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Abstract 
Many applications that are accessed by non-technical or casual users, who prefer the use of 
natural language, rely on relational databases. Examples of such applications include 
government data repositories such as government tender information portals or application 
specific databases such as agricultural support systems. The problem of natural language 
(NL) processing for database access which has remained an unresolved issue forms the main 
problem addressed in this work. The specific challenges include lack of a language- and 
domain-independent methodology for understanding un-restrained NL text that accesses 
monolingual of cross-lingual databases as well as concepts extraction from database schema.  
 

It is demonstrated that an ontology based approach is technically feasible to handle some of 
the challenges facing NL query processing for database access. The Ontology Concept 
Modelling (OCM) approach relies on the ability to convert databases to ontologies from 
which we obtain the underlying concepts. The database concepts are matched against the 
concepts obtained from natural language queries using a semantically-augmented 
Levenshtein distance algorithm. This thesis presents the architecture and the associated 
algorithms for an OCM-based model for NL access to databases. 
  

In order to evaluate and benchmark the OCM model, data was generated from a prototype 
based on the developed OCM-based model. Quantitative parameters such as accuracy, 
precision, recall and the F-score and qualitative measures such as domain-independence, 
language independence, support for cross-lingual querying and the effect of query 
complexity on the model were evaluated across five data sets. Studies were conducted for 
English, Kiswahili and English-Kiswahili pair of languages in a cross-lingual manner from 
which attainment of language and domain independence for database access are 
demonstrated. For this language pair, it is also shown empirically that it is adequate to 
incorporate a bilingual dictionary at gazetteer level for cross-lingual data retrieval. 
  

To evaluate the performance of the developed OCM-model, test-beds comprising of mono-
lingual, cross-lingual as well as cross-domain performance measurements capacity were 
designed to test various aspects of the model. Tests were then conducted and the results 
indicated that OCM has a marginally better precision of 0.861 compared to other bench-
marking models selected for comparison. Further OCM has an average F-score of 0.78 
which compares well to other bench-marking models. 
 

The main contribution of this work especially on the OCM architecture, processing 
algorithms such as OWoRA (Ontology Words Recovery Algorithm) and Frameworks such 
as QuSeT (Query semantics transfer framework) and evaluation models have a huge 
significance to the research and developer communities as they provide novel approaches to 
NL database access and model evaluation techniques. 
 

Keywords: Natural Language Query, Database Access, Ontology Concept Modeling 
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Chapter 1: INTRODUCTION 

1.0  Background 

Language is the principal manifestation of human intelligence and therefore its processing and 

effective use through technology is an epitome of artificial intelligence. Natural Language 

Processing (NLP) has developed over the years from a minor sub-branch of Artificial Intelligence 

(AI) to a well-researched major sub-field of AI.  Currently major topical fields of NLP include 

Sentiment Analysis, Opinion Mining, Automatic Machine Translation (AMT), Question Answering 

Systems (QA), Information Extraction (IE), Deciphering, Dictation Systems, and Transcription 

Systems among others. The latter two areas involve speech processing as opposed to the former 

which are text based. The work undertaken in this thesis falls in the area of question answering 

system but in the focused area of database access. Question answering systems are specialized 

information access systems that have deduction capability that enables formulation of answers from 

information repositories through synthesized natural language queries. Synthesize of Natural 

Language queries involves natural language understanding. Natural Language (NL) understanding 

refers to the process of comprehending and making intelligent language use once the concepts are 

known. In general natural language understanding is a notoriously difficult problem because it seeks 

to understand open-ended natural language utterances that require knowledge and reasoning skills 

that people use in everyday life (Mateas & Stern, 2011). Making judgments on grammaticality is not 

a goal in language understanding (Robin, 2010). Robust systems should therefore understand 

ungrammatical sentences with semantic value. This necessitates exploring of approaches that are 

robust enough to handle issues of ungrammatical texts, sentence fragments and short queries. 

Question answering systems should be distinguished from ordinary search engines by the fact that in 

QA systems a direct answer is deduced from the information source as opposed to provision of a set 

of web links that could contain the answer. 

According to Lopez (2007), QA systems can be grouped into four distinct categories which are 

based on the nature of data being accessed. The first category involves data source which is highly 

structured, such as a relational database, and is normally accessed by highly formal languages, such 

as SQL (Structured Query Language), SPARQL(recursive acronym for SPARQL protocol and RDF 

Query Language pronounced ‘sparkle’) and SeRQL (acronym for Sesame RDF Query Language) etc. 

The second category encompasses access to semi-structured data source such as health records or 
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yellow pages information. The third category involves question answering over free text from such 

sources as the web pages. The fourth category involves accessing annotated images or video via 

ontologies. The work reported in this thesis is in the area of Natural Language Access to Data-Base 

(NLADB) which is in the first category as described above.  

Research in NLADB has been ongoing since the sixties as evidenced by the 1961 program named 

BASEBALL (Green,1961) and the 1964 attempt by Bobrow (Bobrow, 1964) on Natural Language 

(NL) for Algebra program, a doctorate thesis at the Massachusetts Institute of Technology (MIT). 

Active research continued in the early 70’s and popular programs included SHRDLU (Winograd, 

1971) another doctoral thesis at MIT, which demonstrated NL control to a robot’s arm that is placed 

on a table. LUNAR (Woods, 1972) answered close to 90% of the questions about geological 

properties of rocks returned by the Apollo missions (Lopez, 2007). Other popular programs of mid-

70’s included PLANES (Waltz, 1975), REL (Thomson, 1975) and LADDER (Hendrix, 1978) among 

others.  The motivation in 1970’s was provision of natural language access to Expert Systems 

(Akerkar & Joshi, 2009). BASEBALL for example had an NL interface to an expert system that 

helped answer close to 80% of questions on United States baseball league information. Almost all 

NLADB systems were designed and developed with a particular database in mind, an approach that 

is not tenable because of the inherently high cost of development of these single use-interfaces. 

Programs in the late 70’s and 80’s differed from those of the 60’s and early 70’s in that they utilized 

semantic grammars while the earlier ones used purely syntactic grammars (Akerkar & Joshi, 2009). 

The semantic grammar approach is an approach in which non-terminal symbols of the developed 

grammar use word-entities such as maths_score, rank_of_worker etc. while syntactic grammar 

utilizes syntax trees with syntactic categories such as noun-phrases and part of speech categories 

such as verbs as non-terminal symbols. The use of syntactic and semantic grammars in the direct 

conversion of English free text to formal languages such as prolog predicates as used in MASQUE 

(Androutsopoulos, 1993) continued to be used in 80’s and 90’s. Later developments advocated for 

conversion of NL to SQL queries as observed in MASQUE/SQL (Androutsopoulos, 1993). The 

inherent challenges brought by direct conversion of NL to structured language such as lack of 

language and domain independence were discovered. Restrictions on language usage were a big 

bottleneck to this approach. For example sentences were required to be grammatically correct and in 

a predefined format and more often than not required paraphrasing.  The method does not allow 

shifting from one language to another or from one domain to another without vast customization 
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efforts that are not viable. An Interlingua approach was proposed and adopted by several researchers 

(Vanessa Lopez, 2007). For example Dong-Guk Shin and Lung-Yung Chu (1998) developed a 

theory of using concept terms, which they referred to as c-terms which essentially acted like 

interlingua representations. Efforts in the use of interlingua culminated in development of powerful 

commercially available systems such as English Wizard (EasyAsk), English Query (Microsoft) and 

ELF (Elf Software Co). These earlier efforts have been less successful than it was once predicted, 

mainly because of the development of alternative graphic and form-based databases (Akerkar & 

Joshi, 2009). The long time desire to minimize the communication gap between computers and 

humans through NLADB is persistent and hence the need for continued research in this area (Rashid, 

Mohammad, & Rahman, 2009). In usability studies reported in Kaufmann and Bernstein (2007) 

involving 48 end users of a QA system, NL was the most preferred access technique compared to 

menu and graphical interfaces. Over the years NLADB researchers have recognized this potential 

and hence the need for continued research.  

1.1 Advances in Natural Language Query (NLQ) Processing for QA 

The problem of NL access to databases has been recognized as having two integral parts which 

include a linguistic layer that handles natural language processing tasks and a database access layer 

that handles structured queries mainly in SQL but recently SPARQL and SeRQL. Other researchers 

often include a third layer to cater for the intermediate representation (interlingua). Generally 

speaking research has concentrated in these three areas with much work done through machine 

learning, statistical, rule based or a hybrid of these methods. Currently, research efforts are at a cross 

roads where researchers are grappling with the question of using rule based approach or moving to 

the more attractive statistical and machine learning approaches which have significantly improved 

the results of other NLP problems such as automatic translation. The problem has been cast as 

indicated in figure 1.1. 
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Figure 1.1    NLADB Using Machine Learning and Statistical Methods (adopted from (Minker, 1997)) 

Researchers pursuing machine learning and statistical approach can be categorized into various 

schools of thought as noted by Mingxia, Jiming, Ning, and Furong, (2007). One such category 

involves researchers who view the problem as a classification or a clustering problem. The core aim 

is to provide efficient semantic parsers. Generally speaking semantic parsers take in free NL text and 

map this to some formal representation of meaning. First Order Logic (FOL) is usually used for 

formal meaning representation. The meaning representations (MRs) are subsequently mapped to 

SQL or other structured languages via a machine learning classification process. This process is 

illustrated in figure 1.2  

 

Fig. 1.2    Semantic Parsing Approach to SQL Generation 
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The most preferred grammars are the definite clause grammar (DCG) and probabilistic combinatory 

categorial grammar (PCCG). An example for illustrating the use of DCG in semantic parsing is 

given in figure 1.3. 

To represent the sentence ‘Kiambu county borders Nairobi’, the sentence can be represented using 

define clause grammar which can be viewed as context free grammar written and interpreted through 

first order logic notation as: 

 

 

 

 

Fig. 1.3    Example Illustrating the Use of DCG in Semantic Parsing  

These three rules will be triggered upon the system identifying the lexical entries ‘border/s’, 

‘Kiambu’ and ‘Nairobi’ within the sentence tokens. One objective of semantic parsing is to compose 

the meaning of larger fragments from their parts (Domingos & Poon, 2009). Rules for doing this 

would appear as shown in figure 1.4. 

 

 

 

Fig. 1.4    Rules for Composing Meaning of Larger Fragments from their Parts  

The first rule would fire upon seeing relationship ‘borders’ and either ‘Kiambu’ or ‘Nairobi’ in the 

sentence to give the meaning “‘Kiambu or Nairobi’ ‘borders’ ‘another town’ ”. Upon seeing the 

second object the second rule fires giving the meaning ‘Kiambu borders Nairobi’ or ‘Nairobi borders 

Kiambu’.  

Relation: Verb [λyλx.borders(x,y)]→ borders 

Object 1: NP[Kiambu] → Kiambu 

Object 2: NP[Nairobi]→ Nairobi 

 

VP[rel(obj)]→Verb[rel] NP[obj] 

S[rel(obj)] →NP[obj] VP[rel] 
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These rules and lexical entries were traditionally manually constructed from text. However research 

into supervised and unsupervised learning approaches has been on the rise especially for applications 

that are intended to process text from the web.  

Other semantic parsing systems work in a similar manner with major variations being in the meaning 

representation language and the extent of labeling in supervised learning. Different supervised 

machine learning algorithms for semantic parsing were proposed in Zettlemoyer and Collins, (2005); 

Mooney, (2007) among others. In particular Zettlemoyer and Collins (2005) introduced an approach 

of learning to map sentences to a logical form through the use of structured classification with 

probabilistic categorial grammars (see section 2.3.1 for a detailed explanation of the learning task). 

A categorial grammar is a phrase structure grammar and represents words using categories. A 

category can be combined with another category to produce a new category because it behaves like a 

function which can take an argument either from its left or right side neighboring category in a 

sentence. Categorial grammars can also be combined with λ (lambda) calculus which is normally 

used to represent computable functions. Since semantics is often represented using functions, λ 

calculus is therefore used to represent semantic expressions (Nakorn, 2009). This method provides a 

rapid means of mapping NL text to logical form which if required can then be converted to SQL or 

other database formal languages. As Domingos and Poon (2011) notes, providing the target logical 

form for each sentence is costly and difficult to do consistently and with high quality, thus making 

supervised approach less attractive.  

An unsupervised approach has been applied to information extraction which is considered as shallow 

semantic parsing (Banko, 2009). Unsupervised learning approach has also been applied to semantic 

role labeling (SRL) which is also considered as a shallow semantic task. SRL is concerned with 

identification of predicates or verbs in a sentence and determining all the objects associated with it. 

These objects are then assigned to semantic groups which are predetermined, in supervised leaning 

(Jurafsky & Gildea, 2002), or clusters in unsupervised learning (Swier & Stevenson, 2004). Recent 

search for an unsupervised semantic parser has been proposed in Domingos and Poon (2011). In the 

proposed approach dependency trees are converted to quasi logic forms namely the lambda-forms 

which are recursively clustered into various semantic variations. In yet another attempt to 

unsupervised semantic parsing reported in Mingxia, Jiming, Ning and Furong, (2007), the problem is 
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reformulated as an optimization problem. The following quote from their report underlines their 

basic approach:  

“The basic ideas underlying our method can be stated as follows: first we translate 
the tokens of a question as well as their syntactical and semantic relations (as in 
NLP) into constrained question variables and functions, and thereafter, we utilize an 
optimization-based assigning mechanism to substitute the question variables with the 
corresponding constructs in OWL knowledge bases.” (Mingxia, Jiming, Ning, & 
Furong, 2007) 

The solution to the problem of mapping question tokens automatically to OWL (Web Ontology 

Language given the acronym OWL) elements in web-based QA system is an important step towards 

providing answers from a structured source. Inquiry into the solution for this problem when the 

source is a relational database forms the core of research reported in this thesis. 

As noted in Danica et al. (2009) it is not trivial to translate successfully parsed question into the 

relevant logical representation or a formal query which will lead to the correct answer and none of 

the developed solutions is a tight solution to this quandary. To sum up weaknesses of machine 

learning approach Popescu et al. (2003) note, 

“…… to parse questions posed to a particular database, the parser has to be trained on a 
corpus of questions specific to that database. Otherwise, many of the parser’s decisions will 
be incorrect. ….. On the other hand, manually creating and labeling a massive corpus of 
questions for each database is prohibitively expensive.” 

 (Popescu, Etzioni, & Kautz, 2003) 

The above challenge could be viewed as a domain adaptation problem, which is also known as 

transfer learning or cross-domain learning. Attempts to address similar challenges have been made in 

other fields of machine learning. For example in computer vision, the domain of interest (target) may 

contain very few or no labeled data while an existing auxiliary domain (source) may contain many 

labeled examples. Domain adaptation algorithms, such as SVM based algorithms have been 

proposed to bootstrap the target domain. Whereas these methods could be adopted for the  relational 

database problem, such attempts have not been reported. The challenge thus remains unsurmounted 

to date.  

A new school of thought has been developing alongside machine learning efforts. This has sprung up 

after years of research into ontology development mainly for representing information on the 
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semantic web. Research in automatic NL information entry and access to semantic web has been on-

going. Some prominent ground breaking works have been reported in AquaLog (Lopez, Pasin, & 

Motta, 2004) at Open University in UK; Querix (Esther, Abraham, & Renato, 2006) at University of 

Zurich; NLP Reduce (Kaufmann, Berstein, & Fischer, 2007); QuestIO (Tablan, Damljanovic, & 

Bontchev, 2008) at University of Sheffield and FREyA (Damljanovic, Agatonovic, & Cunningham, 

2010).  In these works free NL text is parsed into concepts which are mapped onto mentions of 

ontology resources. Studies into question understanding for purposes of database access must be 

solved if such an approach was adopted for solving NLADB problem. 

When casual users interact with systems, it is not the case that they concentrate on the grammatical 

accuracy of their inputs (Muchemi L. , 2008). Consequently, suitable algorithms must handle issues 

of ungrammatical texts, sentence fragments and short queries. Tablan et al.,(2008) observe that due 

to the popularity of search engines such as Google, people have come to prefer search interfaces 

which offer a single text input field where people usually type in short fragments often 

ungrammatically arranged (Tablan, Damljanovic, & Bontchev, 2008). This requirement inevitably 

limits the applicability of machine learning techniques to real life applications. Semantic and 

statistical based machine learning systems as well as rule based systems expect grammatical 

sentences that can be syntactically and semantically parsed while the users provide short fragments 

that are not guaranteed to be grammatical. This necessitates research on an approach that is robust 

enough to handle this challenge. The languages selected as case studies for this research were 

English and Kiswahili. A preliminary survey carried out to study the use of Kiswahili as a query 

language reveals that most databases’ metadata is a concatenation of words or abbreviations in 

English. This poses an unresolved issue of cross-lingual analysis of the NLADB problem which 

introduces a cross-lingual aspect of NLADB problem that must be addressed for Kiswahili.  

This thesis tackles the challenges presented in the foregoing section with a special focus on English 

and Kiswahili as the medium for querying. 

1.2 Problem Statement 

The problem of NL processing for database access which has remained an unresolved issue forms 

the main problem addressed in this work. As described in the foregoing section the specific 

challenges include lack of a suitable language and domain independent methodology for 
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understanding un-restrained NL text. The challenge of developing a generalizable methodology that 

maps any given natural language to a suitable structured query language is the main issue tackled. 

Most databases have to grapple with the challenge of cross-lingual interaction. The cross-lingual 

aspect arises from the observation that most systems which use Kiswahili as a media of querying 

predominantly use concatenation of words or abbreviations in English as databases’ metadata.  

Further the problem of mapping ontology concepts (formed from the underlying relational database) 

to parsed NL text remains largely unstudied. Previous studies have tended to concentrate on web text 

sources or pre-populated ontologies. This challenge was addressed alongside the task of parsing NL 

free text into concepts. 

1.3 Objectives 

The main objective of this research is to bring forth an architecture that facilitates natural language 

understanding of user queries and that helps build a structured language query that can be used to 

access highly structured information source such as a relational database. 

The specific objectives are stated as follows: 

O Develop a suitable language and domain independent methodology for understanding un-

restrained NL text. 

O Design an architectural model and algorithms thereof that facilitate access of data from 

databases using English and Kiswahili as case-study languages. Specifically algorithms for 

parsing free NL text and data structure for holding the parsed queries are to be designed. 

Further algorithms for extracting concepts from ontologies and matching functions are to be 

designed. 

O Develop a prototype upon which performance evaluations can be done. 

1.4 Significance of Research 

This research involves design and development of language and domain independent architectural 

model that facilitates the understanding of un-restrained natural language text. Kiswahili and English 

are used as case study languages.  

Successful solution to this problem significantly contributes to the body of knowledge within 

NLDBA field. This leads to better understanding of the problem and brings form methodologies that 
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developers could use. This research therefore postulates that successful solution to this knowledge 

gap will lead to novel methodology upon which natural language interfaces to databases can be built. 

Potentially this leads to the following application oriented social benefits: 

O Access of data repositories within governments’ and private sector databases by users who 

prefer use of natural language (casual database users).  

O With increased usage of mobile devices there’s more direct interaction with casual users 

hence a renewed interest in catering for their NL interaction as noted by Kauffman and 

Bernstein, (2007). 

O Perhaps more significantly the solution is an important intermediate step in speech 

processing for voice access to databases. This has real potential of invigorating use of mobile 

phones for direct database access using NL.  

1.5 Thesis Overview 

The remaining sections of this thesis are organized as follows: 

Chapter 2 provides a background to the QA problem. It explores the state-of-art techniques in 

NLQ processing for solving the QA problem specific to database access. This chapter provides an 

in-depth view of what it entails to perform deep structure semantic analysis of queries and how the 

concepts of natural language understanding can be realized in the context of databases. 

Specifically traditional approaches such as direct mappings to prolog and SQL through syntactic 

structure processing and interlingua approaches are examined. Machine learning techniques such 

as the supervised grammar based parsing and statistical approaches paradigms are also explored. 

The chapter explores deep into some of the related works that utilize deep structure analysis in 

semantic analysis of NL queries. In addition to this, concepts in resource description framework 

and implementation in OWL language are also highlighted. Further a review of related concept 

mapping methodologies especially for the semantic web is made. The chapter ends with a thorough 

analysis and design of a conceptual framework. In order to evaluate the models proposed in this 

work, concepts in accuracy, precision and recall measures as applied to NLQ processing are 

reviewed. 

Chapter 3 provides an in-depth look at the approaches and resources selected at each stage of the 

proposed solution. The chapter presents results and analysis of surveys done for language queries 
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and database schema authorship. It provides an overview of the selected resources. Finally a 

comprehensive summary of all techniques and tools selected for this work are examined and 

justified  

Chapter 4 presents evaluation techniques and tools adopted in this research. It also presents 

evaluation results of the proposed model as measured on the prototype. It also provides a 

comprehensive discussion on observations made. 

Chapter 5 presents the major contributions and conclusions arising from this work as well as the 

implications to the research community and other stakeholders. Insights into areas that may be 

pursued for further research are also highlighted. 
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Chapter 2:  LITERATURE REVIEW 

2.0  Preamble 

This chapter provides an overview of the important theoretical underpinnings of the work carried out 

in this research. The problem of accessing relational databases in response to users’ queries is treated 

as a sub-problem of the more general question-answering (QA) problem. In addition to this sub-

problem QA also involves tasks such as information retrieval from various sources (such as web 

texts and domain-specific ontologies such as in bioinformatics ontologies) as well as document 

retrieval where a document can be retrieved from a collection of documents. QA also encompasses 

design of dialog systems. The general problem of QA is first explored under which the main 

approaches are expounded.  This is then followed by issues specific to QA specific to database 

access.  

2.1 The QA problem 

Question answering is the task of providing an answer to a question posed in NL text from an 

information source such as a document or a data repository. The document may be web-based or 

simply a text document while the data repository may be a relational database or a specialized 

knowledge base such as resource description framework ontology used in semantic web. The goal of 

QA using NL is to provide users with the ability to use their own terminology in an unrestricted 

manner and receive answers that are satisfactory. QA systems must have a degree of intelligence that 

enables formulation of answers from information repositories through synthesized natural language 

queries. The general QA problem is illustrated in Fig. 2.1 here below. 

 

 

 

 

 

Figure 2.1    The General QA Problem 

                   Information 
Repository 

NLQ 
Source 

Answer to User  
Answer Generation 

Query 
Formulation 

Repository 
Access 

NLP 



Lawrence Muchemi-PhD Thesis 2014 

 

30 | P a g e  
 

Natural language processing (NLP) involves tasks such as tokenization, morphological analysis, 

shallow or deep syntax analysis and semantic processing. Morphological analysis deals with the 

word structure. Shallow syntax processing involves syntax analysis targeted at the phrase level. On 

the other hand deep syntax processing will involve the grammaticality of the entire sentence. NLP 

for QA task also involves NL understanding (NLU). NLU refers to the process of comprehending 

the meaning of a user input and making intelligent usage of it once the semantics of the lexicon and 

phrases contained therein are known. Repository access refers to the extraction of meaning-bearing 

elements from the data source, say ontology, and representing them in a formalism that makes it 

easier for inferencing. Answer generation includes all those processes that combine the elements of 

NLP and data source processing and provide answers from the repository to the user. Key cross-

cutting research areas in the QA problem revolve around the design of better NLP parsing and 

semantic analysis algorithms, more intelligent answer generation schemes and more efficient 

information representation formalisms. 

2.1.1 Introdution to Database Access Task 

This is a specialized task of the general QA problem. It specializes in information access from 

relational databases through natural language querying. The input may be free NL or controlled NL. 

Different approaches to solving this problem have been applied and two major schools of thought 

have emerged dominant. These are the traditional logic based mapping and the use of machine 

learning.  

The methodology of parsing the NL and subsequent formation of a solution from the information 

source is determined by several factors namely: 

 If the NL is controlled or unrestrained (Smart, 2008),  

 Structure of information source (Lopez et al. (2007)and 

 Preferred approach which may be, either traditional predicate logic mapping as in 

Androutsopoulos et al., (1995), Mingxia et al. (2007) among others; machine learning QA 

such as in Zettlemoyer and Collins, (2005); Mooney, (2007), Domingos and Poon, (2011) 

among others;  or semantic QA approaches as reported in Lopez et al. (2007) among others.    

 An overview of the QA for database access dominant parsing methods applied is shown in figure 

2.2. 
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Figure 2.2    Overview of Major DB Access Methods 

2.1.2 Challenges in Database Access Task 
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representation (MR) as a first stage and then inturn mapped to a structured query. This back-to-back 

classifier arrangement inherently reduces the performance of machine learning solutions. Another 

challenge in the NL database access task is the inherent limitation of the databases that have poor 

domain adaptability. To parse questions posed to a particular database, the parser has to be trained 

on a corpus of questions specific to that database. Creating and labeling massive corpus of questions 

for each database is prohibitively expensive. Researchers are still grappling with this problem 

despite the use of the state-of-the-art annotation-cost reduction methods such as semi-supervised 

learning. Although the use of machine learning techniques in this sub-problem is still a fascinating 

theme for researchers in this area none of the proposed methods adequately addresses the training 

issue. 

Another challenge is the development of language independent methodologies which do not heavily 

rely on language specific tools but rather some universal tools applicable across languages. State-of-

art approaches which include semantic-parse based and logic-mapping based methods involve 

grammar manipulations. For example semantic-parse based methods use definite clause grammar 

(DCG) or combinatory categorial grammar (CCG) to produce intermediate elements, the meaning 

representations. An example of this is demonstrated in Thomson, et al. (1997), Zettlemoyer & 

Collins, (2005) among others. On the other hand logic-mapping based approaches such as syntactic-

based mapping inherently use grammar manipulations in the formation of the intermediate phrase 

trees. Examples of these architectures are demonstrated in Garcia et al.  (2008), Popescu et al. (2003) 

among others. This dependency on grammar renders these methods language dependent. The 

realization of a language independent method would provide a universal access method across 

languages.  

It has been observed that communities who use multiple languages, such as the use Kiswahili as 

business language and English or French as official languages in East Africa also encounter another 

type of challenge. Database authors use concatenations or abbreviations of the official language as 

database schema language while ordinary persons prefer using business language to query these 

databases. This presents a new dimension to this task, the problem of ‘cross-linguality’. Cross-

linguality refers to the phenomenon of using a given language to query a database whose schema is 

authored in a different language. The abbreviations and concatenations of words forming the object 

and field names are done in a different language from the one used to query. This problem is 
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prominent in countries with multi-language policy. For example sub-Saharan countries are affected 

by this phenomenon with East Africa having a cross-lingual issue of Kiswahili and English.  

