Q(15) 0.755 1.000 

Ljung-Box Test for squared residuals Q(20) 5.297 1.000 

LM Arch Test TR^2 0.691 1.000 

 

The Jarque-Bera test of normality strongly rejects the null hypothesis that the white noise innovation 

process { t } is Gaussian thus the t-model is best fitting. The Ljung-Box test applied to the squared 

residuals (
2R ) indicates none of the tests is significant, which indicates that the model fits the data well.  

Table 26: Model information criterion for ARMA (p, q) and GARCH (p, q) - Kales 

ARMA GARCH AIC BIC SIC HQIC 

1,1 1,1 4.995 5.123 4.992 5.047 

1,2 1,2 4.969 5.134 4.964 5.036 

2,1 2,1 4.996 5.162 4.991 5.063 

2,2 2,2 4.985 5.187 4.977 5.067 

 

Based on the summarized model information criterion, the mixed model of ARMA (1, 2) and 

GARCH (1, 2) is identified as the best model fit since has the lowest results based on AIC, SIC 

and HQIC. However, the mixed model of ARMA (1, 1) and GARCH (1, 1) is identified through 

BIC, but this study recommends the mixed model of ARMA (1, 2) and GARCH (1, 2) as the best 

fit in price prediction. 
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Table 27: Prediction results of ARMA (1, 2) and GARCH (1, 2)-Kales 

 Time (weeks) Mean Forecast Mean Error Standard Deviation 

1                 18.873            2.796                             2.796  

2                 18.744            5.149                             4.304  

3                 18.590            7.118                             4.909  

4                 18.447            9.142                             5.854  

5                 18.315          11.254                             6.844  

 

From the results, the mixed model of ARMA (1, 2) and GARCH (1, 2) means forecast indicates 

minimal week to week price deviation. 

4.10 Estimating of parameters and model diagnostics-VAR 

Although the structure of the VAR model looks very complex, the estimation of the parameters 

is not difficult and the most common methods used in estimation are; the maximum likelihood 

estimator (MLE) and ordinary least square estimator (OLS) (Yang & Yuan 1991). Similar to 

ARIMA a Q test is applied to test whether the residuals of the VAR models are white noise.  

Table 28: Estimates of AR models coefficients using OLS for VAR (1) 

 Variable dPotato=A dCabbages=B dTomatoes=C dOnions=D dKales=E 

dPotato=A 0.846 (0.097) (0.003) (0.004) 0.053 

dCabbages=B (0.022) 0.677 0.007 (0.008) 0.105 

dTomatoes=C 0.225 (0.164) 0.857 (0.041) (0.061) 

dOnions=D 0.121 0.132 0.045 0.828 0.087 

dKales=E 0.002 0.002 0.060 (0.031) 0.946 

 

In the matrix given on (table 28), across the row we get the coefficients for the vector variables 

and on the diagonal we have the variances   for the vector variables. 

The intercepts of the equations are given under one intercept per variable. 

Table 29: intercepts for AR models coefficients in VAR (1) 

dPotato171=A dCabbages171=B dTomatoes171=C dOnions171=D dKales171=E 

0.006 (0.007) 0.055 (0.079) (0.001) 

 



- 36 - 
 

In this study, the OLS method where each variable is considered as a linear function of the lag 1 

value for each of the five variables in the set is applied. As a regression predictors for each 

variable and using notation A = de-trended Potato, B = de-trended cabbages, C= de-trended 

tomato, D= de-trended onions, and C= de-trended kales, the equation for de-trended VAR (1) 

model becomes; 

ˆ
tA  =0.06499+0.846A_ {t-1}-0.097B_{t-1}-0.003C_{t-1}-0.004D_{t-1}+0.053E_{t-1} 

ˆ
tB  =-0.007-0.022A_{t-1}+0.677B_{t-1}+0.007C_{t-1}-0.008D_{t-1}+0.105E_{t-1} 

ˆ
tC  =-0.055+0.025A_{t-1}-0.164B_{t-1}+0.857C_{t-1}-0.041D_{t-1}-0.061E_{t-1} 

ˆ
tD  =-0.079+0.121A_{t-1}+0.132B_{t-1}+0.045C_{t-1}+0.828D_{t-1}+0.087E_{t-1} 

ˆ
tE =-0.001+0.002A_{t-1}+0.002B_{t-1}+0.060C_{t-1}-0.031D_{t-1}+0.946E_{t-1} 

Table 30: The variance-covariance matrix of the residuals from the VAR (1) 

 Variable dPotato=A dCabbages=B dTomatoes=C dOnions=D dKales=E 

dPotato=A 10.162 2.549 (6.610) 7.818 5.862 

dCabbages=B 2.549 3.055 (1.788) 2.835 3.710 

dTomatoes=C (6.610) (1.788) 65.664 (3.114) (5.048) 

dOnions=D 7.818 2.835 (3.114) 35.520 4.909 

dKales=E 5.862 3.710 (5.048) 4.909 15.006 

 

The matrix under (table 30) gives the variance-covariance matrix of the residuals from the VAR 

(1) for the five variables.  The variances are the diagonals of the matrix and could be used to 

compare this model to higher order VAR.  The determinant of the matrix is used to compute the 

BIC statistic that could be used to compare the fitted model to other models. 
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Table 31: The standard errors of the AR coefficients VAR (1) 

AR coefficients  dPotato=A  dCabbages=B  dTomatoes=C  dOnions=D dKales=E 

 dPotato=A                   0.050                 0.123                  0.016          0.022          0.045  

 dCabbages=B                   0.027                 0.067                  0.009          0.012          0.025  

 dTomatoes=C                   0.127                 0.312                  0.041          0.056          0.115  

 dOnions=D                   0.094                 0.229                  0.030          0.041          0.084  

 dKales=E                   0.061                 0.149                  0.020          0.027          0.055  

 

As with the coefficients, read across rows.  The first row gives the standard errors of the 

coefficients for the lag 1 variables that predict de-trended time potato.  The second row gives the 

standard errors for the coefficients that predict de-trended cabbages.  The final row gives the 

standard errors for the coefficients that predict de-trended kales. 
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5.0 Conclusions and Recommendations 

Using the coefficient of variation (V) to test the stability of the time series data, the results 

showed that the V values were less than 1 (V<1). Thus this study concludes the time series data 

is not stable. 

