
Lawrence Muchemi-PhD Thesis 2014

i

Natural Language Access to
Relational Databases:

An Ontology Concept Mapping (OCM)
Approach

By Lawrence Muchemi Githiari

P80/80034/2008

Supervisor: Dr. Wanjiku Ng’ang’a.

Thesis presented for the Award of Degree of Doctor of Philosophy in
Computer Science

School of Computing and Informatics

University of Nairobi, Kenya

©2014

Lawrence Muchemi-PhD Thesis 2014

ii

Declaration

This thesis is my original work and has not been presented for a degree in any other University.

Signature …………………………………….… Date …………………………

Name Lawrence Muchemi Githiari

This thesis has been submitted for examination towards the fulfillment for the award of degree
of Doctor of Philosophy in Computer Science with my approval as the Supervisor.

Signature ………………………………………… Date ……………..……………

Name Dr. Wanjiku Ng’ang’a

 School of Computing and Informatics,

University of Nairobi, Kenya

Lawrence Muchemi-PhD Thesis 2014

iii

Abstract
Many applications that are accessed by non-technical or casual users, who prefer the use of
natural language, rely on relational databases. Examples of such applications include
government data repositories such as government tender information portals or application
specific databases such as agricultural support systems. The problem of natural language
(NL) processing for database access which has remained an unresolved issue forms the main
problem addressed in this work. The specific challenges include lack of a language- and
domain-independent methodology for understanding un-restrained NL text that accesses
monolingual of cross-lingual databases as well as concepts extraction from database schema.

It is demonstrated that an ontology based approach is technically feasible to handle some of
the challenges facing NL query processing for database access. The Ontology Concept
Modelling (OCM) approach relies on the ability to convert databases to ontologies from
which we obtain the underlying concepts. The database concepts are matched against the
concepts obtained from natural language queries using a semantically-augmented
Levenshtein distance algorithm. This thesis presents the architecture and the associated
algorithms for an OCM-based model for NL access to databases.

In order to evaluate and benchmark the OCM model, data was generated from a prototype
based on the developed OCM-based model. Quantitative parameters such as accuracy,
precision, recall and the F-score and qualitative measures such as domain-independence,
language independence, support for cross-lingual querying and the effect of query
complexity on the model were evaluated across five data sets. Studies were conducted for
English, Kiswahili and English-Kiswahili pair of languages in a cross-lingual manner from
which attainment of language and domain independence for database access are
demonstrated. For this language pair, it is also shown empirically that it is adequate to
incorporate a bilingual dictionary at gazetteer level for cross-lingual data retrieval.

To evaluate the performance of the developed OCM-model, test-beds comprising of mono-
lingual, cross-lingual as well as cross-domain performance measurements capacity were
designed to test various aspects of the model. Tests were then conducted and the results
indicated that OCM has a marginally better precision of 0.861 compared to other bench-
marking models selected for comparison. Further OCM has an average F-score of 0.78
which compares well to other bench-marking models.

The main contribution of this work especially on the OCM architecture, processing
algorithms such as OWoRA (Ontology Words Recovery Algorithm) and Frameworks such
as QuSeT (Query semantics transfer framework) and evaluation models have a huge
significance to the research and developer communities as they provide novel approaches to
NL database access and model evaluation techniques.

Keywords: Natural Language Query, Database Access, Ontology Concept Modeling

Lawrence Muchemi-PhD Thesis 2014

iv

Acknowledgement

PhD is a journey which is long with many meanders that make it one of the most interesting
that an individual makes in the academic arena. Thanks to almighty God for journey mercies
and seeing a successful end of this journey. Being a part-time venture made it particularly
challenging and unto this point I thank the University of Nairobi as an institution for putting
in place measures that helped ease this burden. In particular, I acknowledge UoN for providing
fees waiver and allowing reduced staff workload.

This work would not have seen its infant days without the assistance of Dr. Kate Getao who
provided the initial guidance in shaping the overall research area. An immeasurable amount of
gratitude goes to my supervisor Dr. Wanjiku Ng’ang’a who walked with me through the entire
journey providing the required critique in shaping the work to the current status. In particular
her contributions in thesis structuring, insights into grammar based components and diligent
thesis review all made my PhD journey smoother. I appreciate her efforts in the much needed
assistance in critiquing and reviewing the academic paper on tokens and phrase tree SQL
template mapping (TTM) presented in Makerere in 2008 at the 4th ICCR conference. My heart
felt gratitude also goes to Prof. Fred Popowich who gladly accepted me as a visiting PhD
student at Simon Fraser University Canada in the year 2010. Thanks for his diligence in co-
authoring and reviewing one of the most informative papers arising from this thesis and later
published by Springer International Journal as a book Chapter. The work was also presented at
HCII conference Las Vegas, USA in July 2013. During my stay in Canada I met a wonderful
group of students at the Natural Language Lab who together we studied and reviewed some
interesting and often challenging NLP problems; I thank them all. Part of this research was
made possible by Foreign Affairs and International Trade Canada (DFAIT) funding through
the Canadian Commonwealth Scholarship Program. It was also supported in part by a
Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Much gratitude goes to the faculty at School of Computing and Informatics. In particular,
thanks to Dr. Elisha Opiyo for providing encouragement when we were office-mates, Prof.
Wagacha for making everything look possible and easy, Prof. Okelo-Odongo for the perfect
administrator he is and providing critique right from the proposal stages, Prof. Waema and
Omwenga for encouragement and prodding me to keep on going. I also direct my gratitude to
other faculty members who were PhD students and finished last year (Orwa, Oboko, Omwansa,
Chepken and Mwaura) or are about to finish (Miriti, Ayienga, Ruhiu, and Christine) for
keeping each other company and providing useful suggestions.

Finally, I thank friends and family members particularly my wife Alice who is a Kiswahili
academic and provided a lot of support in grammar related issues in this work. My mum Esther
for urging me to finish and always asking me “Kibuku gigathira ri?”(When are you going to be
through with the big book (PhD thesis)?), Sarah for assisting in data collection for Kiswahili
questions and all that contributed in one or more ways. I also thank my children for having
endured a dad who was always on the computer doing seemingly endless things.

Lawrence Muchemi-PhD Thesis 2014

v

Dedication

To all those who work in pursuit of

Elevating the position of African Languages in the international arena through

Natural Language technology advancement

Lawrence Muchemi-PhD Thesis 2014

vi

Table of Contents

List of Tables xi

List of Figures xiii

List of Acronyms xvi

Chapter 1: INTRODUCTION 18
1.0 Background 18

1.1 Advances in Natural Language Query (NLQ) Processing for QA 20

1.2 Problem Statement 25

1.3 Objectives 26

1.4 Significance of Research 26

1.5 Thesis Overview 27

Chapter 2: LITERATURE REVIEW 29
2.0 Preamble 29

2.1 The QA problem 29

2.1.1 Introdution to Database Access Task 30

2.1.2 Challenges in Database Access Task 31

2.2 Controlled NL (CNL) versus Unrestrained Text 33

2.3 Related Works 34

2.3.1 Semantic Parsing 34

2.3.2 Logic Mapping 40

2.3.3 Ontology-based Approach to DB Access 43

2.4 Successes and Shortcomings in Ontology-based NL Access 45

2.5 Trends in Reviewed Approaches 50

2.6 Towards Domain and Language Independent OCM Approach to Database Access 51

2.6.1 Conceptual Framework 52

2.6.2 NLQ Processing Task 53

2.6.3 Schema Processing and Information Representation 55

2.6.4 The Matching Function 57

2.6.5 Structured Query (SPaRQL) Generation 63

2.7 Evaluating Performance of the Architectural Model 66

Lawrence Muchemi-PhD Thesis 2014

vii

2.8 Summary 67

Chapter 3: OCM DESIGN METHODOLOGY 68

3.0 Preamble 68

3.1 Overview of Issues to be Tackled 68

3.2 Research Design Synopsis 71

3.3 Research Design for Concepts Discovery Tasks 72

3.3.1 Case Studies Design 72

3.3.2 Purpose and Rationale for Case Studies (Characterizing Linguistic Features of user
Inputs) 73

3.3.3 Research Questions for the Linguistic-based Case Studies 74

3.3.4 Description of the Cases 74

3.3.5 Analysis Overview 79

3.3.6 Kernelization Procedure 80

3.3.7 Sampling Technique 82

3.3.8 Results and Analysis of Cases Study Findings 83

3.3.9 Mapping NL Query Semantics to Kernelized Query (DSF) Semantics 90

3.3.10 Relationship Between Meaning-bearing Elements of DSF SPaRQL and the Ontology107

3.3.11 Average Word Count of Concepts in Kiswahili Queries 111

3.3.12 Independence of Kernelization and Triple Formation on Natural Language 113

3.4 Survey on Database Schema Authorship 114

3.4.1 Study of Common-Practice Nomenclature of DB-Schema Objects 114

3.4.2 Sampling Method 115

3.4.3 Sample Frame and Size 116

3.4.4 Analysis Overview 116

3.4.5 Results from Database Schema Authorship Studies 117

3.4.6 Analysis of Data from Database Authorship Surveys 122

3.4.7 Ontology Words Reconstruction Algorithm (OWoRA) 124

 3.4.7.1 Description of OWoRA Algorithm 124

 3.4.7.2 Evaluation of the OWoRA Algorithm 126

 3.5 FSM and Gazetteer Design 128

3.5.1 Feature Space Model (FSM) 128

3.5.2 Gazetteer Formation Process 136

3.6 The OCM Architectural Model 138

Lawrence Muchemi-PhD Thesis 2014

viii

3.7 The Algorithms 139

3.7.1 Semantically Augmented Concepts Matching Approach(SACoMa) 139

3.7.2 Structured Query Generator Function 142

3.7.3 Discovering Implicit Concepts 144

3.7.4 Key Attributes (Foreign Key) 146

3.7.5 Triples Assembly 146

3.7.6 Overall Algorithm 147

3.8 Prototype and Resources Used 147

3.8.1 Prototype Overview 147

3.8.2 Resources 148

3.9 Chapter Summary 157

Chapter 4: EVALUATION AND FINDINGS 159
4.0 Preamble 159

4.1 Evaluation Framework (Parameters and Procedures) 159

4.1.1 Quantitative Parameters 161

4.1.2 Qualitative Parameters 162

4.2 Test-bed 163

4.3 Evaluation Datasets 164

4.4 Queries Sampling Procedure 165

4.5 Experimental Determination of Mean Performance of OCM Model 167

4.5.1 Results from Test-Sets 167

4.5.2 Discussion of Quantitative Evaluation Results 173

4.6 Experimental Determination of Domain Independence 174

4.6.1 Experiments Setup 174

4.6.2 Analysis Overview 175

4.6.3 Results for Domain Independence Experiments 176

4.7 Experimental Determination of Language Independence 178

4.7.1 Experiments Setup 178

4.7.2 Analysis Overview 179

4.7.3 Results of Language Independence Experiments 179

4.8 Experimental Determination of Cross-Lingual Querying Ability 181

4.8.1 Experiments Setup 181

4.8.2 Analysis Overview 182

Lawrence Muchemi-PhD Thesis 2014

ix

4.8.3 Results from Cross-lingual Support Experiments 182

4.9 Effect of Concepts Complexity 185

4.10 Comparative Analysis with other Models 186

4.10.1 Summary of Performance Comparisons 187

4.10.2 Comparisons with Logic-Mapping based Methods 188

4.10.3 Comparisons with Machine Learning Methods 189

4.10.4 Comparisons with Ontology based Methods 190

4.10.5 Summary of Comparisons with other Methods 190

4.11 Summary 191

Chapter 5: CONCLUSION 193
5.0 Preamble 193

5.1 Overview of Research 193

5.2 Theoretical Contributions 194

5.2.1 Modeling of Trends in the Approaches to NL access to Databases 195

5.2.2 Query Semantics Transfer Modeling 195

5.2.3 Ontology Words Recreation Algorithm (OWoRA) 197

5.2.4 Ontology Concept Model (OCM) 198

5.2.5 Evaluation Framework 200

5.3 Technical Contributions 201

5.4 Achievements on Performance Advancement 201

5.4.1 Advancement of F-Score Performance 201

5.4.2 Attainment of Domain-Independence 202

5.4.3 Attainment of Language Independence 202

5.4.4 Achievement of Cross-lingual Querying 202

5.5 Limitations 202

5.6 Recommendations for Further Work 203

5.6.1 Scalability Study 203

5.6.2 Discourse Processing Study 203

5.6.3 Application of OCM to Object-Oriented Databases 204

 5.7 Relevant Publications and Associated Conferences 204

Bibliography 206
Appendix 1: Characterizing Linguistic Features of user Inputs 215

Lawrence Muchemi-PhD Thesis 2014

x

Appendix 2: Illustrative Examples Of Kernelization Process 234

Appendix 3: Survey on Database Schema Authorship 236

Appendix 4: Training the Chunk Parser and Evaluating its Performance 238

Appendix 5: Concept Templates used 239

Appendix 6: Regular Expressions to the NLTK RegExp Chunker for Kiswahili Texts 241

Appendix 7: List of Institutions and Companies 242

Appendix 8: Prototype’s Python Code for Concept Identification and Assembly 243

Appendix 9: Query Sets and Results for Evaluation of English Wizzard, Easy Query and ELF
(Reproduced from Bootra (2004)) 281

Appendix 10: Some of the Databases Used in Nomenclature Analysis 287

Appendix 11: Foreign Key Attribute Processing 291

Appendix 12: Sample Results that Demonstrate Query Transformation 292

Lawrence Muchemi-PhD Thesis 2014

xi

List of Tables

Table 3.1: Query sets Used 79

Table 3.2 Sample Kiswahili Queries Transformations 86

Table 3.3 Sample English Queries Transformations 87

Table 3.4 Summary of Prevalence of Transformation Rules 88

Table 3.5 Average Word Count in Concepts for Kiswahili Queries 112

Table 3.6 Permited Schema Objects Naming Techniques (DB Servers) 117

Table 3.7 Schema Objects Naming Techniques (Training Firms) 119

Table 3.8 Schema Objects Naming Techniques (Software development Firms) 120

Table 3.9 Results from Internet-based Survey 121

Table 3.10 Clustering of Preference Levels 123

Table 3.11 Evaluation Results of the Words Recovery Algorithm 126

Table 3.12 Comparison of Stemmer and Lemmatizer 130

Table 3.13 Recall, Precision and F-Score Values for Root and Stem 131

Table 3.14 Recall, Precision and F-score Values for Bag-of-Words and Concept Patterns 134

Table 3.15 Summary of Objectives, Methods and Components Developed 158

Table 4.1 Summary of Quantitative Parameters Used 161

Table 4.2 Relational Databases Used in the Experiments 164

Table 4.3 Query Sets Used for Evaluation 165

Table 4.4 Test Set 1- OCM - Kiswahili_Queries (Poultry Farmers_db) 167

Table 4.5 Test Set 1-TTM- Kiswahili_Queries (Poultry Farmers_db) 167

Table 4.6 Test Set 2- OCM -English Queries (Microsoft’s Northwind_db) 168

Table 4.7 Test Set 2- TTM -English Queries (Microsoft’s Northwind_db) 168

Table 4.8 Test Set 3- OCM - English Queries (UoN MSc Coordinator_db) 169

Table 4.9 Test Set 4- TTM - English Queries (UoN MSc Coordinator_db) 169

Table 4.10: Test Set 4- OCM - English Queries (Restaurants_db) 170

Table 4.11: Test Set 4- TTM - English Queries (Restaurants_db) 170

Table 4.12: Test Set 5- OCM - English Queries (Computer_Jobs_db) 171

Table 4.13: Test Set 5- TTM - English Queries (Computer_Jobs_db) 171

Table 4.14 Summary of Results 172

Table 4.15 Evaluating Domain Independence of the OCM Method (Std Deviation Analysis) 175

Table 4.16 Evaluating Domain Independence of the OCM Method (Outlier Points Analysis) 176

Lawrence Muchemi-PhD Thesis 2014

xii

Table 4.17 Evaluating Language Independence of OCM (Performance Variance Analysis) 179

Table 4.18 Cross-Lingual Mean Variances and Standard Deviation Analysis 182

Table 4.19 Cross-Lingual Outlier Performance Analysis 183

Table 4.20 Comparison of Performance Values 187

Lawrence Muchemi-PhD Thesis 2014

xiii

List of Figures

Fig. 1.1 NLADB Using Machine Learning and Statistical Methods (adopted from (Minker, 1997)) 20

Fig. 1.2 Semantic Parsing Approach to SQL Generation 20

Fig. 1.3 Example Illustrating the Use of DCG in Semantic Parsing 21

Fig. 1.4 Rules for Composing Meaning of Larger Fragments from their Parts 21

Fig. 2.1 The General QA Problem 28

Fig. 2.2 Overview of Major DB Acces Methods 30

Fig. 2.3 Integration of Syntactic, Semantic and Discourse Statistical Models 34

Fig. 2.4 Machine Learning Problem in Semantic Parsing. 34

Fig. 2.5 Semantic Parsing Using Combinatory Categorial Grammar (CCG) 36

Fig. 2.6 Learning Probabilistic CCG (Zettlemoyer & Collins, 2005); (Kate & Wong, 2010) 36

Fig. 2.7 (a) Syntactic-based Parsing and (b) Token-matching Parsing (Minker, 1997) 39

Fig. 2.8 An Example of OWL based RDF Resource 43

Fig. 2.9 Overview of Ontology-based DB Access Task 45

Fig. 2.10 Research Shortcomings In Ontology-based DB Access Task 46

Fig. 2.11 Methodologies of QA Processing Depending on Source 50

Fig. 2.12 The OCM Conceptual model 52

Fig. 2.13 Example to Illustrate Schema Information Representation 55

Fig. 2.14 Matching Function in OCM Approach 57

Fig. 2.15 Analogy of Document Retrieval Problem and Database Inform. Retrieval Problem 61

Fig. 2.16 Determination of Specifity Score 64

Fig. 3.1 Components of NL Access Problem Illustrated through the Conceptual Model 68

Fig. 3.2 The Solution Overview 69

Fig. 3.3 Protocol Adopted for Carrying out Case Studies 73

Fig. 3.4 Sentence Diagramming 81

Fig. 3.5 Distribution of Transformation Rules 88

Fig 3.6 Modification of Object by an Interrogative 88

Fig. 3.7 Kenerlization of an Imperative Transformation Query 90

Fig. 3.8 Kenerlization of an Agent Deletion Transformation Query 92

Fig. 3.9 Kenerlization of an Passive Transformation Query 92

Fig. 3.9 Kenerlization of and Passive Transformation Query 92

Fig. 3.10 Kenerlization of Deletion of Excessive Elements Transformation Query 93

Lawrence Muchemi-PhD Thesis 2014

xiv

Fig. 3.11 Kenerlization of Addition of Elements 95

Fig. 3.12 Kenerlization of Negation Transformation Queries 95

Fig 3.13 Query Semantics Transfer Model (QuSeT Model) 97

Fig 3.14 Kenerlization of a ‘What-Query’ Type 99

Fig 3.15 Kenerlization of a ‘What-Query’ Type with Modifiers 100

Fig 3.16 Kenerlization of a ‘Where-Query’ Type 100

Fig 3.17 Kenerlization of a ‘Enumerative-Query’ Type 101

Fig 3.18 Kenerlization of a ‘Yes/No-Query’ Type 101

Fig 3.19 Kenerlization of a ‘Give/List-Query’ Type 102

Fig 3.20 Kenerlization of a ‘Who-Query’ Type 102

Fig 3.21 Kenerlization of a ‘When-Query’ Type 103

Fig 3.22 Kenerlization of a ‘When-Query’ Type 103

Fig 3.23 Kenerlization of a ‘Which-Query’ Type 104

Fig 3.24 Kenerlization of a ‘Comparative’ Type 104

Fig 3.25 Kenerlization of a ‘Superative-Query’ Type 105

Fig 3.26 Kenerlization of a ‘Disjunctive-Query’ Type 106

Fig. 3.27 An Example of a SPaRQL Query 107

Fig. 3.28 General Structure of the SPaRQL Query 108

Fig. 3.29 Kernelization of Illustrative Query One 108

Fig. 3.30 Kernelization of Illustrative Query Two 109

Fig. 3.31 Segment of OWL-based RDF Ontology from Northwind Database 110

Fig 3.32 Average Word Count in Concepts for Kiswahili Queries 112

Fig 3.33 Average Usage of Nomenclature Type (Training Institutions) 119

Fig 3.34 Average Usage of Nomenclature Type (Development Firms) 120

Fig 3.35 Frequency of Occurrence of Various Patterns in Internet based Survey 122

Fig 3.36 Ontology Words Reconstruction Algorithm (OWoRA) 125

Fig. 3.37 Concepts Processing 128

Fig. 3.38 Python Code for Describing patterns of Regular Expressions 132

Fig. 3.39 Feature Space Model for Query Representation 135

Fig. 3.40 Processes Leading to the Formation of Gazetteer 137

Fig. 3.41 Structure of Gazetteer with Sample Data 138

Fig. 3.42 Architecture for Ontology-based NL Access to DBs (ONLAD) 139

Lawrence Muchemi-PhD Thesis 2014

xv

Fig. 3.43 Location of Matching Function in OCM Approach 140

Fig. 3.44 Python Implementation of Edit-Distance Calculation 141

Fig. 3.45 Template of Query Generator Function 143

Fig. 3.46 Example of a Generated SPaRQL Query 144

Fig. 3.47 Example from Microsoft Northwind Sample DB (Microsoft, 2004) 144

Fig. 3.48 SPaRQL Query that handles Implicit Concepts and Foreign Keys 146

Fig. 3.49 The Overall OCM Algorithm 147

Fig. 3.50 Structural Design of Prototype 148

Fig 3.51 Structure of HCS Showing Lemma, Part-of-speech Label, Translation among others 151

Fig 3.52 Structure of Swa-Eng TUKI Dictionary Showing Lemma, Pos Labels and Translation 152

Fig 3.53 Training and Evaluation of Part of Speech Taggers 153

Fig. 3.54 Regular Patterns of Noun-phrases (Source: Sewangi, 2001) 156

Fig. 4.1 General Evaluation Process Flow 159

Fig. 4.2 Illustration of Categories Used in Evaluation 161

Fig. 4.3 Test bed used in Prototypes Evaluation 164

Fig. 4.4 Experimental Procedure for Domain Variance Experiments 174

Fig. 4.5 Experimental Procedure for Language Independence Experiments 179

Fig. 4.6 Experimental Determination of Cross-Lingual Support 181

Fig. 4.7 Graphical Representation of Variances (µ = 0) 185

Fig 4.8 Relative Performance (F-score) versus Complexity of Query 186

Fig 5.1 Concise Graphical Presentation of Methods and Trends in NL Access to Databases 195

Fig 5.2 Query Semantics Transfer (QuSeT) Model 196

Lawrence Muchemi-PhD Thesis 2014

xvi

List of Acronyms

AET Addition of Elements Transformation

AI Artificial Intelligence

AMT Automatic Machine Translation

CCG Combintory Categorial grammar

CFG Context Free Grammar

CNL Controlled Natural Language

CT Coordination Transformation

DAT Deletion of Agent Transformation

DB Database

DET Deletion of Excessive Elements Transformation

DSF Deep Structure Form of a query as defined in Transformational-Generative Theory

DCG Definite clause grammar

FOL First Order Logic

FSM Feature Space Model

GO Gene Ontology

HCS Helsinki Corpus of Swahili

IE Information Extraction

I-O-B Tags indicating word is Inside, Outside or beginning of a chunk

IT Imperative Transformation

MBSMA-s Memory Based Tagger that works at syllable level

MR Meaning Representation

NLTK Natural Language Tool Kit

NL/U/P/Q Natural Language/Understanding/Processing/Query

NLADB Natural Language Access to Data-Base

NT Negation Transformation rule

OWL Web Ontology Language acronymed OWL, is a knowledge representation language that has

three sublanguages Lite, DL and Full. It is used for authoring ontologies and is written in either

RDF/XML format. OWL is endorsed by the World Wide Web Consortium (W3C)

OCM Ontology Concepts Mapping

OWoRA Ontology Words Construction Algorithm

PoS Part of Speech

Lawrence Muchemi-PhD Thesis 2014

xvii

PCCG Probabilistic Combinatory Categorial Grammar

PT Passive Transformation

QA Question Answering systems

QT Question Transformation rule

QuSeT Query Semantics Transfer Model

RDF Resource Description Framework

RegExp Regular Expression

SACoMA Semantically Augmented Concepts Matching Algorithm

SALAMA Swahili Language Manager

SeRQL Sesame RDF Query Language is an RDF query language used to query RDF repositories

SPARQL Is an RDF query language that is emerging as the de facto RDF query language (W3C endorsed)

SQL Structured Query Language for querying relational databases

SRL Semantic Role Labeling, also called shallow semantic parsing, is based on theta roles analysis

SSF Surface Structure Form of a query as defined in Transformational-Generative Theory

SVM Support Vector Machine

SVO Subject-Verb-Object in a query

SWATWOL a morphological parsing program based on two-level formalism (for handling

morphophonological processes, which occur principally in morpheme boundaries.

TTM phrase-Tree Template Matching Approach to NLQ access to Relational databases

TUKI Taasisi ya Uchunguzi wa Kiswahili (Institute of Kiswahili Research, University of Dar es Salaam)

W3C World Wide Web Consortium

Lawrence Muchemi-PhD Thesis 2014

18 | P a g e

Chapter 1: INTRODUCTION

1.0 Background

Language is the principal manifestation of human intelligence and therefore its processing and

effective use through technology is an epitome of artificial intelligence. Natural Language

Processing (NLP) has developed over the years from a minor sub-branch of Artificial Intelligence

(AI) to a well-researched major sub-field of AI. Currently major topical fields of NLP include

Sentiment Analysis, Opinion Mining, Automatic Machine Translation (AMT), Question Answering

Systems (QA), Information Extraction (IE), Deciphering, Dictation Systems, and Transcription

Systems among others. The latter two areas involve speech processing as opposed to the former

which are text based. The work undertaken in this thesis falls in the area of question answering

system but in the focused area of database access. Question answering systems are specialized

information access systems that have deduction capability that enables formulation of answers from

information repositories through synthesized natural language queries. Synthesize of Natural

Language queries involves natural language understanding. Natural Language (NL) understanding

refers to the process of comprehending and making intelligent language use once the concepts are

known. In general natural language understanding is a notoriously difficult problem because it seeks

to understand open-ended natural language utterances that require knowledge and reasoning skills

that people use in everyday life (Mateas & Stern, 2011). Making judgments on grammaticality is not

a goal in language understanding (Robin, 2010). Robust systems should therefore understand

ungrammatical sentences with semantic value. This necessitates exploring of approaches that are

robust enough to handle issues of ungrammatical texts, sentence fragments and short queries.

Question answering systems should be distinguished from ordinary search engines by the fact that in

QA systems a direct answer is deduced from the information source as opposed to provision of a set

of web links that could contain the answer.

According to Lopez (2007), QA systems can be grouped into four distinct categories which are

based on the nature of data being accessed. The first category involves data source which is highly

structured, such as a relational database, and is normally accessed by highly formal languages, such

as SQL (Structured Query Language), SPARQL(recursive acronym for SPARQL protocol and RDF

Query Language pronounced ‘sparkle’) and SeRQL (acronym for Sesame RDF Query Language) etc.

The second category encompasses access to semi-structured data source such as health records or

Lawrence Muchemi-PhD Thesis 2014

19 | P a g e

yellow pages information. The third category involves question answering over free text from such

sources as the web pages. The fourth category involves accessing annotated images or video via

ontologies. The work reported in this thesis is in the area of Natural Language Access to Data-Base

(NLADB) which is in the first category as described above.

Research in NLADB has been ongoing since the sixties as evidenced by the 1961 program named

BASEBALL (Green,1961) and the 1964 attempt by Bobrow (Bobrow, 1964) on Natural Language

(NL) for Algebra program, a doctorate thesis at the Massachusetts Institute of Technology (MIT).

Active research continued in the early 70’s and popular programs included SHRDLU (Winograd,

1971) another doctoral thesis at MIT, which demonstrated NL control to a robot’s arm that is placed

on a table. LUNAR (Woods, 1972) answered close to 90% of the questions about geological

properties of rocks returned by the Apollo missions (Lopez, 2007). Other popular programs of mid-

70’s included PLANES (Waltz, 1975), REL (Thomson, 1975) and LADDER (Hendrix, 1978) among

others. The motivation in 1970’s was provision of natural language access to Expert Systems

(Akerkar & Joshi, 2009). BASEBALL for example had an NL interface to an expert system that

helped answer close to 80% of questions on United States baseball league information. Almost all

NLADB systems were designed and developed with a particular database in mind, an approach that

is not tenable because of the inherently high cost of development of these single use-interfaces.

Programs in the late 70’s and 80’s differed from those of the 60’s and early 70’s in that they utilized

semantic grammars while the earlier ones used purely syntactic grammars (Akerkar & Joshi, 2009).

The semantic grammar approach is an approach in which non-terminal symbols of the developed

grammar use word-entities such as maths_score, rank_of_worker etc. while syntactic grammar

utilizes syntax trees with syntactic categories such as noun-phrases and part of speech categories

such as verbs as non-terminal symbols. The use of syntactic and semantic grammars in the direct

conversion of English free text to formal languages such as prolog predicates as used in MASQUE

(Androutsopoulos, 1993) continued to be used in 80’s and 90’s. Later developments advocated for

conversion of NL to SQL queries as observed in MASQUE/SQL (Androutsopoulos, 1993). The

inherent challenges brought by direct conversion of NL to structured language such as lack of

language and domain independence were discovered. Restrictions on language usage were a big

bottleneck to this approach. For example sentences were required to be grammatically correct and in

a predefined format and more often than not required paraphrasing. The method does not allow

shifting from one language to another or from one domain to another without vast customization

Lawrence Muchemi-PhD Thesis 2014

20 | P a g e

efforts that are not viable. An Interlingua approach was proposed and adopted by several researchers

(Vanessa Lopez, 2007). For example Dong-Guk Shin and Lung-Yung Chu (1998) developed a

theory of using concept terms, which they referred to as c-terms which essentially acted like

interlingua representations. Efforts in the use of interlingua culminated in development of powerful

commercially available systems such as English Wizard (EasyAsk), English Query (Microsoft) and

ELF (Elf Software Co). These earlier efforts have been less successful than it was once predicted,

mainly because of the development of alternative graphic and form-based databases (Akerkar &

Joshi, 2009). The long time desire to minimize the communication gap between computers and

humans through NLADB is persistent and hence the need for continued research in this area (Rashid,

Mohammad, & Rahman, 2009). In usability studies reported in Kaufmann and Bernstein (2007)

involving 48 end users of a QA system, NL was the most preferred access technique compared to

menu and graphical interfaces. Over the years NLADB researchers have recognized this potential

and hence the need for continued research.

1.1 Advances in Natural Language Query (NLQ) Processing for QA

The problem of NL access to databases has been recognized as having two integral parts which

include a linguistic layer that handles natural language processing tasks and a database access layer

that handles structured queries mainly in SQL but recently SPARQL and SeRQL. Other researchers

often include a third layer to cater for the intermediate representation (interlingua). Generally

speaking research has concentrated in these three areas with much work done through machine

learning, statistical, rule based or a hybrid of these methods. Currently, research efforts are at a cross

roads where researchers are grappling with the question of using rule based approach or moving to

the more attractive statistical and machine learning approaches which have significantly improved

the results of other NLP problems such as automatic translation. The problem has been cast as

indicated in figure 1.1.

Lawrence Muchemi-PhD Thesis 2014

21 | P a g e

Figure 1.1 NLADB Using Machine Learning and Statistical Methods (adopted from (Minker, 1997))

Researchers pursuing machine learning and statistical approach can be categorized into various

schools of thought as noted by Mingxia, Jiming, Ning, and Furong, (2007). One such category

involves researchers who view the problem as a classification or a clustering problem. The core aim

is to provide efficient semantic parsers. Generally speaking semantic parsers take in free NL text and

map this to some formal representation of meaning. First Order Logic (FOL) is usually used for

formal meaning representation. The meaning representations (MRs) are subsequently mapped to

SQL or other structured languages via a machine learning classification process. This process is

illustrated in figure 1.2

Fig. 1.2 Semantic Parsing Approach to SQL Generation

 Training Sentences (Example ‘Nairobi borders Kiambu’)

 Training MRs (eg. MR for VP ‘borders’ => [λyλx.borders(x,y)])

 Borders|VP

 New MR

Sentence SQL

Training MRs

Training SQL

Semantic
Parsing Learner

Trained
Semantic

Parser

SQL/MRs
Learner

Trained SQL
Classifier

Syntactic Parser

I n te r n a l
r e p r e s e n t a t i o n

In p u t L a n g u a g e
(E n g l i s h)

S y n t a x A n a l y s i s S e m a n t i c
a n a ly s is

T a r g e t L a n g u a g e
(S Q L)

L e a r n in g A l g o r i t h m s S t a t i s t ic a l m e th o d s

Lawrence Muchemi-PhD Thesis 2014

22 | P a g e

The most preferred grammars are the definite clause grammar (DCG) and probabilistic combinatory

categorial grammar (PCCG). An example for illustrating the use of DCG in semantic parsing is

given in figure 1.3.

To represent the sentence ‘Kiambu county borders Nairobi’, the sentence can be represented using

define clause grammar which can be viewed as context free grammar written and interpreted through

first order logic notation as:

Fig. 1.3 Example Illustrating the Use of DCG in Semantic Parsing

These three rules will be triggered upon the system identifying the lexical entries ‘border/s’,

‘Kiambu’ and ‘Nairobi’ within the sentence tokens. One objective of semantic parsing is to compose

the meaning of larger fragments from their parts (Domingos & Poon, 2009). Rules for doing this

would appear as shown in figure 1.4.

Fig. 1.4 Rules for Composing Meaning of Larger Fragments from their Parts

The first rule would fire upon seeing relationship ‘borders’ and either ‘Kiambu’ or ‘Nairobi’ in the

sentence to give the meaning “‘Kiambu or Nairobi’ ‘borders’ ‘another town’ ”. Upon seeing the

second object the second rule fires giving the meaning ‘Kiambu borders Nairobi’ or ‘Nairobi borders

Kiambu’.

Relation: Verb [λyλx.borders(x,y)]→ borders

Object 1: NP[Kiambu] → Kiambu

Object 2: NP[Nairobi]→ Nairobi

VP[rel(obj)]→Verb[rel] NP[obj]

S[rel(obj)] →NP[obj] VP[rel]

Lawrence Muchemi-PhD Thesis 2014

23 | P a g e

These rules and lexical entries were traditionally manually constructed from text. However research

into supervised and unsupervised learning approaches has been on the rise especially for applications

that are intended to process text from the web.

Other semantic parsing systems work in a similar manner with major variations being in the meaning

representation language and the extent of labeling in supervised learning. Different supervised

machine learning algorithms for semantic parsing were proposed in Zettlemoyer and Collins, (2005);

Mooney, (2007) among others. In particular Zettlemoyer and Collins (2005) introduced an approach

of learning to map sentences to a logical form through the use of structured classification with

probabilistic categorial grammars (see section 2.3.1 for a detailed explanation of the learning task).

A categorial grammar is a phrase structure grammar and represents words using categories. A

category can be combined with another category to produce a new category because it behaves like a

function which can take an argument either from its left or right side neighboring category in a

sentence. Categorial grammars can also be combined with λ (lambda) calculus which is normally

used to represent computable functions. Since semantics is often represented using functions, λ

calculus is therefore used to represent semantic expressions (Nakorn, 2009). This method provides a

rapid means of mapping NL text to logical form which if required can then be converted to SQL or

other database formal languages. As Domingos and Poon (2011) notes, providing the target logical

form for each sentence is costly and difficult to do consistently and with high quality, thus making

supervised approach less attractive.

An unsupervised approach has been applied to information extraction which is considered as shallow

semantic parsing (Banko, 2009). Unsupervised learning approach has also been applied to semantic

role labeling (SRL) which is also considered as a shallow semantic task. SRL is concerned with

identification of predicates or verbs in a sentence and determining all the objects associated with it.

These objects are then assigned to semantic groups which are predetermined, in supervised leaning

(Jurafsky & Gildea, 2002), or clusters in unsupervised learning (Swier & Stevenson, 2004). Recent

search for an unsupervised semantic parser has been proposed in Domingos and Poon (2011). In the

proposed approach dependency trees are converted to quasi logic forms namely the lambda-forms

which are recursively clustered into various semantic variations. In yet another attempt to

unsupervised semantic parsing reported in Mingxia, Jiming, Ning and Furong, (2007), the problem is

Lawrence Muchemi-PhD Thesis 2014

24 | P a g e

reformulated as an optimization problem. The following quote from their report underlines their

basic approach:

“The basic ideas underlying our method can be stated as follows: first we translate
the tokens of a question as well as their syntactical and semantic relations (as in
NLP) into constrained question variables and functions, and thereafter, we utilize an
optimization-based assigning mechanism to substitute the question variables with the
corresponding constructs in OWL knowledge bases.” (Mingxia, Jiming, Ning, &
Furong, 2007)

The solution to the problem of mapping question tokens automatically to OWL (Web Ontology

Language given the acronym OWL) elements in web-based QA system is an important step towards

providing answers from a structured source. Inquiry into the solution for this problem when the

source is a relational database forms the core of research reported in this thesis.

As noted in Danica et al. (2009) it is not trivial to translate successfully parsed question into the

relevant logical representation or a formal query which will lead to the correct answer and none of

the developed solutions is a tight solution to this quandary. To sum up weaknesses of machine

learning approach Popescu et al. (2003) note,

“…… to parse questions posed to a particular database, the parser has to be trained on a
corpus of questions specific to that database. Otherwise, many of the parser’s decisions will
be incorrect. ….. On the other hand, manually creating and labeling a massive corpus of
questions for each database is prohibitively expensive.”

 (Popescu, Etzioni, & Kautz, 2003)

The above challenge could be viewed as a domain adaptation problem, which is also known as

transfer learning or cross-domain learning. Attempts to address similar challenges have been made in

other fields of machine learning. For example in computer vision, the domain of interest (target) may

contain very few or no labeled data while an existing auxiliary domain (source) may contain many

labeled examples. Domain adaptation algorithms, such as SVM based algorithms have been

proposed to bootstrap the target domain. Whereas these methods could be adopted for the relational

database problem, such attempts have not been reported. The challenge thus remains unsurmounted

to date.

A new school of thought has been developing alongside machine learning efforts. This has sprung up

after years of research into ontology development mainly for representing information on the

Lawrence Muchemi-PhD Thesis 2014

25 | P a g e

semantic web. Research in automatic NL information entry and access to semantic web has been on-

going. Some prominent ground breaking works have been reported in AquaLog (Lopez, Pasin, &

Motta, 2004) at Open University in UK; Querix (Esther, Abraham, & Renato, 2006) at University of

Zurich; NLP Reduce (Kaufmann, Berstein, & Fischer, 2007); QuestIO (Tablan, Damljanovic, &

Bontchev, 2008) at University of Sheffield and FREyA (Damljanovic, Agatonovic, & Cunningham,

2010). In these works free NL text is parsed into concepts which are mapped onto mentions of

ontology resources. Studies into question understanding for purposes of database access must be

solved if such an approach was adopted for solving NLADB problem.

When casual users interact with systems, it is not the case that they concentrate on the grammatical

accuracy of their inputs (Muchemi L. , 2008). Consequently, suitable algorithms must handle issues

of ungrammatical texts, sentence fragments and short queries. Tablan et al.,(2008) observe that due

to the popularity of search engines such as Google, people have come to prefer search interfaces

which offer a single text input field where people usually type in short fragments often

ungrammatically arranged (Tablan, Damljanovic, & Bontchev, 2008). This requirement inevitably

limits the applicability of machine learning techniques to real life applications. Semantic and

statistical based machine learning systems as well as rule based systems expect grammatical

sentences that can be syntactically and semantically parsed while the users provide short fragments

that are not guaranteed to be grammatical. This necessitates research on an approach that is robust

enough to handle this challenge. The languages selected as case studies for this research were

English and Kiswahili. A preliminary survey carried out to study the use of Kiswahili as a query

language reveals that most databases’ metadata is a concatenation of words or abbreviations in

English. This poses an unresolved issue of cross-lingual analysis of the NLADB problem which

introduces a cross-lingual aspect of NLADB problem that must be addressed for Kiswahili.

This thesis tackles the challenges presented in the foregoing section with a special focus on English

and Kiswahili as the medium for querying.

1.2 Problem Statement

The problem of NL processing for database access which has remained an unresolved issue forms

the main problem addressed in this work. As described in the foregoing section the specific

challenges include lack of a suitable language and domain independent methodology for

Lawrence Muchemi-PhD Thesis 2014

26 | P a g e

understanding un-restrained NL text. The challenge of developing a generalizable methodology that

maps any given natural language to a suitable structured query language is the main issue tackled.

Most databases have to grapple with the challenge of cross-lingual interaction. The cross-lingual

aspect arises from the observation that most systems which use Kiswahili as a media of querying

predominantly use concatenation of words or abbreviations in English as databases’ metadata.

Further the problem of mapping ontology concepts (formed from the underlying relational database)

to parsed NL text remains largely unstudied. Previous studies have tended to concentrate on web text

sources or pre-populated ontologies. This challenge was addressed alongside the task of parsing NL

free text into concepts.

1.3 Objectives

The main objective of this research is to bring forth an architecture that facilitates natural language

understanding of user queries and that helps build a structured language query that can be used to

access highly structured information source such as a relational database.

The specific objectives are stated as follows:

O Develop a suitable language and domain independent methodology for understanding un-

restrained NL text.

O Design an architectural model and algorithms thereof that facilitate access of data from

databases using English and Kiswahili as case-study languages. Specifically algorithms for

parsing free NL text and data structure for holding the parsed queries are to be designed.

Further algorithms for extracting concepts from ontologies and matching functions are to be

designed.

O Develop a prototype upon which performance evaluations can be done.

1.4 Significance of Research

This research involves design and development of language and domain independent architectural

model that facilitates the understanding of un-restrained natural language text. Kiswahili and English

are used as case study languages.

Successful solution to this problem significantly contributes to the body of knowledge within

NLDBA field. This leads to better understanding of the problem and brings form methodologies that

Lawrence Muchemi-PhD Thesis 2014

27 | P a g e

developers could use. This research therefore postulates that successful solution to this knowledge

gap will lead to novel methodology upon which natural language interfaces to databases can be built.

Potentially this leads to the following application oriented social benefits:

O Access of data repositories within governments’ and private sector databases by users who

prefer use of natural language (casual database users).

O With increased usage of mobile devices there’s more direct interaction with casual users

hence a renewed interest in catering for their NL interaction as noted by Kauffman and

Bernstein, (2007).

O Perhaps more significantly the solution is an important intermediate step in speech

processing for voice access to databases. This has real potential of invigorating use of mobile

phones for direct database access using NL.

1.5 Thesis Overview

The remaining sections of this thesis are organized as follows:

Chapter 2 provides a background to the QA problem. It explores the state-of-art techniques in

NLQ processing for solving the QA problem specific to database access. This chapter provides an

in-depth view of what it entails to perform deep structure semantic analysis of queries and how the

concepts of natural language understanding can be realized in the context of databases.

Specifically traditional approaches such as direct mappings to prolog and SQL through syntactic

structure processing and interlingua approaches are examined. Machine learning techniques such

as the supervised grammar based parsing and statistical approaches paradigms are also explored.

The chapter explores deep into some of the related works that utilize deep structure analysis in

semantic analysis of NL queries. In addition to this, concepts in resource description framework

and implementation in OWL language are also highlighted. Further a review of related concept

mapping methodologies especially for the semantic web is made. The chapter ends with a thorough

analysis and design of a conceptual framework. In order to evaluate the models proposed in this

work, concepts in accuracy, precision and recall measures as applied to NLQ processing are

reviewed.

Chapter 3 provides an in-depth look at the approaches and resources selected at each stage of the

proposed solution. The chapter presents results and analysis of surveys done for language queries

Lawrence Muchemi-PhD Thesis 2014

28 | P a g e

and database schema authorship. It provides an overview of the selected resources. Finally a

comprehensive summary of all techniques and tools selected for this work are examined and

justified

Chapter 4 presents evaluation techniques and tools adopted in this research. It also presents

evaluation results of the proposed model as measured on the prototype. It also provides a

comprehensive discussion on observations made.

Chapter 5 presents the major contributions and conclusions arising from this work as well as the

implications to the research community and other stakeholders. Insights into areas that may be

pursued for further research are also highlighted.

Lawrence Muchemi-PhD Thesis 2014

29 | P a g e

Chapter 2: LITERATURE REVIEW

2.0 Preamble

This chapter provides an overview of the important theoretical underpinnings of the work carried out

in this research. The problem of accessing relational databases in response to users’ queries is treated

as a sub-problem of the more general question-answering (QA) problem. In addition to this sub-

problem QA also involves tasks such as information retrieval from various sources (such as web

texts and domain-specific ontologies such as in bioinformatics ontologies) as well as document

retrieval where a document can be retrieved from a collection of documents. QA also encompasses

design of dialog systems. The general problem of QA is first explored under which the main

approaches are expounded. This is then followed by issues specific to QA specific to database

access.

2.1 The QA problem

Question answering is the task of providing an answer to a question posed in NL text from an

information source such as a document or a data repository. The document may be web-based or

simply a text document while the data repository may be a relational database or a specialized

knowledge base such as resource description framework ontology used in semantic web. The goal of

QA using NL is to provide users with the ability to use their own terminology in an unrestricted

manner and receive answers that are satisfactory. QA systems must have a degree of intelligence that

enables formulation of answers from information repositories through synthesized natural language

queries. The general QA problem is illustrated in Fig. 2.1 here below.

Figure 2.1 The General QA Problem

 Information
Repository

NLQ
Source

Answer to User
Answer Generation

Query
Formulation

Repository
Access

NLP

Lawrence Muchemi-PhD Thesis 2014

30 | P a g e

Natural language processing (NLP) involves tasks such as tokenization, morphological analysis,

shallow or deep syntax analysis and semantic processing. Morphological analysis deals with the

word structure. Shallow syntax processing involves syntax analysis targeted at the phrase level. On

the other hand deep syntax processing will involve the grammaticality of the entire sentence. NLP

for QA task also involves NL understanding (NLU). NLU refers to the process of comprehending

the meaning of a user input and making intelligent usage of it once the semantics of the lexicon and

phrases contained therein are known. Repository access refers to the extraction of meaning-bearing

elements from the data source, say ontology, and representing them in a formalism that makes it

easier for inferencing. Answer generation includes all those processes that combine the elements of

NLP and data source processing and provide answers from the repository to the user. Key cross-

cutting research areas in the QA problem revolve around the design of better NLP parsing and

semantic analysis algorithms, more intelligent answer generation schemes and more efficient

information representation formalisms.

2.1.1 Introdution to Database Access Task

This is a specialized task of the general QA problem. It specializes in information access from

relational databases through natural language querying. The input may be free NL or controlled NL.

Different approaches to solving this problem have been applied and two major schools of thought

have emerged dominant. These are the traditional logic based mapping and the use of machine

learning.

The methodology of parsing the NL and subsequent formation of a solution from the information

source is determined by several factors namely:

 If the NL is controlled or unrestrained (Smart, 2008),

 Structure of information source (Lopez et al. (2007)and

 Preferred approach which may be, either traditional predicate logic mapping as in

Androutsopoulos et al., (1995), Mingxia et al. (2007) among others; machine learning QA

such as in Zettlemoyer and Collins, (2005); Mooney, (2007), Domingos and Poon, (2011)

among others; or semantic QA approaches as reported in Lopez et al. (2007) among others.

 An overview of the QA for database access dominant parsing methods applied is shown in figure

2.2.

Lawrence Muchemi-PhD Thesis 2014

31 | P a g e

Figure 2.2 Overview of Major DB Access Methods

2.1.2 Challenges in Database Access Task

QA for database access task presents different challenges from the general QA problem in several

ways highlighted here below. This task involves highly structured information repository and

therefore calls for more stringent processing techniques for the NLQs. A highly structured source,

such as a relational database, is normally accessed by highly formal languages, such as SQL,

SPARQL and SeRQL and therefore NLQ processing must yield to these highly constrained

formalisms. The implication is that NLQ processing must result in concepts that match the database

schema as opposed to a set of references that may contain the answer. Answers given must be exact

and not subject to probability of accuracy. This calls for improved NLQ representation and

inferencing formalisms.

NL access to database task also differs from NL access to free texts and general ontologies in those

databases present strict formalisms not present in the other sources for example special conditions

such as foreign keys between data. Foreign keys ensure data integrity in relational databases. This

integrity enhancement mechanism ought to be inbuilt in any envisaged access method. This leads to

the question of whether methods that can handle these formalities can be designed.

Many language processing tasks, such as machine translation, have been more successfully solved

through machine learning techniques. From a machine learning perspective, the database problem is

a two-stage classification problem. The NL is converted to an intermediate internal meaning

Natural
Language Query QA Processing

Ontology-Concept Map.

 Predicates & their
Arguments

 Intermediate
Languages eg c-terms

 Lexical outputs of
Definite Clause
Grammar (DCG) or
Combinatory
Categorial Grammar
(CCG)

 Structured Language eg
SQL, SPARQL and
SeRQL

Semantic Parsing
Logic Mapping

Answer from
Information

Information
Source

Lawrence Muchemi-PhD Thesis 2014

32 | P a g e

representation (MR) as a first stage and then inturn mapped to a structured query. This back-to-back

classifier arrangement inherently reduces the performance of machine learning solutions. Another

challenge in the NL database access task is the inherent limitation of the databases that have poor

domain adaptability. To parse questions posed to a particular database, the parser has to be trained

on a corpus of questions specific to that database. Creating and labeling massive corpus of questions

for each database is prohibitively expensive. Researchers are still grappling with this problem

despite the use of the state-of-the-art annotation-cost reduction methods such as semi-supervised

learning. Although the use of machine learning techniques in this sub-problem is still a fascinating

theme for researchers in this area none of the proposed methods adequately addresses the training

issue.

Another challenge is the development of language independent methodologies which do not heavily

rely on language specific tools but rather some universal tools applicable across languages. State-of-

art approaches which include semantic-parse based and logic-mapping based methods involve

grammar manipulations. For example semantic-parse based methods use definite clause grammar

(DCG) or combinatory categorial grammar (CCG) to produce intermediate elements, the meaning

representations. An example of this is demonstrated in Thomson, et al. (1997), Zettlemoyer &

Collins, (2005) among others. On the other hand logic-mapping based approaches such as syntactic-

based mapping inherently use grammar manipulations in the formation of the intermediate phrase

trees. Examples of these architectures are demonstrated in Garcia et al. (2008), Popescu et al. (2003)

among others. This dependency on grammar renders these methods language dependent. The

realization of a language independent method would provide a universal access method across

languages.

It has been observed that communities who use multiple languages, such as the use Kiswahili as

business language and English or French as official languages in East Africa also encounter another

type of challenge. Database authors use concatenations or abbreviations of the official language as

database schema language while ordinary persons prefer using business language to query these

databases. This presents a new dimension to this task, the problem of ‘cross-linguality’. Cross-

linguality refers to the phenomenon of using a given language to query a database whose schema is

authored in a different language. The abbreviations and concatenations of words forming the object

and field names are done in a different language from the one used to query. This problem is

Lawrence Muchemi-PhD Thesis 2014

33 | P a g e

prominent in countries with multi-language policy. For example sub-Saharan countries are affected

by this phenomenon with East Africa having a cross-lingual issue of Kiswahili and English.

Some other cross-cutting issues that are subject to intense research in this field include portability

which means the ease of porting from one database to another and from one domain to another with

the ultimate goal being the need to minimize or eradicate the requirement for manual customization

and re-crafting of code when porting across domains or databases. Finally a challenge lies in the

synthesis of NL queries because it involves natural language understanding which is a non-trivial

task and the selection of appropriate query language that can be efficiently parsed and mapped onto

the data repository. The choice is usually between whether to use controlled natural language or un-

restrained language. These are next discussed in section 2.2.

2.2 Controlled NL (CNL) versus Unrestrained Text

While designing QA architectural models it is important to consider the nature of input queries. The

primary goal of QA is to provide users with ability to query in an restrained manner, however some

researchers have noted some inherent complexities of natural language that are not easy to

computationally solve. These include ambiguity brought by anaphoric references, semantic

ambiguity and lexical ambiguities. These are respectively illustrated in the following sentences,

Jane invited Susan but she told her she was late for work …. Anaphoric ambiguity

Bill kissed his wife, and so did Chris. (Did Chris kiss Bill's wife or his own?)... semantic ambiguity

The mouse was in my house … lexical ambiguity

To overcome some of these difficulties some QA researchers have proposed the use of controlled

natural language (CNL). CNLs are subsets of natural language whose grammars and dictionaries

have been restricted in order to reduce or eliminate both ambiguity and complexity. According to

Smart, (2008) the concept of CNL was first introduced in the 1930s by linguists who sought to create

a ‘minimal’ variety of English that would be accessible to non-native English speakers. This concept

has been adopted by QA researchers especially those pursuing semantic QA approach. These include

CLoNE (Funk et al. 2007), Rabbit (Hart et al. 2008) among others. Although CNL has been in

research labs for over a decade now, it has failed to take the lead because of various reasons. First

CNL as a language must be learnt and understood by users, a task that is daunting for casual users.

Some researchers have overcome this by creating an interface that dynamically generates suggested

Lawrence Muchemi-PhD Thesis 2014

34 | P a g e

words (from CNL lexicon) in the input dialog boxes as is the case with GINSENG (Guided Input

Natural Language Search Engine) (Bernstein, Kaufmann, & Kiefer, 2006). The challenge here is that

CNL introduces another layer of processing which introduces errors and thereby reducing the overall

performance of the system. More over CNL in itself cannot replace ontology layer and therefore it is

only a superfluous effort with little gain. It is for these reasons that this research opts to work with

unrestrained text as opposed to CNLs.

2.3 Related Works
This section discusses in detail past efforts by researchers in trying to solve the Natural Language

Access to Data-Base (NLADB) problem. The section is divided into three schools of thought who

have developed architectures that are useful in NLADB revolving around well-established theories

in closely related areas. These related areas include semantic parsing, logic mapping and ontology

concept mapping. The review presented here focuses on those efforts that lead to solution of the

NLADB problem or other QA architectures.

2.3.1 Semantic Parsing

Semantic parsing refers to the transformation of a natural language sentence into its meaning

representation. It is distinct from other tasks such as semantic role labeling and information

extraction in that it aims at transforming NL into computer executable form as opposed to the former

which deliver human readable outputs. Different types of meaning representation languages are used

but variations of first order predicate logic are prevalent. Meaning representation languages are

designed by the creators of an application to suit the application’s needs and are independent of

natural language (Kate & Wong, 2010). For example the sentence, ‘Which rivers run through the

states bordering Mississippi?’ can be answered by the machine readable meaning representation

“answer(traverse(next_to(stateid(‘mississippi’))))” as derived from GeoQuery (Kate & Mooney,

2010). Earlier systems used manually generated semantic parse representatations but manually

authoring and tuning a semantic grammar for each new database is brittle and prohibitively

expensive. This has resulted in active research in the use of machine learning and statistical methods

in generation of meaning representations or grammars that would do this.

i) Statistical Semantic Parsing

Statistical semantic parsing is understood to mean finding the most likely meaning M0, given a string

of input words W and a discourse history H. The task of a statistical language understanding system

Lawrence Muchemi-PhD Thesis 2014

35 | P a g e

is therefore to search among the many possible discourse-dependent meanings Md for the most likely

meaning M0 (Miller, Stallard, Bobrow, & Swartrtz, 1996):

M0 = argmaxMd P(Md| W, H).

This model is recast interms of pre-discourse meaning Mpd, syntax parse tree T, discourse history

H, and a given list of words W as

 M0 = argmaxMd {maxMpd, T [P(Md | H, Mpd) P(Mpd,T) P(W | T)]}

This model can easily be integrated with syntactic and discourse statistical models as reported in

Miller, (1996) as shown in figure 2.3

 H

 W T Mpd Md

Probability to MAX P(T)P(W|T) P(Mpd,T)P(W|T) P(Md|H,Mpd)P(Mpd,T)P(W|T)

Fig. 2.3 Integration of Syntactic, Semantic and Discourse Statistical Models.

ii) Grammar-based Semantic Parsing

Semantic parsing can also be expressed as a grammar-based machine learning problem and is cast as

shown in figure 2.4

Training sentences

and Meaning Representations

 Sentences Meaning Representations

Fig. 2.4 Machine Learning problem in Semantic Parsing.

The most preferred grammars are the definite clause grammar (DCG) and probabilistic combinatory

categorial grammar (PCCG) because meaning representatations can easily be expressed as first or

Semantic Parsing
Learner

Semantic Parser

Syntax
Parser

Semantic
model

Discourse
Model

Lawrence Muchemi-PhD Thesis 2014

36 | P a g e

higher order logic elements. Grammar rules are used to combine various elements to build larger

elements with known semantics. Higher order logic deals with functions and is expressed using the

 operator. For example the function gender(x) can return ‘female’ or ‘male’ and can be expressed as

x gender(x). Similarly a function involving two arguments x and y such as x2-y can be written as

x,y x2-y using the lambda operator. If the operator is called using argument (2,3) the function is

written as x,y x2-y(2,3) and returns 22-3=1. This is very important in expressing predicates (verbs)

that express relations and arguments (noun phrases) that represent objects. In Definite Clause

Grammar (DCG) for example, ‘Mary loves John’ becomes

Relation: Verb [λyλx.loves(x,y)]→ loves ; Object 1: NP[Mary] → Mary; Object 2: NP[John]→ John

This can be combined using the following rules

VP[rel(obj)]→Verb[rel] NP[obj] ; S[rel(obj)] →NP[obj] VP[rel]

As the semantic parser processes the tokens from a text, it would recognize verbs such as loves as

valid predicates and noun objects such as John and Mary as valid arguments. If there are no other

restricting rules the parser would recognize that John loves Mary and Mary loves John. The semantic

parse learner takes pairs of tokenized sentences and their meaning representations and learns to map

them on to each other. The tuned parser can then be used to parse new sentences and obtain meaning

representations.

A recent entry in the semantic parsing grammar theory is the combinatory categorial grammar

(CCG) (Hockenmaier & Steedman, 2002) and (Hockenmaier & Steedman, 2007) which represents

words using categories unlike in the context free grammar which defines the structure using a set of

rules (Hockenmaier & Steedman, 2007). CCG is a lexicalized grammar and uses chart parsing

technique. It uses two categories namely primitive (S, N, NP) and complex categories. A complex

category is a combination of two categories with directionality, which is either forward or backward

(Nakorn, 2009). In CCG slash and backslash are used for representing directionality. A/B is the

category which takes B as an argument on its right. Therefore, A/B B results in the category A. A\B

is the category which takes B as an argument on its left. Therefore, B A\B results in the category A.

For example the sentence ‘Atieno loves Kamau’ has a semantic parse tree shown in figure 2.5

Lawrence Muchemi-PhD Thesis 2014

37 | P a g e

Fig. 2.5 Semantic Parsing Using Combinatory Categorial Grammar (CCG)

CCG generates the lexicon Atieno → NP; loves → (S\NP)/NP; Kamau → NP and equivalent lambda

forms atieno, (λx.λy.borders(y, x), and kamau respectively upon seeing the respective tokens. Training

data therefore consists of sentences and their meanings in lambda form and equivalent meaning

derivations, d. A semantic learner’s primary goal is to estimate feature weights. A feature fi(L,S,T) is

the number of times a lexical item i is used in the parse T that maps from sentence S to logical form

L. Figure 2.6 illustrates this concept of a CCG semantic parser using feature weight estimation for

future sentence parsing. The feature weight adjustment is usually error-driven, much like perceptron

back-propagation delta minimization of a neural network.

Training sentences

and logical form (L)

 Sentences Meaning Representations(L)

Fig. 2.6 Learning Probabilistic CCG (Zettlemoyer & Collins, 2005); (Kate & Wong, 2010).

The probability of obtaining the logical form L and meaning-derivation tree, T as trained on the

sentence S, P (L,T|S) is thus maximized.

Development of new concepts in semantic parsing has been the main pre-occupation of most

research in the area of the QA problem. Several applications of these concepts have been made with

the most prominent being CHILL which is a supervised learner (Zelle & Mooney, 1996), SCISSOR

which is a statistical semantic parser that integrates syntax and semantics (Ge & Mooney, 2005),

WASP a statistical parser (Wong, 2005), PCCG-based parser (Zettlemoyer & Collins, 2005), KRISP

Lexical
Generation

CCG Semantic
Parser

Parameter
Estimation

Lawrence Muchemi-PhD Thesis 2014

38 | P a g e

a supervised learner using kernels (Kate & Mooney, 2006) and a semi-supervised learning using

support vector machine (Kate & Mooney, 2007) all tested on the querying of Geobase1. Performance

has improved over the time with the higher precisions being recorded with fewer training examples.

The Geobase database is in prolog and contains USA geography with about 800 facts. CHILL uses

DCG and after being trained on 150 sentences that are matched with equivalent logical forms,

achieves approximately 56% accuracy in answering novel questions compared to the semi-

supervised learner of Kate and Mooney, (2007) which attains approximately 75%. As seen from

above review the tendency is to move towards unsupervised learning as reported in Domingos and

Poon, (2009).

While as these initiatives towards NL processing for information access are great, their application is

limited when it comes to accessing highly structured information sources such as relational

databases. Access to database task differs from access to free texts and general ontologies in that any

approach for databases access must grapple with the issue of strict formalisms not present in the

other sources. An example of such formalism is constraints such as foreign key which ensure data

integrity in relational databases. While this challenge is not unique to machine learning methods

other challenges are specific to this approach.

One such hindrance to use of machine learning in accessing databases is the need of the two learning

processes namely sentence-to-meaning representation (MR) learning and MR-to-SQL learning to be

superimposed on each other. The two processes must be placed in series as illustrated in figure 1.2

and this greatly reduces the accuracy limiting the applicability of this method. Further the conversion

of logic meaning representations to SQL is a problem that is far from being understood. Not much

efforts have been directed to this area of research mainly because question answering from the web,

(a task that usually does not require MR-SQL conversion) has become ubiquitous therefore

obsecuring the attention or need for research into conversion of MRs to SQL. However the

challenging task of accessing information from structured sources such as relational databases has

never been adequately solved.

Another great hinderance to the use of machine learning methods in automatic conversion of NL to

SQL is the need for suitable training datasets comprising of pairs of NL and SQL for every database.

1 Geobase was initially supplied with reference guide of Turbo Prolog 2.0 Borland International (1988)

Lawrence Muchemi-PhD Thesis 2014

39 | P a g e

This greatly hampers portability. If a rapid training method can be developed and used to train

datasets and then the trained classifier applied to a database as a ‘plug-in’, this would be a great step

forward in solving portability issue in machine learning approach. One such attempt is the design of

a methodology for development corpora for automatically learning to map natural language

questions into SQL queries (Giordani & Moschitti, 2010). Here a corpora containing matching pairs

of NL and SQL queries in the form of syntactic trees and that contains both correct and incorrect

training sets is developed. The paper only reports on the corpora development process and shows

direction as to how the corpora would be used to train an SVM classifier which would in turn be

used to rank pairs of new queries and existing SQL queries. The classifier would select from all

possible SQL statements from the database and return the highest ranking pair. This method would

be great if portability is not a key consideration for the particular application. Initial costs are high

because creating a new corpora containing all possible SQL and NL statement is prohibitively

expensive and tedious exercise. But perhaps the greatest draw back to the robust use of this method

is need for human intervention in the creation of semantic-based clusters of NL-SQL query pairs.