Some other cross-cutting issues that are subject to intense research in this field include portability 

which means the ease of porting from one database to another and from one domain to another with 

the ultimate goal being the need to minimize or eradicate the requirement for manual customization 

and re-crafting of code when porting across domains or databases. Finally a challenge lies in the 

synthesis of NL queries because it involves natural language understanding which is a non-trivial 

task and the selection of appropriate query language that can be efficiently parsed and mapped onto 

the data repository. The choice is usually between whether to use controlled natural language or un-

restrained language. These are next discussed in section 2.2. 

2.2 Controlled NL (CNL) versus Unrestrained Text 

While designing QA architectural models it is important to consider the nature of input queries. The 

primary goal of QA is to provide users with ability to query in an restrained manner, however some 

researchers have noted some inherent complexities of natural language that are not easy to 

computationally solve. These include ambiguity brought by anaphoric references, semantic 

ambiguity and lexical ambiguities. These are respectively illustrated in the following sentences, 

Jane invited Susan but she told her she was late for work …. Anaphoric ambiguity 

Bill kissed his wife, and so did Chris. (Did Chris kiss Bill's wife or his own?)... semantic ambiguity 

The mouse was in my house … lexical ambiguity 

To overcome some of these difficulties some QA researchers have proposed the use of controlled 

natural language (CNL). CNLs are subsets of natural language whose grammars and dictionaries 

have been restricted in order to reduce or eliminate both ambiguity and complexity. According to 

Smart, (2008) the concept of CNL was first introduced in the 1930s by linguists who sought to create 

a ‘minimal’ variety of English that would be accessible to non-native English speakers. This concept 

has been adopted by QA researchers especially those pursuing semantic QA approach. These include 

CLoNE (Funk et al.  2007), Rabbit (Hart et al. 2008) among others. Although CNL has been in 

research labs for over a decade now, it has failed to take the lead because of various reasons. First 

CNL as a language must be learnt and understood by users, a task that is daunting for casual users. 

Some researchers have overcome this by creating an interface that dynamically generates suggested 
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words (from CNL lexicon) in the input dialog boxes as is the case with GINSENG (Guided Input 

Natural Language Search Engine) (Bernstein, Kaufmann, & Kiefer, 2006). The challenge here is that 

CNL introduces another layer of processing which introduces errors and thereby reducing the overall 

performance of the system. More over CNL in itself cannot replace ontology layer and therefore it is 

only a superfluous effort with little gain. It is for these reasons that this research opts to work with 

unrestrained text as opposed to CNLs. 

2.3 Related Works 
This section discusses in detail past efforts by researchers in trying to solve the Natural Language 

Access to Data-Base (NLADB) problem. The section is divided into three schools of thought who 

have developed architectures that are useful in NLADB revolving around well-established theories 

in closely related areas. These related areas include semantic parsing, logic mapping and ontology 

concept mapping. The review presented here focuses on those efforts that lead to solution of the 

NLADB problem or other QA architectures. 

2.3.1 Semantic Parsing 

Semantic parsing refers to the transformation of a natural language sentence into its meaning 

representation. It is distinct from other tasks such as semantic role labeling and information 

extraction in that it aims at transforming NL into computer executable form as opposed to the former 

which deliver human readable outputs. Different types of meaning representation languages are used 

but variations of first order predicate logic are prevalent.  Meaning representation languages are 

designed by the creators of an application to suit the application’s needs and are independent of 

natural language (Kate & Wong, 2010). For example the sentence, ‘Which rivers run through the 

states bordering Mississippi?’ can be answered by the machine readable meaning representation 

“answer(traverse(next_to(stateid(‘mississippi’))))” as derived from GeoQuery (Kate & Mooney, 

2010). Earlier systems used manually generated semantic parse representatations but manually 

authoring and tuning a semantic grammar for each new database is brittle and prohibitively 

expensive. This has resulted in active research in the use of machine learning and statistical methods 

in generation of meaning representations or grammars that would do this. 

i) Statistical Semantic Parsing 

Statistical semantic parsing is understood to mean finding the most likely meaning M0, given a string 

of input words W and a discourse history H. The task of a statistical language understanding system 
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is therefore to search among the many possible discourse-dependent meanings Md for the most likely 

meaning M0 (Miller, Stallard, Bobrow, & Swartrtz, 1996): 

M0 = argmaxMd P(Md| W, H).   

This model is recast interms of  pre-discourse meaning Mpd, syntax parse tree T, discourse history 

H, and a given list of words W as 

 M0 = argmaxMd {maxMpd, T [P( Md | H, Mpd ) P( Mpd,T) P(W | T) ]} 

This model can easily be integrated with syntactic and discourse statistical models as reported in 

Miller, (1996) as shown in figure 2.3 

           H 

 W         T      Mpd    Md 

 

Probability to MAX P(T)P(W|T)  P(Mpd,T)P(W|T)  P(Md|H,Mpd)P(Mpd,T)P(W|T)    

Fig. 2.3 Integration of Syntactic, Semantic and Discourse Statistical Models. 

 

ii) Grammar-based Semantic Parsing 

Semantic parsing can also be expressed as a grammar-based machine learning problem and is cast as 

shown in figure 2.4  

Training sentences  

and Meaning Representations 

 

                         Sentences   Meaning Representations 

Fig. 2.4 Machine Learning problem in Semantic Parsing. 

The most preferred grammars are the definite clause grammar (DCG) and probabilistic combinatory 

categorial grammar (PCCG) because meaning representatations can easily be expressed as first or 
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higher order logic elements. Grammar rules are used to combine various elements  to build larger 

elements with known semantics.  Higher order logic deals with functions and is expressed using the 

 operator. For example the function gender(x) can return ‘female’ or ‘male’ and can be expressed as 

x gender(x).  Similarly a function involving two arguments x and y such as x2-y can be written as 

x,y x2-y using the lambda operator. If the operator is called using argument (2,3) the function is 

written as x,y x2-y(2,3)  and returns 22-3=1. This is very important in expressing predicates (verbs) 

that express relations and arguments (noun phrases) that represent objects. In Definite Clause 

Grammar (DCG) for example, ‘Mary loves John’ becomes   

Relation: Verb [λyλx.loves(x,y)]→ loves ; Object 1: NP[Mary] → Mary; Object 2: NP[John]→ John 

This can be combined using the following rules 

VP[rel(obj)]→Verb[rel] NP[obj] ; S[rel(obj)] →NP[obj] VP[rel] 

As the semantic parser processes the tokens from a text, it would recognize verbs such as loves as 

valid predicates and noun objects such as John and Mary as valid arguments. If there are no other 

restricting rules the parser would recognize that John loves Mary and Mary loves John. The semantic 

parse learner takes pairs of tokenized sentences and their meaning representations and learns to map 

them on to each other. The tuned parser can then be used to parse new sentences and obtain meaning 

representations. 

A recent entry in the semantic parsing grammar theory is the combinatory categorial grammar 

(CCG) (Hockenmaier & Steedman, 2002) and (Hockenmaier & Steedman, 2007) which represents 

words using categories unlike in the context free grammar which defines the structure using a set of 

rules (Hockenmaier & Steedman, 2007). CCG is a lexicalized grammar and uses chart parsing 

technique. It uses two categories namely primitive (S, N, NP) and complex categories. A complex 

category is a combination of two categories with directionality, which is either forward or backward 

(Nakorn, 2009). In CCG slash and backslash are used for representing directionality. A/B is the 

category which takes B as an argument on its right. Therefore, A/B B results in the category A. A\B 

is the category which takes B as an argument on its left. Therefore, B A\B results in the category A. 

For example the sentence ‘Atieno loves Kamau’ has a semantic parse tree shown in figure 2.5 
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Fig. 2.5 Semantic Parsing Using Combinatory Categorial Grammar (CCG) 

 

CCG generates the lexicon Atieno → NP; loves → (S\NP)/NP; Kamau → NP and equivalent lambda 

forms atieno, (λx.λy.borders(y, x), and kamau respectively upon seeing the respective tokens. Training 

data therefore consists of sentences and their meanings in lambda form and equivalent meaning 

derivations, d. A semantic learner’s primary goal is to estimate feature weights. A feature fi(L,S,T) is 

the number of times a lexical item i is used in the parse T that maps from sentence S to logical form 

L. Figure 2.6 illustrates this concept of a CCG semantic parser using feature weight estimation for 

future sentence parsing. The feature weight adjustment is usually error-driven, much like perceptron 

back-propagation delta minimization of a neural network.  

Training sentences  

and logical form (L) 

 

                         Sentences   Meaning Representations(L) 

Fig. 2.6  Learning Probabilistic CCG (Zettlemoyer & Collins, 2005); (Kate & Wong, 2010). 

The probability of obtaining the logical form L and meaning-derivation tree, T as trained on the 

sentence S, P (L,T|S) is thus maximized. 

Development of new concepts in semantic parsing has been the main pre-occupation of most 

research in the area of the QA problem. Several applications of these concepts have been made with 

the most prominent being CHILL which is a supervised learner (Zelle & Mooney, 1996), SCISSOR 

which is a statistical semantic parser that integrates syntax and semantics (Ge & Mooney, 2005), 

WASP a statistical parser (Wong, 2005), PCCG-based parser (Zettlemoyer & Collins, 2005), KRISP 
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a supervised learner using kernels (Kate & Mooney, 2006) and a semi-supervised learning using 

support vector machine (Kate & Mooney, 2007) all tested on the querying of Geobase1. Performance 

has improved over the time with the higher precisions being recorded with fewer training examples. 

The Geobase database is in prolog and contains USA geography with about 800 facts. CHILL uses 

DCG and after being trained on 150 sentences that are matched with equivalent logical forms, 

achieves approximately 56% accuracy in answering novel questions compared to the semi-

supervised learner of Kate and Mooney, (2007)  which attains approximately 75%. As seen from 

above review the tendency is to move towards unsupervised learning as reported in Domingos and 

Poon, (2009). 

While as these initiatives towards NL processing for information access are great, their application is 

limited when it comes to accessing highly structured information sources such as relational 

databases. Access to database task differs from access to free texts and general ontologies in that any 

approach for databases access must grapple with the issue of strict formalisms not present in the 

other sources. An example of such formalism is constraints such as foreign key which ensure data 

integrity in relational databases. While this challenge is not unique to machine learning methods 

other challenges are specific to this approach.  

One such hindrance to use of machine learning in accessing databases is the need of the two learning 

processes namely sentence-to-meaning representation (MR) learning and MR-to-SQL learning to be 

superimposed on each other. The two processes must be placed in series as illustrated in figure 1.2 

and this greatly reduces the accuracy limiting the applicability of this method. Further the conversion 

of logic meaning representations to SQL is a problem that is far from being understood. Not much 

efforts have been directed to this area of research mainly because question answering from the web, 

(a task that usually does not require MR-SQL conversion) has become ubiquitous  therefore 

obsecuring the attention or need for research into conversion of MRs to SQL. However the 

challenging task of accessing information from structured sources such as relational databases has 

never been adequately solved. 

Another great hinderance to the use of machine learning methods in automatic conversion of NL to 

SQL is the need for suitable training datasets comprising of pairs of NL and SQL for every database. 

                                                             
1 Geobase was initially supplied with reference guide of Turbo Prolog 2.0 Borland International (1988) 
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This greatly hampers portability. If a rapid training method can be developed and used to train 

datasets and then the trained classifier applied to a database as a ‘plug-in’, this would be a great step 

forward in solving portability issue in machine learning approach. One such attempt is the design of 

a methodology for development corpora for automatically learning to map natural language 

questions into SQL queries (Giordani & Moschitti, 2010). Here a corpora containing matching pairs 

of NL and SQL queries in the form of syntactic trees and that contains both correct and incorrect 

training sets is developed. The paper only reports on the corpora development process and shows 

direction as to how the corpora would be used to train an SVM classifier which would in turn be 

used to rank pairs of new queries and existing SQL queries. The classifier would select from all 

possible SQL statements from the database and return the highest ranking pair. This method would 

be great if portability is not a key consideration for the particular application. Initial costs are high 

because creating a new corpora containing all possible SQL and NL statement is prohibitively 

expensive and tedious exercise. But perhaps the greatest draw back to the robust use of this method 

is need for human intervention in the creation of semantic-based clusters of NL-SQL query pairs. 

Giordani and Moschitti, (2010) note that ‘clustering is performed semi-automatically’. Since 

mapping is done at the syntactic level, resource scarce languages such as that being studied in this 

research would suffer a practical drawback due to the requirement of efficient syntactic parsing.  

Popescu et al. (2004) while opting for mapping as opposed to machine learning approach noted that 

machine learning has some inherent challenges such as the need for re-training during porting and 

the problem of creating NLQ-SQL pairs for every new database. This is quoted thus, 

 “However, attempting to use a statistical parser in a database-independent NLI leads to a 

quandary. On the one hand, to parse questions posed to a particular database, the parser has 

to be trained on a corpus of questions specific to that database. Otherwise, many of the 

parser’s decisions will be incorrect. ….. On the other hand, manually creating and labeling a 

massive corpus of questions for each database is prohibitively expensive.”  

      (Popescu, Armanasu, Etzioni, Ko, & Yates, 2004)

  

This observation remains true up to date despite the few efforts in corpus creation and labeling 

technique such that by Giordani and Moschitti, (2010) discussed above. Obtaining the training set 
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containing NL questions that map to SQL for every database is probably even a greater practical 

challenge than obtaining more efficient learners. This then begs the question of what is the way 

forward.  Would a non-machine learning-based solution be a better option? 

2.3.2 Logic Mapping 

Analysis from literature reveals two dominant schools of thought in terms of model design. These 

are basically syntactic-based processing and token-matching processing. The two approaches are 

illustrated in figure 2.7. 

 

 

 

 

 

 

(a)                       (b) 

Fig. 2.7 (a) Syntactic-based Parsing and (b) Token-matching Parsing (Minker, 1997) 

Older generation systems relied on syntactic-based parsing which requires both syntactic and 

semantic analysis. Syntactic parsers are well developed for many languages especially for use by 

other NLP problems such as automatic translation. On the other hand semantic analysis is in most 

cases implemented as semantic tags. However due to reliance on syntactic information for the entire 

sentence, systems developed from these models tend to perform poorer than those from token-match 

parsing because users tend to use short phrases usually agrammatical. The method encounters 

difficulties in parsing ungrammatical sentences.  

Some of the recent prominent works widely quoted in literature such as PRECISE (Popescu, Etzioni, 

& Kautz, 2003) and the largely successful system developed by Dittenbach and Berger, (2003) for 
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accessing tourism data on Tiscover2 database (Dittenbach & Berger, 2003) are based on token-match 

parsing. This means that a query is broken down into its constituent parts and all syntactic marker-

words stripped. The tokens which are usually nouns are matched to the names of databases, tables or 

instances through a suitable algorithm.  

An attempt for token parsing for Kiswahili is reported in Muchemi, (2008). This method relies on 

both tokens and partial syntactic parsing coupled with semantic tagging and uses structured query 

templates. It is modeled as a template matching problem. This approach is similar to the one 

introduced by Popescu et al. (2003) which uses a noun-based token parsing method but models it as 

a graph matching problem and uses the max-flow algorithm. The system by Popescu et al. (2003) 

had an F-score of 0.65. The Kiswahili noun phrase-based token matching had a comparable rate of 

success averaging 0.64 on F-score. The method encounters difficulties in parsing ungrammatical 

sentences because of the templates usage though. From this research its concluded that incorporating 

both tokens and phrases for mapping purposes improves the results. In other research reported in 

Muchemi and Narin’yan, (2007), the following conclusion was arrived at, 

“When analyzing a NL text input, it is necessary to use its lexical semantics within the subject domain 

to reconstruct its probable meaning. Only if this meaning has several variants then it would be useful 

(as local as possible) to turn to syntactic aspects of the text to resolve this ambiguity.” (Muchemi & 

Narin'yani, 2007). 

This conclusion and that arrived at in the Kiswahili noun-phrase based mapper (Muchemi, 2008) are 

essential in the sense that syntactic information should be used for improving precision and recall in 

SQL formation processes. 

Logic based approach has been the dominant approach for many years and yielded to restricted 

narrow domain applications. This has culminated in commercially available programs such as 

English-Wizard3  and English Query4 which have thus far been discontinued for varied reasons.  

Some of the state-of-art applications employing token matching approach in commercial use today 

include Siri5 by Apple, Quiri6 by Easy-Ask group and Watson7 by IBM. Virtual strategy magazine8 

                                                             
2 Tiscover is the largest Austrian web-based database for tourism 
3 English Wizard is by Easy-Ask can be accessed at http://www.pcmag.com/encyclopedia_term/0,1237,t=English+Wizard&i=42616,00.asp 
4 English Query by Microsoft can be accessed  at http://msdn.microsoft.com/en-us/library/aa198281%28v=sql.80%29.aspx 
5 Siri is a voice enabled phone functions control software and details can be accessed at http://www.apple.com/iphone/features/siri.html 
6 Quiri is a voice and NL text enabled desktop and mobile application that processes NL to access corporate data. It can be accessed at 
http://www.easyask.com/products/quiri/ 

http://www.pcmag.com/encyclopedia_term/0,1237,t=English+Wizard&i=42616,00.asp
http://msdn.microsoft.com/en-us/library/aa198281%28v=sql.80%29.aspx
http://www.apple.com/iphone/features/siri.html
http://www.easyask.com/products/quiri/
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reports that “EasyAsk has long been a leader in natural language information analysis and delivery 

software. Firms such as Coldwater Creek, Lands’ End, Lillian Vernon, Aramark, TruValue, 

Siemens, Hartford Hospital, Ceridian, JoAnn Fabrics and Harbor Freight Tools rely on the EasyAsk 

software products to run their business and e-commerce operations daily.” A closer look at these 

systems reveals that they rely on three-layer architecture that has a speech-to-text analyzer, a 

grammar analyzer, and a set of service providers. A comprehensive comparison of these three 

leading software (EasyAsk, 2010) shows that Quiri provides speech recognition and interfaces with 

corporate data while Siri connects with mobile phone functions via voice command. IBM describes 

Watson as a "computer system that can understand natural language and deliver a single, precise 

answer to a question. Upon closer examination Watson combines natural language processing, 

complex algorithms that choose the best answer from the available options, and a large scale smart 

analytic system designed to feed potential answers to the questions.” (EasyAsk, 2010). 

In all these, the grammatical analysis performed here involve searching a string for certain key 

words and using those words to build up a simple model of what the user wants to do and what is to 

be done (Jeff, 2011). The success of these systems depends on the scope of focus of the domain area. 

For example Jeff, 2011 observes that, “Siri’s limited focus on appointments, contacts, messages, and 

maps makes this technically viable”.  

The above token based approaches differ in the way the tokens are mapped to the underlying 

database. While direct maping of key words to database, table and column names has produced only 

moderate rates of success, this research aims at exploring improved database schema processing and 

information representation.  

Relational databases NL access problem has mainly been tackled through logic mapping (Shin & 

Chu, 1998). Some successiful applications have been implemented through mapping of phrases. A 

representative sample is the natural language interface to the largest Austrian web-based tourism 

platform Tiscover (Dittenbach & Berger, 2003). In this approach language processing invoves 

identification of language, spell checking, phrase detection and tagging. This is followed by SQL 

query formation and eventually the generation of results. In this approach noun phrases and 

synonyms in the NL query are identified. A light weight grammar is applied so that all possible 
                                                                                                                                                                                                            
7 Watson is a desktop application that processes NL text for accessing corporate data. It can be accessed at http://www-
03.ibm.com/innovation/us/watson/index.html 
8 Virtual Strategy Magazine can be accessed via http://www.virtual-strategy.com/ 

http://www-
http://www.virtual-strategy.com/
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modifications  on terms (through introduction of prepositions, adverbial or adjectival structures) can 

be identified before tagging occurs. The introduction of grammar makes this approach language 

dependent because different languages behave differently. Tagging of terms in a query with relevant 

predefined classes is necessary so that each term can be labeled with the relevant concept tag with 

the domain. For example ‘hotel’ is labeled with ‘accomodation’ and ‘sauna’ with ‘facility’. Tagging 

provides semantic interpretation however it inevitably  introduces errors similar to those in semantic 

labeling such as poor classification. Manual tagging is costly and not easy when when working with 

many domains. Due to these issues among others research has advanced in search of improved 

architectures.   

A more recent approach has been reported by Nokia Research Centre Cambridge (Ran & 

Lencevicius, 2012) where they solve the problem of  accessing information stored in RDF 

repositories targeted to mobile phones users. These works along with ground breaking works 

reported in AquaLog (Lopez, Pasin, & Motta, AquaLog: An Ontology-Portable Question Answering 

System for the Semantic Web, 2004) at Open University in UK; Querix (Esther, Abraham, & 

Renato, 2006) at Univ. Of Zurich; NLP Reduce (Kaufmann, Berstein, & Fischer, 2007); QuestIO 

(Tablan, Damljanovic, & Bontchev, 2008) at University of Sheffield and FREyA (Damljanovic, 

Agatonovic, & Cunningham, 2010)  among others are extensively reviewed and analyzed in the 

subsequent section of this chapter under the heading related works in an effort of developing a novel 

architecture that  facilitates access of data from relational databases with cross-lingual problem in 

this case Kiswahili-English.  

2.3.3 Ontology-based Approach to DB Access 

An ontology is framework that represents knowledge in form of concepts within a domain. The 

relationship between the concepts must be represented using a fixed set of syntax and semantic rules. 

Most computing efforts for representing knowledge have shifted significantly from logic based 

knowledge representation schemes to ontology-based schemes. This is evidenced by much interest 

and funding for the semantic web activities. The ubiquity of the world wide-web and pervasiveness 

of internet has brought impetous to semantic web research. This is also attested by the large number 

of conferences organized around semantic web activities. Subsequently this has led to development 

of web ontology languages mainly based on the de facto standard resource description framework 
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(RDF). OWL 2 XML format advocated by the W3C and developed by OWL working group9 is the 

dominant while RDF/Turtle, RDF/XML syntax and Manchester Syntax languages are also used to a 

lesser extent. 

RDF based ontologies represent elements as attributes or as resources. These elements are equivalent 

to resource names, labels, comments and string property values which are usually mapped to 

concepts within natural language sentences in an ontology concepts mapping process. Figure 2.8 

illustrates this concept. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.8 An Example of OWL based RDF Resource 

 

This example shows an RDF resource with a single ontology. The ontology contains a class called 

group which has a name, number, elements etc. It can also be seen that the ontology is defined as an 

RDF resource with a unique unique resource identifier (URI). The ontology contains many elements 

such as comments, resources and datatypes as illustrated in figure 2.8. 

Ontologies have been used in many natural language processing tasks. Common tasks include 

information retrieval and extraction, question answering, machine translation and summarization 

among others (Buitelaar & Ciamiano, 2006). Of particular interest to this research is question-

answering models. The tasks may either be question analysis, answer selection or ontology based 

question answering by mapping. Question analysis deals with ontology-based semantic 

                                                             
9 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group 

<rdf:RDF xml:base="http://www.xxx.org/periodictable/PeriodicTable"> 
   <owl:Ontology rdf:about=""> 
       <owl:versionInfo  
        …. 
       </owl:versionInfo>     
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">                             
Periodic Table of  the Elements  
</rdfs:comment> 
<……/> 
</owl:Ontology> 
 
  <owl:Class rdf:ID="Group">  
    <owl:DatatypeProperty rdf:ID="name"/> 
    <owl:onProperty rdf:resource="#number"/> 
    <owl:onProperty rdf:resource="#element"/> 
     ……… 
       
    <color rdf:datatype="http://www.w3.org/2001/XMLSchema#string">silvery lustrous 
grey</color> 
  </owl:Class>  
 
</rdf:RDF> 

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://www.xxx.org/periodictable/PeriodicTable
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
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interpretation such as WordNet (Miller G. , 1995) while answer selection deals with ontology-based 

reasoning for answer-type checking. The task of data-base access that is addressed in this research is 

closely related to the question-answering architectures by mapping described in  Lopez et al. 2007. 

The successes in this area are described in section 2.4. 

2.4 Successes and Shortcomings in Ontology-based NL Access 
 

Reasonably accurate representation of data from relational databases to ontologies has been reported 

widely and applications utilizing these techniques developed. A notable one is reported in Wu et al. 

(2007) in which a semantic-based search and query system for the traditional Chinese medicine 

community has been reported. Automatic discovery of mappings between ontology and RDBMS has 

been successful and a typical state-of-art approach is found in Hu and Qu (2008). Tools for 

converting databases to ontologies have been developed with notable ones being ‘Datamaster’ 

(Csongor, Martin, & Samson, 2009) and ‘Datagenie’ (Gennari, Nguyen, & Silberfein, 2007). In 

these tools a table is mapped to an ontology class, a column to a datatype property while a row is 

mapped to an instance of the ontology. Further it is observed that if a relational database table has 

foreign key references to other tables, these are replaced by instance pointers when the database is 

converted into an ontology. 

Research into the use of NL to access semantic web ontologies has been active and with modest 

levels of success. Pioneer systems include AquaLog (Vanessa et al., 2004), Querix (Esther et al. 

2006), NLP Reduce (Kaufmann, et al. 2007), PANTO (Wang, Xiong, Zhou, & Yu, 2007), QuestIO 

(Tablan et al., 2008) and FREyA (Damljanovic, et al. 2010) among others.  In all these works NL 

free text is parsed into concepts which are mapped onto mentions of ontology resources.  

The two processes described above, that is conversion of relational databases to ontologies and 

processing of natural language into concepts are illustrated (as blocked arrows) in figure 2.9. 
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Fig. 2.9 Overview of Ontology-based DB Access Task 

Considerable research efforts in this area have been driven by the need for developing ontologies as 

a means for accessing heterogeneous data sources (Zorzi, Tessaris, & Dongilli, 2007). In this case 

ontologies have been viewed as an extra data representation layer that provides shared 

conceptualizations and acts as a mediator to the underlying data layer. This research concentrates on 

relational database and the scope does not entail heterogeneous sources. 