Based on the model selection criterion the best forecasting model on ARIMA are; Potato 

ARIMA (1,1,0), Cabbages ARIMA (2,1,2), tomato ARIMA (3,0,1), onions ARIMA (1,0,0), 

Kales ARIMA (1,1,0) since the models have the list variables.  

Of the four GARCH (p, q) models used and compared, GARCH (1, 1) model is selected as the 

best fitting model when conditioned on t-distribution. 

The mixed model of ARMA (1, 1) and GARCH (1, 1) model fitted  on the data when 

conditioned on t-distribution errors is identified as the best fit  and further research should be 

considered in relation to other conditions as required for accurate measures and reliable forecast. 

The auto regressive models could be used to model and predict wholesale prices and better assist 

users and policy makers. Other VAR models need to be explored further on wholesale price 

modeling and forecasting on the selected vegetables. 

Predictions for vegetable prices can be enhanced by combining predictions from different models 

and would lead to better price information about the commodities in the wholesale markets. 
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Appendix 1: Linear Regression results in R 

##### Potato 

fit=lm(Potato~Time);fit 

summary(fit) 

Model summary-potato 

 Coefficients: Estimate Std. Error t-value Pr(>|t|) 

(Intercept) 24.01834 0.899858 26.691 <2.00E-16 

Time 0.035133 0.007466 4.706 4.64E-06 

Residual standard error: 6.466 on 206 degrees of freedom 

Multiple R-squared:  0.09705,   Adjusted R-squared:  0.09267  

F-statistic: 22.14 on 1 and 206 DF, P-value: 4.64e-06 

####Cabbages 

fit=lm(Cabbages~Time);fit 

summary(fit) 

Model summary-cabbages 

Coefficients: Estimate Std.Error t-value Pr(>|t|) 

(Intercept) (Ksh) 13.37277 0.531139 25.178 <2.00E-16 

Time (Wks) 0.015539 0.004407 3.526 0.00052 

Residual standard error: 3.816 on 206 degrees of freedom 

Multiple R-squared:  0.05692,   Adjusted R-squared:  0.05234 

F-statistic: 12.43 on 1 and 206 DF, P-value: 0.0005198 

####Tomatoes 

fit=lm(Tomatoes~Time);fit 

summary(fit) 

Model summary-Tomatoes 

 Coefficients: Estimate Std.Error t value Pr(>|t|) 

(Intercept)-Ksh 40.73457 2.28061 17.861 <2.00E-16 

Time (Wk) 0.124 0.01892 6.553 4.44E-10 

Residual standard error: 16.39 on 206 degrees of freedom 

Multiple R-squared:  0.1725,    Adjusted R-squared:  0.1685 

F-statistic: 42.94 on 1 and 206 DF, P-value: 4.439e-10 
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####Onions 

fit =lm(Onions ~ Time);fit 

summary(fit) 

Model summary-Onions 

 Coefficients: Estimate Std.Error t value Pr(>|t|) 

(Intercept)-Ksh 51.86252 1.98269 26.158 <2.00E-16 

Time (week) 0.08881 0.01645 5.399 1.84E-07 

Residual standard error: 14.25 on 206 degrees of freedom 

Multiple R-squared:  0.124,     Adjusted R-squared:  0.1197  

F-statistic: 29.15 on 1 and 206 DF, P-value: 1.839e-07 

Kales regression model 

fit=lm(Kales ~ Time) 

summary(fit) 

Model summary-Kales 

 Coefficients Estimate Std. Error t value Pr(>|t|) 

(Intercept)-Ksh 20.02094 1.44059 13.898 <2e-16 

Time (Weeks) 0.03305 0.01195 2.765 0.0062 

Residual standard error: 10.35 on 206 degrees of freedom 

Multiple R-squared:  0.03579,   Adjusted R-squared:  0.03111  

F-statistic: 7.647 on 1 and 206 DF, P-value: 0.006203 

Appendix 2: Results of mixed models ARMA (p, q) and GARCH (p, q)-Potato in R 

########  Potato 

ARMA(1, 1) + GARCH(1, 1) 

Call:garchFit(formula =~arma(1, 1)+garch(1, 1), data = Potato171,cond.dist= "std")  

Mean and Variance Equation:data~arma(1, 1) + garch(1, 1)[data = Potato171] 

Conditional Distribution:std 

Coefficient(s): 

muar1        ma1      omega     alpha1      beta1  shape 

0.7662861  0.9762901  0.0035909  2.1365760  0.3099668  0.4683308  2.9979295   

Std. Errors: based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu0.766286    0.763285    1.004 0.315412     

ar1     0.976290    0.027820   35.093  < 2e-16 *** 

ma1     0.003591    0.071616    0.050 0.960010     

omega2.136576    1.193892    1.790 0.073520 .   