Giordani and Moschitti, (2010) note that ‘clustering is performed semi-automatically’. Since

mapping is done at the syntactic level, resource scarce languages such as that being studied in this

research would suffer a practical drawback due to the requirement of efficient syntactic parsing.

Popescu et al. (2004) while opting for mapping as opposed to machine learning approach noted that

machine learning has some inherent challenges such as the need for re-training during porting and

the problem of creating NLQ-SQL pairs for every new database. This is quoted thus,

 “However, attempting to use a statistical parser in a database-independent NLI leads to a

quandary. On the one hand, to parse questions posed to a particular database, the parser has

to be trained on a corpus of questions specific to that database. Otherwise, many of the

parser’s decisions will be incorrect. ….. On the other hand, manually creating and labeling a

massive corpus of questions for each database is prohibitively expensive.”

 (Popescu, Armanasu, Etzioni, Ko, & Yates, 2004)

This observation remains true up to date despite the few efforts in corpus creation and labeling

technique such that by Giordani and Moschitti, (2010) discussed above. Obtaining the training set

Lawrence Muchemi-PhD Thesis 2014

40 | P a g e

containing NL questions that map to SQL for every database is probably even a greater practical

challenge than obtaining more efficient learners. This then begs the question of what is the way

forward. Would a non-machine learning-based solution be a better option?

2.3.2 Logic Mapping

Analysis from literature reveals two dominant schools of thought in terms of model design. These

are basically syntactic-based processing and token-matching processing. The two approaches are

illustrated in figure 2.7.

(a) (b)

Fig. 2.7 (a) Syntactic-based Parsing and (b) Token-matching Parsing (Minker, 1997)

Older generation systems relied on syntactic-based parsing which requires both syntactic and

semantic analysis. Syntactic parsers are well developed for many languages especially for use by

other NLP problems such as automatic translation. On the other hand semantic analysis is in most

cases implemented as semantic tags. However due to reliance on syntactic information for the entire

sentence, systems developed from these models tend to perform poorer than those from token-match

parsing because users tend to use short phrases usually agrammatical. The method encounters

difficulties in parsing ungrammatical sentences.

Some of the recent prominent works widely quoted in literature such as PRECISE (Popescu, Etzioni,

& Kautz, 2003) and the largely successful system developed by Dittenbach and Berger, (2003) for

User input

Token parsing

Token
Matching

Build SQL
query

Extract
answers Data

Schema

Pre-processor

Semantic Sets
Index Files

Production Rules

WordNet

WordNet

User input

Token parsing
and tagging

Syntactic
analysis

Semantic
analysis

Build set of
queries

Extract
answers

Link
Parser

Data

Schema

Pre-processor

Domain-specific
interpretation rules

User-
defined
Vocabula
ry rules

WordNet

Semantic
templates

Lawrence Muchemi-PhD Thesis 2014

41 | P a g e

accessing tourism data on Tiscover2 database (Dittenbach & Berger, 2003) are based on token-match

parsing. This means that a query is broken down into its constituent parts and all syntactic marker-

words stripped. The tokens which are usually nouns are matched to the names of databases, tables or

instances through a suitable algorithm.

An attempt for token parsing for Kiswahili is reported in Muchemi, (2008). This method relies on

both tokens and partial syntactic parsing coupled with semantic tagging and uses structured query

templates. It is modeled as a template matching problem. This approach is similar to the one

introduced by Popescu et al. (2003) which uses a noun-based token parsing method but models it as

a graph matching problem and uses the max-flow algorithm. The system by Popescu et al. (2003)

had an F-score of 0.65. The Kiswahili noun phrase-based token matching had a comparable rate of

success averaging 0.64 on F-score. The method encounters difficulties in parsing ungrammatical

sentences because of the templates usage though. From this research its concluded that incorporating

both tokens and phrases for mapping purposes improves the results. In other research reported in

Muchemi and Narin’yan, (2007), the following conclusion was arrived at,

“When analyzing a NL text input, it is necessary to use its lexical semantics within the subject domain

to reconstruct its probable meaning. Only if this meaning has several variants then it would be useful

(as local as possible) to turn to syntactic aspects of the text to resolve this ambiguity.” (Muchemi &

Narin'yani, 2007).

This conclusion and that arrived at in the Kiswahili noun-phrase based mapper (Muchemi, 2008) are

essential in the sense that syntactic information should be used for improving precision and recall in

SQL formation processes.

Logic based approach has been the dominant approach for many years and yielded to restricted

narrow domain applications. This has culminated in commercially available programs such as

English-Wizard3 and English Query4 which have thus far been discontinued for varied reasons.

Some of the state-of-art applications employing token matching approach in commercial use today

include Siri5 by Apple, Quiri6 by Easy-Ask group and Watson7 by IBM. Virtual strategy magazine8

2 Tiscover is the largest Austrian web-based database for tourism
3 English Wizard is by Easy-Ask can be accessed at http://www.pcmag.com/encyclopedia_term/0,1237,t=English+Wizard&i=42616,00.asp
4 English Query by Microsoft can be accessed at http://msdn.microsoft.com/en-us/library/aa198281%28v=sql.80%29.aspx
5 Siri is a voice enabled phone functions control software and details can be accessed at http://www.apple.com/iphone/features/siri.html
6 Quiri is a voice and NL text enabled desktop and mobile application that processes NL to access corporate data. It can be accessed at
http://www.easyask.com/products/quiri/

http://www.pcmag.com/encyclopedia_term/0,1237,t=English+Wizard&i=42616,00.asp
http://msdn.microsoft.com/en-us/library/aa198281%28v=sql.80%29.aspx
http://www.apple.com/iphone/features/siri.html
http://www.easyask.com/products/quiri/

Lawrence Muchemi-PhD Thesis 2014

42 | P a g e

reports that “EasyAsk has long been a leader in natural language information analysis and delivery

software. Firms such as Coldwater Creek, Lands’ End, Lillian Vernon, Aramark, TruValue,

Siemens, Hartford Hospital, Ceridian, JoAnn Fabrics and Harbor Freight Tools rely on the EasyAsk

software products to run their business and e-commerce operations daily.” A closer look at these

systems reveals that they rely on three-layer architecture that has a speech-to-text analyzer, a

grammar analyzer, and a set of service providers. A comprehensive comparison of these three

leading software (EasyAsk, 2010) shows that Quiri provides speech recognition and interfaces with

corporate data while Siri connects with mobile phone functions via voice command. IBM describes

Watson as a "computer system that can understand natural language and deliver a single, precise

answer to a question. Upon closer examination Watson combines natural language processing,

complex algorithms that choose the best answer from the available options, and a large scale smart

analytic system designed to feed potential answers to the questions.” (EasyAsk, 2010).

In all these, the grammatical analysis performed here involve searching a string for certain key

words and using those words to build up a simple model of what the user wants to do and what is to

be done (Jeff, 2011). The success of these systems depends on the scope of focus of the domain area.

For example Jeff, 2011 observes that, “Siri’s limited focus on appointments, contacts, messages, and

maps makes this technically viable”.

The above token based approaches differ in the way the tokens are mapped to the underlying

database. While direct maping of key words to database, table and column names has produced only

moderate rates of success, this research aims at exploring improved database schema processing and

information representation.

Relational databases NL access problem has mainly been tackled through logic mapping (Shin &

Chu, 1998). Some successiful applications have been implemented through mapping of phrases. A

representative sample is the natural language interface to the largest Austrian web-based tourism

platform Tiscover (Dittenbach & Berger, 2003). In this approach language processing invoves

identification of language, spell checking, phrase detection and tagging. This is followed by SQL

query formation and eventually the generation of results. In this approach noun phrases and

synonyms in the NL query are identified. A light weight grammar is applied so that all possible

7 Watson is a desktop application that processes NL text for accessing corporate data. It can be accessed at http://www-
03.ibm.com/innovation/us/watson/index.html
8 Virtual Strategy Magazine can be accessed via http://www.virtual-strategy.com/

http://www-
http://www.virtual-strategy.com/

Lawrence Muchemi-PhD Thesis 2014

43 | P a g e

modifications on terms (through introduction of prepositions, adverbial or adjectival structures) can

be identified before tagging occurs. The introduction of grammar makes this approach language

dependent because different languages behave differently. Tagging of terms in a query with relevant

predefined classes is necessary so that each term can be labeled with the relevant concept tag with

the domain. For example ‘hotel’ is labeled with ‘accomodation’ and ‘sauna’ with ‘facility’. Tagging

provides semantic interpretation however it inevitably introduces errors similar to those in semantic

labeling such as poor classification. Manual tagging is costly and not easy when when working with

many domains. Due to these issues among others research has advanced in search of improved

architectures.

A more recent approach has been reported by Nokia Research Centre Cambridge (Ran &

Lencevicius, 2012) where they solve the problem of accessing information stored in RDF

repositories targeted to mobile phones users. These works along with ground breaking works

reported in AquaLog (Lopez, Pasin, & Motta, AquaLog: An Ontology-Portable Question Answering

System for the Semantic Web, 2004) at Open University in UK; Querix (Esther, Abraham, &

Renato, 2006) at Univ. Of Zurich; NLP Reduce (Kaufmann, Berstein, & Fischer, 2007); QuestIO

(Tablan, Damljanovic, & Bontchev, 2008) at University of Sheffield and FREyA (Damljanovic,

Agatonovic, & Cunningham, 2010) among others are extensively reviewed and analyzed in the

subsequent section of this chapter under the heading related works in an effort of developing a novel

architecture that facilitates access of data from relational databases with cross-lingual problem in

this case Kiswahili-English.

2.3.3 Ontology-based Approach to DB Access

An ontology is framework that represents knowledge in form of concepts within a domain. The

relationship between the concepts must be represented using a fixed set of syntax and semantic rules.

Most computing efforts for representing knowledge have shifted significantly from logic based

knowledge representation schemes to ontology-based schemes. This is evidenced by much interest

and funding for the semantic web activities. The ubiquity of the world wide-web and pervasiveness

of internet has brought impetous to semantic web research. This is also attested by the large number

of conferences organized around semantic web activities. Subsequently this has led to development

of web ontology languages mainly based on the de facto standard resource description framework

Lawrence Muchemi-PhD Thesis 2014

44 | P a g e

(RDF). OWL 2 XML format advocated by the W3C and developed by OWL working group9 is the

dominant while RDF/Turtle, RDF/XML syntax and Manchester Syntax languages are also used to a

lesser extent.

RDF based ontologies represent elements as attributes or as resources. These elements are equivalent

to resource names, labels, comments and string property values which are usually mapped to

concepts within natural language sentences in an ontology concepts mapping process. Figure 2.8

illustrates this concept.

Fig. 2.8 An Example of OWL based RDF Resource

This example shows an RDF resource with a single ontology. The ontology contains a class called

group which has a name, number, elements etc. It can also be seen that the ontology is defined as an

RDF resource with a unique unique resource identifier (URI). The ontology contains many elements

such as comments, resources and datatypes as illustrated in figure 2.8.

Ontologies have been used in many natural language processing tasks. Common tasks include

information retrieval and extraction, question answering, machine translation and summarization

among others (Buitelaar & Ciamiano, 2006). Of particular interest to this research is question-

answering models. The tasks may either be question analysis, answer selection or ontology based

question answering by mapping. Question analysis deals with ontology-based semantic

9 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

<rdf:RDF xml:base="http://www.xxx.org/periodictable/PeriodicTable">
 <owl:Ontology rdf:about="">
 <owl:versionInfo
 ….
 </owl:versionInfo>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Periodic Table of the Elements
</rdfs:comment>
<……/>
</owl:Ontology>

 <owl:Class rdf:ID="Group">
 <owl:DatatypeProperty rdf:ID="name"/>
 <owl:onProperty rdf:resource="#number"/>
 <owl:onProperty rdf:resource="#element"/>
 ………

 <color rdf:datatype="http://www.w3.org/2001/XMLSchema#string">silvery lustrous
grey</color>
 </owl:Class>

</rdf:RDF>

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://www.xxx.org/periodictable/PeriodicTable
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string

Lawrence Muchemi-PhD Thesis 2014

45 | P a g e

interpretation such as WordNet (Miller G. , 1995) while answer selection deals with ontology-based

reasoning for answer-type checking. The task of data-base access that is addressed in this research is

closely related to the question-answering architectures by mapping described in Lopez et al. 2007.

The successes in this area are described in section 2.4.

2.4 Successes and Shortcomings in Ontology-based NL Access

Reasonably accurate representation of data from relational databases to ontologies has been reported

widely and applications utilizing these techniques developed. A notable one is reported in Wu et al.

(2007) in which a semantic-based search and query system for the traditional Chinese medicine

community has been reported. Automatic discovery of mappings between ontology and RDBMS has

been successful and a typical state-of-art approach is found in Hu and Qu (2008). Tools for

converting databases to ontologies have been developed with notable ones being ‘Datamaster’

(Csongor, Martin, & Samson, 2009) and ‘Datagenie’ (Gennari, Nguyen, & Silberfein, 2007). In

these tools a table is mapped to an ontology class, a column to a datatype property while a row is

mapped to an instance of the ontology. Further it is observed that if a relational database table has

foreign key references to other tables, these are replaced by instance pointers when the database is

converted into an ontology.

Research into the use of NL to access semantic web ontologies has been active and with modest

levels of success. Pioneer systems include AquaLog (Vanessa et al., 2004), Querix (Esther et al.

2006), NLP Reduce (Kaufmann, et al. 2007), PANTO (Wang, Xiong, Zhou, & Yu, 2007), QuestIO

(Tablan et al., 2008) and FREyA (Damljanovic, et al. 2010) among others. In all these works NL

free text is parsed into concepts which are mapped onto mentions of ontology resources.

The two processes described above, that is conversion of relational databases to ontologies and

processing of natural language into concepts are illustrated (as blocked arrows) in figure 2.9.

Lawrence Muchemi-PhD Thesis 2014

46 | P a g e

Fig. 2.9 Overview of Ontology-based DB Access Task

Considerable research efforts in this area have been driven by the need for developing ontologies as

a means for accessing heterogeneous data sources (Zorzi, Tessaris, & Dongilli, 2007). In this case

ontologies have been viewed as an extra data representation layer that provides shared

conceptualizations and acts as a mediator to the underlying data layer. This research concentrates on

relational database and the scope does not entail heterogeneous sources.

Research in the area of ontology-based access to databases has concentrated in domain specific

applications with the driving force being the need for providing common taxonomies, merging

different ontologies within the same domain and querying formalisms. Danica et al. (2009) observes

that although many natural language interfaces to ontologies have been developed, those that have

reasonable performance are domain-specific and tend to require extensive customisation for each

new domain. Many disciplines have developed standard ontologies with standard features that

domain experts use to share information exclusively in their fields raising issues of portability across

domains. For example the Gene Ontology project provides a controlled vocabulary of terms for

describing gene product characteristics and gene product annotation data from GO Consortium

members, as well as tools to access and process this data (Gene Ontology Consortium, 2001). It

provides a standard nomenclature to terms that has three parts namely prefix ‘GO’, a unique zero-

padded seven digit identifier called the term accession number and a unique term name. Two

ontology concepts are linked by a relationship. For example ‘GO:0031966 : mitochondrial

Natural Language Text

MAPPING PROCESS

Ontology

 DB1 DB2 DB3 DB..

Lawrence Muchemi-PhD Thesis 2014

47 | P a g e

membrane’ part of ‘GO:0005740 : mitochondrial envelope’ has the link ‘part-of’. This ontology’s

nomenclature and structure is unique to it and not easily reusable in a different field say medical

field with an example of an equivalent ontology described in Munir et al., (2008).

If an ontology is created directly from a relational database, the elements ported into the ontology

are mainly the table names, column names and the data within rows. These names are usually short

forms, concatenations, acronyms and abbreviations which do not have a standard naming style. This

makes it difficult to decode and map onto the underlying concepts. This is one such challenge

addressed in this work. At the heart of this problem is the challenge of bringing forth an intervening

layer that sits on the ontology (shown in figure 2.10 as Data Layer) that maps labels to the

underlying concepts implied in the ontology. This requires a study into the naming styles of

databases elements and implementing algorithms that provide this mapping. An appropriate research

question here would be whether there exists a finite set of patterns that authors of database schema

use in representing database schema object names and whether appropriate processing algorithms are

feasible. A portion of this work attempts to answer these questions. Arising from above discussions

this work seeks to contribute in the area of domain independent concepts discovery from ontologies

created from relational databases.

Fig. 2.10 Research Shortcomings In Ontology-based DB Access Task

Another challenge encountered by ontology-based DB access method low recall due to dependence

on nouns and nominal phrases for concept identification only yet it is well established that concepts

within a domain go beyond these types (Krishnamurthy & Mitchell, 2011). Further there is often

language-dependence on processing methods. For example PANTO Wang et al., (2007) uses

language dependent-syntactic processing to provide parse trees that enhance recall. Methods such as

Natural Language Text

MAPPING PROCESS

Ontology

RELATIONAL DATABASE

LINGUISTIC LAYER

DATA LAYER

Lawrence Muchemi-PhD Thesis 2014

48 | P a g e

those described in QuestIO (Tablan, Damljanovic, & Bontchev, 2008), AquaLog (Lopez, Pasin, &

Motta, 2004),NLP-Reduce (Kaufmann, Berstein, & Fischer, 2007), Ontology-Assisted Query

Reformulation (Munir, Odeh, & McClatchey, 2008) systems among others rely on identification of

nouns and noun phrases mostly involving proper nouns as concepts. Concepts are however more

diverse that this as identified by Krishnamurthy & Mitchell, (2011). Studies for Kiswahili language

have also revealed diverse patterns of term formations (Sewangi, 2001). Terms represent concepts

and therefore should be accounted for in concepts discovery process. Further more nouns

identification should include such noun patterns as identified Ohly, (1982) such as inclusion of the

following categories,

 Norminalized verbs eg undungaji sindano (needle injection),

 Deverbative head with noun complement eg kiweka dawa (medicine insertor)

 Combination of nouns eg haidrojeni perokisidi (Hydrogen peroxide)

 Noun and adjective eg kuku wanene (big chicken)

 Nouns with –a connector eg mavi ya kuku (chicken’s dung)

 Noun with –a connector and a nominalized verbs eg sindano ya kutungia (needle for

piercing)

This diversity of concepts formation ought to be captured in a manner that ensures language

independence. These linguistic processing concepts are studied and abstracted into a linguistic layer

indicated in figure 2.10. Therefore this study investigates through the use of language independent

linguistic theories and seeks to contribute in the area of language independent concepts formation

process in the OCM approach.

Different concepts-discovery techniques have been developed, the most basic being noun strings

matching. Discovery of implicit concepts within a query is much harder task. Most of these

techniques are usually designed for the particular ontologies. For example in Munir et al., (2008),

techniques that interpret ontology-based search results and associated domain knowledge

reformulate a relational query so as to assist users and their applications in formulating queries

without requiring complete knowledge of the information structure of underlying data sources. To

illustrate this technique an example is provided below from Munir et al. (2008),

“E.g. interpreting the query ‘Give me all MRI scan images of brains for children with an Astrocytoma

Tumour disease in a specific age group’. This query cannot be fully resolved by the HeC data model

because there is no direct information available in the databases that matches with the term

Lawrence Muchemi-PhD Thesis 2014

49 | P a g e

‘Astrocytoma Tumour’. Here the query reformulation system receives a simple input into the system

as ‘Astrocytoma Tumour‘, the system then extracts all of the clinical tests and related values that

confirms the possibility of Astrocytoma Tumour disease in the brain.” (Munir, Odeh, &

McClatchey, 2008)

Another technique used to resolve discovery of implicit concepts is the use of hypernyms.

Hypernyms are superordinates or words that are more generic. For example animal is a hypernym of

chicken therefore if a person interrogates for a chicken, the characteristics of animal also apply.

As can be observed some techniques of concept discovery are domain specific while others are

generalizable across domains and languages. One goal of this research is to bring forth language and

domain independent methodology and this requires design of techniques applicable to relational

databases and that can be generalized across domain. The respective natural language processing

techniques for discovering explicit and implicit concepts are studied in this work and abstracted to

the respective layers as shown in figure 2.10.

A prime motivation behind this research is the quest for accessing data from databases using

Kiswahili text. Kiswahili has over 150 million regular speakers in Kenya, Tanzania, Uganda,

Rwanda, Burundi, Parts of DRC, Malawi and Somalia. But even with this nearly all databases are

developed in a specific nation’s official language which is predominantly English or French. The

reason for this can be attributed to the fact that these official languages also double as the primary

training languages and therefore database developers tend to favour their usage in database schema

development. On the other hand, casual users tend to prefer using local languages or Kiswahili, the

business languages among the communities. Thus a practical solution ought to have a cross-lingual

solution capacity to cater for these differing language usages. It is for this reason that studies in this

area are undertaken.

In summary though closely related to conventional semantic ontologies and other specialized fields’

ontologies such as gene ontology, relational database ontologies differ due to their manipulation

requirements as explained above. Further relational databases store data from all domains and also

store in a language independent manner, thereby motivating the move towards domain-independent

ontology assisted access to relational databases through any given natural language.

Lawrence Muchemi-PhD Thesis 2014

50 | P a g e

2.5 Trends in Reviewed Approaches
An analysis of literature from section 2.3 reveals a definable general trend of application of

methodologies to the QA task illustrated in figure 2.11

The figure highlights the trend of preferred approaches to QA processing depending on the degree of

structuredness of the data source. It has been observed that highly unstructured sources such as web

pages, text documents and other similar sources tend to favor semantic parsing and semantic role

labeling. Methods applied range from highly annotated machine learning techniques (Mooney, 2007)

to purely unsupervised techniques such as that by Domingos and Poon, (2009). Semantic role

labeling has previously been used in QA problem as reported in various works such as in Jurafsky

and Gildea, (2002). The current trend is to move from semantic role labeling to supervised machine

learning but current efforts are pushing towards unsupervised learning methods (Domingos & Poon,

2009). Another school of thought is logic based mapping where research has been done on phrase-

based and token-based methods. Examples include the graph-matching approach by Popescu,

Etzioni, and Kautz (2003), token-based approach for Kiswahili (Muchemi L. , 2008) and tiscover’s

English NL interface (Dittenbach & Berger, 2003) among others. Template mapping and graph-

based mapping have shown better results as opposed to syntactic based approaches (Muchemi &

Narin'yani, 2007). Structured entry sources such as yellow pages and information on templates such

as hotels, universities and airports services rely on named entity as main method of information

extraction (IE) task. The IE task is however extended to include QA abilities. Recent efforts have

been directed to the creation of ontologies (Munir, Odeh, & McClatchey, 2008). The power of

ontologies lies in their capacity to provide context for semantics. In specialized fields such as

bioinformatics, QA queries are processed from domain specific ontologies such as the GO gene

ontology ((Ontology, 2012); (Gene Ontology Consortium, 2001)). Ontologies enable semantic

description of data and in inference.

From this perspective it can be deduced that the direction to which a generalizable natural language

database access solution should be sought is in the area of ontology concept mapping.

Lawrence Muchemi-PhD Thesis 2014

51 | P a g e

Fig. 2.11 Methodologies of QA Processing Depending on Source

This research aims at making a contribution in the area marked ‘This Research’ which envisages a

domain and language independent ontology concept mapping architecture for natural language

access to relational databases. The sections that follow critically review, analyze and evaluate

processes and algorithms applicable to the mapping architecture. An assessment of the suitability of

these processes and proposals for modification to suit relational database problem is also provided.

2.6 Towards Domain and Language Independent OCM Approach to Database Access

Not much research has been reported towards the design of domain and language independent

approaches in ontology assisted natural language access to relational database. As analysed from the

literature above there are major gaps or potential improvement areas in the OCM approach for

relational database access. This research therefore dedicated its efforts towards development of

concepts, models and algorithms required for realization of a language and domain independent

approach for database access using natural language. The state-of-the-art for all components and

modules required in the OCM approach as conceptualized in this research is reviewed, with a view

of identifying the best practice and gaps that would be addressed by the research.

Ontology Concept Map.

Logic Mapping

Semantic Parsing

 Low Source (Level of Structure) High

Structur
ed Entry
Sources:
Yellow
Pages

Domain
specific

Ontology
Data

Text
Web

entries

Relational
Database

Pa
rs

e
Te

ch
ni

qu
e

(P
ar

se
-S

ha
llo

w
ne

ss
)

Logic-
based

Prolog-
Database

s

This
Research

Eg Plain &
HTML Text

Time

Eg Named
Entity
Entries

Eg
Semantic
Web Data

Lawrence Muchemi-PhD Thesis 2014

52 | P a g e

2.6.1 Conceptual Framework

The conceptual model shown in figure 2.12 is modelled on the generic QA model discussed in

section 2.1. It however clearly separates processing and representation methods for the NLQ and

database schema and highlights the central roles the matching and SPaRQL generation functions

play.

In the envisaged model, a natural language query is processed through operations such as

normalization, tokenization, lemmatization, stemming and part of speech tagging in the module

labelled ‘NLQ Processing’ in figure 2.12. This is further followed by phrase formation, chunking,

collocation and terms discovery in the same module. The resulting elements of natural query

processing should be stored in a proposed specially designed schema, referred to in this research as a

feature space model (FSM), which holds the elements in a manner that is usable for mapping

purposes. The FSM is found within the module labelled ‘NLQ Representation’ in figure 2.12

On the other end schema processing is carried out through conversion of the relational database into

an ontology through a mapping process where tables, columns and row values are mapped onto

ontologies classes, data type properties and instances of the ontology respectively. The mapping

process occurs in the module labelled ‘Schema Processing’.

In this work it is proposed that an additional processing layer be added to this module and this would

cater for the need for understanding the usually abbreviated or concatenated object names as well as

field names. The products of this additional process would be stored in a proposed gazetteer within

the module labelled in figure 2.12 as ‘schema representation’. This work seeks to make further

contributions in the mapping process indicated in figure 2.12 as ‘matching function’. It is envisaged

that methods can be devised to unearth implicit concepts within a query and within an ontology. This

helps improve recall and accuracy values. For instance descriptions found on database objects such

as row descriptions can be mapped to the ontology as labels and assist in implicit concepts

discovery.

Lawrence Muchemi-PhD Thesis 2014

53 | P a g e

Fig. 2.12 The OCM Conceptual Model

Once the mapping process is complete, the process of structured query generation starts. This is

carried out by the module labeled ‘SPaRQL Generation Function’. SPaRQL is generated via a series

of functions. The generated SPaRQL query is applied to an ontology with the help of an ontology

reasoner (such as protégé reasoner10) and the desired answer generated.

The sections that follow provide a detailed component description of the elements in the conceptual

model.

2.6.2 NLQ Processing Task

A natural language query is received from a source such as a text editor and is delivered to the NLQ

processor. The NLQ processor is envisaged to have several modules which perform distinct roles.

For instance most reviewed systems such as AquaLog (Vanessa et al., 2004), Querix (Esther et al.

2006), NLP Reduce (Kaufmann, et al. 2007), PANTO (Wang, Xiong, Zhou, & Yu, 2007), QuestIO

(Tablan et al., 2008) and FREyA (Damljanovic, et al. 2010) among others have a normalizer and a

tokenizer whose objective is to standardize all input texts and prepare them for further processing.

10 A plug-in Reasoner for protégé tool For example The Pellet Reasoner Plug-in, version 1.0, makes Pellet 2 available in Protégé 4,

NLQ
Processing

Answer to
User

 Data
Base

NLQ Source

Concepts
Mapping
Process

NLQ
Representation

Schema
Representation

SPaRQL
Generation

Schema
Processing

Lawrence Muchemi-PhD Thesis 2014

54 | P a g e

The next step involves NLQ processing. The main objective is to obtain tokens that represent

concepts that would have correspondences in the ontology. In many systems such as NLP Reduce,

Querix and QuestIO this task is reduced to identification of nouns and therefore the normalized

token has to undergo part of speech labeling. In other systems syntactic knowledge has been used to

achieve a variety of things within this NLQ processing module. For example FREyA (an acronym

for ‘Feedback, Refinement and Extended Vocabulary Aggregation’) combines syntactic parsing with

the knowledge encoded in ontologies in order to reduce the customization effort during porting from

one domain to the other (Damljanovic et al. 2010). It achieves this through enhancing user

interaction. On the other hand some systems such as PANTO use language dependent-syntactic

processing to provide parse trees that enhance recall. As pointed out in 2.4 this work differs from

reported works highlighted in the literature as it seeks to find processing methods that are language

independent and that are geared towards matching ontologies generated from relational databases

whose processing requirement is different from standard nomenclature ontologies.

In order to investigate this aspect there is need to apply theories of language that are universal. Some

of the applicable linguistic theories include x-bar theory (Chomsky, 1970), transformational and

generative theories (Chomsky, Syntactic Structures, 1957) among others. The underlying theory

preferred in linguistic analysis of queries is Transformational theory advanced in Chomsky (1957).

Transformational theory is preferred in this study because it has previously been used for query

formulation process in MULDER (Kwok, Etzioni, & Weld, 2001), a question-answering system. In

this theory it is stipulated that a sentence has a deep structure form (DSF) which can be transformed

through transformation rules into several surface forms. For example the DSF of sentence ‘close

door’ can be transformed into the surface structure forms ‘close the door’, ‘you close the door’, ‘the

door should be closed by you’ etc. Deep structure forms (DSF) versus surface structure forms (SSF)

has been most studied and applied in showing equivalence of sentences.

The research questions for the analysis are formulated as,

1. Can deep structure forms (DSF) of a query be used in deducing the interrogative properties of a

query?

2. What types of relationships exist between DSF of queries and SPaRQL queries? This involves

discovering linguistic patterns that can be discovered and exploited in development of templates

Lawrence Muchemi-PhD Thesis 2014

55 | P a g e

that can be used in mapping natural language queries into structured query language specifically

SPaRQL?

3. Does the choice of NL affect the answers obtained from the above two questions?

As envisaged in the conceptual model NLQs are normalized, tokenized, lemmatized, stemmed and

tagged with parts of speech. This is further followed by phrase formation, chunking, collocation and

terms discovery in the same module. A challenge arises in the design of a schema that can hold these

elements in a generic domain and language independent manner. In the systems reviewed such as

PANTO (Wang et al., 2007), QuestIo (Tablan, 2008) among others, the products of NLP are mainly

nouns and nominal phrases and subsequent processing is limited to these. In a system that expands

the collection of what constitute concepts a more elaborate schema is expected. The design of that

envisaged schema also referred to hereafter as the feature space model (FSM) forms a component of

the research undertaken in this work and is described in section 3.5.

2.6.3 Schema Processing and Information Representation

Research geared towards methods and tools for successful automatic conversion of relational

databases into ontologies has been intense resulting to several successful models. Wu et al. (2007) in

their paper for a semantic-based search for the traditional Chinese medicine community have

presented methodologies of how ontologies can be linked into databases (Wu, Chen, Cui, & Yin,

2007). Hu and Qu (2008) on their paper ‘Discovery of mappings between ontology and RDBMS’

have provided strong theoretical backgrounds to the process of conversion of relational tables to

ontology elements (Hu & Qu, 2008).

Information from the database is mapped onto ontology constructs as shown in the example

illustrated in figure 2.13. Concepts from the ontology are identified and if they match those in the

NLQ they are selected as potential constructs of the subsequent SPaRQL query. Identifying concepts

from a domain specific ontology is easy because the lexicon of the ontology is controlled and only

string matching would be required. However in relational databases there is no controlled vocabulary

in writing table and column names and therefore the resulting ontology will not have a controlled

lexicon. Subsequently a challenge is encountered in the decoding of schema information specifically

tables’ and fields’ names. The text used to label these names is usually a concatenation, acronyms or

abbreviations. This challenge has not been tackled in the reviewed literature and therefore it is

proposed for further research within this study. It is proposed that schema processing should be

Lawrence Muchemi-PhD Thesis 2014

56 | P a g e

extended from the current state of the art which involves basic mapping as explained in section 2.4

to also include identifying the various components within the labels, deducing or guessing their

meaning and assigning them to specific database concepts. This challenge of parsing a database

schema into suitable ontology concepts organized into a suitable formalism remains under-studied

and is a key component addressed in this research.

Fig. 2.13 Example to Illustrate Schema Information Representation

Another challenge that needs to be surmounted for database access problem is the design of a

suitable schema for holding information on concepts extracted from ontology of a particular

relational database. If a database is large this can be a real problem due to requirements of searching

A. Database (Ontology) Definition - OntologyMyNorthwind

<rdf:RDF xmlns="http://www.owl-ontologies.com/OntologyMyNorthwind.owl#"

 xml:base="http://www.owl-ontologies.com/OntologyMyNorthwind.owl"

 xmlns:dbs="http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

B. Table (Relation/Class) definition - employees

<owl:Class rdf:about="&db;employees">

 <db:hasPrimaryKeyFields rdf:datatype="&xsd;string">EmployeeID</db:hasPrimaryKeyFields>

 <db:isBridgeTable rdf:datatype="&xsd;boolean">false</db:isBridgeTable>

 </owl:Class>

C. Columns (Properties) Definition - FirstName
<owl:DatatypeProperty rdf:about="&db;employees.FirstName">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="&db;employees"/>

 <db:hasOrigColumnName rdf:datatype="&xsd;string">FirstName</db:hasOrigColumnName>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

D. Row Values (Instances) Definition - Lawrence
<db:employees rdf:about="&db;employees_Instance_1">

 <db:employees.EmployeeID rdf:datatype="&xsd;int">1</db:employees.EmployeeID>

 <db:employees.FirstName rdf:datatype="&xsd;string">Lawrence</db:employees.FirstName>

 <db:employees.HireDate rdf:datatype="&xsd;date">2010-04-18</db:employees.HireDate>

 …….

 </db:employees>

http://www.owl-ontologies.com/OntologyMyNorthwind.owl#
http://www.owl-ontologies.com/OntologyMyNorthwind.owl
http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#
http://www.w3.org/2000/01/rdf-schema#

Lawrence Muchemi-PhD Thesis 2014

57 | P a g e

time and memory (Munir et al., 2008). In a related task such as text information extraction for

question answering, Danica et al. (2009), defines an ontology-based gazetteer named ‘OntoRoot’ for

the system FREyA (Feedback, Refinement and Extended Vocabulary Aggregation) (Damljanovic,

2010). Tablan et al. (2008) presents the Questio architecture which incorporates a dynamic gazetteer

named ‘Ontology Resource Root Gazetteer’ which contains all set of lemmas which are generated

from text as triples containing concepts. In PANTO nominal phrases in the parse trees are extracted

as pairs to form an intermediate representation called ‘Query Triples’. Then, by utilizing knowledge

in the ontology, PANTO maps ‘Query Triples’ to ‘Ontology Triples’ during run time and this takes

considerable time to compute. This research then sought to establish the structure of a schema (or

gazetteer) that is suitable for database problem. A dynamic gazetteer model in line with that

developed by for Questio (Tablan, Damljanovic, & Bontchev, 2008) was selected because it allows

dynamic holding of information and also allows holding of minimally processed (lemmas from

ontology) concepts from the ontology.

2.6.4 The Matching Function

2.6.4.1 Overview of the Mapping Problem

Once the schemata structures of FSM and gazetteer are determined, the next process is to design the

mapping function with a goal of enhancing accuracy and recall of the NL to SPaRQL mapping. NLQ

and ontology are processed and the retrieved tokens stored in appropriate schemata. This process is

illustrated in figure 2.14

Lawrence Muchemi-PhD Thesis 2014

58 | P a g e

Fig. 2.14 Matching Function in OCM Approach

The concepts that match from the two representation schemata form the backbone of the generated

SPaRQL query.

The challenge that arises from the mapping problem is that equivalent concepts in NLQ and

ontology elements may be represented by different strings and therefore concept matching goes

beyond simple string matching. Moreover accuracy and recall of the NL to SPaRQL mapping

process must be enhanced. Strategies that map the concepts from NLQ to those from ontology must

be formulated.

The strategies that inform design of these mapping algorithms are discussed next.

2.6.4.2 Strategies from Ontology Matching Models

By far the most preferred method of identifying the matching concepts is a simple lexical-level,

keyword-based matching method with lemmatization. In this strategy each word in the FSM is

matched against every word in the gazetteer through minimizing Levenshtein distance (number of

operations needed to transform one string into the other, where an operation is an insertion, deletion,

or substitution of a single character). To improve results stemming is carried out to ensure that all

words derived from the same root map onto that root regardless of the prefixes and suffixes.

Research is active in this area with researchers trying different models in order to improve on recall

 NL Relational Database

 Ontology

 Features Rep. Model Gazetteer

 Matching_Function

 SPaRQL Generator

Lawrence Muchemi-PhD Thesis 2014

59 | P a g e

and accuracy level. Research efforts in this area are motivated by models in closely related areas

such as ontology matching and document retrieval techniques. Ontology matching, also known as

ontology alignment, is the process of determining correspondences between ontologies. It establishes

similarities in concepts and relationships in different ontologies within the same domain and is an

important step for integrating overlapping domains of knowledge. Ontology matching strategies fall

under six categories namely lexical-based, semantic-based, constraint-based, instance-based,

structure-based and graph-based matching (Keshavarz & Lee, 2012). The first four strategies

operate at the concept level and may be extended to apply to the mapping problem under

investigation. One such effort is by Gao et al. (2007) in which they report a constraint-based method

for semantic mapping from natural language questions to OWL. They model the matching function

as constraint satisfaction problem. They summarize their approach as follows:

“…… we have proposed the basic ideas and formulation of a constraint-based method for semantic
mapping from a natural language question to the elements in OWL. In this method, we first
decompose questions into a set of variables by means of syntactical and semantic analysis, and then
formulate their underlying constraints, e.g., associated knowledge, into different quantitative
functions. Thereafter, we can make use of an optimization-based objective function to find sound
substitutes in the OWL knowledge representation for the question variables.”

 (Gao, Liu, Zhong, & Chen, 2007)

Although Gao et al. (2007) report that this constraint-based method improves precision by 15% of

the current preferred method (lexical-level, keyword-based matching method with lemmatization)

the key limitation remains in the problem of simplification of an NLQ into a set of variables. Further

the practicality of obtaining the function constraints and assigning them weights based on associated

knowledge of the question is a setback to this strategy. This model is work in progress and Gao et al.

(2007) have stated that more investigation needs to be carried out in-depth on how to represent

associated knowledge and how to systematically derive and formulate the corresponding constraints

for the purposes of question understanding and semantic mapping.

2.6.4.3 Strategies from Document Retrieval Models

Research efforts motivated by document retrieval strategies revolve around the four theoretical

models namely Boolean model, Vector Space model, Probabilistic model, and Language model

which are the dominant models (Liddy, 2005). These models are summarized next.

Lawrence Muchemi-PhD Thesis 2014

60 | P a g e

a) The Boolean Model ((Salton, 1971) and (Salton G F. E., 1983))

The Boolean Model is a classical information/document retrieval model which is the oldest and the

most widely used. It uses a set of words (d), referred to as indexing terms, which are derived from a

document and can be present in a query or absent,(1 or 0). The model also uses a representation of a

query (q) as a set and a similarity function R(q,di). The query “Give me the names of employees

living in Nairobi or Kampala” is formulated in well-formed formula (wff) as “ employeeName  (

city → Nairobi  Kampala). Matching is achieved through binary matching function where only

documents containing phrases with employeeName  (city → Nairobi) or employeeName  (city

→ Kampala) are considered relevant.

The most commonly cited matching function is given as:

Where R is the similarity function, q is a set that represents words in a query, d is a set of

words derived from an entire document and also referred to as indexing terms and di

therefore an individual member of that set.

b) Vector Space model (Salton G W. A., 1975)

In this information/document retrieval model each term within a document is represented by its

weight. The term weight is computed by considering how often it appears within the document (term

frequency (tf)) and also the inverse of how often it appears in a collection (inverse document

frequency (idft)). It is assumed that if a term appears too often within the collection, the less

important it is. The weight of a term w(t, d) is computed by obtaining the product of tf and idft in

what is called tf-idft .

w(t, d) = tf-idft = tf X idft.

A document can then be represented by a vector of these weights for each term.

V(d) = (w(t1,d),w(t2,d),...,w(tn,d))

These weights are then assembled into a vector. The vectors are normalized so that unequal length of

vectors between different documents can be taken care of. The query terms and document terms are

R(q,di) = 2|d ∩ q|
 |d| + |q|

Lawrence Muchemi-PhD Thesis 2014

61 | P a g e

represented using such normalized vectors and the similarity between the two vectors computed

from the dot product of the two vectors. Thus score(q,d) = v(q). v(d). Matching is thus achieved by

computing the highest score.

c) Probabilistic Model (Robertson S, 1976):

 A Document Retrieval System based on the Probabilistic Model calculates the probability of

relevance for each term in a document based on that term’s frequency in a set of known relevant

documents. The probability of the relevance of the term against another set of non-relevant

documents is also determined. The objective is to determine whether if a new document when

subjected to probability check with respect to a query term, the probability will tend towards the

relevant document’s probability, if the query is relevant to the new document, or towards the

probability of non-relevant document, if the new document is not relevant to a particular query. In

the absence of initial relevance probabilities, a prior probability can be determined by counting the

number of documents in which the term appears and the number of documents in which it does not

appear. This initial estimate is then adjusted based on users’ response to controlled experiments. This

model assumes that probabilities are based on a binary condition of relevance and therefore the

matching is binary.

d) Language Model (Ponte J, 1998)

In this type of modelling each document has its own language model. Language modelling is the

task of estimating the probability distribution of linguistic units such as words and phrases in

documents. The probability distribution itself is referred to as a language model. Language

modelling involves generating the probability distribution for each document. Queries are thought of

as being generated by a document language model. Ponte et al. (1998), state that they infer a

language model for each document and rank the document according to the estimate of producing

the query. Liddy, (2005) expounds this by stating that the operative question is: “Which

document(s) would produce this query?” The documents in the collection are evaluated and ranked

based on the probability of their language model generating that query. Language model predicts

probability of query production and not probability of relevance of the document. It is therefore

referred to as the query-likelihood retrieval model.

The above six models form a sound basis upon which one can study the best matching model

between the gazetteer and the FSM in the context of OCM for database access. Although

Lawrence Muchemi-PhD Thesis 2014

62 | P a g e

information/document retrieval problem is different from database access problem significant

parallels can be drawn between these two problems as shown in figure 2.15.

Fig. 2.15 Analogy of Document Retrieval Problem and Database Inform. Retrieval Problem

NL statements are used in both problems and the requirement for NLP is similar. Both require

tokenization, morphological analysis and syntactic analysis. What is different is the source of

information. Whereas the source in document retrieval problem is documents organized as document

sets, the database problem is equivalent in that information is organized in tables grouped as

databases. A collection of documents would be equivalent to a collection of tables (database) while

an individual document would be equivalent to an individual table. The analogy is illustrated in

figure 2.15.

Another similarity is in the information access goal where just like in the document retrieval

problem, the goal of database access problem is to obtain relevant information from an already

existing storage. For example to solve the document retrieval problem using the Boolean model, the

degree of similarity between the words in the query and those in the document title is calculated.

Only documents containing phrases that match with those in the query are considered relevant. If a

match is found the document is retrieved. In an analogous manner, the degree of similarity between

words in the query and those in a table’s name are calculated. If a match is found between words in

the table’s title and the query’s tokens, then that table is considered a candidate for selection and it

forms a basis for the structured query in this case SPaRQL. For those retrieved tables further

matching between the query tokens and the attributes (or row values) of the table is performed and

the one where a match is found is selected and forms the structured query. As illustrated in figure

2.14.

 NLQ

Documents in a document set Tables in a database

Lawrence Muchemi-PhD Thesis 2014

63 | P a g e

With this analogy in mind one is compelled to look at the applicability and efficiency of these

models. In the boolean, vector space, probabilistic and language models both the query and table’s

contents are represented as two sets of strings and similarity or relevance parameter calculated as

earlier explained. From the tables’ titles and the query set strings, the respective degree of similarity

or relevance (depending on the model selected) is used to select the table. The column name is also

selected in a similar manner that is, by calculating the similarity or relevance of a column to the

query set. These models perform poorly when it comes to rows selection because for information in

a particular row to be retrieved with a higher degree of precision, it is not the number of times the

tokens within a query appear within a particular table or the degree of similarity as perceived in

these models but it is the presence of both the table name and column name that would yield a more

accurate answer. This then leads us to ask whether a lexical-level keyword matching would be a

better model.

From the observation that recall and accuracy of NLQ-SPaRQL mapping models suffer due to

different lexical representations of similar concepts at the NLQ and ontology level and that the

lexical-level, keyword-based matching method that is the current state of the art does not adequately

address this challenge, this research investigates enhancements to this algorithm. The algorithm is

enhanced through techniques borrowed from ontology matching strategies specifically semantic-

based strategy. Semantic matching strategy combines integration of lexicon-based matching and

meaning of the words. Issues relating to performance of the mapping function are studied in this

work too.

2.6.5 Structured Query (SPaRQL) Generation

As explained in section 2.6.4 and illustrated in figure 2.14, the matching function gives as its output

a list of concepts which are present both in the query and in the ontology. The various concepts as

generated by the matching function form a set of strings which is not ordered. The query generator’s

function is to organize these concepts into a structured query. The task therefore is to select the

various strings (representing different concepts) and assemble them into a structured query.

The process of converting query- and ontology-representations into formal query language such as

SQL, RDQL, SPaRQL or SERQL has been approached differently by various researchers. One such

approach is to compile a grammar that is used in generation of queries. Bernstein et al. (2006) while

presenting their system ‘Querying the Semantic Web with Ginseng’ which is a guided input natural

Lawrence Muchemi-PhD Thesis 2014

64 | P a g e

language search engine have developed ‘Ginseng grammar’ which describes both the parse rules of

the English queries, as entered by a user, and the query composition elements of the RDQL queries

(Bernstein, Kaufmann, & Kiefer, 2006). This grammar uses the BNF (Backus Normal Form)

notation which represents the syntax for expressing context free grammar.

Another school of thought involves the use of ‘interpretations’ and ‘transformers’ as used in Tablan

et al. (2008). Interpretations are containers that are used for holding information while transformers

are algorithms for concatenating information held in a container with other strings generated by the

matching function so that a new container the with compounded information is generated. The

complexity of information is recursively incremented to more complex information that yields the

longest possible structured query. The following quote from Tablan et al. (2008) demonstrates the

spirit of this approach,

“At the beginning of the process, the list of candidate interpretations is initialised with a simple

interpretation containing the input text and the annotations created in the previous steps. In each

iteration, the interpretations currently in the candidate list are transformed into more detailed ones.

…….. All candidate interpretations are scored according to a set of metrics …… and, in order to keep

the number of alternatives under control, candidates that score too low can be eliminated”

(Tablan, Damljanovic, & Bontchev, 2008)

These approaches have their merits and demerits. For example the first approach requires authoring

of grammar once the domain is changed or the language of usage is changed say from English to

Kiswahili. This is because it is this grammar that controls how NL is going to be parsed and how

they are going to be formed into a structured query. This method impedes the attainment of domain-

independence which is one of the tenets of this research. As such this method is not a selected

approach in this research.

The second approach requires the use of scoring matrix which requires scoring on chunk (similarity

score), property (specificity score), and domain and range scores. Similarity score compares the

lexical similarities and is calculated using the Levenshtein distance. It indicates the minimum

number of operations needed to transform one string into the other, where an operation is an

insertion, deletion, or substitution of a single character. Specificity score is determined by the

distance of a property from its farthermost super-property. This means properties that are more

specific score higher than their super-properties. Similarly domain and range score also referred to as

distance score by Tablan et al. (2008) tries to infer an implicit specificity of a property based on the

Lawrence Muchemi-PhD Thesis 2014

65 | P a g e

level of classes that are used as its domain and range. An example to illustrate distance score

calculation is shown in figure 2.16.

Fig. 2.16 Determination of Specifity Score

In this example the concepts triple ‘Broiler eats fattening-food’ scores more than ‘Broiler consumes

fattening-food’ because the inverse of length indicated ‘Dist=B’ is greater than the inverse of that

indicated ‘Dist=A’. Hence according to specifity scoring the two statements score differently and are

not semantically similar. Property score and domain-and-range score assume that properties,

domains and ranges occur in a hierarchy within the ontology. In database access problem the score

for the two distances ‘A’ and ‘B’ should be equal because statements such as ‘Broiler eats fattening-

food’ and ‘Broiler consumes fattening-food’ are semantically similar. Hence while specifity scores

are necessary in ontologies created for a specific domain such as the GATE ontology used in Tablan

et al. (2008) experiments, the same is not true for relational database ontologies as shown in the

example above.

From literature it is observed that if a relational database table has foreign key references to other

tables, these are replaced by instance pointers when the database is converted into an ontology.

However during the SPaRQL query generation a challenge was noted as this pointer information is

hardly utilized during query generation. Foreign keys are important in ensuring data integrity in

relational databases, therefore a mechanism for enforcing this integrity in the OCM approach need to

be designed.

In summary the approaches used for the general QA problem are not readily applicable to the

database problem as explained above. This therefore leaves us with a question that needs to be

 Dist=A

 Dist=B

Bird

Chicken

Broiler

Meal

Fattening

Consume

Drink/ Eat

Lawrence Muchemi-PhD Thesis 2014

66 | P a g e

answered and that is, ‘what is the most appropriate query generation method for ontologies

generated by relational databases?’

2.7 Evaluating Performance of the Architectural Model

Smart, (2008) has identified a criterion that is used to evaluate QA systems (Smart, 2008). The

criterion may be used to evaluate performance as well as categorizing the systems. It has ten key

areas assessed through the following questions,

1. Support for different ontologies (Domain independence): Can the system execute queries

against various ontologies?

2. Recall: What percentage of the natural language queries entered by a user can be translated

(correctly) into a corresponding semantic query?

3. Precision: How accurate is the system in terms of correctly translating the user query into the

target query language? Does the system always retrieve the right kind of information requested by

the user?

4. Language Independence: Degree of language independence. Is the architectural model affected

by switching of language?

5. Extent of NLP processing: What kinds of NLP technologies are used as part of the query

system?

6. Extent of user interaction: How much user interaction is permitted by the tool? Does the tool

involve the user in resolving semantically ambiguous user input?

 7. Target query language: What semantic query languages, e.g. SPARQL, are generated by the

system?

8. Usability: How well does the tool perform in usability studies?

9. Training requirements: What is the training overhead associated with the tool? What kinds of

users is the tool targeted towards, i.e. what is the target user community?

This research delivers an architectural model that forms a basis for developing a QA system for

accessing a relational database, thus the focus is architecture-evaluation as opposed to the full

system evaluation. It would be reasonable to review the above criterion and reduce it to have

elements that are architecture-evaluation specific. These include the first four elements in the above

criterion, namely domain independence, recall, precision and language independence. A review of

experimental procedures for evaluating architectures’ performance reveals that precision and recall

Lawrence Muchemi-PhD Thesis 2014

67 | P a g e

are the most favoured empirical measures for architecture evaluation. While evaluating ‘Krisp’ (Kate

& Mooney, 2007), a 10-fold cross validation was used to measure performance in terms of precision

and recall. Popescu et al. (2003) while evaluating ‘PRECISE’ also measured precision and recall. In

addition they evaluated their architectural model using a parameter described as ‘distribution drift’.

This means testing using data that is totally different from what was used to train or tune the

database. The motivation for this is that precision and recall dramatically fall when data changes

with time from what was used to train. Since the drift described is related to deterioration of

performance with change of data away from training data, this drift is renamed here to ‘training

drift’. Training drift only affects machine learning approaches and thus it is not considered in this

work.

It is envisaged for adoption an evaluation framework that takes into consideration all architecture-

related aspects derived from the Smart (2008) criterion that is, precision, recall, domain

independence and language independence. In addition accuracy, F-score (F-score is harmonic mean

of precision and recall) and support for cross-lingual databases would be useful additions to the

evaluation criteria.

2.8 Summary

This chapter has highlighted the challenges that need to be addressed in order to solve the access to

relational database problem using natural language. In particular it has been shown that an ontology

concept mapping (OCM) approach can be used to solve this problem. A generic conceptual

framework that handles most of the challenges encountered during processing such as language and

domain dependence has been arrived at. It has also been shown that some important issues that need

to be addressed by this architecture include capacity to handle the strict formalities and conditions

set by relational databases, capacity to handle cross-lingual databases, language independence and

high portability.

In order to actualize the conceptual framework into a concrete architecture and develop a prototype

capable of giving indicative performance, some important algorithms need to be designed and

developed. These include, parsing database schema information, matching algorithm within the

OCM model, natural Language Query processing algorithm and SPaRQL generation algorithm. The

design and implementation procedures of these components are detailed in chapter 3.

Lawrence Muchemi-PhD Thesis 2014

68 | P a g e

Chapter 3: OCM DESIGN METHODOLOGY

3.0 Preamble
Through synthesis of the literature in the previous chapter, it has been articulated what research has

been done and what needs to be further done. The main methodologies and research techniques

previously applied in each specific aspect of the problem have been reviewed and critically analyzed

so that appropriate methods are applied. This chapter therefore provides the details of various

research strategies and specific research actions geared towards the design of a language and domain

independent ontology-based model for NL-based database access

 A comprehensive analysis of methods and techniques for data gathering, experimental procedures,

pre-design results and analysis are provided. The OCM design process, the architectural model and

algorithms that facilitate the functioning of the model are presented in this chapter. Further the

prototype development process and resources selected have been discussed in detail.

3.1 Overview of Issues to be Tackled

The OCM conceptual model was introduced and discussed in detail in section 2.6. This is a high

level design that seeks to address the problem of natural language access to relational databases

through an ontology-based approach. The problem has several sub-components that have been

described in detail in chapter two and are re-illustrated in figure 3.1 for ease of reference.

Fig. 3.1 Components of NL Access Problem Illustrated as a Conceptual Model

NLQ
Processing

Answer to
User

 Data
Base

NLQ Source

Concepts
Mapping
Process

NLQ
Representation

Schema
Representation

SPaRQL
Generation

Schema
Processing

Lawrence Muchemi-PhD Thesis 2014

69 | P a g e

From the conceptual framework the process flow is abstracted and is illustrated in figure 3.2. As

reviewed from literature, several tasks in the ontology-based relational database access problem are

yet to be realized for a generic model.

Fig. 3.2 The Solution Overview

The issues that need to be tackled before realization of the OCM model were analyzed in chapter 2

and are restated as follows,

1. Concepts Discovery

a. There is need for extending the current state of the art procedures for explicit

concepts discovery so that the techniques can be generalizable to any language. The

use of universal language theories to tackle the language independence problem is

explored.

b. Current state-of-the-art methods rely on nouns and nominal phrases for concept

identification. Concepts are however more diverse than this as identified by

Krishnamurthy & Mitchell, (2011). There is need to expand the landscape to include

other categories as identified in Sewangi (2001) and Ohly (1982) among others.

c. In order to enhance the language understanding capacity of the model, there is need

to design heuristics for implicit concepts discovery.

2. Decoding of ontology data and Semantic Tagging: Relational databases have no controlled

vocabulary for naming tables and columns and therefore the derived ontologies would also

 NL Relational Database

 Ontology

 Features Rep. Model Gazetteer

 Matching_Function

 SPaRQL Generator

Lawrence Muchemi-PhD Thesis 2014

70 | P a g e

not have a controlled or a pre-determined lexicon. Subsequently a challenge is encountered in

the decoding of database schema information specifically, names of tables and columns

(fields) names. There is need for extending schema processing algorithms from the current

state of the art which involves basic mapping as explained in section 2.4 to also include

identification of the various components within the labels, deducing their meaning and

assigning them to specific database concepts. This task is viewed as a semantic assignment

task of the ontology data.

3. Schemata Designs: Another challenge that needs to be surmounted for the database access

problem is the design of a suitable schema for holding information about concepts extracted

from ontologies generated from relational databases. Further, in a system that expands the

collection of what constitutes ‘concepts’ as envisaged in item 1 above, an elaborate schema

for holding information from NLQ is to be designed too. The designs of these envisaged

schemata form an aspect of the issues addressed in this work. The structures of these

meaning representation schemes are critical because they influence the choice of the mapping

algorithm. This research then sought to establish the generic structure of the two schemata

suitable for the relational database problem.

4. Mapping Algorithm: There is need to enhance the lexical-level, keyword-based matching

method that is the current state of the art because it does not adequately address recall

challenges arising from different lexical representations of similar concepts at the NLQ and

ontology levels (Punyakanok, Roth, & Yin, 2004). As analysed from literature, a

methodology that borrows from ontology matching strategies, specifically the semantic-

based strategy is adopted. The semantic matching strategy combines integration of lexicon-

based matching with the meaning of the words.

5. Structured Query Generator Function: The various ‘concepts’ generated by the matching

function form a set of unordered strings. The query generator’s task is to organize these

‘concepts’ into a structured query. The design of this algorithm is a research problem tackled

in this chapter.

6. Cross-lingual Access: Most NL database access problems have to grapple with the challenge

of cross-lingual interaction. Cross-linguality refers to the phenomenon of using a given

language to query a database whose schema is authored in a different language. The

abbreviations and concatenations of words forming the object and field names are done in a

Lawrence Muchemi-PhD Thesis 2014

71 | P a g e

different language from the one used to query. Cross-lingual querying therefore occurs where

the database definition language is not necessarily the one that is used for querying the

database a challenge commonly found in multi-lingual regions.

7. Domain Independence: There is need for design of an architecture that is domain

independent. It should be easily portable across domains and across different databases

within the same domain.

8. Performance evaluation of the model

The above issues formed the basis for this research. Each of the above tasks was tackled through a

specific research procedure as described in the sections that follow. The Performance evaluation

methodology is covered in chapter four.

3.2 Research Design Synopsis

The following is a synopsis of the research design applied for each of the tasks listed in section 3.1.

A detailed report of each research activity is given in the respective sections that follow.

Multiple cases study research design was adopted for informing the designs on concepts discovery

envisaged in item 1 of section 3.1 above. In this research, rules of surface to deep structure

transformation in sentences, as provided in Transformational theory by Chomsky (1957), was

extended and used to study the structure of natural language queries.

In order to enhance the language understanding capacity of the model as envisaged in item 1 c of

section 3.1, an exploratory study was carried out on data collected from the case studies and

heuristics designed and tested on a prototype for implicit concepts discovery.

Finally in order to expand the collection of what constitutes discoverable ‘concepts’ from an input,

findings from Krishnamurthy & Mitchell (2011), Sewangi (2001) and Ohly (1982) were

experimentally tested on a prototype and performance measurements taken. The task generally

involved building functions of regular expressions of terms, collocations and other linguistic patterns

as described in these sources and extending the current concept identification algorithms through

these functions. This was an experimental design involving test and comparison experiments.

Design of algorithms for decoding of ontology data and semantic tagging envisaged in item 2 of

section 3.1 was informed by analysis of results obtained from field survey and other published

Lawrence Muchemi-PhD Thesis 2014

72 | P a g e

sources. This was an exploratory research involving field data collection and survey and was

complemented by an experimental study involving prototype measurements on performance. Design

of the two schemas, mapping algorithm and query generation function (items 3, 4 and 5 in section

3.1) was guided by literature survey and analysis coupled with experimental studies while the study

on designing a mechanism for handling cross-lingual issues (item 6) was done through experimental

design involving prototype performance measurements.

Evaluations were conducted through development of a prototype and taking performance

measurements. This is however detailed in chapter 4 of this thesis.

3.3 Research Design for Concepts Discovery Tasks

As pointed out in section 3.2, this research aspect was broken down into three components. These

included i) investigations into the development of procedures for concepts discovery through query

reduction techniques, ii) expansion of the landscape of what constitutes discoverable ‘concepts’ from

an input and iii) enhancing language understanding capacity through heuristics design for implicit

concepts discovery. The studies were carried out through case studies design aimed at theory testing

and an exploratory study on collected data for heuristics design for the first two components

respectively, and prototype-based experimental design.

3.3.1 Case Studies Design

In order to establish rigor, credibility, transferability, dependability and confirmability, the five point

case study research design strategy (Yin, 1994) was adopted. Accordingly the case study design had

the following five components,

1. Research question(s),

2. Propositions based on some criteria,

3. Unit(s) of analysis that must provide rigor,

4. Determination of how the data is linked to the propositions

5. Criteria to interpret the findings.

Further to this, a protocol is required to carry out the tasks. A protocol serves as a framework of

operation and includes all the necessary elements in the proper conduct of research. This also

Lawrence Muchemi-PhD Thesis 2014

73 | P a g e

enhances clarity and repeatability. In this work the protocol published by the University of

Massachusetts at Amherst (Zucker, 2009) was adopted. The protocol is summarized in figure 3.3.

Fig. 3.3 Protocol Adopted for Carrying out Case Studies

Section 3.3.2 provides an account of the actual case studies carried out following the adopted

protocol and results obtained.

3.3.2 Purpose and Rationale for Case Studies (Characterizing Linguistic Features of user

Inputs)

Concepts of Transformational theory by Chomsky (1957) providing rules for transforming surface

structure forms (SSF) to deep structure forms (DSF) in sentences was used to study the structure of

• Purpose and rationale for case study
• Significance of the phenomena of interest
• Research questions

• Describe the full case
 Design based on the unit of analysis and research purpose
• Data collection and management techniques

• Field methods
• Transcribed notes and interviews
• Mapping of major concepts
• Building typologies
• Member checking

• Focus the analysis built on themes linked to purpose and unit of analysis
• Analyze findings based on the purpose, rationale, and research questions

• Case perspective
• Disciplinary perspective
• Cross-case comparison
• Write up the case from an emic perspective
• Biography, autobiography, narratives

• Establishing rigor
• Credibility
• Transferability
• Dependability
• Confirmability

Lawrence Muchemi-PhD Thesis 2014

74 | P a g e

natural language queries. The theory was tested in the context of ‘query-reduction’ where it was

studied whether if a query is represented using a SSF, it can be mapped onto its equivalent DSF

while retaining the same interrogative (information elicitation) properties. If this was found to be the

case, the transformation process of a query would be significantly simplified because any query

would require only to be transformed to its minimal form (DSF) before being converted into

SPaRQL. The relationship between DSF and SPaRQL was also studied. Data collected from the

field and other published sources was used in the case studies.

3.3.3 Research Questions for the Linguistic-based Case Studies

The study was guided by the following three questions,

 Can deep structure forms (DSF) of a query be used in deducing the interrogative properties

of a NL query?

 What type of relationship exists between DSF and SPaRQL queries and is it language and

domain independent?

 Are the processes for conversion of SSF to DSF in NL queries language and domain

independent?

3.3.4 Description of the Cases

The research involved investigations from five different case scenarios. Languages selected for this

case study in this research were English and Kiswahili because these are the official languages in

Kenya and most prevalent in the East African region. The case scenarios are briefly described.