Research in the area of ontology-based access to databases has concentrated in domain specific 

applications with the driving force being the need for providing common taxonomies, merging 

different ontologies within the same domain and querying formalisms. Danica et al. (2009) observes 

that although many natural language interfaces to ontologies have been developed, those that have 

reasonable performance are domain-specific and tend to require extensive customisation for each 

new domain. Many disciplines have developed standard ontologies with standard features that 

domain experts use to share information exclusively in their fields raising issues of portability across 

domains. For example the Gene Ontology project provides a controlled vocabulary of terms for 

describing gene product characteristics and gene product annotation data from GO Consortium 

members, as well as tools to access and process this data (Gene Ontology Consortium, 2001). It 

provides a standard nomenclature to terms that has three parts namely prefix ‘GO’, a unique zero-

padded seven digit identifier called the term accession number and a unique term name. Two 

ontology concepts are linked by a relationship. For example ‘GO:0031966 : mitochondrial 
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membrane’ part of ‘GO:0005740 : mitochondrial envelope’ has the link ‘part-of’. This ontology’s 

nomenclature and structure is unique to it and not easily reusable in a different field say medical 

field with an example of an equivalent ontology described in Munir et al., (2008).  

If an ontology is created directly from a relational database, the elements ported into the ontology 

are mainly the table names, column names and the data within rows. These names are usually short 

forms, concatenations, acronyms and abbreviations which do not have a standard naming style. This 

makes it difficult to decode and map onto the underlying concepts. This is one such challenge 

addressed in this work. At the heart of this problem is the challenge of bringing forth an intervening 

layer that sits on the ontology (shown in figure 2.10 as Data Layer) that maps labels to the 

underlying concepts implied in the ontology. This requires a study into the naming styles of 

databases elements and implementing algorithms that provide this mapping. An appropriate research 

question here would be whether there exists a finite set of patterns that authors of database schema 

use in representing database schema object names and whether appropriate processing algorithms are 

feasible. A portion of this work attempts to answer these questions. Arising from above discussions 

this work seeks to contribute in the area of domain independent concepts discovery from ontologies 

created from relational databases. 

 

 

 

 

 

 

 

 

 

Fig. 2.10 Research Shortcomings In Ontology-based DB Access Task 

Another challenge encountered by ontology-based DB access method low recall due to dependence 

on nouns and nominal phrases for concept identification only yet it is well established that concepts 

within a domain go beyond these types (Krishnamurthy & Mitchell, 2011). Further there is often 

language-dependence on processing methods. For example PANTO Wang et al., (2007) uses 

language dependent-syntactic processing to provide parse trees that enhance recall. Methods such as 

Natural Language Text 

MAPPING PROCESS 

Ontology 

RELATIONAL DATABASE 

LINGUISTIC LAYER 

DATA LAYER 



Lawrence Muchemi-PhD Thesis 2014 

 

48 | P a g e  
 

those described in QuestIO (Tablan, Damljanovic, & Bontchev, 2008), AquaLog (Lopez, Pasin, & 

Motta, 2004),NLP-Reduce (Kaufmann, Berstein, & Fischer, 2007), Ontology-Assisted Query 

Reformulation (Munir, Odeh, & McClatchey, 2008) systems among others rely on identification of 

nouns and noun phrases mostly involving proper nouns as concepts. Concepts are however more 

diverse that this as identified by Krishnamurthy & Mitchell, (2011). Studies for Kiswahili language 

have also revealed diverse patterns of term formations (Sewangi, 2001). Terms represent concepts 

and therefore should be accounted for in concepts discovery process. Further more nouns 

identification should include such noun patterns as identified Ohly, (1982) such as inclusion of the 

following categories, 

 Norminalized verbs  eg undungaji sindano (needle injection),  

 Deverbative head with noun complement eg kiweka dawa (medicine insertor) 

 Combination of nouns eg haidrojeni perokisidi (Hydrogen peroxide) 

 Noun and adjective eg kuku wanene (big chicken) 

 Nouns with –a connector eg mavi ya kuku (chicken’s dung) 

 Noun with –a connector and a nominalized verbs eg sindano ya kutungia (needle for 

piercing) 

This diversity of concepts formation ought to be captured in a manner that ensures language 

independence. These linguistic processing concepts are studied and abstracted into a linguistic layer 

indicated in figure 2.10. Therefore this study investigates through the use of language independent 

linguistic theories and seeks to contribute in the area of language independent concepts formation 

process in the OCM approach. 

Different concepts-discovery techniques have been developed, the most basic being noun strings 

matching. Discovery of implicit concepts within a query is much harder task. Most of these 

techniques are usually designed for the particular ontologies. For example in Munir et al., (2008), 

techniques that interpret ontology-based search results and associated domain knowledge 

reformulate a relational query so as to assist users and their applications in formulating queries 

without requiring complete knowledge of the information structure of underlying data sources. To 

illustrate this technique an example is provided below from Munir et al. (2008), 

“E.g. interpreting the query ‘Give me all MRI scan images of brains for children with an Astrocytoma 

Tumour disease in a specific age group’. This query cannot be fully resolved by the HeC data model 

because there is no direct information available in the databases that matches with the term 
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‘Astrocytoma Tumour’. Here the query reformulation system receives a simple input into the system 

as ‘Astrocytoma Tumour‘, the system then extracts all of the clinical tests and related values that 

confirms the possibility of Astrocytoma Tumour disease in the brain.” (Munir, Odeh, & 

McClatchey, 2008) 

Another technique used to resolve discovery of implicit concepts is the use of hypernyms. 

Hypernyms are superordinates or words that are more generic. For example animal is a hypernym of 

chicken therefore if a person interrogates for a chicken, the characteristics of animal also apply.  

As can be observed some techniques of concept discovery are domain specific while others are 

generalizable across domains and languages. One goal of this research is to bring forth language and 

domain independent methodology and this requires design of techniques applicable to relational 

databases and that can be generalized across domain. The respective natural language processing 

techniques for discovering explicit and implicit concepts are studied in this work and abstracted to 

the respective layers as shown in figure 2.10.  

A prime motivation behind this research is the quest for accessing data from databases using 

Kiswahili text. Kiswahili has over 150 million regular speakers in Kenya, Tanzania, Uganda, 

Rwanda, Burundi, Parts of DRC, Malawi and Somalia. But even with this nearly all databases are 

developed in a specific nation’s official language which is predominantly English or French. The 

reason for this can be attributed to the fact that these official languages also double as the primary 

training languages and therefore database developers tend to favour their usage in database schema 

development. On the other hand, casual users tend to prefer using local languages or Kiswahili, the 

business languages among the communities. Thus a practical solution ought to have a cross-lingual 

solution capacity to cater for these differing language usages. It is for this reason that studies in this 

area are undertaken. 

 

In summary though closely related to conventional semantic ontologies and other specialized fields’ 

ontologies such as gene ontology, relational database ontologies differ due to their manipulation 

requirements as explained above. Further relational databases store data from all domains and also 

store in a language independent manner, thereby motivating the move towards domain-independent 

ontology assisted access to relational databases through any given natural language. 
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2.5 Trends in Reviewed Approaches 
An analysis of literature from section 2.3 reveals a definable general trend of application of 

methodologies to the QA task illustrated in figure 2.11 

The figure highlights the trend of preferred approaches to QA processing depending on the degree of 

structuredness of the data source. It has been observed that highly unstructured sources such as web 

pages, text documents and other similar sources tend to favor semantic parsing and semantic role 

labeling. Methods applied range from highly annotated machine learning techniques (Mooney, 2007) 

to purely unsupervised techniques such as that by Domingos and Poon, (2009). Semantic role 

labeling has previously been used in QA problem as reported in various works such as in Jurafsky 

and Gildea, (2002). The current trend is to move from semantic role labeling to supervised machine 

learning but current efforts are pushing towards unsupervised learning methods (Domingos & Poon, 

2009). Another school of thought is logic based mapping where research has been done on phrase-

based and token-based methods. Examples include the graph-matching approach by  Popescu, 

Etzioni, and Kautz (2003), token-based approach for Kiswahili (Muchemi L. , 2008) and tiscover’s 

English NL interface (Dittenbach & Berger, 2003) among others. Template mapping and graph-

based mapping have shown better results as opposed to syntactic based approaches (Muchemi & 

Narin'yani, 2007). Structured entry sources such as yellow pages and information on templates such 

as hotels, universities and airports services rely on named entity as main method of information 

extraction (IE) task. The IE task is however extended to include QA abilities. Recent efforts have 

been directed to the creation of ontologies (Munir, Odeh, & McClatchey, 2008). The power of 

ontologies lies in their capacity to provide context for semantics. In specialized fields such as 

bioinformatics, QA queries are processed from domain specific ontologies such as the GO gene 

ontology ( (Ontology, 2012); (Gene Ontology Consortium, 2001)). Ontologies enable semantic 

description of data and in inference. 

From this perspective it can be deduced that the direction to which a generalizable natural language 

database access solution should be sought is in the area of ontology concept mapping.  
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Fig. 2.11 Methodologies of QA Processing Depending on Source  

 

This research aims at making a contribution in the area marked ‘This Research’ which envisages a 

domain and language independent ontology concept mapping architecture for natural language 

access to relational databases. The sections that follow critically review, analyze and evaluate 

processes and algorithms applicable to the mapping architecture. An assessment of the suitability of 

these processes and proposals for modification to suit relational database problem is also provided.  

 

2.6 Towards Domain and Language Independent OCM Approach to Database Access 

Not much research has been reported towards the design of domain and language independent 

approaches in ontology assisted natural language access to relational database. As analysed from the 

literature above there are major gaps or potential improvement areas in the OCM approach for 

relational database access. This research therefore dedicated its efforts towards development of 

concepts, models and algorithms required for realization of a language and domain independent 

approach for database access using natural language. The state-of-the-art for all components and 

modules required in the OCM approach as conceptualized in this research is reviewed, with a view 

of identifying the best practice and gaps that would be addressed by the research. 
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2.6.1 Conceptual Framework 

The conceptual model shown in figure 2.12 is modelled on the generic QA model discussed in 

section 2.1. It however clearly separates processing and representation methods for the NLQ and 

database schema and highlights the central roles the matching and SPaRQL generation functions 

play.  

In the envisaged model, a natural language query is processed through operations such as 

normalization, tokenization, lemmatization, stemming and part of speech tagging in the module 

labelled ‘NLQ Processing’ in figure 2.12. This is further followed by phrase formation, chunking, 

collocation and terms discovery in the same module. The resulting elements of natural query 

processing should be stored in a proposed specially designed schema, referred to in this research as a 

feature space model (FSM), which holds the elements in a manner that is usable for mapping 

purposes.  The FSM is found within the module labelled ‘NLQ Representation’ in figure 2.12 

On the other end schema processing is carried out through conversion of the relational database into 

an ontology through a mapping process where tables, columns and row values are mapped onto 

ontologies classes, data type properties and instances of the ontology respectively. The mapping 

process occurs in the module labelled ‘Schema Processing’.  

In this work it is proposed that an additional processing layer be added to this module and this would 

cater for the need for understanding the usually abbreviated or concatenated object names as well as 

field names. The products of this additional process would be stored in a proposed gazetteer within 

the module labelled in figure 2.12 as ‘schema representation’. This work seeks to make further 

contributions in the mapping process indicated in figure 2.12 as ‘matching function’. It is envisaged 

that methods can be devised to unearth implicit concepts within a query and within an ontology. This 

helps improve recall and accuracy values. For instance descriptions found on database objects such 

as row descriptions can be mapped to the ontology as labels and assist in implicit concepts 

discovery. 
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Fig. 2.12 The OCM Conceptual Model 

 

Once the mapping process is complete, the process of structured query generation starts. This is 

carried out by the module labeled ‘SPaRQL Generation Function’. SPaRQL is generated via a series 

of functions. The generated SPaRQL query is applied to an ontology with the help of an ontology 

reasoner (such as protégé reasoner10) and the desired answer generated.  

The sections that follow provide a detailed component description of the elements in the conceptual 

model. 

2.6.2 NLQ Processing Task 

 

A natural language query is received from a source such as a text editor and is delivered to the NLQ 

processor. The NLQ processor is envisaged to have several modules which perform distinct roles. 

For instance most reviewed systems such as AquaLog (Vanessa et al., 2004), Querix (Esther et al. 

2006), NLP Reduce (Kaufmann, et al. 2007), PANTO (Wang, Xiong, Zhou, & Yu, 2007), QuestIO 

(Tablan et al., 2008) and FREyA (Damljanovic, et al. 2010) among others have a normalizer and a 

tokenizer whose objective is to standardize all input texts and prepare them for further processing. 

                                                             
10 A plug-in Reasoner for protégé tool For example The Pellet Reasoner Plug-in, version 1.0, makes Pellet 2 available in Protégé 4, 
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The next step involves NLQ processing. The main objective is to obtain tokens that represent 

concepts that would have correspondences in the ontology. In many systems such as NLP Reduce, 

Querix and QuestIO this task is reduced to identification of nouns and therefore the normalized 

token has to undergo part of speech labeling. In other systems syntactic knowledge has been used to 

achieve a variety of things within this NLQ processing module. For example FREyA (an acronym 

for ‘Feedback, Refinement and Extended Vocabulary Aggregation’) combines syntactic parsing with 

the knowledge encoded in ontologies in order to reduce the customization effort during porting from 

one domain to the other (Damljanovic et al. 2010). It achieves this through enhancing user 

interaction. On the other hand some systems such as PANTO use language dependent-syntactic 

processing to provide parse trees that enhance recall. As pointed out in 2.4 this work differs from 

reported works highlighted in the literature as it seeks to find processing methods that are language 

independent and that are geared towards matching ontologies generated from relational databases 

whose processing requirement is different from standard nomenclature ontologies. 

In order to investigate this aspect there is need to apply theories of language that are universal. Some 

of the applicable linguistic theories include x-bar theory (Chomsky, 1970), transformational and 

generative theories (Chomsky, Syntactic Structures, 1957) among others. The underlying theory 

preferred in linguistic analysis of queries is Transformational theory advanced in Chomsky (1957). 

Transformational theory is preferred in this study because it has previously been used for query 

formulation process in MULDER (Kwok, Etzioni, & Weld, 2001), a question-answering system. In 

this theory it is stipulated that a sentence has a deep structure form (DSF) which can be transformed 

through transformation rules into several surface forms. For example the DSF of sentence ‘close 

door’ can be transformed into the surface structure forms ‘close the door’, ‘you close the door’, ‘the 

door should be closed by you’ etc. Deep structure forms (DSF) versus surface structure forms (SSF) 

has been most studied and applied in showing equivalence of sentences.  

The research questions for the analysis are formulated as, 

1. Can deep structure forms (DSF) of a query be used in deducing the interrogative properties of a 

query?  

2. What types of relationships exist between DSF of queries and SPaRQL queries? This involves 

discovering linguistic patterns that can be discovered and exploited in development of templates 
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that can be used in mapping natural language queries into structured query language specifically 

SPaRQL? 

3. Does the choice of NL affect the answers obtained from the above two questions? 

As envisaged in the conceptual model NLQs are normalized, tokenized, lemmatized, stemmed and 

tagged with parts of speech. This is further followed by phrase formation, chunking, collocation and 

terms discovery in the same module. A challenge arises in the design of a schema that can hold these 

elements in a generic domain and language independent manner. In the systems reviewed such as 

PANTO (Wang et al., 2007), QuestIo (Tablan, 2008) among others, the products of NLP are mainly 

nouns and nominal phrases and subsequent processing is limited to these. In a system that expands 

the collection of what constitute concepts a more elaborate schema is expected. The design of that 

envisaged schema also referred to hereafter as the feature space model (FSM) forms a component of 

the research undertaken in this work and is described in section 3.5. 

 

2.6.3 Schema Processing and Information Representation 

Research geared towards methods and tools for successful automatic conversion of relational 

databases into ontologies has been intense resulting to several successful models. Wu et al. (2007) in 

their paper for a semantic-based search for the traditional Chinese medicine community have 

presented methodologies of how ontologies can be linked into databases (Wu, Chen, Cui, & Yin, 

2007). Hu and Qu (2008) on their paper ‘Discovery of mappings between ontology and RDBMS’ 

have provided strong theoretical backgrounds to the process of conversion of relational tables to 

ontology elements (Hu & Qu, 2008).  

Information from the database is mapped onto ontology constructs as shown in the example 

illustrated in figure 2.13. Concepts from the ontology are identified and if they match those in the 

NLQ they are selected as potential constructs of the subsequent SPaRQL query. Identifying concepts 

from a domain specific ontology is easy because the lexicon of the ontology is controlled and only 

string matching would be required. However in relational databases there is no controlled vocabulary 

in writing table and column names and therefore the resulting ontology will not have a controlled 

lexicon. Subsequently a challenge is encountered in the decoding of schema information specifically 

tables’ and fields’ names. The text used to label these names is usually a concatenation, acronyms or 

abbreviations. This challenge has not been tackled in the reviewed literature and therefore it is 

proposed for further research within this study. It is proposed that schema processing should be 
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extended from the current state of the art which involves basic mapping as explained in section 2.4 

to also include identifying the various components within the labels, deducing or guessing their 

meaning and assigning them to specific database concepts.  This challenge of parsing a database 

schema into suitable ontology concepts organized into a suitable formalism remains under-studied 

and is a key component addressed in this research.  

 
Fig. 2.13  Example to Illustrate Schema Information Representation 

 

Another challenge that needs to be surmounted for database access problem is the design of a 

suitable schema for holding information on concepts extracted from ontology of a particular 

relational database. If a database is large this can be a real problem due to requirements of searching 

 

A. Database (Ontology) Definition - OntologyMyNorthwind 

<rdf:RDF xmlns="http://www.owl-ontologies.com/OntologyMyNorthwind.owl#" 

     xml:base="http://www.owl-ontologies.com/OntologyMyNorthwind.owl" 

     xmlns:dbs="http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#" 

     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

 

B. Table (Relation/Class) definition - employees 

<owl:Class rdf:about="&db;employees"> 

        <db:hasPrimaryKeyFields rdf:datatype="&xsd;string">EmployeeID</db:hasPrimaryKeyFields> 

        <db:isBridgeTable rdf:datatype="&xsd;boolean">false</db:isBridgeTable> 

    </owl:Class> 

 

C. Columns (Properties) Definition - FirstName 
<owl:DatatypeProperty rdf:about="&db;employees.FirstName"> 

        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 

        <rdfs:domain rdf:resource="&db;employees"/> 

        <db:hasOrigColumnName rdf:datatype="&xsd;string">FirstName</db:hasOrigColumnName> 

        <rdfs:range rdf:resource="&xsd;string"/> 

    </owl:DatatypeProperty> 

 

D. Row Values (Instances) Definition - Lawrence 
<db:employees rdf:about="&db;employees_Instance_1"> 

        <db:employees.EmployeeID rdf:datatype="&xsd;int">1</db:employees.EmployeeID> 

        <db:employees.FirstName rdf:datatype="&xsd;string">Lawrence</db:employees.FirstName> 

        <db:employees.HireDate rdf:datatype="&xsd;date">2010-04-18</db:employees.HireDate> 

        ……. 

    </db:employees> 

 

http://www.owl-ontologies.com/OntologyMyNorthwind.owl#
http://www.owl-ontologies.com/OntologyMyNorthwind.owl
http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#
http://www.w3.org/2000/01/rdf-schema#
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time and memory (Munir et al., 2008). In a related task such as text information extraction for 

question answering, Danica et al. (2009), defines an ontology-based gazetteer named ‘OntoRoot’ for 

the system FREyA  (Feedback, Refinement and Extended Vocabulary Aggregation) (Damljanovic, 

2010). Tablan et al. ( 2008) presents the Questio architecture which incorporates a dynamic gazetteer 

named ‘Ontology Resource Root Gazetteer’ which contains all set of lemmas which are generated 

from text as triples containing concepts. In PANTO nominal phrases in the parse trees are extracted 

as pairs to form an intermediate representation called ‘Query Triples’. Then, by utilizing knowledge 

in the ontology, PANTO maps ‘Query Triples’ to ‘Ontology Triples’ during run time and this takes 

considerable time to compute. This research then sought to establish the structure of a schema (or 

gazetteer) that is suitable for database problem. A dynamic gazetteer model in line with that 

developed by for Questio (Tablan, Damljanovic, & Bontchev, 2008) was selected because it allows 

dynamic holding of information and also allows holding of minimally processed (lemmas from 

ontology) concepts from the ontology.  

 

2.6.4 The Matching Function 

2.6.4.1 Overview of the Mapping Problem 

Once the schemata structures of FSM and gazetteer are determined, the next process is to design the 

mapping function with a goal of enhancing accuracy and recall of the NL to SPaRQL mapping. NLQ 

and ontology are processed and the retrieved tokens stored in appropriate schemata. This process is 

illustrated in figure 2.14 
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Fig. 2.14      Matching Function in OCM Approach 

 

The concepts that match from the two representation schemata form the backbone of the generated 

SPaRQL query.  

The challenge that arises from the mapping problem is that equivalent concepts in NLQ and 

ontology elements may be represented by different strings and therefore concept matching goes 

beyond simple string matching. Moreover accuracy and recall of the NL to SPaRQL mapping 

process must be enhanced. Strategies that map the concepts from NLQ to those from ontology must 

be formulated. 

The strategies that inform design of these mapping algorithms are discussed next. 

2.6.4.2 Strategies from Ontology Matching Models 

By far the most preferred method of identifying the matching concepts is a simple lexical-level, 

keyword-based matching method with lemmatization. In this strategy each word in the FSM is 

matched against every word in the gazetteer through minimizing Levenshtein distance (number of 

operations needed to transform one string into the other, where an operation is an insertion, deletion, 

or substitution of a single character). To improve results stemming is carried out to ensure that all 

words derived from the same root map onto that root regardless of the prefixes and suffixes. 

Research is active in this area with researchers trying different models in order to improve on recall 
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and accuracy level. Research efforts in this area are motivated by models in closely related areas 

such as ontology matching and document retrieval techniques. Ontology matching, also known as 

ontology alignment, is the process of determining correspondences between ontologies. It establishes 

similarities in concepts and relationships in different ontologies within the same domain and is an 

important step for integrating overlapping domains of knowledge. Ontology matching strategies fall 

under six categories namely lexical-based, semantic-based, constraint-based, instance-based, 

structure-based and graph-based matching (Keshavarz & Lee, 2012). The first four strategies 

operate at the concept level and may be extended to apply to the mapping problem under 

investigation. One such effort is by Gao et al. (2007) in which they report a constraint-based method 

for semantic mapping from natural language questions to OWL. They model the matching function 

as constraint satisfaction problem. They summarize their approach as follows: 

“…… we have proposed the basic ideas and formulation of a constraint-based method for semantic 
mapping from a natural language question to the elements in OWL. In this method, we first 
decompose questions into a set of variables by means of syntactical and semantic analysis, and then 
formulate their underlying constraints, e.g., associated knowledge, into different quantitative 
functions. Thereafter, we can make use of an optimization-based objective function to find sound 
substitutes in the OWL knowledge representation for the question variables.” 

                                              (Gao, Liu, Zhong, & Chen, 2007) 

Although Gao et al. (2007) report that this constraint-based method improves precision by 15% of 

the current preferred method (lexical-level, keyword-based matching method with lemmatization) 

the key limitation remains in the problem of simplification of an NLQ into a set of variables. Further 

the practicality of obtaining the function constraints and assigning them weights based on associated 

knowledge of the question is a setback to this strategy. This model is work in progress and Gao et al. 

(2007) have stated that more investigation needs to be carried out in-depth on how to represent 

associated knowledge and how to systematically derive and formulate the corresponding constraints 

for the purposes of question understanding and semantic mapping. 

2.6.4.3 Strategies from Document Retrieval Models 

Research efforts motivated by document retrieval strategies revolve around the four theoretical 

models namely Boolean model, Vector Space model, Probabilistic model, and Language model 

which are the dominant models (Liddy, 2005). These models are summarized next.  
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a) The Boolean Model ( (Salton, 1971)  and (Salton G F. E., 1983)) 

The Boolean Model is a classical information/document retrieval model which is the oldest and the 

most widely used. It uses a set of words (d), referred to as indexing terms, which are derived from a 

document and can be present in a query or absent,(1 or 0). The model also uses a representation of a 

query (q) as a set and a similarity function R(q,di). The query “Give me the names of employees 

living in Nairobi or Kampala” is formulated in well-formed formula (wff) as “ employeeName  ( 

city → Nairobi  Kampala). Matching is achieved through binary matching function where only 

documents containing phrases with employeeName  ( city → Nairobi) or employeeName  ( city 

→ Kampala) are considered relevant.  

The most commonly cited matching function is given as: 

 
 

Where R is the similarity function, q is a set that represents words in a query, d is a set of 

words derived from an entire document and also referred to as indexing terms and di 

therefore an individual member of that set. 

b) Vector Space model (Salton G W. A., 1975)  

In this information/document retrieval model each term within a document is represented by its 

weight. The term weight is computed by considering how often it appears within the document (term 

frequency (tf)) and also the inverse of how often it appears in a collection (inverse document 

frequency (idft)). It is assumed that if a term appears too often within the collection, the less 

important it is. The weight of a term w(t, d) is computed by obtaining the product of tf and idft in 

what is called tf-idft . 

w(t, d) = tf-idft  = tf  X idft.  

A document can then be represented by a vector of these weights for each term.  

V(d) = (w(t1,d),w(t2,d),...,w(tn,d))  

These weights are then assembled into a vector. The vectors are normalized so that unequal length of 

vectors between different documents can be taken care of. The query terms and document terms are 

R(q,di) = 2|d ∩ q| 
   |d| + |q|  
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represented using such normalized vectors and the similarity between the two vectors computed 

from the dot product of the two vectors. Thus score(q,d) = v(q). v(d). Matching is thus achieved by 

computing the highest score. 

c) Probabilistic Model (Robertson S, 1976):  

 A Document Retrieval System based on the Probabilistic Model calculates the probability of 

relevance for each term in a document based on that term’s frequency in a set of known relevant 

documents. The probability of the relevance of the term against another set of non-relevant 

documents is also determined. The objective is to determine whether if a new document when 

subjected to probability check with respect to a query term, the probability will tend towards the 

relevant document’s probability, if the query is relevant to the new document, or towards the 

probability of non-relevant document, if the new document is not relevant to a particular query. In 

the absence of initial relevance probabilities, a prior probability can be determined by counting the 

number of documents in which the term appears and the number of documents in which it does not 

appear. This initial estimate is then adjusted based on users’ response to controlled experiments. This 

model assumes that probabilities are based on a binary condition of relevance and therefore the 

matching is binary. 

d) Language Model (Ponte J, 1998)  

In this type of modelling each document has its own language model. Language modelling is the 

task of estimating the probability distribution of linguistic units such as words and phrases in 

documents. The probability distribution itself is referred to as a language model. Language 

modelling involves generating the probability distribution for each document. Queries are thought of 

as being generated by a document language model. Ponte et al. (1998), state that they infer a 

language model for each document and rank the document according to the estimate of producing 

the query.  Liddy, (2005) expounds this by stating that the operative question is: “Which 

document(s) would produce this query?” The documents in the collection are evaluated and ranked 

based on the probability of their language model generating that query. Language model predicts 

probability of query production and not probability of relevance of the document. It is therefore 

referred to as the query-likelihood retrieval model. 