alpha1  0.309967    0.222080    1.396 0.162791     
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beta1   0.468331    0.139739    3.351 0.000804 *** 

shape2.997930    0.719055    4.169 3.06e-05 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -372.4515    normalized:  -2.178079  

Standardized Residuals Tests: 

Statistic p-Value   

Jarque-Bera Test   R    Chi^2 17315.57  0         

Shapiro-WilkTest R    W     0.6337871 0         

Ljung-Box Test     R    Q(10) 3.87224   0.9529264 

Ljung-Box Test     R    Q(15)  7.433125  0.9444985 

Ljung-Box Test     R    Q(20)  11.50183  0.9321566 

Ljung-Box Test     R^2  Q(10)  0.2091511 0.9999999 

Ljung-Box Test     R^2  Q(15)  0.3518208 1         

Ljung-Box Test     R^2  Q(20)  0.4574722 1         

 LM Arch Test       R    TR^2   0.2502313 1         

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

4.438029 4.566635 4.434850 4.490212 

################ 

ARMA(1, 2) + GARCH(1, 2) -Potato 

Call:garchFit(formula = ~arma(1, 2) + garch(1, 2), data = Potato171,  

cond.dist = "std")  

Mean and Variance Equation:data ~ arma(1, 2) + garch(1, 2)[data = Potato171] 

Conditional Distribution: std 

Coefficient(s): 

Muar1         ma1         ma2       omega   

1.04080164  0.96749289  0.01581170  0.16995907  3.77977437   

alpha1      beta1       beta2       shape   

0.36880443  0.00000001  0.28200713  2.67379286   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     1.041e+00   8.335e-01    1.249  0.21176     

ar1 9.675e-01  3.007e-02   32.174  < 2e-16 *** 

ma1    1.581e-02   7.680e-02    0.206  0.83687     

ma2    1.700e-01   5.171e-02    3.287  0.00101 **  

omega  3.780e+00   2.213e+00    1.708  0.08763 .   

alpha1 3.688e-01   2.336e-01    1.579  0.11434     

beta1  1.000e-08          NA       NANA 

beta2  2.820e-01          NA       NANA 

shape  2.674e+00   6.482e-01    4.125 3.71e-05 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -366.4559    normalized:  -2.143017  

Standardised Residuals Tests: 

Statistic p-Value   

Jarque-Bera Test   R    Chi^2  16237.640         

 Shapiro-WilkTest  R    W      0.6388235 0         

Ljung-Box Test     R    Q(10)  4.736877  0.9080477 

Ljung-Box Test     R    Q(15)  8.508542  0.9017824 

Ljung-Box Test     R    Q(20)  11.98111  0.9167248 

Ljung-Box Test     R^2  Q(10)  0.1970646 0.9999999 

Ljung-Box Test     R^2  Q(15)  0.3352245 1         

Ljung-Box Test     R^2  Q(20)  0.4710161 1         

 LM Arch Test       R    TR^2   0.2462037 1         
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Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

4.391297 4.556648 4.386118 4.458389 

################ 

ARMA(2, 1) + GARCH(2, 1) -Potato 

Call:garchFit(formula = ~arma(2, 1) + garch(2, 1), data = Potato171,  

cond.dist = "std")  

Mean and Variance Equation: 

data ~ arma(2, 1) + garch(2, 1)[data = Potato171] 

Conditional Distribution:std 

Coefficient(s): 

mu         ar1         ar2         ma1       omega   

0.97112621  0.55179096  0.41805741  0.38250482  2.35070106   

    alpha1      alpha2       beta1       shape   

0.31710291  0.00000001  0.48581711  2.79264513   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu9.711e-01   1.064e+00    0.913   0.3613     

ar15.518e-01   2.344e-01    2.354   0.0186 *   

ar2 4.181e-01   2.304e-01    1.814   0.0696 .   

ma13.825e-01   2.181e-01    1.754   0.0794 .   

omega2.351e+00   1.539e+00  1.528   0.1265     

alpha13.171e-01   2.602e-01    1.219   0.2230     

alpha2 1.000e-08   2.468e-01    0.000   1.0000     

beta14.858e-01   1.899e-01    2.558   0.0105 *   

shape2.793e+00   7.062e-01   3.954 7.67e-05 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -369.9286    normalized:  -2.163325  

Standardised Residuals Tests: 

                               Statistic p-Value   

Jarque-Bera Test   R    Chi^2  17222.86  0         

 Shapiro-WilkTest  R    W      0.634233  0         

Ljung-Box Test     R    Q(10)  3.1134    0.9786279 

Ljung-Box Test     R    Q(15)  7.0216    0.9570476 

Ljung-Box Test     R    Q(20)  11.12929  0.9428004 

Ljung-Box Test     R^2  Q(10)  0.2081988 0.9999999 

Ljung-Box Test     R^2  Q(15)  0.3532266 1         

Ljung-Box Test     R^2  Q(20)  0.4545337 1         

 LM Arch Test       R    TR^2   0.2523629 1         

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

4.431914 4.597264 4.426734 4.499006 

################ 

ARMA(2, 2) + GARCH(2, 2) -Potato 

Call:garchFit(formula = ~arma(2, 2) + garch(2, 2), data = Potato171,  

cond.dist = "std")  

Mean and Variance Equation: 

data ~ arma(2, 2) + garch(2, 2)[data = Potato171] 

Conditional Distribution: std 

Coefficient(s): 

mu          ar1          ar2          ma1          ma2   

 1.05883989   0.99999999  -0.03324893  -0.01620395   0.17433963   

omega       alpha1       alpha2        beta1        beta2   

 3.81639632   0.36647021   0.00000001   0.00000001   0.28099856   
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shape 