3.3.4.1 Case 1: Kiswahili Queries

Documented research on Kiswahili questions posed to databases is not publicly available. A field

survey was therefore necessary to obtain objective Kiswahili queries. In order to get a representative

sample of Kiswahili queries a farmers’ group, which is a potential user of an NLQ database access

system, was selected. Questionnaires were used to solicit potential queries from farmers that would

be seeking information from a simulated database containing professional solutions. The set of

obtained queries was compared against the theoretically expected query formats (KU, 2011),

(Kamusi Project, 2013) with a purpose of establishing how representative the obtained queries were

to general Kiswahili queries. The query samples were observed to be representative of general

Lawrence Muchemi-PhD Thesis 2014

75 | P a g e

Kiswahili queries with most of the expected question types being present. These included ‘who’,

‘where’, ‘what’, ‘when’, ‘how’, ‘which’, ‘enumeratives’, ‘superlative-based’, ‘comparative-based’,

‘yes/no’ disjunctive (choice) and ‘list/show/give/find/describe’ types of questions.

Sampling Method and Sample Size for Poultry Case

Chain referral method as described in Mugenda, A. and Mugenda, O. (2003) was used in selecting

the sample frame. Chain referral is a non-probabilistic sampling technique suitable in this case

because respondents must have certain characteristics such as all being farmers of a particular

product, and must have a common need for specialized solutions in that particular domain. The

solutions could be provided by a human specialist or a specialized database containing solutions.

Poultry farmers are likely beneficiaries of products modeled on findings of this research and were

therefore selected.

The sample selected was an active poultry farmers’ project in Makongeni estate, a sub-urban area of

Thika town in Thika district. The participants rear chicken for commercial purposes and therefore

were likely to pose queries related to chicken farming to experts. The area was selected because it

met the prerequisite conditions such as all participants were regular users of Kiswahili and so were

likely to query the database in Kiswahili and the participants use specialist knowledge such as

veterinary services at a commercial scale and therefore have a regular need for interacting. These

conditions were established via a pre-study survey.

In chain referral, a type of purposive sampling method, sample sizes are determined on the basis of

‘theoretical saturation’ - that is the point in data collection when new data no longer bring additional

insights to the research questions. Purposive sampling is therefore most successful when data review

and analysis are done in conjunction with data collection (FHI, 2012). In this research, analysis was

performed after every ten questionnaires. However, the saturation point was difficult to determine

empirically and was rather subjective, therefore the questionnaires were limited by practical reasons

to 50.

Data Collection

A survey questionnaire was the preferred tool because typical text inputs were required for study

before the prototype was actually designed and developed. The questionnaire was designed so that

Lawrence Muchemi-PhD Thesis 2014

76 | P a g e

farmers were required to write short questions. Each questionnaire had twenty five information

request areas which required the respondent to pose questions to a hypothetical system acting as a

veterinary doctor. Six hundred and twenty five questions were collected. The following examples

show some of the typical queries that were collected,

1. Ametoka nchi ipi? (What is its country of origin?)

2. Utapata wapi soko ya kuku za nyama? (Where will you get a market for broilers?)

3. Nafaa kuwapa kuku maji kiasi kipi? (How much water should I give the chicken?)

4. Kuku anayepigwa na wengine anafaa kutengwa? (Should we separate a chicken that is

beaten by others?)

5. [Nipe orodha ya] wanunuzi bora. ([Give me a list of] best buyers). The part enclosed in

square brackets was not explicitly stated but is necessary to complete the query.

6. Nitabebewa vifaranga na nani? (who will transport the chicken?)

7. Nitapata vifaranga lini? (When will I get the chicks?)

8. Vyumba vyafaa kujengwa vipi? (How should houses be built?)

9. Vifaa vipi vya kutumiwa kupima? (Which instruments are used to measure temperature?)

10. Kuku ipi hutaga mayai mengi kuliko ya kienyeji? (Which chicken lays more eggs than local

ones?)

11. Jogoo yupi ana uzito kuliko wengine wote? (Which is the heaviest broiler)

These eleven questions represent the following types of queries namely ‘what’, ‘where’,

‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’, ‘comparative’

and ‘superlative’ respectively. More typical questions given by the farmers are found in Appendix 1

of this report. The responses to the questionnaire reflected a full spectrum of typically expected

query types and were therefore taken to reflect an exhaustive range of text inputs to a poultry

farmers system.

3.3.4.2 Case 2: UoN MSc Coordinator

The School of Computing and Informatics of the University of Nairobi runs four MSc degree

programs which are coordinated from a central office of the MSc coordinator. The coordinator is

responsible for handling students’ queries. The queries were contained in various e-mails and

information gathered via a web interface that is maintained by the coordinator. The data collected

Lawrence Muchemi-PhD Thesis 2014

77 | P a g e

was from the domain of students management, and therefore provided a domain variation with case

1. The sample set of respondents was made diverse by increasing the number of students whose

queries were picked and therefore information collected from these two sources was random. All

questions collected were in English and this also provided a language contrast to case 1 which was in

Kiswahili.

 Data collected over a period of five years was available. Three hundred and ten questions were

extracted and used for analysis. Some typical queries for ‘what’, ‘when’, ‘enumerative’,

‘‘list/show/give/find/describe’, ‘where’, ‘yes/no’ and ’give’ types of queries respectively are given

below,

1. Please share with me email address of the lecturer in charge of ICS 645 Natural language

interface this semester.

2. When is this month’s MSc proposal presentation scheduled?

3. How many students can access the mailing address mscis_07@students.uonbi.ac.ke?

4. I would like to pursue a master’s degree in CS, please let me know the prerequisites for

course.

5. Where is the venue for MSc proposal presentation scheduled for 14th August

6. Is the deadline for MSc marked scripts still 28th may 2007.

7. Kindly assist me with a tentative program for this year

More samples of the queries are available in appendix 1.

3.3.4.3 Case 3: Queries to Microsoft’s NorthwindDB used to Test ELF

Originally created by Bootra (2004) to evaluate ELF natural language query interface to query

Microsoft northwind database at Virginia Commonwealth University, the questions were collected

electronically from random sources. This data is publicly available at Bootra (2004) or at ELF

software home page. All questions collected were in English and this provides good comparative

data with case 2.

3.3.4.4 Case 4 and 5: Questions to Microsoft’s NorthwindDB used to Test ELF

Cases 4 and 5 are queries for computer jobs and restaurant searching that were originally collected

electronically by Tang Lappoon in his PhD work at Texas State University under the supervision of

mailto:mscis_07@students.uonbi.ac.ke

Lawrence Muchemi-PhD Thesis 2014

78 | P a g e

Raymond Mooney (Tang & Mooney, 2001) and have widely been quoted in literature as benchmark

questions for studying natural language interface models. These were selected because they provide

a good comparative basis with many other published works. They contain over 500 and 250

questions respectively.

A total of 1805 NL queries were available for analysis. Table 3.1 summarizes these query sets.

Table 3.1: Query sets Used

 Name of Query-set No of

Questions

Description Original Source

1 Farmers Queries 625 Poultry farmers queries Muchemi, (2008)

2 UoN MSc Coordinator 310 Questions by UoN MSc students to

coordinator

Coordinator e-mails

3 ELF Queries to MS

NorthwindDB

120 Originally created by Bootra to evaluated

ELF on Microsoft northwind-db (at

Virginia Commonwealth University

(Bootra, 2004)

4 Computer Jobs 500 Database and queries for computer jobs

used originally by Tang under Ray

Mooney for PhD work at Texas State

University

Recreated from

Tang & Mooney,

2001

5 Restaurant 250 Same as above but for restaurant

selection

Tang & Mooney,

2001

 Total 1805

These questions were used to characterize linguistic features for NL inputs. They were also used in

performance evaluation experiments described in chapter four.

Lawrence Muchemi-PhD Thesis 2014

79 | P a g e

3.3.5 Analysis Overview

The underlying theory that was used in linguistic analysis of queries is transformational-generative

grammar, brought forth by Noam Chomsky (Chomsky, 1957). Transformational theory was selected

in this study because it has previously been used for the query formulation process in MULDER

(Kwok, Etzioni, & Weld, 2001), a NL question-answering system. The three components of the

original transformational-generative grammar included phrase structure rules, transformational rules

and morphophonemic rules (Zellig, 1951). Phrase structure trees help analyze phrase structure rules.

Sentence diagrams help analyze S-V-O-modifiers arrangement in a sentence or a set of similar

sentences with different S-V-O-modifiers arrangement. A sentence ‘has a DSF which is transformed

through transformation rules into several surface forms. Morphophonemic rules help model

transformations in spoken language. Massamba, Kihore, & Hokororo (1999) have studied the

Kiswahili transformations and documented them in their book Sarufi Miundo ya Kiswahili Sanifu.

In this study, the theory was tested in the context of ‘query-reduction’ where it was studied whether

if a query is represented using a surface form, it can be mapped onto its equivalent DSF while

retaining the same interrogative (information elicitation) properties. If this was found to be the case,

the transformation process of a query would be significantly simplified because any query would

only require to be transformed to its minimal form (DSF) before being converted into SPaRQL. The

relationship between DSF and SPaRQL was also studied. Data collected from field and other

published sources was used in the case studies. The five sets of queries as described in table 3.1 were

used for studies under the following themes,

 Transfer of semantics (interrogative properties) from NL to DSF in kernelization process,

 Type of relationship existing between DSF of queries and SPaRQL queries,

 Dependence of kernelization process and DSF-SPaRQL conversion on Natural language.

 Prevalence of various transformation rules on collected data,

 Word count of concepts and implications on selection of optimal phrases’ length

Lawrence Muchemi-PhD Thesis 2014

80 | P a g e

3.3.6 Kernelization Procedure

A kernel statement is a statement expressed in the simple, active, affirmative and declarative form

and is produced directly by phrase structure rules. Other statements are produced from the kernel

statements through transformation or combination with other kernel statements.

Sentence diagramming is a basic linguistic analysis tool introduced in the 19th century by Kellog and

Reed in their book Higher Lessons in English (Kellog & Reed, 1877). They are visualization aids of

how different parts of a sentence fit together, with special emphasis to S-V-O and their modifiers.

The subject goes to one slot, the verb the other and the object the last slot. Modifiers emanate from

these slots and are drawn according to the type of modifier. Sentence-diagrams have therefore been

used to study transformational rules in this work.

The first step in the kernelization process involves identifying the main actor or agent. This is the

subject of the statement. In the example illustrated in figure 3.4 (b) and (c) (Ametoka nchi ipi? What

is its country of origin) the subject is the pronoun ‘A-’ (‘It’), representing the chicken. The second

step is to identify what is being affected by the subject or will receive the action that is the object, in

this case (nchi) ‘country’.

The third step is to identify the verb (predicate). A verb identifies the action or required relationship

between the subject and the object. In the example shown in figure 3.4, the predicate is toka (origin)

because it shows the relationship between chicken and country. The fourth step is to identify the

modifiers of the subject, object and verb and these are usually indicated by adjectives, prepositional

phrases (relationship between two objects e.g. cup is under the table), adverbial phrases (e.g. early in

the morning), verb phrases such as infinitives (to sleep), while modifiers to the verbs are usually

indicated by adverbs (e.g. walked slowly). Modifiers carry great semantic value because they affect

the type of answer expected by the interrogator.

At times queries do possess more than one object. In this case the objects are classified as direct or

indirect objects. During the kernelization process this aspect is taken care of by allowing multiple

objects which relate directly or indirectly with the subject via a predicate. Consider the following

sentence observed from the sample query set,

‘Ni-ta-i-patia maji kiasi kipi?’ How much water will I give it?

Lawrence Muchemi-PhD Thesis 2014

81 | P a g e

The kernelization process produces the subject ni (I) and two objects maji (water) and i (it) where

the object ‘i’ is a direct object and the object ‘it’ (referring to the chicken) is an indirect object. The

modifier kiasi kipi (how much) indicates that a quantity is required (an enumerative type of a query).

The Sentence diagramming technique was used to decompose sentences to minimal form. These

minimal forms are equivalent to DSF envisaged in Chomsky, (1957). Sentence diagramming

involves the following seven steps,

I. Identify the subject by answering the question, "Who? or What?" is the actor,

II. Identify the object (optional) through answering the question, "Whom? or What?" will

receive or be affected by the agent,

III. Identify the predicates (verbs) usually answered by the question "What action is taking place,

or what happened in the query?" It is a verb or state of being (for example am, is, are, was,

were),

IV. Identify articles (a/an/the) or possessives (my, your, his, hers, its, their, Kamau’s etc.)

V. Identify adjectives (words that describe or limit a noun or pronoun) by answering questions

such as, “Which one? How many? What kind? What size? What color? etc.

VI. Identify adverbs (words that modify verbs, adjectives or other adverbs) by answering the

questions, "How? When? Where? How much? Why?" etc.

VII. Identify prepositional phrases. These are groups of words that begin with a preposition and

end with a noun or pronoun which is the object of the preposition e.g. between them.

The identified words are then inserted in a sentence diagram where the subject, object and verb are

drawn above the base line and the articles, adjectives, adverbs and prepositional phrases are drawn

below the base line as illustrated in Fig 3.4 (a). Fig 3.4 (b) and (c) show the sentence diagram for the

sentence ‘Ametoka nchi ipi? (What is its country of origin?)’. The square brackets indicate that the

object is implied by the interrogator.

Lawrence Muchemi-PhD Thesis 2014

82 | P a g e

Fig. 3.4 Sentence Diagramming Technique

More illustrative examples are found in appendix 2

3.3.7 Sampling Technique

The query sets were large and required sampling. A stratified random sampling approach was used

to select queries from each query set that were subjected to kernelization. The query sets were

separated into two population groups, English and Kiswahili. English population group comprised of

four query sets namely UoN MSc coordinator, ELF queries to Northwind, computer job searching

and restaurants, with a total population of 1180 queries while Kiswahili had a population of 625

queries. Each population in a given group was divided into twelve strata (divisions) each strata

containing a unique query type, for example ‘when’ type. These query types were the most prevalent

in the collected query sets and also the most frequently used interrogatives (KU, 2011) and hence

their selection. The twelve strata identified were ‘what’, ‘where’, ‘enumerative’, ‘yes/no’,

 Generic Query Kenerlization Model

 Subject Verb Object

 (a)

Ametoka nchi ipi? (What is its country of origin?) – Swahili Example

 nchi toka a [kuku]

ipi? (mahali)

(b)

Ametoka nchi ipi? (What is its country of origin?) – English translation

 Country origin it [chicken]

 what? (location)

(c)

Lawrence Muchemi-PhD Thesis 2014

83 | P a g e

‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’, ‘comparative’, ‘superlative’ and

disjunctive (choice) types. The number of occurrences for each query type (stratum) was recorded

for the English and Kiswahili population respectively.

A random sample from each population was taken in a number proportional to the stratum’s size of

that given population. A total of 50 queries were picked from each population and the diagramming

technique applied. Samples of queries that were diagrammed are found in appendix 2. The following

formula was used to obtain the number of questions selected for kernelization analysis.

of Queries Diagrammed = (# of Occurrences of stratum members/Total population) x Desired

size

Where the desired size was 50

In order to select the number of queries that were analyzed for rules of transformation, a stratified

random sampling approach similar to the one used in the kernelization study described above was

used. Eight strata were used and these included ‘Imperative’, ‘Agent deletion’, ‘Passive’, ‘Deletion

of excessive elements’, ‘Coordination’, ‘Addition of elements’, ‘Negation’, and ‘Question’

transformations.

3.3.8 Results and Analysis of Cases Study Findings

This section describes the results obtained from the five query sets. The sampled queries were

subjected to kernelization through the diagramming technique as explained in section 3.3.6.

3.3.8.1 Types of Transformations Noted

Linguistic theory on transformational-generative grammar advanced by Zellig (1951) describes

transformational-generative grammar as a rule system formalized with mathematical precision that

generates the grammatical sentences of the language that it characterizes, and assigns to each

sentence a structural description (Zellig, 1951). Transformational-Generative grammar achieves

these transformations without the need of any further information that is not represented explicitly in

the sentence. According to the modified transformational theory by Chomsky (1970),

transformational-generative grammar (or simply transformational grammar) transforms a “deep

structure” (or kernel structure) into a “surface structure” and shows the relationship of such

sentences (Chomsky, 1970).

Lawrence Muchemi-PhD Thesis 2014

84 | P a g e

The following transformations were noted in all the query sets. Rules 1 to 5 refer to common

transformation rules while rules 6 to 8 refer to generative rules. Transformational rules allow

sentences to be changed into identical ones through grammar movement while generative rules

generate or create sentences.

1. Imperative transformation (IT) e.g. 'All?' instead of ‘List all available jobs’ or ‘Wanunuzi

bora’ (better buyers) instead of ‘Nipe orodha ya wanunuzi bora’ (Give me a list of better

buyers). The transformation was noted in both English and Kiswahili query sets.

2. Agent deletion transformation (DAT). This is manifested by the deletion of the doer of the

action. For example ‘(Kuku) Inataga kwa mda gani? (The chicken) It lays after what

duration’.

3. Passive transformation (PT). Transformation from active to passive tense changes the

sentence from DSF to SSF. The active form represents the deep structure form e.g. ‘kuku

ilikunywa dawa’(The chicken took medicine) while the passive form represents the surface

form e.g. ‘dawa ilinywewa na kuku’(The medicine was taken by the chicken).

4. Deletion of excessive elements transformation (DET). This eliminates excessive words and

avoids repetition. For example ‘Jimbi anakula chakula na vifaranga vinakula chakula?’

becomes ‘Jimbi na vifaranga wanakula chakula? The cock is eating food and the chicks are

eating food’ becomes ‘The cock and chicks are eating food.

5. Coordination transformation (CT). In the DSF two sentences are combined into one surface

form sentence e.g. ‘kuku zinakunywa dawa; kuku haziponi’ (The chicken have taken

medicine; the chicken are sick) becomes ‘kuku zina kunywa dawa lakini haziponi’ (the

chicken have taken medicine but they are still sick).

6. Addition of elements (AET). This adds information such as adjectives and adverbs. It usually

changes the answer provided. For example ‘kuku wanakula chakula ya kienyeji?’ (chicken

eat local food?) becomes ‘kuku wanakula chakula cha kienyeji kingi’ (chicken eat a lot of

local food?).

7. Negation transformation (NT). This transformation negates a sentence. For example ‘Kuku

zinataga mayai’ becomes ‘kuku hazitagi mayai’ (The chicken are laying eggs becomes the

chicken are not laying eggs).

Lawrence Muchemi-PhD Thesis 2014

85 | P a g e

8. Question transformation (QT). This is distinguished by the tone of the last syllable which is

higher, a question mark, inclusion of the term ‘je’ in Kiswahili at the beginning of a sentence

or by adding a confirmation query at the end of a statement. For example ‘The brown cocks

are big, aren’t they? These transformations were common in English and Kiswahili query

sets.

Other transformations such as reflexive transformation and emphatic transformation were not noted

in the datasets although they are common transformation rules in generative grammar.

Tables 3.2 and 3.3 show results from some sample queries highlighting transformations and

applicable transformation rules. Bolded words indicate the primary subject-verb-object data,

italicized words show supportive words (in most cases these are adjectives) while the underlined

words show non-verb predicates especially state of being.

Lawrence Muchemi-PhD Thesis 2014

86 | P a g e

Table 3.2 Sample Kiswahili Queries Transformations

Studying English queries transformations was carried out in a similar manner and here are some
sample sentences,

Studying Transformations in Swahili queries

No. Query (Surface Structure form) Deep Structure (with Concepts
Highlighted)

Transf.
Rule(s)

SPARQL-Triples
Equivalents

1 Ametoka nchi ipi? Atoka nchi ipi AET, QT Kuku/toka/nchi
2 Inataga kwa mda gani? Ina taga mda gani DAT, QT Kuku/taga/mda_gani
3 Wakisha komaa nitauzaje? Wakikomaa nita uza aje DAT,

AET, QT
Kuku/komaa/uza_bei

4 Nitaagiza vifaranga kupitia nani? Nita agiza ~faranga kupitia nani AET, QT faranga/agiza/pitia_nani
5 Kuku wakigonjeka nitamwona nani? Kuku wakigonjeka nitamwona nani AET, QT Kuku/gonjeka/ona_nani
6 Nafaa kuwapa kuku maji kiasi kipi? Nafaa kuwapa kuku maji kiasi kipi QT kuku/pa/maji_kiasi_kipi
7 Vinafaa kujengwa vikielekea jua au

la?
Vina jengwa vikielekea jua DAT,

AET, QT
jenga/elekea/jua

8 Ni chombo kipi kinafaa cha kuleta
joto inayofaa?

chombo kipi kinafaa cha kuleta joto AET, QT Chombo_kipi/leta/joto_i
nafaa

9 Wakati gani mtu anafaa kujua joto
limezidi?

Wakati gani mtu anajua joto
limezidi

AET, QT Mtu/jua_wakati/joto_lim
ezidi

10 Ni baridi kiasi gani inatakikana? baridi kiasi gani inatakikana AET, QT Baridi/taka/kiasi_gani
11

Chombo kipi kinafaa kutumika?
Chombo kipi kinafaa kutumika QT Chombo_kipi/faa/tumik

a
12 Nivyombo vipi vinafaa kwa usafi? Nivyombo vipi vinafaa kwa usafi QT Vyombo_vipi/faa/usafi
13 Kuku wanafaa kuachana katika

ukuaji na “gap” gani?
Kuku wanafaa kuachana katika
ukuaji na “gap” gani

AET, QT Kuku/faa/achana_‘gap’_
gani

14 Kuku akikomaa anafaa kuwa na uzito
kimo gani?

Kuku akikomaa afaa uzito gani AET, QT Kuku_komaa/faa/uzito_
gani

15 Dawa huharibika kwa mda upi? Dawa huharibika kwa mda upi QT Dawa/haribika/mda_upi
16 Kuku anayepigwa na wengine anafaa

kutengwa?
Kuku anayepigwa na wengine
anafaa kutengwa

DET, QT Kuku/pigwa/kuku_teng
wa

17 Ni dalili gani zilizo za kawaida kuku
akiugua?

dalili gani kuku akiugua AET, QT Kuku/ugua/dalili_gani

18 Nafaa kutumia dawa gani? Nafaa kutumia dawa gani QT mimi/tumia/dawa_gani
19 Ni njia gani mwafaka ya kuzuia

magonjwa?
Njia gani ya kuzuia magonjwa QT magonjwa/zuia/njia_gan

i
20

Unaweza kula kuku mgonjwa?
Unaweza kula kuku mgonjwa AET, QT Mtu/Kula/kuku_mgonjw

a
21 Unajua aje kuku amefikisha wakati

wake wa kuuzwa?
Unajuaje kuku amefikisha kuuzwa AET, QT Kuku/umri_kuuzwa/ma

elezo?
22

Wanunuzi bora?
Wanunuzi bora IT, QT Mimi/nipe/Majina_wan

unuzi_bora
23

Je, ni chakula kipi unaweza patia
kuku wa nyama na wa mayai?

chakula kipi patia kuku wa nyama
na wa mayai

CT, QT,
AET

kuku_wa_nyama /patia/
Chakula_kipi
kuku_wa_mayai/patia/
Chakula_kipi

24 Kuku wa nyama anastahili kuwa na
kilo ngapi kwa siku arobainne?

Kuku wa nyama ana kilo ngapi kwa
siku arobainne

QT Kuku_nyama/ uzito_upi
siku_arobaine

25
Vyumba vyafaa kujengwa kwa nini?

Vyumba kujengwa kwa nini QT, DAT Vyumba/jengwa/vifaa_g
ani

Lawrence Muchemi-PhD Thesis 2014

87 | P a g e

Table 3.3 Sample English Queries Transformations

KEY
IT = Imperative transformation (IT) e.g. 'All?' instead of ‘List all available jobs’;
DAT = Agent deletion transformation (DAT) This is effected by not showing who did the action.;
PT = Passive transformation (PT). Transformation from active to passive tense changes the sentence from
SSF to DSF.
DET = Deletion of excessive elements transformation (DET). This eliminates excessive words and avoids
repetition;
CT = Coordination transformation (CT). In the DSF two sentences are combined into one surface form
sentence;
AET = Addition of elements (AET). This adds information such as adjectives and adverbs.

Studying Transformations

No. Query (Surface Structure) Deep structure Equivalent Rule(s) SPARQL Triples

1 'All of it?' 'All it?' IT, DAT Jobs/type/all
2 'All the jobs please?' 'All jobs?' IT, DAT Jobs/type/all
3 'All?' 'All?' IT, DAT Jobs/type/all
4 'Any jobs available using database?' 'Any jobs available using database?' AET Jobs/type/any
5 'Type the jobs for a database specialist?' 'List jobs for database specialist?' AET Jobs/type/Db_speciali

st
6 'Are there Ada jobs outside Austin? 'Are there Ada jobs outside Austin? AET Jobs/type/ada_outAus

tin
7 'Are there any Autocad jobs open?' 'Are there Autocad jobs open?' QT Jobs/type/autocad
8 'Are there any computer jobs for the

playstation?'
'Are there computer jobs for
playstation?'

AET Jobs/type/playstation

9
'Are there any jobs in the US with the title
verification engineer?'

'Are there jobs in the US with the
title verification engineer?'

CT Jobs/type/verification
_eng
Jobs/located/usa

10 Are there any jobs in 'c++' that the salary
is 50000?'

'Are there jobs in 'c++' that the
salary is 50000?'

AET,
DET

Jobs/type/c++
Jobs/salary/50000

11
'Are there any jobs requiring a BScs for
Boeing in Seattle?'

'Are there jobs requiring a BScs for
Boeing in Seattle?'

AET Jobs/require/Bsc
Jobs/at/Boeing
Jobs/in/Seattle

12 'Are there any jobs specializing in AI with
JPL?'

'Are there jobs in AI with JPL?' AET Jobs/description/AI
Jobs/in/JPL

13 'Are there jobs that do not require a
degree in Houston?'

'Are there jobs that do not require a
degree in Houston?'

NT Jobs/type/No_degree
Jobs/in/Houston

14 'Can you show me VB jobs with 50000
salary with databases and excel?'

'Show me VB jobs with 50000 salary
with databases and excel?'

AET Jobs/type/vb;db;excel
Jobs/salary/50000

15
'Could a senior consulting engineer find
work in Boston?'

'Senior consulting engineer find
work in Boston?

AET Jobs/type/consulting_
eng
Jobs/in/Boston

16 'Could i have some jobs using SQL with
oracle?'

'Could I have jobs using SQL with
oracle?'

AET Jobs/type/SQL;Oracle

17 'Find all network administration jobs in
Austin?'

'Find all network administration jobs
in Austin?'

IT, AET Jobs/type/admin
Jobs/in/Austin

18 'Give me jobs for a games specialist?' 'Give me jobs for a games specialist?' none Jobs/type/games
19 'I sure do wish there were java assembly

jobs out there 'can you help?'
'Are there java assembly jobs out
there?'

AET Jobs/type/java_assem
bly

20 'What jobs are there for a '3d' graphics
specialist?'

'What jobs are there for a '3d'
graphics specialist?'

AET Jobs/type/3d_graphic
s

21
'Who might offer me 50000 for web
development?'

'Who might offer me 50000 for web
development?'

AET Jobs/type/web_develo
pment
Jobs/salary/50000

22
'What jobs in Houston are there that
require a BSc with 1 year of experience?'

'Jobs in Houston require a BSc with 1
year of experience?'

AET Jobs/require/Bsc;1
year
 Jobs/in/Houston

23 'Tell me what jobs there are?' 'Tell me what jobs there are?' IT Jobs/type/all
24 'What’s available on vax and near

Austin?'
'What on vax and near Austin is
available?'

PT Jobs/type/vax
Jobs/in/near-houston

25 'What oracle jobs are there with compaq
in houston using pc?'

'What oracle jobs are there with
compaq in houston using pc?'

AET Jobs/type/oracle;pc
Jobs/in/Houston

Lawrence Muchemi-PhD Thesis 2014

88 | P a g e

NT = Negation transformation (NT). This transformation negates a sentence.
QT = Question transformation (QT). This is distinguished by either the tone of the last syllable which is
higher or a question mark

3.3.8.2 Prevalence of Various Transformation Rules

Unrestrained natural language text has very diverse surface representation, and this study cannot

therefore claim to be comprehensive enough to create exhaustive rules that govern this phenomenon.

However we can study frequency of occurrence of the transformation rules. The rules with a high

frequency can be used in optimizing the additional set of rules required in comprehension of natural

language queries. For example questions that have the word ‘who’ will indicate an interrogative state

or a missing actor such as a subject or an object. This would then be guided by query transformation

(QT) or agent deletion transformation (DAT) rules.

Table 3.4 shows the frequency of occurrence of such rules in randomly selected queries,

Table 3.4 Summary of Prevalence of Transformation Rules

No.

Type of Transformation

Farmers

Computer

jobs

ELF Queries to Microsoft

Northwind_DB

UoN MSc

Coordinator

Restaurant

Average %

Prevalence

1 Imperative

transformation

8 12 6 2 0 5.6

2 Agent deletion

transformation

22 10 15 28 25 20

3 Passive transformation 4 8 7 2 2 4.6

4 Deletion of excessive

elements

8 6 2 2 5 4.6

5 Addition of elements 48 56 51 58 48 52.2

6 Coordination
transformation

6 5 10 4 18 8.6

7 Negation transformation 4 3 9 4 2 4.4

 TOTAL No. of Randomly
Selected Questions

100 100 100 100 100

Lawrence Muchemi-PhD Thesis 2014

89 | P a g e

Note: AET= Addition of Elements Transf.; DAT= Agent Deletion Transf.; PT= Passive Transformation; DET= Deletion

of Elements Transf.; CT= Coordination Transf.; NT= Negation Transf.; IT= Imperative Transf.

Fig 3.5 Distribution of Transformation Rules

As observed the transformation-generative rules that the alter semantics of a query (generative)

comprised 56.7% of the total queries analyzed with 92.2% of these being addition of elements

transformation rules. This means that 92.2% of this category (where semantics are altered) has the

primary S-V-O structure modified through additional modifiers such as adjectives and adverbs

which changes the type of answer expected. Figure 3.6 illustrates the kernelization of such a sample

query ‘nitaipatia chakula kiasi kipi? (How much food shall I give it?).

 Fig 3.6 Modification of Object by an Interrogative

 ni(I) patia (give) -i- (it) ; chakula (food)

 -ta- (present tense) kipi (how)
 (do) kiasi (much)

‘ni-ta-i-patia chakula kiasi kipi? (How much food do I give it?)

IT
5%

DAT
20%

PT
5%

DET
5%

AET
52%

CT
9%

NT
4%

DISTRIBUTION OF TRANSFORMATION
RULES

Lawrence Muchemi-PhD Thesis 2014

90 | P a g e

This query is interpreted as, “ni (Sub) ta(prefix) –i-(obj1)-patia(verb) chakula(obj2) kiasi

kipi?(Obj modifier) {How much (obj modifier) food(Obj1) do (aux verb) I(Subj) give(verb) it

(obj2)?}

The answer to this would be say, ‘nusu kilo’(half kilo). If the modifiers were stripped the question

would be,

Nitaipatia chakula? {Will I give it food?}. This would solicit for a ‘yes’ or ‘no’ answer.

3.3.9 Mapping NL Query Semantics to Kernelized Query (DSF) Semantics

This section discusses the relationship between the semantics of NL queries and the semantics of

DSF queries. To understand how the process of transferring meaning in a query occurs, analysis

guided by generative-transformation rules was conducted.

A framework that explains this transfer was developed and presented in figure 3.13. The framework

was tested for validity by applying queries of different types as detailed in section 3.3.9.3. Eight

generative transformation rules described in section 3.3.8 were used in the semantics transfer

analysis of the sampled queries. Stratified sampling method as described in 3.3.7 was used in the

validation analysis where twelve query types identified in 3.3.7 were used for validity analysis.

3.3.9.1 Analysis of Semantics Transfer through Transformation Rules

RULE 1: IMPERATIVE TRANSFORMATION

An imperative transformation changes a sentence in its kernel form to an imperative surface form.

When an imperative transformation is performed on queries, it was observed that the meaning

(information solicitation) of the two queries is similar but the verb and subject have to be deduced.

To create an imperative, the verb form is changed to its infinitive form but the word ‘to’ is excluded.

For example the SSF query, ‘Wanunuzi bora’ (better buyers) is in its imperative form. The

associated DSF query would include an agent and a verb ‘ni-pe (‘give me’) to become nipe

wanunuzi bora’ (give me better buyers). This is illustrated in the kernel form shown in figure 3.7.

Other examples from the collected dataset are found in appendix 1.

Lawrence Muchemi-PhD Thesis 2014

91 | P a g e

Fig. 3.7 Kernelization of an Imperative Transformation Query

From the analyzed data, this type of transformation affected about 5.6% of queries (see table 3.4).

From figure 3.7 it observed that in order to obtain the meaning of this type of a query, the primary

meaning bearing components (subject, verb and object or objects) must be identified from the query

and any modifiers also taken into account. Implicit components must be deduced from the query.

Meaning is transferred through relationships formed between these components. In the above

illustrated case, the query is requesting for names (or other identifier attributes) of the ‘buyers’ who

have an associated attribute ‘better’. The meaning is therefore formed by the tripartite relation

occurring between the object and two of its modifiers (the adjectives). The logical relation therefore

is ‘buyers-name-betterBuyer’ which is generalized as “Object-Modifier1?-Modifier2”. From this

query it is observed that reference to the first person (me) does not have any impact on the answer

provided because the interrogator is merely a recipient of the names generated. Likewise the verb

‘give’ or ‘list’ or other related verbs have no impact on the answer generated because the

interrogator’s motive is assumed to be known that is, seeking information.

RULE 2: AGENT DELETION TRANSFORMATION

Agent deletion transformation, where the action doer is deleted, was observed in about 20% of the

cases. The basic information solicitation properties of the query were observed to remain unchanged.

An example from the Kiswahili dataset ‘inataga kwa mda gani?’ (in what period does the chicken

lay?) shown in figure 3.8 illustrates this concept. In this case the agent kuku (chicken) is replaced by

its pronoun i-na (it).

 {ni (me) {pe (give) } wanunuzi (buyers)

 bora(better)

 {Nipe} wanunuzi bora ({Give me} better buyers)

Nb. { } refer to missing elements in the original query

Lawrence Muchemi-PhD Thesis 2014

92 | P a g e

Fig. 3.8 Kernelization of an Agent Deletion Transformation Query

In this type of transformation, the meaning is carried by the primary meaning bearing components

(subject, verb and object) and their modifiers, however the actor must be deduced from context. In

database access problem the context is usually narrow and the pronoun can be easily deduced from

the verb ‘lay’ which implies a ‘subject’ that lays and that would be a chicken. The relation for this

meaning would therefore be “Chicken-Layegg-WhatPeriod?” which is generalizable to “Subject-

Verb- ObjectModifier”

RULE 3: PASSIVE TRANSFORMATION RULE

The active form of a sentence represents the deep structure while the passive form represents the

surface structure. This type of transformation known as passive transformation was observed in

4.6% of the collected sentences. An example of the SSF query ‘Je, chakula kililiwa na vifaranga?’

(Was the food eaten by the chicks?) is transformed to the DSF form ‘Je, vifaranga walikula

chakula?’ (Did the chicks eat food?) is illustrated in figure 3.9. In the DSF ‘the chicks’ is the

subject, ‘eat’ is the main verb, ‘did’ is auxiliary verb and ‘food’ the direct object.

Fig. 3.9 Kernelization of and Passive Transformation Query

Once a query is turned to its DSF, the next step is to obtain the base meaning-bearing components

which is done through extraction of phrases at the subject, verb, object levels and their modifiers.

 i-na (It) taga (lay) mda (period)

 does kwa(in)
 gani? (what?)

 vifaranga (chicks) kula (eat) chakula (food)

 (the) Je wali (did)

 ‘Je, vifaranga walikula chakula? (Did the chicks eat food)

Lawrence Muchemi-PhD Thesis 2014

93 | P a g e

The expected answer is an affirmation or denial of this DSF form which has the pattern ‘Chicks-Eat-

Food’ which is generalizable to “Subject-Verb-Object”. The semantics are of the NL is therefore

transferred through the primary components.

RULE 4: DELETION OF EXCESSIVE ELEMENTS TRANSFORMATION RULE

Deletion of excessive elements transformation is a type of transformation where excessive words are

eliminated to avoid repetition. This was observed in 4.6% of the collected queries. An example from

the collected query set is ‘Jimbi walikula chakula na vifaranga walikula chakula?’. This is

transformed to ‘Jimbi na vifaranga walikula chakula?’. The transformed query with two components as its

subject is illustrated in figure 3.10

Fig. 3.10 Kenerlization of Deletion of Excessive Elements Transformation Query

Deletion of excess components leads to a more concise surface structure, however at the DSF level

this can be seen as two DSF representations with similar verb and object or objects but with different

subjects.

In this type of query meaning is transferred through the base meaning-bearing components (subject,

verb and object) of the two DSFs. The expected answer would be an affirmation or denial of the two

DSFs. The patterns for this example are “Subject-Verb-Object”

 jimbi (cocks); vifaranga (chicks) kula (eat) chakula (food)

 (the) na (and) -li- (did)

‘Jimbi na vifaranga walikula chakula? (Did the cocks and chicks eat food?)

Lawrence Muchemi-PhD Thesis 2014

94 | P a g e

RULE 5: COORDINATION TRANSFORMATION RULE

 Another type of transformation rule that does not affect the semantics of a query is coordination

transformation. This combines two or more sentences in the kernel form to one sentence in the

surface form sentence. For example ‘Kuku walikula chakula kimeoza kisha wakahara?’ (Did the

chicken take rotten food then they diarrhead?). The most common coordination terms observed in

the dataset included ‘ilhari’ (but) na (and), pia (also), wala (although) and kisha (then). These

formed 8.6% of the queries. In this type of a query, the statement is broken into two fragments to

form two kernel sentences which together retain the original meaning.

For example in the query, ‘Kuku walikula chakula kimeoza kisha wakahara’ (The chicken took

rotten food then they diarrhead), the two kernel statements are ‘Kuku walikula chakula kimeoza’

(The chicken took rotten food) and ‘Kuku walihara’ (The chicken then they diarrhead). These are

broken down into their SVO components and their respective modifiers. Just like in the

transformation discussed in rule 4 above meaning is transferred through the base meaning-bearing

components (subject, verb and object) of the two DSFs. The expected answer is an affirmation or

denial of the two DSFs. The patterns for this example are “Subject-Verb-Object”

RULE 6: ADDITION OF ELEMENTS TRANSFORMATION RULE

The addition of elements transformation AET transformation in which a DSF is transformed to other

SSF through addition of modifiers was the most prevalent within the datasets and formed 52.2% of

the analyzed queries. An example of AET is shown in figure 3.12 (a). As highlighted in section

3.3.8.2 the primary S-V-O structure is modified through additional modifiers such as adjectives and

adverbs which changes the type of answer expected. In the examples shown in figure 3.6 and 3.12(a)

(How much food do I give it? and ‘Can one eat sick chicken’) the object is modified. In other cases

the subject is modified (see example in figure 3.12(b)). The patterns in these examples illustrate

diverse patterns such as “Verb-Object-ObjModifier” and “Subj-SubModifier-Object”. Hence both

primary components and their modifiers carry the semantics from NL to DSF.

Lawrence Muchemi-PhD Thesis 2014

95 | P a g e

RULE 7: NEGATION TRANSFORMATION RULE

In negation transformation, the verb is modified through negation. In this case the verb modifier is a

critical element in understanding of the query and must therefore be accounted for in any subsequent

meaning comprehension exercise. An example is illustrated in figure 3.12 (b).

Fig. 3.12 Kernelization of Addition of Elements and Negation Transformation Queries

Another illustrative example that demonstrates this phenomenon is ‘Je, haitakula chakula? (Will it

not eat food?) The DSF for this query is ‘It will NOT eat food’ where ‘NOT’ modifies the verb. This

is same for Kiswahili where the negation is actually prefixed to the verb. In another example where

the query is supported by ‘DO’ this phenomenon of negating the verb is maintained. For example

‘Mbona hukuongea ukweli? (Why did you not talk the truth?). The support by the ‘do’ word does not

cause a breakdown of the general rule of negating the verb.

RULE 8: QUERY TRANSFORMATION RULE

 This type of query is stated as an ordinary declarative statement, however it is turned into a query by

either of the following processes,

 Raised tone at the second last syllable for example ‘maji haya ni SAfi?’(This water is cLEAn?).

 In English the switching of the auxiliary verb and the subject is a more common usage, for

example ‘Is this water clean?)

 one eat chicken

 can sick

(a) Example of AET Query: Can one eat sick chicken?

 symptoms are which

 normal not

(b) Example of AET with NT Query: Which symptoms are not normal?

Lawrence Muchemi-PhD Thesis 2014

96 | P a g e

 By adding a confirmation query at the end of a statement. For example ‘Jogoo wa rangi ya

kahawia ni wakubwa, au siyo? ‘The brown cocks are big, aren’t they?

 Inclusion of the term ‘je’ in Kiswahili at the beginning of a sentence

3.3.9.2 Summarizing Query Semantics Transfer Process

In the above transformation processes, the base meaning-bearing components are the subject, verb

and objects. In about 56.7% of the total queries analyzed the semantics were altered through

modifying the attributes of the subject and the object. Modification of the verb was observed in

negation transformation queries.

From this analysis we can therefore conclude that for a deep structure query to carry the same

interrogative properties as the original surface structure query, it must contain all the S-V-O terms

as well as other modifying words and more so adjectives and adverbs. The significance of this

finding is that a surface to deep structure query conversion algorithm should extract both S-V-O and

modifiers for it to be complete. Transformational-generative rules defined for many languages

should be applied for these types of transformations. While these rules may not cover all the

complexities of natural language free text, they are by large a useful modelling aid to obtain the

basic meaning bearing components in a query. Further it was deduced that semantics is transferred

through various combinations of the base primary meaning-bearing components and their modifiers.

The patterns were however observed to be consistently triples.

The process of converting a question’s surface structure form to the deep structure form and vice

versa is affected by the underlying morphophonological processes. The quality of morphological

processing is therefore affected negatively thereby impacting on the efficiency of extraction of roots

from a highly agglutinated language such as Kiswahili. Morphophonological rules should therefore

be taken into account to enhance the success rate of identifying roots of words. It is known that

morphophonological rules mediate between phonological and morphological processes.

Morphophological analysis provides rules that predict the regular sound changes occurring in the

morphemes of a given a language. Various studies such as Iribe (2008), Port (1982) and Choge

(2009) have made a review of Kiswahili morphophonological processes. They convert the

underlying representations into the surface structure that is spoken and hence written. An example of

such a process that affects Kiswahili is vowel harmonization. For example the interaction of the

Lawrence Muchemi-PhD Thesis 2014

97 | P a g e

vowels ‘u’ and ‘e’ results in semi vowel ‘w’. For example ‘m(u)-imbaji’ becomes mw-imbaji

(singer). In this case only the prefix is affected. In other cases the root is altered by the

morphophonological processes. For example words ‘m-ingi’, ‘ny-ingi’,’w-ingi’ (meaning ‘a lot’) has

the root ‘ingi’. This means that when obtaining the root, the process would ideally involve dropping

the prefix before the ‘–ingi’. In plural the morphology is interfered with if the required prefix has an

ending ‘–a’ for example wa- and instead of saying ‘wa-ingi’ we say ‘w-engi. The –a and –i in the

prefix and root respectively interact to become –e-. This means that although the underlying

structure would be wa-ingi, what appears as surface form is wengi. This change in expected

morphology is explained through morphophonological processes. Investigation into other

morphophonological rules found within the collected query set was beyond the scope of this research

and hence standard morphophonological rules such as those in Iribe (2008), (Port, 1982) and

(Choge, 2009) were assumed adequate for practical computational purposes. Morphophonological

processes affect the quality of morphological processing and hence extraction of roots from a highly

agglutinated language.

In summary the overall conversion processes from a linguistic point of view as analyzed above is

summarized as shown in figure 3.13.

Fig 3.13 Query Semantics Transfer Model (QuSeT Model)

Lawrence Muchemi-PhD Thesis 2014

98 | P a g e

Understanding this process of meaning transfer is important because it informs the formulation of

the structured query say in SPaRQL. The following is an example to illustrate the query semantics

transfer model

Spoken: Maji mengi yalinywewa na kuku? (Was a lot of water taken by the chicken?)

Transformation-generative Rules (English)

The surface structure is an interrogative: ‘Was a lot of water taken by the chicken?’

I. Transformed to Passive Declarative form: ‘A lot of water was taken by the chicken’

Aux –NP2 – en – V – by – NP1  : NP2 – Aux. – en – V – by – NP1

II. Transformed to active simple declarative form: ‘Chicken took a lot of water’ which is in

DSF’

NP2 – Aux. – en – V – by – NP1  NP1– V – NP2

Where ‘Aux’ is the auxiliary and ‘-en-’ indicates that the verb is modified by suffix ‘en’.

Transformation Rules (Kiswahili)

The surface structure is an interrogative: Maji Mengi yalinywewa na kuku? (‘Was a lot of water taken
by the chicken?’)

I. The interrogative is transformed to simple active declarative form

NP2 – V – na – NP1  NP1 – V – NP2 (Kuku walikunywa maji mengi?)

 Where ‘na’ is a conjunction.

The base components (SVO) and their modifiers were found to exist as phrase-chunks within the

query, therefore the base components of the DSF and their modifiers were extracted through the

regular phrase chunking.

3.3.9.3 Qualitative Validation of the Query Semantics Transfer (QuSeT) Model

In the QuSeT validation analysis, twelve query types were used. These query types were identified

in section 3.3.7 as ‘what’, ‘where’, ‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’,

‘when’, ‘how’, ‘which’, ‘comparative’, ‘superlative’ and disjunction (choice) types of queries. For

each query type the following was analyzed,

Lawrence Muchemi-PhD Thesis 2014

99 | P a g e

 How kernelization occurs and if it conforms to the procedure described in the QuSeT,

 Types of elements that comprise meaning bearing components,

 Relationship between meaning bearing components within the DSF structure,

 Whether the semantic transfer process occurs without deviation to the procedure described in

the QuSeT model.

1. WHAT Query TYPE

Figure 3.14 shows kernelization for sample query ‘Nini kinafanya kuku kuhara? (What makes a

chicken diarrhea?). ‘What’ is used either as a pronoun for example as in ‘what is this?’ or as an

adverb say as used in ‘In what way did she go?’ It is also used as an adjective.

In this type of a query the subject and the verb carry the meaning bearing elements which the object

is represented by the interrogative ‘what’. If modifiers are added to the subject and verb or to either

of them the modifiers must also be taken into account while understanding the semantics of the

query as discussed in section 3.3.3.2.

Fig 3.14 Kernelization of a ‘What-Query’ Type

Figure 3.15 shows kernelization for sample query ‘what makes white chicken diarrhea a lot’.

Fig 3.15 Kernelization of a ‘What-Query’ Type with Modifiers

 Kuku(chicken) hara (diarrhea) nini?(what?)

a kina-fanya (makes)
 (aux)

Nini kinafanya kuku kuhara? (What makes a chicken diarrhea?)

 Kuku(chicken) hara (diarrhea) nini?(what?)

 weupe (white) kina-fanya (makes) (aux)
 sana (alot)

Nini kinafanya kuku weupe wahare sana? (What makes white chicken diarrhea a lot?)

Lawrence Muchemi-PhD Thesis 2014

100 | P a g e

In this example, the query is converted to its base components and associated modifiers in form of

phrases which are to be used for semantics mapping with the ontology mentions. This process of

meaning transfer conforms to the framework presented in figure 3.13.

2. WHERE Query TYPE

Figure 3.16 shows kernelization for sample query ‘Soko ya kuku za nyama hupatikana wapi? (Where

are markets for broilers obtained?).

Fig 3.16 Kernelization of a ‘Where-Query’ Type

‘Where’ is used either as a noun (e.g. where is the toilet?), as an adverb (e.g. where does this lead to)

and as a conjunction (did we meet where there was an accident?). In general it was observed that the

subject, verb, object and their modifiers carry the meaning of the query in whichever way the query

is formed.

3. ENUMERATIVE Query TYPE

Figure 3.17 shows kernelization for sample query ‘Je ni maji kiasi kipi kuku wanafaa wanywe?

(How much water are chicken to take?)’

Fig 3.17 Kernelization of an ‘Enumerative-Query’ Type

 Soko (markets) patikana(obtained) wapi?(where?)

 ya (for) hu (are) (aux)
 kuku za nyama (broilers)

Soko ya kuku za nyama hupatikana wapi? (Where are markets for broilers obtained?)

 kuku (chicken) wanywe (to take) maji (water)

 -wanafaa- kipi (how)
 ni (are) kiasi (much)

Je ni maji kiasi kipi kuku wanafaa wanywe? (How much water are chicken to take?)

Lawrence Muchemi-PhD Thesis 2014

101 | P a g e

From these types of query it was observed that the subject, verb, object and their modifiers carry the

meaning. The interrogative is the object modifier and its value signifies answer to the query.

4. YES/NO Query TYPE

Figure 3.18 shows kernelization for sample query ‘Je kuku hukimbizwa na jogoo? (Are chicken

chased by cocks?)’. A DSF has no mood and hence is always a positive statement. However the

negation modifies the DSF as shown in fig 3.18 below.

Fig 3.18 Kernelization of a ‘Yes/No-Query’ Type

From this example it is observed that the subject, object and their modifiers are the main meaning

bearing elements. In both Swahili and English the SVO word order is retained, however English

‘yes/no’ queries take an auxiliary verb at the beginning of the query. Kiswahili queries may contain

the emphasis word ‘je’ meaning an answer is expected.

5. GIVE/LIST Query TYPE

Figure 3.19 shows kernelization for sample query ‘Nipe orodha ya madaktari walio karibu (Give me

a list of the doctors who are nearby),

Fig 3.19 Kernelization of a ‘Give/List-Query’ Type

 kuku (chicken) kimbizwa (chased) jogoo (cock)

 na (by) (are)

Je kuku hukimbzwa na jogoo? (Are chicken chased by cocks?)

 ni (me) pe (give) orodha (list)

 ya(of)
 madaktari(doctors)
 walio(who are)

 karibu (nearby)

Nipe orodha ya madaktari walio karibu (Give me a list of the doctors who are nearby)

Lawrence Muchemi-PhD Thesis 2014

102 | P a g e

From this type of query, the meaning bearing terms are found at the object and its modifiers. The

verb indicates the need to obtain the information while the object shows who gets the information.

This type of a query can be answered by processed the object and its modifiers.

6. WHO Query TYPE

Figure 3.20 shows kernelization for sample query ‘Nitabebewa vifaranga na nani? (Who will

transport the chicken for me?),

Fig 3.20 Kernelization of a ‘Who-Query’ Type

In this type of a query the interrogative ‘who’ represents the agent (doer) hence it is the subject of

the query. ‘the chicks’ is the direct object (because it is taking the action directly) while ‘me’ is an

indirect object because the action does not affect it directly. The meaning of the query is carried by

the subject, verb, object and their modifiers where the interrogative is replaced by the actual subject

in order for the answer to be obtained. It is important to note that a query must be in its passive form

for it to be in DSF.

7. WHEN Query TYPE

Figure 3.21 shows kernelization for sample query ‘Nitapata vifaranga lini? (When will I get the

chicks?)’,

Fig 3.21 Kernelization of a ‘When-Query’ Type

 nani (who) bebewa (transport) vifaranga; (chicks) ni (me)

 -ta-(will) for (aux) (the)

Nitabebewa vifaranga na nani? (who will transport the chicken for me?)

 Ni (I) pata(get) vifaranga;

 (will)[aux] lini?(when?)) the

Nitapata vifaranga lini? (When will I get the chicks?)

Lawrence Muchemi-PhD Thesis 2014

103 | P a g e

In this case, the interrogative ‘when’ is an adverb and modifies the verb. The answer could be ‘when

you finish the payment’. In other usage ‘when’ manifests as a pronoun (you need the report by

when?), as a conjunction (Did she sit when she saw him come in?) or as a noun. The usage is so

diverse that it is difficult to accurately use computational methods to distinguish them. In that case

the phrase containing ‘when’ is treated as either a subject or object or as a modifier of any of the

SVO.

8. HOW Query TYPE

Figure 3.22 shows kernelization for sample query ‘Nitapata vifaranga lini? (When will I get the
chicks?)’,

Fig 3.22 Kernelization of a ‘When-Query’ Type

How appears as an adverb (in what manner), a conjunction (e.g. ‘did he tell them how he had a

situation?) or as a noun (e.g. do you know the how of getting there?). The computational treatment is

similar to that of ‘when’ explained above.

9. WHICH Query TYPE

Figure 3.23 shows kernelization for sample query ‘Nitapata vifaranga lini? (When will I get the

chicks?)’,

Fig 3.23 Kernelization of a ‘Which-Query’ Type

 Vyumba (houses) -jengwa(built); faa(be) vipi?(how?)

 vya (should)

Vyumba vya-faa kujengwa vipi? (How should houses be built?)

 Vifaa (instruments) vya(are) vyafaa kutumiwa kupima joto (suitable for measuring temperature)

 Vipi(which)

Vifaa vipi vyafaa kutumiwa kupima joto? (Which instruments are suitable for measuring temperature?)

Lawrence Muchemi-PhD Thesis 2014

104 | P a g e

‘Which’ acts like an adjective like in the example above or as a pronoun e.g. ‘They wanted husbands

which they got easily’. In first case it is treated as modifier while in the second example it replaces

the subject.

10. COMPARATIVE Query TYPE

Figure 3.24 shows kernelization for sample query ‘Kuku ipi hutaga mayai mengi kuliko ya kienyeji?

(Which chicken lays more eggs than local ones?)’,

Fig 3.24 Kernelization of a ‘Comparative’ Type

Comparative words such as ‘better’ may be used in very diverse sense. For example as an adjective

(e.g. Is this a better thesis?), as a verb (e.g. Will you better your handwriting?), as an adverb (Did she

walk in a better way?) and as a noun (e.g. Is hers a better behavior?). The presence of a comparative

in these types of queries prompts a ‘yes/no’ answer or a noun-phrase in place of the wh-

interrogative. In these cases two kernel statements are required. The first DSF contains a subject, a

verb (or auxiliary) and a modifier to either the subject or verb or auxiliary (for example ‘Other| is|

thesis-good’) while the second contains the second subject, a similar verb or auxiliary to the first

DSF, and the comparative modifier (for example ‘This| is| thesis-better’) where this modifier refers

to the adjective or adverb contained in the second DSF. The expected answer is realized by testing

for the truth of either given the contents of the underlying ontology. However when an interrogative,

such as ‘wh-’ is combined with a comparative as in the example illustrated in figure 3.24, the object

is modified by a phrase formed from the comparative. The interrogative modifies or replaces the

subject depending on the type.

 kuku (chicken) hutaga(lays) mayai (eggs)

 ipi(which) mengi kuliko (more than)’
 kienyeji (local ones)

‘Kuku ipi hutaga mayai mengi kuliko ya kienyeji? (Which chicken lays more eggs than local
ones?)’

Lawrence Muchemi-PhD Thesis 2014

105 | P a g e

11. SUPERARATIVE Query TYPE

Figure 3.25 shows kernelization for sample query ‘Jogoo yupi ni mzito zaidi? (Which is the heaviest

cock?)

Fig 3.25 Kernelization of a ‘Superative-Query’ Type

Superlatives mainly appear as adjectives in queries (e.g. Will you wear your best cloth?). The DSF is

written using the base components and their modifiers. In the example illustrated in figure 3.25 the

object is modified with the superlative ‘heaviest’.

12. DISJUNCTIVE (CHOICE) Query TYPE

A study of these types of questions revealed that they deliver the meaning in a similar manner to

disjunctive queries (or choice questions) e.g. ‘Tuwape kuku dawa ya tembe au ya maji?’ (Do we give

the chicken tablets or liquid medicine?). In this latter example a conversion to passive form is

required for the query to be in DSF. The query then becomes, ‘Kuku apewe dawa ya tembe au ya

maji?’ (Should the chicken be given tablets or liquid medicine?). The kernelization then becomes,

Fig 3.26 Kernelization of a ‘Disjunctive-Query’ Type

 jogoo (cock) ni(is) mzito (heav-)

 yupi(which) zaidi (-iest) (the)

‘Jogoo yupi ni mzito zaidi? (Which cock is the heaviest)

 kuku (chicken) -pewe(given) dawa (medicine)

 je (should) be liquid or tablet

‘je kuku apewe dawa ya tembe au ya maji?’ (Should the chicken be given tablets or liquid

medicine?).

Lawrence Muchemi-PhD Thesis 2014

106 | P a g e

The disjunctive query behaves in a similar manner as the conjunctive query where the disjunction or

conjunction separates objects, subjects or their modifiers. For the query to be answered the

transformation lists two parallel kernel forms and tests for the truth of either using the contents of the

underlying ontology

3.3.9.4 Quantitative Validation of the QuSeT Model

The QuSeT model was empirically tested for validity by applying two question sets from English-

and Kiswahili-based query sets. Each set had a total of 25 questions drawn from the farming

(Kiswahili) and UoN MSc Coordinator’s (English) question sets respectively. A stratified sampling

method similar to the one described in section 3.3.7 was used in building the two test sets. Twelve

query types identified in 3.3.9.3 were used as the strata. These queries included ‘what’, ‘where’,

‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’,

‘comparative’, ‘superlative’ and disjunction (choice) types of queries.

The QuSeT model was built as a python module (see appendix 9). The questions from the test-sets

were passed to the module and observations as to whether the module correctly identified the base

words (or groups of words) and their modifiers noted. For the farmer’s question set, 23 out of 25

questions were analyzed correctly, meaning all the base words and the modifiers were identified in at

least 23 of the questions. This represented 92% accuracy. In the English query set, 24 questions were

accurately analyzed, meaning that the accuracy was 96%. The mean accuracy of the QuSeT model

was therefore determined as 94%. These accuracies are only but indicators of the efficiency of the

QuSeT model.

3.3.9.5 Conclusions from Query Semantics Transfer Analysis

From analysis of the twelve query types it was concluded that,

 There exists a regular process in which the general semantics of a query is transferred from

the surface structure to the base meaning-bearing components. For all query types analyzed

there was conformity to the general transfer framework illustrated in figure 3.13,

 References to the first and second persons in a query do not bear direct reference to

interrogative elements of the query. They represent the interrogator and the computer

Lawrence Muchemi-PhD Thesis 2014

107 | P a g e

respectively and in such a case the meaning should be deduced from the verb or object and

their respective modifiers only. The subject is not considered as a meaning bearing phrase. In

other cases, the verb is used to direct the action of the computer such as listing and in such a

case only the objects or the subjects and their modifiers transfer the essence of the query.

 The interrogative (wh- word) substitutes either the subject or the object (as in ‘who’ and

‘where’ queries respectively) or modifies the subject, verb or object (as in ‘which’, ‘when’

and ‘enumerative’ queries respectively). The expected answer from the query is realized

through substitution of the interrogative with a suitable meaning-bearing component from the

ontology being queried. Other types of queries such as disjunctions and comparatives realize

the expected answer by listing two parallel kernel forms and testing for the truth of either

given the contents of the underlying ontology.

 Meaning-bearing components have a tri-partite relation which may be formed between,

o the three primary components (subject, verb and object) or,

o any two of these components and an interrogative or a modifier of either or

o any of the primary components and its modifiers which may appear as a phrase such

as a preposition

3.3.10 Relationship Between Meaning-bearing Elements of DSF SPaRQL and the Ontology

SPaRQL is a structured query language and data access protocol for the Semantic Web. SPaRQL is

based on the Resource Description Framework (RDF) data model and therefore works for any data

source that can be mapped onto RDF. SPaRQL, just like the RDF structure illustrated in figure 2.8,

is built on triples, where a triple is a set consisting of three-elements:

 ?element1 ?element2 ?element3

The first element represents the database name, while the second represents the field name. The third

element represents the row value, meaning the attribute’s instance. An example of a SPaRQL query

is provided in figure 3.27. The triple is observed in the ‘WHERE’ clause.

Lawrence Muchemi-PhD Thesis 2014

108 | P a g e

Fig. 3.27 An Example of a SPaRQL Query

The general structure of the SPaRQL is shown in figure 3.28

Fig. 3.28 General Structure of the SPaRQL Query

In the general SPaRQL structure shown in figure 3.28, element 1 corresponds to the table name,

element 2 the column name and element 3 to the row value if this is matched to relational database

elements via an ontology. The row value, except the one in the filter line is a variable that is filled

when the answer is provided by the system.

The sections that follow analyze the relationship between the various elements of a SPaRQL triple

and the underlying ontology on the one hand, and DSF’s base-components and modifiers on the

other hand.

Consider a query where the interrogator is requesting for information about the telephone contact of

a customer whose identification number is 1. This query may be stated as a ‘WHAT-type or as a

‘GIVE/LIST-Type’ explained in section 3.3.9.3. The queries then are either,

Query One: ‘What is the phone number of the customer whose ID is 1’

Query Two: ‘Give me the phone number of the customer whose ID is 1’.

The kernelization of these statements yields the structures given in figure 3.29 and 3.30. The

ontology from which the interrogator is requesting for information is shown in figure 3.31.

PREFIX north: <http://www.owl-ontologies.com/NewNorthwind#>
SELECT ?SupplierID ?Name ?Region
WHERE { ?suppliers db:SupplierID ?SupplierID.
 ?suppliers db:CompanyName ?CompanyName.
 ?suppliers db:Region ?Region
FILTER(?Region = "central")}

Derived from the query: “Give me the names and identification of supplier from central region”

PREFIX alias_name: <http://www.URL#>
SELECT ?Attribute1 ?Attribute2……?AttributeN
WHERE{ ?Element1 db: Element2 ? Element3.
 ? Element1 db: Element2 ? Element3.
 ?...............................
 ? Element1 db: Element2 ? Element3.
FILTER(?Attribute = Element3)}

http://www.owl-ontologies.com/NewNorthwind#
http://www.URL#

Lawrence Muchemi-PhD Thesis 2014

109 | P a g e

Fig. 3.29 Kernelization of Illustrative Query One

Fig. 3.30 Kernelization of Illustrative Query Two

The base components and their modifiers are obtained from both the transformation and phrase

structure formation rules as highlighted in the query semantics transfer framework illustrated in

figure 3.13. The base components and the modifiers are the main semantic bearing elements. In the

examples shown in figures 3.29 and 3.30 the meaning is carried by the two phrases contained within

the query ‘the phone number of the customer’ and ‘customer whose id number is 1’. As stated in

section 3.3.9.4 references to first and second pronouns as well as the verb ‘give’ do not have a direct

effect on the answer being sought. This means that even if these elements are identified in the

kernelization process as components of the DSF they are not considered as base-elements. They are

thus dropped in the SPaRQL formation process.