The above six models form a sound basis upon which one can study the best matching model 

between the gazetteer and the FSM in the context of OCM for database access. Although 
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information/document retrieval problem is different from database access problem significant 

parallels can be drawn between these two problems as shown in figure 2.15.  

 
Fig. 2.15 Analogy of Document Retrieval Problem and Database Inform. Retrieval Problem 

 

NL statements are used in both problems and the requirement for NLP is similar. Both require 

tokenization, morphological analysis and syntactic analysis. What is different is the source of 

information. Whereas the source in document retrieval problem is documents organized as document 

sets, the database problem is equivalent in that information is organized in tables grouped as 

databases. A collection of documents would be equivalent to a collection of tables (database) while 

an individual document would be equivalent to an individual table. The analogy is illustrated in 

figure 2.15.     

Another similarity is in the information access goal where just like in the document retrieval 

problem, the goal of database access problem is to obtain relevant information from an already 

existing storage. For example to solve the document retrieval problem using the Boolean model, the 

degree of similarity between the words in the query and those in the document title is calculated. 

Only documents containing phrases that match with those in the query are considered relevant. If a 

match is found the document is retrieved. In an analogous manner, the degree of similarity between 

words in the query and those in a table’s name are calculated. If a match is found between words in 

the table’s title and the query’s tokens, then that table is considered a candidate for selection and it 

forms a basis for the structured query in this case SPaRQL. For those retrieved tables further 

matching between the query tokens and the attributes (or row values) of the table is performed and 

the one where a match is found is selected and forms the structured query. As illustrated in figure 

2.14. 
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With this analogy in mind one is compelled to look at the applicability and efficiency of these 

models. In the boolean, vector space, probabilistic and language models both the query and table’s 

contents are represented as two sets of strings and similarity or relevance parameter calculated as 

earlier explained. From the tables’ titles and the query set strings, the respective degree of similarity 

or relevance (depending on the model selected) is used to select the table. The column name is also 

selected in a similar manner that is, by calculating the similarity or relevance of a column to the 

query set. These models perform poorly when it comes to rows selection because for information in 

a particular row to be retrieved with a higher degree of precision, it is not the number of times the 

tokens within a query appear within a particular table or the degree of similarity as perceived in 

these models but it is the presence of both the table name and column name that would yield a more 

accurate answer. This then leads us to ask whether a lexical-level keyword matching would be a 

better model.  

From the observation that recall and accuracy of NLQ-SPaRQL mapping models suffer due to 

different lexical representations of similar concepts at the NLQ and ontology level and that the 

lexical-level, keyword-based matching method that is the current state of the art does not adequately 

address this challenge, this research investigates enhancements to this algorithm. The algorithm is 

enhanced through techniques borrowed from ontology matching strategies specifically semantic-

based strategy. Semantic matching strategy combines integration of lexicon-based matching and 

meaning of the words. Issues relating to performance of the mapping function are studied in this 

work too.  

 

2.6.5 Structured Query (SPaRQL) Generation 

As explained in section 2.6.4 and illustrated in figure 2.14, the matching function gives as its output 

a list of concepts which are present both in the query and in the ontology. The various concepts as 

generated by the matching function form a set of strings which is not ordered. The query generator’s 

function is to organize these concepts into a structured query. The task therefore is to select the 

various strings (representing different concepts) and assemble them into a structured query.  

The process of converting query- and ontology-representations into formal query language such as 

SQL, RDQL, SPaRQL or SERQL has been approached differently by various researchers. One such 

approach is to compile a grammar that is used in generation of queries. Bernstein et al. (2006) while 

presenting their system ‘Querying the Semantic Web with Ginseng’ which is a guided input natural 
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language search engine have developed ‘Ginseng grammar’ which describes both the parse rules of 

the English queries, as entered by a user, and the query composition elements of the RDQL queries 

(Bernstein, Kaufmann, & Kiefer, 2006). This grammar uses the BNF (Backus Normal Form) 

notation which represents the syntax for expressing context free grammar. 

Another school of thought involves the use of ‘interpretations’ and ‘transformers’ as used in Tablan 

et al. (2008). Interpretations are containers that are used for holding information while transformers 

are algorithms for concatenating information held in a container with other strings generated by the 

matching function so that a new container the with compounded information is generated. The 

complexity of information is recursively incremented to more complex information that yields the 

longest possible structured query. The following quote from Tablan et al. (2008) demonstrates the 

spirit of this approach, 

“At the beginning of the process, the list of candidate interpretations is initialised with a simple 

interpretation containing the input text and the annotations created in the previous steps. In each 

iteration, the interpretations currently in the candidate list are transformed into more detailed ones. 

…….. All candidate interpretations are scored according to a set of metrics …… and, in order to keep 

the number of alternatives under control, candidates that score too low can be eliminated”  

(Tablan, Damljanovic, & Bontchev, 2008) 

These approaches have their merits and demerits. For example the first approach requires authoring 

of grammar once the domain is changed or the language of usage is changed say from English to 

Kiswahili. This is because it is this grammar that controls how NL is going to be parsed and how 

they are going to be formed into a structured query. This method impedes the attainment of domain-

independence which is one of the tenets of this research. As such this method is not a selected 

approach in this research. 

The second approach requires the use of scoring matrix which requires scoring on chunk (similarity 

score), property (specificity score), and domain and range scores. Similarity score compares the 

lexical similarities and is calculated using the Levenshtein distance. It indicates the minimum 

number of operations needed to transform one string into the other, where an operation is an 

insertion, deletion, or substitution of a single character. Specificity score is determined by the 

distance of a property from its farthermost super-property. This means properties that are more 

specific score higher than their super-properties. Similarly domain and range score also referred to as 

distance score by Tablan et al. (2008) tries to infer an implicit specificity of a property based on the 
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level of classes that are used as its domain and range. An example to illustrate distance score 

calculation is shown in figure 2.16. 

 
Fig. 2.16 Determination of Specifity Score 

 

In this example the concepts triple ‘Broiler eats fattening-food’ scores more than ‘Broiler consumes 

fattening-food’ because the inverse of length indicated ‘Dist=B’ is greater than the inverse of that 

indicated ‘Dist=A’. Hence according to specifity scoring the two statements score differently and are 

not semantically similar. Property score and domain-and-range score assume that properties, 

domains and ranges occur in a hierarchy within the ontology. In database access problem the score 

for the two distances ‘A’ and ‘B’ should be equal because statements such as ‘Broiler eats fattening-

food’  and ‘Broiler consumes fattening-food’ are semantically similar. Hence while specifity scores 

are necessary in ontologies created for a specific domain such as the GATE ontology used in Tablan 

et al. (2008) experiments, the same is not true for relational database ontologies as shown in the 

example above.  

From literature it is observed that if a relational database table has foreign key references to other 

tables, these are replaced by instance pointers when the database is converted into an ontology. 

However during the SPaRQL query generation a challenge was noted as this pointer information is 

hardly utilized during query generation. Foreign keys are important in ensuring data integrity in 

relational databases, therefore a mechanism for enforcing this integrity in the OCM approach need to 

be designed.  

In summary the approaches used for the general QA problem are not readily applicable to the 

database problem as explained above. This therefore leaves us with a question that needs to be 

 

 

 

 

 

 Dist=A 

 Dist=B 

 

 

Bird 

Chicken 

Broiler 

Meal 

Fattening 

Consume 

Drink/ Eat 



Lawrence Muchemi-PhD Thesis 2014 

 

66 | P a g e  
 

answered and that is, ‘what is the most appropriate query generation method for ontologies 

generated by relational databases?’  

 

2.7 Evaluating Performance of the Architectural Model 

Smart, (2008) has identified a criterion that is used to evaluate QA systems (Smart, 2008). The 

criterion may be used to evaluate performance as well as categorizing the systems. It has ten key 

areas assessed through the following questions,  

1. Support for different ontologies (Domain independence): Can the system execute queries 

against various ontologies?  

2. Recall: What percentage of the natural language queries entered by a user can be translated 

(correctly) into a corresponding semantic query?  

3. Precision: How accurate is the system in terms of correctly translating the user query into the 

target query language? Does the system always retrieve the right kind of information requested by 

the user?  

4. Language Independence: Degree of language independence. Is the architectural model affected 

by switching of language? 

5. Extent of NLP processing: What kinds of NLP technologies are used as part of the query 

system? 

6. Extent of user interaction: How much user interaction is permitted by the tool? Does the tool 

involve the user in resolving semantically ambiguous user input? 

 7. Target query language: What semantic query languages, e.g. SPARQL, are generated by the 

system? 

8. Usability: How well does the tool perform in usability studies?  

9. Training requirements: What is the training overhead associated with the tool? What kinds of 

users is the tool targeted towards, i.e. what is the target user community?  

This research delivers an architectural model that forms a basis for developing a QA system for 

accessing a relational database, thus the focus is architecture-evaluation as opposed to the full 

system evaluation. It would be reasonable to review the above criterion and reduce it to have 

elements that are architecture-evaluation specific. These include the first four elements in the above 

criterion, namely domain independence, recall, precision and language independence. A review of 

experimental procedures for evaluating architectures’ performance reveals that precision and recall 
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are the most favoured empirical measures for architecture evaluation. While evaluating ‘Krisp’ (Kate 

& Mooney, 2007), a 10-fold cross validation was used to measure performance in terms of precision 

and recall. Popescu et al. (2003) while evaluating ‘PRECISE’ also measured precision and recall. In 

addition they evaluated their architectural model using a parameter described as ‘distribution drift’. 

This means testing using data that is totally different from what was used to train or tune the 

database. The motivation for this is that precision and recall dramatically fall when data changes 

with time from what was used to train. Since the drift described is related to deterioration of 

performance with change of data away from training data, this drift is renamed here to ‘training 

drift’. Training drift only affects machine learning approaches and thus it is not considered in this 

work. 

It is envisaged for adoption an evaluation framework that takes into consideration all architecture-

related aspects derived from the Smart (2008) criterion that is, precision, recall, domain 

independence and language independence. In addition accuracy, F-score (F-score is harmonic mean 

of precision and recall) and support for cross-lingual databases would be useful additions to the 

evaluation criteria. 

2.8 Summary 

This chapter has highlighted the challenges that need to be addressed in order to solve the access to 

relational database problem using natural language. In particular it has been shown that an ontology 

concept mapping (OCM) approach can be used to solve this problem. A generic conceptual 

framework that handles most of the challenges encountered during processing such as language and 

domain dependence has been arrived at. It has also been shown that some important issues that need 

to be addressed by this architecture include capacity to handle the strict formalities and conditions 

set by relational databases, capacity to handle cross-lingual databases, language independence and 

high portability. 

In order to actualize the conceptual framework into a concrete architecture and develop a prototype 

capable of giving indicative performance, some important algorithms need to be designed and 

developed. These include, parsing database schema information, matching algorithm within the 

OCM model, natural Language Query processing algorithm and SPaRQL generation algorithm. The 

design and implementation procedures of these components are detailed in chapter 3. 
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Chapter 3: OCM DESIGN METHODOLOGY 

3.0 Preamble 
Through synthesis of the literature in the previous chapter, it has been articulated what research has 

been done and what needs to be further done. The main methodologies and research techniques 

previously applied in each specific aspect of the problem have been reviewed and critically analyzed 

so that appropriate methods are applied. This chapter therefore provides the details of various 

research strategies and specific research actions geared towards the design of a language and domain 

independent ontology-based model for NL-based database access 

 A comprehensive analysis of methods and techniques for data gathering, experimental procedures, 

pre-design results and analysis are provided. The OCM design process, the architectural model and 

algorithms that facilitate the functioning of the model are presented in this chapter. Further the 

prototype development process and resources selected have been discussed in detail.  

3.1 Overview of Issues to be Tackled 

The OCM conceptual model was introduced and discussed in detail in section 2.6. This is a high 

level design that seeks to address the problem of natural language access to relational databases 

through an ontology-based approach. The problem has several sub-components that have been 

described in detail in chapter two and are re-illustrated in figure 3.1 for ease of reference. 

 

Fig. 3.1 Components of NL Access Problem Illustrated as a Conceptual Model 
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From the conceptual framework the process flow is abstracted and is illustrated in figure 3.2. As 

reviewed from literature, several tasks in the ontology-based relational database access problem are 

yet to be realized for a generic model.  

 

Fig. 3.2 The Solution Overview 

The issues that need to be tackled before realization of the OCM model were analyzed in chapter 2 

and are restated as follows, 

1. Concepts Discovery 

a. There is need for extending the current state of the art procedures for explicit 

concepts discovery so that the techniques can be generalizable to any language. The 

use of universal language theories to tackle the language independence problem is 

explored.   

b. Current state-of-the-art methods rely on nouns and nominal phrases for concept 

identification. Concepts are however more diverse than this as identified by 

Krishnamurthy & Mitchell, (2011). There is need to expand the landscape to include 

other categories as identified in Sewangi (2001) and Ohly (1982) among others. 

c.  In order to enhance the language understanding capacity of the model, there is need 

to design heuristics for implicit concepts discovery. 

2. Decoding of ontology data and Semantic Tagging: Relational databases have no controlled 

vocabulary for naming tables and columns and therefore the derived ontologies would also 
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not have a controlled or a pre-determined lexicon. Subsequently a challenge is encountered in 

the decoding of database schema information specifically, names of tables and columns 

(fields) names. There is need for extending schema processing algorithms from the current 

state of the art which involves basic mapping as explained in section 2.4 to also include 

identification of the various components within the labels, deducing their meaning and 

assigning them to specific database concepts. This task is viewed as a semantic assignment 

task of the ontology data. 

3. Schemata Designs: Another challenge that needs to be surmounted for the database access 

problem is the design of a suitable schema for holding information about concepts extracted 

from ontologies generated from relational databases. Further, in a system that expands the 

collection of what constitutes ‘concepts’ as envisaged in item 1 above, an elaborate schema 

for holding information from NLQ is to be designed too. The designs of these envisaged 

schemata form an aspect of the issues addressed in this work. The structures of these 

meaning representation schemes are critical because they influence the choice of the mapping 

algorithm. This research then sought to establish the generic structure of the two schemata 

suitable for the relational database problem. 

4. Mapping Algorithm: There is need to enhance the lexical-level, keyword-based matching 

method that is the current state of the art because it does not adequately address recall 

challenges arising from different lexical representations of similar concepts at the NLQ and 

ontology levels (Punyakanok, Roth, & Yin, 2004). As analysed from literature, a 

methodology that borrows from ontology matching strategies, specifically the semantic-

based strategy is adopted. The semantic matching strategy combines integration of lexicon-

based matching with the meaning of the words. 

5. Structured Query Generator Function: The various ‘concepts’ generated by the matching 

function form a set of unordered strings. The query generator’s task is to organize these 

‘concepts’ into a structured query. The design of this algorithm is a research problem tackled 

in this chapter. 

6. Cross-lingual Access: Most NL database access problems have to grapple with the challenge 

of cross-lingual interaction. Cross-linguality refers to the phenomenon of using a given 

language to query a database whose schema is authored in a different language. The 

abbreviations and concatenations of words forming the object and field names are done in a 



Lawrence Muchemi-PhD Thesis 2014 

 

71 | P a g e  
 

different language from the one used to query. Cross-lingual querying therefore occurs where 

the database definition language is not necessarily the one that is used for querying the 

database a challenge commonly found in multi-lingual regions. 

7. Domain Independence: There is need for design of an architecture that is domain 

independent. It should be easily portable across domains and across different databases 

within the same domain. 

8. Performance evaluation of the model 

The above issues formed the basis for this research. Each of the above tasks was tackled through a 

specific research procedure as described in the sections that follow. The Performance evaluation 

methodology is covered in chapter four.  

3.2 Research Design Synopsis 

The following is a synopsis of the research design applied for each of the tasks listed in section 3.1. 

A detailed report of each research activity is given in the respective sections that follow.  

Multiple cases study research design was adopted for informing the designs on concepts discovery 

envisaged in item 1 of section 3.1 above. In this research, rules of surface to deep structure 

transformation in sentences, as provided in Transformational theory by Chomsky (1957), was 

extended and used to study the structure of natural language queries.  

In order to enhance the language understanding capacity of the model as envisaged in item 1 c of 

section 3.1, an exploratory study was carried out on data collected from the case studies and 

heuristics designed and tested on a prototype for implicit concepts discovery.  

Finally in order to expand the collection of what constitutes discoverable ‘concepts’ from an input, 

findings from Krishnamurthy & Mitchell (2011), Sewangi (2001) and Ohly (1982) were 

experimentally tested on a prototype and performance measurements taken. The task generally 

involved building functions of regular expressions of terms, collocations and other linguistic patterns 

as described in these sources and extending the current concept identification algorithms through 

these functions. This was an experimental design involving test and comparison experiments. 

Design of algorithms for decoding of ontology data and semantic tagging envisaged in item 2 of 

section 3.1 was informed by analysis of results obtained from field survey and other published 
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sources. This was an exploratory research involving field data collection and survey and was 

complemented by an experimental study involving prototype measurements on performance. Design 

of the two schemas, mapping algorithm and query generation function (items 3, 4 and 5 in section 

3.1) was guided by literature survey and analysis coupled with experimental studies while the study 

on designing a mechanism for handling cross-lingual issues (item 6) was done through experimental 

design involving prototype performance measurements.  

Evaluations were conducted through development of a prototype and taking performance 

measurements. This is however detailed in chapter 4 of this thesis. 

3.3 Research Design for Concepts  Discovery Tasks 

As pointed out in section 3.2, this research aspect was broken down into three components. These 

included i) investigations into the development of procedures for concepts discovery through query 

reduction techniques, ii) expansion of the landscape of what constitutes discoverable ‘concepts’ from 

an input and iii) enhancing language understanding capacity through heuristics design for implicit 

concepts discovery. The studies were carried out through case studies design aimed at theory testing 

and an exploratory study on collected data for heuristics design for the first two components 

respectively, and prototype-based experimental design.  

3.3.1 Case Studies Design 

In order to establish rigor, credibility, transferability, dependability and confirmability, the five point 

case study research design strategy (Yin, 1994) was adopted. Accordingly the case study design had 

the following five components, 

1. Research question(s),  

2. Propositions based on some criteria,  

3. Unit(s) of analysis that must provide rigor, 

4. Determination of how the data is linked to the propositions 

5. Criteria to interpret the findings. 

Further to this, a protocol is required to carry out the tasks. A protocol serves as a framework of 

operation and includes all the necessary elements in the proper conduct of research. This also 
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enhances clarity and repeatability. In this work the protocol published by the University of 

Massachusetts at Amherst (Zucker, 2009) was adopted. The protocol is summarized in figure 3.3.  

 

Fig. 3.3  Protocol Adopted for Carrying out Case Studies 

 

Section 3.3.2 provides an account of the actual case studies carried out following the adopted 

protocol and results obtained. 
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Inputs)  
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natural language queries. The theory was tested in the context of ‘query-reduction’ where it was 

studied whether if a query is represented using a SSF, it can be mapped onto its equivalent DSF 

while retaining the same interrogative (information elicitation) properties.  If this was found to be the 

case, the transformation process of a query would be significantly simplified because any query 

would require only to be transformed to its minimal form (DSF) before being converted into 

SPaRQL. The relationship between DSF and SPaRQL was also studied. Data collected from the 

field and other published sources was used in the case studies.    

3.3.3 Research Questions for the Linguistic-based Case Studies 

The study was guided by the following three questions, 

 Can deep structure forms (DSF) of a query be used in deducing the interrogative properties 

of a NL query? 

 What type of relationship exists between DSF and SPaRQL queries and is it language and 

domain independent?  

 Are the processes for conversion of SSF to DSF in NL queries language and domain 

independent?  

 
3.3.4 Description of the Cases 

The research involved investigations from five different case scenarios. Languages selected for this 

case study in this research were English and Kiswahili because these are the official languages in 

Kenya and most prevalent in the East African region. The case scenarios are briefly described.  

3.3.4.1 Case 1: Kiswahili Queries 

Documented research on Kiswahili questions posed to databases is not publicly available. A field 

survey was therefore necessary to obtain objective Kiswahili queries. In order to get a representative 

sample of Kiswahili queries a farmers’ group, which is a potential user of an NLQ database access 

system, was selected. Questionnaires were used to solicit potential queries from farmers that would 

be seeking information from a simulated database containing professional solutions.  The set of 

obtained queries was compared against the theoretically expected query formats (KU, 2011), 

(Kamusi Project, 2013) with a purpose of establishing how representative the obtained queries were 

to general Kiswahili queries. The query samples were observed to be representative of general 
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Kiswahili queries with most of the expected question types being present. These included ‘who’, 

‘where’, ‘what’, ‘when’, ‘how’, ‘which’, ‘enumeratives’, ‘superlative-based’, ‘comparative-based’, 

‘yes/no’ disjunctive (choice) and ‘list/show/give/find/describe’ types of questions.    

Sampling Method and Sample Size for Poultry Case 

Chain referral method as described in Mugenda, A. and Mugenda, O. (2003) was used in selecting 

the sample frame. Chain referral is a non-probabilistic sampling technique suitable in this case 

because respondents must have certain characteristics such as all being farmers of a particular 

product, and must have a common need for specialized solutions in that particular domain. The 

solutions could be provided by a human specialist or a specialized database containing solutions. 

Poultry farmers are likely beneficiaries of products modeled on findings of this research and were 

therefore selected.  

The sample selected was an active poultry farmers’ project in Makongeni estate, a sub-urban area of 

Thika town in Thika district. The participants rear chicken for commercial purposes and therefore 

were likely to pose queries related to chicken farming to experts. The area was selected because it 

met the prerequisite conditions such as all participants were regular users of Kiswahili and so were 

likely to query the database in Kiswahili and the participants use specialist knowledge such as 

veterinary services at a commercial scale and therefore have a regular need for interacting. These 

conditions were established via a pre-study survey. 

In chain referral, a type of purposive sampling method, sample sizes are determined on the basis of 

‘theoretical saturation’ - that is the point in data collection when new data no longer bring additional 

insights to the research questions. Purposive sampling is therefore most successful when data review 

and analysis are done in conjunction with data collection (FHI, 2012). In this research, analysis was 

performed after every ten questionnaires. However, the saturation point was difficult to determine 

empirically and was rather subjective, therefore the questionnaires were limited by practical reasons 

to 50.  

Data Collection 

A survey questionnaire was the preferred tool because typical text inputs were required for study 

before the prototype was actually designed and developed. The questionnaire was designed so that 
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farmers were required to write short questions. Each questionnaire had twenty five information 

request areas which required the respondent to pose questions to a hypothetical system acting as a 

veterinary doctor. Six hundred and twenty five questions were collected. The following examples 

show some of the typical queries that were collected, 

1. Ametoka nchi ipi? (What is its country of origin?) 

2. Utapata wapi soko ya kuku za nyama? (Where will you get a market for broilers?) 

3. Nafaa kuwapa kuku maji kiasi kipi? (How much water should I give the chicken?) 

4. Kuku anayepigwa na wengine anafaa kutengwa? (Should we separate a chicken that is 

beaten by others?) 

5. [Nipe orodha ya] wanunuzi bora. ([Give me a list of] best buyers). The part enclosed in 

square brackets was not explicitly stated but is necessary to complete the query. 

6. Nitabebewa vifaranga na nani? (who will transport the chicken?) 

7. Nitapata vifaranga lini? (When will I get the chicks?) 

8. Vyumba vyafaa kujengwa vipi? (How should houses be built?) 

9. Vifaa vipi vya kutumiwa kupima? (Which instruments are used to measure temperature?) 

10. Kuku ipi hutaga mayai mengi kuliko ya kienyeji? (Which chicken lays more eggs than local 

ones?) 

11. Jogoo yupi ana uzito kuliko wengine wote? (Which is the heaviest broiler) 

 
These eleven questions represent the following types of queries namely ‘what’, ‘where’, 

‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’, ‘comparative’ 

and ‘superlative’ respectively. More typical questions given by the farmers are found in Appendix 1 

of this report. The responses to the questionnaire reflected a full spectrum of typically expected 

query types and were therefore taken to reflect an exhaustive range of text inputs to a poultry 

farmers system. 

3.3.4.2 Case 2: UoN MSc Coordinator  

The School of Computing and Informatics of the University of Nairobi runs four MSc degree 

programs which are coordinated from a central office of the MSc coordinator. The coordinator is 

responsible for handling students’ queries. The queries were contained in various e-mails and 

information gathered via a web interface that is maintained by the coordinator. The data collected 
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was from the domain of students management, and therefore provided a domain variation with case 

1. The sample set of respondents was made diverse by increasing the number of students whose 

queries were picked and therefore information collected from these two sources was random. All 

questions collected were in English and this also provided a language contrast to case 1 which was in 

Kiswahili. 

 Data collected over a period of five years was available. Three hundred and ten questions were 

extracted and used for analysis. Some typical queries for ‘what’, ‘when’, ‘enumerative’, 

‘‘list/show/give/find/describe’, ‘where’, ‘yes/no’ and ’give’ types of queries respectively are given 

below, 

1. Please share with me email address of the lecturer in charge of ICS 645 Natural language 

interface this semester. 

2. When is this month’s MSc proposal presentation scheduled? 

3. How many students can access the mailing address mscis_07@students.uonbi.ac.ke? 

4. I would like to pursue a master’s degree in CS, please let me know the prerequisites for 

course. 

5. Where is the venue for MSc proposal presentation scheduled for 14th August 

6. Is the deadline for MSc marked scripts still 28th may 2007. 

7. Kindly assist me with a tentative program for this year 

More samples of the queries are available in appendix 1. 

3.3.4.3 Case 3: Queries to Microsoft’s NorthwindDB used to Test ELF 

Originally created by Bootra (2004) to evaluate ELF natural language query interface to query 

Microsoft northwind database at Virginia Commonwealth University, the questions were collected 

electronically from random sources. This data is publicly available at Bootra (2004) or at ELF 

software home page. All questions collected were in English and this provides good comparative 

data with case 2. 