 2.66806007   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu1.059e+00   8.165e-01    1.297  0.19472     

ar1     1.000e+00   4.139e-01    2.416  0.01569 *   

ar2    -3.325e-02   4.081e-01   -0.081  0.93507 

ma1    -1.620e-02   3.959e-01   -0.041  0.96735 

ma2     1.743e-01   7.999e-02    2.179  0.02930 *   

omega   3.816e+00   1.305e+00    2.923  0.00346 **  

alpha1  3.665e-01          NA       NANA 

alpha2  1.000e-08          NA       NANA 

beta1   1.000e-08          NA       NANA 

beta2   2.810e-01          NA       NANA 

shape   2.668e+00   3.355e-01    7.953 1.78e-15 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -366.4075    normalized:  -2.142734  

Standardised Residuals Tests: 

 Statistic p-Value   

Jarque-Bera Test   R    Chi^2  16120.85  0         

 Shapiro-WilkTest  R    W      0.6397832 0         

Ljung-Box Test     R    Q(10)  4.794177  0.9044962 

Ljung-Box Test     R    Q(15)  8.562336  0.8992682 

Ljung-Box Test     R    Q(20)  11.99955  0.9160914 

Ljung-Box Test     R^2  Q(10)  0.1964181 0.9999999 

Ljung-Box Test     R^2  Q(15)  0.3347906 1         

Ljung-Box Test     R^2  Q(20)  0.4727199 1         

LM Arch Test       R    TR^2   0.2454739 1         

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

4.414123 4.616218 4.406495 4.496125 

Appendix 3: Results of mixed models ARMA (p, q) and GARCH (p, q)--Cabbages in R 

> GARCH Modelling- cabbages (1,2) 

Call:garchFit(formula = ~arma(1, 2) + garch(1, 2), data = Cabbages171,  

cond.dist = "std")  

Mean and Variance Equation: 

data ~ arma(1, 2) + garch(1, 2)[data = Cabbages171] 

Conditional Distribution:std 

Coefficient(s): 

mu        ar1        ma1        ma2      omega     alpha1   

 0.888493   0.930356  -0.254105   0.087661   0.342328   0.608498   

    beta1      beta2      shape   

 0.443189   0.054024   3.584554   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu       0.88849     0.38330    2.318  0.02045 *   

ar1      0.93036     0.02865   32.478  < 2e-16 *** 

ma1     -0.25410     0.09574   -2.654  0.00795 **  

ma2      0.08766     0.08552    1.025  0.30533 

omega    0.34233     0.24712    1.385  0.16597     
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alpha1   0.60850     0.31884    1.908  0.05633 .   

beta1    0.44319     0.38008    1.166  0.24360 

beta2    0.05402     0.25889    0.209  0.83470 

shape    3.58455     1.10235    3.252  0.00115 **  

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -313.9703    normalized:  -1.836084  

Standardised Residuals Tests: 

                                Statistic p-Value      

Jarque-Bera Test   R    Chi^2  83.05831  0            

 Shapiro-WilkTest  R    W      0.949983  9.454504e-06 

Ljung-Box Test     R    Q(10)  14.41095  0.1550584    

Ljung-Box Test     R    Q(15)  25.97785  0.03825616   

Ljung-Box Test     R    Q(20)  31.6296   0.04740863   

Ljung-Box Test     R^2  Q(10)  4.385457  0.9282878    

Ljung-Box Test     R^2  Q(15)  10.32114  0.7990679    

Ljung-Box Test     R^2  Q(20)  18.29202  0.5681784    

LM Arch Test       R    TR^2   5.241904  0.9494072 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

3.777431 3.942782 3.772251 3.844523 

################ 

summary(fit9.42) cabbages (2,1) 

Title: GARCH Modelling 

Call:garchFit(formula = ~arma(2, 1) + garch(2, 1), data = Cabbages171,  

cond.dist = "std")  

Mean and Variance Equation: 

data ~ arma(2, 1) + garch(2, 1)[data = Cabbages171] 

Conditional Distribution:std 

Coefficient(s): 

mu         ar1         ar2         ma1       omega   

1.07474033  0.64705450  0.26849449  0.03367772  0.33956286   

    alpha1      alpha2       beta1       shape   

0.59830010  0.00000001  0.51010462  3.57183759   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     1.075e+00   4.844e-01    2.219 0.026506 *   

ar1    6.471e-01   1.905e-01    3.396 0.000683 *** 

ar2    2.685e-01   1.730e-01    1.552 0.120734     

ma1    3.368e-02   2.137e-01    0.158 0.874788     

omega  3.396e-01   2.574e-01    1.319 0.187031     

alpha1 5.983e-01   3.096e-01    1.932 0.053316 .   

alpha2 1.000e-08   2.904e-01    0.000 1.000000     

beta1  5.101e-01   1.783e-01    2.861 0.004225 **  

shape  3.572e+00   1.093e+00    3.267 0.001087 **  

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -313.611    normalized:  -1.833983  

Standardised Residuals Tests: 

                                Statistic p-Value      

Jarque-Bera Test   R    Chi^2  82.14891  0            

 Shapiro-WilkTest  R    W      0.9495606 8.672119e-06 

Ljung-Box Test     R    Q(10)  14.81506  0.1389514    

Ljung-Box Test     R    Q(15)  25.93842  0.03867493   

Ljung-Box Test     R    Q(20)  31.56531  0.04815618   
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Ljung-Box Test     R^2  Q(10)  4.091188  0.9431396    

Ljung-Box Test     R^2  Q(15)  10.11748  0.8122859    

Ljung-Box Test     R^2  Q(20)  18.4934   0.5549401    

 LM Arch Test       R    TR^2   5.173797  0.9519205 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