Since there are two meaning bearing phrases, two triples are formed each having the following

format: ?element1 ?element2 ?element3,

These are,
?customer ?phone_number ?Variable1
?customer ?id_number ? Variable2

 Phone number is (ni) nini?(what?)

 the of
 customer
 whose
 ID is 1

‘What is the phone number of the customer whose ID is 1’ or restated as (‘The phone number of

the customer whose ID is 1 is WHAT’)

 ni (me) pe (give) phone number)

 of
 customer
 whose

 ID is 1

 Give me the phone number of the customer whose ID is 1’

Lawrence Muchemi-PhD Thesis 2014

110 | P a g e

Fig. 3.31 Segment of OWL-based RDF Ontology from Northwind Database

There is a mention of a specific row value (instance) and hence an addition FILTER clause is

required. It was observed that when specific row values are mentioned, the user’s intention is to

constrain the number of records (rows) returned. The general syntax for this filter is as follows,

FILTER (?Variable = "value")

For the queries in figures 3.29 and 3.30 the filter is as follows,

#DATATYPE PROPERTIES DEFINITION(DATABASE COLUMN NAMES)#
<owl:DatatypeProperty rdf:about="&db;customers.Phone">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&db;customers"/>
 <db:hasOrigColumnName
rdf:datatype="&xsd;string">Phone</db:hasOrigColumnName>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&db;customers.CustomerID">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&db;customers"/>
 <db:hasOrigColumnName
rdf:datatype="&xsd;string">CustomerID</db:hasOrigColumnName>
 <rdfs:range rdf:resource="&xsd;int"/>
 </owl:DatatypeProperty>

#INSTANCES DECLARATION (ROW-VALUES FOR EACH RECORD)#

<db:customers rdf:about="&db;customers_Instance_1">
 <db:customers.Address rdf:datatype="&xsd;string">Obere Str.
57</db:customers.Address>
 <db:customers.City
rdf:datatype="&xsd;string">Berlin</db:customers.City>
 <db:customers.CompanyName rdf:datatype="&xsd;string"
 >Alfreds Futterkiste</db:customers.CompanyName>
 <db:customers.ContactName
rdf:datatype="&xsd;string">MariaAnders</db:customers.ContactName>
 <db:customers.ContactTitle rdf:datatype="&xsd;string"
 >Sales Representative</db:customers.ContactTitle>
 <db:customers.Country
rdf:datatype="&xsd;string">germany</db:customers.Country>
 <db:customers.CustomerID
rdf:datatype="&xsd;int">1</db:customers.CustomerID>
 <db:customers.Fax rdf:datatype="&xsd;string">030-
0070000</db:customers.Fax>
 <db:customers.Phone rdf:datatype="&xsd;string">030-
0074321</db:customers.Phone>
 <db:customers.PostalCode
rdf:datatype="&xsd;string">12209</db:customers.PostalCode>
 <db:customers.Region
rdf:datatype="&xsd;string">stutgart</db:customers.Region>
 </db:customers>

Lawrence Muchemi-PhD Thesis 2014

111 | P a g e

FILTER (? id_number = "1")

In conclusion there is a guided mapping between the deep structure form of queries and SPaRQL

triples and filters. Some noted conditions include dropping of first and second person pronouns,

dropping ‘give’ or ‘list’ verbs and making deductions to attributes and referents that are not directly

mentioned before SPaRQL processing commences. This conclusion is important because it guides

the SPaRQL query formation algorithm.

3.3.11 Average Word Count of Concepts in Kiswahili Queries

The average word count analysis is important because it indicates the lower and possibly the upper

bound number of words that typically express a concept. More importantly it indicates the optimal

number of words typically expressing a concept and therefore guides any rule-based concept

discovery process.

The observations shown in table 3.5 were made by manually isolating the concepts from selected

farmers’ queries and the number of words per concept counted. A total of fifty randomly selected

questions were analyzed from the Kiswahili query set for farmers with a total of one hundred eighty

four concepts observed.

For example in a sentence such as ‘vifaranga ni bei gani?’, the underlined words represent concepts

that are one word concepts while in ‘kuku za nyama huuzwa wapi?’ the underlined words represent

a three word concept. In rare occasions, sentences with four, five and six-word concepts such as the

sentence ‘masaa ishirini na nne’, ‘kifaranga wa kuku wa nyama anapatikana na pesa ngapi?’,

‘vifaranga wa kuku wa nyama wanaokuwa na kukosa kutembea …’ respectively were discovered.

Table 3.5 shows the average word count in concepts for Kiswahili queries.

Lawrence Muchemi-PhD Thesis 2014

112 | P a g e

Table 3.5 Average Word Count of Concepts in Kiswahili Queries

Fig 3.32 Average Word Count of Concepts in Kiswahili Queries

Number of words

in the Concept

Number of Concepts

Counted

Average %

Prevalence

1 118 64.1

2 12 6.5

3 47 25.5

4 2 1.1

5 4 2.1

6 1 0.5

7 0 0

TOTAL No. of
Concepts

184 100

0
10
20
30
40
50
60
70

1-word 2-word 3-word 4-word 5-word 6-word 7-word

%
 o

f C
on

ce
pt

s

Word Length in Isolated Concepts

Average Word Count of Concepts in Swahili
Queries

Average
Word
Length in
Concepts for
Swahili
Queries

Lawrence Muchemi-PhD Thesis 2014

113 | P a g e

From figure 3.32, it can be observed that the most frequent concept lengths are one, two and three

words. This means that patterns with at most three words are the most prevalent and a length of three

words is thus optimal for a rule-based concept discovery process.

3.3.12 Independence of Kernelization and Triple Formation on Natural Language

The data applied in this analysis was from two languages and was independently collected from five

case study sets. There were no significant differences in the results for Kiswahili or English query

analysis as reported in sections 3.3.6 through 3.3.10. Section 3.3.6 highlighted the kernelization

procedure which as described is language independent, while 3.3.8 gave an analysis of the

prevalence of generative-transformation rules where again similar trends were noted for English and

Kiswahili query sets. Section 3.3.9 outlined a framework of query semantics transfer which was a

generic framework that fits into any language. The processes within the framework included

generative-transformation, phrases formation and base-components and modifiers identification. In

order to migrate from one language of querying to another, only the set of pre-defined language

specific rules such as phrase structure rules and transformation rules need to be changed to match the

querying language. Changing the set of rules is automatically achieved through a language

recognition pre-process which causes the appropriate set of rules to be loaded. Further the SPaRQL

triples formation process described in section 3.3.10 is totally language independent.

The use of phrase structure rules, transformational rules and morphophonemic rules is a practice

that linguists have embraced since the days of Chomsky(1957) and Zelig (1951). Linguists have

studied these rules over the years. These methods are context free and language independent. In

other words they may be applied to any context and any language.

Transformational rules which are the backbone of this work are context free and have been

developed for different languages. For example Kiswahili was studied and published by TUKI

(Massamba, Kihore, & Hokororo, 1999). The process that is not practically universal (ie not

language independent) is the way the rules are extracted. This thesis does NOT claim this type of

language independence but rather once the rules are manually extracted by linguists of a particular

language, the rules may be computationally deployed to synthesize sentences in a language

independent manner. Since the rule sets extracted from the 5 case studies (for Swa and Eng) were

Lawrence Muchemi-PhD Thesis 2014

114 | P a g e

not necessarily exhaustive, the results do not seek to prove a theory but rather indicate the direction

towards a language independent computational solution.

In general the transformational process flow from NLQ to SPaRQL is therefore language

independent to the extent that rules have been pre-extracted.

3.4 Survey on Database Schema Authorship

Relational databases have no controlled vocabulary for naming tables and columns and therefore the

resulting ontologies do not have a controlled lexicon. Subsequently a challenge is encountered in

decoding database schema information, specifically names of tables and fields. An equivalent study

for ontology elements in the field of ontology engineering revealed a common practice nomenclature

for classes and properties. (Damljanovic, Tablan, & Bontcheva, 2008). The common practice

involves the use of a dash or an underscore to separate names or abbreviations of names or the use of

the ‘camelCase’ style for concatenating or separating names and abbreviations. Observations from

the reviewed literature on ontologies derived from non-relational database sources, indicate that

various ontology parsing algorithms such as reported in Tablan, Damljanovic, & Bontchev (2008)

and Damljanovic, Agatonovic, & Cunningham (2010), use this common practice nomenclature while

creating gazetteers. A gazetteer is a data-holding structure that contains concepts extracted from

ontologies and can be viewed as an entity dictionary. When creating gazetteers for ontologies

derived from relational databases these nomenclature assumptions may not hold because databases

may have different nomenclature practices.

A survey was thus carried out to identify the common practice nomenclature for databases’, tables’

and column names. The findings from this study guided the creation of a general algorithm that

handles many ontologies created from commonly available or legacy relational databases.

3.4.1 Study of Common-Practice Nomenclature of DB-Schema Objects

3.4.1.1 Purpose and Rationale for Common-Practice Nomenclature Study

The purpose of this segment of research was to establish if a common naming practice for relational

databases exists and if so, then the answers to the following questions would be established based on

collected data,

Lawrence Muchemi-PhD Thesis 2014

115 | P a g e

 Is there a finite set of patterns that database schema authors’ use in representing

database schema object names?

 ‘How can we decipher the meaning of an ‘intended concept’ from the schema name?

 How can a general ‘Concepts Re-construction Algorithm’ be built from an ontology

created from a relational database source?

This study therefore sought to create a concepts reconstruction algorithm that would lead to the

automation of gazetteer construction.

3.4.1.2 DB-Schema Objects Nomenclature Methodology Overview

The research methodology selected for this investigation was an exploratory study where data was

collected through field surveys and a qualitative analysis technique applied.

The data that was specifically collected included,

 names of databases, tables and columns as authored by respondents,

 Existence of formal policies on naming procedures by different organizations,

 Existence of historical, common company-wide naming practices though not described as a

formal policy

 Personal preferences for naming styles

The survey involved data collection from twelve training institutions and sixteen software

development firms. Further, an internet based study of 320 randomly identified database schema

object names was carried out to identify other nomenclatures used. Nine database management

systems were also studied and profiled with respect to permitted rules for authoring objects and

attributes names.

3.4.2 Sampling Method

Information that was to be obtained from various sources was considered confidential to the

organizations providing the information and therefore an approach that guarantees confidentiality

and confidence was preferred. The snowballing sampling method also known as chain referral

sampling is suitable for hard-to-reach or hidden populations. It was selected because the chain

referral aspect leads to building confidence in the interviewees. Questionnaire and interviews were

Lawrence Muchemi-PhD Thesis 2014

116 | P a g e

the preferred tools because of their simplicity and effectiveness. A total of eight questions were

crafted into a questionnaire and database/application designers, developers and administrators were

required to provide short answers. The questionnaire is found in Appendix 3 of this report.

3.4.3 Sample Frame and Size

In creating the sample frame two groups dealing with back-end services namely database-

applications’ developers and database development trainers were targeted. The two starting points of

the chain referral sample frames were an application development firm and a university (database

development) lecturer. Each grouping had an initial starting point which snowballed into other

referral persons. A total of 28 units were interrogated. This being a purposive sampling method the

size was determined on the basis of theoretical saturation, that is the point in data collection when

new data no longer brings additional insights to the research questions. Since each questionnaire had

a large number of schema objects to be analyzed (up to 6 database names, 12 table names and 16

column names), analysis was performed after every three questionnaires collected and the saturation

point approximated. The internet-based survey involved a review of three hundred and twenty

randomly selected database schema objects, a number which was limited by practical reasons.

3.4.4 Analysis Overview

In the first research question namely ‘Is there a finite set of patterns that database schema authors

use in representing database schema object names?’ analysis was done by way of discovering

patterns used by various database schema authors. For each database schema object analyzed, a

pattern was determined on how the author represented object names. Of interest were database, table

and column names.

In the second research question namely ‘How can we decipher the meaning of ‘intended concepts’

from the schema names? analysis was done by way of recreating words from ontology

representations and mapping them to lexical definitions. The process of recreating the words was

recorded and later analyzed for presence of general patterns. For example the ontology

representation ‘dateOfBirth’ is reconstructed to ‘date of birth’ and the process to do this requires the

insertion of a space between lower case and upper case letters.

Lawrence Muchemi-PhD Thesis 2014

117 | P a g e

3.4.5 Results from Database Schema Authorship Studies

From the nine database management systems studied, it was observed that all allowed the use of ten

commonly used nomenclature styles. Table 3.6 shows this summary. Table 3.7 shows the extent of

usage for application development firms and DB development trainers.

3.4.5.1 Permitted Styles by Various Database Management Systems

The purpose of this profiling was to establish whether there are some string combinations that are

not allowed by some database management systems. Nine commonly used database management

systems were selected. These included the following,

1. MySQL

2. Microsoft SQL Server
3. Oracle
4. MS Access
5. SQLite

6. OpenOffice.org Base
7. IBM DB2 (Viper, Cobra and pureScale versions)

8. PostgreSQL
9. SmallSQL

Published literature for the respective software was studied and the results are shown in table 3.6.

Table 3.6 Permitted Objects Naming Styles (DB Servers)

Pattern

Permission for usage by various DBMS

(Tick= permit)

Comments

 1 2 3 4 5 6 7 8 9

1 Under_score          Allowed by all

2 camelCase          Allowed by all

3 Da-sh          Allowed by all

4 Abbreviations emp for employe          Allowed by all

5 Pascal Casing          Allowed by all

6 Finger_Breaking_Underscore          Allowed by all

7 SCREEMING_UNDERSCORE          Allowed by all

8 Acronyms eg ID, UI, IO          Allowed by all

9 Dot eg hr.hire_date          Allowed by all

10 “string like this”          Allowed by all

Lawrence Muchemi-PhD Thesis 2014

118 | P a g e

The naming styles shown in table 3.6 are explained here below,

 Underscore concatenates two or more words or abbreviations using the underscore character.

An example is sender_name,

 Abbreviation uses short form of names usually the consonants. An example is tbl as in

tbl_name,

 Pascal style is one where every main word in a concatenation of words starts with upper case

letter including the first word. For example CustomerAddress.

 Acronym style employs commonly or easily recognizable short forms for example ID in

empID, RegNum).

 Dot style is where a period is inserted between two parts of a compound name. For example

Tbl.location.

 Finger breaking style involves the combination of underscore and capitalization of the first

letter of all main words as in the compound word Last_Name.

 Dash naming style involves the use of minus symbol between key words of a concatenated

compound label. Example is chassis-num.

 String style uses the inverted commas usually to represent a string which has a blank between

two words of a compound label.as in the example ‘first name’.

 Camel case is a naming style where main words in a compound label start with a capital

letter except the first one. For example logbook.

 Scream nomenclature style involves the use of upper case letters only as in the example

POSTCODE.

3.4.5.2 Results from Training and Development Firms

Thirty universities and training institutions carrying out database training and twenty software

development companies were targeted. Information from twelve training institutions and sixteen

software development companies was obtained and analyzed (see appendix 7 for names of these

firms). The results are tabulated in Tables 3.7 and 3.8 respectively.

Lawrence Muchemi-PhD Thesis 2014

119 | P a g e

Table 3.7 Schema Objects Naming Techniques (Training Firms)

The analyzed results which are presented in figure 3.33, revealed that underscore, abbreviations,

Pascal and acronyms are the most frequently used styles while dot, finger and camel styles are

moderately used. On the other hand dash, string and scream styles are seldom used by training

institutions.

Fig 3.33 Average Usage of Nomenclature Type (Training Institutions)

 Pattern Extent of Usage by Training Firms
(scale of 1-5; 5=most used, 1= least used; 0= never used)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 Under_score 4 4 5 5 4 5 5 5 4 4 5 3 4 5 5 4 4.44

2 camelCase 3 3 2 2 3 3 3 3 3 2 2 2 3 2 2 2 2.5

3 Da-sh 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0.31

4 Abbreviations 4 4 3 2 3 3 3 2 4 4 3 4 4 3 3 4 3.31

5 PascalCasing 5 4 5 4 5 4 4 5 4 5 4 5 5 4 4 5 4.5

6 Finger_Breaking_Underscore 3 1 2 2 2 3 2 2 2 1 2 3 3 2 3 2 2.19

7 SCREEMING_UNDERSCORE 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0.38

8 Acronyms eg ID, UI, IO 4 4 5 4 5 4 4 5 4 4 4 4 3 4 3 3 4

9 Dot eg hr.hire_date 1 1 3 2 2 3 1 1 1 2 1 1 1 1 1 1 1.44

10 “string like this” 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.06

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Le
ve

l o
f U

sa
ge

(1
-5

)

Nomenclature Type

Average Usage Extent (Training Institutions)

Average
Usage
Extent
(Training
Institutions)

Lawrence Muchemi-PhD Thesis 2014

120 | P a g e

Table 3.8 Schema Objects Naming Techniques (Software development Firms)

Fig 3.34 Average Usage of Nomenclature Type (Development Firms)

The results from the analysis presented in figure 3.34 showed that underscore, abbreviations, Pascal

and acronyms are the most frequently used styles while dot, finger and scream styles are moderately

used. On the other hand dash, string and camel styles are seldom used by development firms.

 Pattern Extent of Usage by Development Firms (scale of 1-5; 5=most used, 1=

least used; 0= never used)

 1 2 3 4 5 6 7 8 9 10 11 12 Average

1 Under_score 5 5 5 5 5 3 5 5 4 5 5 5 4.8
2 camelCase 0 0 0 0 3 2 0 1 1 0 1 1 0.8
3 Da-sh 0 0 0 0 1 0 0 1 3 0 0 1 0.5
4 Abbreviations 1 2 0 4 5 4 5 1 1 5 3 3 2.8
5 PascalCasing 5 4 4 4 5 4 4 4 4 4 5 5 4.33
6 Finger_Breaking_Underscore 0 4 3 4 3 4 2 0 1 2 3 3 2.42
7 SCREEMING_UNDERSCORE 0 0 3 2 4 5 0 0 2 0 2 2 1.7
8 Acronyms eg ID, UI, IO 1 3 5 4 4 5 0 5 5 5 4 4 3.8
9 Dot eg hr.hire_date 1 3 3 4 1 0 0 0 3 3 2 1 1.8
10 “string like this” 1 0 0 0 0 1 0 0 2 0 1 0 0.4

0
1
2
3
4
5
6

Ex
te

nt
 o

f U
sa

ge
(1

-5
)

Nomenclature Type

Average Usage (dev firms)

Average
Usage
Extent
(dev firms)

Lawrence Muchemi-PhD Thesis 2014

121 | P a g e

3.4.5.3 Results from Internet-based Survey

The internet based study involved analysis of 320 randomly collected database schema object names.

The nomenclature styles were observed and the results tabulated in tabulated in table 3.9.

The data was analyzed and is presented in figure 3.35. The frequency of occurrence of various

patterns from the internet based survey revealed that the underscore, abbreviation, dot and acronyms

naming styles are the most frequent while dash and string are least used. Pascal, finger, camel and

scream are moderately used.

Table 3.9 Results from Internet-based Survey

 Type Observed Number Observed

1 Under_score 55

2 camelCase 22

3 Da-sh 5

4 Abbreviations 56

5 PascalCasing 34

6 Finger_Breaking_Underscore 24

7 SCREEMING_UNDERSCORE 28

8 Acronyms eg ID, UI, IO 47

9 Dot eg hr.hire_date 40

10 “string like this” 5

11 others 4

 320

Lawrence Muchemi-PhD Thesis 2014

122 | P a g e

Fig 3.35 Frequency of Occurrence of Various Patterns in Internet based Survey

3.4.6 Analysis of Data from Database Authorship Surveys
3.4.6.1 Classification of Naming Styles

The analysis was done by formation of clusters. Three clusters emerged and these were; ‘highly

preferred’, ‘averagely preferred’ and ‘least preferred’. These are summarized in the table 3.10,

The ‘highly preferred’ cluster included underscore, abbreviation, Pascal and acronyms. The

‘averagely preferred’ cluster contained dot and finger breaking naming styles while the ‘least

preferred’ cluster contained dash and string naming styles. Training institutions ranked camel case

style as average while development companies seldom prefer this style. On the other hand

development firms rated the scream nomenclature as average while training institutions avoided

teaching this type. Further a study of 320 randomly identified database schema object names was

reviewed to identify other styles used. The preference of naming style was found to closely resemble

that of training and software development firms surveyed. An algorithm that handles decoding all

the ten styles would be preferred but preference would be in the styles in the first cluster.

Table 3.10 Clustering of Preference Levels

55

22

5

56

34

24
28

47

40

5 4

0

10

20

30

40

50

60

Frequency

Lawrence Muchemi-PhD Thesis 2014

123 | P a g e

3.4.6.2 Words Recreation Task

Analysis was also done to assess the relationship between the ‘written form’ and the ‘meaning-

bearing phrases’ or recreated word form. This is analogous to answering the question,

‘How can we decipher the meaning of ‘intended concepts’ from the corresponding schema names?

Column, table and database names were extracted from the questionnaires and several databases

sourced from the internet. As explained in section 3.4 words were recreated from ontology

representations. The lexicon obtained for each representation was then recreated into probable

phrase chunks. The size of the chunks was dependent on lexicalizations obtained from the ontology

representations. Majority of the chunks were found to be formed by one, two or three words, which

is consistent with the findings of section 3.3.11 that found the most probable number of words

typically expressing a concept to be one, two or three.

 An example is given next for illustrating how word recreation was carried out. Consider the

ontology representation ‘titleOfCourtesy’. This is reconstructed to ‘title of courtesy’ and the process

followed is that of inserting a space between lower case and upper case letters. The representation

‘stud_ID’ is formed by two concatenated words ‘student and Identification’. The decoding process

involves separation of the two probable lexeme abbreviations ‘stud’ and ‘ID’ and using a simple

lexicon look-up mapping method to assign the meaning of the abbreviations. In this work a lexicon

look-up approach was used because of the small size of the ontologies involved in the experiments.

This task of recreating words and assigning them to probable phrase chunks was viewed as a

semantic assignment task of the ontology data. The process of recreating the words was recorded and

later analyzed for presence of general patterns which were coded into an algorithm discussed in

 Category

Cluster Type Training Institutions Development Firms Internet-based Firms

Cluster 1: High Underscore/Abbrev/Pascal/
Acronyms

Underscore/Abbrev/Pascal/
Acronyms

Underscore/Abbrev/Dot/
Acronyms

Cluster 2: Average Dot/ Finger/Camel Dot/Finger/ Scream Pascal/Finger/Camel/Scream

Cluster 3: Least Dash/String/Scream Dash/String/Camel Dash/String

Lawrence Muchemi-PhD Thesis 2014

124 | P a g e

section 3.4.7. Words recreation process was found to be the reverse of the database objects naming

methods identified in 3.4.5. For example ‘stud_ID’ is recreated to the full form, ‘student

Identification’ whereas a table with a column intended for holding ‘students’ identities’ would be

named in an abbreviated or shortened form say ‘stud_ID’.

3.4.6.3 General Observations from Questionnaires

Analysis was done on data collected for policy and personal preferences regarding the naming

method of database objects. Several significant observations were made and are summarized as:

1. Each database developer has some form of policy on naming procedure. These policies are

not necessarily formalized and are usually not published but are evident from the names

observed.

2. Database developers rarely give names that do not have meaning. These meanings highly

correlate with the intended concept.

3. In a few cases, an abbreviation related to the object type is included. For example ‘tbl’ in

‘tbl-tablename’ reflects that this is a table. This has an impact on deciphering the ‘intended’

concept.

4. Some authors over-abbreviated or used un-recognizable abbreviations.

5. Some acronyms required human intervention to decode.

3.4.7 Ontology Words Reconstruction Algorithm (OWoRA)

3.4.7.1 Description of OWoRA Algorithm

The purpose of this algorithm is to extract concepts from an ontology and provide a list of concepts

in the form of phrase chunks. Figure 3.36 illustrates the algorithm.

Lawrence Muchemi-PhD Thesis 2014

125 | P a g e

Fig 3.36 Ontology Words Reconstruction Algorithm (OWoRA)

This algorithm takes in the ontology derived from a relational database as its input and gives out a

list of concepts derived from the ontology. The ontology elements which contain the abbreviations

or acronyms of concepts are decoded and the underlying semantics discovered through the processes

described in 3.4.6. Once the concepts are extracted they are assembled into a gazetteer whose

construction details appear in section 3.5.2

1 function Words-Reconstruct():
2 function Elements-Scrapper(OWL ontology) List;
3 L := List;
4 S := Words in L;
5 if under-score in S  load function under();// Takes care of

underscore & Finger_Breaking
6 if da-sh in S  load function dash();
7 if dot in S  load function dot();
8 function under(S): //similar for function dash()& function dot()except

line 10 that is altered accordingly
9 for t in S:
10 if t is upper; //dash or dot
11 Index(t); //Find position of t
12 Split S at t  S1, S2, … Sn;
13 If si > 1;
14 stem S1, S2, … Sn  S1s, S2s, … Sns;
15 Call Semantic_assigner(Sis);// lexicon lookup
16 S1s, S2s, … Sns  W1, W2, … Wn;
17 P  W1+W2+Wn // Phrase chunk
18 Return P;
19 if string in S  load function string();
20 function string(S):
21 for ‘ “ ’ in S;
22 convert string  list of S1, S2, … Sn;
23 stem S1, S2, … Sn  S1s, S2s, … Sns;
24 Call Semantic_assigner(Sis);// lexicon lookup
25 S1s, S2s, … Sns  W1, W2, … Wn;
26 P  W1+W2+Wn // Phrase chunk
27 Return P;
28 Else
29 t:= Characters in S;
30 If ti & ti+1 is upper S  load function acronym();
31 Call Semantic_assigner(Sis);// lexicon lookup
32 Return P;
33 Else  load function abbrev()
34 Call Semantic_assigner(Sis);// lexicon lookup
35 Return P;
36 end Words-Reconstruction.

Function retrieves schema
elements from ontology and
forms a List

Different functions handle various
patterns found in the strings

Split compound Strings & do Stem

Identify lexicon &
synonyms & form
Associated concepts
(Phrase chunks + other
categories)

 Return phrases

Lawrence Muchemi-PhD Thesis 2014

126 | P a g e

3.4.7.2 Evaluation of the OWoRA Algorithm

The aim of this evaluation process was to experimentally determine the efficacy of the words

reconstruction algorithm described in 3.4.7.1. Schemas from the Microsoft’s Northwind_db as

described in Table 4.2, and five other randomly selected databases published by Oracle (Oracle,

2008) and Vertica Systems (Vertica Systems, 2011), namely human_resource_management_db,

order_entry_db, retail_management_db, phone_db and stock_exchange_db described in appendix 10

were used for analysis.

Each database was subjected to the words recovery algorithm and the total number of column names

positively identified noted. This number was then expressed as a percentage of the total number of

columns. Table 3.11 provides a summary of the obtained results,

Table 3.11 Evaluation Results of the Words Recovery Algorithm

The average performance of this algorithm was found to be about 92.5%. Further to the above

results, an analysis for establishing whether the reconstructed words had a correlation with the

contents of respective columns was done.

Database Name

Number

of
Tables

Total

Number
of

Columns

Number of
Columns
Identified

Number
of

Columns
NOT

identified

%

Identified

Abbreviations
NOT

Recognized

HR_Db 7 36 36 0 100 none
Order_Entry_Db 6 35 33 2 92 NLS

(appearing
twice)

Retail_Management_Db 5 70 69 1 98 pos (point of
sale)

Phone_Company_Db 8 54 46 8 85 Key (instead
of ID; appears
8 times)

Stock_Exchange_Db 7 60 48 12 80 Key (instead
of ID; appears
12 times)

Microsoft_Northwind_Db 8 72 72 0 100 none

Mean Accuracy

92.5

Lawrence Muchemi-PhD Thesis 2014

127 | P a g e

It was found that in all the reconstructed words, there was a correlation between the semantics of the

recreated words and the intended meaning (such as storing values with a meaning similar to the

recreated words). For example a column with an original title ‘DoB’ or ‘dateOfBirth’ and which was

decoded as ‘date of birth’ would contain various dates of birth for various records.

In general the OWoRA algorithm is suitable for reconstructing words from database schemas where

users have no knowledge of the nomenclature of the database elements. It is however assumed that

the nomenclature employed belongs to one of the ten most prevalent styles identified in this

research. However in certain situations, the user of the database access software may have the

opportunity to specify the nomenclature of the database elements or the database developer may

explicitly provide the naming style adopted for a particular application. In these cases, the words

extraction algorithm may be altered to a case-base structure where specific procedures, such as

function under(),dash(),dot()among others as described in the OwoRA algorithm, are

individually loaded depending on the nomenclature specified. This may serve to enhance the

efficiency in such applications.

In summary this field study established that there is a finite set of patterns that database schema

authors’ use in representing database schema object names. It has been established that although

most database management systems allow many different nomenclatures, only about ten categories

are dominant which were grouped into three clusters as earlier described. The ten categories formed

the basis for the word reconstruction algorithm described in figure 3.36.

It was also found that there is correlation between the semantics of the recreated words and the

meaning of the ontology’s written-form. It was also established that the accuracy of the of words

recovery algorithm was 92.5 %. Failure to reach the 100% mark was as a result of the usage of

unidentifiable acronyms and abbreviations. Further, some abbreviations do not relate to the word

forms that would ordinarily be used to represent the words. These require human intervention while

decoding and therefore making gazetteer formation a human assisted process. Although other

reviewed gazetteer formation processes are human-assisted, their accuracy levels were not reported

and therefore difficult to provide a comparative analysis.

Baseline algorithms are not readily available because most algorithms assume that the ontology

contains entries that have full unabbreviated lexicon as opposed to concatenations of schema data in

Lawrence Muchemi-PhD Thesis 2014

128 | P a g e

relational databases. Other ontology inspired methods such as semantic web solutions do not suffer

from this problem and ontology entries are matched directly to NL. See work reported in Kaufmann,

Berstein & Fischer (2007), Munir, Odeh & McClatchey, (2008), Tablan, Damljanovic & Bontchev,

(2008).

3.5 FSM and Gazetteer Design

The conceptual OCM model illustrated in figure 3.1 and 3.2 envisages a feature space model (FSM)

and gazetteer model. The design of these key components was guided by literature analysis and was

tested by building these into the OCM prototype. The position of the two schemas in the conversion

process is shown in figure 3.37.

Fig. 3.37 Concepts Processing

Section 3.5.1 describes the structures of these two schemas, the feature space model and the

gazetteer.

3.5.1 Feature Space Model (FSM)

As envisaged in the conceptual model NLQs are normalized, tokenized, lemmatized, stemmed and

tagged with parts of speech. This is further followed by phrase formation, collocations and terms

discovery in the same module. A challenge arises in the design of a schema that holds these elements

in a domain and language independent manner. The main decision to be made was determination of

the types of linguistic features to be stored and how they are to be stored (schema).

NLQ
Relational Database

Query Representation (using
feature space model)

Concepts Representation using resource
description frame work (RDF)

Matching Function

Gazetteer

Triples Assembly

Lawrence Muchemi-PhD Thesis 2014

129 | P a g e

In designing the FSM a consideration was made of the initial, intermediate and final linguistic

components that needed to be stored. From the NL query processing framework presented in figure

3.13 and the ontology elements processing algorithm presented in figure 3.36 the end products of

both processes are meaning-bearing phrases that form the backbone of the SPaRQL query structure

presented in section 3.3.10. Phrases from NLQ were stored in a feature space model while those

from the ontology were stored in a gazetteer. Section 3.5.1 discusses the process used to design the

feature space model while section 3.5.2 discusses the process of designing the gazetteer.

3.5.1.1 Experimental Investigation of Root versus Stem on Performance

FSM holds the phrase-chunks that need to match one or more of the gazetteer’s phrase chunks so

that a concepts’ triple that is relevant to a user’s request is formed. In this work matching of the FSM

and gazetteer elements was through basic string matching. Phrases may be stripped to the stem or to

the root level before a matching function is applied. The root of a word is the primary lexical unit

and carries the significant semantic content whereas a stem is part of a word where affixes are

attached to give different meanings. Selection of either of these methods results in different

performance rates. Recall is a performance measure that indicates the number of cases that the

system is able to answer positively and should have been answered, while precision is the number of

the positive cases answered having been expressed as a percentage of the total numer of queries

answered. It is importat to maximize F-score, which is the harmonic mean of the precision and recall

so that usability can be increased.

A comparative experiment was therefore necessary to determine the approach with a better F-score

and therefore recommend storage of the respective word form within the gazetteer and FSM. Two

comparative experiments for each of the two case study languages were set up as follows.

Experiment A (Stemming Vs. Root – English Queries)

The OCM prototype whose detailed construction information is found in chapter 4 was constructed

using the Lancaster stemmer (Paice, 1990) as the stemming tool. Another stemmer that was tested

but not selected due to lower performance was the Porter’s Stemmer (Porter, 1980). In the

experiments a test set comprising 30 randomly selected questions in the UoN Masters Programs

Coordinator’s query set was used and the average recall value recorded.

Lawrence Muchemi-PhD Thesis 2014

130 | P a g e

A similar experiment was done but with the NLTK WordNet lemmatizer instead of the Lancaster

stemmer. The average recall value was also recorded.

Table 3.12 shows a comparison between the Wordnet lemmatizer found in NLTK and Lancaster

stemmer. The WordNet lemmatizer only removes affixes if the resulting word is in its dictionary.

Lemmatizers are a good choice when compiling the vocabulary of some texts and or a list of valid

lemmas. On the other hand stemmers truncate words according to some predefined algorithms such

as those described in Paice (1990) or Porter (1980).

 Table 3.12 Comparison of Stemmer and Lemmatizer

In both the experiments performance was calculated using the following formula,

Precison = tp/ tp+ fp

Recall = tp/ tp+ fn

Accuracy = tp+tn/tp+fp+tn+fn

F-score = 2(Precision X Recall)/(Precision + Recall)

 Method
 Lancaster Stemmer WordNet Lemmatizer
Query
 (Original String
is named Raw)

raw = """DENNIS: Listen, strange women
lying in ponds distributing swords is no
basis for a system of government.
Supreme executive power derives from a
mandate from the masses, not from
some farcical aquatic ceremony."""

raw = """DENNIS: Listen, strange women
lying in ponds distributing swords is no
basis for a system of government.
Supreme executive power derives from a
mandate from the masses, not from
some farcical aquatic ceremony."""

Python code
procedures
used

>>> tokens = nltk.word_tokenize(raw)
>>> porter = nltk.PorterStemmer()
>>> lancaster = nltk.LancasterStemmer()
>>> [lancaster.stem(t) for t in tokens]

>>> tokens = nltk.word_tokenize(raw)
wnl = nltk.WordNetLemmatizer()
>>> [wnl.lemmatize(t) for t in tokens]

Typical Output ['den', ':', 'list', ',', 'strange', 'wom', 'lying',
'in', 'pond', 'distribut', 'sword', 'is', 'no',
'bas', 'for', 'a', 'system', 'of',
'government.', 'suprem', 'execut', 'pow',
'der', 'from', 'a', 'mand', 'from', 'the',
'mass', ',', 'not', 'from', 'som', 'farc', 'aqu',
'ceremony', '.']

['DENNIS', ':', 'Listen', ',', 'strange',
'woman', 'lying', 'in', 'pond', 'distributing',
'sword', 'is', 'no', 'basis', 'for', 'a', 'system',
'of', 'government.', 'Supreme', 'executive',
'power', 'derives', 'from', 'a', 'mandate',
'from', 'the', 'mass', ',', 'not', 'from',
'some', 'farcical', 'aquatic', 'ceremony', '.']

Remarks The stemmer truncates the words
according to algorithm described in
Paice(1990)

The WordNet lemmatizer only removes
affixes if the resulting word is in its
dictionary.

Lawrence Muchemi-PhD Thesis 2014

131 | P a g e

Where tp and fp represent the true and false positives respectively and tn and fn represent the true

and false negatives respectively

The results are presented in table 3.13.

Experiment B (Stemming Vs. Root – Kiswahili Queries)

Similar experiments as in A above were done but the query set was changed to 30 randomly picked

Kiswahili questions from the farmers’ query set. A Kiswahili lexical database (construction details

provided in chapter 4) with stems was used and the average performance values recorded. The

lemmas (root forms) database was then applied to the prototype and the same Kiswahili questions as

above used.

Here are examples of the resulting output from the lemmatization and stemming processes for

Kiswahili queries.

Surface form  Kuku wakitetemeka ni wagonjwa? (Are shivering chicken sick?)

Lexical form  [kuku] [tetema] [ni] [mgonjwa] ([are] [chicken] [shiver] [sick])

Stemmed form [kuku] [tetem-] [ni] [-gonj-] {prefixes: wa-ki- for tetem-; -eka for tetem-}

The average performance was determined. The results are presented in table 3.13.

Results and Analysis for Experiments on Root vs. Stem

Table 3.12 illustrates that performance values are higher when using stem formation process than

when using root formation process regardless of the language used.

Table 3.13 Recall, Precision and F-Score Values for Root and Stem

Language

Method

Recall

Precision

F-Score

English

Stem

0.74 0.87 0.78

Root

0.60 0.79 0.69

Swahili

Stem

0.68 0.83 0.77

Root

0.65 0.78 0.68

Lawrence Muchemi-PhD Thesis 2014

132 | P a g e

The results indicated that for the model to have higher recall value, stem formation would be a better

intermediate process than lemmatization.

As a result of this a decision of storing stemmed word forms was made, thus the FSM is designed to

store stemmed word forms.

3.5.1.2 Storing Linguistic Components beyond Nouns

Concepts are more diverse than simple nouns and noun phrases as identified by Krishnamurthy &

Mitchell, (2011). Studies for Kiswahili language have also revealed diverse patterns of term

formations (Sewangi, 2001). Terms which include collocations represent concepts and therefore

ought to be accounted for in the concepts discovery process and also storage. Furthermore nouns

identification should include noun patterns such as those identified for Kiswahili by Ohly (1982)

which include Norminalized verbs, Deverbative head with noun complement, Combination of nouns,

Noun and adjectives, Nouns with –a connector and Nouns with –a connector and a nominalized

verbs.

Most state-of-the art NL access methods to ontologies rely on conversion of queries to tokens from

which the tokens are assembled into what is commonly known as bag-of-words. A bag-of-words

means a collection of tokens created from either the ontology or the NLQ and the tokens do not

relate to each other. This is evident in systems such as NLP-Reduce (Kaufmann, Berstein, & Fischer,

2007), Questio (Tablan, Damljanovic, & Bontchev, 2008), Freya (Damljanovic, Agatonovic, &

Cunningham, 2010) among others. Tokens can be organized as phrases within a data structure after

being extracted from texts through phrase-chunking procedures such as regular expressions.

Considering that the NLQ and the ontology in this work are processed in methods stipulated in

sections 3.3.9 and 3.4.7 which both result in phrase chunks, it would be desirable to store the phrase

chunks as well.

Figure 3.38 shows a typical segment of python code that defines a noun-phrase chunk,

Lawrence Muchemi-PhD Thesis 2014

133 | P a g e

 Fig. 3.38 Python Code for describing patterns of Regular Expressions

The effect on the performance occassioned by introduction of phrase chunks into the FSM schema

needed to be established. A comparative experimental investigation was suitable for determining the

difference in performance between the two scenarios, namely bag-of-words and bag-of-words with

phrases. The phrases that were stored included noun-phrase chunks, prepositional phrases and

collocation terms (through patterns identified in Sewangi 2000 and found in appendix 5). The

performance measures used were recall and accuracy. The experiments were set as follows,

Experiment A: Bag-of-Words vs. Concept Patterns –English Queries

The OCM prototype was constructed with FSM holding bag-of-words. A test set comprising of 30

randomly selected questions in the UoN Masters’ Programs Coordinator’s query set was used on the

prototype and the average precision, recall and F-score values recorded.

Similar experiments were done where the NLTK Phrase-Chunker was used to generate phrase

chunks which were stored along with the tokens previously stored as bag-of-words. A detailed

description of how the NLTK was configured is given in section 4.2.2.3. The average precision,

recall and F-score values from these set-ups were recorded and are summarized in table 3.13.

Experiment B: Bag-of-Words vs. Concept Patterns – Kiswahili Queries

Similar experiments as in A above were done but the query set was changed to 30 randomly selected

Kiswahili questions from the farmers’ query set. The NLTK tool and its RegExp libraries were used

for these experiments. The average precision, recall and F-score values were determined when the

FSM was designed to handle bag-of-words only and when extended to handle concepts in form of

phrase chunks. The results were recorded and are summarized in table 3.14.

patterns = """
 NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+}
{<NN>+}
""“

NPChunker = nltk.RegexpParser(patterns) # create a chunk parser
NP is a noun phrase; DT is determiner, PP is possessive, JJ is
adjective, NN is noun and NNP is a pronoun

Lawrence Muchemi-PhD Thesis 2014

134 | P a g e

Results for Experiments on Bag-of-Words vs. Concept Patterns English and Kiswahili Queries

Table 3.14 shows that recall, precision and F-score values from the FSM built to hold both words

and phrases is consistently higher regardless of the language used.

Table 3.14 Recall, Precision and F-score Values for Bag-of-Words and Concept Patterns

The results from these experiments indicated that the FSM built to hold both bag-of-words and

concepts detected through patterns or regular phrase chunkers was a better choice for the OCM

model.

3.5.1.3 Other Linguistic Components to be Stored

Analysis of the five query sets described in 3.3 showed that users occasionally use synonyms.

Synonyms were observed for both objects and relationships (subject/object and verb). For example

the predicates ‘I wish’, ‘I’d like’, ‘show me’, ‘are there’, ‘what is’, ‘who might offer’ etc. all refer to

the same predicate, that is ‘list’. ‘Client’ and ‘customer’ objects or subjects refer to the same

semantic category. Another observation made is the usage of hypernyms to refer to objects. For

example ‘kuku’ (chicken) is a general term used to refer to ‘kuku wa mayai’ (layers) and ‘kuku wa

nyama’ (broilers). If a query is posed on information on broilers, the general information on chicken

should also be provided.

Language

FSM Contents

Recall

Precision

F-Score

English

Bag-of-Words

0.70 0.80 0.74

Concept Patterns &
Bag-of-Words

0.74 0.90 0.81

Swahili

Bag-of-Words

0.68 0.83 0.75

Concept Patterns &
Bag-of-Words

0.77 0.88 0.82

Lawrence Muchemi-PhD Thesis 2014

135 | P a g e

Finally enumeratives (e.g. how many), superlatives (e.g. heavier than) and time enquiry (e.g. when)

where found abundant within the five query sets. Since these words have more implications in terms

of processing requirement in order to obtain the meaning, it was found necessary to annotate them if

found within a query. A two level annotation was used. A one (‘1’) represents superior while a zero

(‘0’) represents an inferior. For example in the sentence ‘John is younger than James’ the word

younger is annotated with a ‘0’ and in the sentence ‘Blood is thicker than water’ thicker is annotated

with ‘1’.

3.5.1.4 Structure of FSM

An illustrative example of the feature space model for the query, “Nipatie majina ya miji ambako

wafanyikazi wanatoka?”, (Give me the names of cities where employees come from?) and the target

database are shown in figures 3.12 and 3.13 respectively.

Fig. 3.39 Feature Space Model for Query Representation

 Word Processing PhraseChunk

Basic
Linguistic
Features

Sequence # 1 2 3 4 5 6 7 1

2 3

Surface Form Nipatie majina ya miji ambako wafanyikazi wanatoka Phrase
1

Stem ~pati~ ~jina ya ~ji amba~ ~fanyikazi ~toka~ See
note 1

Synonyms ... eneo;
mahali

Hypernyms2
(general)

....

Hyponyms2
(specific)

....
.

.....

Tags POS 3 VB NN JJ NN PN NN VB - - -

Extras4

Superlative

S 0 0 0 0 0 0 0

Count
C

0

0

0

0

0

0

0

NB:

1. Phrase chunk is formed from stems on the left
2. Hypernyms is a more general reference eg musical instrument" is a hypernym of "guitar"; Hyponyms is a more

specific term eg Dog is a hyponym of animal.
3. POS tags denote: VB= Verb ; NN = Noun ; JJ = Adjective ; PN = Pronoun
4. Annotation of words in various categories eg word is superlative or not (‘1’ or ‘0’); Requests Counting or not (How

many?)

Lawrence Muchemi-PhD Thesis 2014

136 | P a g e

3.5.2 Gazetteer Formation Process

In traditional NLP applications, a gazetteer is a list of recognizable words or phrases that need to be

compiled from a text. In this research the gazetteer was derived from an ontology derived from a

relational database. As discussed in the literature, automatic discovery of mappings between

ontology and RDBMS has been successful and many state-of-the-art tools developed. In this work

the datamaster tool (Csongor, Martin, & Samson, 2009) was used. It was selected on the basis of its

good performance and ease of integration with Protégé, the ontology building program that was used

in this research.

Section 3.4.7 presented an algorithm that was used to reconstruct words from the ontology.

Typically all concepts within a database that may be of interest to a user should be recognized and

subsequently stored in a gazetteer. The gazetteer needs to hold information about the concepts and

also facilitate the matching function that operates between the FSM described in section 3.5.1 and

the gazetteer. Figure 3.40 illustrates processes leading to the formation of the gazetteer

Lawrence Muchemi-PhD Thesis 2014

137 | P a g e

Fig. 3.40 Processes Leading to the Formation of Gazetteer

The relation (or set of relations in a multi-relation database) is automatically mapped to an ontology.

The ontology elements are then extracted and converted into a gazetteer such as the one shown in

Fig 3.41. The class, property and instance names are first normalized using algorithms explained in

EMPLOYEES

EmployeeID*
FirstName
Title
TitleOfCourtesy
BirthDate
Address
…….

 Table (Class) definition - employees
<owl:Class rdf:about="&db;employees">
 <db:hasPrimaryKeyFields
rdf:datatype="&xsd;string">EmployeeID</db:hasPrimaryKeyFields>
 <db:isBridgeTable rdf:datatype="&xsd;boolean">false</db:isBridgeTable>
 </owl:Class>
Columns (Properties) Definition - FirstName
<owl:DatatypeProperty rdf:about="&db;employees.FirstName">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&db;employees"/>
 <db:hasOrigColumnName
rdf:datatype="&xsd;string">FirstName</db:hasOrigColumnName>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>
Row Values (Instances) Definition - Lawrence
<db:employees rdf:about="&db;employees_Instance_1">
 <db:employees.EmployeeID rdf:datatype="&xsd;int">1</db:employees.EmployeeID>
 <db:employees.FirstName
rdf:datatype="&xsd;string">Lawrence</db:employees.FirstName>
 <db:employees.HireDate rdf:datatype="&xsd;date">2010-04-
18</db:employees.HireDate>
 …….
 </db:employees>

GAZETTEER

Mappings ((Csongor, Martin, & Samson, 2009))

Words Reconstruction algorithm see Section 3.4.7

Lawrence Muchemi-PhD Thesis 2014

138 | P a g e

section 3.47. In cross lingual querying, translation is done at the gazetteer stage and hence the

translations are also contained in the gazetteer.

Fig. 3.41 Structure of Gazetteer with Sample Data

3.6 The OCM Architectural Model

In this section the architectural model is presented. The purpose of the architectural model is to

direct attention at an appropriate decomposition of the system without delving into details. In the

architecture illustrated in figure 3.15. the system accepts the user input in the form of a full

unrestrained sentence or key phrases and words. Raw text is subjected to linguistic processing that

Ontology
Concept

Normalized Stem Translation

(Google Translate

Corrected
Manual

Translation

Stem of
Translation

TYPE

Address address address mitaani* anuani anuani Property

BirthDate birth date Birth date tarehe ya kuzaliwa - tarehe ya
~za~

Property

employeeId employee
identification

employ~
identif~

mfanyakazi
kitambulisho

- ~fanyakazi
~tambu~

Property

employees employees employ~ wafanyakazi - ~fanyakazi Class

FirstName first name fist name jina kwanza - jina la
kwanz~

Property

title title title haki miliki* cheo cheo Property

TitleOfCourtesy title of courtesy title of
courtes~

haki ya cheo* cheo cha
heshima

cheo cha
heshim~

Property

Lawrence Lawrence Lawrence Lawrence - Lawrence Instance

.......... -

customers Customers customer wateja - ~teja Class

employees employees employ~ wafanyakazi - ~fanyakazi Class

City city cit~ mji - ~ji Property

CompanyName company name compan~
name

jina la kampuni - jina la
kampuni

Property

Lawrence Muchemi-PhD Thesis 2014

139 | P a g e

involves tokenizing, stemming, POS tagging and phrase formation as earlier explained. On the other

hand ontology elements relating to class and property names as well as instances are normalized and

stemmed.

.

Fig. 3.42 Architecture for Ontology-based NL Access to DBs (ONLAD)

3.7 The Algorithms

3.7.1 Semantically Augmented Concepts Matching Approach(SACoMa)

The matching function takes the FSM and Gazetteer as input and generates a set of concepts not

necessarily arranged in any order. This process is re-illustrated in figure 3.43.

Lawrence Muchemi-PhD Thesis 2014

140 | P a g e

Fig. 3.43 Location of Matching Function in OCM Approach

The concepts that match from the two representation schemas form the backbone of the generated

SPaRQL query. As established from experimentation, a lexical-level keyword-based matching

method with lemmatization and improved by stemming was selected. The Levenshtein algorithm

calculates the least number of edit operations that are necessary to modify one string to obtain

another string. Levenshtein algorithm, also called edit-distance was selected for calculating distance

between the two strings that is, the query concept and the ontology concept.

A zero edit distance means that only perfectly matching strings are identified. This means that the

model returns few but accurate pairs thereby attaining high precision levels. Recall on the other hand

is hampered. If the edit distance is increased, precision decreases but recall increases. The optimum

edit gap needed to be established experimentally.

The Python implementation of Levenshtein distance calculator used in this research was adopted

from (Korokithakis, 2008) and is shown in figure 3.44.

 NL Relational Database

 Ontology

 Features Rep. Model Gazetteer

 Matching_Function

 SPaRQL Generator

Lawrence Muchemi-PhD Thesis 2014

141 | P a g e

Fig. 3.44 Python Implementation of Edit-Distance Calculation

As observed from data collected from the surveys reported in 3.3 equivalent concepts in NLQ and

ontology elements are at times represented by different strings and therefore concept matching goes

beyond simple string matching. The Levenshtein algorithm was enhanced through techniques

borrowed from ontology matching strategies specifically semantic-based strategy as explained in

section 2.6.4. The Semantic matching strategy combines integration of lexicon-based matching with

the meaning of the words. This means that words identified to be semantically equivalent but having

different surface forms are matched based on this fact.

For example the concept ‘jimbi amekomaa’ (mature cock) is semantically equivalent to ‘jogoo

aliyekomaa’ (mature cockerel). This implies that jimbi should map to jogoo before Levenshtein

mapping is applied. Semantic mapping was achieved through incorporation of a lexical database that

included synonyms at the FSM before matching. For English queries Wordnet (Miller G. , 1995) was

used while the Kiswahili lexical database whose construction is described in section 4.2.2.2 was

used. This algorithm assumes that the lexical database is large enough and contains most synonyms

of words.

def levenshtein_distance(first, second):
 """Find the Levenshtein distance between two strings."""
 if len(first) > len(second):
 first, second = second, first
 if len(second) == 0:
 return len(first)
 first_length = len(first) + 1
 second_length = len(second) + 1
 distance_matrix=[[0] * second_length for x in range(first_length)]
 for i in range(first_length):
 distance_matrix[i][0] = i
 for j in range(second_length):
 distance_matrix[0][j]=j
 for i in xrange(1, first_length):
 for j in range(1, second_length):
 deletion = distance_matrix[i-1][j] + 1
 insertion = distance_matrix[i][j-1] + 1
 substitution = distance_matrix[i-1][j-1]
 if first[i-1] != second[j-1]:
 substitution += 1
 distance_matrix[i][j]=min(insertion,deletion,substitution)
 return distance_matrix[first_length-1][second_length-1]

Lawrence Muchemi-PhD Thesis 2014

142 | P a g e

3.7.2 Structured Query Generator Function

The various ‘concepts’ generated by the matching function form a set of unordered strings. The

query generator’s task is to organize these ‘concepts’ into a structured query.

Section 3.3.9.4 identified that meaning-bearing components have a tri-partite relation which may be

formed between the three primary components (subject, verb and object) or, any two of these

components and a modifier (or an interrogative of either) or any of the primary components and its

modifiers which may appear as phrases such as a prepositions. If any of these meaning bearing

components (which are stored in FSM) matches that in the gazetteer, then they qualify to be included

in the SPaRQL query.

Section 3.3.10 described how triples of concepts are formed through the kernelization process. The

query is reduced to a set of triples which collectively represent the original query meaning. The

triples are of the format ?element1 ?element2 ?element3. An illustrative example of the

query ‘What is the phone number of the customer whose ID is 1’ was provided. This resulted into

two triples and a filter as shown below

?customer ?phone_number ?Variable1
?customer ?id_number ? Variable2

The first element in the set is the one that corresponds to the table name while the second relates to

the column name. The gazetteer which contains an annotation of the type of concept, whether class,

property or instance, provides for the identification and assignment of these elements.

These are the basic building blocks of the SPaRQL query. The query generator function organizes

these into a full SPaRQL query by following templates such as the one shown in figure 3.45.

Lawrence Muchemi-PhD Thesis 2014

143 | P a g e

Fig. 3.45 Template of Query Generator Function

The alias name (the word appearing after the key word ‘PREFIX’) is pulled directly from ontology

descriptions. The attributes to be returned by the query (attributes appearing after SELECT keyword)

are picked from the query’s triple set, where specifically the middle element (element2 in the

triple) is selected.

The triples body (appearing within WHERE clause) are formed by heaping the triple sets

(“?element1 ?element2 ?element3”)

In section 3.3.10 it was stated that when specific row values are mentioned, the user’s intention is to

constrain the number of records (rows) returned. In SPaRQL this is achieved through the FILTER

command. The general syntax for this is,

FILTER (?Variable = "value")

In the example query ‘What is the phone number of the customer whose ID is 1’ there is a mention of

a specific row value (instance) and hence a FILTER clause is required. The additional clause then

becomes,

 FILTER (? id_number = "1")

The full SPaRQL query is thus given as shown in figure 3.46.

PREFIX alias_name: <http://www.URL#>

SELECT ?Attribute1 ?Attribute2……?AttributeN

WHERE{ ?Subject db:Predicate ?Object.

 ?Subject db:Predicate ?Object.

 ?...............................

 ?Subject db:Predicate ?Object.

FILTER(?Attribute = object)}

http://www.URL#

Lawrence Muchemi-PhD Thesis 2014

144 | P a g e

Fig. 3.46 Example of a Generated SPaRQL Query

3.7.3 Discovering Implicit Concepts

In order to demonstrate how implicit concepts are discovered a representative sample database,

‘Northwind database’ by Microsoft group is presented in figure 3.47.

Fig. 3.47 Example from Microsoft Northwind Sample DB (Microsoft, 2004)

PREFIX moon: <http://www.owl-ontologies.com/NewNorthwind#>

SELECT ?orderID ?CustomerID ?CompanyName ?shipDate

WHERE{ ?orders db:OrderID ?OrderID.

 ?customers db:CustomerID ?CustomerID.

 ?orders db:CustomerID ?CustomerID.

 ?customers db:CompanyName ?CompanyName.

 ?orders db:OrderID ?orderID.

 ?orders db:ShippedDate ?shipDate

FILTER(?CustomerID = 1)}

SUPPLIERS
SupplierID*
CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone
Fax

CATEGORIES
CategoryID*
CategoryName
Description
Picture

EMPLOYEES
EmployeeID*
LastName
Title
TitleOfCourtesy
BirthDate
Hiredate
Address

PRODUCTS
ProductId*
ProductName
SupplierID
CategoryID
QuantityPerUnit
UnitPrice
UnitsInStock
UnitsOnOrder
ReorderLevel

CUSTOMERS
CompanyName
*
ContactName
ContactTitle
Address
City
Region
PostalCode
Country

ORDER DETAILS
OrderID*
ProductID*
UnitPrice
Quantity
Discount

ORDERS
OrderID*
CustomerID
EmployeeID
OrderDate
RequiredDate
ShippedDate
ShipperID
ShipVia
Freight
ShipName
ShipAddress
ShipCity
ShipRegion
ShipPostalCod
e

SHIPPERS
ShipperID*
companyName
Phone

http://www.owl-ontologies.com/NewNorthwind#

Lawrence Muchemi-PhD Thesis 2014

145 | P a g e

The above database shows a certain company’s database where the company keeps an inventory of

its customers, suppliers and the products they sell. Further the customers can make orders which can

be transported by shippers whose information is also kept in the database. All information regarding

to employees is also maintained.

The examples so far used are all explicit in that they have direct mentions of properties or classes. In

other scenarios there is no direct mention but implied concepts in a rather implicit manner. The

model provides for this implicit concepts-discovery by performing simple inference.

Consider this illustrative Example.

In this case the following happens;

‘Bottles’ is stripped to ‘bottle’ which in turn maps to instance ‘bottled’ which is found within the

ontology as an instance.

Since Bottled has been tagged in the Gazetteer as an instance of categories class through data type

property Description, we discover two additional ontology concepts that is,

Categories class and

Description property

The triple becomes

The FILTER is necessary for instantiating a class’s property value and is applied where there is

direct mention of an instance such as ‘bottle’ in this example.

Interrogatives

Further the query has an interrogative of type “which” that suggests an identification problem. By

default we return instances of classes with properties related to identification of the class; that is

name, identification or both if present in that particular class.

Hence the triples would be:

Sw: Bidhaa gani ambazo huja kwa chupa?

{En: Which products come in bottles?”}

?categories db: categories.description ?description

 FILTER(?description = “bottled”)

?products db: products.ProductID ?ProductID.

?products db: products.ProductName?ProductName

Lawrence Muchemi-PhD Thesis 2014

146 | P a g e

3.7.4 Key Attributes (Foreign Key)

When dealing with two classes related via a foreign key a heuristic was developed. This is stated as

follows, “when two tables are involved in reply to a query, we introduce two triples one from each

participating class and both having the common property”.

In the example we have:

This heuristic was validated by way of analyzing 20 queries that would require the answer to be

generated from at least two tables. The heuristic was applied and the two possible triple sets

generated manually. The two triples were then assessed for the type of answer they would jointly

generate when applied to an OWL database and the results verified against the expected correct

result. In all the cases selected for analysis, the heuristic was found to hold true. Some sample results

are found in appendix 11.

3.7.5 Triples Assembly

Figure 3.48 shows the sets of triples obtained from the simple statement “which products come in

bottles?”

Fig. 3.48 SPaRQL Query that handles Implicit Concepts and Foreign Keys

A further point to note is that in database ontologies it is preferable to use both class and property

names so as to minimize ambiguity in case multiple classes are using similar property names as in

the example customer’s phone and supplier’s phone.

?products db: products.CategoryID ?CategoryID.

?categories db: products.CategoryId ?CategoryID.

{ ?products db: products.ProductID ?ProductID.

 ?products db: products.ProductName?ProductName.

 ?products db: products.CategoryID ?CategoryID.

 ?categories db: categories.CategoryId ?CategoryID.

 ?categories db: categories.Description ?Description.

 FILTER(?Description = "bottled") }

Lawrence Muchemi-PhD Thesis 2014

147 | P a g e

3.7.6 Overall Algorithm

The processes described in this chapter were summarized into a high level algorithm which is
presented in figure 3.49.

Fig. 3.49 The Overall OCM Algorithm

3.8 Prototype and Resources Used

Availability of open source semantic web resources such as Protégé, Jena, and Sesame that edit and

store ontologies as well as open source DB-ontology link tools such as Datamaster (Csongor, Martin,

& Samson, 2009) of Stanford University have greatly informed the prototype development activities

carried out in this research.

3.8.1 Prototype Overview

An overview of the main processes within the prototype and software used is illustrated in figure

3.50.

The OCM Algorithm

1. Assemble tokens list (words and phrases)
2. Comprehend ontology-strange terms (those without a lexical

match in the ontology) that may be synonyms, hypernyms,
hyponyms or even known jargon

3. Assemble List of Concepts (Tokens which match ontology
elements)

- Explicit concepts
- Implicit concepts
- Concepts include matches to object and datatype properties,
classes, instances, rdfs:labels, rdfs:comments and special
categories (superlatives and enumeratives).

4. Assemble Triples
- Determining participating relations along with Primary and

Foreign keys
 -Identify User required properties and constraining instances

and their related properties (Filters)
5. Assemble SPARQL Query
- Progressively heap relevant triples until exhausted from
user input

6. Execute the query on the Protégé reasoner.

Lawrence Muchemi-PhD Thesis 2014

148 | P a g e

Fig. 3.50 Structural Design of Prototype

3.8.2 Resources

Figure 3.50 shows the main modules labeled A to F and whose purpose is described shortly.

3.8.2.1 Module A: Bilingual List for Cross-lingual Solution

In the model presented in section 3.6 and prototype shown in figure 3.50 it can be seen that if the

language of querying is different from the language of naming database schema objects then

translation is needed. This is the cross-lingual problem that the model has to grapple with.

Translation may occur immediately after the NL input or during the gazetteer formation as a pre-

process. Experiments were carried out to find which of these two stages gives better results

(translation experiments on figure 3.50). Further three approaches to translation were experimented

 Swahili /English NL

 PoS Tagged Tokens Cand. Concepts Pruned concepts

 Gazetteer

 Matched pairs List

 SPaRQL query

Linguistic Processing
 Normalize
 Tokenize
 Obtain Lemma

(base) / Stem
 POS Tag

Translation Expt 1

Candidate
Concepts
Generation

 Single Noun
Entities

 Collocations

Feature
Space Model
Construction

Matching
 Match Pruned concepts
 TO Ontology elements

using similarity
Algorithm
(Levenshtein)

Translation Expt 2

RDF Ontology
Populate Ontology
with Instances of
knowledge
base/database

Relational
DB

Concepts Discovery
- Explicit Concepts
- Implicit Concepts,
- Instances,- Filters

Candidate triples-
assembly

output
RDF REASONER over
OWL ontology

A

B

C

D

Pruning
concepts

 Eliminate
collocations
not based on
original
sentence

E

F

Gazetteer
formation
Normalize &
lemmatize, list
ontology
elements

Lawrence Muchemi-PhD Thesis 2014

149 | P a g e

on. These are dictionary-based methods in which Carabao11 tool was used, transfer method in which

Apertium12 tool, was used and statistical machine translation in which Google Translate13 was used.

A Dictionary based method where a bilingual word list was created and used was selected. This

decision was arrived at on the basis of less configuration work and better performance recorded

during test runs.

3.8.2.2 Module B: Linguistic Processing

The linguistic processing module was developed as a composite of many python sub-modules and

was implemented using the natural language tool kit, NLTK14. It has several sub-modules that

perform various functions for English and Kiswahili language such as normalizing, tokenizing,

lemmatizing/stemming and POS Tagging, noun phrase chunking and noun entity/collocation

identified. The module has access to several linguistic resources such as WordNet (Miller G. , 1995)

and the Lancaster Stemmer15 (Paice, 1990) for English which easily integrate with NLTK.

For ease of performing the experiments the modules were organized in a pipeline referred to as the

test bed. A language selector module was implemented as the start point of the pipeline.

a) Language Detection

Several methodologies for implementing the language detection module that can be integrated with

NLTK’s python code are available. These include stop-words frequency model, bi-gram and tri-

gram frequency models among others. For a model whose expected input is a single sentence or just

key words, the stop-words frequency model would not be suitable. On a trial bases the tri-gram

model was found to perform better compared to bi-gram or other N-gram models and was therefore

selected for implementation.