3.3.4.4 Case 4 and 5: Questions to Microsoft’s NorthwindDB used to Test ELF 

Cases 4 and 5 are queries for computer jobs and restaurant searching that were originally collected 

electronically by Tang Lappoon in his PhD work at Texas State University under the supervision of 

mailto:mscis_07@students.uonbi.ac.ke
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Raymond Mooney (Tang & Mooney, 2001) and have widely been quoted in literature as benchmark 

questions for studying natural language interface models. These were selected because they provide 

a good comparative basis with many other published works. They contain over 500 and 250 

questions respectively. 

A total of 1805 NL queries were available for analysis. Table 3.1 summarizes these query sets.  

Table 3.1: Query sets Used 

 Name  of Query-set No of 

Questions 

Description Original Source 

1 Farmers Queries  625 Poultry farmers queries Muchemi, (2008) 

2 UoN MSc Coordinator  310 Questions by UoN MSc students to 

coordinator 

Coordinator e-mails  

3 ELF Queries to MS 

NorthwindDB  

120 Originally created by Bootra to evaluated 

ELF on Microsoft northwind-db ( at 

Virginia Commonwealth University 

(Bootra, 2004) 

4 Computer Jobs 500 Database and queries for computer jobs 

used originally by Tang under Ray 

Mooney  for PhD work at Texas State 

University 

Recreated from 

Tang & Mooney, 

2001 

5 Restaurant 250 Same as above but for restaurant 

selection 

Tang & Mooney, 

2001 

 Total 1805 

 

These questions were used to characterize linguistic features for NL inputs. They were also used in 

performance evaluation experiments described in chapter four. 
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3.3.5 Analysis Overview 

The underlying theory that was used in linguistic analysis of queries is transformational-generative 

grammar, brought forth by Noam Chomsky (Chomsky, 1957). Transformational theory was selected 

in this study because it has previously been used for the query formulation process in MULDER 

(Kwok, Etzioni, & Weld, 2001), a NL question-answering system. The three components of the 

original transformational-generative grammar included phrase structure rules, transformational rules 

and morphophonemic rules (Zellig, 1951). Phrase structure trees help analyze phrase structure rules. 

Sentence diagrams help analyze S-V-O-modifiers arrangement in a sentence or a set of similar 

sentences with different S-V-O-modifiers arrangement. A sentence ‘has a DSF which is transformed 

through transformation rules into several surface forms. Morphophonemic rules help model 

transformations in spoken language. Massamba, Kihore, & Hokororo (1999) have studied the 

Kiswahili transformations and documented them in their book Sarufi Miundo ya Kiswahili Sanifu.  

In this study, the theory was tested in the context of ‘query-reduction’ where it was studied whether 

if a query is represented using a surface form, it can be mapped onto its equivalent DSF while 

retaining the same interrogative (information elicitation) properties.  If this was found to be the case, 

the transformation process of a query would be significantly simplified because any query would 

only require to be transformed to its minimal form (DSF) before being converted into SPaRQL. The 

relationship between DSF and SPaRQL was also studied. Data collected from field and other 

published sources was used in the case studies. The five sets of queries as described in table 3.1 were 

used for studies under the following themes,  

 Transfer of semantics (interrogative properties) from NL to DSF in kernelization process, 

 Type of relationship existing between DSF of queries and SPaRQL queries, 

 Dependence of kernelization process and DSF-SPaRQL conversion on Natural language. 

 Prevalence of various transformation rules on collected data, 

 Word count of concepts and implications on selection of optimal phrases’ length 
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3.3.6 Kernelization Procedure 

A kernel statement is a statement expressed in the simple, active, affirmative and declarative form 

and is produced directly by phrase structure rules. Other statements are produced from the kernel 

statements through transformation or combination with other kernel statements.  

Sentence diagramming is a basic linguistic analysis tool introduced in the 19th century by Kellog and 

Reed in their book Higher Lessons in English (Kellog & Reed, 1877). They are visualization aids of 

how different parts of a sentence fit together, with special emphasis to S-V-O and their modifiers. 

The subject goes to one slot, the verb the other and the object the last slot. Modifiers emanate from 

these slots and are drawn according to the type of modifier. Sentence-diagrams have therefore been 

used to study transformational rules in this work. 

The first step in the kernelization process involves identifying the main actor or agent. This is the 

subject of the statement. In the example illustrated in figure 3.4 (b) and (c) (Ametoka nchi ipi? What 

is its country of origin) the subject is the pronoun ‘A-’ (‘It’), representing the chicken. The second 

step is to identify what is being affected by the subject or will receive the action that is the object, in 

this case (nchi) ‘country’.  

The third step is to identify the verb (predicate). A verb identifies the action or required relationship 

between the subject and the object. In the example shown in figure 3.4, the predicate is toka (origin) 

because it shows the relationship between chicken and country. The fourth step is to identify the 

modifiers of the subject, object and verb and these are usually indicated by adjectives, prepositional 

phrases (relationship between two objects e.g. cup is under the table), adverbial phrases (e.g. early in 

the morning), verb phrases such as infinitives (to sleep), while modifiers to the verbs are usually 

indicated by adverbs (e.g. walked slowly). Modifiers carry great semantic value because they affect 

the type of answer expected by the interrogator.  

At times queries do possess more than one object. In this case the objects are classified as direct or 

indirect objects. During the kernelization process this aspect is taken care of by allowing multiple 

objects which relate directly or indirectly with the subject via a predicate. Consider the following 

sentence observed from the sample query set, 

‘Ni-ta-i-patia maji kiasi kipi?’  How much water will I give it?  
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The kernelization process produces the subject ni (I) and two objects maji (water) and i (it) where 

the object ‘i’ is a direct object and the object ‘it’ (referring to the chicken) is an indirect object. The 

modifier kiasi kipi (how much) indicates that a quantity is required (an enumerative type of a query). 

The Sentence diagramming technique was used to decompose sentences to minimal form. These 

minimal forms are equivalent to DSF envisaged in Chomsky, (1957). Sentence diagramming 

involves the following seven steps, 

I. Identify the subject by answering the question, "Who? or What?" is the actor, 

II. Identify the object (optional) through answering the question, "Whom? or What?" will 

receive or be affected by the agent, 

III. Identify the predicates (verbs) usually answered by the question "What action is taking place, 

or what happened in the query?" It is a verb or state of being (for example am, is, are, was, 

were), 

IV. Identify articles (a/an/the) or possessives (my, your, his, hers, its, their, Kamau’s etc.) 

V. Identify adjectives (words that describe or limit a noun or pronoun) by answering questions 

such as, “Which one? How many? What kind? What size? What color? etc. 

VI. Identify adverbs (words that modify verbs, adjectives or other adverbs) by answering the 

questions, "How? When? Where? How much? Why?" etc. 

VII. Identify prepositional phrases. These are groups of words that begin with a preposition and 

end with a noun or pronoun which is the object of the preposition e.g. between them. 

The identified words are then inserted in a sentence diagram where the subject, object and verb are 

drawn above the base line and the articles, adjectives, adverbs and prepositional phrases are drawn 

below the base line as illustrated in Fig 3.4 (a). Fig 3.4 (b) and (c) show the sentence diagram for the 

sentence ‘Ametoka nchi ipi? (What is its country of origin?)’. The square brackets indicate that the 

object is implied by the interrogator.  
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Fig. 3.4 Sentence Diagramming Technique 

More illustrative examples are found in appendix 2  

3.3.7 Sampling Technique 

The query sets were large and required sampling. A stratified random sampling approach was used 

to select queries from each query set that were subjected to kernelization. The query sets were 

separated into two population groups, English and Kiswahili. English population group comprised of 

four query sets namely UoN MSc coordinator, ELF queries to Northwind, computer job searching 

and restaurants, with a total population of 1180 queries while Kiswahili had a population of 625 

queries. Each population in a given group was divided into twelve strata (divisions) each strata 

containing a unique query type, for example ‘when’ type. These query types were the most prevalent 

in the collected query sets and also the most frequently used interrogatives (KU, 2011) and hence 

their selection. The twelve strata identified were ‘what’, ‘where’, ‘enumerative’, ‘yes/no’, 

 

         Generic Query Kenerlization Model 

  Subject Verb  Object 

 

     (a) 

Ametoka nchi ipi? (What is its country of origin?) – Swahili Example 

     

 nchi            toka              a [kuku] 

           

ipi? (mahali)                      

(b) 

Ametoka nchi ipi? (What is its country of origin?) – English translation 

   

      Country      origin               it [chicken] 

                     what? (location)   

(c) 
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‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’, ‘comparative’, ‘superlative’ and 

disjunctive (choice) types. The number of occurrences for each query type (stratum) was recorded 

for the English and Kiswahili population respectively. 

A random sample from each population was taken in a number proportional to the stratum’s size of 

that given population. A total of 50 queries were picked from each population and the diagramming 

technique applied. Samples of queries that were diagrammed are found in appendix 2. The following 

formula was used to obtain the number of questions selected for kernelization analysis. 

# of Queries Diagrammed = (# of Occurrences of stratum members/Total population) x Desired 

size 

Where the desired size was 50 

In order to select the number of queries that were analyzed for rules of transformation, a stratified 

random sampling approach similar to the one used in the kernelization study described above was 

used. Eight strata were used and these included ‘Imperative’, ‘Agent deletion’, ‘Passive’, ‘Deletion 

of excessive elements’, ‘Coordination’, ‘Addition of elements’, ‘Negation’, and ‘Question’ 

transformations. 

3.3.8 Results and Analysis of Cases Study Findings 

This section describes the results obtained from the five query sets. The sampled queries were 

subjected to kernelization through the diagramming technique as explained in section 3.3.6. 

3.3.8.1 Types of Transformations Noted 

Linguistic theory on transformational-generative grammar advanced by Zellig (1951) describes 

transformational-generative grammar as a rule system formalized with mathematical precision that 

generates the grammatical sentences of the language that it characterizes, and assigns to each 

sentence a structural description (Zellig, 1951). Transformational-Generative grammar achieves 

these transformations without the need of any further information that is not represented explicitly in 

the sentence. According to the modified transformational theory by Chomsky (1970), 

transformational-generative grammar (or simply transformational grammar) transforms a “deep 

structure” (or kernel structure) into a “surface structure” and shows the relationship of such 

sentences (Chomsky, 1970). 
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The following transformations were noted in all the query sets. Rules 1 to 5 refer to common 

transformation rules while rules 6 to 8 refer to generative rules. Transformational rules allow 

sentences to be changed into identical ones through grammar movement while generative rules 

generate or create sentences. 

1. Imperative transformation (IT) e.g. 'All?' instead of ‘List all available jobs’ or ‘Wanunuzi 

bora’ (better buyers) instead of ‘Nipe orodha ya wanunuzi bora’ (Give me a list of better 

buyers). The transformation was noted in both English and Kiswahili query sets.  

2. Agent deletion transformation (DAT). This is manifested by the deletion of the doer of the 

action. For example ‘(Kuku) Inataga kwa mda gani? (The chicken) It lays after what 

duration’. 

3. Passive transformation (PT). Transformation from active to passive tense changes the 

sentence from DSF to SSF. The active form represents the deep structure form e.g.  ‘kuku 

ilikunywa dawa’(The chicken took medicine) while the passive form represents the surface 

form e.g.  ‘dawa ilinywewa na kuku’(The medicine was taken by the chicken).  

4. Deletion of excessive elements transformation (DET). This eliminates excessive words and 

avoids repetition. For example ‘Jimbi anakula chakula na vifaranga vinakula chakula?’ 

becomes ‘Jimbi na vifaranga wanakula chakula? The cock is eating food and the chicks are 

eating food’ becomes ‘The cock and chicks are eating food.  

5. Coordination transformation (CT). In the DSF two sentences are combined into one surface 

form sentence e.g. ‘kuku zinakunywa dawa; kuku haziponi’ (The chicken have taken 

medicine; the chicken are sick) becomes ‘kuku zina kunywa dawa lakini haziponi’ (the 

chicken have taken medicine but they are still sick). 

6. Addition of elements (AET). This adds information such as adjectives and adverbs. It usually 

changes the answer provided. For example ‘kuku wanakula chakula ya kienyeji?’ (chicken 

eat local food?) becomes ‘kuku wanakula chakula cha kienyeji kingi’ (chicken eat a lot of 

local food?).  

7. Negation transformation (NT). This transformation negates a sentence. For example ‘Kuku 

zinataga mayai’ becomes ‘kuku hazitagi mayai’ (The chicken are laying eggs becomes the 

chicken are not laying eggs).  
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8. Question transformation (QT). This is distinguished by the tone of the last syllable which is 

higher, a question mark, inclusion of the term ‘je’ in Kiswahili at the beginning of a sentence 

or by adding a confirmation query at the end of a statement. For example ‘The brown cocks 

are big, aren’t they? These transformations were common in English and Kiswahili query 

sets.  

Other transformations such as reflexive transformation and emphatic transformation were not noted 

in the datasets although they are common transformation rules in generative grammar.  

Tables 3.2 and 3.3 show results from some sample queries highlighting transformations and 

applicable transformation rules. Bolded words indicate the primary subject-verb-object data, 

italicized words show supportive words (in most cases these are adjectives) while the underlined 

words show non-verb predicates especially state of being.  
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Table 3.2 Sample Kiswahili Queries Transformations  
 

 
 

Studying English queries transformations was carried out in a similar manner and here are some 
sample sentences,  

 

 

 

 

 

Studying Transformations in Swahili queries 

No. Query (Surface Structure form) Deep Structure (with Concepts 
Highlighted) 

Transf. 
Rule(s) 

SPARQL-Triples 
Equivalents 

1 Ametoka nchi ipi? Atoka nchi ipi AET, QT Kuku/toka/nchi 
2 Inataga kwa mda gani? Ina taga mda gani DAT, QT Kuku/taga/mda_gani 
3 Wakisha komaa nitauzaje? Wakikomaa nita uza aje DAT, 

AET, QT 
Kuku/komaa/uza_bei 

4 Nitaagiza vifaranga kupitia nani? Nita agiza ~faranga kupitia nani AET, QT faranga/agiza/pitia_nani 
5 Kuku wakigonjeka nitamwona nani? Kuku wakigonjeka nitamwona nani AET, QT Kuku/gonjeka/ona_nani 
6 Nafaa kuwapa kuku maji kiasi kipi? Nafaa kuwapa kuku maji kiasi kipi  QT kuku/pa/maji_kiasi_kipi 
7 Vinafaa kujengwa vikielekea jua au 

la? 
Vina jengwa vikielekea jua DAT, 

AET, QT 
jenga/elekea/jua 

8 Ni chombo kipi kinafaa cha kuleta 
joto inayofaa? 

chombo kipi kinafaa cha kuleta joto AET, QT Chombo_kipi/leta/joto_i
nafaa 

9 Wakati gani mtu anafaa kujua joto 
limezidi? 

Wakati gani mtu anajua joto 
limezidi 

AET, QT Mtu/jua_wakati/joto_lim
ezidi 

10 Ni baridi kiasi gani inatakikana? baridi kiasi gani inatakikana AET, QT Baridi/taka/kiasi_gani 
11 

Chombo kipi kinafaa kutumika? 
Chombo kipi kinafaa kutumika QT Chombo_kipi/faa/tumik

a 
12 Nivyombo vipi vinafaa kwa usafi? Nivyombo vipi vinafaa kwa usafi QT Vyombo_vipi/faa/usafi 
13 Kuku wanafaa kuachana katika 

ukuaji na “gap” gani? 
Kuku wanafaa kuachana katika 
ukuaji na “gap” gani 

AET, QT Kuku/faa/achana_‘gap’_
gani 

14 Kuku akikomaa anafaa kuwa na uzito 
kimo gani? 

Kuku akikomaa afaa uzito gani AET, QT Kuku_komaa/faa/uzito_
gani 

15 Dawa huharibika kwa mda upi? Dawa huharibika kwa mda upi QT Dawa/haribika/mda_upi 
16 Kuku anayepigwa na wengine anafaa 

kutengwa? 
Kuku anayepigwa na wengine 
anafaa kutengwa 

DET, QT Kuku/pigwa/kuku_teng
wa 

17 Ni dalili gani zilizo za kawaida kuku 
akiugua? 

dalili gani kuku akiugua AET, QT Kuku/ugua/dalili_gani 

18 Nafaa kutumia dawa gani? Nafaa kutumia dawa gani QT mimi/tumia/dawa_gani 
19 Ni njia gani mwafaka ya kuzuia 

magonjwa? 
Njia gani ya kuzuia magonjwa QT magonjwa/zuia/njia_gan

i 
20 

Unaweza kula kuku mgonjwa? 
Unaweza kula kuku mgonjwa AET, QT Mtu/Kula/kuku_mgonjw

a 
21 Unajua aje kuku amefikisha wakati 

wake wa kuuzwa? 
Unajuaje kuku amefikisha kuuzwa AET, QT Kuku/umri_kuuzwa/ma

elezo? 
22 

Wanunuzi bora? 
Wanunuzi bora IT, QT Mimi/nipe/Majina_wan

unuzi_bora 
23 

Je, ni chakula kipi unaweza patia 
kuku wa nyama na wa mayai? 

chakula kipi patia kuku wa nyama 
na wa mayai 

CT, QT, 
AET 

kuku_wa_nyama /patia/ 
Chakula_kipi 
kuku_wa_mayai/patia/ 
Chakula_kipi 

24 Kuku wa nyama anastahili kuwa na 
kilo ngapi kwa siku arobainne? 

Kuku wa nyama ana kilo ngapi kwa 
siku arobainne 

QT Kuku_nyama/ uzito_upi 
siku_arobaine 

25 
Vyumba vyafaa kujengwa kwa nini? 

Vyumba kujengwa kwa nini QT, DAT Vyumba/jengwa/vifaa_g
ani 
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Table 3.3 Sample English Queries Transformations 

 
KEY 
IT = Imperative transformation (IT) e.g. 'All?' instead of ‘List all available jobs’;  
DAT = Agent deletion transformation (DAT) This is effected by not showing who did the action.;  
PT = Passive transformation (PT). Transformation from active to passive tense changes the sentence from 
SSF to DSF. 
DET = Deletion of excessive elements transformation (DET). This eliminates excessive words and avoids 
repetition;  
CT = Coordination transformation (CT). In the DSF two sentences are combined into one surface form 
sentence;  
AET = Addition of elements (AET). This adds information such as adjectives and adverbs.  

 

Studying Transformations 

No. Query (Surface Structure) Deep structure Equivalent Rule(s) SPARQL Triples 

1 'All of it?' 'All  it?' IT, DAT Jobs/type/all 
2 'All the jobs please?' 'All jobs?' IT, DAT Jobs/type/all 
3 'All?' 'All?' IT, DAT Jobs/type/all 
4 'Any jobs available using database?' 'Any jobs available using database?' AET Jobs/type/any 
5 'Type the jobs for a database specialist?' 'List jobs for database specialist?' AET Jobs/type/Db_speciali

st 
6 'Are there Ada jobs outside Austin? 'Are there Ada jobs outside Austin? AET Jobs/type/ada_outAus

tin 
7 'Are there any Autocad jobs open?' 'Are there Autocad jobs open?' QT Jobs/type/autocad 
8 'Are there any computer jobs for the 

playstation?' 
'Are there computer jobs for 
playstation?' 

AET Jobs/type/playstation 

9 
'Are there any jobs in the US with the title 
verification engineer?' 

'Are there  jobs in the US with the 
title verification engineer?' 

CT Jobs/type/verification
_eng 
Jobs/located/usa 

10 Are there any jobs in 'c++' that the salary 
is 50000?' 

'Are there jobs in 'c++' that the 
salary is 50000?' 

AET, 
DET 

Jobs/type/c++ 
Jobs/salary/50000 

11 
'Are there any jobs requiring a BScs for 
Boeing in Seattle?' 

 
'Are there jobs requiring a BScs for 
Boeing in Seattle?' 

AET Jobs/require/Bsc 
Jobs/at/Boeing 
Jobs/in/Seattle 

12 'Are there any jobs specializing in AI with 
JPL?' 

'Are there jobs in AI with JPL?' AET Jobs/description/AI 
Jobs/in/JPL 

13 'Are there jobs that do not require a 
degree in Houston?' 

'Are there jobs that do not require a 
degree in Houston?' 

NT Jobs/type/No_degree 
Jobs/in/Houston 

14 'Can you show me VB jobs with 50000 
salary with databases and excel?' 

'Show me VB jobs with 50000 salary 
with databases and excel?' 

AET Jobs/type/vb;db;excel 
Jobs/salary/50000 

15 
'Could a senior consulting engineer find 
work in Boston?' 

'Senior consulting engineer find 
work in Boston? 

AET Jobs/type/consulting_
eng 
Jobs/in/Boston 

16 'Could i have some jobs using SQL with 
oracle?' 

'Could I have jobs using SQL with 
oracle?' 

AET Jobs/type/SQL;Oracle 

17 'Find all network administration jobs in 
Austin?' 

'Find all network administration jobs 
in Austin?' 

IT, AET Jobs/type/admin 
Jobs/in/Austin 

18 'Give me jobs for a games specialist?' 'Give me jobs for a games specialist?' none Jobs/type/games 
19 'I sure do wish there were java assembly 

jobs out there 'can you help?' 
'Are there java assembly jobs out 
there?' 

AET Jobs/type/java_assem
bly 

20 'What jobs are there for a '3d' graphics 
specialist?' 

'What jobs are there for a '3d' 
graphics specialist?' 

AET Jobs/type/3d_graphic
s 

21 
'Who might offer me 50000 for web 
development?' 

'Who might offer me 50000 for web 
development?' 

AET Jobs/type/web_develo
pment 
Jobs/salary/50000 

22 
'What jobs in Houston are there that 
require a BSc with 1 year of experience?' 

'Jobs in Houston require a BSc with 1 
year of experience?' 

AET Jobs/require/Bsc;1 
year 
 Jobs/in/Houston 

23 'Tell me what jobs there are?' 'Tell me what jobs there are?' IT Jobs/type/all 
24 'What’s available on vax and near 

Austin?' 
'What on vax and near Austin is 
available?' 

PT Jobs/type/vax 
Jobs/in/near-houston 

25 'What oracle jobs are there with compaq 
in houston using pc?' 

'What oracle jobs are there with 
compaq in houston using pc?' 

AET Jobs/type/oracle;pc 
Jobs/in/Houston 
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NT = Negation transformation (NT). This transformation negates a sentence.  
QT = Question transformation (QT). This is distinguished by either the tone of the last syllable which is 
higher or a question mark 
 
3.3.8.2 Prevalence of Various Transformation Rules 

Unrestrained natural language text has very diverse surface representation, and this study cannot 

therefore claim to be comprehensive enough to create exhaustive rules that govern this phenomenon. 

However we can study frequency of occurrence of the transformation rules. The rules with a high 

frequency can be used in optimizing the additional set of rules required in comprehension of natural 

language queries. For example questions that have the word ‘who’ will indicate an interrogative state 

or a missing actor such as a subject or an object. This would then be guided by query transformation 

(QT) or agent deletion transformation (DAT) rules.  

Table 3.4 shows the frequency of occurrence of such rules in randomly selected queries, 

Table 3.4 Summary of Prevalence of Transformation Rules

 

 

 

No. 

 

Type of Transformation 

 

Farmers  

 

Computer 

jobs  

ELF Queries to Microsoft 

Northwind_DB 

 

UoN MSc 

Coordinator 

 

Restaurant 

 

Average % 

Prevalence 

1 Imperative 

transformation 

8 12 6 2 0 5.6 

2 Agent deletion 

transformation 

22 10 15 28 25 20 

3 Passive transformation 4 8 7 2 2 4.6 

4 Deletion of excessive 

elements 

8 6 2 2 5 4.6 

5 Addition of elements 48 56 51 58 48 52.2 

6 Coordination 
transformation 

6 5 10 4 18 8.6 

7 Negation transformation 4 3 9 4 2 4.4 

 TOTAL No. of Randomly 
Selected Questions 

100  100 100 100 100 
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Note: AET= Addition of Elements Transf.; DAT= Agent Deletion Transf.; PT= Passive Transformation; DET= Deletion 

of Elements Transf.; CT= Coordination Transf.; NT= Negation Transf.; IT= Imperative Transf. 

Fig 3.5 Distribution of Transformation Rules 

As observed the transformation-generative rules that the alter semantics of a query (generative) 

comprised 56.7% of the total queries analyzed with 92.2% of these being addition of elements 

transformation rules. This means that 92.2% of this category (where semantics are altered) has the 

primary S-V-O structure modified through additional modifiers such as adjectives and adverbs 

which changes the type of answer expected. Figure 3.6 illustrates the kernelization of such a sample 

query ‘nitaipatia chakula kiasi kipi? (How much food shall I give it?). 

  

 Fig 3.6 Modification of Object by an Interrogative 

 

 
    

  ni(I)   patia (give)      -i- (it) ;  chakula (food)  

                  -ta- (present tense)         kipi (how)              
                 (do)             kiasi (much) 
 

‘ni-ta-i-patia chakula kiasi kipi? (How much food do I give it?) 

IT
5%

DAT
20%

PT
5%

DET
5%

AET
52%

CT
9%

NT
4%

DISTRIBUTION OF TRANSFORMATION 
RULES
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This query is interpreted as, “ni (Sub) ta(prefix) –i-(obj1)-patia(verb) chakula(obj2) kiasi 

kipi?(Obj modifier) {How much (obj modifier) food(Obj1) do (aux verb) I(Subj) give(verb) it 

(obj2)?} 

The answer to this would be say, ‘nusu kilo’(half kilo). If the modifiers were stripped the question 

would be, 

Nitaipatia chakula? {Will I give it food?}. This would solicit for a ‘yes’ or ‘no’ answer.  

3.3.9 Mapping NL Query Semantics to Kernelized Query (DSF) Semantics  

This section discusses the relationship between the semantics of NL queries and the semantics of 

DSF queries. To understand how the process of transferring meaning in a query occurs, analysis 

guided by generative-transformation rules was conducted.  

A framework that explains this transfer was developed and presented in figure 3.13. The framework 

was tested for validity by applying queries of different types as detailed in section 3.3.9.3. Eight 

generative transformation rules described in section 3.3.8 were used in the semantics transfer 

analysis of the sampled queries. Stratified sampling method as described in 3.3.7 was used in the 

validation analysis where twelve query types identified in 3.3.7 were used for validity analysis.  