3.773228 3.938579 3.768049 3.840321  

################ 

>summary(fit9.43) cabbages (2,2) 

Title: GARCH Modelling 

Call:garchFit(formula=~arma(2,2)+garch(2,2),data=Cabbages171,cond.dist="std")  

Mean and Variance Equation: data~arma(2,2)+garch(2,2)[data=Cabbages171] 

Conditional Distribution:std 

Coefficient(s): 

mu          ar1          ar2          ma1          ma2   

1.04880827   0.61209487   0.30500099  0.06589968  -0.02541346   

omegaalpha1       alpha2      beta1        beta2  shape 

0.35885789   0.65095063   0.00000001  0.39052375   0.08076401 3.56474435   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)    

mu      1.049e+00   4.779e-01    2.195  0.02818 *  

ar1     6.121e-01   3.148e-01    1.944  0.05187 .  

ar2     3.050e-01   3.022e-01    1.009  0.31279    

ma1     6.590e-02   3.421e-01    0.193  0.84724    

ma2    -2.541e-02   1.714e-01   -0.148  0.88211 

omega   3.589e-01   4.228e-01    0.849  0.39598    

alpha1  6.510e-01   3.459e-01    1.882  0.05985 .  

alpha2  1.000e-08   6.627e-01    0.000  1.00000    

beta1   3.905e-01   9.481e-01    0.412  0.68040    

beta2   8.076e-02   4.696e-01    0.172  0.86346    

shape   3.565e+00   1.089e+00    3.273  0.00106 ** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -313.5469    normalized:  -1.833608  

Standardised Residuals Tests: 

                                Statistic p-Value      

Jarque-Bera Test   R    Chi^2  95.20974  0            

 Shapiro-WilkTest  R    W      0.9466308 4.811676e-06 

Ljung-Box Test     R    Q(10)  15.10953  0.1281192    

Ljung-Box Test     R    Q(15)  26.35437  0.03445883   

Ljung-Box Test     R    Q(20)  32.09486  0.04229791   

Ljung-Box Test     R^2  Q(10)  4.231646  0.9362925    

Ljung-Box Test     R^2  Q(15)  10.84993  0.763158     

Ljung-Box Test     R^2  Q(20)  19.50121  0.4894939    

 LM Arch Test       R    TR^2   5.047417  0.9563764 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

3.795870 3.997966 3.788242 3.877872 

 

Appendix 4: Results of mixed models ARMA (p, q) and GARCH (p, q)-Onions in R 

>summary(fit9.51) onions (1,2) 

Title: GARCH Modelling 
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Call:garchFit(formula = ~arma(1, 2) + garch(1, 2), data = Onions171,  

cond.dist = "std")  

Mean and Variance Equation:data ~ arma(1, 2) + garch(1, 2) [data= Onions171] 

Conditional Distribution:std 

Coefficient(s): 

mu        ar1        ma1        ma2      omega     alpha1   

 2.740132   0.958275   0.048469   0.009164  14.854573   1.000000   

    beta1      beta2      shape   

 0.076549   0.390087   2.183692   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu      2.740132    1.180281    2.322   0.0203 *   

ar1     0.958275    0.020982   45.670  < 2e-16 *** 

ma1     0.048469    0.081631    0.594   0.5527     

ma2     0.009164    0.054211    0.169   0.8658     

omega  14.854573   14.607790    1.017   0.3092     

alpha1  1.000000    0.912285    1.096   0.2730     

beta1   0.076549    0.220153    0.348   0.7281     

beta2   0.390087    0.624951    0.624   0.5325     

shape   2.183692    0.271347    8.048 8.88e-16 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -481.8708    normalized:  -2.817958  

Standardised Residuals Tests: 

                               Statistic p-Value      

Jarque-Bera Test   R    Chi^2  1703.451  0            

 Shapiro-WilkTest  R    W      0.7675186 3.502733e-15 

Ljung-Box Test     R    Q(10)  8.951468  0.5367156    

Ljung-Box Test     R    Q(15)  9.540549  0.8476031    

Ljung-Box Test     R    Q(20)  20.12803  0.449947     

Ljung-Box Test     R^2  Q(10)  2.838104  0.9849813    

Ljung-Box Test     R^2  Q(15)  3.658927  0.9986576    

Ljung-Box Test     R^2  Q(20)  9.285991  0.9793518    

 LM Arch Test       R    TR^2   3.216009 0.9938173 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

5.741179 5.906530 5.736000 5.808272  

################ 

>summary(fit9.52) onions (2,1) 

Title: GARCH Modelling 

Call:garchFit(formula = ~arma(2, 1) + garch(2, 1), data = Onions171,  

cond.dist = "std")  

Mean and Variance Equation:data ~ arma(2, 1) + garch(2, 1)[data = Onions171] 

Conditional Distribution:std 

Coefficient(s): 

mu         ar1         ar2         ma1       omega   

3.1380e+00  8.0513e-01  1.4700e-01  1.9999e-01  1.6615e+01   

    alpha1      alpha2       beta1       shape   

1.0000e+00  1.0000e-08  5.1929e-01  2.1598e+00   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     3.138e+00   1.394e+00    2.251  0.02440 *   

ar1    8.051e-01   3.431e-01    2.347  0.01894 *   

ar2    1.470e-01   3.311e-01    0.444  0.65704     
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ma1    2.000e-01   3.306e-01    0.605  0.54526     

omega  1.662e+01          NA       NANA 

alpha1 1.000e+00   3.985e-01    2.509  0.01209 *   

alpha2 1.000e-08          NA       NANA 

beta1  5.193e-01   1.909e-01    2.721  0.00652 **  

shape  2.160e+00   9.773e-02   22.098  < 2e-16 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -482.782    normalized:  -2.823287  