The procedure involved creating a list of trigrams from training texts for both English and Kiswahili.

The probability distribution models for the trigrams (also known as language models) for the various

languages (English and Kiswahili) were generated. The python code used was adopted from an open

source forum on language identification in python by Cavar (2011) namely lidtrainer.py. The

11 Carabao is a completely open machine translation toolkit. It allows creation of your own machine translation interlingua-modeled databases and
using them on-the-fly. See http://www.uuucom.com/carabao-diy-machine-translation-kit-downloads-18340.html
12 Apertium is a free/open-source machine translation platform, initially aimed at related-language pairs but recently expanded to deal with more
divergent language pairs. See http://www.apertium.org/?id=whatisapertium
13 Google Translate is a free translation service that provides instant translations between 64 different languages. See http://translate.google.com/
14 NLTK is a platform for building Python programs to work with human language data. And can be accessed at http://nltk.org/
15 For the code see http://nltk.googlecode.com/svn/trunk/doc/api/nltk.stem.lancaster-pysrc.html#LancasterStemmer

http://www.uuucom.com/carabao-diy-machine-translation-kit-downloads-18340.html
http://www.apertium.org/?id=whatisapertium
http://translate.google.com/
http://nltk.org/
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.stem.lancaster-pysrc.html#LancasterStemmer

Lawrence Muchemi-PhD Thesis 2014

150 | P a g e

frequency of each trigram is the number of times it appears divided the total number of trigrams. The

frequency is calculated for each trigram and then the trigrams are sorted according to the frequency

in the training model. In order to determine the language model of the target text, the text is

subjected to the module that determines the models and then calculates the distance between the two

language models. The code that was used was adopted from Cavar (2011) and is called the lid.py.

The distance between the two language models is obtained by getting the modulus of the difference

between the probability of trigram in the training model and the target model and summing these up

for all the trigrams in the target language model. The language model with the least distance is

declared the identified language.

b) Normalizing and Tokenizing

Language detection is followed by a pre-process activity that involves normalizing and tokenizing

with a view of standardizing all input texts to prepare them for further processing. Since normalizing

and tokenizing are language independent a standard python routine was implemented. NLTK has a

standard tokenizer but requires additional facilities for normalizing. The tool was enhanced by

ensuring that it can recognize non-standard words like numbers, abbreviations and dates and convert

them accordingly.

c) Lemmatization and Stemming

NLTK is integrated with several English Lemmatizing and Stemming tools. Two most used

stemmers namely the Porter (Porter, Robertson, & Rijsbergen, 1980) and the Lancaster stemmers

(Paice, 1990) were tried out. The Lancaster stemmer gave better results and therefore was selected.

WordNet is the default lemmatizing tool for NLTK and was selected for the pipeline. WordNet

lemmatizer uses the WordNet database to lookup lemmas. Lemmas differ from stems in that a

lemma is a dictionary word, while a stem is a surface word less the affixes and not necessarily in the

dictionary.

Kiswahili does not have readily available lemmatizing and stemming. As a result of this, a

lemmatizer and a stemmer were developed for use in the prototype. Two widely quoted approaches

in literature are data-driven methods such as the 'Memory-Based Kiswahili Morphological Analyzer'

(MBSMA16) reported by De Pauw and Schryver (2008) and finite state transducers on two levels

16 A demonstration system for the MBSMA-s system can be found on the AfLaT website http://aflat.org/?q=node/241).

http://aflat.org/?q=node/241).

Lawrence Muchemi-PhD Thesis 2014

151 | P a g e

such as SWATWOL (Hurskainen A. , 1992). These approaches perform morphological analysis and

also give base form words that is, the lemmas. Another approach is the dictionary based approach.

This approach has been used for the WordNet (Miller G. , 1995) lemmatizer where it uses a database

to lookup for lemmas. For a limited experimental usage such as testing sample Kiswahili input

sentences as is the case with the prototype being developed a look-up database was sufficient.

Information from Helsinki Corpus of Kiswahili, HCS (Hurskainen A. , 2004) and the Kiswahili-

English Dictionary by Institute of Kiswahili Research, University of Dar es Salaam (TUKI, 2000)

which already contains Kiswahili lemma and lexical categories (POS) were used to construct a

Kiswahili lexical database. HCS is a corpus with over twelve and half million words and was

annotated using SALAMA (Hurskainen A. , 1999) which is a language manager that performs

morphological analysis among other tasks. Only a small section of the HCS was used specifically

‘Alasiri’ genre whose origin was newspaper/magazine articles.

 A section of the corpus is shown in figure 4.4.

Fig 3.51 Structure of HCS Showing Lemma, Part-of-speech Label, Translation among others

The structure of the Kiswahili-English dictionary (TUKI, 2000) is illustrated in figure 3.52. It shows

how lemma, parts of speech the translation among others are represented in the dictionary. The

electronic version was available.

<s>

 <w lemma="mshindi" type="N" msd="CAP 1/2-SG DER:verb (shinda)" trans="winner">Mshindi</w>

 <w lemma="wa" type="GEN-CON" msd="1/2-SG">wa</w>

 <w lemma="tatu" type="NUM" msd="NUM-INFL ORD" trans="third">tatu</w>

 <w lemma="katika" type="PREP" trans="in , at">katika</w>

 <w lemma="kinyang'anyiro" type="N" msd="7/8-SG DER:o" trans="stiff competition">kinyang'anyiro</w>

 <w lemma="hicho" type="PRON" msd="DEM :hV ASS-OBJ 7/8-SG" trans="this">hicho</w>

 <w lemma="ni" type="DEF-V:ni" trans="be">ni</w>

 <w lemma="taus" type="PROPNAME" msd="&lt;CAP> &lt;Heur> SG">Taus</w>

 <w lemma="Abdallah" type="PROPNAME" sem="AN HUM">Abdallah</w>

 <s>

Lawrence Muchemi-PhD Thesis 2014

152 | P a g e

Fig 3.52 Structure of Swa-Eng TUKI Dictionary Showing Lemma, Pos Labels and Translation

d) POS Tagging

The objective was to develop a part of speech tagger which handles the input statements. NLTK tool

comes with several taggers. These taggers require to be trained on one of the corpora that comes

with NLTK and that has part of speech tags. The unigram tagger for example tags each word by

checking what the most frequent tag for the word is in a training corpus. There are approximately 38

sets of corpora that can be loaded onto NLTK and that one can choose from and includes such

corpora as conll2000, brown, Stop words, NPS Chat, Universal Declaration of Human Rights

Corpora among others. The main part of speech taggers integrate with NLTK include unigram,

bigram, trigram, Regexp, affix, brill and hidden Markov model taggers.

Various taggers were tested on selected corpora. The Brill tagger having been tested on the brown

corpus was selected for English inputs. The Brill tagger uses an initial unigram tagger and a set of

templates usually ten. The training procedure involves importing the Brill tagger and running an

initial tagger in this case the unigram tagger, and then improving the tagging by applying a list of

transformation rules. These transformation rules are automatically learned from the training corpus,

based on one or more rule templates. Training the Brill tagger is carried out via few steps illustrated

in figure 3.53.

The tagger statistically computes the tag of each word, and then improves on the mistakes through

the help of learning rules. In this way the Brill tagger successively transforms through rules an

incorrect tagging of a word into a better one. Bird et al. (2008) explains that as with n-gram tagging,

Brill tagger is a supervised learning method, since it requires annotated training data to figure out

bingwa nm & kv ma- [a-/wa-] 1 specialist, adept, consultant, expert: ~ wa uchumi wa Afrika specialist in African economy. 2
clever person, (michezo) champion, (sio rasmi) dab-hand: Kijana huyu ni ~ this youngman is very clever.

bingwa tapeli nm ma- [a-/wa-] quack, conman.

bin.i kt [ele] forge, counterfeit. (tde) binia, (tden) biniana, (tdew) biniwa; (tdk) binika; (tds) binisha.

binti pia biti nm ma- [a-/wa-] daughter, miss, girl, young lady: ~ Juma Juma's daughter.

binu.a kt [ele] protrude. (tde) binulia, (tdew)

Lawrence Muchemi-PhD Thesis 2014

153 | P a g e

whether the tagger's guess is a mistake or not. But unlike n-gram tagging, it does not count

observations but compiles a list of transformational correction rules.

Fig 3.53 Training and Evaluation of Part of Speech Taggers

The Kiswahili POS tagger was also developed in a similar way as explained in figure 3.52 and

preceding section. The Kiswahili corpus comprising of lemmas and part of speech tags was

generated as a .txt file from the HCS corpus which is an xml file. The performance of the tagger was

lower compared to the Data-Driven Part-of-Speech Tagger for Kiswahili (De Pauw, Schryver, &

Wagacha, 2006) which is reported to have an accuracy of 98.6% against 82.6% for the combined

Brill and unigram tagger. The Data-Driven Part-of-Speech Tagger was not available online nor other

taggers such as the SWATWOL (Hurskainen A. , 1992) and Morfessor (Creutz, Lagus, Linden, &

Virpioja, 2005), hence the decision to use the combined Brill and unigram tagger.

3.8.2.1 Module C: Concepts Generation

a) Candidate Concepts Generation (Concepts Modeling)

A term is a word or group of words used in a communicative setting to represent a concept within a

domain. A term represents one concept within a domain. A term consisting of one or more words

and can be categorized as a compound term or a term collocation. A Collocation is a sequence of

>>> brown_tagged_sents = brown.tagged_sents(categories='news') // obtain a set of tagged sentences
from brown corpus in the ‘news’ genre

>>> size = int(len(brown_tagged_sents) * 0.9)// obtain total length of the tagged sentences

>>> train_sents = brown_tagged_sents[:size]// define that from start of tagged sentences to the 90% mark, the
sentences will be used for training

>>> test_sents = brown_tagged_sents[size:]// define that from 90% mark to the end of tagged sentences will
be used for training

>>> unigram_tagger = nltk.UnigramTagger(train_sents)// Define a unigram tagger and initialize with the
pre-defined training sentences

>>> unigram_tagger.evaluate(test_sents)// Evaluate the unigram tagger… just to be sure that its working ok

>>> trainer = FastBrillTaggerTrainer(initial_tagger=unigram, templates=templates,
trace=3, deterministic=True)
>>> brill_tagger = trainer.train(train_sents, max_rules=10)// define the brill tagger // Train brill
tagger and run it.
>>> print 'Accuracy: %4.1f%%' % (100.0 * nltk.tag.accuracy(brill_tagger, test_sents))
Accuracy: 82.6%

Lawrence Muchemi-PhD Thesis 2014

154 | P a g e

words or terms that co-occur more often than would be expected by chance. A phrase is used to refer

to a building block of a sentence and so has a grammatical significance in a sentence. A multi-word

phrase is a word group held tightly together by meaning relationships. A phrase is built around a

head word (Noun, Verb, Adjective, Adverb, and Preposition) and may also have several modifiers in

it. Modifiers are expressions that add details of meaning to the head word.

Phrase and terms generation from text relies on theories of chunking which are well established. The

most dominant approaches include rule based methods and data-driven methods. Rule-based

approaches use regular expressions while some of the successful machine learning methods include

SVM-based chunkers such as YamCha17, chunking using transformation-based learning such as the

java oriented Greenwood’s chunker18 and the C++ oriented fnTBL19 chunker and the NLTK

chunkers. The default NLTK chunker is a classifier based chunker trained on the ACE corpus

(Django Project, 2011). It recognizes noun phrases and named entities, such as locations, names,

organizations, and only work well with an English tagger. NLTK also allows for definition and

execution of either a machine learning based chunker or a regular expression chunker. Studies for

Kiswahili text chunking have not been widely documented. The main challenge in machine learning

chunking is in the creation of I-O-B tagged data if it does not exist, whereas the main challenge in

regular expression based implementation is in the study and discovery of these patterns which is a

manual task.

In the methodology applied for this work the NLTK machine learning chunker was selected for

English texts on the basis of its performance and the fact that it can easily be linked to other python

implemented modules. Data that is already PoS tagged and annotated with I-O-B tags for English is

available. PoS and I-O-B tagged CoNLL 2000 corpus was used for training. The CoNLL 2000

corpus contains 270,000 words from the Wall Street Journal text and is already divided into training

and testing portions.

In training the classifier-based machine learning chunking a four stage process was used.

17 YamCha (Yet another multi-purpose Chunk annotator)is a generic, customizable, and open source text chunker oriented toward a lot of NLP tasks,
such as POS tagging, Named Entity Recognition, base NP chunking, and Text Chunking and can be found at
http://www.chasen.org/~taku/software/yamcha/
18 GATE framework linkable chunker done at University of Sheffield. Details found at
http://www.dcs.shef.ac.uk/~mark/index.html?http://www.dcs.shef.ac.uk/~mark/phd/software/chunker.html
19 A fast and flexible implementation of Transformation-Based Learning in C++. Includes a POS tagger, but also NP chunking and general chunking
models. Found at nlp.cs.jhu.edu/~rflorian/fntbl/

http://www.chasen.org/~taku/software/yamcha/
http://www.dcs.shef.ac.uk/~mark/index.html?http://www.dcs.shef.ac.uk/~mark/phd/software/chunker.html

Lawrence Muchemi-PhD Thesis 2014

155 | P a g e

 The first stage involved a PoS tagger in which part of speech tags are assigned to a sentence.

The result of this first stage is a list of tokens within a sentence that has PoS tags. The PoS

tagged sentence forms the input of the next stage and that is chunk tagging.

 The PoS tagged sentences are further annotated with I-O-B tags by the help of a chunk-

tagger. I-O-B tags specify if a particular token is inside, outside or at the beginning of a

chunk. For example the sentence ‘ Nipe alama za mwanafunzi aitwae Julius’ (Give me the

marks of a student called Julius) can be broken down into several noun phrases such as

‘alama za mwanafunzi’(the marks of a student). ‘alama’ can be labeled ‘B’ because it

appears at the beginning of the noun phrase, ‘za’ appears inside the phrase and therefore is

labeled ‘I’ while ‘Nipe’ is outside the phrase and is labeled ‘O’. The various PoS tagged

tokens within a sentence are annotated with the I-O-B tags by the chunk-tagger.

 The third stage was to convert these PoS and I-O-B tagged sentences into a chunk tree which

is done by the chunk-parser.

 The fourth stage involved conversion of the chunk tree into actual chunks and this is done by

an extractor. A tree traversal function for extracting NP-chunks in the parsed tree was

defined and used to extract all n-gram chunks. Segments of the python code used for training

and testing the English-text chunk parser and extractor are shown in appendix 4.

On the other hand Kiswahili does not have readily available I-O-B tagged data and an attempt to

develop an I-O-B tagged corpus would require significant man-hours. However, Kiswahili has well

documented regular patterns of noun-phrases which are presented by Ohly (1982) and recast by

Sewangi (2001) as shown in figure 3.54 and term patterns. The phrase patterns are generalizable to

many domains because they are common grammatical phrases. Another study done on patterns

(Sewangi, 2001) sought to obtain term patterns in specific domains. It was demonstrated that term

patterns are formed by words that function as members of a subcategory of the major categories. For

example, the noun term and verbal noun act as subcategories of noun and verb major categories

respectively. The study unearthed term patterns in two domains specifically health-care and

literature domains. Though the patterns are domain specific one can obtain common templates that

can be applied across domains.

Lawrence Muchemi-PhD Thesis 2014

156 | P a g e

Fig. 3.54 Regular Patterns of Noun-phrases (Source: Sewangi, 2001)

The methodology applied in this study involved applying the common multi-word terms’ regular

expressions (see appendix 5). These templates and the Ohly phrase templates were used as regular

expressions in phrase chunking. These were applied to the NLTK RegExp chunker as its regular

expressions as shown in appendix 6.

b) Concepts Pruning and Feature Space Model Construction

The noun-phrases and terms generated from the section above are likely to be over generated

especially due to the use of templates. Some phrases do not make semantic sense with respect to

underlying concepts and therefore they need to be eliminated. The triples are pruned by eliminating

triples not based on the composed semantic ontology of the database as these are less likely to yield

results and ultimately assembled as SPARQL20. The Feature Space Model structure is described in

section 3.3.2. It was implemented as an array using python.

3.8.2.2 Module D, E, F: Database, RDF Framework and OCM Tools

Module D was implemented using WampServer21 that consists of php, MySQL, and apache while

module E was implemented using Protégé22, Datamaster and the protégé’s native RDF Reasoner.

Module F whose components design was explained in section 3.3.2 through 3.6.2 were implemented

as python functions.

20 SPARQL is a structured query language that can query RDF sources. See tutorial at http://www.w3.org/TR/rdf-SPaRQL-query/ and
http://www.xml.com/pub/a/2005/11/16/introducing-SPaRQL-querying-semantic-web-tutorial.html?page=1
21 WampServer: It allows you to create web applications with Apache2, PHP and a MySQL database. Alongside, PhpMyAdmin allows you to manage
easily databases. See athttp://www.wampserver.com/en/
22 A free open-source Java tool providing an extensible architecture for the creation of customized knowledge-based applications. See
protege.stanford.edu/

http://www.w3.org/TR/rdf-SPaRQL-query/
http://www.xml.com/pub/a/2005/11/16/introducing-SPaRQL-querying-semantic-web-tutorial.html?page=1
http://www.wampserver.com/en/

Lawrence Muchemi-PhD Thesis 2014

157 | P a g e

3.9 Chapter Summary

This chapter has presented details of research activities leading to the design of the Ontology

Concept Model (OCM). In particular it has detailed the activities of several case studies aiming at

linguistic characterization of NLQs for both Kiswahili and English and a study of nomenclature

trends of database elements’. Table 3.15 shows a summary of the research objectives, how each

objective was addressed and the main components that informed the resulting OCM model that is to

be evaluated in chapter 4.

Table 3.15 Summary of Objectives, Methods and Components Developed

Research Objective How Addressed Main Components Developed

Develop a suitable
language and domain
independ. methodology

Design of conceptual framework The OCM Conceptual framework
found in section 3.1.

Design an architectural

model and algorithms
Case study for concepts discovery process Explicit and implicit concepts

algorithms and heuristics

Modeling Query Semantics Transfer
Process (NLQ  DSF SPaRQL)

QuSeT model

Modeling of Feature Space schema FSM

Case study for deciphering meanings from
Schema Data

Common nomenclature patterns

Modelling ‘Concepts Re-construction’ OWoRA

Design of data structures for schema data Gazetteer

Design of Concepts Mapping Algorithm SaCOMA

Design of Structured Query-Generator
function

Structured Query-Generator
function

Design of MAIN Algorithms & Heuristics The OCM Algorithm

Assembly of Components to form OCM-
based Architectural Model

Architecture for Ontology-ased
NL-Access to DBs (ONLAD)

Evaluation Development of Prototype Test bed; OCM-based protype

In summary results from these two studies gave rise to two important contributions namely a

semantics transfer (QuSeT) model based on generative-transformation grammar and an ontology

words reconstruction algorithm (OWoRA). The semantics transfer framework exploits kernelization

procedures to express an NLQ into its constituent chunk phrases and presents these as triples of

semantic bearing components. It was also shown how these triples are modeled into SPaRQL queries

Lawrence Muchemi-PhD Thesis 2014

158 | P a g e

that access ontologies build from relational databases. The chapter also highlighted the procedures

of designing two schemata, that is an FSM and a gazetteer as well as a Semantically Augmented

Concepts Matching Approach (SACoMa) which are crucial components of the OCM. Other

procedures presented included implicit concepts discovery, foreign keys handling, triples assembly,

structured query generation and the overall OCM algorithm. The last section of the chapter dedicated

itself to prototype development activities.

The next chapter explains the experiments that were used in evaluating the OCM model described in

this chapter as well as the results.

Lawrence Muchemi-PhD Thesis 2014

159 | P a g e

Chapter 4: EVALUATION AND FINDINGS

4.0 Preamble

There is no standard framework for evaluating the performance of NL access to DB models at

present. Various researchers have used different evaluation parameters and procedures as described

in detail in section 2.7 of the literature review. The dominant quantitative parameters observed from

literature included precision, recall, accuracy and F-Score while qualitative measures have varied

from one research to the other with no single dominant parameter. In fact some researchers do not

include qualitative parameters for evaluation. Further to this, the procedure to be followed in

measuring these quantities has not been standardized. This chapter therefore highlights the

procedures and parameters selected or designed for evaluating the OCM model.

4.1 Evaluation Framework (Parameters and Procedures)

An evaluation framework describes the environment, procedures and parameters used in determining

the performance of a model. To evaluate the OCM model, an evaluation framework was designed

after analysis of literature. The general process flow for the evaluation process applied is illustrated

in figure 4.1.

Fig. 4.1 General Evaluation Process Flow

From literature slight variations are observed in the five components of figure 4.1 depending on the

preferences of the researcher. For example in query collection, NL questions may be collected from

paper-based questionnaires like was the case in EXACT (Yates, Etzioni, & Weld, 2003), AquaLog

Collect Queries Process Queries
Using Prototype

Build Prototype

Assess Quality of
Responses

Separate Queries
(answerable &
unaswerable)

[OPTIONAL]

Lawrence Muchemi-PhD Thesis 2014

160 | P a g e

(Lopez, Pasin, & Motta, 2004) among others or generated electronically as in Tiscover NL interface

(Dittenbach & Berger, 2003), QuestIO (Tablan, Damljanovic, & Bontchev, 2008). Others prefer to

use existing queries such as Geo-queries and Restaurant queries by Tang and Mooney (2001). This

research utilized five datasets for evaluation as explained in 3.3 where one set was collected

manually, another one electronically and three others were obtained from existing query-sets, the

aim being to provide a bench mark result.

The next task is to separate queries that may be answered by the system from those that cannot be

answered due to lack of enough information or being out of context of the ontology. Popescu (2003)

for example separated ‘semantically tractable’ questions from those that are not. Querix (Esther,

Abraham, & Renato, 2006) separated what they termed as ‘nonsense’ questions from sensible ones.

Yates et al. (2003) separated what they called ‘non-goal oriented’ questions from goal oriented.

Some researchers however advocate for the use of raw question-sets as collected from users. Works

such as e-tourism NL interface (Ruiz-Martınez, et al., 2009) and Tiscover NL interface (Dittenbach

& Berger, 2003) used questions in their raw form to evaluate or perform analysis on questions. This

research adopted the latter. This was motivated by the fact that users of these applications in the real

world, submit all manner queries including the ones that yield no results. The model should provide

the real performance under such circumstances. Since the queries within the query sets ware

randomly collected, the true performance is therefore likely to be indicated.

Building of prototypes is an important step in the evaluation process. However tools used for

implementing these prototypes vary, thereby giving non-standard testing environments. If similar

tools and resources are used, the testing environment can be standardized. Section 4.2 provides an

in-depth discussion on tools and resources selected for this work.

The last step in the evaluation framework involves assessing the quality of the output. Here

variations occur with respect to what is being evaluated. For example PANTO (Wang, Xiong, Zhou,

& Yu, 2007), e-tourism NL interface (Ruiz-Martınez, et al., 2009) among others manually inspected

the quality of the structured query (SPaRQL) generated, while a large number of other researchers

including QuestIO (Tablan, Damljanovic, & Bontchev, 2008), Querix (Esther, Abraham, & Renato,

2006), AquaLog (Lopez, Pasin, & Motta, 2004) among others preferred subjecting the generated

structured query to the ontology. This research selected the latter because it gives a better reflection

of the expected performance if the system was to function in an environment where a user is

Lawrence Muchemi-PhD Thesis 2014

161 | P a g e

querying an existing ontology. Moreover, there may exist errors unnoticeable by the eye if

inspection of the structured queries is done manually. In assessing the quality of responses generated

from the ontology, a given response can easily be classified as ‘correct’, ‘wrong’ and ‘no-answer’.

Figure 4.2 illustrates this classification of answers generated by a SPaRQL query from the ontology,

Fig. 4.2 Illustration of Categories Used in Evaluation

The recorded answers from each category formed the basis for calculating the accuracy, precision

and recall values as explained in section 4.11.

The Evaluation framework used for this study had seven aspects as listed below,

a) Four quantitative measurements namely Precision, Recall, Accuracy and F-score and

b) Four qualitative measures namely Domain independence, Language-independence, Support

for Cross-linguality and Effect of Query Complexity on Model.

4.1.1 Quantitative Parameters

From figure 4.2 it is observed that the model generates four categories of answers. True positives

(tp) indicate cases where SPaRQL was generated and upon passing the query to the reasoner in the

Protégé tool, a correct answer (as expected from the database point of view) was produced. False

positives (fp) show cases where the SPaRQL generated an unexpected answer (not fulfilling the

request expressed in NL). False negatives (fn) show cases where the system did not return any

 Query expected to yield a SPaRQL Query yielded a SPaRQL

SPaRQL NOT yielded SPaRQL yielded is TRUE SPaRQL yielded is FALSE
(but should have been yielded)

fn tp fp tn

Query NOT expected to
yield a SPaRQL & DID NOT

Lawrence Muchemi-PhD Thesis 2014

162 | P a g e

SPaRQL although it was expected to, while true negatives (tn) indicate cases where the system did

not produce a SPaRQL and was not expected to produce.

Precision is calculated as a ratio of the SPaRQL queries generated (and that yield right answers) to

the total queries generated by the system. It therefore indicates the quality of the answers obtained

from the system. The higher the precision, the better the performance is.

Recall is calculated as a ratio of the SPaRQL queries generated (and that yield right answers) to the

total queries that should have been generated by the system. Recall indicates the extent to which our

model generates true SPaRQL queries. The significance of recall is to show the range of questions

the model is able to handle. Models with higher recall values are said to have better performance

over those with lower recall value.

Another parameter used is accuracy. Accuracy is expressed as a percentage of sum of true positives

and true negatives against the total number of queries passed to the system. Accuracy level shows

the extent of the correct answers (tp and tn) users would obtain from a given query set. Accuracy

therefore indicates the confidence one would have in a model given a specified query set.

Another parameter used is the harmonic mean of precision and recall, also known as F-score. It

allows for expression of precision and recall as a single value. The higher the F-score, the better the

performance. These parameters are summarized in table 4.1.

Table 4.1 Summary of Quantitative Parameters Used

Measurement
Parameter

Formula for Obtaining Parameter

Parameter Indicates

Precision

tp/ tp+ fp

Quality of Answers Given

Recall

tp/ tp+ fn

Range of Questions Answered

Accuracy

tp+tn/tp+fp+tn+fn

User Confidence in the Model

F-score

2(Precision X Recall)/(Precision + Recall)

Model’s Mean Performance

4.1.2 Qualitative Parameters

Lawrence Muchemi-PhD Thesis 2014

163 | P a g e

Domain Independence: This is the ability of a model to be ported from one area of application to

another without the deterioration of the performance of the model. Domain independence is obtained

from variance analysis where one studies if significant variations occur when the domain is

successively changed. Accuracy, recall and precision are calculated for each domain area while

holding the querying language constant.

Language Independence: This is the ability of a model to use two or more natural languages

without the deterioration of the performance of the model. Language independence is obtained from

variance analysis where one studies if significant variations occur when the language is successively

changed. Accuracy, recall and precision are calculated for each language applied. Where multiple

domains are involved the average value of each parameter is used while determining the variance

value.

Support for Cross-Lingual Querying: This is the ability of a model to use a certain natural

language to query a database given that the language used to author ontology or database schema

objects is different from the querying language.

Effect of Query Complexity on the OCM model:

The degree of complexity of a query is assumed to be proportional to the number of concepts within

a query. Most models deteriorate in performance with an increase in the number of concepts within a

query.

The quantitative and qualitative parameters were experimentally obtained as described in the section

4.3.4.

4.2 Test-bed

The test bed that was developed and used for experimental purposes is shown in figure 4.3.

Lawrence Muchemi-PhD Thesis 2014

164 | P a g e

Fig. 4.3 Test bed used in Prototypes Evaluation

The python code developed for this prototype is found in Appendix 8.

4.3 Evaluation Datasets

In the experiments carried out, two models, the OCM and the TTM (Muchemi L. , 2008) were

applied across five databases. Table 4.2 outlines a summary of these databases. These databases

were specifically used for the following reasons,

The farmers-db was mainly used to test Kiswahili aspects of the study while the UoN MSc

coordinator’s correspondences database was used to study English aspects of the research. The

Northwind database which is shipped with Microsoft database server provides a well-known

database which can provide some standard testing environment. It has also been used to test other

database access models such as ELF (Bootra, 2004). The other two databases Restaurants-db and

Job-search_db have been widely used by researchers in this area in evaluating their models. By using

these databases to evaluate the OCM model, the results were easily bench-marked.

 Swahili

 English

NB: TTM stands for Token-based Template Mapping (Muchemi L. , 2008) while OCM stands for Ontology
Concepts Mapping.

Language
detector/
selector

WordNet

Swahili
Lexical DB

Pre-process

Pre-process

Linguistic-
process

Linguistic-
process

Token-based
Template Mapping
(TTM)

Ontology Concepts
Mapping (OCM)

Token-based
Template Mapping
(TTM)

Ontology Concept
Mapping (OCM)

Tokenizer

Concepts/
NP Chunks

Concepts/
NP Chunks

Gazetteer
Translation

Gazetteer
Formation

Lawrence Muchemi-PhD Thesis 2014

165 | P a g e

 Table 4.2: Relational Databases Used in the Experiments

Name of Database

No of

Tables

Description

1 Chicken Farmers_db 8 Database created to mimic the one at Thika poultry

farmers’ project help desk as reported in Muchemi, (2008)

2 UoN MSc Coordinator_db 4 Database created to mimic students’ records database at

University of Nairobi.

3 Microsoft’s Northwind_db 8 Standard database shipped with Microsoft’s database

server

4 Restaurants_db 7 Database whose schema is described in Tang & Mooney,

(2001) and has been quoted widely in experiments23

5 Computer Jobs_db 4 Database whose schema is described in (Tang & Mooney,

2001) and has been quoted widely in experiments24

Each database was subjected to queries that had been collected through procedures described in

section 3.3. The query sets were large and required sampling. Section 4.2.3 explains how sampling

was done.

4.4 Queries Sampling Procedure

Each query set was treated as a separate population. Sampling was done from these query sets. A

stratified random sampling approach was used to select queries from each population.

Each population (single query set) was divided into eight strata where each stratum contained

queries of varying complexity. Complexity was defined in a similar manner as in Tablan et al.

(2008) where the complexity of a question was assumed to increase with the number of concepts

present in a query. This was determined by counting the number of meaning bearing components in

23 See https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html for a reproduction
24 See https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html for a reproduction

https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html
https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html

Lawrence Muchemi-PhD Thesis 2014

166 | P a g e

a query. A component was defined as a chunk of a phrase of any type, nouns, modifiers or

collocation terms.

Table 4.3: Query Sets Used for Evaluation

Diversity of queries within a single stratum was ensured through selection of queries of different

types where the types were as defined in section 3.3.7. These included ‘what’, ‘where’,

‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’, ‘comparative’,

‘superlative’ and disjunctive (choice) types. Figure 4.3 shows the number of queries selected per

population.

Name of Query-set

Total No.

of

Questions

in Set

No. of

Queries

Selected for

Evaluation

Description

Original

Source

Farmers Queries 625 200 Swahili queries based on

poultry farmers case study.

Muchemi,

(2008)

UoN MSc Coordinator

Queries

310 200 English queries based on

UoN MSc students’

coordinator query set.

Coordinator

e-mails

ELF Queries to MS

NorthwindDB

120 120 English queries originally

created by Bootra to

evaluate ELF on Microsoft

northwind-db at Virginia

Commonwealth University

(Bootra,

2004)

Computer Jobs Queries 500 250 English database and queries

for computer jobs used

originally by Tang under

Ray Mooney for PhD work

at Texas State University

Recreated

from Tang

& Mooney,

2001

Restaurant Queries 250 200 Same as above but for

restaurant selection

Tang &

Mooney,

2001

Total 1805 970

Lawrence Muchemi-PhD Thesis 2014

167 | P a g e

4.5 Experimental Determination of Mean Performance of OCM Model

The test procedures involved subjecting the OCM and TTM models to a complete set of queries

from a given query set. Each question was run against the models as shown in the test bed in figure

4.3. The models generated SPaRQL queries that were applied to the OWL ontology that had been

formed from the respective relational database. Appendix 12 shows an example of an NLQ and its

various transformations until a SPaRQL query is generated. It further shows results generated by the

SPaRQL query upon application to the OWL ontology. Human evaluators examined the answers

generated from the database and classified each one of them as ‘true positive’, ‘false positive’, ‘true

negative’ or ‘false negative’. Four human evaluators were used to perform the tests. The evaluators

were recruited from undergraduate computer science students at the University of Nairobi. They

were given basic training on handling input and output responses of the prototype.

This section presents the experimental procedures and an outline of the analysis carried out.

4.5.1 Results from Test-Sets

The OCM model was applied across five databases as described in Table 4.2 of section 4.3.2 and the

respective query sets described in Table 3.1 of section 3.3.4.4 used. The specific questions in each

query set are found in appendix 1. In order to make a direct comparison with other models, the parse

tree template mapping model (TTM) described in Muchemi (2008) was plugged into the test bed and

results from these query sets obtained and tabulated.

Evaluations were done with the value of Levenshtein gap, µ being 0 or 1, meaning perfect matching

of strings within the gazetteer and the FSM or an allowance of one insertion, deletion or substitution

of a single character respectively. The experiments were done in a comparative manner with the

purpose of establishing the optimum OCM performance.

The following section highlights these results. They are organized according to the five test sets done

where each test set represents results for OCM and TTM for a particular query set.

Tables 4.4 and 4.5 show a summary of results from first test set,

Lawrence Muchemi-PhD Thesis 2014

168 | P a g e

Table 4.4: Test Set 1- OCM - Kiswahili Queries (Poultry Farmers_db)

Table 4.5: Test Set 1-TTM- Kiswahili Queries (Poultry Farmers_db)

Swahili_Queries (Farmers_db)

Experiment 1 µ = 0 µ = 1

 True Positives 118 116

 False Positives 13 32

 True Negatives 34 29

 False Negatives 35 23

 Total Queries 200 200

 Precision 0.90 0.78

 Recall 0.772 0.83

 Accuracy 0.76 0.73

 F-score 0.83 0.81

Swahili_Queries (Farmers_db)
TTM

 True Positives 87

 False Positives 42

 True Negatives 29

 False Negatives 42

 Total Queries 200

 Precision 0.67

 Recall 0.67

 Accuracy 0.58

 F-score 0.67

Lawrence Muchemi-PhD Thesis 2014

169 | P a g e

Tables 4.6 and 4.7 show a summary of results from the second test set,

Table 4.6: Test Set 2- OCM -English Queries (Microsoft’s Northwind_db)

English_Queries (Microsoft_db)

OCM µ = 0 µ = 1

 True Positives 73 75

 False Positives 5 12

 True Negatives 5 7

 False Negatives 37 26

 Total Queries 120 120

 Precision 0.94 0.86

 Recall 0.66 0.74

 Accuracy 0.65 0.68

 F-score 0.78 0.79

Table 4.7: Test Set 2- TTM -English Queries (Microsoft’s Northwind_db)

English_Queries (Microsoft_db)
TTM

 True Positives 61

 False Positives 28

 True Negatives 8

 False Negatives 23

 Total Queries 120

 Precision 0.68

 Recall 0.73

 Accuracy 0.57

 F-score 0.70

Lawrence Muchemi-PhD Thesis 2014

170 | P a g e

Tables 4.8 and 4.9 show a summary of results from the third test set,

Table 4.8: Test Set 3- OCM - English Queries (UoN MSc Coordinator_db)

English (UoN_MSc coordinator_db)
OCM µ = 0 µ = 1

 True Positives 110 103

 False Positives 14 16

 True Negatives 28 32

 False Negatives 48 49

 Total Queries 200 200

 Precision 0.88 0.87

 Recall 0.70 0.68

 Accuracy 0.69 0.68

 F-score 0.78 0.76

Table 4.9: Test Set 3- TTM - English Queries (UoN MSc Coordinator_db)

English (UoN_MSc coordinator_db))
TTM

 True Positives 90

 False Positives 29

 True Negatives 32

 False Negatives 49

 Total Queries 200

 Precision 0.76

 Recall 0.65

 Accuracy 0.61

 F-score 0.69

Lawrence Muchemi-PhD Thesis 2014

171 | P a g e

Table 4.10 and 4.11 shows a summary of results from the fourth test set,

Table 4.10: Test Set 4- OCM - English Queries (Restaurants_db)

Table 4.11: Test Set 4- TTM - English Queries (Restaurants_db)

English_Queries (Restaurants_db)
OCM µ = 0 µ = 1

 True Positives 98 99

 False Positives 11 20

 True Negatives 40 33

 False Negatives 51 48

 Total Queries 200 200

 Precision 0.90 0.83

 Recall 0.66 0.67

 Accuracy 0.69 0.66

 F-score 0.76 0.74

English (Restaurants_db)
TTM

 True Positives 85

 False Positives 34

 True Negatives 33

 False Negatives 48

 Total Queries 200

 Precision 0.71

 Recall 0.64

 Accuracy 0.59

 F-score 0.67

Lawrence Muchemi-PhD Thesis 2014

172 | P a g e

Tables 4.12 and 4.13 show a summary of results from the fifth test set,

Table 4.12: Test Set 5- OCM - English Queries (Computer_Jobs_db)

Table 4.13: Test Set 5- TTM - English Queries (Computer_Jobs_db)

English_Queries (ComputerJobs_db)
OCM µ = 0 µ = 1

 True Positives 108 107

 False Positives 15 20

 True Negatives 27 28

 False Negatives 50 45

 Total Queries 200 200

 Precision 0.89 0.84

 Recall 0.68 0.70

 Accuracy 0.68 0.68

 F-score 0.77 0.77

English (ComputerJobs_db)
TTM

 True Positives 88

 False Positives 39

 True Negatives 28

 False Negatives 45

 Total Queries 200

 Precision 0.69

 Recall 0.66

 Accuracy 0.58

 F-score 0.68

Lawrence Muchemi-PhD Thesis 2014

173 | P a g e

4.5.2 Discussion of Quantitative Evaluation Results

A summary of the results presented in section 4.5.1 is presented in Table 4.14.

Table 4.14 Summary of Results

 Levens
gap)

Exp. 1
Swa-
Farmers

Exp. 2
Northwind

Exp. 3
MSc_Coord

Exp. 4
Restaurant
Search

Exp. 5
Jobs

Average

Precision
(%)

µ = 1 0.78 0.86 0.87 0.83 0.84 0.836

µ = 0 0.90

0.94 0.89 0.90 0.88 0.902

TTM 0.67 0.69 0.76 0.71 0.69 0.704

Recall (%) µ = 1 0.84 0.74 0.68 0.67 0.70 0.726

µ = 0 0.77 0.66 0.70 0.66 0.68 0.694

TTM 0.67 0.73 0.65 0.64 0.66 0.67

Accuracy
(%)

µ = 1 0.73 0.68 0.68 0.66 0.68 0.686

µ = 0 0.76 0.65 0.69 0.69 0.68 0.694

TTM 0.58 0.58 0.61 0.59 0.58 0.588

F-Score µ = 1 0.81 0.79 0.76 0.74 0.77 0.774

µ = 0 0.83 0.78 0.78 0.76 0.77 0.784

TTM 0.67 0.71 0.70 0.67 0.68 0.686

The results indicate a model whose average precision at a Levenshtein distance µ, of 1 (within the

matching function) is 0.84 and increases to 0.90 on decrease of µ to 0. Precision therefore increases

with decrease of µ while recall decreases from 0.73 to 0.69 when the edit distance is changed from

one to zero.

Since precision indicates the quality of the answers obtained from the system, it is true that the

higher the precision, the better the quality of the answers received by the user. Thus based on

Lawrence Muchemi-PhD Thesis 2014

174 | P a g e

precision alone µ should be restricted to zero. As stated in section 4.1.1, recall is an indicator of the

extent to which OCM generates SPaRQL queries given a wide range of question types and varying

complexity. The significance of recall is to show the range of questions the model is able to handle.

The higher the recall value the better performance, thus based on recall, µ should be set to one.

Accuracy on the other hand increases slightly from 0.686 to 0.694, a difference that is not significant

enough for a clear performance enhancement to be concluded. Increasing µ from 0 to 1 (relaxing the

matching constraint) means that instances where no SPaRQL is generated are decreased thereby

increasing recall. However the generated SPaRQL gives many undesired results (many false

positives). On the other hand, only a slight increase in true positives (‘tp’) is noted. By definition

precision was given in table 4.1 as, tp/(tp+fp), meaning the precision decreases with increase in µ.

Accuracy was also defined in table 4.1 as tp+tn/(tp+fp+tn+fn). As observed, increasing µ from 0 to

1 decreases instances where no SPaRQL is generated but increases ‘fp’ with only a slight change in

‘tp’. This in effect means that only a slight increase in accuracy is expected, as was the case with the

observations made from the experiments.

 A suitable parameter for gauging the overall suitability is the F-score, the harmonic mean of

precision and recall, which records a slight increase from 0.774 to 0.784 on tightening µ from one to

zero. This indicates that any NLQ system that relies on string matching for extracting explicit and

implicit concepts from a database should have an edit distance of zero in the matching function if

precision and F-score are the main considerations.

4.6 Experimental Determination of Domain Independence

4.6.1 Experiments Setup

An experiment was set up to determine the degree of language independence. Four different domains

were selected for testing the degree of independence. The domains were based on the fields of

trading, student-management, job-search and finding-restaurants. The setup is as shown in figure

4.4.

Lawrence Muchemi-PhD Thesis 2014

175 | P a g e

Fig. 4.4 Experimental Procedure for Domain Variance Experiments

4.6.2 Analysis Overview

By holding the querying language constant, accuracy, recall and precision were calculated for each

domain and tabulated. The difference between the mean of each respective parameter (F-score,

accuracy, precision or recall) and computed performance values was determined and expressed as a

percentage. The results are shown in table 4.15.

Further the standard deviation, σ for each parameter (F-score, Accuracy, Precision or Recall) was

calculated and tabulated as shown in table 4.16. A variance analysis was performed on the four

obtained values by way of determining standard deviation for the four domains. For every given

domain the departure from the standard deviation was computed and noted if it was within the

standard deviation and if not by what ratio.

The standard deviation, σ was computed as follows,

 The mean of a parameter say F-Score is worked out by calculating the arithmetic mean

across the four domains.

 For each domain, the mean parameter value is subtracted from the respective parameter value

for that domain and the difference squared.

 The average of those squared differences is then worked out. The average of the squared

differences from the mean is the variance.

 The standard deviation is obtained by obtaining the square root of the variance.

Query

Language 1

Accuracy

Precision

Recall

F-Score

DB Schema
(based on

Language1)

VARIANCE

ANALYSIS

Domain 1

Domain 2

Domain 3

Domain 4

Lawrence Muchemi-PhD Thesis 2014

176 | P a g e

 To test whether the parameter value is outside the standard deviation, the standard deviation

is subtracted from that value and if the difference is zero or less, then it is interpreted that the

value is within the standard deviation.

The standard deviation is an important indicative parameter because it shows what values are within

‘normal range’ and which ones are not. This procedure was done for accuracy, precision, recall and

F-score.

4.6.3 Results for Domain Independence Experiments

Since standard deviation is a measure of dispersion or volatility of data from its mean, then a

parameter with high volatility indicates that it is affected by changes in data treatment, meaning

domain change. The mean of the performance values for each domain and their aggregate mean were

computed. The variance and standard deviation values were also determined and tabulated in table

4.15.

Table 4.15 Evaluating Domain Independence of the OCM Method (Std Deviation Analysis)

Table 4.16 shows a deviation analysis that was done for each domain by finding out whether the

performance value was outside the standard deviation or not.

Levensht.

Dist. (µ)

DOMAIN (Mean Value)

Mean

Variance

(σ2)

Standard

deviation

(σ)
Trade Stud Jobs Rest

F-score

1 0.71 0.71 0.76 0.74 0.730 0.00045 0.02121

 0 0.77 0.7 0.69 0.73 0.722 0.00097 0.03112

Accuracy

 1 0.5 0.51 0.58 0.54 0.532 0.00097 0.03112

0 0.61 0.51 0.5 0.54 0.540 0.00185 0.04301

Recall

1 0.68 0.66 0.74 0.76 0.710 0.00170 0.04123

 0 0.65 0.59 0.57 0.7 0.627 0.00262 0.05117

Precision

1 0.73 0.78 0.78 0.71 0.750 0.00095 0.03082

0 0.93 0.87 0.88 0.77 0.862 0.00337 0.05804

Lawrence Muchemi-PhD Thesis 2014

177 | P a g e

Table 4.16 Evaluating Domain Independence of the OCM Method (Outlier Points Analysis)

When expressed as standard deviation, most values were found to be within the normal standard

deviation. In a few cases (those having a value greater than one in the last four columns of table

4.16) the deviation was found to be above the standard deviation. The Peirce Criterion (Ross, 2003)

for determining outlier data was used to classify if the data was an outlier or not.

In order to determine whether any of the values was an outlier, the following steps illustrated

through an example were followed,

 The standard deviation and the mean of the complete set (across the four domains) were

determined (earlier determined and recorded in table 4.16).

 The parameter, R was obtained from the Peirce’s table (Ross, 2003) for a four data point-one

outlier condition,

o From Peirce's Table, R was found to be 1.383.

 The product of σ and R is therefore 1.383 x σ, which we refer to as S.

 Assuming that the F-score for the Restaurant query set is under investigation (whether outlier

or not), σ is read from table 4.16 above as 0.021, making the value of S to be 0.02904

 The maximum allowable deviation, R was calculated as follows,

o Rmax= (|xi- xm|max)/σ

Where,

o R is the ratio of the maximum allowable deviation of the measured value from the

mean of the data to the standard deviation,

 Deviation of Parameter (eg
Accuracy) From Mean

 No. of Times Means Deviates
from std. deviation [(x-mean)/σ]

 µ Mean σ TRADE STUD JOBS REST TRADE STUD JOBS REST

F-Score

1 0.730 0.021 0.020 0.020 -0.030 -0.010 0.940 0.942 1.414 0.471
0 0.722 0.031 -0.048 0.022 0.032 -0.007 1.520 0.722 1.044 0.240

Accuracy

1 0.532 0.031 0.033 0.022 -0.047 -0.007 1.040 0.722 1.526 0.240
0 0.540 0.050 -0.070 0.030 0.040 0.000 1.627 0.697 0.929 0

Recall

1 0.710 0.041 0.030 0.050 -0.030 -0.005 0.727 1.212 0.727 1.212
0 0.627 0.051 -0.022 0.037 0.057 -0.072 0.439 0.732 1.123 1.416

Precision

1 0.750 0.031 0.020 0.030 -0.030 0.040 0.648 0.973 0.973 1.297
0 0.862 0.060 -0.067 0.007 0.017 0.092 1.162 0.129 0.301 1.593

Lawrence Muchemi-PhD Thesis 2014

178 | P a g e

o xi is the measured value (suspect data),

o xm is the mean of the dataset and,

o σ is the population’s standard deviation.

 For the suspect data, F-score of jobs query set with a µ of 1, the quantity R was calculated as

follows,

o Rmax = (|xi - xm|max)/σ|

o xi, xm and σ are read from table 4.15 as 0.74, 0.73 and 0.02121 respectively, hence

Rmax is 0.471475

o If S > Rmax, then the data is classified as an outlier, else if S < Rmax, then it is

classified as normal data

 S has a value of 0.02904 while Rmax has a value of 0.471475, hence S < Rmax therefore the

suspect data, F-score of jobs query set with a µ of 1 was classified as normal data.

The above procedure was repeated for all data in table 4.16 and that was outside the respective

normal deviation values and no data was found to be an outlier. This led to the conclusion that the

model is not sensitive to domain change and is therefore to some extent domain independent. The

case study involved four different domains (a number limited by practical reasons for the scope of

this work), which may not be adequate to come to a conclusion that domain independence under all

possible conditions has been achieved. However, this work contributes in a significant way by

pointing to an approach that can be more rigously tested.

4.7 Experimental Determination of Language Independence

4.7.1 Experiments Setup

In order to determine the degree of language independence, the performance values say the F-score,

were determined in the set up illustrated in figure 4.5. The language of querying was successively

changed in different set ups and the performance values calculated and tabulated. The mean,

variance and standard deviation of each parameter was determined for query sets written in

Kiswahili and English.

For example, if Language 1 is English, the database schema was also based on English language

abbreviations and concatenations. The performance values were determined and tabulated.

Lawrence Muchemi-PhD Thesis 2014

179 | P a g e

Fig. 4.5 Experimental Procedure for Language Independence Experiments

4.7.2 Analysis Overview

The aim was to evaluate the degree of language independence as opposed to evaluating handling of

many languages concurrently. A similar variance analysis as described in section 4.6.2 was

performed. The Peirce Criterion (Ross, 2003) for determining outlier data as described in section

4.73 was again used to classify if data was an outlier or not.

4.7.3 Results of Language Independence Experiments

Table 4.17 shows the mean, variance and standard deviation of each parameter that was determined

from the experiments described in 4.7.1.

Query

Language 1

Accuracy

Precision

Recall

F-Score

DB Schema
(based on

Language1)

VARIANCE

ANALYSIS

Query

Language 2

Accuracy

Precision

Recall

F-Score

DB Schema
(based on

Language2)

Lawrence Muchemi-PhD Thesis 2014

180 | P a g e

Table 4.17 Evaluating Language Independence of OCM (Performance Variance Analysis)

This model was tested using Kiswahili and English queries. The average F-score on Kiswahili

queries was found to be 0.700 against 0.730 for English queries. The mean precision values for

Kiswahili were 0.740 and 0.850 against 0.750 and 0.862 (with Levenshtein distance of 1 and 0

respectively) for English queries. The variance for F-score ranged between 0.015 and 0.016 (1.5%

and 1.6% in percentage form). The variance observed for the other performance values ranged

between 0.05% (precision with µ of 1) and 2.5% (accuracy with µ of 0).

The variances were subjected to Peirce Criterion and the change of language was found not to have

an influence on the performance. This in turn means that the methods being used to convert the NLQ

to SPaRQL are language independent. The case study involved two different languages, a number

limited by practical reasons for the scope of this work. This set may not be adequate to come to a

conclusion that language independence under all possible conditions has been achieved. However,

this work contributes in a significant way by pointing to an approach that can be more rigously

tested

Levensht.

Dist. (µ)

Language

(Mean
performance)

Mean

Variance (σ2)

Standard

deviation (σ)
Swahili English

F-score 1 0.700 0.730 0.715 0.000225 0.015

 0 0.690 0.722 0.706 0.000256 0.016

Accuracy 1 0.500 0.532 0.516 0.000256 0.016

 0 0.490 0.540 0.515 0.000625 0.025

Recall 1 0.670 0.710 0.690 0.000400 0.02

 0 0.580 0.627 0.604 0.000552 0.0235

Precision 1 0.740 0.750 0.745 0.000025 0.005

 0 0.850

0.862 0.856 0.000036 0.006

Lawrence Muchemi-PhD Thesis 2014

181 | P a g e

4.8 Experimental Determination of Cross-Lingual Querying Ability

4.8.1 Experiments Setup

As set out in the problem statement, the issue of cross-lingual querying was central in this research.

To determine the extent to which the model supports cross-lingual querying, an experimental set up

shown in figure 4.6 was used.

Fig. 4.6 Experimental Determination of Cross-Lingual Support

A total of four experiments were done. In the first experiment Kiswahili language was selected for

querying. The underlying database schema authorship language was made similar to the querying

language that is, Kiswahili. The performance parameters were determined and recorded. These

included the F-score, accuracy, recall and precision.

In the second experiment the querying language was changed to English but the underlying database

schema authorship language remained Kiswahili. The values for the performance parameters were

Query
Language 1 Accuracy

Recall

DB Schema
(based on

Language1)
Query
Language 2

Query
Language 2

Precision

F-Score

DB Schema
(based on

Language2)

VARIANCE

ANALYSIS

Query
Language 1

Precision

F-Score

Recall

Accuracy

Lawrence Muchemi-PhD Thesis 2014

182 | P a g e

determined and recorded. Observations to check whether there were significant differences between

the calculated values, that is while cross-lingual querying is present and when absent were made. In

the third experiment the database was changed from farmers-db to UoN MSc coordinator’s database.

The underlying database schema authorship language for this database was English. Querying was

done with English queries meaning there was no cross-lingual querying. The querying language was

changed to Kiswahili in the fourth experiment meaning there was cross-lingual querying. The

performance parameter values were calculated and observations made to check whether there were

significant differences between the two calculated values (i.e. with cross-lingual and without cross

lingual arrangement). A variance analysis was then carried out. The results obtained are tabulated in

table 4.18.

4.8.2 Analysis Overview

A variance analysis similar to that described in 4.6.2 was applied to the performance values obtained

from section 4.8.1 above. The Peirce Criterion (Ross, 2003) was used to determine if querying in an

Interlingua manner had a significant effect or not. A significant deviation would indicate poor

support for cross-lingual querying.

4.8.3 Results from Cross-lingual Support Experiments

 Table 4.18 summarizes the results obtained from the cross-lingual experimentation study. The

mean, variance and standard deviation were determined for each experiment and the results recorded

in the table.

Lawrence Muchemi-PhD Thesis 2014

183 | P a g e

Table 4.18 Cross-Lingual Mean Variances and Standard Deviation Analysis

In order to determine if the OCM model was significantly affected by cross lingual usage, the Peirce

Criterion described in 4.6.3 was applied on data that was beyond the standard deviation. The affected

data is indicated on table 4.19 as that with a value of greater that one (or negative one) in the last

four columns of table 4.19, for example F-score of experiment two with a Levenshtein distance of

one.

Lawrence Muchemi-PhD Thesis 2014

184 | P a g e

Table 4.19 Cross-Lingual Outlier Performance Analysis

A significant deviation as indicated by the Peirce criteria would indicate poor support for cross-

lingual querying. Table

None of the performances showed outlier behaviour implying that the model was not affected by the

cross-lingual querying, therefore it was concluded that the model is independent of cross lingual

querying.

Figure 4.7 shows a graphical analysis of the performance values. From this graph it is observed that

cross-lingual querying has significant effect on the performance.

 Difference of Performance & Mean No. of Times Performance
Deviates from std. deviation
[(x-mean)/σ] Swahili

(Farmers_db)
 English
(Coordinator_db)

 µ Mean σ Swahili

Queries

English

Queries

English

Queries

Swahili

Queries

 Expt 1

Exp 2 Exp 3 Exp 4

F-Score 1
0.710 0.015 0.006 0.020 -0.021 -0.006

0.440 1.320

-
1.388

-
0.372

 0
0.702 0.020 0.013 0.027 -0.020 -0.019

0.626 1.314

-
0.994

-
0.945

Accuracy 1
0.516 0.024 0.016 0.031 -0.017 -0.030

0.645 1.268

-
0.686

-
1.227

 0
0.511 0.035 0.021 0.046 -0.029 -0.039

0.606 1.319

-
0.820

-
1.105

Recall 1
0.690 0.016 0.020 0.010 -0.020 -0.010

1.265 0.632

-
1.265

-
0.632

 0
0.606 0.019 0.026 0.011 -0.022 -0.015

1.347 0.555

-
1.136

-
0.766

Precision 1
0.730 0.019 -0.010 0.030 -0.020 0.000

 -
0.535 1.604

-
1.069 0.000

 0
0.838 0.034 -0.012 0.058 -0.024 -0.022

 -
0.355 1.716

-
0.710

-
0.651

Lawrence Muchemi-PhD Thesis 2014

185 | P a g e

Fig. 4.7 Graphical Representation of Variances (µ = 0)

4.9 Effect of Concepts Complexity

Performance of most models depreciates with an increase in the complexity of the concepts

(Dittenbach & Berger, 2003). The issue of complexity was handled in a similar manner as handled

by Tablan et al. (2008) where the complexity of a query was assumed to increase with the number of

concepts present in a query.

As noted in section 4.4, a stratified random sampling approach was used to select queries from each

query set where each population was divided into eight strata. Each stratum contained queries of

varying complexity. Complexity of a question was assumed to increase with the number of concepts

present in a query. The effect of complexity of the query to F-score was studied by determining the

performance value per stratum. Figure 4.8 presents a graph showing the mean F-score value across

the datasets.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-Score Accuracy Recall Precision

Pe
rf

or
m

an
ce

 V
al

ue

Parameter being Measured

Swa-Swadb

Eng-Swadb

Eng-Engdb

Swa-Engdb

Mean

Lawrence Muchemi-PhD Thesis 2014

186 | P a g e

Fig 4.8 Relative Performance (F-score) versus Complexity of Query

4.10 Comparative Analysis with other Models

In order to make a direct comparison with other models both experimental and literature analysis

methods were used.

In literature analysis, comparative study with several models was done. Benchmarking was achieved

through comparison of performance with various published works as shown in table 4.20.

Specifically where the test sets (queries and databases) and results were available a direct results

comparison was done. As discussed in section 2.5 of the literature review and summarized in figure

2.11, the models were grouped into various categories. These included,

 Machine learning approaches such as semantic parsing where statistical methods were used,

for example as in WASP by Ge and Mooney (2005) or grammar-based machine learning

methods (e.g. machine learning with synchronous context free grammar with λ-expressions

(λ-SCFG) by Minock, Olofsson and Naslund (2008))

1-concept, 45.8

2-concepts, 66.5

3-concepts, 76

4-concepts, 72

5-concepts, 72

6-concepts, 66

7-concepts, 60

0

10

20

30

40

50

60

70

80

1-concept 2-concepts 3-concepts 4-concepts 5-concepts 6-concepts 7-concepts

Chart Title

F-Score

Lawrence Muchemi-PhD Thesis 2014

187 | P a g e

 Logic based approaches where token or phrase-based methods were used. Examples included

token-based graph-matching approach by Popescu, Etzioni and Kautz (2003) also known as

PRECISE for English queries, token-based template matching approach for Kiswahili also

known as TTM by Muchemi (2008) and tiscover’s English NL interface (Dittenbach &

Berger, 2003) which is a phrase-based approach among others.

 Ontology-based approach for related tasks such as access to application specific ontologies

such as the GATE ontology (Tablan, Damljanovic, & Bontchev, 2008) or Health-e-Child

database (Munir, Odeh, & McClatchey, 2008)

For the experimental investigation, the test bed illustrated in figure 4.3 was used. In particular the

token based template mapping model (TTM) was run with the same test sets as OCM (queries and

databases) and the results tabulated and compared. Results from other published works where the

query sets and performance results were available were also used to conduct comparative analysis.

Specifically OCM was evaluated on the same query set and database (Microsoft’s Northwind-db) as

was used to evaluate commercially available software namely the English Wizard (EasyAsk),

English Query (Microsoft) and ELF (Elf Software Co) by Bootra (2004) and therefore its

performance was directly comparable to these systems. PRECISE (Popescu, Etzioni & Kautz, 2003)

was tested on three databases and query sets namely Restaurants-search, Computer-jobs-search and

US Geography all from Tang and Mooney (2001). Out of these three, two of the sets namely

Restaurants-search and Computer-jobs-search were used to evaluate OCM. The published results for

PRECISE were therefore directly comparable to OCM’s experimentally obtained results.

4.10.1 Summary of Performance Comparisons

Minock et al. (2008) has provided an elaborate review of performance of the most competitive

models in logic-based mapping and semantic parsing approaches. A brief summary of the

performance of the reviewed models together with the experimentally obtained results are provided

in Table 4.20 below. Most of the models discussed in this section were developed and evaluated

under different environments, therefore a direct comparison of results is not foolproof in itself.

However the comparison has been provided to indicate a general performance trend as opposed to an

absolute value.

Lawrence Muchemi-PhD Thesis 2014

188 | P a g e

Table 4.20 Comparison of Performance Values

Method

Model

Precision

Recall

Accuracy

F-
Score

Main Principle

Machine
Learning

WASP 0.800 –
0.915

0.600-
0.940

0.500 –
0.866

0.690-
0.930

Semantic Parsing using
SCFG (Statistical)(Ge &
Mooney, 2005)

Minock
et al.
Model

0.600-
0.850

0.500-
0.800

0.800 0.550-
0.820

SCFG with Lambda
(Miock, Olofsso &
Naslund, 2008)

Logic
Mapping

PRECISE 0.800-
0.100

0.550-
0.775

0.450-
0.775

0.650-
0.870

Graph Matching
(Popescu, Etzion &
Kautz, 2003)

TTM

0.704 0.670 0.588 0.686 Semantically Tagged
phrase trees (Muchemi,
2008)

Ontology
based
Matching

CBM 0.575 Not
provided

Not
provided

Not
provid
ed

Constraint-based
Method. From NL to
OWL (Gao, Liu, Zhong &
Chen, 2007)

QUERIX 0.777 0.786 Not
provided

0.781 NLI to Ontologies
(Kauffman, Bernstein &
Zustein, 2006)

QuestIO 0.667 0.680 0.545 0.735 NLI to GATE (Tablan,
Damljanovic, Botcheva,
2008)

OCM 0.836-
0.902

0.726-
0.694

0.686-
0.694

0.774-
0.784

Ontology Concept
Mapping (This Thesis)

The models highlighted in table 4.20 are representatives of the three main categories identified from

literature. The models are among the highly performing and widely quoted within each category.

The mean performance of the OCM model is shown in the last row of the table. A high precision is

important because it indicates the quality of the parsed queries while recall indicates the extent to

which a model generates the correct SPaRQL queries. It is also true that all models decline to answer

some questions hence the need for recall. Accuracy on the other hand indicates the extent to which a

user expects the correct answer from a given set of questions.

4.10.2 Comparisons with Logic-Mapping based Methods

It was noted that OCM had a precision ranging between of 0.836 and 0.902 which is close to the

other models selected for comparison purposes. PRECISE seems to hit a high of 100% apparently

because the question sets (also used in this work) seem to have been cleaned first, by eliminating

Lawrence Muchemi-PhD Thesis 2014

189 | P a g e

non-semantically tractable queries, thereby giving a 100% performance. The similarity in evaluating

PRECISE and OCM converges at the selection of common databases namely Restaurants-search and

Computer-jobs-search databases. These databases are published along with the query sets and

therefore the queries used were from the same pool. However differences may arise from sampling

techniques. The sampling method used in PRECISE was not indicated and therefore it was difficult

to compare the actual questions used for evaluating. On average OCM performs marginally better on

the lower limit of all performance indicators compared to PRECISE which means that OCM has a

better guaranteed minimum performance. This may be attributed to the fact that OCM uses both

tokens and phrase chunks as opposed to PRECISE which uses tokens only. The performance of

TTM is also lower than OCM’s on average and is close to PRECISE’s because they use the same

linguistic processing and the difference comes in the mapping of tokens to SQL fragments. The

results obtained from tests carried out by Bootra (2004) on commercial systems showed that English

Wizard (EasyAsk) had a precision of 0.484 and a recall of 0.31 while English Query (Microsoft) had

a precision of 0.461 and a recall of 0.39. The query sets and results published by Bootra (2004) are

presented in appendix 9 for ease of reference.

4.10.3 Comparisons with Machine Learning Methods

Research in machine learning approach has been active as noted in literature. The two most

prominent methods are statistical parsing based and grammar-based machine learning approaches.