3.3.9.1 Analysis of Semantics Transfer through Transformation Rules 

RULE 1: IMPERATIVE TRANSFORMATION  

An imperative transformation changes a sentence in its kernel form to an imperative surface form. 

When an imperative transformation is performed on queries, it was observed that the meaning 

(information solicitation) of the two queries is similar but the verb and subject have to be deduced. 

To create an imperative, the verb form is changed to its infinitive form but the word ‘to’ is excluded. 

For example the SSF query, ‘Wanunuzi bora’ (better buyers) is in its imperative form. The 

associated DSF query would include an agent and a verb ‘ni-pe (‘give me’) to become nipe 

wanunuzi bora’ (give me better buyers). This is illustrated in the kernel form shown in figure 3.7. 

Other examples from the collected dataset are found in appendix 1. 
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Fig. 3.7 Kernelization of an Imperative Transformation Query 

From the analyzed data, this type of transformation affected about 5.6% of queries (see table 3.4). 

From figure 3.7 it observed that in order to obtain the meaning of this type of a query, the primary 

meaning bearing components (subject, verb and object or objects) must be identified from the query 

and any modifiers also taken into account. Implicit components must be deduced from the query. 

Meaning is transferred through relationships formed between these components. In the above 

illustrated case, the query is requesting for names (or other identifier attributes) of the ‘buyers’ who 

have an associated attribute ‘better’. The meaning is therefore formed by the tripartite relation 

occurring between the object and two of its modifiers (the adjectives). The logical relation therefore 

is ‘buyers-name-betterBuyer’ which is generalized as “Object-Modifier1?-Modifier2”. From this 

query it is observed that reference to the first person (me) does not have any impact on the answer 

provided because the interrogator is merely a recipient of the names generated. Likewise the verb 

‘give’ or ‘list’ or other related verbs have no impact on the answer generated because the 

interrogator’s motive is assumed to be known that is, seeking information. 

 

RULE 2: AGENT DELETION TRANSFORMATION  

Agent deletion transformation, where the action doer is deleted, was observed in about 20% of the 

cases. The basic information solicitation properties of the query were observed to remain unchanged. 

An example from the Kiswahili dataset ‘inataga kwa mda gani?’ (in what period does the chicken 

lay?) shown in figure 3.8 illustrates this concept.  In this case the agent kuku (chicken) is replaced by 

its pronoun i-na (it). 

 

 

      {ni (me)    {pe (give) }  wanunuzi (buyers) 

                 bora(better) 

 {Nipe} wanunuzi bora ({Give me} better buyers) 

Nb. { } refer to missing elements in the original query 
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Fig. 3.8 Kernelization of an Agent Deletion Transformation Query 

In this type of transformation, the meaning is carried by the primary meaning bearing components 

(subject, verb and object) and their modifiers, however the actor must be deduced from context. In 

database access problem the context is usually narrow and the pronoun can be easily deduced from 

the verb ‘lay’ which implies a ‘subject’ that lays and that would be a chicken. The relation for this 

meaning would therefore be “Chicken-Layegg-WhatPeriod?” which is generalizable to “Subject-

Verb- ObjectModifier” 

RULE 3: PASSIVE TRANSFORMATION RULE 

The active form of a sentence represents the deep structure while the passive form represents the 

surface structure. This type of transformation known as passive transformation was observed in 

4.6% of the collected sentences. An example of the SSF query ‘Je, chakula kililiwa na vifaranga?’ 

(Was the food eaten by the chicks?) is transformed to the DSF form ‘Je, vifaranga walikula 

chakula?’ (Did the chicks eat food?) is illustrated in figure 3.9. In the DSF ‘the chicks’ is the 

subject, ‘eat’ is the main verb, ‘did’ is auxiliary verb and ‘food’ the direct object.  

 

Fig. 3.9 Kernelization of and Passive Transformation Query  

Once a query is turned to its DSF, the next step is to obtain the base meaning-bearing components 

which is done through extraction of phrases at the subject, verb, object levels and their modifiers. 

 

 

      i-na (It)      taga (lay)  mda (period) 

                    does  kwa(in)  
         gani? (what? )   

 
 
     vifaranga (chicks)   kula (eat)                          chakula (food) 

             (the)                             Je    wali (did)   
 

 ‘Je, vifaranga walikula chakula? (Did the chicks eat food) 
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The expected answer is an affirmation or denial of this DSF form which has the pattern ‘Chicks-Eat-

Food’ which is generalizable to “Subject-Verb-Object”. The semantics are of the NL is therefore 

transferred through the primary components.  

 

RULE 4:  DELETION OF EXCESSIVE ELEMENTS TRANSFORMATION RULE 

Deletion of excessive elements transformation is a type of transformation where excessive words are 

eliminated to avoid repetition. This was observed in 4.6% of the collected queries. An example from 

the collected query set is ‘Jimbi walikula chakula na vifaranga walikula chakula?’. This is 

transformed to ‘Jimbi na vifaranga walikula chakula?’. The transformed query with two components as its 

subject is illustrated in figure 3.10 

 

Fig. 3.10 Kenerlization of Deletion of Excessive Elements Transformation Query  

 

Deletion of excess components leads to a more concise surface structure, however at the DSF level 

this can be seen as two DSF representations with similar verb and object or objects but with different 

subjects.   

In this type of query meaning is transferred through the base meaning-bearing components (subject, 

verb and object) of the two DSFs. The expected answer would be an affirmation or denial of the two 

DSFs. The patterns for this example are “Subject-Verb-Object” 

 

 

 

 
 

     jimbi (cocks); vifaranga (chicks)     kula (eat)  chakula (food) 

                  (the)              na (and)                  -li- (did)   
 

‘Jimbi na vifaranga walikula chakula? (Did the cocks and chicks eat food?) 
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RULE 5: COORDINATION TRANSFORMATION RULE 

 Another type of transformation rule that does not affect the semantics of a query is coordination 

transformation. This combines two or more sentences in the kernel form to one sentence in the 

surface form sentence. For example ‘Kuku walikula chakula kimeoza kisha wakahara?’ (Did the 

chicken take rotten food then they diarrhead?). The most common coordination terms observed in 

the dataset included ‘ilhari’ (but) na (and), pia (also), wala (although) and kisha (then). These 

formed 8.6% of the queries. In this type of a query, the statement is broken into two fragments to 

form two kernel sentences which together retain the original meaning. 

For example in the query, ‘Kuku walikula chakula kimeoza kisha wakahara’ (The chicken took 

rotten food then they diarrhead), the two kernel statements are ‘Kuku walikula chakula kimeoza’ 

(The chicken took rotten food) and ‘Kuku walihara’ (The chicken then they diarrhead). These are 

broken down into their SVO components and their respective modifiers. Just like in the 

transformation discussed in rule 4 above meaning is transferred through the base meaning-bearing 

components (subject, verb and object) of the two DSFs. The expected answer is an affirmation or 

denial of the two DSFs. The patterns for this example are “Subject-Verb-Object” 

 

RULE 6: ADDITION OF ELEMENTS TRANSFORMATION RULE 

The addition of elements transformation AET transformation in which a DSF is transformed to other 

SSF through addition of modifiers was the most prevalent within the datasets and formed 52.2% of 

the analyzed queries. An example of AET is shown in figure 3.12 (a). As highlighted in section 

3.3.8.2 the primary S-V-O structure is modified through additional modifiers such as adjectives and 

adverbs which changes the type of answer expected. In the examples shown in figure 3.6 and 3.12(a) 

(How much food do I give it? and ‘Can one eat sick chicken’ ) the object is modified. In other cases 

the subject is modified (see example in figure 3.12(b)). The patterns in these examples illustrate 

diverse patterns such as “Verb-Object-ObjModifier” and “Subj-SubModifier-Object”. Hence both 

primary components and their modifiers carry the semantics from NL to DSF. 
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RULE 7:  NEGATION TRANSFORMATION RULE 

In negation transformation, the verb is modified through negation. In this case the verb modifier is a 

critical element in understanding of the query and must therefore be accounted for in any subsequent 

meaning comprehension exercise. An example is illustrated in figure 3.12 (b). 

 

Fig. 3.12 Kernelization of Addition of Elements and Negation Transformation Queries 

Another illustrative example that demonstrates this phenomenon is ‘Je, haitakula chakula? (Will it 

not eat food?) The DSF for this query is ‘It will NOT eat food’ where ‘NOT’ modifies the verb. This 

is same for Kiswahili where the negation is actually prefixed to the verb. In another example where 

the query is supported by ‘DO’ this phenomenon of negating the verb is maintained. For example 

‘Mbona hukuongea ukweli? (Why did you not talk the truth?). The support by the ‘do’ word does not 

cause a breakdown of the general rule of negating the verb.  

RULE 8: QUERY TRANSFORMATION RULE 

 This type of query is stated as an ordinary declarative statement, however it is turned into a query by 

either of the following processes, 

 Raised tone at the second last syllable for example ‘maji haya ni SAfi?’(This water is cLEAn?).  

 In English the switching of the auxiliary verb and the subject is a more common usage, for 

example ‘Is this water clean?) 

  

   one     eat       chicken 

           can            sick              

(a) Example of AET Query: Can one eat sick chicken? 
      

      symptoms     are       which 

  normal           not              

(b) Example of AET with NT Query: Which symptoms are not normal? 
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  By adding a confirmation query at the end of a statement. For example ‘Jogoo wa rangi ya 

kahawia ni wakubwa, au siyo? ‘The brown cocks are big, aren’t they? 

 Inclusion of the term ‘je’ in Kiswahili at the beginning of a sentence 
 

3.3.9.2 Summarizing Query Semantics Transfer Process 

In the above transformation processes, the base meaning-bearing components are the subject, verb 

and objects. In about 56.7% of the total queries analyzed the semantics were altered through 

modifying the attributes of the subject and the object. Modification of the verb was observed in 

negation transformation queries.  

From this analysis we can therefore conclude that for a deep structure query to carry the same 

interrogative properties as the original surface structure query, it must contain all the S-V-O terms 

as well as other modifying words and more so adjectives and adverbs. The significance of this 

finding is that a surface to deep structure query conversion algorithm should extract both S-V-O and 

modifiers for it to be complete. Transformational-generative rules defined for many languages 

should be applied for these types of transformations. While these rules may not cover all the 

complexities of natural language free text, they are by large a useful modelling aid to obtain the 

basic meaning bearing components in a query. Further it was deduced that semantics is transferred 

through various combinations of the base primary meaning-bearing components and their modifiers. 

The patterns were however observed to be consistently triples.  

The process of converting a question’s surface structure form to the deep structure form and vice 

versa is affected by the underlying morphophonological processes. The quality of morphological 

processing is therefore affected negatively thereby impacting on the efficiency of  extraction of roots 

from a highly agglutinated language such as Kiswahili. Morphophonological rules should therefore 

be taken into account to enhance the success rate of identifying roots of words. It is known that 

morphophonological rules mediate between phonological and morphological processes. 

Morphophological analysis provides rules that predict the regular sound changes occurring in the 

morphemes of a given a language. Various studies such as Iribe (2008), Port (1982) and Choge 

(2009) have made a review of Kiswahili morphophonological processes. They convert the 

underlying representations into the surface structure that is spoken and hence written. An example of 

such a process that affects Kiswahili is vowel harmonization. For example the interaction of the 
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vowels ‘u’ and ‘e’ results in semi vowel ‘w’. For example ‘m(u)-imbaji’ becomes mw-imbaji 

(singer). In this case only the prefix is affected. In other cases the root is altered by the 

morphophonological processes. For example words ‘m-ingi’, ‘ny-ingi’,’w-ingi’ (meaning ‘a lot’) has 

the root ‘ingi’. This means that when obtaining the root, the process would ideally involve dropping 

the prefix before the ‘–ingi’. In plural the morphology is interfered with if the required prefix has an 

ending ‘–a’ for example wa- and instead of saying ‘wa-ingi’ we say ‘w-engi. The –a and –i in the 

prefix and root respectively interact to become –e-. This means that although the underlying 

structure would be wa-ingi, what appears as surface form is wengi. This change in expected 

morphology is explained through morphophonological processes. Investigation into other 

morphophonological rules found within the collected query set was beyond the scope of this research 

and hence standard morphophonological rules such as those in Iribe (2008), (Port, 1982)  and 

(Choge, 2009) were assumed adequate for practical computational purposes.  Morphophonological 

processes affect the quality of morphological processing and hence extraction of roots from a highly 

agglutinated language.  

In summary the overall conversion processes from a linguistic point of view as analyzed above is 

summarized as shown in figure 3.13. 

 

Fig 3.13 Query Semantics Transfer Model  (QuSeT Model) 
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Understanding this process of meaning transfer is important because it informs the formulation of 

the structured query say in SPaRQL. The following is an example to illustrate the query semantics 

transfer model 

Spoken: Maji mengi yalinywewa na kuku? (Was a lot of water taken by the chicken?) 

Transformation-generative Rules (English) 

The surface structure is an interrogative: ‘Was a lot of water taken by the chicken?’ 

I. Transformed to Passive Declarative form: ‘A lot of water was taken by the chicken’ 

Aux –NP2 – en – V – by – NP1        :  NP2 – Aux. – en – V – by – NP1    

 

II. Transformed to active simple declarative form: ‘Chicken took a lot of water’ which is in 

DSF’ 

NP2 – Aux. – en – V – by – NP1      NP1– V – NP2 

Where ‘Aux’ is the auxiliary and ‘-en-’ indicates that the verb is modified by suffix ‘en’.  

Transformation Rules (Kiswahili) 

The surface structure is an interrogative: Maji Mengi yalinywewa na kuku? (‘Was a lot of water taken 
by the chicken?’)  

I. The interrogative is transformed to simple active declarative form 

NP2  – V – na – NP1   NP1  – V – NP2  (Kuku walikunywa maji mengi?) 

      Where ‘na’ is a conjunction. 

The base components (SVO) and their modifiers were found to exist as phrase-chunks within the 

query, therefore the base components of the DSF and their modifiers were extracted through the 

regular phrase chunking.  

3.3.9.3 Qualitative Validation of the Query Semantics Transfer (QuSeT) Model 

In the QuSeT validation analysis, twelve query types were used. These query types were identified 

in section 3.3.7 as ‘what’, ‘where’, ‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’, 

‘when’, ‘how’, ‘which’, ‘comparative’, ‘superlative’ and disjunction (choice) types of queries. For 

each query type the following was analyzed, 
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 How kernelization occurs and if it conforms to the procedure described in the QuSeT, 

 Types of elements that comprise meaning bearing components, 

 Relationship between meaning bearing components within the DSF structure, 

 Whether the semantic transfer process occurs without deviation to the procedure described in 

the QuSeT model. 

 
1. WHAT Query TYPE 

Figure 3.14 shows kernelization for sample query ‘Nini kinafanya kuku kuhara? (What makes a 

chicken diarrhea?). ‘What’ is used either as a pronoun for example as in ‘what is this?’ or as an 

adverb say as used in ‘In what way did she go?’  It is also used as an adjective.  

In this type of a query the subject and the verb carry the meaning bearing elements which the object 

is represented by the interrogative ‘what’. If modifiers are added to the subject and verb or to either 

of them the modifiers must also be taken into account while understanding the semantics of the 

query as discussed in section 3.3.3.2. 

 

Fig 3.14  Kernelization of a ‘What-Query’ Type 

Figure 3.15 shows kernelization for sample query ‘what makes white chicken diarrhea a lot’. 

 

Fig 3.15 Kernelization of a ‘What-Query’ Type with Modifiers   

 

     
         Kuku( chicken) hara ( diarrhea)      nini?( what?) 
           

a  kina-fanya (makes)                     
         (aux)  
 
Nini kinafanya kuku kuhara? (What makes a chicken diarrhea?) 

 

     
         Kuku( chicken)   hara ( diarrhea)      nini?( what?) 
           
                 weupe (white)              kina-fanya (makes) (aux)                     
         sana (alot)  
 
Nini kinafanya kuku weupe wahare sana? (What makes white chicken diarrhea a lot?) 
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In this example, the query is converted to its base components and associated modifiers in form of 

phrases which are to be used for semantics mapping with the ontology mentions. This process of 

meaning transfer conforms to the framework presented in figure 3.13.  

2. WHERE Query TYPE 

Figure 3.16 shows kernelization for sample query ‘Soko ya kuku za nyama hupatikana wapi? (Where 

are markets for broilers obtained?). 

  
Fig 3.16 Kernelization of a ‘Where-Query’ Type  

‘Where’ is used either as a noun (e.g. where is the toilet?), as an adverb (e.g. where does this lead to) 

and as a conjunction (did we meet where there was an accident?). In general it was observed that the 

subject, verb, object and their modifiers carry the meaning of the query in whichever way the query 

is formed.  

3. ENUMERATIVE Query TYPE  

Figure 3.17 shows kernelization for sample query ‘Je ni maji kiasi kipi kuku wanafaa wanywe? 

(How much water are chicken to take?)’ 

 
Fig 3.17 Kernelization of an ‘Enumerative-Query’ Type  

 

     
          Soko ( markets)        patikana( obtained)            wapi?( where?) 
   

      ya (for)                  hu  (are) (aux)            
                           kuku za nyama (broilers)                                                                                                                        
           
Soko ya  kuku za nyama hupatikana wapi? (Where are markets for broilers obtained?) 

 
    

        kuku (chicken)    wanywe (to take)      maji (water)  

                  -wanafaa-                          kipi (how)              
                 ni (are)             kiasi (much) 
 

Je ni maji kiasi kipi kuku wanafaa wanywe? (How much water are chicken to take?) 



Lawrence Muchemi-PhD Thesis 2014 

 

101 | P a g e  
 

From these types of query it was observed that the subject, verb, object and their modifiers carry the 

meaning. The interrogative is the object modifier and its value signifies answer to the query. 

4. YES/NO Query TYPE 

Figure 3.18 shows kernelization for sample query ‘Je kuku hukimbizwa na jogoo? (Are chicken 

chased by cocks?)’. A DSF has no mood and hence is always a positive statement. However the 

negation modifies the DSF as shown in fig 3.18 below. 

 

Fig 3.18  Kernelization of a ‘Yes/No-Query’ Type  

From this example it is observed that the subject, object and their modifiers are the main meaning 

bearing elements. In both Swahili and English the SVO word order is retained, however English 

‘yes/no’ queries take an auxiliary verb at the beginning of the query. Kiswahili queries may contain 

the emphasis word ‘je’ meaning an answer is expected. 

5. GIVE/LIST Query TYPE  

Figure 3.19 shows kernelization for sample query ‘Nipe orodha ya madaktari walio karibu (Give me 

a list of the doctors who are nearby),

 
Fig 3.19 Kernelization of a ‘Give/List-Query’ Type 

 
    

        kuku (chicken)    kimbizwa (chased)      jogoo (cock)  

                                                                    
                 na (by)   (are)              
 

Je kuku hukimbzwa na jogoo? (Are chicken chased by cocks?) 

 

 

      ni (me)        pe (give)   orodha (list) 

                      ya(of) 
         madaktari(doctors) 
               walio(who are)  

              karibu (nearby) 

Nipe orodha ya madaktari walio karibu (Give me a list of the doctors who are nearby) 
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From this type of query, the meaning bearing terms are found at the object and its modifiers. The 

verb indicates the need to obtain the information while the object shows who gets the information. 

This type of a query can be answered by processed the object and its modifiers.   

6.  WHO Query TYPE  

Figure 3.20 shows kernelization for sample query ‘Nitabebewa vifaranga na nani? (Who will 

transport the chicken for me?),

 

Fig 3.20 Kernelization of a ‘Who-Query’ Type 

In this type of a query the interrogative ‘who’ represents the agent (doer) hence it is the subject of 

the query. ‘the chicks’ is the direct object (because it is taking the action directly) while ‘me’ is an 

indirect object because the action does not affect it directly. The meaning of the query is carried by 

the subject, verb, object and their modifiers where the interrogative is replaced by the actual subject 

in order for the answer to be obtained. It is important to note that a query must be in its passive form 

for it to be in DSF. 

7.  WHEN Query TYPE  

Figure 3.21 shows kernelization for sample query ‘Nitapata vifaranga lini? (When will I get the 

chicks?)’,

 

Fig 3.21 Kernelization of a ‘When-Query’ Type 

 
    

    nani (who) bebewa (transport) vifaranga; (chicks) ni (me)   

                  -ta-(will)        for (aux)            (the)                     
                               
 

Nitabebewa vifaranga na nani? (who will transport the chicken for me?) 

 

     
           Ni (I)        pata( get )                                            vifaranga;  
   

                                (will)[aux]        lini?( when?))               the        
                                                                                                                                                  

Nitapata vifaranga lini? (When will I get the chicks?) 
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In this case, the interrogative ‘when’ is an adverb and modifies the verb. The answer could be ‘when 

you finish the payment’. In other usage ‘when’ manifests as a pronoun (you need the report by 

when?), as a conjunction (Did she sit when she saw him come in?) or as a noun. The usage is so 

diverse that it is difficult to accurately use computational methods to distinguish them. In that case 

the phrase containing ‘when’ is treated as either a subject or object or as a modifier of any of the 

SVO.   

8. HOW Query TYPE  

Figure 3.22 shows kernelization for sample query ‘Nitapata vifaranga lini? (When will I get the 
chicks?)’,

 
Fig 3.22 Kernelization of a ‘When-Query’ Type 
 
How appears as an adverb (in what manner), a conjunction (e.g. ‘did he tell them how he had a 

situation?) or as a noun (e.g. do you know the how of getting there?). The computational treatment is 

similar to that of ‘when’ explained above. 

9.  WHICH Query TYPE  

Figure 3.23 shows kernelization for sample query ‘Nitapata vifaranga lini? (When will I get the 

chicks?)’, 

 

Fig 3.23 Kernelization of a ‘Which-Query’ Type 

 

     
          Vyumba (houses)       -jengwa( built); faa(be)                    vipi?( how?) 
   

                                                              vya (should)        
 

Vyumba vya-faa kujengwa vipi? (How should houses be built?) 

 

     
      Vifaa (instruments)    vya(are)     vyafaa kutumiwa kupima joto (suitable for measuring temperature)              
   
       Vipi(which)                                                              

Vifaa vipi vyafaa kutumiwa kupima joto? (Which instruments are suitable for measuring temperature?) 
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‘Which’ acts like an adjective like in the example above or as a pronoun e.g. ‘They wanted husbands 

which they got easily’. In first case it is treated as modifier while in the second example it replaces 

the subject.  

10. COMPARATIVE Query TYPE  

 
Figure 3.24 shows kernelization for sample query ‘Kuku ipi hutaga mayai mengi kuliko ya kienyeji? 

(Which chicken lays more eggs than local ones?)’, 

 

Fig 3.24 Kernelization of a ‘Comparative’ Type 

Comparative words such as ‘better’ may be used in very diverse sense. For example as an adjective 

(e.g. Is this a better thesis?), as a verb (e.g. Will you better your handwriting?), as an adverb (Did she 

walk in a better way?) and as a noun (e.g. Is hers a better behavior?). The presence of a comparative 

in these types of queries prompts a ‘yes/no’ answer or a noun-phrase in place of the wh- 

interrogative. In these cases two kernel statements are required. The first DSF contains a subject, a 

verb (or auxiliary) and a modifier to either the subject or verb or auxiliary (for example ‘Other| is| 

thesis-good’) while the second contains the second subject, a similar verb or auxiliary to the first 

DSF, and the comparative modifier (for example ‘This| is| thesis-better’) where this modifier refers 

to the adjective or adverb contained in the second DSF. The expected answer is realized by testing 

for the truth of either given the contents of the underlying ontology. However when an interrogative, 

such as ‘wh-’  is combined with a comparative as in the example illustrated in figure 3.24, the object 

is modified by a phrase formed from the comparative. The interrogative modifies or replaces the 

subject depending on the type. 

 

 

     
      kuku (chicken)        hutaga(lays)       mayai  (eggs)       
   
                ipi(which)                                     mengi kuliko (more than)’ 
       kienyeji (local ones) 
 
‘Kuku ipi hutaga mayai mengi kuliko ya kienyeji? (Which chicken lays more eggs than local 
ones?)’ 
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11.  SUPERARATIVE Query TYPE  

Figure 3.25 shows kernelization for sample query ‘Jogoo yupi ni mzito zaidi? (Which is the heaviest 

cock?) 

 

Fig 3.25 Kernelization of a ‘Superative-Query’ Type 

Superlatives mainly appear as adjectives in queries (e.g. Will you wear your best cloth?). The DSF is 

written using the base components and their modifiers. In the example illustrated in figure 3.25 the 

object is modified with the superlative ‘heaviest’. 

12. DISJUNCTIVE (CHOICE) Query TYPE 

A study of these types of questions revealed that they deliver the meaning in a similar manner to 

disjunctive queries (or choice questions) e.g. ‘Tuwape kuku dawa ya tembe au ya maji?’ (Do we give 

the chicken tablets or liquid medicine?). In this latter example a conversion to passive form is 

required for the query to be in DSF. The query then becomes, ‘Kuku apewe dawa ya tembe au ya 

maji?’ (Should the chicken be given tablets or liquid medicine?). The kernelization then becomes, 

  

Fig 3.26 Kernelization of a ‘Disjunctive-Query’ Type 

 

     
      jogoo (cock )      ni(is)           mzito (heav-) 
   
                yupi(which)                                     zaidi (-iest)       (the)       

‘Jogoo yupi ni mzito zaidi? (Which cock is the heaviest) 

 

     
       kuku (chicken)      -pewe(given)      dawa (medicine)              
   
                je (should)        be                      liquid or tablet  
        
 
‘je kuku apewe dawa ya tembe au ya maji?’ (Should the chicken be given tablets or liquid 

medicine?). 
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The disjunctive query behaves in a similar manner as the conjunctive query where the disjunction or 

conjunction separates objects, subjects or their modifiers. For the query to be answered the 

transformation lists two parallel kernel forms and tests for the truth of either using the contents of the 

underlying ontology 

 

3.3.9.4 Quantitative Validation of the QuSeT Model 

The QuSeT model was empirically tested for validity by applying two question sets from English- 

and Kiswahili-based query sets. Each set had a total of 25 questions drawn from the farming 

(Kiswahili) and UoN MSc Coordinator’s (English) question sets respectively. A stratified sampling 

method similar to the one described in section 3.3.7 was used in building the two test sets. Twelve 

query types identified in 3.3.9.3 were used as the strata. These queries included ‘what’, ‘where’, 

‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’, 

‘comparative’, ‘superlative’ and disjunction (choice) types of queries. 