Standardised Residuals Tests: 

                                Statistic p-Value      

Jarque-Bera Test   R    Chi^2  1786.278  0            

 Shapiro-WilkTest  R    W      0.7717845 4.889029e-15 

Ljung-Box Test     R    Q(10)  9.821575  0.4562843    

Ljung-Box Test     R    Q(15)  10.70952  0.7729011    

Ljung-Box Test     R    Q(20)  20.48866  0.4277587    

Ljung-Box Test     R^2  Q(10)  3.296978  0.9735466    

Ljung-Box Test     R^2  Q(15)  4.131147  0.9972754    

Ljung-Box Test     R^2  Q(20)  7.774266  0.9932589    

 LM Arch Test       R    TR^2   3.488845  0.9909983 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

5.751836 5.917187 5.746657 5.818929  

################ 

>summary(fit9.53) onions 2,1 

Title: GARCH Modelling 

Call:garchFit(formula = ~arma(2, 2) + garch(2, 2),data = Onions171,  

cond.dist = "std")  

Mean and Variance Equation: data ~ arma(2, 2) + garch(2, 2)[data = Onions171] 

Conditional Distribution:std 

Coefficient(s): 

mu         ar1         ar2         ma1         ma2   

3.2169e+00  7.5303e-01  1.9863e-01  2.5115e-01  1.7888e-02   

omega      alpha1      alpha2       beta1       beta2   

1.5344e+01  1.0000e+00  1.0000e-08  7.1975e-02  4.5374e-01   

shape 

2.1499e+00   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     3.217e+00   1.556e+00    2.067   0.0387 *   

ar1    7.530e-01   3.308e-01    2.277   0.0228 *   

ar2    1.986e-01   3.185e-01    0.624   0.5329     

ma1    2.512e-01   3.396e-01    0.740   0.4595     

ma2    1.789e-02   6.007e-02    0.298   0.7659     

omega  1.534e+01   1.960e+01    0.783   0.4336     

alpha1 1.000e+00   9.210e-01    1.086   0.2776     

alpha2 1.000e-08   8.664e-01    0.000   1.0000     

beta1  7.198e-02   6.200e-01    0.116   0.9076     

beta2  4.537e-01   4.797e-01    0.946   0.3442     

shape  2.150e+00   2.013e-01   10.681   <2e-16 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -481.6879    normalized:  -2.816888  

Standardised Residuals Tests: 

                                Statistic p-Value      
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Jarque-Bera Test   R    Chi^2  1575.937  0            

 Shapiro-WilkTest  R    W      0.7724919 5.169191e-15 

Ljung-Box Test     R    Q(10)  9.186316  0.5145176    

Ljung-Box Test     R    Q(15)  9.808871  0.8315871    

Ljung-Box Test     R    Q(20)  20.67289  0.4166059    

Ljung-Box Test     R^2  Q(10)  2.831535  0.9851152    

Ljung-Box Test     R^2  Q(15)  3.689002  0.9985909    

Ljung-Box Test     R^2  Q(20)  9.66053   0.9739181    

 LM Arch Test       R    TR^2   3.260902 0.9934049 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

5.762432 5.964527 5.754803 5.844433 

################ 

Appendix 5: Results of mixed models ARMA (p, q) and GARCH (p, q)-Tomatoes in R 

>summary(fit9.6) tomatoes 1,2 

Title: GARCH Modelling 

Call:garchFit(formula = ~arma(1, 2) + garch(1, 2), data = Tomatoes171,  

cond.dist = "std")  

Mean and Variance Equation:d ata ~arma(1,2)+garch(1, 2)[data = Tomatoes171] 

Conditional Distribution:std 

Coefficient(s): 

mu         ar1         ma1         ma2       omega   

7.7377e+00  8.5551e-01  8.1527e-02  1.6888e-01  1.6344e+01   

    alpha1       beta1       beta2       shape   

3.8339e-01  1.0000e-08  5.3764e-01  2.8658e+00   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     7.738e+00   3.043e+00    2.542  0.01101 *   

ar1    8.555e-01   5.914e-02   14.465  < 2e-16 *** 

ma1    8.153e-02   1.108e-01    0.736  0.46167     

ma2    1.689e-01   9.400e-02    1.797  0.07240 .   

omega  1.634e+01   1.331e+01    1.228  0.21946     

alpha1 3.834e-01   3.915e-01    0.979  0.32742     

beta1  1.000e-08   8.310e-01    0.000  1.00000     

beta2  5.376e-01   6.654e-01    0.808  0.41906     

shape  2.866e+00   9.061e-01    3.163  0.00156 **  

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -568.8917    normalized:  -3.326852  

Standardised Residuals Tests: 

                               Statistic p-Value     

Jarque-Bera Test   R    Chi^2  1443.759  0           

 Shapiro-WilkTest  R    W      0.8371223 1.55974e-12 

Ljung-Box Test     R    Q(10)  6.106461  0.8062409   

Ljung-Box Test     R    Q(15)  10.28313  0.8015625   

Ljung-Box Test     R    Q(20)  16.32854  0.6960441   

Ljung-Box Test     R^2  Q(10)  1.032247  0.9998009   

Ljung-Box Test     R^2  Q(15)  1.703678  0.9999899   

Ljung-Box Test     R^2  Q(20)  2.217776  0.9999997   

LM Arch Test       R    TR^2   1.57954   0.9998279   

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  



- 53 - 
 

6.758967 6.924318 6.753787 6.826059 

################ 

>summary(fit9.6) tomatoes 2,1 

Title: GARCH Modelling 

Call:garchFit(formula =~arma(2,1) +garch(2,1),data=Tomatoes171,cond.dist= "std")  