Minock et al. (2008) has presented a synchronous CFG-grammar approach which produces meaning

representations which are then mapped by a secondary process to the database elements as reviewed

in the literature. The lower and upper bound values reported in Minock’s et al. (2008) model seem

slightly lower than those of OCM. The Minock et al. (2008) utilizing λ-SCFG had an F-score of

between 0.550 and 0.820. The big range between the high and lower scores appears to be caused by

distribution drift caused by requirement for prior training because it relies on semantic parsing which

is based on machine learning. Another machine learning model is WASP which seemingly has

higher performance values. Though WASP has seemingly higher values it is important to note that

this technique requires to be interfaced with an SQL classifier thereby lowering these values by a

factor equivalent to the precision of the SQL classifier.

Lawrence Muchemi-PhD Thesis 2014

190 | P a g e

4.10.4 Comparisons with Ontology based Methods

Table 4.20 shows some published results for models that rely on NLP to access general ontologies.

OCM’s functioning differs from these in that it’s a general purpose model that accesses ontologies

built on relational databases, while the others access ontologies which in most cases are built for

specific purposes (e.g. the GATE ontology). The major difference in the ontology-based approaches

indicated in table 4.20 is mainly in the manner in which each method handles the natural language

query before producing the structured query. While OCM converts NLQ into kernel form and builds

triples from the kernel and other linguistic components such as modifiers, the CBM converts an

NLQ into an optimization mathematical formula, while Querix and QuestIO convert the NLQ into a

bag-of-words and makes direct mappings to the ontology. A direct comparison of the results to

these published performances may not be very suitable because of the different testing environments.

For example Querix was tested on 250 queries of the US Geography (Tang & Mooney, 2001) while

QuestIO was tested on 22 questions only from the GATE ontology project. CBM on the other hand

was tested on 35 simulated and 40 real questions. While the number may not affect the results

significantly, sampling methods need to be stated where data is provided. However the results

published are indicative figures and may be used for comparative purposes in trying to establish

explanations for various performances. CBM has the least precision at 0.575 followed by QuestIO at

0.667. Querix has a performance in the same range as OCM at 0.77. Although Querix and QuestIO

use bag-of-words, Querix has a user feedback component which assists in guiding the questions

posed by the user. This intervention may possibly explain the better performance of Querix

compared to QuestIO. Apart from this performance enhancement feature, the main point of

departure with the OCM is in the linguistic processing where OCM employs the kernelization

process explained in 3.3.9.2 while Querix uses bag-of-words. This therefore indicates that the use of

concepts, arising from a kernelization process, as opposed to bag-of-words leads to a better

performance as is the case with OCM.

4.10.5 Summary of Comparisons with other Methods

A suitable parameter for gauging the overall suitability is the F-score, the harmonic mean of

precision and recall. The model developed has been evaluated on five databases three of which are

publicly available and hence results were easily comparable with the other state-of-the-art models.

Lawrence Muchemi-PhD Thesis 2014

191 | P a g e

OCM has marginally better results on recall for the lower bound value compared to all the other

models. This can be explained by the fact that OCM exploits the idea of ‘concept’ as opposed to for

example logic or machine learning models which utilize ‘tokens’ and ‘phrase trees’ respectively. A

concept is comprised of tokens (mainly nouns), noun phrases, and multi-word terms including

collocations. It means OCM is better able to comb through a query looking for more items to match

against the database elements as opposed to the other approaches.

The model however suffers from low maximum recall and accuracy levels compared to other

approaches as evident from results because it requires someone to enter information that sometimes

is regarded as obvious or superfluous. For example the query ‘give me customers who come from

Nairobi’ might require one to add the word ‘name’ within the query so that the system realizes we

require ‘customers’ names’. While it is not surprising that all models decline to answer some

questions, a good model should answer as many queries as possible. Recall indicates the extent to

which the model generates SPaRQL queries. The better lower bound value compared to the others

indicates more SPaRQL queries will be generated. On average the results show between 60 and 70%

rate of conversion which is not a significant departure from the state of the art.

Accuracy shows the extent to which a user expects the correct answer from a given set of questions.

From the results obtained one notices that OCM has a better minimum bound value at 0.686

compared to all the others except the model by Minock et al. (2008). The lower bound value for this

model was not published and therefore cannot be assessed. Users can expect more accurate answers

with OCM as compared to other approaches. Compared to PRECISE which has an upper bound

value of 0.775, OCM has a lower value. However looking at the way experiments were conducted,

PRECISE had to eliminate some questions which were found to be semantically not tractable and

this obviously means better results. OCM on the other hand used the raw query set as collected and

therefore has no bias.

4.11 Summary

This chapter was divided into ten subsections that highlighted various aspects of the evaluation

methodologies, results, their analysis and a comprehensive discussion on performance evaluation.

Lawrence Muchemi-PhD Thesis 2014

192 | P a g e

An elaborate evaluation framework has been presented. The 8-point framework was one of the

contributions made in this chapter. The chapter has presented the data sets and the query sampling

techniques that were used.

The chapter has provided the procedures of obtaining the four quantitative parameters (precision,

accuracy, recall and F-score) and the four qualitative parameters (domain independence, language

independence, support for cross-lingual querying and effect of query complexity on the

performance) that are central to NL access to relational database evaluation method. The chapter

showed how through variance analysis the degree of independence was evaluated. These evaluation

procedures were an achievement that may be replicated for this kind of analysis. Finally a

comprehensive discussion on the comparative analysis study was made where it emerged that OCM

has opened new frontiers in terms of new guaranteed minimum of performance and high F-score

values.

Lawrence Muchemi-PhD Thesis 2014

193 | P a g e

Chapter 5: CONCLUSION

5.0 Preamble

This chapter provides an overview of the research carried out. In particular it revisits the focus of the

problem, main objectives, approaches followed and the main results. The chapter focuses on the

contributions, achievements and proposed recommendations for furtherance of this work.

5.1 Overview of Research

The unresolved issue of natural language processing for relational database access was the main

problem addressed in this research. The challenge of developing a generalizable methodology that

maps any given natural language to a suitable structured query language is the main issue that was

tackled. The problem had three sub-components which are listed here below;

 lack of a generic language and domain independent methodology for understanding un-

restrained natural language text and converting it to structured query language (SPaRQL) in

the context of Kiswahili-English cross-lingual database,

 lack of language and domain independent parsers that convert free text into concepts. It is

taken that relational database metadata which is organized as tuples is readily mapped to

these concepts,

 Lack of domain independent ontology-parsers that convert meta-data from databases into

suitable concepts that are mapped to natural language queries.

The main objectives were based on these three areas namely design and development of a generic

language and domain independent approach, development of NL parsers and development of domain

independent ontology-metadata parsers. The research therefore embarked on a rigorous literature

review with a view of understanding the main schools of thought within this problem area, assessing

the development trends of each and thereafter proposing the most suitable approach. This led the

focus of the research to ontology mapping methods where a novel approach known as ‘Ontology

Concept Modeling (OCM)’ was developed and used as the basis for the research.

To address the issue of the development of language and domain independent NL parsers, the

research explored various linguistic theories with a view of proposing a universal language theory

Lawrence Muchemi-PhD Thesis 2014

194 | P a g e

that address the requirements of NL parsing regardless of the language. The Generative-

Transformational grammar was used in the studies. It formed the theoretical bases of NL parsing.

Field surveys were also conducted to collect data regarding NL usage specifically as an input to a

relational database access method. Studies were done for Kiswahili and English and characterization

done. This led to the development of a novel query modeling framework based on ‘kernelization’

where a query is converted to its deep structure form before concepts and their relationships can be

isolated. The challenge of development of domain independent ontology-metadata parsers was

addressed through field data collection and analysis. This led to the development of a novel

algorithm for parsing the meta-data which was earlier presented. Algorithms and heuristics were

developed for concepts mapping, discovery of implicit concepts as well as handling of foreign keys.

A large portion of the research was dedicated to the evaluation of the OCM model. A prototype was

developed for the purpose of evaluation. In addition an elaborate 8-point evaluation framework was

presented. The results were presented and bench marked against some of the most successful models

in this area.

The section that follows provides details of the specific contributions and achievements that were

realized in this research. The contributions and achievements which add to the body of knowledge

are sub-divided into two main areas namely, theoretical and technical contributions. Theoretical

contributions are further sub-divided into two specific areas which include methodological and non-

methodological contributions.

5.2 Theoretical Contributions

In their book The Unwritten Rules of PhD Research (Open up Study Skills), Petre & Rugg (2010)

have detailed what constitutes a theoretical contribution in a PhD thesis. They argue that

characterizing a theoretical contribution as significant or not amounts to articulating the answers to

the following four questions,

 How important is the issue. Is the research question important and why is it worth asking?

 How significant are the findings or the contributions? Why should anyone care? Why do

they matter?

 What are the implications to theory and to the body of knowledge in general

 What are the limitations to generalization?

Lawrence Muchemi-PhD Thesis 2014

195 | P a g e

This section discusses those original contributions and achievements made in light of these four

tenets.

5.2.1 Modeling of Trends in the Approaches to NL access to Databases

No published source was available that provides a comprehensive analysis of the trends of the

methods used in NL access to databases. This research analyzed these trends and documented them.

The trends were presented in a concise graphical manner that was presented in section 2.5. Figure

5.1 below re-illustrates this analysis.

Fig 5.1 Concise Graphical Presentation of Methods and Trends in NL Access to Databases

In analyzing the significance of this contribution to the body of knowledge, the four tenets described

in 5.2.1 were applied. It is true that researchers in this area have been grappling with the problem of

literature that is widely dispersed and therefore organizing it into distinct schools of thought namely

semantic parsing (which includes statistical and machine learning methods), logic mapping (which

includes token and phrase based mapping) and Ontology Mapping (which involves the use of

ontologies as an intermediate layer) is import theoretical contribution.

5.2.2 Query Semantics Transfer Modeling

Ontology Concept Map.

Logic Mapping

Semantic Parsing

 Low Source (Level of Structure) High

Structur
ed Entry
Sources:
Yellow
Pages

Domain
specific

Ontology
Data

Text
Web

entries

Relational
Database

Pa
rs

e
Te

ch
ni

qu
e

(P
ar

se
-S

ha
llo

w
ne

ss
)

Logic-
based

Prolog-
Database

s

This
Research

Time

Eg Plain &
HTML Text

Eg Named
Entity
Entries

Eg
Semantic
Web Data

Lawrence Muchemi-PhD Thesis 2014

196 | P a g e

Arising from linguistic characterization of NL inputs to a database access model, several important

conclusions were made. These included the idea that the kernelization process originally proposed in

the Generative-Transformational grammar for sentences, is a viable method of NLQ parsing.

Further, it was observed that there exists a regular process in which the general semantics of a query

are transferred from the surface structure to the base meaning-bearing components. This process was

modeled and presented as the Query Semantics Transfer Model (QuSeT) Model in section 3.3.9.3.

The model is re-illustrated in Figure 5.2.

Fig 5.2 Query Semantics Transfer (QuSeT) Model based on Generative-Transformational Grammar

The QuSeT model was qualitatively and quantitatively validated as explained in section 3.3.9.3 and

3.3.9.4 respectively. In the qualitative analysis, the model was validated using primary data collected

from one of the surveys where the twelve most prevalent NLQ types were applied and tested through

generative-transformation modeling specifically the kernelization process.

Morphophonological
Processes

Phonetic
Rep.

(Utterance
)

Surface
Structure

Base Components
& Modifiers

Semantic Components

 Transformation

 Rules

 Deep

 Structures

Phrase
Chunking

Match to
Ontology

Lawrence Muchemi-PhD Thesis 2014

197 | P a g e

This model, whose mean accuracy was determined as 94%, is an important contribution in that

NLQs may be converted to the equivalent semantic bearing components which are in turn organized

in form of triples that form the backbone of the SPaRQL query. Only the language’s generative-

transformational, as explained in publications such as Encyclopedia Britanica Inc, (2014),

Massamba, Kihore, & Hokororo (1999), Zellig (1951) among others and phrase chunking rules

which are expressed as regular expressions are required for this model to be complete for any given

language. Once rules have been extracted from a particular language manually, they can then be

deployed in a language independent manner as explained in QuSeT.

5.2.3 Ontology Words Recreation Algorithm (OWoRA)

One of the objectives in this work was the creation of a generic parsing method for ontologies

created from relational databases. In particular this problem is challenging because no previous

studies have been done with a view of characterizing database schema naming methods. Some of the

research questions addressed in the database schema authorship survey were as follows,

 Is there a finite set of patterns that database schema authors’ use in representing

database schema object names?

 ‘How can we decipher the meaning of ‘intended concept’ from the schema names?

 How can a general ‘Concepts Re-construction Algorithm’ be built from an ontology

created from relational database source?

The conclusions obtained from the database nomenclature surveys were used in the creation of an

Ontology Words Reconstruction Algorithm (OWoRA). This was presented in section 3.4.7. This

algorithm, which had an average performance on accuracy of 92.5%, is important contribution to the

body knowledge because any RDF-based ontology, such as an OWL ontology created from a

relational database, may be parsed by this algorithm to reconstruct the full words that would be used

in an equivalent manner if short-forms such as abbreviations and concatenations were not used.

In about 7.5% of the observations automatic methods could not guarantee deduction of meaning

from short-hand forms due to over abbreviation or use of acronyms that do not have direct mapping

to meaning.

Lawrence Muchemi-PhD Thesis 2014

198 | P a g e

5.2.4 Ontology Concept Model (OCM)

As articulated in chapter one, this research revolved around the provision of a generic language and

domain independent methodology for understanding un-restrained natural language text and

converting it to structured query language (SPaRQL). Further the research aimed at tackling the

challenges encountered in cross-lingual querying especially in the context of Kiswahili-English

cross-lingual databases.

Section 2.6.1 presented the conceptual framework that provided the road map to the development of

the architectural model presented in section 3.6. The overall algorithm for this model was presented

in section 3.76. The following section discusses these key theoretical contributions.

5.2.4.1 Conceptual Framework

The conceptual framework articulated the main processes required for a solution to be obtained. This

framework is presented in figure 2.12 and its components discussed in sections 2.6.1 through section

2.64. Given this framework any researcher may design an ontology based method without

necessarily going the way of OCM. It is therefore an important theoretical contribution emanating

from the literature analysis. From the Petre and Rugg (2010) criteria of assessing significance this is

an important contribution with great significance to potential ontology-based researchers.

5.2.4.2 Architectural Model of the OCM

One major contribution of this work is in the design of an architectural model for the OCM

approach. Figure 5.3 re-illustrates this architecture named in section 3.6 as ‘Architecture for

Ontology-based NL Access to DBs (ONLAD)’. It is an important contribution to the body of

knowledge because it has provided a methodology based on the ontology approach that can be used

as a template upon which a system is developed. In this work, the architectural model led to the

development of a prototype whose performance compared favorably to the cutting-edge-tools.

Lawrence Muchemi-PhD Thesis 2014

199 | P a g e

Fig 5.3 Architecture for an Ontology-based NL Access to DBs (ONLAD)

The ONLAD architecture was published as a book chapter in Springer Lecture Notes in Computer

Science (LNCS 2013) (Muchemi & Popowich, 2013).

5.2.4.3 Implementation Algorithms

The OCM algorithms were presented in section 3.7 while their implementation is reported in

appendix 8. The algorithms and the architectural model described in 3.6 formed the basis for the

actual implementation of the OCM-based prototype. Other important components were designed and

discussed in detail in various sections of this report.

Section 3.5.1 highlighted the process of designing a suitable feature space model, section 3.5.2

provided details for the design of a gazetteer while section 3.7.1 provided details for the design of a

Semantically-Augmented Concept Matching (SACoMA) function.

This research has also brought forth a new approach in the handling of foreign keys that are present

in tables and constraining the results formed by SPaRQL triples using the transferred keys. This was

developed as a heuristic and was presented in section 3.7.4. Other heuristics included discovery of

Lawrence Muchemi-PhD Thesis 2014

200 | P a g e

implicit concepts and the query generation of actual structured queries in form of SPaRQL. Without

these algorithms, designs and heuristics, the actual implementation would have been difficult.

In summary, these designs, algorithms and heuristics form important methodological contributions

to the body of knowledge.

The model’s significance to the community of researchers is great because it forms the basis for

replication or bench-marking other models. The community of developers benefit in that they may

use the model to develop systems that achieve high performance as demonstrated by the prototype.

Its limitations, such as suffering from low maximum recall and accuracy levels compared to other

approaches, were discussed in section 4.10.5 and these may be addressed by future research.

5.2.5 Evaluation Framework
An evaluation framework describes the environment, procedures and parameters used in determining

the performance of a model. As established in literature, there does not currently exist a standard or

de facto evaluation framework for a NL database access model. This work has researched and

presented an elaborate evaluation framework informed by a comprehensive review of literature. This

research developed an 8-parameter evaluation framework that sought to fill this gap. The framework

has been fully described and used to evaluate the OCM model.

In this new framework, traditional practices of determining quantitative parameters such as accuracy,

precision and recall were augmented with a further quantitative parameter, the F-score which was

borrowed from related NLP tasks such as information extraction. The framework was enhanced by

incorporation of four other qualitative parameters which in the context of the objectives of this

research, are vital in the conclusive evaluation of performance.

The framework also describes the experimental procedures in detail. The standard deviation analysis,

coupled with Peirce’s criterion (Ross, 2003), were determined as the most suitable independence

analysis measures and were presented in sections 4.1. The detailed experimental and analysis

procedures are explained in sections 4.6 through to section 4.8.

As a contribution to the body of knowledge, this research has brought forth an evaluation framework

that can be a point of reference in evaluating other database access models.

Lawrence Muchemi-PhD Thesis 2014

201 | P a g e

5.3 Technical Contributions
Petre and Rugg (2010) describe the implementation of theoretical principles as an important

contribution to the body of knowledge. In this work several theoretical principles were pooled

together and formed important practical contributions which were demonstrated through the

prototype illustrated in figure 3.50. Examples of these theoretical principles included the use of

Chomsky (1970), Transformational Grammar theory and formation of Kiswahili terms and

collocations described in Sewangi (2001). These together with other resources described in 3.8 were

constructed into one coherent practical implementation. Some of the important functions which were

implemented in python are shown in appendix 8.

This work made further technical contributions in the area of creation of two datasets (queries and

databases) that may be used by the research community for development of models and their

evaluation. These are the Kiswahili dataset developed for the farming domain and an English dataset

developed for the students’ queries management. The Kiswahili dataset, being the first in the study

of DB access using Kiswahili language may act as a ‘gold standard’ in the area of testing and

evaluation of NL access models.

5.4 Achievements on Performance Advancement

5.4.1 Advancement of F-Score Performance

One significant achievement of this research was in the advancement of the F-Score performance.

OCM has an F-score of between 0.774 and 0.784. The token-based graph-matching approach by

Popescu et al. (2003) had a minimum F-score of 0.65 while the token and phrase based Kiswahili

template mapping (TTM) by Muchemi (2008) has a score of 0.686. On the other hand the most

successful machine learning models such as the λ-SCFG grammar based learners by Minock et al.

(2008) and the statistical based learners such as WASP by Ge and Mooney (2005) had an F-score of

between 0.550 and 0.820 and 0.69 and 0.930 respectively. Machine learning approach usually

requires a secondary classifier that converts the meaning representations from a semantic parser such

as WASP to a structured query such as SQL. This cascading of machine learning approaches reduces

the overall F-score. For example Superimposing an SQL classifier such as that by Giordani &

Moschiti, (2010) with an F-Score of 0.759 to say WASP with an F-score of 0.81, the overall DB-

Access F-Score would be (0.81x0.759) which is 0.615. This is much lower than OCM’s average of

0.78.

Lawrence Muchemi-PhD Thesis 2014

202 | P a g e

The model was tested using Kiswahili and English queries. The average F-score on Kiswahili

queries was found to be 0.76 against 0.79 for English queries while precision for Kiswahili ranged

between 0.74 and 0.85 against 0.75 and 0.86 for English queries.

The results from the OCM model were bench marked against the state-of-the-art models as presented

in section 4.10.The model and the results were published in Muchemi & Popowich (2013b).

5.4.2 Attainment of Domain-Independence

The model was evaluated across four different domains where it was shown through domain-

independence experiments and analysis to be domain independent. It was demonstrated in section

4.6 that the OCM model is insensitive to domain change thereby leading to the conclusion that the

OCM model is domain independent. This is a significant contribution in that the developers can

apply this model to many different domains without deterioration of the performance levels.

5.4.3 Attainment of Language Independence

Experimental results found in section 4.7 showed that OCM is applicable to different languages

without deterioration in performance. This universality was achieved through application of

universal language theory, specifically ‘Transformational Grammar’ theory by Chomsky (1970), to

augment natural language processing. This is a significant contribution to both research and

developers communities.

5.4.4 Achievement of Cross-lingual Querying

Most databases have to grapple with the challenge of cross-lingual interaction. This is the inability of

a model to use a certain natural language to query a specified database given that the language used

to author the ontology or the database schema objects is different from the one used in querying.

Experiments reported in 4.8 showed that the OCM model handles this challenge effectively. This

was effected through introduction of a gazetteer which is the manipulated accordingly. The

attainment of cross-lingual querying is an important technical contribution.

5.5 Limitations

The main limitation of the developed solution is the lack of machine learning capacity where users’

previous inputs, results and feedback can be utilized to improve performance. This means that the

Lawrence Muchemi-PhD Thesis 2014

203 | P a g e

model cannot learn and so will have a static performance level. While this may not necessarily be a

bad thing, models which are self-improving are better than static ones.

As earlier stated, the model also suffers from low maximum recall level as evident from results

because it requires full information that sometimes may be regarded as obvious or superfluous. The

low recall levels would lead to no answers being generated which is better than having SPaRQL

generate wrong or unexpected answers. For example the query ‘give me customers who come from

Nairobi’ might require you to add the word ‘name’ within the query so that the system realizes we

require ‘customers’ names’. Though OCM tried to avoid this by giving all possible answers, it would

be desirable to learn users’ behaviour and make intelligent guesses, rather than giving unnecessary

information.

Another drawback which is on implementation rather than methodological approach is that the OCM

implementation relies on the integration of several modules and resources. If the individual modules

are not well implemented, say training of phrase chunkers, the overall result would be lower than the

one reported here.

5.6 Recommendations for Further Work

This work has made several contributions to the body of knowledge, however a few areas have the

potential to be advanced further. This section highlights these areas

5.6.1 Scalability Study

The model developed in this study supports concurrent access to multiple tables but not to multiple

databases. The ability to support multiple databases is important because it gives an indication of the

potential for scalability. A study in this area would provide a useful extension to the OCM model

because querying can be done concurrently to several databases over a network or even the internet.

Research into the incorporation of multiple web crawling agents that carry OCM-based models can

possibly solve this problem. Scalability study is an area that is potential for further work.

5.6.2 Discourse Processing Study

As explained earlier, deletion of agents transformation (DAT) occurs in close to 20% of the

occurrences. For example, nouns are replaced with pronouns. This is common especially when users

ask consecutive questions and they expect the system to ‘remember’ the subject being discussed. For

Lawrence Muchemi-PhD Thesis 2014

204 | P a g e

example the interrogator may be inquiring on the amount of food a layers chicken requires. In a

consecutive question, the interrogator may want to know about the quantity of water required by the

same subject. The interrogator makes an assumption that the system has a memory of the subject

being discussed and therefore implicitly refers to the layers chicken by the use of a pronoun. This

implicit way of referencing concepts leads to lower rates of recall because even though the pronoun

is recognized as a subject by the QuSeT model, a direct mapping of this subject to the core-

referenced subject is not possible without a context processor. Incorporation of content processing to

decipher meaning of pronouns and other deleted agents for DAT transformed sentences would be a

useful extension to this work because it would guarantee relatively higher recall rates.

5.6.3 Application of OCM to Object-Oriented Databases

This is another potential area of study in which researchers can explore the possibility of applying

OCM to object oriented databases. These databases are gaining traction in the applications world

especially in multi-media and game applications and it would be insightful to study, extend and

evaluate performance of OCM in this data representation paradigm.

In conclusion this research ventured into the area of natural language access to relational databases

and has brought forth new contributions in this area. A high performance architectural model that

provides for both natural language query parsing and RDF ontology schema parsing as well as data

structures and processing algorithms have been developed and evaluated. Looking back at the set

objectives in chapter one, all have been successfully met.

5.7 Relevant Publications and Associated Conferences

BOOK CHAPTERS

Muchemi, L & Popowich, F.(2013). An Ontology-Based Architecture for Natural Language
 Access to Relational Databases. Springer Lecture Notes in Computer Science. HCI (6) 2013:
490-499 Vol. 8009 2013. Las Vegas, USA. ISBN 978-3-642-39188-0

JOURNAL PUBLICATION

Muchemi, L. (2008). Towards Full Comprehension of Swahili NL for Database Querying.
Strengthening the Role of ICT in Development (pp. 50-58). Kampala-Uganda: Fountain
Publishers.

Lawrence Muchemi-PhD Thesis 2014

205 | P a g e

CONFERENCE PROCEEDINGS

Muchemi, L & Popowich, .(2013). NL Access to Relational Databases: The OCM Approach.
 Proceedings of 7th International Conference, UAHCI 2013, Las Vegas, NV, USA,
July 21-26, 2013, Proceedings Part I.

Muchemi, L (2008). Swahili NL Access to RDbs (TTM Approach). Proceedings of 4th ICCR
Conference. Makerere University, Kampala, Uganda, August 2008

Muchemi, L, Getao K. 2007. Enhancing Citizen-Government Communication Through Natural
 Language Querying. Proceedings of 1st International Conference in Computer Science
 and Informatics (COSCIT 2007). :150-154., Nairobi, Kenya

Muchemi, L., & Narin'yani, A. (2007). Semantic-base NL Front-End for DB Access: Framework
Adoption for Swahili Language. 1st International Conference in Computer Science and
Informatics (COSCIT 2007). Nairobi: UoN-ISBN 9966-7284-0-6 - University of Nairobi.

Lawrence Muchemi-PhD Thesis 2014

206 | P a g e

Bibliography
Akerkar, R., & Joshi, M. (2009). Natural Language Interface Using Shallow Parsing. International Journal of

Computer Science and Applications,, 70 - 90.

Androutsopoulos , I., Ritchie, G., & Thanisch. (1995). Natural Language Interface to Database: An
Introduction. Journal of Natural Language Engineering, 1(1), 29-81.

Androutsopoulos. (1993). A principled Framework for Constructing Natural Language Interfaces to Temporal
Databases. Edinburgh: University of Edinburgh.

Androutsopoulos. (1993). Interfacing a Natural Language Front-End to a Relational Database. Department
of AI. Edinburgh: University of Edinburgh.

Androutsopoulos, Ritchie, & Thanisch. (1993). MASQUE/SQL- An Efficient and Portable Natural Language
Query Interface for Relational Databases. Sixth International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems. Edinburgh: Gordon and Breach
Publishers Inc., PA, USA.

Banko, M. (2009). Open Information Extraction for the Web. Washington DC: University of Washington.

Bernstein, A., Kaufmann, E., & Kiefer, C. (2006). Ginseng: A guided Input Natural language Search Engine for
Querying Ontologies. Jena User Conference. Bristol, UK.

Bird, C., Loper, E., & Klein, E. (2009). Natural Language Toolkit with Python. O’Reilly Media Inc.

Bloom, Englehart, Furst, Hill, & Krathwohl. (1956). Taxonomy of Educational Objectives: The Classification of
Educational Goals- Handbook I: Cognitive Domain. New York: Longmans.

Bond, T. (2011, June 7). The Reasoning Process. Retrieved 2011, from ICT New Zealand:
http://ictnz.com/Thinking Pages/reasoning.htm

Bootra, R. (2004). Natural Language Interfaces Interfaces: Comparing English Language Front End and
English Query. Virginia, USA: Master's Thesi, Virginia Common Wealth University, 2004.

Brill, E. D. (2002). An Analyssis of AskMSR Question-Answering System. Conference on Empirical Methods in
Natural Language Processing.

Buitelaar, P., & Ciamiano, P. (2006). Ontology Learning from Text -Tutorial at EACL. 11th Conference of
European Chapter of Association of Computational Linguistics. Trento, Italy: AIFBO.

Cavar, D. (2011, June). Practical use of n-gram models and simple statistics. Retrieved Nov 2012, from LID -
Language Identification in Python : http://www.cavar.me/damir/LID/

Choge, S. (2009). Understanding Kiswahili Vowels. The Journal of Pan-African Studies, 2(8).

Chomsky, N. (1957). Syntactic Structures (2nd ed.). Berlin, Germany: Walter de Gruyter GmbH and Co.

http://ictnz.com/Thinking
http://www.cavar.me/damir/LID/

Lawrence Muchemi-PhD Thesis 2014

207 | P a g e

Chomsky, N. (1970). English Transformational Grammar. (R. Jacobs, & P. Rosenbaum, Eds.) Waltham: Ginn.

Creutz, M., Lagus, K., Linden, & Virpioja. (2005). Morfessor and Hutmegs: Unsupervised Morpheme
Segmentation for Highly-Inflecting and Compounding Languages. In Langemets, & Penjam (Ed.),
Proceedings of the Second Baltic Conference on Human Language Technologies (pp. 107-112). Tallin:
Tallinn University of Technology.

Csongor, N., Martin, O., & Samson, T. (2009). DataMaster – a Plug-in for Importing Schemas and Data from
Relational Databases into Protégé. California-USA: Stanford University.

Damljanovic, D., Agatonovic, M., & Cunningham, H. (2010). Natural Language Interfaces to Ontologies:
Combining Syntactic Analysis and Ontology-based Lookup through the User Interaction. The
Semantic Web: Research and Applications.

Damljanovic, D., Tablan, V., & Bontcheva, K. (2008). A Text-based Query Interface Interface to OWL
Ontologies. In N. Calzolari (Ed.), Sixth International Conference on Language Resources and
Evaluation (LREC08). Marrakech, Morocco: European Language Resources Association (ELRA).

De Pauw, G., & Schryver, G.-M. d. (2008). Improving the Computational Morphological Analysis of a Swahili
Corpus for Lexicographic Purposes. Thirteenth International Conference of the African Association
for Lexicography, organized by the Bureau of the Woordeboek van die Afrikaanse Taal. 18, pp. 303 -
318. Stellenbosch: Lexikos (AFRILEX-reeks series).

De Pauw, G., Schryver, M., & Wagacha, P. (2006). Data-Driven Part-of-Speech Tagging of Kiswahili. Springer-
Verlag, 197-204.

Dittenbach, M., & Berger. (2003). A Natural Query Language Interface for Tourism Information. ENTER, 152-
162.

Django Project. (2011). Tagging, Chunking & Named Entity Recognition with NLTK. Retrieved October 2012,
from Python NLTK POS Tagging, IOB Chunking and Named Entity Recognition: http://text-
processing.com

Domingos, H., & Poon, P. (2009). Unsupervised Semantic Parsing. EMNLP, (pp. 1-10). Singapore.

EasyAsk. (2010). Comparing Quiri, Siri and Watson. Retrieved July 22, 2012, from EASYask:
http://www.easyask.com/wp-content/uploads/2012/03/Quiri-Siri-Watson-WP.pdf

Encyclopedia Britanica Inc. (2014). Linguistic Articles: Transformational-Generative Grammar. Harris &
Chomsky Grammar.

Esther, K., Abraham, B., & Renato, Z. (2006). Querix: A Natural Language Interface to Query Ontologies
based on Clarification Dialogues. International Semantic Web Conference (ISW 2006). Athens,
Georgia-USA: ISW2006.

http://text-
http://www.easyask.com/wp-content/uploads/2012/03/Quiri-Siri-Watson-WP.pdf

Lawrence Muchemi-PhD Thesis 2014

208 | P a g e

FHI. (2012). Research Methods Overview. Retrieved December 2012, from Qualitative Research Methods: A
Data Collector’s Field Guide:
http://www.fhi360.org/nr/rdonlyres/etl7vogszehu5s4stpzb3tyqlpp7rojv4waq37elpbyei3tgmc4ty6du
nbccfzxtaj2rvbaubzmz4f/overview1.pdf

Funk, Tablan, Bontcheva, Cunningham, Davis, & Handschuh. (2007). CLOnE: Controlled Language for
Ontology Editing. 6th International Semantic Web Conference (ISWC 2007). Busan, Korea.

Gao, M., Liu, J., Zhong, N., & Chen, F. (2007). A Constraint-based Method for Semanic Mapping from Natural
Language Questions to OWL. Computational Intelligence and Data Mining (2007). IEEE .

Garcia, K., Lumain, A., Wong, J., Yap, J., & Cheng, C. (2008). Natural Language Database Interface for the
Community Based Monitoring System. 22nd Pacific Asia Conference on Language, Information and
Computation (pp. 384-390). Cebu City, Philippines: PACLIC 22.

Ge, R., & Mooney, R. (2005). A statistical Semantic Parser tat Integrates Syntax and Semantics. CoNLL0-5,
(pp. 9-16). Ann Arbor - Miami.

Gene Ontology Consortium. (2001). Creating the Gene Ontology Resource: Design and Implementation.
Retrieved March 12, 2012, from Genome Research:
http://genome.cshlp.org/content/11/8/1425.full.pdf+html

Gennari, J., Nguyen, M., & Silberfein, A. (2007, May 23). DataGenie:Plug-in for Protege for Reading
Databases. University of Washington & Stanford University, USA.

Giordani, A., & Moschitti, A. (2010). Corpora for Automatically Learning to Map Natural Language Questions
into SQL Queries. In N. Calzolari (Ed.), Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC'10) (pp. 2336-2339). Valletta, Malta: European Language
Resources Association (ELRA).

Harris, R. (1995). The Linguistic Wars. USA: Oxford University Press.

Hart, G., Johnson, M., & Dolbear, C. (2008). Rabbit: Developing a Controlled Natural Language for Authoring
Ontologies. 5th European Semantic Web Conference (ESWC08). Tenerife, Spain.

HCS. (2004). Helsinki Corpus of Swahili. HCS2004. Institute for Asian and African Studies (University of
Helsinki) and CSC - IT Center for Science.

Hockenmaier, J., & Steedman, M. (2002). Generative Models for Statistical Parsing with Combinatory
Categorial Grammar. 40th Annual Meeting of the Association for Computational Linguistics (ACL),
(pp. 335-342). Philadelphia.

Hockenmaier, J., & Steedman, M. (2007). CCGbank: A Corpus of CCG Derivations and Dependency Structures
Extracted from the Penn Treebank., (pp. 1-42).

http://www.fhi360.org/nr/rdonlyres/etl7vogszehu5s4stpzb3tyqlpp7rojv4waq37elpbyei3tgmc4ty6du
http://genome.cshlp.org/content/11/8/1425.full.pdf+html

Lawrence Muchemi-PhD Thesis 2014

209 | P a g e

Hu, W., & Qu, Y. (2008). Discovering Simple Mappings Between Relational Database Schemas and
Ontologies. The 6th International Semantic Web Conference and the 2nd Asian Semantic Web
Conference. Busan- S.Korea.

Hurskainen, A. (1992). A Two Level Computer Formalism for the Analysis of Bantu Morphology: An
application to Swahili. Nordic Journal of African Studies, 1(1), 87-119.

Hurskainen, A. (1999). SALAMA:Swahili Language Manager. Nordic Journa lof African Studies, 8(2), 139-157.

Hurskainen, A. (2004). HCS-2004. Helsinki Corpus of Swahili. Helsinki, Finland: University of Helsinki and CSC.

Iribe, M. (2008). A Synchronic Segmental Morphophonological of Standard Kiswahili. University of Nairobi,
CHSS. Nairobi: University of Nairobi erepository.

Jeff, W. (2011, October 5). How Siri Works. Retrieved July 20, 2012, from
http://www.jeffwofford.com/?p=817

Jurafsky, D., & Gildea, D. (2002). Automatic Labelling of Semantic Roles. Association for Computational
Linguistics, 28.

Kamusi Project. (2013). Kamusi Gold. Global Online Living Dictionary(Multilingual Beta). USA.

Kate, & Mooney. (2010). Geoquery. Retrieved March 24, 2012, from University of Texas at Aiustin - AI Lab:
http://www.cs.utexas.edu/~ml/nldata/geoquery.html

Kate, J., & Wong, Y. (2010). Semantic Parsing: The Task, the State of the Art and the Future. Uppsala-
Sweden: ACL-2010.

Kate, R. M. (2007). Semi-Supervised Learning forSemantic Parsing using Support Vector Machines. Human
Language Technology Conference of the North American Chapter of the Association for
Computational Linguistics, Short Papers (NAACL/HLT-2007) (pp. 81-84). Rochester, NY: NAACL/HLT.

Kate, R., & Mooney, R. (2006). Using string-kernels for learning semantic parsers. COLING/ACL 2006, (pp.
913-920). Sydney, Australia.

Kate, R., & Mooney, R. (2007). Semi-Supervised Learning forSemantic Parsing using Support Vector
Machines. Human Language Technology Conference of the North American Chapter for the
Computational Linguistics (NAACL/HLT), (pp. 81-84). Rochester - NY, USA.

Kaufmann, E., & Bernstein, A. (2007). How Useful are Natural Language Interfaces to the Semantic web for
Casual End-Users? Fourth European Semantic Web Conference(ESWC). Innsbruck-Austria.

Kaufmann, E., Berstein, A., & Fischer, L. (2007). NLP-Reduce: A "naive" but Domain Independent Natural
Language Interface for Querying Ontologies. 4th European Semantic Web Conference (ESW2007).
Innsbruck-Austria.

Kellog, & Reed. (1877). Higher Lessons in English. Chicago: Unversity of Chicago Press.

http://www.jeffwofford.com/?p=817
http://www.cs.utexas.edu/~ml/nldata/geoquery.html

Lawrence Muchemi-PhD Thesis 2014

210 | P a g e

Keshavarz, M., & Lee, Y.-H. (2012). Ontology matching by using ConceptNet. In Kachitvichyanukul, Luong, &
Pitakaso (Ed.), Asia Pacific Industrial Engineering & Management Systems Conference 2012, (pp.
1917-1925).

Korokithakis, S. (2008, January 17). Finding the Levenshtein Distance in Python. Retrieved May 10, 2010,
from Stavro's Stuff: http://www.korokithakis.net/posts/finding-the-levenshtein-distance-in-python/

Krishnamurthy, J., & Mitchell, T. (2011). Which Noun Phrases Denote Which Concepts? The 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics.

KU. (2011, 06 09). Interrogatives. Retrieved August 2013, from KU:
www2.ku.edu/~kiswahili/pdfs/lesson_32.pdf

Kwok, Etzioni, & Weld. (2001). Scaling Question Answering to the Web. ACM Transactions on Information
Systems. 19, pp. 242-262. ACM.

Levett-Jones. (2009). Clinical Reasoning. Retrieved 2011, from Instructor Resources.

Liddy, E. D. (2005). Automatic Document Retrieval. Encyclopedia of Language & Linguistics, 2nd Edition.

Lopez, V., Motta, E., Uren, V., & Sabou, M. (2007). State of the Art on Semantic Question Answering - A
Literature Review. The Open University. 2007: Knowledge Media Institute - UK.

Lopez, V., Pasin, M., & Motta, E. (2004). AquaLog: An Ontology-Portable Question Answering System for the
Semantic Web.

Lund Research. (2012). Sampling Strategy. Retrieved December 15, 2012, from Laerd Dissertation:
http://dissertation.laerd.com/sampling-strategy.php

Massamba, D., Kihore, Y., & Hokororo, J. (1999). Sarufi Miundo ya Kiswahili Sanifu (SAKISA). Dar es Salam,
Tanzania: Taasisi ya Uchunguzi wa Kiswahili, University of Dar es Salam.

Mateas, M., & Stern, A. (2011). Natural Language Understanding In Facade: Surface Text Processing.

Microsoft. (2004). Northwind and Pubs Sample Databases for Microsoft SQL Server 2000. Retrieved 2011,
from http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-
eebc53a68034&displaylang=en

Miller, G. (1995). Wordnet: A Lexical Database for English Communications of the ACM. ACM, 38(11), 39-41.

Miller, S., Stallard, R., Bobrow, R., & Swartrtz, R. (1996). A fully statistical approach to natural language
interfaces. ACL, (pp. 55-61). Santa Cruz, CA.

Mingxia, G., Jiming, L., Ning, Z., & Furong, C. (2007). A Constraint-based Method for Semantic Mapping from
Natural Language Questions to OWL. 2007 IEEE Symposium on Computational Intelligence and Data
Mining (CIDM 2007). IEEE Xplore.

http://www.korokithakis.net/posts/finding-the-levenshtein-distance-in-python/
http://www2.ku.edu/~kiswahili/pdfs/lesson_32.pdf
http://dissertation.laerd.com/sampling-strategy.php
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-

Lawrence Muchemi-PhD Thesis 2014

211 | P a g e

Minker, J. (1997). Information storage and retrieval - a survey and functional description. 1-108.

Minock, M., Olofsson, P., & Naslund. (2008). Towards Building Robust Natural Language Interfaces to
Databases. In E. Kapetanios, V. Sugumaran, & Spiliopourou (Ed.), Natural Language and Information
Systems: 13th International Conference on Applications of Natural Language to Information Systems,
NLDB- London, UK. 5039, pp. 187–198. Hiedelberg: Springer.

Mooney, R. (2007). Learning for Semantic Parsing. Eith International Conference on Computational
Linguistics and Intelligent Text Processing (pp. 311-324). Mexico City, Mexico: Springer.

Muchemi, & Popowich. (2013b). An Ontology-Based Architecture for Natural Language Access to Relational
Databases. Human Computer Interaction International-2013 (pp. 490-499). Las Vegas, Nevada-USA:
UAHCI/HCII 2013.

Muchemi, L. (2008). Towards Full Comprehension of Swahili NL for Database Querying. Strengthening the
Role of ICT in Development (pp. 50-58). Kampala-Uganda: Fountain Publishers.

Muchemi, L., & Narin'yani, A. (2007). Semantic-base NL Front-End for DB Access: Framework Adoption for
Swahili Language. 1st International Conference in Computer Science and Informatics (COSCIT 2007).
Nairobi: UoN-ISBN 9966-7284-0-6 - University of Nairobi.

Muchemi, L., & Popowich, F. (2013). An Ontology-based Architecture for Natural Language Access to
Relational Databases. In C. Stephanidis, & M. Antona, Springer Lecture Notes in Computer Science
(Vol. 8009, pp. 490-499). Berlin Heidelberg: Springer-Verlag.

Mugenda, A., & Mugenda, O. (2003). Research Methods: Quantitative and Qualitative Approaches. Nairobi,
Kenya: African Center for Technology Studies.

Munir, Odeh, & McClatchey. (2008). Ontology Assisted Query Reformulation using the Semantic and
Assertion Capabilities of OWL-DL Ontologies. ACM International Conference, 299, pp. 600-623.

Nakorn, T. N. (2009). Combinatory Categorial Grammar Parser in Natural Language Toolkit. Scotland:
University of Edniburgh.

Ohly, R. (1982). Lexicographic Research at the Friendship Textile Mill. Journal of the Institute of Kiswahili
Research, 73-86.

Ontology, t. G. (2012). The Scope of GO. Retrieved March 17, 2012, from An Introduction to the Gene
Ontology: http://www.geneontology.org/GO.doc.shtml

Oracle. (2008). Sample Schema Scripts and Object Descriptions. In Leyderman, Austin, Bauwens, Dinesh,
Drake, Greenberg, . . . Pataballa, Oracle Databases - Sample Schemas 11g Release 1 (11.1).
California-94065: Oracle USA Inc.

Paice, C. (1990). Another Stemmer. ACM SIGIR, 56-61.

Petre, M., & Rugg, G. (2010). The Unwritten Rules of PhD Research (Open Up Study Skills). UK: Amazon.

http://www.geneontology.org/GO.doc.shtml

Lawrence Muchemi-PhD Thesis 2014

212 | P a g e

Ponte J, C. B. (1998). A Language Modeling Approach to Information Retrieval. SIGIR’98, 275-281.

Popescu, A., Etzioni, O., & Kautz, H. (2003). Towards a Theory of Natural Language Interfaces to Databases.
2003 International Conference on Intelligent User Interfaces., (pp. 149-157).

Popescu, Armanasu, Etzioni, Ko, & Yates. (2004). ModernNaturalLanguageInterfacestoDatabases:
ComposingStatisticalParsingwithSemanticTractability. The 20th International Conference on
Computational Linguistics. Geneva-Switzerland: COLING04.

Port, R. (1982). Morphophonemics of Swahili Verb Suffixes. Studies in African Linguistics, 249-271.

Porter, M. (1980). An Algorithm for Suffix Stripping. Journal Program, 313-316.

Porter, M., Robertson, S., & Rijsbergen, C. (1980). New models in probabilistic information retrieval. London:
British Library. British Library Research and Development.

Punyakanok, V., Roth, D., & Yin, W. (2004). Mapping Dependencies Trees: An application to Question
Answering. 8th International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale
FL,USA.

Ran, A., & Lencevicius, R. (2012). Natural Language Query System for RDF Repositories. Retrieved March 12,
2012, from http://alumni.cs.ucsb.edu/~raimisl/SNLP.camera.pdf

Rashid, A., Mohammad, A.-K., & Rahman, A. (2009). Efficient Transformation of a Natural Language Query to
SQL for Urdu. Conference on Language & Technology 2009. Peshawar Pakistan.

Robertson S, S. J. (1976). Relevance Weighting of Search Terms. Journal of the American Society for
Information Sciences, 27(3), 129-46.

Robin. (2010, November 1). Natural Language Processing. Retrieved February 12, 2012, from Natural
Language Understanding: http://language.worldofcomputing.net/understanding/natural-language-
understanding

Ross, S. (2003). Peirce's criterion for the elimination of suspect experimental data. Journal of Engineering
Technology, 1-12.

Ruiz-Martınez, J., Castellanos-Nieves, D., Valencia-Garcıa, R., Fernandez-Breis, J., Garcıa-Sanchez, F.,
Vivancos-Vicente, P., . . . Martınez-Bejar, R. (2009). Accessing Touristic Knowledge Bases through a
Natural Language Interface. (D. Richards, & B. Kang, Eds.) PKAW 2008, LNAI 5465, 147-160.

Salton G, F. E. (1983). Extended Boolean Information Retrieval. Communications of ACM, 26(11), 1022-36.

Salton G, W. A. (1975). A Vector Space Model for Automatic Indexing. Communications of the ACM -
Information Retrieval and Language Processing, 613-620.

Salton, G. (1971). The SMART Retrieval System. Englewood Cliffs, N.J.: Prentice Hall.

http://alumni.cs.ucsb.edu/~raimisl/SNLP.camera.pdf
http://language.worldofcomputing.net/understanding/natural-language-

Lawrence Muchemi-PhD Thesis 2014

213 | P a g e

Sewangi, S. (2001). Computer Assisted Extraction of Terms in Specific Domains: The Case of Swahili. Helsinki
Netherlands: PhD Doctoral Thesis, University of Helsinki.

Shin, D.-G., & Chu, L.-Y. (1998). Establishing Logical Connectivity between Query Key Words and Database
Contents. 12th Biennial Conference of the Canadian Society for Computational Studies of Intelligence
on Advances in Artificial Intelligence . UK: Springer-Verlag London.

Smart, P. (2008). Controlled Natural Languages and the Semantic Web. University of Southampton, School of
Electronics and Computer Science. Southampton - UK: International Technology Alliance.

Swier, R., & Stevenson, S. (2004). Unsupervised Semantic Role Labeling. Proceedings of 2004 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2004) (pp. 95-102). Barcelona- Spain:
EMNLP.

Tablan, V., Damljanovic, D., & Bontchev, K. (2008). A Natural Language Query Interface Structured
Information. 5th Annual European Semantic Web Conference (ESWC). Ternerife-Spain.

Tang, L., & Mooney, R. (2001). Using multiple clause constructors in inductive logic programming for
semantic parsing. 12th European Conference on Machine Learning (ECML-2001), (pp. 466-477).
Freiburg, Germany: ECML-2001.

Thomson, C., Mooney, R., & Tang, L. (1997). Learning to Parse Natural Language Database Queries into
Logical Form. Automata Induction, Grammatical Inference and Language Acquisition. Nashville-TN:
ICML-97.

TUKI. (2000). Kamusi ya Kiswahili-Kiingereza. Dar es Salaam, Tanzania: Taasisi Ya Uchunguzi wa Kiswahili
Chuo Kikuu Cha Dar es Salaam.

Vanessa Lopez, E. M. (2007). State of the art on Semantic Question Answering. The Open University,
Knowledge Media Institute. Milton Keynes,: Knowledge Media Institute, - U.K.

Vertica Systems. (2011, June 27). Analytic Databases: Getting Started Guide. Retrieved 2013, from Vertica.

Wang, C., Xiong, M., Zhou, Q., & Yu, Y. (2007). A Portable Natural Language Interface to Ontologies. 4th
ESWC (pp. 473-487). Innsbruck: Springer-VerLag.

Wong, Y. (2005). Learning for Semantic Parsing Using Statistical Machine Techniques. Austin - USA:
University of Texas at Austin.

Wu, Z., Chen, H., Cui, M., & Yin, A. (2007, May). Semantic-based Search and Query System for the Traditional
Chinese Medicine Community. W3C Publication - Semantic Web Use-Cases and Case studies and
China Academy of Chinese Medicine Sciencies(CACMS).

Yates, A., Etzioni, O., & Weld, D. (2003). A Reliable Natural Language Interface To Household Appliances. IUI.

Yin, R. (1994). Case Study Research: Design and Methods. Newbury Park, California: Sage Publications.

Lawrence Muchemi-PhD Thesis 2014

214 | P a g e

Zelle, R., & Mooney, R. (1996). Learning to Parse Database Queries Using Inductive Logic Programming.
AAAI, (pp. 1050-1055). Portland-Oregon.

Zellig, H. (1951). Structural Linguistics. University of Chicago Press, Chicago: Phoenix Books.

Zettlemoyer, L., & Collins, M. (2005). Learning to Map Sentencies to Logical Form. Twenty First Conference
on Uncertainty in Artificial Intelligence (pp. 658-666). Edinburgh, Scotland: AUAI Press.

Zorzi, I., Tessaris, S., & Dongilli, P. (2007). Improving Responsiveness of Ontology-Based Query Formulation.
(G. Semeraro, E. Sciascio, & C. Stoermer, Eds.) SWAP:CEUR-WS.org.

Zucker, D. (2009). How to Do Case Study Research. Massachusetts-Amhrest, USA: School of Nursing Faculty
Publication Series. Paper 2.

Lawrence Muchemi-PhD Thesis 2014

215 | P a g e

Appendix 1: Characterizing Linguistic Features of user Inputs
Segment of Farmers Query Set (Reprinted from original Set (Muchemi L. , 2008))

1. Ametoka nchi ipi Which country Ametoka
2. Ana tabia gani What Has character
3. inataga kwa mda gani inataga for what time
4. vifaranga ni bei gani What is the price chick
5. wakisha komaa nitauzaje When mature, they will uzaje
6. baada ya kutaga nitauza aje After I sell come lay
7. nitaagiza vifaranga kupitia nani I suffered through the chick who
8. nitaletewa vifaranga siku ngapi baada ya kuagiza I brought the chick, how many days after ordering
9. nitabebewa vifaranga na nani Who will bebewa chick
10. kuku wakigojeka nitamwona nani hen I saw who they gojeka
11. kuna vipingo ngapi vya ukuaji How much growth there Vipingo
12. unaweza badilisha chakula bila kuangalia watengenezaji You can eat without looking at the developers changed
13. nafaa kuwapa kuku maji kiasi kipi nafaa much water to give a chicken
14. kuna shida maji yakimwagika sakafuni There are water problems on the floor yakimwagika
15. vyumba vya kuku vinafaa kujegwaje You should kujegwaje chicken rooms
16. vinafaa kujenga vikielekea jua au la You should know or not to build vikielekea
17. chini kwa sakafu inafaa kukorogwa au la under the floor or the appropriate kukorogwa
18. ni chombo kipi kinafaa cha kuleta joto inayofaa What are expedient tool to bring the appropriate temperature
19. wakati gani mtu anafaa kujua joto limezidi when does a person need to know the temperature limezidi
20. nibaridi kiasi gani inatakikana How nibaridi inatakikana
21. chombo kipi kinafaa kutumika What are expedient tool used
22. ni vyombo vipi vinafaa kwa usafi. How nivyombo You should clean.
23. kuku wanafaa kuachana katika ukuaji na “gap” gani They should stop the chicken growth and, Äúgap, or what
24. kuku akikomaa anafaa kuwa na uzito kimo gani If chicken is perfect height and weight should be what
25. dawa huharibika baada ya mda upi medicine perishes after what time
26. kuku anayepigwa na wengine anafaa kutengwa chickens that received by others is appropriate isolation
27. nidalili gani zilizo za kawaida kuku akiugua nidalili What if chickens are common illnesses
28. nafaa kutumia dawa gani What medications nafaa
29. ni njia gani mwafaka ya kuzuia magonjwa What is the best way to prevent diseases
30. unaweza kula kuku mgonjwa You can eat sick chickens
31. unajua aje kuku amefikisha wakati wake wa kuuzwa You know how chicken is delivered during his sold
32. wanunuzi bora best buyers
33. bei bora best price
34. je tunaweza kutafutiwa soko how can we market kutafutiwa
35. unajua aje kuku amefikisha … ** You know how chicken is delivered, a ¶
36. aina hii imetoka nchi gani ** This kind from what country
37. Kukua na kuishi kukoje ** Growth and living kukoje
38. anataga kwa mda upi ** What time he lay with

Lawrence Muchemi-PhD Thesis 2014

216 | P a g e

39. vifaranga ni pesa ngapi ** Chick is how much
40. bei yao wakisha komaa ni ngapi ** Their price when they mature is how many
41. baada ya kutaga nitauzaje ** After I lay uzaje
42. nitaagiga vifaranga kupitia nani ** Who will agiga chick through
43. nitaletewa vifaranga siku ngapi baada ya kuagiza ** I brought the chick, how many days after ordering
44. nitabebewa vifaranga na nani ** Who will bebewa chick
45. kuku wakiugua nitamwona nani ** I saw chickens who were suffering from
46. kuna vipingo ngapi vya ukuaji How much growth there Vipingo
47. je ni salama kubadilisha chakula bila kuzingatia

mtengenezaji Is it safe to change the food regardless of manufacturer
48. nafaa kuwapa kuku maji nafaa giving chickens water
49. kiasi kipi cha maji much water
50. kuna shida yakimwagika sakafuni There are problems on the floor yakimwagika
51. kuku wanafaa kuachana katika ukuaji na “gap” gani They should stop the chicken growth and, Äúgap, or what
52. kuku akikomaa anafaa kuwa na uzito kimo gani If chicken is ready to be mature height and weight did
53. dawa huharibika baada ya mda upi medicine perishes after what time
54. kuku anayepigwa na wengine anafaa kutengwa chickens that received by others is appropriate isolation
55. nidalili gani zilizo za kawaida kuku akiugua nidalili What if chickens are common illnesses
56. nafaa kutumia dawa gani What medications nafaa
57. ni njia gani mwafaka ya kuzuia magonjwa What is the best way to prevent diseases
58. unaweza kula kuku mgonjwa You can eat sick chickens ====
59. kuku wakutaga mayai anapatikana aje wakutaga chicken eggs is found to come
60. naweza kumpata kuku wa nyama I find chicken meat
61. kifaranga wa kuku wa nyama anapatikana na pesa ngapi chick chicken meat is available and how much
62. je, unastahili kuagiza kuku wako kabla ya siku ngapi Do you need to order your chickens before how many days
63. je, ni chakula kipi unaweza patia kuku wa nyama na wa

mayai Is what you eat can give the chicken meat and eggs
64. kuku wa nyama anastahili kuwa na kilo ngapi kwa siku

arobainne poultry meat should be and how many kilograms arobainne
65. vyumba vyafaa kujengwa kwa nini Why vyafaa apartments built
66. vifaa vipi vya faa kutumiwa kupima joto how materials should be used to measure temperatures of
67. nyumba ya faa kusafishwa vipi How the house should be cleaned
68. vyumba vya faa kusafishwa baada ya mda upi. rooms should be cleaned after what time.
69. kuku afaa kuwa na kilo ngapi baada ya wiki 6 afaa a chicken, how many kg after 6 weeks
70. anapewa chajo baada ya mda upi He received chajo after what time
71. anapewa chajo wapi Where is given chajo
72. kuhara ni ugonjwa diarrheal disease is
73. bona kuku hutetemeka Why chickens are trembling
74. kuku wanao kuwa na kukosa kutembea kwa nini. lack of chickens who had walked for what.
75. kuku akihara apewa dawa zipi chicken, and diarrhea what drug apewa
76. akitetemeka afanywe nini What trembling afanywe
77. naweza kuzuia kuhara vipi How can I prevent diarrhea

Lawrence Muchemi-PhD Thesis 2014

217 | P a g e

78. kuku wa nyama auzwe baada ya siku ngapi auzwe chicken meat after how many days
79. kuku wa nyama auzwe wapi. Where poultry meat auzwe .
80. broilers? Broilers?
81. shilingi hamsini kila kifaranga fifty shillings each chick
82. unaenda kujichukulia You go kujichukulia
83. mwangaza wa masaa ishirini na nne. manifestation of twenty-four hours .
84. kuku aina ngapi za kuku za mayai How many types of poultry chicken egg
85. kuna aina ngapi za kuku There are how many types of poultry
86. kuna aina ngapi za chakula How many kinds of food there
87. kuku za mayai ni bei gani hen's eggs, what is the price
88. kuku za nyama ni bei gani poultry meat, what is the price
89. kuagiza ni nini (how do I book) What order is (how do I book)
90. mtu huchukua wiki ngapi How someone can take weeks
91. kuku za paswa kupewa chakula mara ngapi of chicken meat should be many times
92. kuku aina ngapi za chakula How many types of poultry meat
93. kuku za nyama zinapaswa kunywa maji mara ngapi poultry meat should drink water often
94. kuna aina ngapi za maji There are how many types of water
95. nyumba ya kuku inapaswa kujengwa aje The chicken house should be built to come
96. unapaswa kuwasha taa kila siku You should light a candle every day
97. kuku za nyama huuzwa kwa bei gani poultry meat is sold for what price
98. kuku za [mayai] huuzwa bei gani hen the [eggs] are sold, what price
99. chakula cha kuku wa mayai ni bei gani eat the chicken's eggs, what is the price
100. utapata wapi soko ya kuku za mayai Where will the market find a chicken egg
101. utapata wapi soko ya kuku za nyama Where you will find a market of poultry meat
102. kama za kienyenji as kienyenji
103. kama za mayai as egg
104. kama za nyama as meat
105. ya kienyenji pesa ngapi of how much kienyenji
106. za nyama pesa ngapi How much money meat
107. za mayai pesa ngapi how much egg
108. nani ataniletea Who will me
109. nanikijichukulia Nanikijichukulia
110. utanidai pesa ukiniletea the money you gave me nidai
111. naweza pata aina ya kutaga I get kind of lay
112. kuna aina ya nyama any kind of meat
113. nay a nyama na mayai nay a meat and eggs
114. ya kutaga pesa ngapi how much of the lay
115. ya mayai pesa ngapi of how much eggs
116. 50 za mayai pesa ngapi 50 eggs, how much
117. kuchukua kuku uanze vipi How to take chicken begin
118. kuagiza ningonje mpaka lini When ordering ningonje until

Lawrence Muchemi-PhD Thesis 2014

218 | P a g e

119. kuku 50 pesa ngapi kuagiza how much chicken to order 50
120. nitaletewa baada ya siku ngapi I brought how many days
121. ninani atanichukulia kuku Who will take chicken
122. zinachukuliwa wapi Where zinachukuliwa
123. vifaranga wa nyama wanakaa kwa wiki ngapi chick of the meat they spent how many weeks
124. vifaranga wa nyama wakula chakula kipi chick eat meat what
125. broilers ni zipi na ni za nini What are broilers and what are
126. layers ni zipi What layers are
127. za mayai ni pesa ngapi of eggs is how much
128. zikichinjwa pesa ngapi how much zikichinjwa
129. mtu anaagiza wakati upi What is allowed during one
130. mtu anangojea siku ngapi How many days a person is waiting
131. nitachukua na nini gari ‘carton ‘ama nini What will I take the car, Äòcoton, what Äòama

Elf’s Queries to Microsoft’s North-Wind Database Questions

Segment of Trade Query Set (Reprinted from original Set by (Bootra, 2004))

1. where are the suppliers from Germany located
2. show the names and complete address of the biscuit companies
3. at which company does Ian work
4. who handles the specialty items(Modify to: who supplies speciality items?)
5. show the domestic suppliers
6. show the New Orleans suppliers
7. show the New England suppliers
8. which company handles the specialty products
9. which companies have Product Managers
10. show the Product Managers
11. show the orders by Leverling to Hanover Sq
12. which products come in bottles
13. What are the names of our Canadian customers?
14. Give the name and location of suppliers from Germany.
15. Which are our Australian suppliers?
16. List the countries where suppliers are located, arranging the countries in alphabetical order.
17. Products with names that start with "La".
18. Suppliers who are not located in Canada
19. Find the products that have between 10 and 20 units in stock
20. Records for customers who are located in Canada and whose names begin with the letter "M"
21. Suppliers who are located in Canada and whose names begin with the letters A-N.
22. Suppliers who have a fax number
23. Show the employees hired between May 1, 1992 and June 1, 1993
24. Employees who live in the United Kingdom or employees who live in Seattle
25. Orders placed before 1-Jan-93
26. Customers whose company names start with N-Z and who are located in either the United Kingdom or Paris
27. Orders that were placed during the month of February 93
28. Find customers from Canada or the UK who have placed over 15 orders
29. Suppliers who provide seafood products and who are from Singapore or Japan.
30. Find the customers who ordered the "Chef Anton's Cajun Seasoning" product
31. information on orders that were placed after 31-Mar-92, including the employee who made the sale and the

customer who placed the order

Lawrence Muchemi-PhD Thesis 2014

219 | P a g e

32. What's the average price of all our products
33. Give the name and id for each category.
34. List the customers
35. Count the orders that have been placed for each seafood product
36. Show the ship date and order subtotals since March of 1994
37. Display the subtotal and shipping date of all orders
38. List the suppliers in alphabetical order
39. Find the total number of Northwind suppliers
40. orders that were shipped today
41. orders that were shipped during the past ten years
42. The number of orders that were shipped within the past 3100 days
43. Find the total value of orders that have been shipped to each country
44. Which products cost between $3 and $6?
45. Give the order id, product name, product id, price, quantity, discount and extended price for each purchase
46. Show catalog information for the active products.
47. the minimum price of all products in the Products table
48. all records with the current date
49. What's the total number of orders we received this month
50. all employees who have birthdays today
51. all employees who have birthdays on July 2
52. All employee records that contain photos
53. Find the total number of customers in Canada or the United Kingdom who have placed orders, and group them

by country
54. Find the total value of orders shipped to each customer within each country
55. Which employee sold the most units of tofu?
56. Subtotal and customer for orders shipped between 10/1/91 and 12/31/91, sorting on the value
57. photos of employees whose last names start with "B"
58. show photos of employees hired during 1991
59. which customers have ordered both Konbu and Filo Mix?
60. which products are more expensive than chai
61. how much does chai cost
62. customers that ordered both chai and filo
63. how many products are there in each category
64. which customers have ordered every meat/poultry product
65. which customers have never ordered seafood
66. which customers ordered Longlife tofu but not filo mix
67. which customers always use Federal Shipping
68. which product costs the most
69. which customers have placed more orders than average
70. show the seafood products in reverse price order
71. customers that have ordered from both Ma Maison and Tokyo Traders
72. show company names of the suppliers that have more than 3 products
73. which orders were neither shipped to Canada nor sent via Speedy Express
74. which orders were not both shipped to Canada and sent via Speedy Express
75. how many customers have ordered every meat/poultry product
76. what percentage of customers have ordered every meat/poultry product
77. which customers bought products from every category
78. which customers ordered the fewest items
79. show the names and complete address of the pear companies
80. which of the clients that purchased tofu have also purchased chai?
81. Show the ship date and subtotals for all orders since March of 1991
82. how many customers in each country have ordered tofu?
83. which customers exclusively use Federal Shipping
84. which customers use Federal Shipping exclusively
85. customers that work at 12 Orchestra Terrace
86. customers in the t2f area

Lawrence Muchemi-PhD Thesis 2014

220 | P a g e

87. count the orders for tofu versus those for chai
88. graph the number of tofu or chai orders
89. graph the number of Seattle employees against London
90. graph the sum of subtotals for seafood against beverages
91. graph the average subtotal for each category
92. graph the sum of subtotals for tofu, chai and konbu
93. show the average number of products sold by each employee sales representative
94. compare the average unit price showing employee and product
95. which products were shipped by Federal in the last 5 years
96. list employees with home phones = (206) 555-8122, (206) 555-8122
97. Find the total number of different customers in Canada or UK who have placed orders
98. find the total number of DISTINCT customers in Canada or the United Kingdom who have placed orders, and

group them by country
99. which suppliers have order dates that are newer than 600 months old
100. show the difference between discount and unit price

COMPUTER JOBS QUERIES

Segment of Jobs Search Query Set (Recreated from Original set by Tang & Mooney, 2001)

1. 'All of it?'
2. 'All the jobs please?'
3. 'All?'
4. 'Any jobs available using database?'
5. 'Are there ada jobs outside austin?'
6. 'Are there any autocad jobs open?'
7. 'Are there any computer jobs for the playstation?'
8. 'Are there any computer jobs in the field of statistics?'
9. 'Are there any jobs at applied materials that require a bscs?'
10. 'Are there any jobs at dell that require no experience and pay 50000?'
11. 'Are there any jobs for a client server specialist?'
12. 'Are there any jobs for a data warehousing specialist?'
13. 'Are there any jobs for a graphics specialist?'
14. 'Are there any jobs for a odbc specialist?'
15. 'Are there any jobs for a programmer?'
16. 'Are there any jobs for people in austin that want to program in lisp but do not have a degree?'
17. 'Are there any jobs in austin developing games in x86 using assembly?'
18. 'Are there any jobs in austin paying over 100000 per year?'
19. 'Are there any jobs in austin requiring at least a bscs and knowing latex?'
20. 'Are there any jobs in austin?'
21. 'Are there any jobs in 'c++' that the salary is 50000?'
22. 'Are there any jobs in houston?'
23. 'Are there any jobs in lan?'
24. 'Are there any jobs in san antonio?'
25. 'Are there any jobs in tcp ip?'
26. 'Are there any jobs in the us with the title verification engineer?'
27. 'Are there any jobs in usa?'
28. 'Are there any jobs on ibm?'
29. 'Are there any jobs on novell?'
30. 'Are there any jobs on pc?'
31. 'Are there any jobs on sun?'
32. 'Are there any jobs on vax?'
33. 'Are there any jobs on windows?'
34. 'Are there any jobs requiring a bscs for boeing in seattle?'
35. 'Are there any jobs requiring ba?'
36. 'Are there any jobs requiring bs?'