The QuSeT model was built as a python module (see appendix 9). The questions from the test-sets 

were passed to the module and observations as to whether the module correctly identified the base 

words (or groups of words) and their modifiers noted. For the farmer’s question set, 23 out of 25 

questions were analyzed correctly, meaning all the base words and the modifiers were identified in at 

least 23 of the questions. This represented 92% accuracy. In the English query set, 24 questions were 

accurately analyzed, meaning that the accuracy was 96%. The mean accuracy of the QuSeT model 

was therefore determined as 94%. These accuracies are only but indicators of the efficiency of the 

QuSeT model.  

 

3.3.9.5 Conclusions from Query Semantics Transfer Analysis 

From analysis of the twelve query types it was concluded that,  

 There exists a regular process in which the general semantics of a query is transferred from 

the surface structure to the base meaning-bearing components. For all query types analyzed 

there was conformity to the general transfer framework illustrated in figure 3.13, 

 References to the first and second persons in a query do not bear direct reference to 

interrogative elements of the query. They represent the interrogator and the computer 
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respectively and in such a case the meaning should be deduced from the verb or object and 

their respective modifiers only. The subject is not considered as a meaning bearing phrase. In 

other cases, the verb is used to direct the action of the computer such as listing and in such a 

case only the objects or the subjects and their modifiers transfer the essence of the query. 

 The interrogative (wh- word) substitutes either the subject or the object (as in ‘who’ and 

‘where’ queries respectively) or modifies the subject, verb or object (as in ‘which’, ‘when’ 

and ‘enumerative’ queries respectively). The expected answer from the query is realized 

through substitution of the interrogative with a suitable meaning-bearing component from the 

ontology being queried. Other types of queries such as disjunctions and comparatives realize 

the expected answer by listing two parallel kernel forms and testing for the truth of either 

given the contents of the underlying ontology. 

 Meaning-bearing components have a tri-partite relation which may be formed between, 

o the three primary components (subject, verb and object) or,  

o any two of these components and an interrogative or a modifier of either  or 

o any of the primary components and its modifiers which may appear as a phrase such 

as a preposition 

 

3.3.10 Relationship Between Meaning-bearing Elements of DSF SPaRQL and the Ontology 

SPaRQL is a structured query language and data access protocol for the Semantic Web. SPaRQL is 

based on the Resource Description Framework (RDF) data model and therefore works for any data 

source that can be mapped onto RDF. SPaRQL, just like the RDF structure illustrated in figure 2.8, 

is built on triples, where a triple is a set consisting of three-elements: 

 ?element1 ?element2  ?element3 

The first element represents the database name, while the second represents the field name. The third 

element represents the row value, meaning the attribute’s instance. An example of a SPaRQL query 

is provided in figure 3.27. The triple is observed in the ‘WHERE’ clause.  
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Fig. 3.27 An Example of a SPaRQL Query  

The general structure of the SPaRQL is shown in figure 3.28 

 

Fig. 3.28 General Structure of the SPaRQL Query 

In the general SPaRQL structure shown in figure 3.28, element 1 corresponds to the table name, 

element 2 the column name and element 3 to the row value if this is matched to relational database 

elements via an ontology. The row value, except the one in the filter line is a variable that is filled 

when the answer is provided by the system. 

The sections that follow analyze the relationship between the various elements of a SPaRQL triple 

and the underlying ontology on the one hand, and DSF’s base-components and modifiers on the 

other hand. 

Consider a query where the interrogator is requesting for information about the telephone contact of 

a customer whose identification number is 1. This query may be stated as a ‘WHAT-type or as a 

‘GIVE/LIST-Type’ explained in section 3.3.9.3. The queries then are either, 

Query One: ‘What is the phone number of the customer whose ID is 1’  

Query Two: ‘Give me the phone number of the customer whose ID is 1’.  

The kernelization of these statements yields the structures given in figure 3.29 and 3.30. The 

ontology from which the interrogator is requesting for information is shown in figure 3.31. 

PREFIX north: <http://www.owl-ontologies.com/NewNorthwind#> 
SELECT  ?SupplierID ?Name ?Region 
WHERE { ?suppliers db:SupplierID ?SupplierID. 
        ?suppliers db:CompanyName ?CompanyName. 
        ?suppliers db:Region ?Region 
FILTER(?Region = "central")} 
 
Derived from the query: “Give me the names and identification of supplier from central region” 

PREFIX alias_name: <http://www.URL#> 
SELECT  ?Attribute1 ?Attribute2……?AttributeN 
WHERE{ ?Element1 db: Element2 ? Element3. 
     ? Element1 db: Element2 ? Element3. 
     ?............................... 
 ? Element1 db: Element2 ? Element3. 
FILTER(?Attribute = Element3)} 

http://www.owl-ontologies.com/NewNorthwind#
http://www.URL#
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Fig. 3.29 Kernelization of Illustrative Query One 

 
Fig. 3.30 Kernelization of Illustrative Query Two 
 
The base components and their modifiers are obtained from both the transformation and phrase 

structure formation rules as highlighted in the query semantics transfer framework illustrated in 

figure 3.13. The base components and the modifiers are the main semantic bearing elements. In the 

examples shown in figures 3.29 and 3.30 the meaning is carried by the two phrases contained within 

the query ‘the phone number of the customer’ and ‘customer whose id number is 1’. As stated in 

section 3.3.9.4 references to first and second pronouns as well as the verb ‘give’ do not have a direct 

effect on the answer being sought. This means that even if these elements are identified in the 

kernelization process as components of the DSF they are not considered as base-elements. They are 

thus dropped in the SPaRQL formation process.  

Since there are two meaning bearing phrases, two triples are formed each having the following 

format:  ?element1 ?element2  ?element3, 

These are, 
?customer ?phone_number  ?Variable1 
?customer ?id_number  ? Variable2 

 

     
           Phone number                                       is ( ni)      nini?( what?) 
           
                 the of                                                                     
             customer                       
         whose 
     ID is 1  
 
‘What is the phone number of the customer whose ID is 1’ or restated as (‘The phone number of 

the customer whose ID is 1 is WHAT’) 

 

 

      ni (me)        pe (give)   phone number) 

                      of 
         customer 
               whose  

             ID is 1  

 Give me the phone number of the customer whose ID is 1’ 
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Fig. 3.31 Segment of OWL-based RDF Ontology from Northwind Database 

There is a mention of a specific row value (instance) and hence an addition FILTER clause is 

required. It was observed that when specific row values are mentioned, the user’s intention is to 

constrain the number of records (rows) returned. The general syntax for this filter is as follows,  

FILTER (?Variable = "value") 
  

For the queries in figures 3.29 and 3.30 the filter is as follows, 

#DATATYPE PROPERTIES DEFINITION(DATABASE COLUMN NAMES)# 
<owl:DatatypeProperty rdf:about="&db;customers.Phone"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="&db;customers"/> 
        <db:hasOrigColumnName 
rdf:datatype="&xsd;string">Phone</db:hasOrigColumnName> 
        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:DatatypeProperty> 
 
<owl:DatatypeProperty rdf:about="&db;customers.CustomerID"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="&db;customers"/> 
        <db:hasOrigColumnName 
rdf:datatype="&xsd;string">CustomerID</db:hasOrigColumnName> 
        <rdfs:range rdf:resource="&xsd;int"/> 
    </owl:DatatypeProperty> 
 
#INSTANCES DECLARATION (ROW-VALUES FOR EACH RECORD)# 
 
<db:customers rdf:about="&db;customers_Instance_1"> 
        <db:customers.Address rdf:datatype="&xsd;string">Obere Str. 
57</db:customers.Address> 
        <db:customers.City 
rdf:datatype="&xsd;string">Berlin</db:customers.City> 
        <db:customers.CompanyName rdf:datatype="&xsd;string" 
            >Alfreds Futterkiste</db:customers.CompanyName> 
        <db:customers.ContactName 
rdf:datatype="&xsd;string">MariaAnders</db:customers.ContactName> 
        <db:customers.ContactTitle rdf:datatype="&xsd;string" 
            >Sales Representative</db:customers.ContactTitle> 
        <db:customers.Country 
rdf:datatype="&xsd;string">germany</db:customers.Country> 
        <db:customers.CustomerID 
rdf:datatype="&xsd;int">1</db:customers.CustomerID> 
        <db:customers.Fax rdf:datatype="&xsd;string">030-
0070000</db:customers.Fax> 
        <db:customers.Phone rdf:datatype="&xsd;string">030-
0074321</db:customers.Phone> 
        <db:customers.PostalCode 
rdf:datatype="&xsd;string">12209</db:customers.PostalCode> 
        <db:customers.Region 
rdf:datatype="&xsd;string">stutgart</db:customers.Region> 
    </db:customers> 
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FILTER (? id_number = "1") 

In conclusion there is a guided mapping between the deep structure form of queries and SPaRQL 

triples and filters. Some noted conditions include dropping of first and second person pronouns, 

dropping ‘give’ or ‘list’ verbs and making deductions to attributes and referents that are not directly 

mentioned before SPaRQL processing commences. This conclusion is important because it guides 

the SPaRQL query formation algorithm. 

3.3.11 Average Word Count of Concepts in Kiswahili Queries 

The average word count analysis is important because it indicates the lower and possibly the upper 

bound number of words that typically express a concept. More importantly it indicates the optimal 

number of words typically expressing a concept and therefore guides any rule-based concept 

discovery process.  

The observations shown in table 3.5 were made by manually isolating the concepts from selected 

farmers’ queries and the number of words per concept counted. A total of fifty randomly selected 

questions were analyzed from the Kiswahili query set for farmers with a total of one hundred eighty 

four concepts observed. 

For example in a sentence such as ‘vifaranga ni bei gani?’, the underlined words represent concepts 

that  are one word concepts while in ‘kuku za nyama huuzwa wapi?’ the underlined words represent 

a three word concept. In rare occasions, sentences with four, five and six-word concepts such as the 

sentence ‘masaa ishirini na nne’, ‘kifaranga wa kuku wa nyama anapatikana na pesa ngapi?’, 

‘vifaranga wa kuku wa nyama wanaokuwa na kukosa kutembea …’ respectively were discovered. 

Table 3.5 shows the average word count in concepts for Kiswahili queries. 
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Table 3.5 Average Word Count of Concepts in Kiswahili Queries 

 

 

 

Fig 3.32 Average Word Count of Concepts in Kiswahili Queries 
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From figure 3.32, it can be observed that the most frequent concept lengths are one, two and three 

words. This means that patterns with at most three words are the most prevalent and a length of three 

words is thus optimal for a rule-based concept discovery process. 

 
3.3.12 Independence of Kernelization and Triple Formation on Natural Language 

The data applied in this analysis was from two languages and was independently collected from five 

case study sets. There were no significant differences in the results for Kiswahili or English query 

analysis as reported in sections 3.3.6 through 3.3.10. Section 3.3.6 highlighted the kernelization 

procedure which as described is language independent, while 3.3.8 gave an analysis of the 

prevalence of generative-transformation rules where again similar trends were noted for English and 

Kiswahili query sets. Section 3.3.9 outlined a framework of query semantics transfer which was a 

generic framework that fits into any language. The processes within the framework included 

generative-transformation, phrases formation and base-components and modifiers identification. In 

order to migrate from one language of querying to another, only the set of pre-defined language 

specific rules such as phrase structure rules and transformation rules need to be changed to match the 

querying language. Changing the set of rules is automatically achieved through a language 

recognition pre-process which causes the appropriate set of rules to be loaded. Further the SPaRQL 

triples formation process described in section 3.3.10 is totally language independent. 

The use of phrase structure rules, transformational rules and morphophonemic rules is a practice 

that linguists have embraced since the days of Chomsky(1957) and Zelig (1951). Linguists have 

studied these rules over the years. These methods are context free and language independent. In 

other words they may be applied to any context and any language.  

Transformational rules which are the backbone of this work are context free and have been 

developed for different languages. For example Kiswahili was studied and published by TUKI 

(Massamba, Kihore, & Hokororo, 1999). The process that is not practically universal (ie not 

language independent) is the way the rules are extracted. This thesis does NOT claim this type of 

language independence but rather once the rules are manually extracted by linguists of a particular 

language, the rules may be computationally deployed to synthesize sentences in a language 

independent manner. Since the rule sets extracted from the 5 case studies ( for Swa and Eng) were 



Lawrence Muchemi-PhD Thesis 2014 

 

114 | P a g e  
 

not necessarily exhaustive, the results do not seek to prove a theory but rather indicate the direction 

towards a language independent computational solution.  

In general the transformational process flow from NLQ to SPaRQL is therefore language 

independent to the extent that rules have been pre-extracted.  

 
3.4 Survey on Database Schema Authorship  

Relational databases have no controlled vocabulary for naming tables and columns and therefore the 

resulting ontologies do not have a controlled lexicon. Subsequently a challenge is encountered in 

decoding database schema information, specifically names of tables and fields. An equivalent study 

for ontology elements in the field of ontology engineering revealed a common practice nomenclature 

for classes and properties. (Damljanovic, Tablan, & Bontcheva, 2008). The common practice 

involves the use of a dash or an underscore to separate names or abbreviations of names or the use of 

the ‘camelCase’ style for concatenating or separating names and abbreviations. Observations from 

the reviewed literature on ontologies derived from non-relational database sources, indicate that 

various ontology parsing algorithms such as reported in Tablan, Damljanovic, & Bontchev (2008) 

and Damljanovic, Agatonovic, & Cunningham (2010), use this common practice nomenclature while 

creating gazetteers. A gazetteer is a data-holding structure that contains concepts extracted from 

ontologies and can be viewed as an entity dictionary. When creating gazetteers for ontologies 

derived from relational databases these nomenclature assumptions may not hold because databases 

may have different nomenclature practices.  

A survey was thus carried out to identify the common practice nomenclature for databases’, tables’ 

and column names. The findings from this study guided the creation of a general algorithm that 

handles many ontologies created from commonly available or legacy relational databases.  

3.4.1 Study of Common-Practice Nomenclature of DB-Schema Objects 

3.4.1.1 Purpose and Rationale for Common-Practice Nomenclature Study  

The purpose of this segment of research was to establish if a common naming practice for relational 

databases exists and if so, then the answers to the following questions would be established based on 

collected data, 
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 Is there a finite set of patterns that database schema authors’ use in representing 

database schema object names?  

 ‘How can we decipher the meaning of an ‘intended concept’ from the schema name? 

 How can a general  ‘Concepts Re-construction  Algorithm’ be built from an ontology 

created from a relational database source? 

 

This study therefore sought to create a concepts reconstruction algorithm that would lead to the 

automation of gazetteer construction.  

3.4.1.2 DB-Schema Objects Nomenclature Methodology Overview  

The research methodology selected for this investigation was an exploratory study where data was 

collected through field surveys and a qualitative analysis technique applied.  

The data that was specifically collected included,  

 names of databases, tables and columns as authored by respondents, 

 Existence of formal policies on naming procedures by different organizations, 

 Existence of historical, common company-wide naming practices though not described as a 

formal policy 

 Personal preferences for naming styles  

The survey involved data collection from twelve training institutions and sixteen software 

development firms.  Further, an internet based study of 320 randomly identified database schema 

object names was carried out to identify other nomenclatures used. Nine database management 

systems were also studied and profiled with respect to permitted rules for authoring objects and 

attributes names.  

3.4.2 Sampling Method 

Information that was to be obtained from various sources was considered confidential to the 

organizations providing the information and therefore an approach that guarantees confidentiality 

and confidence was preferred. The snowballing sampling method also known as chain referral 

sampling is suitable for hard-to-reach or hidden populations. It was selected because the chain 

referral aspect leads to building confidence in the interviewees.  Questionnaire and interviews were 
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the preferred tools because of their simplicity and effectiveness. A total of eight questions were 

crafted into a questionnaire and database/application designers, developers and administrators were 

required to provide short answers. The questionnaire is found in Appendix 3 of this report.  

3.4.3 Sample Frame and Size 

In creating the sample frame two groups dealing with back-end services namely database-

applications’ developers and database development trainers were targeted. The two starting points of 

the chain referral sample frames were an application development firm and a university (database 

development) lecturer. Each grouping had an initial starting point which snowballed into other 

referral persons. A total of 28 units were interrogated. This being a purposive sampling method the 

size was determined on the basis of theoretical saturation, that is the point in data collection when 

new data no longer brings additional insights to the research questions. Since each questionnaire had 

a large number of schema objects to be analyzed (up to 6 database names, 12 table names and 16 

column names), analysis was performed after every three questionnaires collected and the saturation 

point approximated. The internet-based survey involved a review of three hundred and twenty 

randomly selected database schema objects, a number which was limited by practical reasons.  

3.4.4 Analysis Overview 

In the first research question namely ‘Is there a finite set of patterns that database schema authors 

use in representing database schema object names?’ analysis was done by way of discovering 

patterns used by various database schema authors. For each database schema object analyzed, a 

pattern was determined on how the author represented object names. Of interest were database, table 

and column names. 

In the second research question namely ‘How can we decipher the meaning of ‘intended concepts’ 

from the schema names? analysis was done by way of recreating words from ontology 

representations and mapping them to lexical definitions. The process of recreating the words was 

recorded and later analyzed for presence of general patterns. For example the ontology 

representation ‘dateOfBirth’ is reconstructed to ‘date of birth’ and the process to do this requires the 

insertion of a space between lower case and upper case letters.   
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3.4.5 Results from Database Schema Authorship Studies  

From the nine database management systems studied, it was observed that all allowed the use of ten 

commonly used nomenclature styles. Table 3.6 shows this summary. Table 3.7 shows the extent of 

usage for application development firms and DB development trainers.  

3.4.5.1 Permitted Styles by Various Database Management Systems 

The purpose of this profiling was to establish whether there are some string combinations that are 

not allowed by some database management systems. Nine commonly used database management 

systems were selected. These included the following, 

1. MySQL 

2. Microsoft SQL Server 
3. Oracle 
4. MS Access 
5. SQLite 

6. OpenOffice.org Base 
7. IBM DB2 (Viper, Cobra and pureScale versions) 

8. PostgreSQL 
9. SmallSQL 

Published literature for the respective software was studied and the results are shown in table 3.6.  

Table 3.6 Permitted Objects Naming Styles (DB Servers) 

 

  

Pattern 

Permission for usage by various DBMS 

(Tick= permit) 

  

Comments 

  1 2 3 4 5 6 7 8 9  

1 Under_score             Allowed by all 

2 camelCase             Allowed by all 

3 Da-sh             Allowed by all 

4 Abbreviations emp for employe             Allowed by all 

5 Pascal Casing             Allowed by all 

6 Finger_Breaking_Underscore             Allowed by all 

7 SCREEMING_UNDERSCORE             Allowed by all 

8 Acronyms eg ID, UI, IO             Allowed by all 

9 Dot eg hr.hire_date             Allowed by all 

10 “string like this”             Allowed by all 
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The naming styles shown in table 3.6 are explained here below, 

 Underscore concatenates two or more words or abbreviations using the underscore character. 

An example is sender_name,  

 Abbreviation uses short form of names usually the consonants. An example is tbl as in 

tbl_name,  

 Pascal style is one where every main word in a concatenation of words starts with upper case 

letter including the first word. For example CustomerAddress. 

 Acronym style employs commonly or easily recognizable short forms for example ID in 

empID, RegNum). 

 Dot style is where a period is inserted between two parts of a compound name. For example 

Tbl.location. 

 Finger breaking style involves the combination of underscore and capitalization of the first 

letter of all main words as in the compound word Last_Name. 

 Dash naming style involves the use of minus symbol between key words of a concatenated 

compound label. Example is chassis-num. 

 String style uses the inverted commas usually to represent a string which has a blank between 

two words of a compound label.as in the example ‘first name’.  

 Camel case is a naming style where main words in a compound label start with a capital 

letter except the first one. For example logbook. 

 Scream nomenclature style involves the use of upper case letters only as in the example 

POSTCODE. 

3.4.5.2 Results from Training and Development Firms 

Thirty universities and training institutions carrying out database training and twenty software 

development companies were targeted. Information from twelve training institutions and sixteen 

software development companies was obtained and analyzed (see appendix 7 for names of these 

firms). The results are tabulated in Tables 3.7 and 3.8 respectively. 
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Table 3.7 Schema Objects Naming Techniques (Training Firms)  

 

The analyzed results which are presented in figure 3.33, revealed that underscore, abbreviations, 

Pascal and acronyms are the most frequently used styles while dot, finger and camel styles are 

moderately used. On the other hand dash, string and scream styles are seldom used by training 

institutions. 

 

Fig 3.33 Average Usage of Nomenclature Type (Training Institutions)  

 Pattern Extent of Usage by Training Firms 
(scale of 1-5; 5=most used, 1= least used; 0= never used) 

  

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  

1 Under_score 4 4 5 5 4 5 5 5 4 4 5 3 4 5 5 4 4.44 

2 camelCase 3 3 2 2 3 3 3 3 3 2 2 2 3 2 2 2 2.5 

3 Da-sh 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0.31 

4 Abbreviations 4 4 3 2 3 3 3 2 4 4 3 4 4 3 3 4 3.31 

5 PascalCasing 5 4 5 4 5 4 4 5 4 5 4 5 5 4 4 5 4.5 

6 Finger_Breaking_Underscore 3 1 2 2 2 3 2 2 2 1 2 3 3 2 3 2 2.19 

7 SCREEMING_UNDERSCORE 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0.38 

8 Acronyms eg ID, UI, IO 4 4 5 4 5 4 4 5 4 4 4 4 3 4 3 3 4 

9 Dot eg hr.hire_date 1 1 3 2 2 3 1 1 1 2 1 1 1 1 1 1 1.44 

10 “string like this” 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.06 
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Table 3.8 Schema Objects Naming Techniques (Software development Firms) 

 

 

Fig 3.34 Average Usage of Nomenclature Type (Development Firms) 

The results from the analysis presented in figure 3.34 showed that underscore, abbreviations, Pascal 

and acronyms are the most frequently used styles while dot, finger and scream styles are moderately 

used. On the other hand dash, string and camel styles are seldom used by development firms. 
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10 “string like this” 1 0 0 0 0 1 0 0 2 0 1 0 0.4 
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3.4.5.3 Results from Internet-based Survey 

The internet based study involved analysis of 320 randomly collected database schema object names. 

The nomenclature styles were observed and the results tabulated in tabulated in table 3.9.  

The data was analyzed and is presented in figure 3.35. The frequency of occurrence of various 

patterns from the internet based survey revealed that the underscore, abbreviation, dot and acronyms 

naming styles are the most frequent while dash and string are least used. Pascal, finger, camel and 

scream are moderately used. 

Table 3.9 Results from Internet-based Survey  

 

 Type Observed Number Observed 

1 Under_score 55 

2 camelCase 22 

3 Da-sh 5 

4 Abbreviations 56 

5 PascalCasing 34 

6 Finger_Breaking_Underscore 24 

7 SCREEMING_UNDERSCORE 28 

8 Acronyms eg ID, UI, IO 47 

9 Dot eg hr.hire_date 40 

10 “string like this” 5 

11 others 4 

  320 
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Fig 3.35 Frequency of Occurrence of Various Patterns in Internet based Survey 

3.4.6 Analysis of Data from Database Authorship Surveys 
3.4.6.1 Classification of Naming Styles 

The analysis was done by formation of clusters. Three clusters emerged and these were; ‘highly 

preferred’, ‘averagely preferred’ and ‘least preferred’. These are summarized in the table 3.10, 

The ‘highly preferred’ cluster included underscore, abbreviation, Pascal and acronyms. The 

‘averagely preferred’ cluster contained dot and finger breaking naming styles while the ‘least 

preferred’ cluster contained dash and string naming styles. Training institutions ranked camel case 

style as average while development companies seldom prefer this style. On the other hand 

development firms rated the scream nomenclature as average while training institutions avoided 

teaching this type. Further a study of 320 randomly identified database schema object names was 

reviewed to identify other styles used. The preference of naming style was found to closely resemble 

that of training and software development firms surveyed. An algorithm that handles decoding all 

the ten styles would be preferred but preference would be in the styles in the first cluster. 

Table 3.10 Clustering of Preference Levels 
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3.4.6.2 Words Recreation Task 

Analysis was also done to assess the relationship between the ‘written form’ and the ‘meaning-

bearing phrases’ or recreated word form. This is analogous to answering the question, 

‘How can we decipher the meaning of ‘intended concepts’ from the corresponding schema names? 

Column, table and database names were extracted from the questionnaires and several databases 

sourced from the internet. As explained in section 3.4 words were recreated from ontology 

representations. The lexicon obtained for each representation was then recreated into probable 

phrase chunks. The size of the chunks was dependent on lexicalizations obtained from the ontology 

representations. Majority of the chunks were found to be formed by one, two or three words, which 

is consistent with the findings of section 3.3.11 that found the most probable number of words 

typically expressing a concept to be one, two or three. 

 An example is given next for illustrating how word recreation was carried out. Consider the 

ontology representation ‘titleOfCourtesy’. This is reconstructed to ‘title of courtesy’ and the process 

followed is that of inserting a space between lower case and upper case letters. The representation 

‘stud_ID’ is formed by two concatenated words ‘student and Identification’. The decoding process 

involves separation of the two probable lexeme abbreviations ‘stud’ and ‘ID’ and using a simple 

lexicon look-up mapping method to assign the meaning of the abbreviations. In this work a lexicon 

look-up approach was used because of the small size of the ontologies involved in the experiments. 

This task of recreating words and assigning them to probable phrase chunks was viewed as a 

semantic assignment task of the ontology data. The process of recreating the words was recorded and 

later analyzed for presence of general patterns which were coded into an algorithm discussed in 

 Category 

Cluster Type Training Institutions Development Firms Internet-based Firms 

Cluster 1: High Underscore/Abbrev/Pascal/ 
Acronyms 

Underscore/Abbrev/Pascal/ 
Acronyms 

Underscore/Abbrev/Dot/ 
Acronyms 

Cluster 2: Average Dot/ Finger/Camel Dot/Finger/ Scream Pascal/Finger/Camel/Scream 

Cluster 3: Least Dash/String/Scream Dash/String/Camel Dash/String 
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section 3.4.7. Words recreation process was found to be the reverse of the database objects naming 

methods identified in 3.4.5. For example ‘stud_ID’ is recreated to the full form, ‘student 

Identification’ whereas a table with a column intended for holding ‘students’ identities’ would be 

named in an abbreviated or shortened form say ‘stud_ID’. 