Mean and Variance Equation: data ~ arma(2, 1) + garch(2, 1)[data=Tomatoes171] 

Conditional Distribution:std 

Coefficient(s): 

mu          ar1          ar2          ma1        omega   

 4.35353030   0.99999999  -0.08095849  -0.02822254  92.75556348   

     alpha1       alpha2        beta1        shape   

 0.99999999   0.00000001   0.85947451   2.03608725   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu      4.354e+00   3.111e+00    1.399    0.162     

ar1     1.000e+00   1.683e+00    0.594    0.552     

ar2    -8.096e-02   1.632e+00   -0.050    0.960     

ma1    -2.822e-02   1.515e+00   -0.019    0.985     

omega   9.276e+01          NA       NANA 

alpha1  1.000e+00   1.221e+00    0.819    0.413     

alpha2  1.000e-08          NA       NANA 

beta1   8.595e-01   9.621e-02    8.934   <2e-16 *** 

shape   2.036e+00          NA       NANA 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -571.7982    normalized:  -3.343849  

Standardised Residuals Tests: 

                               Statistic p-Value      

Jarque-Bera Test   R    Chi^2  657.4075  0            

 Shapiro-WilkTest  R    W      0.8736461 8.150674e-11 

Ljung-Box Test     R    Q(10)  10.61608  0.3881999    

Ljung-Box Test     R    Q(15)  16.22059  0.3675449    

Ljung-Box Test     R    Q(20)  20.6511   0.417918     

Ljung-Box Test     R^2  Q(10)  9.030082  0.5292511    

Ljung-Box Test     R^2  Q(15)  9.706804  0.8377662    

Ljung-Box Test     R^2  Q(20)  10.39066  0.9605227    

LM Arch Test       R    TR^2   9.739483  0.6388037 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

6.792961 6.958312 6.787782 6.860054  

################ 

>summary(fit9.6) tomatoes 2,2 

Title:GARCH Modelling 

Call:garchFit(formula = ~arma(2, 2) + garch(2, 2), data = Tomatoes171,  

cond.dist = "std")  

Mean and Variance Equation:data ~ arma(2, 2) + garch(2, 2)[data=Tomatoes171] 

Conditional Distribution:std 

Coefficient(s): 

mu          ar1          ar2          ma1          ma2   

 6.86534929   0.99999999  -0.12795777  -0.06000199   0.15496351   

omega       alpha1       alpha2        beta1        beta2   

16.79905147   0.38374003   0.00000001   0.00000001   0.54822103   

shape 

 2.79942355   

Std. Errors:based on Hessian  
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Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu      6.865e+00          NA       NANA 

ar1     1.000e+00          NA       NANA 

ar2    -1.280e-01          NA       NANA 

ma1    -6.000e-02          NA       NANA 

ma2     1.550e-01   9.836e-03   15.754  < 2e-16 *** 

omega   1.680e+01   1.367e+01    1.229    0.219     

alpha1  3.837e-01   3.087e-01    1.243    0.214     

alpha2  1.000e-08          NA       NANA 

beta1   1.000e-08          NA       NANA 

beta2   5.482e-01   4.733e-02   11.584  < 2e-16 *** 

shape   2.799e+00   7.129e-01    3.927 8.61e-05 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -568.859    normalized:  -3.326661  

Standardised Residuals Tests: 

                                Statistic p-Value      

Jarque-Bera Test   R    Chi^2  1397.49   0            

 Shapiro-WilkTest  R    W      0.8377639 1.662852e-12 

Ljung-Box Test     R    Q(10)  6.279508  0.791259     

Ljung-Box Test     R    Q(15)  10.31024  0.7997845    

Ljung-Box Test     R    Q(20)  16.36855  0.6935128    

Ljung-Box Test     R^2  Q(10)  1.041371  0.9997928    

Ljung-Box Test     R^2  Q(15)  1.718001  0.9999893    

Ljung-Box Test     R^2  Q(20)  2.237926  0.9999997    

 LM Arch Test       R    TR^2   1.589153  0.9998222 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

6.781976 6.984072 6.774348 6.863978 

################ 

Appendix 6: Results of mixed models ARMA (p, q) and GARCH (p, q)-Kales in R 

>summary(fit9.71) Kales 1,2 

Title: GARCH Modelling 

Call: 

garchFit(formula = ~arma(1, 2) + garch(1, 2),data = Kales171,cond.dist="std")  

Mean and Variance Equation: 

data ~ arma(1, 2) + garch(1, 2)[data = Kales171] 

Conditional Distribution:std 

Coefficient(s): 

mu         ar1         ma1         ma2       omega   

1.19868109  0.92784079  0.08306114  0.05041848  2.21967105   

    alpha1       beta1       beta2       shape   

0.99999999  0.00000001  0.42946098  2.41462669   

Std. Errors:ased on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     1.199e+00   2.827e-01    4.240 2.23e-05 *** 

ar1    9.278e-01   1.485e-02   62.499  < 2e-16 *** 

ma1    8.306e-02   7.468e-02    1.112   0.2660     

ma2    5.042e-02   5.281e-02    0.955   0.3397     

omega  2.220e+00   1.227e+00    1.809   0.0705 .   