Lawrence Muchemi-PhD Thesis 2014

221 | P a g e

37. 'Are there any jobs requiring bscs?'
38. 'Are there any jobs requiring bsee?'
39. 'Are there any jobs specializing in ai with jpl?'
40. 'Are there any jobs that do not require 5 years of experience?'
41. 'Are there any jobs that require a knowledge of linux in san antonio?'
42. 'Are there any jobs that require the knowledge of linux platform?'
43. 'Are there any jobs using assembly in usa?'
44. 'Are there any jobs using 'c++' with dell?'
45. 'Are there any jobs using cobol?'
46. 'Are there any jobs using java that are not with ibm?'
47. 'Are there any jobs using java that are not with tivoli?'
48. 'Are there any jobs using java that dont require a bscs?'
49. 'Are there any jobs using powerbuilder?'
50. 'Are there any jobs using sql?'
51. 'Are there any jobs using 'vc++'?'
52. 'Are there any jobs with a salary of 100000?'
53. 'Are there any jobs with microsoft involving sql?'
54. 'Are there any jobs with microsoft?'
55. 'Are there any mac jobs open?'
56. 'Are there any mac programmer jobs open in austin?'
57. 'Are there any mac programmer jobs?'
58. 'Are there any programmer jobs open?'
59. 'Are there any project manager positions open?'
60. 'Are there any software developer jobs requiring bs?'
61. 'Are there any systems administrator jobs in austin?'
62. 'Are there any unix jobs?'
63. 'Are there jobs that do not require a degree in houston?'
64. 'Are there jobs using vb in seattle with sql server and on windows nt?'
65. 'Can i find a job making more than 40000 a year without a degree?'
66. 'Can you offer anything with at least 60000 on a sun?'
67. 'Can you show me all the jobs?'
68. 'Can you show me vb jobs with 50000 salary with databases and excel?'
69. 'Could a senior consulting engineer find work in boston?'
70. 'Could i have some jobs using sql with oracle?'
71. 'Could you list all the jobs?'
72. 'Do any jobs exist programming for apple on pdp11s?'
73. 'Do you have any jobs involving 'c++' on aix?'
74. 'Does anyone still use mvs?'
75. 'Does apple have any software engineer positions?'
76. 'Does national instruments have any positions that dont require experience?'
77. 'Everything?'
78. 'Find all 'c++' jobs in austin?'
79. 'Find all network administration jobs in austin?'
80. 'Give me a list of all the jobs?'
81. 'Give me 'c++' jobs on windows nt?'
82. 'Give me jobs for a data warehousing specialist?'
83. 'Give me jobs for a games specialist?'
84. 'Give me jobs in cobol ii?'
85. 'Give me jobs in dallas?'
86. 'Give me jobs in san antonio using cobol?'
87. 'Give me jobs in san antonio?'
88. 'Give me jobs in usa?'
89. 'Give me jobs on the mac using perl?'
90. 'Give me jobs on vms using sql?'
91. 'Give me jobs requiring bs?'
92. 'Give me jobs that require ethernet experience but no html?'

Lawrence Muchemi-PhD Thesis 2014

222 | P a g e

93. 'Give me jobs using visual 'c++'?'
94. 'Give me the jobs for a database specialist in usa?'
95. 'Give me the jobs for a games specialist?'
96. 'Give me the jobs for a ole specialist?'
97. 'Give me the jobs in 'c++'?'
98. 'Give me the jobs in dallas?'
99. 'Give me the jobs in houston?'
100. 'Give me the jobs in visual 'c++'?'
101. 'Give me the jobs on novell?'
102. 'Give me the jobs on unix?'
103. 'Give me the jobs on vms in assembly?'
104. 'Give me the jobs on windows nt?'
105. 'Give me the jobs requiring bscs?'
106. 'Give me the jobs requiring bsee?'
107. 'Give me the jobs using c?'
108. 'Give me the jobs using 'c++' that dont require windows?'
109. 'Give me the jobs using cobol?'
110. 'Give me the jobs using sql?'
111. 'Give some jobs in dallas on a sun system?'
112. 'Greed for 80000 and java plagues developer wanting to live in san jose at apple?'
113. 'How much experience is wanted for a job at microsoft?'
114. 'I hold a degree in bscs in austin are there any jobs for me?'
115. 'I sure do wish there were java assembly jobs out there '.'' can you help?'
116. 'I sure would like a perl job at microsoft involving databases?'
117. 'I want a job that doesnt use windows?'
118. 'I want a job that use 'c++'?'
119. 'I wish there were some perl jobs in boston?'
120. 'I wonder what jpl does on unix with prolog and vax?'
121. 'I would like to find a job using java?'
122. 'I would like to see all the jobs?'
123. 'Id like to see everything?'
124. 'Id like to see the jobs in houston for a prolog programmer making at least 50000 a year involving
databases?'
125. 'If i moved to california and learned sql on oracle could i find anything for 30000 on unix?'
126. 'Is anyone offering 40000 for ai work?'
127. 'Is fortran required for any jobs?'
128. 'Is there anything for an old cobol programmer on mvs?'
129. 'List all jobs using 'c++' and java in california?'
130. 'List jobs in austin?'
131. 'List jobs in client server?'
132. 'List jobs in cobol ii?'
133. 'List jobs in usa?'
134. 'List jobs in wan?'
135. 'List jobs on sun?'
136. 'List jobs on vms?'
137. 'List jobs on windows?'
138. 'List jobs requiring ba?'
139. 'List jobs requiring bscs using java?'
140. 'List jobs requiring bsee?'
141. 'List jobs using assembly?'
142. 'List jobs using cobol ii?'
143. 'List jobs using java?'
144. 'List jobs using sql?'
145. 'List the companies that desire 'c++' experience?'
146. 'List the jobs for a client server specialist?'
147. 'List the jobs for a database specialist?'

Lawrence Muchemi-PhD Thesis 2014

223 | P a g e

148. 'List the jobs in 'c++'?'
149. 'List the jobs in database?'
150. 'List the jobs in san antonio?'
151. 'List the jobs in visual 'c++'?'
152. 'List the jobs on unix?'
153. 'List the jobs requiring bs?'
154. 'List the jobs requiring java a bscs 2 years experience?'
155. 'List the jobs using assembly?'
156. 'List the jobs using cics?'
157. 'List the jobs using cobol ii?'
158. 'List the jobs using html for a games specialist?'
159. 'List the positions that require a knowledge of microsoft excel?'
160. 'List the required experience for a job using lisp?'
161. 'Moving to canada need a job with unix java and ibm?'
162. 'Mvs cobol and databases are the key to tivoli?'
163. 'Only microsoft vb windows nt and excel and 70000 dollars can satiate me?'
164. 'Prolog ai and lisp and graphics?'
165. 'Show a list of jobs requiring experience in 'c++' or java?'
166. 'Show all intern positions in texas with network and java?'
167. 'Show jobs for a com specialist?'
168. 'Show jobs for a data warehousing specialist?'
169. 'Show jobs for a shell programmer familiar with the unix environmen?'
170. 'Show jobs in austin that require a bscs?'
171. 'Show jobs in html?'
172. 'Show jobs in usa?'
173. 'Show jobs on windows?'
174. 'Show jobs requiring ba?'
175. 'Show jobs requiring bsee?'
176. 'Show jobs that are not in austin pay less than 10000 require knowledge of 'c++' pascal and java and
desire a phd?'
177. 'Show jobs that do not require a degree for visual basic programmers?'
178. 'Show jobs using cics?'
179. 'Show jobs using powerbuilder?'
180. 'Show jobs using visual basic?'
181. 'Show me a dell job in austin requiring a bscs?'
182. 'Show me a job not requirng java and not in austin?'
183. 'Show me a job that requires 'c++' and java and is in austin?'
184. 'Show me all job that are available?'
185. 'Show me all of the software engineer jobs in austin?'
186. 'Show me all of the software qa jobs in austin?'
187. 'Show me austin jobs desiring a bscs?'
188. 'Show me austin jobs requiring a bscs degree with a salary greater than 50000 per year?'
189. 'Show me austin jobs requiring a bscs?'
190. 'Show me austin jobs with a salary of 50000?'
191. 'Show me 'c++' jobs requiring a bscs in austin?'
192. 'Show me dallas jobs requiring a bscs?'
193. 'Show me developer jobs requiring experience with mac?'
194. 'Show me everything?'
195. 'Show me graphics jobs which phil smith is recruiting for?'
196. 'Show me houston jobs using c in the specialty area of oil pipeline modeling?'
197. 'Show me houston jobs using 'c++' on pc?'
198. 'Show me jobs are dell requiring experience on unix?'
199. 'Show me jobs at dell earning 60000?'
200. 'Show me jobs at dell requiring a bscs degree?'
201. 'Show me jobs at dell requiring no experience and a bscs?'
202. 'Show me jobs desiring a ma in austin with microsoft?'

Lawrence Muchemi-PhD Thesis 2014

224 | P a g e

203. 'Show me jobs desiring a mscs in austin with microsoft?'
204. 'Show me jobs for dell requiring experience on unix?'
205. 'Show me jobs in austin that use java on unix for a developer paying at least 50000?'
206. 'Show me jobs in austin using solaris that do not require a bscs?'
207. 'Show me jobs in computer graphics requiring a ba in art and knowledge of 'speedy3dgraphics'?'
208. 'Show me jobs in dallas requiring knowledge of linux and pays more than 50000 a year?'
209. 'Show me jobs in texas?'
210. 'Show me jobs in tulsa using fortran on vax requiring a bscs?'
211. 'Show me jobs located in austin for 'c++' programmers?'
212. 'Show me jobs not involving 'c++'?'
213. 'Show me jobs paying greater than 50000 per year?'
214. 'Show me jobs requiring a bscs on sun?'
215. 'Show me jobs requiring a bscs on suns?'
216. 'Show me jobs requiring no experience?'
217. 'Show me jobs that require 3 years work experience in 'c++'?'
218. 'Show me jobs using lisp that require a bscs and desire a msee?'
219. 'Show me jobs with a salary greater than 50000 dollars a year?'
220. 'Show me jobs with the playstation in the specialty area of animation?'
221. 'Show me management jobs in boston requiring an mba and the knowledge of visual basic?'
222. 'Show me new york jobs requiring a bscs?'
223. 'Show me positions in web programming?'
224. 'Show me programmer jobs in tulsa?'
225. 'Show me programmer jobs requiring no experience on unix?'
226. 'Show me something that requires oracle?'
227. 'Show me systems analyst jobs at ibm?'
228. 'Show me systems analyst jobs at tivoli?'
229. 'Show me the 'c++' jobs in nashville that desire 2 years experience?'
230. 'Show me the hardware platforms associated with a netware administrator with ibm?'
231. 'Show me the job application for ic design engineer?'
232. 'Show me the jobs at companies in austin that want a degree in bscs?'
233. 'Show me the jobs concerning game developer on a playstation?'
234. 'Show me the jobs concerning games development on a playstation?'
235. 'Show me the jobs in austin that desire 3 years of experience and use 'c++'?'
236. 'Show me the jobs in texas using ai on unix?'
237. 'Show me the jobs requiring 3 years of experience at ibm?'
238. 'Show me the jobs requiring 3 years of experience at tivoli?'
239. 'Show me the jobs that are not in haskell?'
240. 'Show me the jobs that operate on sun?'
241. 'Show me the jobs that require 1 year of experience but desire 2 years of experiences?'
242. 'Show me the jobs that require 2 years experience?'
243. 'Show me the jobs using 'c++' that require a bscs but desire a mscs?'
244. 'Show me the jobs using java with salaries greater than 50000 per year?'
245. 'Show me the jobs using lisp requiring a bscs?'
246. 'Show me the jobs using perl with lockheed martin aeronautics in colorado?'
247. 'Show me the jobs which use excel?'
248. 'Show me the jobs with 30000 salary?'
249. 'Show me the jobs with a salary of 50000?'
250. 'Show me the networking jobs in houston with a salary of 50000?'
251. 'Show me the research assistant job in austin?'
252. 'Show me the senior development engineer jobs which require a master?'
253. 'Show me the senior software developer jobs which require a master?'
254. 'Show me the titles of the available jobs using prolog in houston?'
255. 'Show me web developer job opennings at trilogy?'
256. 'Show me what jobs there are?'
257. 'Show me what needs experience?'
258. 'Show me whats out there for perl developers on windows?'

Lawrence Muchemi-PhD Thesis 2014

225 | P a g e

259. 'Show the jobs for a odbc specialist?'
260. 'Show the jobs for bscs in austin?'
261. 'Show the jobs in austin?'
262. 'Show the jobs in client server?'
263. 'Show the jobs in dallas?'
264. 'Show the jobs in san antonio?'
265. 'Show the jobs in visual 'c++'?'
266. 'Show the jobs offering 40000 working with c on windows nt?'
267. 'Show the jobs on mvs?'
268. 'Show the jobs on pc requiring bscs?'
269. 'Show the jobs on pc?'
270. 'Show the jobs on sun?'
271. 'Show the jobs on vms?'
272. 'Show the jobs requiring ba?'
273. 'Show the jobs requiring bs in usa?'
274. 'Show the jobs requiring bsee?'
275. 'Show the jobs using html?'
276. 'Show the jobs using lisp not requiring a degree in cs?'
277. 'Show the jobs using powerbuilder?'
278. 'Show the jobs with the title systems analyst requiring 2 years of experience?'
279. 'Tell me jobs for a device driver specialist?'
280. 'Tell me jobs for a mfc specialist?'
281. 'Tell me jobs in austin?'
282. 'Tell me jobs in networking?'
283. 'Tell me jobs on sun?'
284. 'Tell me jobs on windows 95 in mfc?'
285. 'Tell me jobs requiring ba?'
286. 'Tell me jobs requiring bscs?'
287. 'Tell me jobs using cobol ii?'
288. 'Tell me jobs using html?'
289. 'Tell me jobs using visual basic?'
290. 'Tell me the jobs in '3d' graphics?'
291. 'Tell me the jobs in lan?'
292. 'Tell me the jobs in usa?'
293. 'Tell me the jobs on mvs?'
294. 'Tell me the jobs on windows nt?'
295. 'Tell me the jobs requiring ba using cobol?'
296. 'Tell me the jobs requiring bs in usa?'
297. 'Tell me the jobs requiring bs?'
298. 'Tell me the jobs using powerbuilder?'
299. 'Tell me the jobs using 'vc++'?'
300. 'Tell me the jobs using visual basic?'
301. 'Tell me what jobs there are?'
302. 'Test engineer in need of 40000 in seattle on windows nt?'
303. 'There must be some jobs out there for a 'c++' programmer that thinks in unix databases?'
304. 'Vanity wants 5000 a month with buzwords like java apple internet and california?'
305. 'What ai jobs are there in texas that pay 65000?'
306. 'What ai positions require only a bscs?'
307. 'What are all the jobs?'
308. 'What are the 'c++' jobs in austin requiring a bscs?'
309. 'What are the degree requirements for a software engineer?'
310. 'What are the jobs for a 'c++' programmer in austin?'
311. 'What are the jobs for programmer in austin that has salary 50000 that uses 'c++' and not related with
ai?'
312. 'What are the jobs in austin requiring knowledge of oracle?'
313. 'What are the jobs in washington that require at least 5 years of experience?'

Lawrence Muchemi-PhD Thesis 2014

226 | P a g e

314. 'What are the jobs that pay 50000 per year?'
315. 'What are the jobs that require experience with aix but not windows nt?'
316. 'What are the jobs that require experience with microsoft word?'
317. 'What are the jobs using 'c++' with salaries of 50000?'
318. 'What are the positions within dell that requires bscs?'
319. 'What are the positions within hp that pay 40000 per year?'
320. 'What are the software engineer jobs available using ada?'
321. 'What are the software engineering jobs available using ada?'
322. 'What austin area web jobs require java and 'c++'?'
323. 'What austin jobs that use cobol do not require any experience?'
324. 'What 'c++' jobs are in austin?'
325. 'What can i find using java on unix?'
326. 'What database jobs are there?'
327. 'What developer jobs in austin require a bscs and 'c++'?'
328. 'What do you have paying over 40000 on the vax?'
329. 'What engineer positions in telecommunications companies in dallas do not require 'c++'?'
330. 'What ibm jobs require using java on commodores?'
331. 'What is out there?'
332. 'What java jobs are there with ibm in austin?'
333. 'What job is there for a bscs with 5 years of experience?'
334. 'What job is there for 'c++' but not visual 'c++'?'
335. 'What jobs are available for a solaris systems administrator?'
336. 'What jobs are available for someone who knows oracle on solaris?'
337. 'What jobs are available that require java but not internet experience or ai experience?'
338. 'What jobs are available using apache with a specialty area of networking?'
339. 'What jobs are available?'
340. 'What jobs are in seattle that are not at microsoft?'
341. 'What jobs are longhorn employment hiring for?'
342. 'What jobs are there doing computer graphics on silicon graphics machines?'
343. 'What jobs are there for a '3d' graphics specialist?'
344. 'What jobs are there for a com specialist?'
345. 'What jobs are there for a graphics specialist?'
346. 'What jobs are there for a gui specialist?'
347. 'What jobs are there for a networking specialist?'
348. 'What jobs are there for a test engineer using java?'
349. 'What jobs are there for a visual basic developer?'
350. 'What jobs are there for assembly programer that require a bscs?'
351. 'What jobs are there for austin mac programmer using 'c++'?'
352. 'What jobs are there for 'c++' programmers which pay more than 60000 per year?'
353. 'What jobs are there for 'c++' unix developer?'
354. 'What jobs are there for pascal programers who dont know 'c++'?'
355. 'What jobs are there for programmers that know assembly?'
356. 'What jobs are there for programmers who know java?'
357. 'What jobs are there for web developer who know 'c++'?'
358. 'What jobs are there for windows nt developers that know oracle?'
359. 'What jobs are there in austin for people with knowledge of the application oracle?'
360. 'What jobs are there in austin for project manager area games on mac using pascal?'
361. 'What jobs are there in austin requiring a phd?'
362. 'What jobs are there in austin that require 5 years experience?'
363. 'What jobs are there in austin that require a bscs degree?'
364. 'What jobs are there in austin that requires experience with unix?'
365. 'What jobs are there in austin with a salary of at least 100000 per year?'
366. 'What jobs are there in dallas that requires a mscs?'
367. 'What jobs are there in data warehousing?'
368. 'What jobs are there in games?'
369. 'What jobs are there in houston?'

Lawrence Muchemi-PhD Thesis 2014

227 | P a g e

370. 'What jobs are there in odbc?'
371. 'What jobs are there in sql?'
372. 'What jobs are there in texas that use java and require no experience?'
373. 'What jobs are there in usa on ibm?'
374. 'What jobs are there in usa?'
375. 'What jobs are there on aix?'
376. 'What jobs are there on ibm?'
377. 'What jobs are there on novell involving the internet?'
378. 'What jobs are there on vms?'
379. 'What jobs are there on windows 95?'
380. 'What jobs are there on windows nt?'
381. 'What jobs are there on x86?'
382. 'What jobs are there on x86?'
383. 'What jobs are there outside austin which pay less than 60000 per year?'
384. 'What jobs are there requiring ba?'
385. 'What jobs are there requiring bs?'
386. 'What jobs are there requiring bscs?'
387. 'What jobs are there requiring bsee?'
388. 'What jobs are there that dont require a degree but use perl?'
389. 'What jobs are there using cics?'
390. 'What jobs are there using cobol ii?'
391. 'What jobs are there using cobol?'
392. 'What jobs are there using rpg?'
393. 'What jobs are there using sql?'
394. 'What jobs are there using 'tcl/tk'?'
395. 'What jobs are there using 'vc++'?'
396. 'What jobs are there using visual basic?'
397. 'What jobs are there which require java on windows and unix?'
398. 'What jobs are there with a salary of 40000?'
399. 'What jobs are there with a salary of more than 50000 dollars per year?'
400. 'What jobs are there working for microsoft programming lisp for autocad?'
401. 'What jobs are there?'
402. 'What jobs as a senior software developer are available in houston but not san antonio?'
403. 'What jobs as an sql engineer pay 100000?'
404. 'What jobs as manufacturing manager pay 100000?'
406. 'What jobs at dell require a bscs?'
407. 'What jobs can a delphi developer find in san antonio on windows?'
408. 'What jobs can i find with tivoli?'
409. 'What jobs desire 2 years of experience with powerbuilder on windows nt?'
410. 'What jobs desire a degree but dont use 'c++'?'
411. 'What jobs do not require a degree but pay more than 60000?'
412. 'What jobs do you have?'
413. 'What jobs does lcs recruit for?'
414. 'What jobs does microsoft recruit for?'
415. 'What jobs give me 40000 to work in houston on internet and web with perl?'
416. 'What jobs have a recruiter named phil smith?'
417. 'What jobs have a salary greater than 20 and hour?'
418. 'What jobs in austin are for a lisp programmer that involve unix and the internet?'
419. 'What jobs in austin are there that pay at least 100000 per year?'
420. 'What jobs in austin desiring a bscs are there for a 'c++' programmer?'
421. 'What jobs in austin have a salary of 60000?'
422. 'What jobs in austin need knowledge in unix?'
423. 'What jobs in austin only require a bscs and no experience?'
424. 'What jobs in austin or dallas desire a degree?'
425. 'What jobs in austin require 10 years of experience?'
426. 'What jobs in austin require 5 years of experience but desire 10 years of experience?'

Lawrence Muchemi-PhD Thesis 2014

228 | P a g e

427. 'What jobs in austin require a bscs degree and deal with 'tcp/ip'?'
428. 'What jobs in austin require 'c++' and unix?'
429. 'What jobs in austin require knowledge of the platform unix?'
430. 'What jobs in austin require no experience?'
431. 'What jobs in austin use 'c++' and java?'
432. 'What jobs in boston have openings for a 'c++' programmer?'
433. 'What jobs in california pay 60000 for sql development?'
434. 'What jobs in california require java and internet experience?'
435. 'What jobs in dallas require a bscs and 'c++' but not java?'
436. 'What jobs in dallas require experience with unix?'
437. 'What jobs in houston are there that requires a bscs with 1 year of experience?'
438. 'What jobs in houston require a bacs?'
439. 'What jobs in ibm in austin do not need a degree?'
440. 'What jobs in san antonio require the use of cobol?'
441. 'What jobs in san jose offer a java programmer for 40000 a year?'
442. 'What jobs need at least 2 years of experience?'
443. 'What jobs need knowledge of 'c++' or java?'
444. 'What jobs on pc are for programming assembly and desire 5 years experience?'
445. 'What jobs pay 40000 per year that require a bscs?'
446. 'What jobs pay 40000?'
447. 'What jobs pay 60000 are located in austin and require a bscs?'
448. 'What jobs pay 60000 are located in austin and require a degree?'
450. 'What jobs pay at least 80000 dollars per year?'
451. 'What jobs require 10 years of experience require a phd are in cobol and are located in texas?'
452. 'What jobs require 10 years of experience require a phd in cs are in cobol and are located in texas?'
453. 'What jobs require a bscs 4 years of experience pay 50000 and are in san jose?'
454. 'What jobs require a bscs and experience with oracle?'
455. 'What jobs require a bscs and no experience?'
456. 'What jobs require a bscs degree and desire an mscs degree?'
457. 'What jobs require a bscs?'
458. 'What jobs require a degree for pascal programmers who do not know 'c++'?'
459. 'What jobs require a msee and pays more than 100000 per year?'
460. 'What jobs require at least 1 year of experience in 'c++'?'
461. 'What jobs require 'c++' and pays a salary greater than 90000 per year?'
462. 'What jobs require experience in 'c++' and java but not perl?'
463. 'What jobs require knowledge of 'c++' but not perl?'
464. 'What jobs use 'c++' on mac and pay 70000?'
465. 'What jobs use 'c++' with the web on macs?'
466. 'What jobs use cobol on ibm machines and pay 70000?'
467. 'What jobs use html but do not require a degree?'
468. 'What jobs using fortran are there in houston?'
469. 'What jobs using fortran are there in los alamos?'
470. 'What jobs using java and perl are available in dallas and pay 50000 a year?'
471. 'What kind of jobs could i find for an old cobol programmer?'
472. 'What kinds of jobs are available for visual basic consultants in boston?'
473. 'What level of experience does ibm desire?'
474. 'What locations offer jobs using java on sun?'
476. 'What microsoft jobs do not require a bscs?'
477. 'What oracle jobs are there with compaq in houston using pc?'
478. 'What oracle jobs are there with compaq in houston using pcs?'
479. 'What position in microsoft do i need a phd to work?'
480. 'What positions are there in networking?'
481. 'What positions are there that use 'c++' and java?'
482. 'What programmer positions in austin require no experience?'
483. 'What programming jobs are there in austin that uses java?'
484. 'What programming languages are desired for a job as a programmer at ibm?'

Lawrence Muchemi-PhD Thesis 2014

229 | P a g e

485. 'What project manager jobs are there that require experience?'
486. 'What software engineer jobs are there that use 'c++'?'
487. 'What system administrator jobs are available from dell?'
488. 'What systems analyst jobs are there in austin?'
489. 'What tivoli jobs are there that require a bscs degree?'
490. 'What web developer jobs are there in austin?'
491. 'What web jobs are available that need mac experience and no degree?'
492. 'What web related jobs require a bscs but no experience?'
493. 'What work do you have available?'
494. 'Whats all there?'
495. 'Whats available on vax and near austin?'
496. 'Whats in dallas that pays over 60000 on linux with graphics and java?'
497. 'Where can i work with a bscs and no experience?'
498. 'Which jobs are for bsee majors with at least 5 years experience in windows nt?'
499. 'Which jobs at trilogy deal with 'c++'?'
500. 'Which jobs in austin offer for students fresh out of college in networking?'
501. 'Which jobs in houston offer over 50000 in graphics?'
502. 'Which jobs offer me 40000 to work on internet and web with perl?'
503. 'Which jobs pay 60000 that do not require a phd?'
504. 'Which jobs require c and 'c++' but not java?'
505. 'Which jobs require knowledge of lisp but dont specialize in ai?'
506. 'Which jobs use visual 'j++' as their development tool?'
507. 'Which system administrator jobs in dallas require 2 years’ experience and pay 50000?'
508. 'Who gives 50000 for fortran?'
509. 'Who might offer me 50000 for web development?'

RESTAURANT QUERIES SET
Segment of Restaurants Search Query Set (Recreated from Original set by Tang & Mooney, 2001)
1. 'Give me a good american restaurant on fairgrounds dr in sunnyvale?'
2. 'Give me a good bakery in aptos?'
3. 'Give me a good bakery in berkeley?'
4. 'Give me a good bakery in bethel island?'
5. 'Give me a good bakery on appleton dr in aptos?'
6. 'Give me a good bakery on bethel island rd in bethel island?'
7. 'Give me a good bakery on shattuck ave in berkeley?'
8. 'Give me a good chinese restaurant in the bay area?'
9. 'Give me a good chinese restaurant on buchanan in san francisco?'
10. 'Give me a good french restaurant in alameda?'
11. 'Give me a good italian restaurant in the yosemite and mono lake area?'
12. 'Give me a good place in san francisco for french food?'
13. 'Give me a good place in the bay area for french food?'
14. 'Give me a good place on buchanan in san francisco for arabic food?'
15. 'Give me a good restaurant in alameda?'
16. 'Give me a good restaurant in san francisco for french food?'
17. 'Give me a good restaurant in the bay area for french food?'
18. 'Give me a good restaurant in the bay area?'
19. 'Give me a good restaurant on el camino in palo alto?'
20. 'Give me a good restaurant on soquel dr in aptos for french food?'
21. 'Give me a restaurant in alameda?'
22. 'Give me a restaurant in aptos that serves good french food?'
23. 'Give me a restaurant in san francisco that serves good chinese food?'
24. 'Give me a restaurant in sunnyvale that serves good american food?'
25. 'Give me a restaurant in the bay area?'
26. 'Give me a restaurant on buchanan in san francisco that serves good arabic food?'
27. 'Give me a restaurant on el camino in palo alto?'
28. 'Give me a restaurant on fairgrounds dr in sunnyvale that serves good american food?'

Lawrence Muchemi-PhD Thesis 2014

230 | P a g e

29. 'Give me a restaurant on soquel dr in aptos that serves good french food?'
30. 'Give me some good arabic restaurants in mountain view?'
31. 'Give me some good cafes in alameda?'
32. 'Give me some good cafes on webster st in alameda?'
33. 'Give me some good places for ice cream in alameda?'
34. 'Give me some good places for ice cream in alameda?'
35. 'Give me some good places for ice cream on blanding ave in alameda?'
36. 'Give me some good places for ice cream on blanding ave in alameda?'
37. 'Give me some good places for pizza in alameda?'
38. 'Give me some good places for pizza in alameda?'
39. 'Give me some good places for pizza on el camino in palo alto?'
40. 'Give me some good places for pizza on el camino in palo alto?'
41. 'Give me some good places for pizza on webster st in alameda?'
42. 'Give me some good places for pizza on webster st in alameda?'
43. 'Give me some good places on fairgrounds dr in sunnyvale for american food?'
44. 'Give me some good places on soquel dr in aptos for french food?'
45. 'Give me some good restaurants in alameda?'
46. 'Give me some good restaurants in mountain view?'
47. 'Give me some good restaurants in the bay area?'
48. 'Give me some good restaurants on bethel island rd in bethel island?'
49. 'Give me some good restaurants on blanding ave in alameda?'
50. 'Give me some good restaurants on buchanan in san francisco for chinese food?'
51. 'Give me some good restaurants on el camino in palo alto?'
52. 'Give me some good restaurants on fairgrounds dr in sunnyvale for american food?'
53. 'Give me some restaurants good for arabic food in mountain view?'
54. 'Give me some restaurants good for arabic food in the bay area?'
55. 'Give me some restaurants good for arabic food on buchanan in san francisco?'
56. 'Give me some restaurants good for arabic food?'
57. 'Give me some restaurants good for french food in the yosemite and mono lake area?'
58. 'Give me some restaurants good for french food on fairgrounds dr in sunnyvale?'
59. 'Give me some restaurants good for french food?'
60. 'Give me some restaurants good for italian food in alameda?'
61. 'Give me some restaurants in alameda?'
62. 'Give me some restaurants in mountain view?'
63. 'Give me some restaurants in the bay area?'
64. 'Give me some restaurants on bethel island rd in bethel island?'
65. 'Give me some restaurants on blanding ave in alameda?'
66. 'Give me some restaurants on el camino in palo alto?'
67. 'Give me the best bakery in fremont?'
68. 'Give me the best bakery in palo alto?'
69. 'Give me the best bakery in the bay area?'
70. 'Give me the best bakery in the bay area?'
71. 'Give me the best french restaurant in san francisco?'
72. 'Give me the best french restaurant in sunnyvale?'
73. 'Give me the best french restaurant in the bay area?'
74. 'Give me the best french restaurant in the bay area?'
75. 'Give me the best place in alameda for french food?'
76. 'Give me the best restaurant in fremont for american food?'
77. 'Give me the best restaurant in fremont for chinese food?'
78. 'Give me the best restaurant in monterey for french food?'
79. 'Give me the best restaurant in monterey for french food?'
80. 'Give me the best restaurant in palo alto for chinese food?'
81. 'Give me the best restaurant in palo alto for italian food?'
82. 'Give me the best restaurant in san jose for american food?'
83. 'Give me the best restaurant in san jose for french food?'
84. 'Give me the best restaurant in sunnyvale for french food?'

Lawrence Muchemi-PhD Thesis 2014

231 | P a g e

86. 'Give me the best restaurant in the bay area for american food?'
87. 'Give me the best restaurant in the bay area for chinese food?'
88. 'Give me the best restaurant in the bay area for chinese food?'
89. 'How many bakery are there in the bay area?'
90. 'How many buttercup kitchen are there in san francisco?'
91. 'How many buttercup kitchen are there in walnut creek?'
92. 'How many chinese restaurant are there in palo alto?'
93. 'How many chinese restaurant are there in san jose?'
94. 'How many chinese restaurant are there in the bay area?'
95. 'How many chinese restaurants are there in palo alto?'
96. 'How many chinese restaurants are there in the bay area?'
97. 'How many 'denny''s' are there in fremont?'
98. 'How many 'denny''s' are there in monterey county?'
99. 'How many 'denny''s' are there in palo alto?'
100. 'How many 'denny''s' are there in san francisco?'
101. 'How many 'denny''s' are there in san mateo county?'
102. 'How many 'denny''s' are there in sunnyvale?'
103. 'How many 'denny''s' are there in the bay area?'
104. 'How many french restaurant are there in palo alto?'
105. 'How many french restaurant are there in the bay area?'
106. 'How many french restaurants are in the santa clara county?'
107. 'How many french restaurants are in the yolo county?'
108. 'How many french restaurants are there in fremont?'
109. 'How many french restaurants are there in the bay area?'
110. 'How many italian restaurant are there in san jose?'
111. 'How many italian restaurant are there in the bay area?'
112. 'How many italian restaurants are in the santa clara county?'
113. 'How many italian restaurants are in the yolo county?'
114. 'How many italian restaurants are there in san francisco?'
115. 'How many italian restaurants are there in the bay area?'
116. 'How many jamerican cuisine are there in san francisco?'
117. 'How many jamerican cuisine are there in santa cruz county?'
118. 'How many jamerican cuisine are there in sunnyvale?'
119. 'How many places for chinese food are there in the bay area?'
120. 'How many places for chinese food are there in the bay area?'
121. 'How many places for french food are there in palo alto?'
122. 'How many places for french food are there in the bay area?'
124. 'How many places for ice cream are there in fremont?'
125. 'How many places for ice cream are there in the bay area?'
126. 'How many places for italian food are there in the bay area?'
127. 'How many wendys are there in the bay area?'
128. 'Show me a good italian restaurant in palo alto?'
129. 'What are some good places for ice cream in alameda?'
130. 'What are some good places for ice cream on blanding ave in alameda?'
131. 'What are some good places for pizza in alameda?'
133. 'What are some good places for pizza on el camino in palo alto?'
134. 'What are some good places for pizza on webster st in alameda?'
135. 'What are some good places in mountain view for chinese food?'
136. 'What are some good places in the bay area for chinese food?'
137. 'What are some good restaurants in alameda?'
138. 'What are some good restaurants in mountain view for arabic food?'
139. 'What are some good restaurants in mountain view?'
140. 'What are some good restaurants in the bay area for chinese food?'
141. 'What are some good restaurants in the bay area?'
142. 'What are some good restaurants on bethel island rd in bethel island?'
143. 'What are some good restaurants on blanding ave in alameda?'

Lawrence Muchemi-PhD Thesis 2014

232 | P a g e

144. 'What are some good restaurants on el camino in palo alto?'
145. 'What is a good restaurant in alameda?'
146. 'What is a good restaurant in the bay area?'
147. 'What is a good restaurant on el camino in palo alto?'
148. 'What is the best bakery in fremont?'
149. 'What is the best bakery in the bay area?'
150. 'What is the best french restaurant in san francisco?'
151. 'What is the best french restaurant in the bay area?'
152. 'What is the best place in alameda for french food?'
153. 'What is the best restaurant in fremont for american food?'
154. 'What is the best restaurant in monterey for french food?'
155. 'What is the best restaurant in palo alto for chinese food?'
156. 'What is the best restaurant in palo alto for italian food?'
157. 'What is the best restaurant in san jose for french food?'
158. 'What is the best restaurant in the bay area for american food?'
159. 'What is the best restaurant in the bay area for chinese food?'
160. 'Where are some good cafes in alameda?'
161. 'Where are some good cafes on webster st in alameda?'
162. 'Where are some good chinese restaurants in mountain view?'
163. 'Where are some good places for ice cream in alameda?'
164. 'Where are some good places for ice cream on blanding ave in alameda?'
165. 'Where are some good places for pizza in alameda?'
166. 'Where are some good places for pizza on webster st in alameda?'
167. 'Where are some restaurants good for arabic food in mountain view?'
168. 'Where are some restaurants good for arabic food in the bay area?'
169. 'Where are some restaurants good for arabic food on buchanan in san francisco?'
170. 'Where are some restaurants good for arabic food?'
171. 'Where are some restaurants good for french food in alameda?'
172. 'Where are some restaurants good for french food in the yosemite and mono lake area?'
173. 'Where are some restaurants good for french food?'
174. 'Where are some restaurants good for italian food on fairgrounds dr in sunnyvale?'
175. 'Where can i eat american food on fairgrounds dr in sunnyvale?'
176. 'Where can i eat arabic food in alameda?'
177. 'Where can i eat arabic food on buchanan in san francisco?'
178. 'Where can i eat chinese food in the bay area?'
179. 'Where can i eat french food in mountain view?'
180. 'Where can i eat french food in the bay area?'
181. 'Where can i eat french food on buchanan in san francisco?'
182. 'Where can i eat italian food in san francisco?'
183. 'Where can i eat italian food in the bay area?'
184. 'Where can i eat some good american food on fairgrounds dr in sunnyvale?'
185. 'Where can i eat some good arabic food in alameda?'
186. 'Where can i eat some good arabic food in the bay area?'
187. 'Where can i eat some good chinese food on buchanan in san francisco?'
188. 'Where can i eat some good french food in mountain view?'
189. 'Where can i eat some good french food in the bay area?'
190. 'Where can i eat some good french food on fairgrounds dr in sunnyvale?'
191. 'Where can i eat some good italian food in san francisco?'
192. 'Where can i eat some good italian food in the bay area?'
193. 'Where can i find a 'denny''s' in san francisco?'
194. 'Where can i find a jamerican cuisine in san francisco?'
195. 'Where can i find a restaurant in the bay area?'
196. 'Where can we find a restaurant in alameda?'
197. 'Where can we find a restaurant on el camino in palo alto?'
198. 'Where can we find some restaurants in alameda?'
199. 'Where can we find some restaurants in mountain view?'

Lawrence Muchemi-PhD Thesis 2014

233 | P a g e

200. 'Where can we find some restaurants in the bay area?'
201. 'Where can we find some restaurants on bethel island rd in bethel island?'
202. 'Where can we find some restaurants on blanding ave in alameda?'
203. 'Where can we find some restaurants on el camino in palo alto?'
204. 'Where is a 'denny''s' in san francisco?'
205. 'Where is a french restaurant on bethel island rd in bethel island?'
206. 'Where is a good american restaurant on fairgrounds dr in sunnyvale?'
207. 'Where is a good arabic restaurant in the bay area?'
208. 'Where is a good arabic restaurant on buchanan in san francisco?'
209. 'Where is a good bakery in aptos?'
210. 'Where is a good bakery in berkeley?'
211. 'Where is a good bakery in bethel island?'
212. 'Where is a good bakery on appleton dr in aptos?'
213. 'Where is a good bakery on bethel island rd in bethel island?'
214. 'Where is a good bakery on shattuck ave in berkeley?'
215. 'Where is a good french restaurant in alameda?'
216. 'Where is a good place in alameda for arabic food?'
217. 'Where is a good place in the bay area for chinese food?'
218. 'Where is a good place on buchanan in san francisco for chinese food?'
219. 'Where is a good place on fairgrounds dr in sunnyvale for american food?'
220. 'Where is a good place on soquel dr in aptos for french food?'
221. 'Where is a good restaurant in alameda for chinese food?'
222. 'Where is a good restaurant in the bay area for arabic food?'
223. 'Where is a good restaurant on buchanan in san francisco for arabic food?'
224. 'Where is a good restaurant on fairgrounds dr in sunnyvale for american food?'
225. 'Where is a good restaurant on soquel dr in aptos for french food?'
226. 'Where is a italian restaurant on el camino in palo alto?'
227. 'Where is a jamerican cuisine in san francisco?'
228. 'Where is a restaurant in alameda?'
229. 'Where is a restaurant in aptos that serves good french food?'
230. 'Where is a restaurant in san francisco that serves good chinese food?'
231. 'Where is a restaurant in sunnyvale that serves good american food?'
232. 'Where is a restaurant on buchanan in san francisco that serves good chinese food?'
233. 'Where is a restaurant on fairgrounds dr in sunnyvale that serves good american food?'
234. 'Where is a restaurant on soquel dr in aptos that serves good french food?'
235. 'Where is buttercup kitchen?'
236. 'Where is 'denny''s' in san francisco?'
237. 'Where is 'denny''s' in the bay area?'
238. 'Where is 'denny''s'?'
239. 'Where is jamerican cuisine in san francisco?'
240. 'Where is jamerican cuisine in the bay area?'
241. 'Where is jamerican cuisine?'
242. 'Where is the best bakery in palo alto?'
243. 'Where is the best bakery in the bay area?'
244. 'Where is the best french restaurant in sunnyvale?'
245. 'Where is the best french restaurant in the bay area?'
246. 'Where is the best restaurant in fremont for chinese food?'
247. 'Where is the best restaurant in monterey for french food?'
248. 'Where is the best restaurant in san jose for american food?'
249. 'Where is the best restaurant in sunnyvale for french food?'
250. 'Where is the best restaurant in the bay area for american food?'
251. 'Where is the best restaurant in the bay area for arabic food?'

Lawrence Muchemi-PhD Thesis 2014

234 | P a g e

Appendix 2: Illustrative Examples Of Kernelization Process

 Me share email address

 please the of

 lecturer
 in charge of
 ICS 645

Fig. App1: Please share with me email address of the lecturer in charge of ICS 645

 MSc proposal Scheduled is when? (date)

 This month

 Fig. App2: When is this month’s MSc proposal presentation scheduled?

 Students access mailing address

 How many? (number) can the mscis_07@students.uonbi.ac.ke

Fig. App3: How many students can access the mailing address mscis_07@students.uonbi.ac.ke

 I; me like; to pursue; know master’s degree in CS; prerequisites

 would please let the for

 master’s degree
 (implicit = CS)

Fig. App4: I would like to pursue a master’s degree in CS, please let me know the prerequisites for
course

 venue is where (location?)

 the for

MSc proposal presentation scheduled for 14th August

Fig. App5: Where is the venue for MSc proposal presentation scheduled for 14th August

mailto:mscis_07@students.uonbi.ac.ke
mailto:mscis_07@students.uonbi.ac.ke

Lawrence Muchemi-PhD Thesis 2014

235 | P a g e

 deadline is 28th may 2007

 for still
 returning MSc marked scripts

Fig. App6: Is deadline for returning MSc marked scripts still 28th may 2007?

me assist tentative program

 kindly with a for
 this year

Fig. App7: Kindly assist me with a tentative program for this year

 ni (me) pe (give) wanunuzi (buyers)

 bora(better)

Fig. App8: [Nipe] wanunuzi bora ([Give me] better buyers)

 i-na (It) taga (lay) gani? (what?)

 does kwa(in)
 mda (period)

Fig. App9: i-na-taga (In what period it lays)

 vifaranga (chicks) kula (eat) chakula (food)

 (the) Je wali (did)

Fig. App10: ‘Je, vifaranga walikula chakula? (Did the chicks eat food)

 chakula (food) liwa (eaten) vifaranga (by the chicks)

 (the) Je ili (was)

Fig. App11:‘Je, chakula ililiwa na vifaranga?’ (Was the food eaten by the chicks?)

Lawrence Muchemi-PhD Thesis 2014

236 | P a g e

Appendix 3: Survey on Database Schema Authorship

QUESTIONNAIRE ON NOMENCLATURE OF DB SCHEMA ATTRIBUTES

This questionnaire is administered by Mr. Lawrence Muchemi a PhD student at University of
Nairobi. The purpose of this survey is to identify if there exists any common practice naming
procedures or policies for database-names, tables-names’ and column-names’. The survey will lead
to a better understanding of database schema authorship characteristics.

1. In what position do you serve in your organization? …………………………………….

2. What have you been actively involved in? (tick all applicable)
a. Database design ………………………………..….. Yes No
b. Database Development ……………………….... Yes No
c. Database administration ……………………….. Yes No
d. Web designer/developer/ admin……………. Yes No
e. Other ……………………………….

3. List the names of some databases you have worked with
a. ………………….…
b. ……….……………

c. ……………………
d. ……………………

e. ……………………
f. ……………………

4. List the names of some tables you have worked with in any of the databases named 3 above
a. ……………………
b. ……………………
c. ……………………
d. ……………………

e. ……………………
f. ……………………
g. …………………
h. …………………

i. ……………………
j. ……………………
k. ……………………
l. ……………………

5. List the some names of columns you have worked with in any of the tables named in 4
above
…..................... ………………………. ………………. …………………..
…..................... ………………………. ………………. …………………..
…..................... ………………………. ………………. …………………..

6. Does your organization have a policy on naming procedure for databases, table names or
column names (It can be formal/non-formal or documented/ undocumented).

 Yes No If yes provide some detail …………………………………………………………………………….

7. Do you personally have a common practice that you use in naming tables and columns
Yes No. . If yes provide some details …………………………………………………..……

8.

Lawrence Muchemi-PhD Thesis 2014

237 | P a g e

8.
Do you know somebody in a different organization who can help in giving similar
information as required above? Please recommend someone and give contact information.
……………………………………………………………………………………………

Please fill in this table the extent of usage of each of the indicated schema objects’ naming styles
(ie table names, column names, database names etc). Use a scale of 1 to 5 where 5 indicates the
mostly used style while 1 indicates the least. Indicate a 0 where you have not used that style.

 Pattern Extent of usage
(scale of 1-5; 5=most

used, 1= least used; 0=

never used)

 Comments

1 Under_score

2 camelCase

3 Da-sh

4 Abbreviations emp for employe

5 Pascal Casing

6 Finger_Breaking_Underscore

7 SCREAMING_UNDERSCORE

8 Acronyms eg ID, UI, IO

9 Dot eg hr.hire_date

10 “string like this”

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 238

Appendix 4: Training the Chunk Parser and Evaluating its Performance

>>> from nltk.corpus import conll2000 // load the CoNll corpus

>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])// define testing set and
types of phrases

>>> train_sents = conll2000.chunked_sents('train.txt', chunk_types=['NP'])// define training set and
types of phrases

>>> class ChunkParser(nltk.ChunkParserI): // Defining chunk parser class

 def __init__(self, train_sents):

 train_data = [[(t,c) for w,t,c in nltk.chunk.tree2conlltags(sent)]

 for sent in train_sents]

 self.tagger = nltk.TrigramTagger(train_data)

 def parse(self, sentence):

 pos_tags = [pos for (word,pos) in sentence]

 tagged_pos_tags = self.tagger.tag(pos_tags)

 chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags]

 conlltags = [(word, pos, chunktag) for ((word,pos),chunktag)

 in zip(sentence, chunktags)]

 return nltk.chunk.conlltags2tree(conlltags)

>>> NPChunker = ChunkParser(train_sents)// Training the chunker

>>> print NPChunker.evaluate(test_sents)// Evaluating performance

ChunkParse score:

 IOB Accuracy: 93.3%

 Precision: 82.5%

 Recall: 86.8%

 F-Measure: 84.6%

>>>

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 239

Appendix 5: Concept Templates used
NB: Concept Patterns = Nouns + Noun phrases + Verb phrases+ Term Collocations)

A: Regular Patterns of Noun-phrases (reported by Ohly, (1982) and recast by Sewangi, (2001))
 nominalized verb phrase (VN N) for example ‘kukaza uzi’ (stretching thread),
 deverbative head with a noun complement (DV N) for example ‘kiweka damu’,
 two nouns (N N) for example ‘haidrogeni peroksaidi’,
 combination of noun and adjective (N Adj),
 noun construction with a connecter -a (N -a N) for example 'rangi za moto’
 and constructions with connecter -a followed by a verb noun qualifier (N -a VN) for example sindano ya

kutungia’ (boring needle).
A: Patterns Of Kiswahili Common Multi-Word Terms’ (Term Collocations, Noun-Phrases and
Verb Phrases) Sewangi, (2001)
PATTERNS OF KISWAHILI TERM (PHRASES) COLLOCATIONS

1. DOMAIN-N + A-INFL "2"
2. DOMAIN-N + GEN-CON + ADV "2"
3. DOMAIN-N + GEN-CON + DOMAIN-N "2"
4. DOMAIN-N + GEN-CON + DOMAIN-V "2"
5. DOMAIN-N + GEN-CON + N "2"
6. DOMAIN-N + DOMAIN-N "2"
7. DOMAIN-N + INF "2"
8. DOMAIN-N + N "2"
9. DOMAIN-N + POSS + N "2"
10. DOMAIN-N + PREP + DOMAIN-N "2"
11. DOMAIN-V + ADV "2"
12. DOMAIN-V + GEN-CON + DOMAIN-N "2"
13. DOMAIN-V + GEN-CON + N "2"
14. DOMAIN-V + DOMAIN-N "2"
15. DOMAIN-V + N "2"
16. INF + GEN-CON + DOMAIN-N "2"
17. INF + DOMAIN-N "2"
18. N + GEN-CON + DOMAIN-N "2"
19. N + GEN-CON + DOMAIN-V "2"
20. N + DOMAIN-N "2"
21. DOMAIN-N + A-INFL + GEN-CON + N "3"
22. DOMAIN-N + A-UNINFL + GEN-CON + N "3"
23. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + ADV "3"
24. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + N "3"
25. DOMAIN-N + GEN-CON + DOMAIN-N + PREP + DOMAIN-N "3"
26. DOMAIN-N + GEN-CON + DOMAIN-V + GEN-CON + N "3"
27. DOMAIN-N + GEN-CON + DOMAIN-V + DOMAIN-N "3"
28. DOMAIN-N + GEN-CON + INF + GEN-CON + DOMAIN-N "3"
29. DOMAIN-N + GEN-CON + INF + DOMAIN-N "3"
30. DOMAIN-N + GEN-CON + INF + N "3"
31. DOMAIN-N + GEN-CON + N + A-INFL "3"
32. DOMAIN-N + GEN-CON + N + CC + N "3"
33. DOMAIN-N + GEN-CON + N + GEN-CON + DOMAIN-N "3"
34. DOMAIN-N + GEN-CON + N + DOMAIN-V "3"

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 240

35. DOMAIN-N + GEN-CON + N + PREP + N "3"
36. DOMAIN-N + GEN-CON + PREP + N "3"
37. DOMAIN-N + GEN-CON- DOMAIN-N + GEN-CON + DOMAIN-N "3"
38. DOMAIN-N + N + GEN-CON + DOMAIN-N "3"
39. DOMAIN-N + POSS + DOMAIN-N + CARD "3"
40. DOMAIN-N + PREP + DOMAIN-N + GEN-CON + DOMAIN-N "3"
41. DOMAIN-N + PREP + N + GEN-CON + DOMAIN-N "3"
42. DOMAIN-V + GEN-CON + DOMAIN-N + A-INFL "3"
43. DOMAIN-V + GEN-CON + N + GEN-CON + ADV "3"
44. DOMAIN-V + GEN-CON + N + GEN-CON + DOMAIN-N "3"
45. DOMAIN-V + DOMAIN-N + PREP + DOMAIN-V "3"
46. DOMAIN-V + N + GEN-CON + DOMAIN-N "3"
47. DOMAIN-V + N + GEN-CON + N "3"
48. INF + DOMAIN-N + GEN-CON + INF "3"
49. INF + DOMAIN-N + GEN-CON + N "3"
50. INF + DOMAIN-N + LOC "3"
51. INF + N + DOMAIN-N "3"
52. N + A-INFL + GEN-CON + DOMAIN-N "3"
53. N + GEN-CON + ADV + GEN-CON + DOMAIN-N "3"
54. N + GEN-CON + DOMAIN-N + A-INFL "3"
55. N + GEN-CON + DOMAIN-N + GEN-CON + N "3"
56. N + GEN-CON + N + GEN-CON + DOMAIN-N "3"
57. N + GEN-CON + ORD + GEN-CON + DOMAIN-N "3"
58. N + POSS + DOMAIN-N + GEN-CON + N "3"
59. N + PREP + N + GEN-CON + DOMAIN-N "3"
60. DOMAIN-N + A-UNINFL + GEN-CON + N + GEN-CON + DOMAIN-N "4"
61. DOMAIN-N + A-UNINFL + GEN-CON + N + GEN-CON + DOMAIN-V "4"
62. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + N + GEN-CON + DOMAIN-N "4"
63. DOMAIN-N + GEN-CON + INF + GEN-CON + DOMAIN-N + GEN-CON + ADV "4"
64. DOMAIN-N + GEN-CON + N + GEN-CON + N + GEN-CON + DOMAIN-N "4"
65. DOMAIN-N + GEN-CON + N + N + GEN-CON + DOMAIN-N "4"
66. DOMAIN-N + INF + PREP + N + GEN-CON + DOMAIN-N "4"
67. DOMAIN-N + GEN-CON + DOMAIN-N + PREP + N + GEN-CON + DOMAIN-N "4"
68. DOMAIN-N + GEN-CON + DOMAIN-V + DOMAIN-N + DOMAIN-V "4"
69. DOMAIN-V + ADV + GEN-CON + DOMAIN-N + GEN-CON + DOMAIN-N "4"
70. DOMAIN-V + GEN-CON + N + GEN-CON + N + GEN-CON + DOMAIN-N "4"
71. DOMAIN-V + DOMAIN-N + PREP + N + GEN-CON + DOMAIN-N "4"
72. DOMAIN-V + N + GEN-CON + ADV + ADV "4"
73. DOMAIN-V + N + DOMAIN-N + GEN-CON + N "4"
74. DOMAIN-V + ADV + N + GEN-CON + ADV "4"
75. INF + ADV + PREP + DOMAIN-N + GEN-CON + DOMAIN-N "4"
76. INF + GEN-CON + N + N + GEN-CON + DOMAIN-V "4"
77. INF + DOMAIN-N + N + GEN-CON + INF "4"
78. INF + DOMAIN-N + POSS + DOMAIN-N + LOC "4"
79. INF + DOMAIN-N + PREP + DOMAIN-N + GEN-CON + DOMAIN-V "4"
80. N + GEN-CON + ADV + GEN-CON + DOMAIN-V + DOMAIN-N "4"
81. N + GEN-CON + DOMAIN-N + INF + CC + DOMAIN-N "4"
82. N + GEN-CON + N + GEN-CON + DOMAIN-N + GEN-CON + N "4"
83. N + GEN-CON + N + GEN-CON + DOMAIN-N + N "4"
84. N + GEN-CON + N + GEN-CON + N + GEN-CON + DOMAIN-N "4"
85. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + DOMAIN-N + A-INFL + GEN-CON + DOMAIN-N "5"
86. DOMAIN-V + CC + DOMAIN-V + GEN-CON + DOMAIN-N + GEN-CON + N + GEN-CON + DOMAIN-N "5"
87. DOMAINV + DOMAIN-N + ADV + DOMAIN-N + A-UNINFL "5"

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 241

Appendix 6: Regular Expressions to the NLTK RegExp Chunker for Kiswahili Texts
#Define tag patterns to find NP-chunks; PP-Chunks (prepositional phrases chunks) ; terms/collocations etc
patterns1 = """
 NP: {<DT|PP\$>?<JJ>*<NN>}
 {<NNP>+}
 {<NN>+}
 {<DT>?<JJ>*<NN>}
""“
patterns2 = """
 PP: {<DT|PP\$>?<JJ>*<NN>}
 {<NNP>+}
 {<NN>+}
""“
patterns3 = """
 TP: {<DT|PP\$>?<JJ>*<NN>}
 {<NNP>+}
 {<NN>+}
""“

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 242

Appendix 7: List of Institutions and Companies
1. University of Nairobi
2. Iron-Speed
3. Jomo Kenyatta University of Agriculture and Technology
4. Africa Nazarene University
5. Inoorero University
6. Daystar University
7. Kabarak University
8. Kenya Methodist University
9. KCA University College
10. Zetech College
11. Institute of Advanced Technology (IAT)
12. Nairobi Institute of Business Studies (School of Computer Sciences)

Software Development Companies
1. Futures Group, Kenya office- Ngong Road
2. Sybrin Kenya Ltd, Victoria Towers, Kilimanjaro Ave, Nairobi Hill
3. Ascribe Ltd, Software Developers, Citadel Bldg, 3rd Flr, Muthithi Rd, Nairobi
4. Seven seas Technology Group, Riverside Drive, Nairobi
5. System Integration Limited, Symphony Place, Waiyaki Way, Westlands, Nairobi
6. Idea Kenya, Nairobi
7. Safemark Group Ltd, Crawford Business Park, State Hse Road
8. ICT Center, University of Nairobi
9. Wilcom Systems Kenya Limited
10. Software Dynamics, Nairobi
11. TechnoBrain (K) Ltd, Nairobi
12. Software Technologies Limited, Gigiri Shopping Center, Limuru Rd Nairobi
13. Comp-rite Kenya Limited, Crescent Business Centre, Parklands Road, Nairobi, Kenya.
14. Adelphi Africa (Software Developers) Ltd, Vision Plaza, Mombasa Rd, Nairobi
15. Digital Horizons (Software Developers) Ltd, Occidental Plaza, Muthithi Rd, Parklands, Nairobi
16. Computech Limited, Nairobi

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 243

Appendix 8: Prototype’s Python Code for Concept Identification and Assembly
from __future__ import division

def sasa():

 """ IDENTIFIES QUERY CONCEPTS & MATCHES AGAINST ONTOLOGY ELEMENTS; PRUNES
CANDIDATES & ASSEMBLES. """

 import nltk, re, pprint

 #works with object property

 kount = 0

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw1 = "start"

 outputk = nltk.word_tokenize(raw1)

 while outputk != '''[]''' and outputk is not []:

 if outputk != []:

 kount += 1

 raw1 = fr.readline()

 outputk = nltk.word_tokenize(raw1)

 else:

 print " Prototype by Lawrence Muchemi - UoN (Kenya) & SFU (BC-Canada)"

 print " PhD Supervisor - Dr. Wanjiku Nga'ng'a- Uon-Kenya"

 print " Supervised - Prof. Fred Popowich- SFU-Canada"

 print " Ontology: OWL Full; Size = ", kount, 'lines'

 print " (March-Sept. 2010)"

 print "--"

 break

 output2,origlist,initialist, multitablist = askprune()

 head(output2)

 body(output2,origlist,multitablist)

 constraint (output2,origlist, multitablist)

 superative(output2,origlist, initialist)

 if 'maximum' not in initialist and 'minimum' not in initialist and 'largest' not in initialist and 'biggest' not in initialist
and 'least' not in initialist and 'smallest' not in initialist and 'shortest' not in initialist and 'lowest' not in initialist and
'highest' not in initialist and 'longest' not in initialist and 'most' not in initialist:

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 244

 print '}'

 print "--"

 print "Now copy and paste me on SPARQL Query Panel of Protege"

def askprune():

 import nltk, re, pprint

 lancaster = nltk.LancasterStemmer()

 raw = raw_input("Enter your NL query here: ")

 tokens = nltk.word_tokenize(raw)

 output2 = [w.lower() for w in tokens]

 initialist= output2

 multitablist= output2

 #multitablist = list(set(multitablist))

 #print "---Tokenized Raw Input from User", output2

 mylist = list(output2)

 #print mylist

 lex(mylist)

 mmlist = list(output2)

 syno(mylist)

 #print mylist

 lexlist = syno(mylist)

 mylist = [w.lower() for w in lexlist]

 mylist = set(mylist)

 mmlist = set(mmlist)

 mylist = sorted(mylist | mmlist)

 mylist = list(mylist)

 output2=mylist

 origlist=mylist

 #print origlist

 output2=[lancaster.stem(t) for t in output2]

 output2 = sorted (set(output2))

 output2 = list(output2)

 #print "---Expanded & stemmed with synonyms", output2, origlist,initialist, multitablist

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 245

 print ' '

 return output2,origlist,initialist, multitablist

def head(output2):

 import nltk, re, pprint

 lancaster = nltk.LancasterStemmer()

 kount = 0

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw1 = "start"

 outputk = nltk.word_tokenize(raw1)

 while outputk != '''[]''' and outputk is not []:

 if outputk != []:

 kount += 1

 raw1 = fr.readline()

 outputk = nltk.word_tokenize(raw1)

 if 'xmlns'in outputk and '='in outputk and 'http'in outputk and '.owl'in outputk[5]:

 print 'PREFIX dbs: <'+outputk[3]+outputk[4]+outputk[5]+outputk[6]+'>'

 else:

 print 'SELECT',

 break

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw = "start"

 kount = kount - 2

 count=0

 k=0

 while kount != 0:

 kount += -1

 k += 1

 raw = fr.readline()

 #print 'raw.......', raw, k

 tokens = nltk.word_tokenize(raw)

 #print 'tokens.......', tokens

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 246

 otherlist = [w.lower() for w in tokens]

 #print 'otherlist.......', otherlist

 output1 = nltk.word_tokenize(raw)

 #print ' 22222 Tokens Output', output1

 #print 'output1 list before filter', output1

 if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty'
in output1):#and ('''ID'''in output1) \remov DatatypeProperty feb5/2' funct prop

 n = output1.index('=')

 #print 'output1 list after index', output1

 #print '.......', n

 m = n+6

 q = output1[m]

 #print '--', q

 r = q[:3]

 r1 = q[:2]

 #print r #'calling head here '

 if (r != 'has') and (r1 != 'is'):

 s = q.split('.')