alpha1 1.000e+00   4.981e-01    2.008   0.0447 *   
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beta1  1.000e-08          NA       NANA 

beta2  4.295e-01   1.054e-01    4.073 4.64e-05 *** 

shape  2.415e+00   2.507e-01    9.633  < 2e-16 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -415.8432    normalized:  -2.431831  

Standardised Residuals Tests: 

                                Statistic p-Value   

Jarque-Bera Test   R    Chi^2  7493.937  0         

 Shapiro-WilkTest  R    W      0.6842309 0         

Ljung-Box Test     R    Q(10)  4.831528  0.9021441 

Ljung-Box Test     R    Q(15)  12.92612  0.6080046 

Ljung-Box Test     R    Q(20)  20.3347   0.4371757 

Ljung-Box Test     R^2  Q(10)  0.5262494 0.9999916 

Ljung-Box Test     R^2  Q(15)  0.7807039 1         

Ljung-Box Test     R^2  Q(20)  4.657443  0.9998412 

 LM Arch Test       R    TR^2  0.6733808 0.9999985 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

4.968926 5.134276 4.963746 5.036018  

################ 

summary(fit9.72) kales 2,1 

Title: GARCH Modelling 

Call: garchFit(formula =~arma(2, 1)+garch(2,1),data=Kales171,cond.dist = "std")  

Mean and Variance Equation: data~arma(2, 1)+garch(2,1)[data = Kales171] 

Conditional Distribution:std 

Coefficient(s): 

muar1         ar2         ma1       omega   

1.74586814  0.48763594  0.40779702  0.47135990  1.76872486   

    alpha1      alpha2       beta1       shape   

0.99999999  0.00000001  0.67870800  2.20866570   

Std. Errors:based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     1.746e+00   7.050e-01    2.476   0.0133 *   

ar1    4.876e-01   2.810e-01    1.735   0.0827 .   

ar2    4.078e-01   2.630e-01    1.550   0.1210     

ma1    4.714e-01   2.623e-01    1.797   0.0723 .   

omega  1.769e+00   1.697e+00    1.042   0.2972     

alpha1 1.000e+00   7.404e-01    1.351   0.1768     

alpha2 1.000e-08   6.768e-01    0.000   1.0000     

beta1  6.787e-01   1.148e-01    5.912 3.39e-09 *** 

shape  2.209e+00   1.967e-01   11.228  < 2e-16 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -418.1915    normalized:  -2.445564  

Standardised Residuals Tests: 

                               Statistic p-Value   

Jarque-Bera Test   R    Chi^2  8194.806  0         

 Shapiro-WilkTest  R    W      0.6740251 0         

Ljung-Box Test     R    Q(10)  4.164881  0.9396025 

Ljung-Box Test     R    Q(15)  9.660394  0.840541  

Ljung-Box Test     R    Q(20)  17.41176  0.626097  

Ljung-Box Test     R^2  Q(10)  0.4956424 0.9999937 

Ljung-Box Test     R^2  Q(15)  0.757358  1         

Ljung-Box Test     R^2  Q(20)  4.346875  0.9999085 
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LM Arch Test       R    TR^2   0.6326093 0.9999989 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

4.996392 5.161742 4.991212 5.063484 

################ 

summary(fit9.73) Kales 2,2 

Title: GARCH Modelling 

Call: garchFit(formula = ~arma(2, 2) + garch(2, 2), data = Kales171,cond.dist = "std")  

Mean and Variance Equation: 

data ~ arma(2, 2) + garch(2, 2)[data = Kales171] Conditional Distribution:std 

Coefficient(s): 

mu         ar1         ar2         ma1         ma2   

1.60027903  0.44106448  0.46205412  0.57053429  0.05453350   

omega      alpha1      alpha2       beta1       beta2   

2.09007914  0.99999999  0.00000001  0.00000001  0.43621483   

shape 

2.41467957   

Std. Errors: based on Hessian  

Error Analysis: 

Estimate  Std. Error  t value Pr(>|t|)     

mu     1.600e+00   9.484e-01    1.687   0.0915 .   

ar1    4.411e-01   2.712e-01    1.626   0.1039     

ar2    4.621e-01   2.510e-01    1.841   0.0657 .   

ma1    5.705e-01   2.761e-01    2.066   0.0388 *   

ma2    5.453e-02   6.070e-02    0.898   0.3690     

omega  2.090e+00   1.657e+00    1.261   0.2072     

alpha1 1.000e+00   5.862e-01    1.706   0.0880 . 

alpha2 1.000e-08   2.810e-01    0.000   1.0000     

beta1  1.000e-08   2.048e-01    0.000   1.0000     

beta2  4.362e-01   1.116e-01    3.909 9.29e-05 *** 

shape  2.415e+00   3.295e-01    7.329 2.32e-13 *** 

Signif.codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Log Likelihood: 

 -415.2163    normalized:  -2.428166  

Standardised Residuals Tests: 

                                Statistic p-Value   

Jarque-Bera Test   R    Chi^2  7967.098  0         

 Shapiro-WilkTest  R    W      0.6775692 0         

Ljung-Box Test     R    Q(10)  5.041154  0.888412  

Ljung-Box Test     R    Q(15)  12.21494  0.6626924 

Ljung-Box Test     R    Q(20)  19.63058  0.4812416 

Ljung-Box Test     R^2  Q(10)  0.5087623 0.9999928 

Ljung-Box Test     R^2  Q(15)  0.7882664 1         

Ljung-Box Test     R^2  Q(20)  4.448923  0.9998897 

 LM Arch Test       R    TR^2   0.6555249 0.9999987 

Information Criterion Statistics: 

     AIC      BIC      SIC     HQIC  

4.984986 5.187081 4.977358 5.066988  