 #print '--', s

 t1 = s[1]

 t2 = s[0]

 #print r

 list2 = t2

 list1 = t1

 #print 't1 and t2', t1, t2

 list21= lancaster.stem(list2)

 mylist = output2

 #print 'mylist===', mylist

 for t in mylist:

 d = mylist[mylist.index(t)]

 #print 'd===', d

 if d in list21 and len(d)>=3:

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 247

 p=t1

 #print 'd in list21 d=', d

 #print 't1===property', t1

 head_prop(p,otherlist,mylist,output1,k,t2,t1)

 elif ('''>''' is output1[0]) and (''':''' in output1) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and
('''/'''in output1[output1.index('<')+1]):

 a = output1[output1.index(':')+1]

 # print "this is for split:", a

 b = a.split('.')

 t1 = b[1]

 t2 = b[0]

 t21 = lancaster.stem(t2)

 mylist = output2

 for t in mylist:

 d = mylist[mylist.index(t)]

 if d in otherlist and d!= "'" and d!= '''"''' and d!= "[" and d!= "]" and d!= "." and d!= ":" and d!= "," and d!=
")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!= "tp3":

 p=t1

 print 'calling 2'

 head_prop(p,otherlist,mylist,output1,k,t2,t1)

 tx = t1.lower()

 if d in tx:

 p=tx

 print 'calling 3'

 head_prop(p,otherlist,mylist,output1,k,t2,t1)

 elif ('''>''' is output1[0]) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and ('''/'''in
output1[output1.index('<')+1]):

 a = output1[output1.index('<')+1]

 #print "this is for split:", a

 b = a.split('.')

 t1 = b[1]

 t2 = b[0]

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 248

 t3 = t2[1:]

 mylist = output2

 for t in mylist:

 d = mylist[mylist.index(t)]

 if d in otherlist and d!= "'" and d!='the' and d!='and'and d!='all'and d!= '''"''' and d!= "[" and d!= "]" and d!=
"." and d!= ":" and d!= "," and d!= ")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!= "tp3":

 inst =output1[1:output1.index('<')]

 count += 1

 p=t1

 i= inst

 #print 'calling 4'

 head_prop(p,otherlist,mylist,output1,k,t2,t1)

 head_inst(i,count,t1,mylist,t3)

 print ' '

 print 'WHERE {',

def head_prop(p,otherlist,mylist,output1,k,t2,t1):

 import nltk

 lancaster = nltk.LancasterStemmer()

 p1=p

 p1 = lancaster.stem(p1)

 t21= lancaster.stem(t2)

 if p1 in mylist and t21 in mylist:

 tscore=1

 print ' ?'+p,

 else:

 s=p

 kn = 0

 for t in s:

 if t.isupper():

 s.find(t)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 249

 kn += 1

 tscore=0

 #print s, tscore

 for t in s:

 if t.isupper():

 s0=s.split(t)

 #print s0

 s1=s0[0]

 s2=t.lower()+s0[0]# return to 1

 #print '+++', s2

 #print '****',t.lower()

 s=s2

 #print 's2=........', s2

 s1 = lancaster.stem(s1)

 if s1 in mylist:

 score=1/kn

 tscore=tscore+score

 s2 = lancaster.stem(s2)

 t21= lancaster.stem(t2)

 if s2 in mylist and t21 in mylist:

 tscore= tscore +1/kn

 #print tscore

 if tscore >=0.5:

 #print s2,t21,tscore,mylist

 print ' ?'+p,

 if 'who' in mylist:

 if p.lower() == 'firstname':

 print ' ?'+p,

 if 'who' in mylist:

 if p.lower() == 'lastname':

 print ' ?'+p,

 if 'who' in mylist:

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 250

 if 'contact' in p.lower():

 print ' ?'+p,

 if 'wher' in mylist and 'country' not in mylist:

 if p.lower() == 'country':

 if p.lower() in mylist:

 print ' ?'+p,

 if 'wher' in mylist and 'reg' not in mylist:

 if p.lower() == 'region':

 if p.lower() in mylist:

 print ' ?'+p,

 if 'wher' in mylist and 'city' not in mylist:

 if p.lower() == 'city':

 print ' ?'+p,

 if 'when' in mylist:

 if 'hir' in p.lower():

 print ' ?'+p,

 if 'when' in mylist:

 if 'bir' in p.lower():

 print ' ?'+p,

 if 'when' in mylist:

 if p.lower() == 'dat':

 print ' ?'+p,

 if 'which' in mylist:

 if 'id' in p.lower():

 if p.lower()!= 'categoryid' :

 if t21 in mylist:

 print ' ?'+p,

 if 'which' in mylist:

 if 'nam' in p.lower():

 if p.lower()!= 'firstnam'and p.lower()!= 'lastnam' and p.lower()!= 'contactnam' and p.lower()!= 'categoryna':

 if t21 in mylist:

 print ' ?'+p,

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 251

def head_inst(i,count,t1,mylist,t3):

 import pprint, pickle, nltk

 lancaster = nltk.LancasterStemmer()

 scor=0.75

 s=t1

 kn = 0

 for t in s:

 if t.isupper():

 s.find(t)

 kn += 1

 tscore=0

 for t in s:

 if t.isupper():

 s0=s.split(t)

 s1=s0[0]

 s2=t.lower()+s0[0] # Return to s0[1]

 s=s2

 s11= lancaster.stem(s1)

 if s11 in mylist:

 score=1/kn

 tscore=tscore+score

 s21= lancaster.stem(s2)

 t31= lancaster.stem(t3)

 if s21 in mylist and t31 in mylist:

 tscore=1

 print ' ?'+t1,

def body(output2,origlist, multitablist):

 running = True

 import nltk, re, pprint

 lancaster = nltk.LancasterStemmer()

 kount = 0

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 252

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw1 = "start"

 outputk = nltk.word_tokenize(raw1)

 while outputk != '''[]''' and outputk is not []:

 if outputk != []:

 kount += 1

 raw1 = fr.readline()

 outputk = nltk.word_tokenize(raw1)

 else:

 print ' '

 break

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw = "start"

 kount = kount - 2

 count=0

 k=0

 classlist = []

 while kount != 0:

 kount += -1

 k += 1

 raw = fr.readline()

 tokens = nltk.word_tokenize(raw)

 otherlist = [w.lower() for w in tokens]

 output1 = nltk.word_tokenize(raw)

 if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty'
in output1):#changed

 n = output1.index('=')

 m = n+6 #changed

 q = output1[m]

 r = q[:3]

 r1 = q[:2]

 if (r != 'has') and (r1 != 'is'):

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 253

 s = q.split('.')

 t1 = s[1]

 t2 = s[0]

 list2 = t2

 list1 = t1

 list11= lancaster.stem(list1)

 list21= lancaster.stem(list2)

 mylist = output2

 for t in mylist:

 d = mylist[mylist.index(t)]

 if d in otherlist and d!= "'"and len(d)>=3 and d!='the':

 p=t1

 #print 'calling a'

 triples(p,otherlist,mylist,output1,t2,t1, multitablist)

 if d in list11 and len(d)>=3 and d!='the':

 p=t1

 #print 'calling b'

 triples(p,otherlist,mylist,output1,t2,t1, multitablist)

 if d in list21 and len(d)>=3:

 p=t1

 #print 'calling c'

 triples(p,otherlist,mylist,output1,t2,t1, multitablist)

 d1 = [mylist[mylist.index(t)]]

 if classlist != None and d1 != []:

 pass

 d2= classlist.insert(0, (d1))

 elif ('''>''' is output1[0]) and (''':''' in output1) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and
('''/'''in output1[output1.index('<')+1]):

 a = output1[output1.index(':')+1]

 # print "this is for split:", a

 b = a.split('.')

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 254

 t1 = b[1]

 t2 = b[0]

 t21 = lancaster.stem(t2)

 mylist = output2

 for t in mylist:

 d = mylist[mylist.index(t)]

 if d in otherlist and d!= "'" and d!= '''"''' and d!= "[" and d!= "]" and d!= "." and d!= ":" and d!= "," and d!=
")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!= "tp3":

 p=t1

 print 'calling e'

 triples(p,otherlist,mylist,output1,t2,t1, multitablist)

 tx = t1.lower()

 tx1= lancaster.stem(tx)

 if d in tx1:

 p=tx

 print 'calling f'

 triples(p,otherlist,mylist,output1,t2,t1, multitablist)

 if multitablist != None :

 multitablist = list(set(multitablist))

 multitablist=[lancaster.stem(t) for t in multitablist]

 multitablist = list(set(multitablist))

 #33print 'this is ~~~', multitablist,type(multitablist)

 #classlist = list(set(classlist))

 #33print 'finaly', classlist

 #33print 'individual', classlist[2],

 common=[]

 j=len(multitablist)-1

 while j>=0:

 #print j, multitablist[j], str(classlist)

 if multitablist[j] in str(classlist):

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 255

 #print 'Participating classes', multitablist[j],list11

 s=list([multitablist[j]])

 common1=common.append(s)

 j-=1

 #print 'commons==', common

 #33print 'am done'

 if len(common)>1 and len(common)<=3 :

 fkey(common, mylist)

def triples(p,otherlist,mylist,output1,t2,t1, multitablist):

 import nltk, re, pprint

 lancaster = nltk.LancasterStemmer()

 p1=p

 p1 = lancaster.stem(p1)

 t21= lancaster.stem(t2)

 if p1 in mylist and t21 in mylist:

 tscore=1

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'# causes lots of repetations in properties list

 #type(t2)

 multitablist = multitablist.append(t2)

 #multitablist = list(set(multitablist))

 else:

 s=p

 kn = 0

 for t in s:

 if t.isupper():

 s.find(t)

 kn += 1

 tscore=0

 for t in s:

 if t.isupper():

 s0=s.split(t)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 256

 s1=s0[0]

 s2=t.lower()+s0[0] # return to s[1]

 s=s2

 s11 = lancaster.stem(s1)

 if s11 in mylist:

 score=1/kn

 tscore=tscore+score

 s21 = lancaster.stem(s2)

 t21= lancaster.stem(t2)

 if s21 in mylist and t21 in mylist:

 tscore= tscore +1/kn

 if tscore >= 0.5:

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 multitablist = multitablist.append(t2)

 if 'who' in mylist and t21 in mylist:

 if p.lower() == 'firstname':

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'who' in mylist and t21 in mylist:

 if p.lower() == 'lastname':

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'who' in mylist and t21 in mylist:

 if 'contact' in p.lower():

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'wher' in mylist and 'country' not in mylist:

 if p.lower() == 'country':

 if p.lower() in mylist:

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'wher' in mylist and 'reg' not in mylist:

 if p.lower() == 'region':

 if p.lower() in mylist:

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 257

 if 'wher' in mylist and 'city' not in mylist:

 if p.lower() == 'city':

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'when' in mylist:

 if 'hir' in p.lower():

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'when' in mylist:

 if 'bir' in p.lower():

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'when' in mylist:

 if p.lower() == 'date':

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'which' in mylist:

 if 'id' in p.lower():

 if t21 in mylist:

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

 if 'which' in mylist:

 if 'nam' in p.lower():

 if p.lower()!= 'firstnam'and p.lower()!= 'lastnam' and p.lower()!= 'contactnam' and p.lower()!= 'categoryna':

 if t21 in mylist:

 print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'

def constraint (output2,origlist, multitablist):

 import nltk, re, pprint

 lancaster = nltk.LancasterStemmer()

 kount = 0

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw1 = "start"

 outputk = nltk.word_tokenize(raw1)

 while outputk != '''[]''' and outputk is not []:

 if outputk != []:

 kount += 1

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 258

 raw1 = fr.readline()

 outputk = nltk.word_tokenize(raw1)

 else:

 print ' '

 break

 #output2 = askprune()

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw = "start"

 kount = kount - 2

 count=0

 k=0

 while kount != 0:

 kount += -1

 k += 1

 raw = fr.readline()

 tokens = nltk.word_tokenize(raw)

 otherlist = [w.lower() for w in tokens]

 output1 = nltk.word_tokenize(raw)

 #########print 'output1------', output1

 #if ('''>''' is output1[0]) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and ('''/'''in
output1[output1.index('<')+1]):

 #if ('''>''' is output1[0]) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and ('''/'''in
output1[output1.index('<')+1]):

 if ('''db''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('datatype' in output1)
and ('hasPrimaryKeyFields' not in output1) and ('isBridgeTable' not in output1) and ('hasOrigColumnName' not in
output1):

 a = output1[output1.index(':')+1]

 #print "this is for split:", a

 b = a.split('.')

 t1 = b[1]

 t3 = b[0]

 t2 = t3[1:]

 t21 = lancaster.stem(t2)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 259

 mylist = output2

 for t in origlist:

 d = origlist[origlist.index(t)]

 if d in otherlist and d!= "+" and d!= "'" and d!='the' and d!='and'and d!='all'and d!= '''"''' and d!= "[" and d!=
"]" and d!= "." and d!= ":" and d!= "," and d!= ")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!=
"tp3":

 inst =output1[1:output1.index('<')]

 count += 1

 p=t1

 i= inst

 filter1(i,count,t1,mylist,t2,origlist)

 t11 = lancaster.stem(t1)

 t21 = lancaster.stem(t2)

def filter1(i,count,t1,mylist,t2,origlist):

 import nltk, re, pprint, pickle

 ln=0

 ct=0

 lancaster = nltk.LancasterStemmer()

 listinst=[t2,t1,i]

 t11 = lancaster.stem(t1)

 t21 = lancaster.stem(t2)

 l=[w.lower() for w in i]

 r= [w.lower() for w in origlist]

 #print 'r===', r

 for w in l:

 ln += 1

 if ln >1:

 for w in l:

 if w in origlist:

 ct+=1

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 260

 print ct, ln

 conf=ct/ln ## pushed in one step

 if ln > 1 and conf>0.5 and t21 in mylist and t11 in mylist :

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'='," '"+ir+"' " ,')'

 #____________________

 ##>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not' not in mylist and ('mor' not in
mylist and 'gre' not in mylist) and ('less' not in mylist and 'few' not in mylist):## This works fine: print 'kkkk', if l[0]
in r

 #print '----', l[len(i)-1] #, t1, str(i)

 if t1.lower() not in str(i):

 if '+'in i:

 inw = l.remove('+')

 u=str(l)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'='," '+"+i[len(i)-1]+"' " ,')'

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'='," '"+ir+"' " ,')'

 if ',' in i:

 for w in i:

 if ',' in i :

 i.remove(',')

 ir= ', '.join(i)

 ir= str(ir)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'='," '"+ir+"' " ,')'

 elif '+'not in i and '@' not in i :

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 261

 print 'FILTER(?'+t1,'='," '"+ir+"' " ,')'

 #== less than Begins =============#

 ##>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not' not in mylist and ('less' in mylist or
'few' in mylist) and ('mor' not in mylist and 'gre' not in mylist):## This works fine: print 'kkkk', if l[0] in r

 #print l[len(i)-1], t1, str(i)

 if t1.lower() not in str(i):

 if '+'in i:

 inw = l.remove('+')

 u=str(l)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<'," '+"+i[len(i)-1]+"' " ,')'

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<'," '"+ir+"' " ,')'

 if ',' in i:

 for w in i:

 if ',' in i :

 i.remove(',')

 ir= ', '.join(i)

 ir= str(ir)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<'," '"+ir+"' " ,')'

 elif '+'not in i and '@' not in i :

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<'," "+ir+" " ,')'

 #== Greater than Begins =============#

 #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not' not in mylist and ('mor' in mylist or
'gre' in mylist) and ('less' not in mylist and 'few' not in mylist):## This works fine: print 'kkkk', if l[0] in r

 #print l[len(i)-1], t1, str(i)

 if t1.lower() not in str(i):

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 262

 if '+'in i:

 inw = l.remove('+')

 u=str(l)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>'," '+"+i[len(i)-1]+"' " ,')'

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>'," '"+ir+"' " ,')'

 if ',' in i:

 for w in i:

 if ',' in i :

 i.remove(',')

 ir= ', '.join(i)

 ir= str(ir)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>'," '"+ir+"' " ,')'

 elif '+'not in i and '@' not in i :

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>'," "+ir+" " ,')'

 #== Negation Begins===============#

 #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not'in mylist and ('less' not in mylist and
'few' not in mylist) and ('mor' not in mylist and 'gre' not in mylist):## This works fine: print 'kkkk', if l[0] in r

 if t1.lower() not in str(i):

 if '+'in i:

 inw = l.remove('+')

 u=str(l)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'!='," '+"+i[len(i)-1]+"' " ,')'

 if '@' in i:

 ir= ''.join(i)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 263

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')'

 if ',' in i:

 for w in i:

 if ',' in i :

 i.remove(',')

 ir= ', '.join(i)

 ir= str(ir)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')'

 elif '+'not in i and '@' not in i :

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')'

 #== Negation of less than Begins===============#

 #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not'in mylist and ('less' in mylist or 'few'
in mylist) and ('mor' not in mylist and 'gre' not in mylist):## This works fine: print 'kkkk', if l[0] in r

 #print l[len(i)-1], t1, str(i)

 if t1.lower() not in str(i):

 if '+'in i:

 inw = l.remove('+')

 u=str(l)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>='," '+"+i[len(i)-1]+"' " ,')'

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>='," '"+ir+"' " ,')'

 if ',' in i:

 for w in i:

 if ',' in i :

 i.remove(',')

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 264

 ir= ', '.join(i)

 ir= str(ir)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>='," '"+ir+"' " ,')'

 elif '+'not in i and '@' not in i :

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>='," "+ir+" " ,')'

 #== Negation of Greater than Begins===============#

 #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not'in mylist and ('mor' in mylist or 'gre'
in mylist) and ('less' not in mylist and 'few' not in mylist):## This works fine: print 'kkkk', if l[0] in r

 #print l[len(i)-1], t1, str(i)

 if t1.lower() not in str(i):

 if '+'in i:

 inw = l.remove('+')

 u=str(l)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<='," '+"+i[len(i)-1]+"' " ,')'

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<='," '"+ir+"' " ,')'

 if ',' in i:

 for w in i:

 if ',' in i :

 i.remove(',')

 ir= ', '.join(i)

 ir= str(ir)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<='," '"+ir+"' " ,')'

 elif '+'not in i and '@' not in i :

 ir= ' '.join(i)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 265

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<='," "+ir+" " ,')'

 #== Half Named Properties Begins===============#

 s=t1

 kn = 0

 for t in s:

 if t.isupper():

 s.find(t)

 kn += 1

 tscore=0

 for t in s:

 if t.isupper():

 s0=s.split(t)

 s1=s0[0]

 s2=t.lower()+s0[0] #return to s0[1]

 s=s2

 s11 = lancaster.stem(s1)

 if s11 in mylist:

 score=1/kn

 tscore=tscore+score

 s21 = lancaster.stem(s2)

 t21= lancaster.stem(t2)

 if s21 in mylist and t21 in mylist and ln==1 and 'not' not in mylist and ('less' not in mylist and 'few' not in
mylist) and 'mor' not in mylist and 'gre' not in mylist:

 tscore=1

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'='," '"+ir+"' " ,')'

 else:

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 266

 print 'FILTER(?'+t1,'=', " '"+ir+"' " ,')'

 #== Less than Begins =============#

 if s21 in mylist and t21 in mylist and ln==1 and 'not' not in mylist and ('less'in mylist or 'few' in mylist) and
('mor' not in mylist or 'gre' not in mylist):

 #print 'seen', s1,s2

 tscore=1

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<'," '"+ir+"' " ,')'

 else:

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<', " "+ir+" " ,')'

 #== Greater than Begins ===========#

 if s21 in mylist and t21 in mylist and ln==1 and 'not' not in mylist and ('mor' in mylist or 'gre' in mylist) and
('less' not in mylist or 'few' not in mylist):

 #print 'seen', s1,s2

 tscore=1

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>'," '"+ir+"' " ,')'

 else:

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>', " "+ir+" " ,')'

 #== Negation Begins ==============#

 if s21 in mylist and t21 in mylist and ln==1 and 'not' in mylist and ('less' not in mylist and 'few' not in mylist)
and ('mor' not in mylist and 'gre' not in mylist):

 tscore=1

 if '@' in i:

 ir= ''.join(i)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 267

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')'

 else:

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'!=', " '"+ir+"' " ,')'#, mylist

 #== Negation of less than Begins ==#

 if s21 in mylist and t21 in mylist and ln==1 and 'not' in mylist and ('less'in mylist or 'few' in mylist) and
('mor' not in mylist and 'gre' not in mylist):

 tscore=1

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>='," "+ir+" " ,')'

 else:

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'>=', " "+ir+" " ,')0000', tscore, s21

 #== Negation of Greater than Begins =#

 if s21 in mylist and t21 in mylist and ln==1 and 'not' in mylist and ('less'not in mylist or 'few' not in mylist)
and ('mor' in mylist or 'gre' in mylist):

 tscore=1

 if '@' in i:

 ir= ''.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<='," "+ir+" " ,')'

 else:

 ir= ' '.join(i)

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'<=', " "+ir+" " ,')'

 if ln > 1 and conf>0.5 and t21 in mylist and s21 in mylist :

 ir= ' '.join(i)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 268

 print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.'

 print 'FILTER(?'+t1,'='," '"+ir+"' " ,')'

def syno(mylist):

 import nltk

 lexlist = []

 from nltk.corpus import wordnet as wn

 for s in mylist:

 for synset in wn.synsets(s):

 L = synset.lemma_names

 lexlist.extend(L)

 lexlist = list (sorted(set(lexlist)))

 return lexlist

def lex(mylist):

 # Geographical Database Module ##

 if 'kenya' in mylist:

 mylist.append('country')

 s= 'usa'

 syn(s, mylist)

 s= 'germany'

 syn(s, mylist)

 if 'japan' in mylist:

 mylist.append('country')

 if 'mexico' in mylist and 'city' not in mylist:

 mylist.append('country')

 if 'uganda' in mylist:

 mylist.append('country')

 if 'canada' in mylist:

 mylist.append('country')

 s= 'uk'

 syn(s, mylist)

 if 'ghana' in mylist:

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 269

 mylist.append('country')

 if 'nairobi' in mylist:

 mylist.append('city')

 if 'rome' in mylist:

 mylist.append('city')

 mylist.append('shipcity')

 if 'new_york' in mylist and 'city' not in mylist:

 mylist.append('state')

 if 'new' in mylist and 'york' in mylist:

 mylist.append('city')

 if 'embu' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'london' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'vancouver' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'toronto' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'seattle' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'liverpool' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'berlin' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'kampala' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'chicago' in mylist and 'city' not in mylist:

 mylist.append('city')

 if 'kumasi' in mylist and 'city' not in mylist and 'region' not in mylist:

 mylist.append('city')

 if 'karatina' in mylist and 'city' not in mylist:

 mylist.append('city')

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 270

 if 'where' in mylist and 'city' not in mylist and 'countries' not in mylist and 'country' not in mylist and 'region' not in
mylist:

 mylist.append('city')

 #== Jargon Here ====#

 if 'retailers' in mylist or 'retailer' in mylist:

 mylist.append('supplier')

 if 'domestic' in mylist:

 mylist.append('kenya')

 mylist.append('country')

 #== Normalization of Country Names Begins Here ==#

 if 'german' in mylist:

 mylist.remove('german')

 mylist.append('germany')

 mylist.append('country')

 if 'canadian' in mylist:

 mylist.remove('canadian')

 mylist.append('canada')

 mylist.append('country')

 if 'ugandan' in mylist:

 mylist.remove('ugandan')

 mylist.append('uganda')

 mylist.append('country')

 if 'ghanaian' in mylist:

 mylist.remove('ghanaian')

 mylist.append('ghana')

 mylist.append('country')

 #== dealing with challenges brought about by synonym set/ stem e.g. find has syn notice stemmed to not==#

 if 'find' in mylist:

 mylist.remove('find')

 mylist.append('list')

 if 'biggest' in mylist:

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 271

 mylist.remove('biggest')

 mylist.append('most')

 if 'largest' in mylist:

 mylist.remove('largest')

 mylist.append('most')

 if 'maximum' in mylist:

 mylist.remove('maximum')

 mylist.append('most')

 if 'minimum' in mylist:

 mylist.remove('minimum')

 mylist.append('smallest')

 #== anticipating usage of verbs in question ======#

 if 'give' in mylist:

 mylist.append('list')

 if 'day' in mylist or 'days' in mylist:

 mylist.append('date')

def syn(s,mylist):

 import nltk

 from nltk.corpus import wordnet as wn

 #mylist = lex(mylist)

 for synset in wn.synsets(s):

 sn = synset.lemma_names

 sn = [x.lower() for x in sn]

 for w in sn:

 if w in mylist:

 mylist.append('country')

def superative(output2,origlist, initialist):

 import nltk, re, pprint

 lancaster = nltk.LancasterStemmer()

 kount = 0

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 272

 raw1 = "start"

 outputk = nltk.word_tokenize(raw1)

 while outputk != '''[]''' and outputk is not []:

 if outputk != []:

 kount += 1

 raw1 = fr.readline()

 outputk = nltk.word_tokenize(raw1)

 else:

 print ' '

 break

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw = "start"

 kount = kount - 2

 count=0

 k=0

 while kount != 0:

 kount += -1

 k += 1

 raw = fr.readline()

 tokens = nltk.word_tokenize(raw)

 otherlist = [w.lower() for w in tokens]

 output1 = nltk.word_tokenize(raw)

 if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty'
in output1):

 # This is the section that selects Classname and Property(for ALL tables)

 n = output1.index('=')

 m = n+6

 q = output1[m]

 r = q[:3]

 r1 = q[:2]

 if (r != 'has') and (r1 != 'is'):

 #print "this is for split:", q

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 273

 s = q.split('.')

 t1 = s[1]

 t2 = s[0]

 #t2 = lancaster.stem(t2)

 list2 = t2

 list1 = t1

 t11= lancaster.stem(list1)

 t21= lancaster.stem(list2)

 mylist = output2

 for t in mylist:

 d = mylist[mylist.index(t)]

 if (d in t21) and len(d)>=3 and d!='the' and d!= "tp3" :# ((d in otherlist) or (d in t11) or

 p=t1

 if t11 in mylist and t21 in mylist and ('less' not in mylist and 'few' not in mylist) and 'mor' not in mylist
and 'gre' not in mylist:

 if 'maximum'in initialist or'highest'in initialist or 'longest'in initialist or 'most' in initialist or 'biggest'
in initialist or 'largest' in initialist:

 print '} ORDER BY DESC','(?'+t1+')'

 print 'LIMIT 1'

 if 'minimum'in initialist or'lowest'in initialist or 'shortest' in initialist or 'least' in initialist or 'smallest'
in initialist:

 print '} ORDER BY ','?'+t1

 print 'LIMIT 1'

 else:

 s=p

 kn = 0

 for t in s:

 if t.isupper():

 s.find(t)

 kn += 1

 tscore=0

 for t in s:

 if t.isupper():

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 274

 s0=s.split(t)

 s1=s0[0]

 s2=t.lower()+s0[0] # return to s0[1]

 s=s2

 s11 = lancaster.stem(s1)

 if s11 in mylist:

 score=1/kn

 s21 = lancaster.stem(s2)

 t21= lancaster.stem(t2)

 #print s11, kn, s2

 if s21 in mylist and t21 in mylist:

 tscore= tscore +1/kn

 #scored =0

 if tscore >= 0.3 and 'not' not in mylist and ('less' not in mylist and 'few' not in mylist) and 'mor' not
in mylist and 'gre' not in mylist:

 if 'maximum'in initialist or'highest'in initialist or 'longest'in initialist or 'most' in initialist or
'biggest' in initialist or 'largest' in initialist:

 if 'highest'in initialist:

 t='highest'

 superbig(t,initialist,t1, kn)

 if 'longest'in initialist:

 t='longest'

 superbig(t,initialist,t1, kn)

 if 'most'in initialist:

 t='most'

 superbig(t,initialist,t1, kn)

 if 'biggest'in initialist:

 t='biggest'

 superbig(t,initialist,t1, kn)

 if 'largest'in initialist:

 t='largest'

 superbig(t,initialist,t1, kn)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 275

 if 'maximum'in initialist:

 t='maximum'

 superbig(t,initialist,t1, kn)

 if 'minimum'in initialist or'lowest'in initialist or 'shortest' in initialist or 'least' in initialist or
'smallest' in initialist:

 if 'lowest'in initialist:

 t='lowest'

 supersmall(t,initialist,t1, kn)

 if 'shortest'in initialist:

 t='shortest'

 supersmall(t,initialist,t1, kn)

 if 'least'in initialist:

 t='least'

 supersmall(t,initialist,t1, kn)

 if 'smallest'in initialist:

 t='smallest'

 supersmall(t,initialist,t1, kn)

 if 'minimum'in initialist:

 t='minimum'

 supersmall(t,initialist,t1, kn)

def supersmall(t,initialist,t1,kn):

 scored = 0

 u = initialist[(initialist.index(t)+1):]

 if u != []:

 u = initialist[(initialist.index(t)+1):]

 for w in u:

 if w in t1.lower():

 scored += 1

 scoredf= scored*(1/kn)

 if scoredf > 0.5:

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 276

 print '} ORDER BY ','?'+t1

 print 'LIMIT 1'

 else:

 u = initialist[-6:(initialist.index(t)+1)]

 for w in u:

 if w in t1.lower():

 scored += 1

 scoredf= scored*(1/kn)

 if scoredf > 0.5:

 print '} ORDER BY ','?'+t1

 print 'LIMIT 1'

def superbig(t,initialist,t1,kn):

 scored = 0

 u = initialist[(initialist.index(t)+1):]

 if u != []:

 u = initialist[(initialist.index(t)+1):]

 for w in u:

 if w in t1.lower():

 scored += 1

 scoredf= scored*(1/kn)

 if scoredf > 0.5:

 print '} ORDER BY DESC','(?'+t1+')'

 print 'LIMIT 1'

 else:

 u = initialist[-6:(initialist.index(t)+1)]

 for w in u:

 if w in t1.lower():

 scored += 1

 scoredf= scored*(1/kn)

 if scoredf > 0.5:

 print '} ORDER BY DESC','(?'+t1+')'

 print 'LIMIT 1'

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 277

def fkey (common, mylist):

 running = True

 import nltk, re, pprint

 lancaster = nltk.LancasterStemmer()

 kount = 0

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw1 = "start"

 outputk = nltk.word_tokenize(raw1)

 while outputk != '''[]''' and outputk is not []:

 if outputk != []:

 kount += 1

 raw1 = fr.readline()

 outputk = nltk.word_tokenize(raw1)

 else:

 print ' '

 break

 fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU')

 raw = "start"

 kount = kount - 2

 count=0

 k=0

 proplist=[]

 proplist1 = []

 proplist2 = []

 proplist3 = []

 #common = [['produc'], ['supply']]

 #print 'common', common

 while kount != 0:

 kount += -1

 k += 1

 raw = fr.readline()

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 278

 output1 = nltk.word_tokenize(raw)

 if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty'
in output1):

 n = output1.index('=')

 m = n+6

 q = output1[m]

 r = q[:3]

 r1 = q[:2]

 if (r != 'has') and (r1 != 'is'):

 #print "this is for split:", q

 s = q.split('.')

 t1 = s[1]

 t2 = s[0]

 t21= lancaster.stem(t2)

 t11= lancaster.stem(t1)

 proplist.append(t1)

 for t in mylist:

 if t in t2 and t21 in mylist and t in common[0]:

 t2=s[0]

 proplist1.append(t1)

 t0=t2

 #print 'this is my t2',t2

 ##if t21 in common[0] and t21 in mylist:

 ##proplist1.append(t1)

 #print t21

 if t21 in common[1]and t21 in mylist:

 proplist2.append(t1)

 t3=t2

 if len(common)==3 and t21 in common[2]and t21 in mylist:

 proplist3.append(t1)

 t4=t2

 #print 'proplist1', proplist1

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 279

 #print '--------'

 #print 'proplist2',proplist2

 proplist1 = set(proplist1)

 proplist2 = set(proplist2)

 proplist3 = set(proplist3)

 prop_comm = sorted(proplist1 & proplist2)

 prop_comm1 = sorted(proplist1 & proplist2)

 prop_comm2 = sorted(proplist1 & proplist3)

 prop_comm3 = sorted(proplist2 & proplist3)

 #print mylist, t2

 #print prop_comm1

 #print prop_comm2

 #print prop_comm3

 #print proplist1

 if prop_comm != [] and len(common)==2:

 print '?'+str(t0),'dbs:'+str(t0)+'.'+str(prop_comm[0]), ' ?'+str(prop_comm[0])+'.'

 print '?'+str(t3),'dbs:'+str(t3)+'.'+str(prop_comm[0]), ' ?'+str(prop_comm[0])+'.'

 if prop_comm1 != [] and len(common)==3:

 print '?'+str(t0),'dbs:'+str(t0)+'.'+str(prop_comm1[0]), ' ?'+str(prop_comm1[0])+'.'

 print '?'+str(t3),'dbs:'+str(t3)+'.'+str(prop_comm1[0]), ' ?'+str(prop_comm1[0])+'.'

 if prop_comm2 != [] and len(common)==3:

 print '?'+str(t0),'dbs:'+str(t0)+'.'+str(prop_comm2[0]), ' ?'+str(prop_comm2[0])+'.'

 print '?'+str(t4),'dbs:'+str(t4)+'.'+str(prop_comm2[0]), ' ?'+str(prop_comm2[0])+'.'

 if prop_comm3 != [] and len(common)==3:

 print '?'+str(t3),'dbs:'+str(t3)+'.'+str(prop_comm3[0]), ' ?'+str(prop_comm3[0])+'.'

 print '?'+str(t4),'dbs:'+str(t4)+'.'+str(prop_comm3[0]), ' ?'+str(prop_comm3[0])+'.'

def quset (common, mylist):

Python code for BASE COMPONENTS IDENTIFICATION (Includes segmentation of sentences,
tokenization, POS tagging, phrase-chunking)
import nltk
rawtext = open(plain_text_file).read()# Plain text file contains entire query set

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 280

sentences = nltk.sent_tokenize(rawtext) # NLTK default sentence segmenter
sentences = [nltk.word_tokenize(sent) for sent in sentences] # NLTK word tokenizer
sentences = [nltk.pos_tag(sent) for sent in sentences] # NLTK POS tagger
#Example: sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), ("dog", "NN"), ("barked","VBD"), ("at",
"IN"), ("the", "DT"), ("cat", "NN")] # a simple sentence with POS tags
#Simplified Part-of-Speech Tagset
#Tag Meaning Examples
#ADJ adjective new, good, high, special, big, local
#ADV adverb really, already, still, early, now
#CNJ conjunction and, or, but, if, while, although
#DET determiner the, a, some, most, every, no
#N noun year, home, costs, time, education
#NP proper noun Alison, Africa, April, Washington
#NUM number twenty-four, fourth, 1991, 14:24
#PRO pronoun he, their, her, its, my, I, us
#P preposition on, of, at, with, by, into, under
#UH interjection ah, bang, ha, whee, hmpf, oops
#V verb is, has, get, do, make, see, run
#VD past tense said, took, told, made, asked
#VG present participle making, going, playing, working
#VN past participle given, taken, begun, sung
#WH wh determiner who, which, when, what, where, how

#Define tag patterns to find NP-chunks; PP-Chunks (prepositional phrases chunks) ; terms/collocations etc
patterns1 = """
 NP: {<DT|PP\$>?<JJ>*<NN>}
 {<NNP>+}
 {<NN>+}
 {<DT>?<JJ>*<NN>}
""“
patterns2 = """
 PP: {<DT|PP\$>?<JJ>*<NN>}
 {<NNP>+}
 {<NN>+}
""“
patterns3 = """
 TP: {<DT|PP\$>?<JJ>*<NN>}
 {<NNP>+}
 {<NN>+}
""“
NPChunker = nltk.RegexpParser(patterns1) # create a NP-chunk parser
PPChunker = nltk.RegexpParser(patterns2) # create a PP-chunk parser
TPChunker = nltk.RegexpParser(patterns3) # create a TP-chunk parser
result1 = NPChunker.parse(sentences) # parse the queries
result2 = PPChunker.parse(sentences) # parse the queries
result3 = TPChunker.parse(sentences) # parse the queries
print result1, result2, result3

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 281

Appendix 9: Query Sets and Results for Evaluation of English Wizzard, Easy Query and ELF
(Reproduced from Bootra (2004))

 Query ELF
Response

EQ Response EW Response

 where are the suppliers from
Germany located

+ Sorry, I didn't understand that. +

 show the names and complete
address of the biscuit companies

+ Sorry, I didn't understand that. Please
check your spelling or phrasing.
-If you capitalize proper names, it will
be easier for me to understand you.

INCORRECT: show employees,
Discontinued 126 times (crosses with
Order Details)

 at which company does Ian work INCORRECT:
work=>worker=>
employee
(crosses with
Employee table)

Based on the information I've been
given about this database, I can't
answer:
"At which companies Ian does works?".
I haven't been given any information
on companies.

INCORRECT: No rows returned.

 who handles the specialty
items(Modify to: who supplies
speciality items?)

+ INCORRECT: No appropriate choice I'm not familiar with the word: handles

 show the domestic suppliers + Based on the information I've been
given about this database, I can't
answer:
"How domestic are suppliers?".
I haven't been given any information
on domesticness.

I'm not familiar with the word:
domestic

 show the New Orleans suppliers + INCORRECT: No answer because New
Orleans is part of name, not whole
name of company

+

 show the New England suppliers + INCORRECT: Same problem as New
Orleans

I'm not familiar with the words: New
England

 which company handles the
specialty products

+ INCORRECT: No appropriate choice I'm not familiar with the word: handles

 which companies have Product
Managers

+ Based on the information I've been
given about this database, I can't
answer:
"Which companies have Product
Managers?".
I haven't been given any information
on companies.

+

 show the Product Managers + INCORRECT: +

 show the orders by Leverling to
Hanover Sq

+ I need to know how to interpret the
name "Leverling to Hanover Sq"

You must specify 2 values to select a
range of values.

 which products come in bottles + INCORRECT: No appropriate choice I'm not familiar with the word: come
 What are the names of our

Canadian customers?
+ Based on the information I've been

given about this database, I can't
answer:
"Which customers have countries?".
I haven't been given any information
on countries.

I'm not familiar with the word:
Canadian

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 282

 Give the name and location of
suppliers from Germany.

+ Sorry, I didn't understand that. INCORRECT: Gives address field only,
270 times

 Which are our Australian
suppliers?

+ Based on the information I've been
given about this database, I can't
answer:
"Which suppliers have countries?".
I haven't been given any information
on countries.

I'm not familiar with the word:
Australian

 List the countries where
suppliers are located, arranging
the countries in alphabetical
order.

INCORRECT: Suppliers aren't there. Customers are
there.

I'm not familiar with the word:
arranging

 Products with names that start
with "La".

+ INCORRECT: Wrong answer. Shows all
containing, not starting with!

INCORRECT: Offers choice of Employee
first or last name only

 Suppliers who are not located in
Canada

+ Based on the information I've been
given about this database, I can't
answer

I'm confused by the word: Canada

 Find the products that have
between 10 and 20 units in stock

+ Sorry, I didn't understand that. +

 Records for customers who are
located in Canada and whose
names begin with the letter "M"

+ INCORRECT: Neither choice is correct. I'm not familiar with the word: letter
"M"

 Suppliers who are located in
Canada and whose names begin
with the letters A-N.

+ Sorry, I didn't understand that. "letters" must be numeric.

 Suppliers who have a fax number + INCORRECT: show suppliers with or
without faxes

+

 Show the employees hired
between May 1, 1992 and June
1, 1993

+ + +

 Employees who live in the United
Kingdom or employees who live
in Seattle

+ I don't understand the phrase: "t_or I
list every employee that lives in
Seattle".

I'm not familiar with the words: United
Kingdom

 Orders placed before 1-Jan-93 + Based on the information I've been
given about this database, I can't
answer:
"Which orders are placed before 1-Jan-
93?"."Which orders are placed?"
doesn't depend on 1-Jan-93.

1' is not the expected type.

 Customers whose company
names start with N-Z and who
are located in either the United
Kingdom or Paris

INCORRECT: I don't understand the word
"company" in the phrase "company
start".

"N" must be numeric.

 Orders that were placed during
the month of February 93

+ + (' required after builtin function "month
of".

 Find customers from Canada or
the UK who have placed over 15
orders

+ I don't understand the phrase: "from
UK".

15' is not the expected type.

 Suppliers who provide seafood
products and who are from
Singapore or Japan.

+ I don't understand the phrase: "from
Singapore".

+

 Find the customers who ordered
the "Chef Anton's Cajun
Seasoning" product

+ + +

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 283

 information on orders that were
placed after 31-Mar-92, including
the employee who made the sale
and the customer who placed
the order

+ Sorry, I didn't understand that. Please
check your spelling or phrasing.
If you capitalize proper names, it will
be easier for me to understand you.

31' is not the expected type.

 What's the average price of all
our products

+ I haven't been given any information
on prices.

I'm not familiar with the word: price

 Give the name and id for each
category.

+ INCORRECT: gives names but not Ids INCORRECT: Offers only [Region ID]
choices.

 List the customers + + +

 Count the orders that have been
placed for each seafood product

+ + By "address", do you mean Customers,
Employees, Suppliers?

 Show the ship date and order
subtotals since March of 1994

+ I don't understand the phrase: "since
March, 1994".

I cannot connect the table "Order
Subtotals" to the other tables in your
request.

 Display the subtotal and shipping
date of all orders

+ Sorry, I didn't understand that. I cannot provided (sic) both summary
and detail information in the same
request.

 List the suppliers in alphabetical
order

+ I don't understand the phrase: "in
orders".

+

 Find the total number of
Northwind suppliers

+ Sorry, I didn't understand that. I'm not familiar with the word:
Northwind

 orders that were shipped today + + What date does "today" refer to?
 orders that were shipped during

the past ten years
+ + +

 The number of orders that were
shipped within the past 3100
days

+ + What date does "last" refer to?

 Find the total value of orders
that have been shipped to each
country

+ I haven't been given any information
on values.

I'm not familiar with the word: value

 Which products cost between $3
and $6?

+ Products don't have net costs. Line
items have net costs.

I'm not familiar with the word: cost

 Give the order id, product name,
product id, price, quantity,
discount and extended price for
each purchase

+ Sorry, I didn't understand that. Please
check your spelling or phrasing.

If you capitalize proper names, it will
be easier for me to understand you.

I'm not familiar with the word: price

 Show catalog information for the
active products.

INCORRECT:
"catalog" and
"active" are not
defined

I haven't been given any information
on catalogs.

I'm not familiar with the word: catalog

 the minimum price of all
products in the Products table

+ I haven't been given any information
on prices.

I'm not familiar with the word: price

 all records with the current date + I don't understand the word "current"
in the phrase "current date".

INCORRECT: show no records, only a
count

 What's the total number of
orders we received this month

+ I haven't been given any information
about people.

I'm not familiar with the word: received

 all employees who have
birthdays today

+ + INCORRECT: interprets this as "who was
born today"!

 all employees who have
birthdays on July 2

+ + +

 All employee records that
contain photos

INCORRECT: I don't understand the word
"employee" in the phrase "employee
record".

INCORRECT: Wrong, interprets Photo as
a True/False, which shows all records

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 284

 Find the total number of
customers in Canada or the
United Kingdom who have
placed orders, and group them
by country

+ INCORRECT: Neither choice is correct. I'm not familiar with the words: United
Kingdom

 Find the total value of orders
shipped to each customer within
each country

+ Sorry, I didn't understand that. I'm not familiar with the word: value

 Which employee sold the most
units of tofu?

INCORRECT: Based on the information I've been
given about this database, I can't
answer:
"Which employees sold products?".

I'm not familiar with the word: units

 Subtotal and customer for orders
shipped between 10/1/91 and
12/31/91, sorting on the value

+ Sorry, I didn't understand that. Please
check your spelling or phrasing.
If you capitalize proper names, it will
be easier for me to understand you.

I'm not familiar with the word: value

 photos of employees whose last
names start with "B"

+ I haven't been given any information
on photos.

+

 show photos of employees hired
during 1991

+ I haven't been given any information
on photos.

+

 which customers have ordered
both Konbu and Filo Mix?

+ + INCORRECT

 which products are more
expensive than chai

+ Sorry, I didn't understand that. I'm not familiar with the word:
expensive

 how much does chai cost + Products don't have net costs. Line
items have net costs.

I'm not familiar with the word: cost

 customers that ordered both
chai and filo

+ Sorry, I didn't understand that. Please
check your spelling or phrasing.
If you capitalize proper names, it will
be easier for me to understand you.

I'm not familiar with the word: filo

 how many products are there in
each category

+ Products aren't in categories. Products
are in orders.

Warning: due to a limitation of
Microsoft Access the count displayed
may include duplicates.

 which customers have ordered
every meat/poultry product

+ + INCORRECT

 which customers have never
ordered seafood

+ + I'm not familiar with the word: never

 which customers ordered
Longlife tofu but not filo mix

+ + INCORRECT

 which customers always use
Federal Shipping

+ Sorry, I didn't understand that. I'm not familiar with the words: always
use

 which product costs the most Sorry, unable to
interpret the
question.

I could not find a meaning for the noun
"more".

I'm not familiar with the word: costs

 which customers have placed
more orders than average

+ + I'm confused by the word "orders".

 show the seafood products in
reverse price order

+ I haven't been given any information
about prices.

I'm not familiar with the words: reverse
price

 customers that have ordered
from both Ma Maison and Tokyo
Traders

+ Suppliers have not had customers
orderring from them. Employees have
had customers orderring from them.

INCORRECT: No records; shows orders
from any company which is named
both Tokyo Traders and Ma Maison,
which is pretty darned unlikely

 show company names of the
suppliers that have more than 3
products

+ I don't understand the word
"company" in the phrase "company
name".

+

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 285

 which orders were neither
shipped to Canada nor sent via
Speedy Express

+ INCORRECT: Neither choice is correct. I can't relate "ship" to a seach value.

 which orders were not both
shipped to Canada and sent via
Speedy Express

+ I don't understand the phrase: "via
Speedy Express".

I'm confused by the word "ship".

 how many customers have
ordered every meat/poultry
product

+ + Misinterprets as "how many customers
ordered EACH meat product" we'd give
them that, but then they answer that
question wrong by counting each
customer once for each meat order,
inflating the numbers

 what percentage of customers
have ordered every meat/poultry
product

+ + Warning: due to a limitation of
Microsoft Access the count displayed
may include duplicates. (Percentages
inflated as in above query)

 which customers bought
products from every category

+ Based on the information I've been
given about this database, I can't
answer

INCORRECT: just shows every order

 which customers ordered the
fewest items

INCORRECT:
shows who
placed the
fewest orders

Based on the information I've been
given about this database, I can't
answer:"Which items did customers
order?". I haven't been given any
information on items.

I'm not familiar with the words: fewest
items

 show the names and complete
address of the pear companies

+ I don't know what the companies are. I'm not familiar with the word: pear

 which of the clients that
purchased tofu have also
purchased chai?

+ Based on the information I've been
given about this database, I can't
answer

Error in CreateEWQueryDef: join
expression not supported

 Show the ship date and subtotals
for all orders since March of
1991

+ I don't know how to connect subtotals
to orders or ship dates,
so I can't answer this question.

I cannot provided both summary and
detail information in the same request.

 how many customers in each
country have ordered tofu?

+ Based on the information I've been
given about this database, I can't
answer. I haven't been given any
information on countries.

Warning: due to a limitation of
Microsoft Access the count displayed
may include duplicates. (As warned, it
incorrectly includes duplicates)

 which customers exclusively use
Federal Shipping

+ Based on the information I've been
given about this database, I can't
answer

I'm not familiar with the word: use

 which customers use Federal
Shipping exclusively

+ Based on the information I've been
given about this database, I can't
answer

I'm not familiar with the word: use

 customers that work at 12
Orchestra Terrace

+ Based on the information I've been
given about this database, I can't
answer

INCORRECT: crosses customers with
employees table

 customers in the t2f area + INCORRECT: No appropriate choice I'm not familiar with the word: t2f
 count the orders for tofu versus

those for chai
+ Sorry, I didn't understand that. I'm not familiar with the word: versus

 graph the number of tofu or chai
orders

+ I didn't understand the meaning of
"number of order".

I'm not familiar with the word: graph

 graph the number of Seattle
employees against London

+ Based on the information I've been
given about this database, I can't
answer

I'm not familiar with the word: against

 graph the sum of subtotals for
seafood against beverages

+ Sorry, I didn't understand that. I'm not familiar with the word: against

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 286

 graph the average subtotal for
each category

+ Sorry, I didn't understand that. Error processing query

 graph the sum of subtotals for
tofu, chai and konbu

+ I haven't been given any information
on subtotals.

Error processing query

 show the average number of
products sold by each employee
sales representative

INCORRECT I don't understand the word "sales" in
the phrase "sales representative".

Error processing query

 compare the average unit price
showing employee and product

+ I don't understand the words
"unit_price showing" in the phrase
"unit_price showing employee".

INCORRECT: shows one number, not a
crosstab

 which products were shipped by
Federal in the last 5 years

+ INCORRECT: "Federal" is not an
Employee's firstname!

I'm not familiar with the word: Federal

 list employees with home
phones = (206) 555-8122 (206)
555-8122

+ INCORRECT: replaces '(206) 555-8122'
with '(206)555-8122' which leads to no
rows retrieved

I'm not familiar with the word: 206

 Find the total number of
different customers in Canada or
UK who have placed orders

+ Sorry, I didn't understand that. Error processing query

 find the total number of
DISTINCT customers in Canada or
the United Kingdom who have
placed orders, and group them
by country

+ INCORRECT: Neither choice is correct. I'm not familiar with the words: United
Kingdom

 which suppliers have order dates
that are newer than 600 months
old

+ Sorry, I didn't understand that. I'm not familiar with the words: newer

 show the difference between
discount and unit price

+ Customers don't have unit prices.
Products have unit prices.

I'm not familiar with the word:
difference

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 287

Appendix 10: Some of the Databases Used in Nomenclature Analysis

A: HUMAN RESOURCE MANAGEMENT (Oracle, 2008)

HR_DB Schema
Object Type and Objects
Index: COUNTRY_C_ID_PK, DEPT_ID_PK, DEPT_LOCATION_IX, EMP_DEPARTMENT_IX, EMP_EMAIL_UK, EMP_EMP_ID_PK,
EMP_JOB_IX, EMP_MANAGER_IX, EMP_NAME_IX, JHIST_DEPARTMENT_IX, JHIST_EMPLOYEE_IX, JHIST_EMP_ID_ST_DATE_PK,
JHIST_JOB_IX, JOB_ID_PK, LOC_CITY_IX, LOC_COUNTRY_IX, LOC_ID_PK, LOC_STATE_PROVINCE_IX,REG_ID_PK
Procedure: ADD_JOB_HISTORY, SECURE_DML
Sequence: DEPARTMENTS_SEQ, EMPLOYEES_SEQ, LOCATIONS_SEQ
Tables: COUNTRIES, DEPARTMENTS, EMPLOYEES, JOBS, JOB_HISTORY, LOCATIONS, REGIONS
Trigger: SECURE_EMPLOYEES, UPDATE_JOB_HISTORY
View: EMP_DETAILS_VIEW
Table HR.COUNTRIES
COUNTRY_ID NOT NULL CHAR(2)
COUNTRY_NAME VARCHAR2(40)
REGION_ID NUMBER
Table HR.DEPARTMENTS
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)
Table HR.EMPLOYEES
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(20)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)
Table HR.JOBS
JOB_ID NOT NULL VARCHAR2(10)
JOB_TITLE NOT NULL VARCHAR2(35)
MIN_SALARY NUMBER(6)
MAX_SALARY NUMBER(6)
Table HR.JOB_HISTORY
EMPLOYEE_ID NOT NULL NUMBER(6)
START_DATE NOT NULL DATE
END_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
DEPARTMENT_ID NUMBER(4)
Table HR.LOCATIONS
LOCATION_ID NOT NULL NUMBER(4)
STREET_ADDRESS VARCHAR2(40)
POSTAL_CODE VARCHAR2(12)
CITY NOT NULL VARCHAR2(30)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 288

STATE_PROVINCE VARCHAR2(25)
COUNTRY_ID CHAR(2)
Table HR.REGIONS
REGION_ID NOT NULL NUMBER
REGION_NAME VARCHAR2(25)

B: ORDER ENTRY DB (Oracle, 2008)

Order Entry Db-SCHEMA
Object Type and Objects
Index: CUSTOMERS_PK, CUST_ACCOUNT_MANAGER_IX, CUST_EMAIL_IX, CUST_LNAME_IX, CUST_UPPER_NAME_IX, INVENTORY_IX,
INV_PRODUCT_IX, ITEM_ORDER_IX, ITEM_PRODUCT_IX, ORDER_ITEMS_PK, ORDER_ITEMS_
UK, ORDER_PK, ORD_CUSTOMER_IX, ORD_ORDER_DATE_IX, ORD_SALES_REP_IX, PRD_DESC_PK, PRODUCT_INFORMATION_PK,
PROD_NAME_IX, PROD_SUPPLIER_IX, PROMO_ID_PK
Tables: CUSTOMERS, INVENTORIES, ORDERS, ORDER_ITEMS, PRODUCT_DESCRIPTIONS, PRODUCT_INFORMATION, WAREHOUSES
Triggers: INSERT_ORD_LINE, ORDERS_ITEMS_TRG, ORDERS_TRG
View: ACCOUNT_MANAGERS, BOMBAY_INVENTORY, CUSTOMERS_VIEW, DEPTVIEW, OC_CORPORATE_CUSTOMERS,
OC_CUSTOMERS, OC_INVENTORIES, OC_ORDERS, OC_PRODUCT_INFORMATION, ORDERS_VIEW, PRODUCTS, PRODUCT_PRICES,
SYDNEY_INVENTORY, TORONTO_INVENTORY
Table OE.CUSTOMERS
CUSTOMER_ID NOT NULL NUMBER(6)
CUST_FIRST_NAME NOT NULL VARCHAR2(20)
CUST_LAST_NAME NOT NULL VARCHAR2(20)
CUST_ADDRESS CUST_ADDRESS_TYP
PHONE_NUMBERS PHONE_LIST_TYP
NLS_LANGUAGE VARCHAR2(3)
NLS_TERRITORY VARCHAR2(30)
CREDIT_LIMIT NUMBER(9,2)
CUST_EMAIL VARCHAR2(30)
ACCOUNT_MGR_ID NUMBER(6)
CUST_GEO_LOCATION MDSYS.SDO_GEOMETRY
DATE_OF_BIRTH DATE
MARITAL_STATUS VARCHAR2(20)
GENDER VARCHAR2(1)
INCOME_LEVEL VARCHAR2(20)
Table OE.INVENTORIES
PRODUCT_ID NOT NULL NUMBER(6)
WAREHOUSE_ID NOT NULL NUMBER(3)
QUANTITY_ON_HAND NOT NULL NUMBER(8)
Table OE.ORDERS
ORDER_ID NOT NULL NUMBER(12)
ORDER_DATE NOT NULL TIMESTAMP(6) WITH LOCAL TIMEZONE
ORDER_MODE VARCHAR2(8)
CUSTOMER_ID NOT NULL NUMBER(6)
ORDER_STATUS NUMBER(2)
ORDER_TOTAL NUMBER(8,2)
SALES_REP_ID NUMBER(6)
PROMOTION_ID NUMBER(6
ORDER_STATUS NUMBER(2)
ORDER_TOTAL NUMBER(8,2)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 289

SALES_REP_ID NUMBER(6)
PROMOTION_ID NUMBER(6)
Table OE.ORDER_ITEMS
ORDER_ID NOT NULL NUMBER(12)
Table OE.WAREHOUSES
WAREHOUSE_ID NOT NULL NUMBER(3)
WAREHOUSE_SPEC SYS.XMLTYPE
WAREHOUSE_NAME VARCHAR2(35)
LOCATION_ID NUMBER(4)

C: RETAIL MANAGEMENT (Vertica Systems, 2011)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 290

D: PHONE COMPANY (Vertica Systems, 2011)

E: STOCK EXCHANGE (Vertica Systems, 2011)

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 291

Appendix 11: Foreign Key Attribute Processing
Examples from the Northwind Database and related Ontology (See section 3.73 and Table 3.47)

Sample Query 2: “Which products come in bottles?”

Sample Query 1: Show the 'names' and complete 'address' of the 'chai companies'?
Worked Example with Explanations
..
The concepts to be picked are indicated.
‘chai company’ implies a ‘company’>> that ‘supplies’ etc>> ‘product named’, ‘chai'.
'Supplies' suggests use of <supplies Table> and 'product name' suggests <products table>.
Presence of ‘names’ suggests use of <~name>. Possible combinations include ‘company name, product
name etc, thus <ProductName> and < CompanyName>.
The concept ‘address’ implies the use of attribute <address>
Additionally we include <SupplierID> to uniquely identify supply company and <product name> to
identify chai. To say we only want chai products, we include a filter for product name
===
PREFIX chema: <http://www.owl-ontologies.com/NewNorthwind#>
SELECT ?SupplierID ?CompanyName ?Address ?ProductName
WHERE { ?suppliers db:SupplierID ?SupplierID.
 ?suppliers db:CompanyName ?CompanyName.
 ?suppliers db:Address ?Address.
 ?products db:ProductName ?ProductName
 FILTER(?ProductName = "chai") }

Results:
SupplierID CompanyName Address ProductName
2 Charlotte Coopermaners 666663777 chai
1 Exotic Liquids 49 gilbert street chai
>>>>>>>>>>>>>>>>

PREFIX chema: <http://www.owl-
ontologies.com/NewNorthwind#>
SELECT DISTINCT ?ProductID ?ProductName
?Description ?CategoryID
WHERE { ?products db:ProductID ?ProductID.

?products db:ProductName?ProductName.

?categories db:Description ?Description.
FILTER(?Description = "bottled") }

?products db:CategoryID ?CategoryID.
?categories db:CategoryId ?CategoryID.

http://www.owl-ontologies.com/NewNorthwind#
http://www.owl-

Lawrence Muchemi-PhD Thesis 2014

Lawrence Muchemi - PhD Thesis 292

Appendix 12: Sample Results that Demonstrate Query Transformation

A. The NL QUERY
Give me the ids of order and the date goods were shipped pertaining customer 1. Give me also his full
name.

B. THE CONCEPTS IN THE NL QUERY (Identified by OCM PROTOTYPE)
“ids of order”  ‘id’ ‘ord’  Maps to OrderID
“date goods were shipped” ‘dat’ ‘good’ ‘ship’  maps to shippedDate
“customer 1”  ‘cust’ ‘1’; ‘id’=implicit  Maps to customerID = ‘1’
“full name”  ‘nam’ which implies a relationship in ‘orders’ or ‘customer’ (implicit)
table  CompanyName, ShipName (‘his’ in the query refers to subject ‘customer’
therefore ‘shipName is dropped and only CompanyName is considered). These are
organized into triples as per OCM algorithm.

C. THE ONTOLOGY DERIVED FROM NORTHWIND DB (Derived using Mysql db, Datamaster,
Protégé)

<db:orders rdf:about="&db;orders_Instance_1">
 <db:orders.CustomerID rdf:datatype="&xsd;int">1</db:orders.CustomerID>
 <db:orders.EmployeeID rdf:datatype="&xsd;int">1</db:orders.EmployeeID>
 <db:orders.Freight rdf:datatype="&xsd;string">mv nyayo</db:orders.Freight>
 <db:orders.OrderDate rdf:datatype="&xsd;date">2010-04-29</db:orders.OrderDate>
 <db:orders.OrderID rdf:datatype="&xsd;int">1</db:orders.OrderID>
 <db:orders.RequiredDate rdf:datatype="&xsd;date">2010-04-29</db:orders.RequiredDate>
 <db:orders.ShipAddress rdf:datatype="&xsd;string">italiano</db:orders.ShipAddress>
 <db:orders.ShipCity rdf:datatype="&xsd;string">rome</db:orders.ShipCity>
 <db:orders.ShipCountry rdf:datatype="&xsd;string">japan</db:orders.ShipCountry>
 <db:orders.ShipName rdf:datatype="&xsd;string">the wrecker</db:orders.ShipName>
 <db:orders.ShippedDate rdf:datatype="&xsd;date">2010-04-20</db:orders.ShippedDate>
 <db:orders.ShipPostalCode rdf:datatype="&xsd;string">777</db:orders.ShipPostalCode>
 <db:orders.ShipRegion rdf:datatype="&xsd;string">europe</db:orders.ShipRegion>
 <db:orders.ShipVia rdf:datatype="&xsd;string">mombasa</db:orders.ShipVia>
 </db:orders>
Nb. The ontology triples are formed from the class-names, Attribute-names and instances

D. THE SPARQL QUERY (Generated by the OCM PROTOTYPE)
>>
PREFIX moon: <http://www.owl-ontologies.com/NewNorthwind#>
SELECT ?orderID ?CustomerID ?CompanyName ?shipDate
WHERE { ?orders db:OrderID ?OrderID.
 ?customers db:CustomerID ?CustomerID.
 ?orders db:CustomerID ?CustomerID.
 ?customers db:CompanyName ?CompanyName.
 ?orders db:OrderID ?orderID.
 ?orders db:ShippedDate ?shipDate
FILTER(?CustomerID = 1)}
>>>

E. THE ACTUAL RESULTS (Generated by the owl-reasoner)
orderID CustomerID CompanyName shipDate
3 1 Alfreds Futterkiste 2010-05-24
1 1 Alfreds Futterkiste 2010-04-20

http://www.owl-ontologies.com/NewNorthwind#