3.4.6.3 General Observations from Questionnaires 

Analysis was done on data collected for policy and personal preferences regarding the naming 

method of database objects. Several significant observations were made and are summarized as:  

1. Each database developer has some form of policy on naming procedure. These policies are 

not necessarily formalized and are usually not published but are evident from the names 

observed. 

2. Database developers rarely give names that do not have meaning. These meanings highly 

correlate with the intended concept. 

3. In a few cases, an abbreviation related to the object type is included. For example ‘tbl’ in 

‘tbl-tablename’ reflects that this is a table. This has an impact on deciphering the ‘intended’ 

concept. 

4. Some authors over-abbreviated or used un-recognizable abbreviations.  

5. Some acronyms required human intervention to decode.  

 

3.4.7 Ontology Words Reconstruction Algorithm (OWoRA) 

3.4.7.1 Description of OWoRA Algorithm 
  
The purpose of this algorithm is to extract concepts from an ontology and provide a list of concepts 

in the form of phrase chunks. Figure 3.36  illustrates the algorithm. 
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Fig 3.36 Ontology Words Reconstruction Algorithm (OWoRA) 

This algorithm takes in the ontology derived from a relational database as its input and gives out a 

list of concepts derived from the ontology. The ontology elements which contain the abbreviations 

or acronyms of concepts are decoded and the underlying semantics discovered through the processes 

described in 3.4.6. Once the concepts are extracted they are assembled into a gazetteer whose 

construction details appear in section 3.5.2  

 

1 function Words-Reconstruct(): 
2    function Elements-Scrapper(OWL ontology) List; 
3 L := List; 
4       S := Words in L; 
5      if under-score in S  load function under();// Takes care of  

underscore & Finger_Breaking 
6 if da-sh in S  load function dash(); 
7 if dot in S  load function dot(); 
8 function under(S): //similar for function dash()& function dot()except 

line 10 that is altered accordingly 
9          for t in S: 
10             if t is upper; //dash or dot 
11  Index(t); //Find position of t 
12  Split S at t  S1, S2, … Sn; 
13    If si > 1; 
14  stem S1, S2, … Sn  S1s, S2s, … Sns; 
15    Call Semantic_assigner(Sis);// lexicon lookup 
16  S1s, S2s, … Sns   W1, W2, … Wn;     
17    P  W1+W2+Wn // Phrase chunk 
18    Return P; 
19  if string in S  load function string(); 
20  function string(S):  
21      for ‘ “ ’ in S;  
22  convert string  list of S1, S2, … Sn; 
23  stem S1, S2, … Sn  S1s, S2s, … Sns; 
24  Call Semantic_assigner(Sis);// lexicon lookup 
25  S1s, S2s, … Sns   W1, W2, … Wn;     
26  P  W1+W2+Wn // Phrase chunk 
27  Return P; 
28 Else 
29    t:= Characters in S; 
30  If  ti & ti+1 is upper S  load function acronym(); 
31    Call Semantic_assigner(Sis);// lexicon lookup 
32    Return P; 
33  Else  load function abbrev() 
34    Call Semantic_assigner(Sis);// lexicon lookup 
35    Return P; 
36  end Words-Reconstruction. 

Function retrieves schema 
elements from ontology and 
forms a List 

Different functions handle various 
patterns found in the strings 

Split compound Strings & do Stem 

Identify lexicon & 
synonyms & form 
Associated concepts 
(Phrase chunks + other 
categories) 

 Return phrases 

 



Lawrence Muchemi-PhD Thesis 2014 

 

126 | P a g e  
 

3.4.7.2 Evaluation of the OWoRA Algorithm 
 
The aim of this evaluation process was to experimentally determine the efficacy of the words 

reconstruction algorithm described in 3.4.7.1. Schemas from the Microsoft’s Northwind_db as 

described in Table 4.2, and five other randomly selected databases published by Oracle (Oracle, 

2008) and Vertica Systems (Vertica Systems, 2011), namely human_resource_management_db, 

order_entry_db, retail_management_db, phone_db and stock_exchange_db described in appendix 10 

were used for analysis. 

Each database was subjected to the words recovery algorithm and the total number of column names 

positively identified noted. This number was then expressed as a percentage of the total number of 

columns. Table 3.11 provides a summary of the obtained results, 

Table 3.11 Evaluation Results of the Words Recovery Algorithm 

 

The average performance of this algorithm was found to be about 92.5%. Further to the above 

results, an analysis for establishing whether the reconstructed words had a correlation with the 

contents of respective columns was done. 

 
Database Name 

 
Number 

of 
Tables 

 
Total 

Number 
of 

Columns 

 
Number of 
Columns 
Identified 

Number 
of 

Columns 
NOT 

identified 

 
% 

Identified 

Abbreviations 
NOT 

Recognized 

HR_Db 7 36 36 0 100 none 
Order_Entry_Db 6 35 33 2 92 NLS 

(appearing 
twice) 

Retail_Management_Db 5 70 69 1 98 pos (point of 
sale) 

Phone_Company_Db 8 54 46 8 85 Key (instead 
of ID; appears 
8 times) 

Stock_Exchange_Db 7 60 48 12 80 Key (instead 
of ID; appears 
12 times) 

Microsoft_Northwind_Db 8 72 72 0 100 none 
 

Mean Accuracy 
 

92.5 
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It was found that in all the reconstructed words, there was a correlation between the semantics of the 

recreated words and the intended meaning (such as storing values with a meaning similar to the 

recreated words). For example a column with an original title ‘DoB’ or ‘dateOfBirth’ and which was 

decoded as ‘date of birth’ would contain various dates of birth for various records. 

In general the OWoRA algorithm is suitable for reconstructing words from database schemas where 

users have no knowledge of the nomenclature of the database elements. It is however assumed that 

the nomenclature employed belongs to one of the ten most prevalent styles identified in this 

research. However in certain situations, the user of the database access software may have the 

opportunity to specify the nomenclature of the database elements or the database developer may 

explicitly provide the naming style adopted for a particular application. In these cases, the words 

extraction algorithm may be altered to a case-base structure where specific procedures, such as 

function under(),dash(),dot()among others as described in the OwoRA algorithm, are 

individually loaded depending on the nomenclature specified. This may serve to enhance the 

efficiency in such applications.  

In summary this field study established that there is a finite set of patterns that database schema 

authors’ use in representing database schema object names. It has been established that although 

most database management systems allow many different nomenclatures, only about ten categories 

are dominant which were grouped into three clusters as earlier described. The ten categories formed 

the basis for the word reconstruction algorithm described in figure 3.36.  

It was also found that there is correlation between the semantics of the recreated words and the 

meaning of the ontology’s written-form.  It was also established that the accuracy of the of words 

recovery algorithm was 92.5 %. Failure to reach the 100%  mark was as a result of the usage of 

unidentifiable acronyms and abbreviations. Further, some abbreviations do not relate to the word 

forms that would ordinarily be used to represent the words. These require human intervention while 

decoding and therefore making gazetteer formation a human assisted process. Although other 

reviewed gazetteer formation processes are human-assisted, their accuracy levels were not reported 

and therefore difficult to provide a comparative analysis. 

Baseline algorithms are not readily available because most algorithms assume that the ontology 

contains entries that have full unabbreviated lexicon as opposed to concatenations of schema data in 
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relational databases. Other ontology inspired methods such as semantic web solutions do not suffer 

from this problem and ontology entries are matched directly to NL. See work reported in Kaufmann, 

Berstein & Fischer (2007), Munir, Odeh & McClatchey, (2008), Tablan, Damljanovic & Bontchev, 

(2008). 

3.5 FSM and Gazetteer Design 
 
The conceptual OCM model illustrated in figure 3.1 and 3.2 envisages a feature space model (FSM) 

and gazetteer model. The design of these key components was guided by literature analysis and was 

tested by building these into the OCM prototype. The position of the two schemas in the conversion 

process is shown in figure 3.37. 

 

 

Fig. 3.37 Concepts Processing 

Section 3.5.1 describes the structures of these two schemas, the feature space model and the 

gazetteer. 

3.5.1 Feature Space Model (FSM) 

As envisaged in the conceptual model NLQs are normalized, tokenized, lemmatized, stemmed and 

tagged with parts of speech. This is further followed by phrase formation, collocations and terms 

discovery in the same module. A challenge arises in the design of a schema that holds these elements 

in a domain and language independent manner. The main decision to be made was determination of 

the types of linguistic features to be stored and how they are to be stored (schema). 

 

 

 

 

 

 

NLQ 
Relational Database 

Query Representation (using 
feature space model) 

Concepts Representation using resource 
description frame work (RDF) 

Matching Function 

Gazetteer 

Triples Assembly 
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In designing the FSM a consideration was made of the initial, intermediate and final linguistic 

components that needed to be stored. From the NL query processing framework presented in figure 

3.13 and the ontology elements processing algorithm presented in figure 3.36 the end products of 

both processes are meaning-bearing phrases that form the backbone of the SPaRQL query structure 

presented in section 3.3.10. Phrases from NLQ were stored in a feature space model while those 

from the ontology were stored in a gazetteer. Section 3.5.1 discusses the process used to design the 

feature space model while section 3.5.2 discusses the process of designing the gazetteer.  

 

3.5.1.1 Experimental Investigation of Root versus Stem on Performance 

 
FSM holds the phrase-chunks that need to match one or more of the gazetteer’s phrase chunks so 

that a concepts’ triple that is relevant to a user’s request is formed. In this work matching of the FSM 

and gazetteer elements was through basic string matching. Phrases may be stripped to the stem or to 

the root level before a matching function is applied. The root of a word is the primary lexical unit 

and carries the significant semantic content whereas a stem is part of a word where affixes are 

attached to give different meanings. Selection of either of these methods results in different 

performance rates. Recall is a performance measure that indicates the number of cases that the 

system is able to answer positively and should have been answered, while precision is the number of 

the positive cases answered having been expressed as a percentage of the total numer of queries 

answered. It is importat to maximize F-score, which is the harmonic mean of the precision and recall 

so that usability can be increased. 

A comparative experiment was therefore necessary to determine the approach with a better F-score 

and therefore recommend storage of the respective word form within the gazetteer and FSM. Two 

comparative experiments for each of the two case study languages were set up as follows. 

 

Experiment A (Stemming Vs. Root – English Queries) 

 
The OCM prototype whose detailed construction information is found in chapter 4 was constructed 

using the Lancaster stemmer (Paice, 1990) as the stemming tool. Another stemmer that was tested 

but not selected due to lower performance was the Porter’s Stemmer (Porter, 1980). In the 

experiments a test set comprising 30 randomly selected questions in the UoN Masters Programs 

Coordinator’s query set was used and the average recall value recorded.  
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A similar experiment was done but with the NLTK WordNet lemmatizer instead of the Lancaster 

stemmer. The average recall value was also recorded. 

Table 3.12 shows a comparison between the Wordnet lemmatizer found in NLTK and Lancaster 

stemmer. The WordNet lemmatizer only removes affixes if the resulting word is in its dictionary. 

Lemmatizers are a good choice when compiling the vocabulary of some texts and or a list of valid 

lemmas.  On the other hand stemmers truncate words according to some predefined algorithms such 

as those described in Paice (1990) or Porter (1980). 

 

 Table 3.12 Comparison of Stemmer and Lemmatizer 

 
In both the experiments performance was calculated using the following formula, 

Precison  =  tp/ tp+ fp 

Recall      =  tp/ tp+ fn 

Accuracy =  tp+tn/tp+fp+tn+fn 

F-score    = 2(Precision X Recall)/(Precision + Recall) 

 Method 
 Lancaster Stemmer WordNet Lemmatizer 
Query 
 (Original String 
is named Raw) 

raw = """DENNIS: Listen, strange women 
lying in ponds distributing swords is no 
basis for a system of government.  
Supreme executive power derives from a 
mandate from the masses, not from 
some farcical aquatic ceremony.""" 

raw = """DENNIS: Listen, strange women 
lying in ponds distributing swords is no 
basis for a system of government.  
Supreme executive power derives from a 
mandate from the masses, not from 
some farcical aquatic ceremony.""" 
 

Python code 
procedures 
used  

>>> tokens = nltk.word_tokenize(raw) 
>>> porter = nltk.PorterStemmer() 
>>> lancaster = nltk.LancasterStemmer() 
>>> [lancaster.stem(t) for t in tokens] 

>>> tokens = nltk.word_tokenize(raw) 
wnl = nltk.WordNetLemmatizer() 
>>> [wnl.lemmatize(t) for t in tokens] 

Typical Output ['den', ':', 'list', ',', 'strange', 'wom', 'lying', 
'in', 'pond', 'distribut', 'sword', 'is', 'no', 
'bas', 'for', 'a', 'system', 'of', 
'government.', 'suprem', 'execut', 'pow', 
'der', 'from', 'a', 'mand', 'from', 'the', 
'mass', ',', 'not', 'from', 'som', 'farc', 'aqu', 
'ceremony', '.'] 

['DENNIS', ':', 'Listen', ',', 'strange', 
'woman', 'lying', 'in', 'pond', 'distributing', 
'sword', 'is', 'no', 'basis', 'for', 'a', 'system', 
'of', 'government.', 'Supreme', 'executive', 
'power', 'derives', 'from', 'a', 'mandate', 
'from', 'the', 'mass', ',', 'not', 'from', 
'some', 'farcical', 'aquatic', 'ceremony', '.'] 

Remarks The stemmer truncates the words 
according to algorithm described in 
Paice(1990) 

The WordNet lemmatizer only removes 
affixes if the resulting word is in its 
dictionary. 
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Where tp and fp represent the true and false positives respectively and tn and fn represent the true 

and false negatives respectively 

The results are presented in table 3.13.  

 

Experiment B (Stemming Vs. Root – Kiswahili Queries) 

 
Similar experiments as in A above were done but the query set was changed to 30 randomly picked 

Kiswahili questions from the farmers’ query set. A Kiswahili lexical database (construction details 

provided in chapter 4) with stems was used and the average performance values recorded. The 

lemmas (root forms) database was then applied to the prototype and the same Kiswahili questions as 

above used.  

Here are examples of the resulting output from the lemmatization and stemming processes for 

Kiswahili queries.  

Surface form  Kuku wakitetemeka ni wagonjwa? (Are shivering chicken sick?) 

Lexical form  [kuku] [tetema] [ni] [mgonjwa] ( [are] [chicken] [shiver] [sick]) 

Stemmed form [kuku] [tetem-] [ni] [-gonj-] {prefixes: wa-ki- for tetem-; -eka for tetem-} 
 

The average performance was determined. The results are presented in table 3.13. 
 

Results and Analysis for Experiments on Root vs. Stem 

 
Table 3.12 illustrates that performance values are higher when using stem formation process than 

when using root formation process regardless of the language used. 

Table 3.13 Recall, Precision and F-Score Values for Root and Stem 

 

 
Language 

 
Method 

 
Recall 

 
Precision 

 
F-Score 

 
English 

Stem 
 

0.74 0.87 0.78 

Root 
 

0.60 0.79 0.69 

 
Swahili 

Stem 
 

0.68 0.83 0.77 

Root 
 

0.65 0.78 0.68 
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The results indicated that for the model to have higher recall value, stem formation would be a better 

intermediate process than lemmatization.  

As a result of this a decision of storing stemmed word forms was made, thus the FSM is designed to 

store stemmed word forms. 

 

3.5.1.2 Storing Linguistic Components beyond Nouns 
 

Concepts are more diverse than simple nouns and noun phrases as identified by Krishnamurthy & 

Mitchell, (2011). Studies for Kiswahili language have also revealed diverse patterns of term 

formations (Sewangi, 2001). Terms which include collocations represent concepts and therefore 

ought to be accounted for in the concepts discovery process and also storage. Furthermore nouns 

identification should include noun patterns such as those identified for Kiswahili by Ohly (1982) 

which include Norminalized verbs, Deverbative head with noun complement, Combination of nouns, 

Noun and adjectives, Nouns with –a connector and Nouns with –a connector and a nominalized 

verbs.  

Most state-of-the art NL access methods to ontologies rely on conversion of queries to tokens from 

which the tokens are assembled into what is commonly known as bag-of-words. A bag-of-words 

means a collection of tokens created from either the ontology or the NLQ and the tokens do not 

relate to each other. This is evident in systems such as NLP-Reduce (Kaufmann, Berstein, & Fischer, 

2007), Questio (Tablan, Damljanovic, & Bontchev, 2008), Freya (Damljanovic, Agatonovic, & 

Cunningham, 2010) among others. Tokens can be organized as phrases within a data structure after 

being extracted from texts through phrase-chunking procedures such as regular expressions. 

Considering that the NLQ and the ontology in this work are processed in methods stipulated in 

sections 3.3.9 and 3.4.7 which both result in phrase chunks, it would be desirable to store the phrase 

chunks as well. 

Figure 3.38 shows a typical segment of python code  that defines a noun-phrase chunk, 
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 Fig. 3.38 Python Code for describing patterns of Regular Expressions 

 

The effect on the performance occassioned by introduction of phrase chunks into the FSM schema 

needed to be established. A comparative experimental investigation was suitable for determining the 

difference in performance between the two scenarios, namely bag-of-words and bag-of-words with 

phrases. The phrases that were stored included noun-phrase chunks, prepositional phrases and 

collocation terms (through patterns identified in Sewangi 2000 and found in appendix 5). The 

performance measures used were recall and accuracy. The experiments were set as follows, 

 

Experiment A: Bag-of-Words vs. Concept Patterns –English Queries 
 

The OCM prototype was constructed with FSM holding bag-of-words. A test set comprising of 30 

randomly selected questions in the UoN Masters’ Programs Coordinator’s query set was used on the 

prototype and the average precision, recall and F-score values recorded.  

Similar experiments were done where the NLTK Phrase-Chunker was used to generate phrase 

chunks which were stored along with the tokens previously stored as bag-of-words. A detailed 

description of how the NLTK was configured is given in section 4.2.2.3. The average precision, 

recall and F-score values from these set-ups were recorded and are summarized in table 3.13. 

 

Experiment B: Bag-of-Words vs. Concept Patterns – Kiswahili Queries 
 

Similar experiments as in A above were done but the query set was changed to 30 randomly selected 

Kiswahili questions from the farmers’ query set. The NLTK tool and its RegExp libraries were used 

for these experiments. The average precision, recall and F-score values were determined when the 

FSM was designed to handle bag-of-words only and when extended to handle concepts in form of 

phrase chunks. The results were recorded and are summarized in table 3.14. 

patterns = """ 
       NP: {<DT|PP\$>?<JJ>*<NN>} 

{<NNP>+} 
{<NN>+} 
""“ 

NPChunker = nltk.RegexpParser(patterns) # create a chunk parser 
# NP is a noun phrase; DT is determiner, PP is possessive, JJ is 
adjective, NN is noun and NNP is a pronoun 
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Results for Experiments on Bag-of-Words vs. Concept Patterns English and Kiswahili Queries 

 
Table 3.14 shows that recall, precision and F-score values from the FSM built to hold both words 

and phrases is consistently higher regardless of the language used. 

 

Table 3.14 Recall, Precision and F-score Values for Bag-of-Words and Concept Patterns 

 

The results from these experiments indicated that the FSM built to hold both bag-of-words and 

concepts detected through patterns or regular phrase chunkers was a better choice for the OCM 

model. 

 

3.5.1.3 Other Linguistic Components to be Stored 

 
Analysis of the five query sets described in 3.3 showed that users occasionally use synonyms. 

Synonyms were observed for both objects and relationships (subject/object and verb). For example 

the predicates ‘I wish’, ‘I’d like’, ‘show me’, ‘are there’, ‘what is’, ‘who might offer’ etc. all refer to 

the same predicate, that is ‘list’. ‘Client’ and ‘customer’ objects or subjects refer to the same 

semantic category. Another observation made is the usage of hypernyms to refer to objects. For 

example ‘kuku’ (chicken) is a general term used to refer to ‘kuku wa mayai’ (layers) and ‘kuku wa 

nyama’ (broilers). If a query is posed on information on broilers, the general information on chicken 

should also be provided. 

 

 
Language 

 
FSM Contents 

 
Recall 

 
Precision 

 
F-Score 

 
English 

Bag-of-Words 
 

0.70 0.80 0.74 

Concept Patterns & 
Bag-of-Words 

 

0.74 0.90 0.81 

 
Swahili 

Bag-of-Words 
 

0.68 0.83 0.75 

Concept Patterns & 
Bag-of-Words 

 

0.77 0.88 0.82 
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Finally enumeratives (e.g. how many), superlatives (e.g. heavier than) and time enquiry (e.g. when) 

where found abundant within the five query sets. Since these words have more implications in terms 

of processing requirement in order to obtain the meaning, it was found necessary to annotate them if 

found within a query. A two level annotation was used. A one (‘1’) represents superior while a zero 

(‘0’) represents an inferior. For example in the sentence ‘John is younger than James’ the word 

younger is annotated with a ‘0’ and in the sentence ‘Blood is thicker than water’ thicker is annotated 

with ‘1’.  

 

3.5.1.4 Structure of FSM 

 

An illustrative example of the feature space model for the query, “Nipatie majina ya miji ambako 

wafanyikazi wanatoka?”, (Give me the names of cities where employees come from?) and the target 

database are shown in figures 3.12 and 3.13 respectively.   

 

 
Fig. 3.39 Feature Space Model for Query Representation 

 

 Word Processing PhraseChunk 

 
 
Basic 
Linguistic 
Features 

Sequence #  1 2 3 4 5 6 7 1 
 

2 3 

Surface Form Nipatie majina ya miji ambako wafanyikazi wanatoka Phrase
1 

  

Stem ~pati~ ~jina ya ~ji amba~ ~fanyikazi ~toka~ See 
note 1 

  

Synonyms ...   eneo; 
mahali 

      

Hypernyms2 
(general) 

....  ...  .... ...     

Hyponyms2 
(specific) 

.... ..... ....
. 

..... .... ....     

Tags POS 3 VB NN JJ NN PN NN VB - - - 

Extras4  
 
 

Superlative 
 

S 0 0 0 0 0 0 0    

Count  
C 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
 

  

 
NB:  

1. Phrase chunk is formed from stems on the left 
2. Hypernyms  is a more general reference eg musical instrument" is a hypernym of "guitar"; Hyponyms is a more 

specific term eg Dog is a hyponym of animal. 
3. POS tags denote: VB= Verb ; NN = Noun ;  JJ = Adjective ; PN = Pronoun 
4. Annotation of words in various categories eg word is superlative or not (‘1’ or ‘0’); Requests Counting or not (How 

many?)  
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3.5.2 Gazetteer Formation Process 

In traditional NLP applications, a gazetteer is a list of recognizable words or phrases that need to be 

compiled from a text. In this research the gazetteer was derived from an ontology derived from a 

relational database. As discussed in the literature, automatic discovery of mappings between 

ontology and RDBMS has been successful and many state-of-the-art tools developed. In this work 

the datamaster tool (Csongor, Martin, & Samson, 2009) was used. It was selected on the basis of its 

good performance and ease of integration with Protégé, the ontology building program that was used 

in this research.   

Section 3.4.7 presented an algorithm that was used to reconstruct words from the ontology. 

Typically all concepts within a database that may be of interest to a user should be recognized and 

subsequently stored in a gazetteer. The gazetteer needs to hold information about the concepts and 

also facilitate the matching function that operates between the FSM described in section 3.5.1 and 

the gazetteer. Figure 3.40 illustrates processes leading to the formation of the gazetteer 
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Fig. 3.40 Processes Leading to the Formation of Gazetteer 

The relation (or set of relations in a multi-relation database) is automatically mapped to an ontology. 

The ontology elements are then extracted and converted into a gazetteer such as the one shown in 

Fig 3.41. The class, property and instance names are first normalized using algorithms explained in 

 

 

  

 

 

 

 

 

 

EMPLOYEES 
 

EmployeeID* 
FirstName 
Title 
TitleOfCourtesy 
BirthDate 
Address 
……. 

 Table (Class) definition - employees 
<owl:Class rdf:about="&db;employees"> 
        <db:hasPrimaryKeyFields 
rdf:datatype="&xsd;string">EmployeeID</db:hasPrimaryKeyFields> 
        <db:isBridgeTable rdf:datatype="&xsd;boolean">false</db:isBridgeTable> 
    </owl:Class> 
Columns (Properties) Definition - FirstName 
<owl:DatatypeProperty rdf:about="&db;employees.FirstName"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="&db;employees"/> 
        <db:hasOrigColumnName 
rdf:datatype="&xsd;string">FirstName</db:hasOrigColumnName> 
        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:DatatypeProperty> 
Row Values (Instances) Definition - Lawrence 
<db:employees rdf:about="&db;employees_Instance_1"> 
        <db:employees.EmployeeID rdf:datatype="&xsd;int">1</db:employees.EmployeeID> 
        <db:employees.FirstName 
rdf:datatype="&xsd;string">Lawrence</db:employees.FirstName> 
        <db:employees.HireDate rdf:datatype="&xsd;date">2010-04-
18</db:employees.HireDate> 
        ……. 
    </db:employees> 

 

GAZETTEER 

Mappings ((Csongor, Martin, & Samson, 2009)) 

Words Reconstruction algorithm see Section 3.4.7 
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section 3.47. In cross lingual querying, translation is done at the gazetteer stage and hence the 

translations are also contained in the gazetteer. 

Fig. 3.41 Structure of Gazetteer with Sample Data 

3.6 The OCM Architectural Model  

 
In this section the architectural model is presented. The purpose of the architectural model is to 

direct attention at an appropriate decomposition of the system without delving into details. In the 

architecture illustrated in figure 3.15. the system accepts the user input in the form of a full 

unrestrained sentence or key phrases and words.  Raw text is subjected to linguistic processing that 

Ontology 
Concept 

Normalized Stem Translation 

(Google Translate 

Corrected 
Manual 

Translation 

Stem of 
Translation 

TYPE 

Address address address mitaani* anuani anuani Property 

BirthDate birth date Birth date tarehe ya kuzaliwa  - tarehe ya 
~za~ 

Property 

employeeId employee 
identification 

employ~ 
identif~ 

mfanyakazi 
kitambulisho 

- ~fanyakazi 
~tambu~ 

Property 

employees employees employ~ wafanyakazi - ~fanyakazi Class 

FirstName first name fist name jina kwanza - jina la 
kwanz~ 

Property 

title title title haki miliki* cheo cheo Property 

TitleOfCourtesy title of courtesy title of 
courtes~ 

haki ya cheo* cheo cha 
heshima 

cheo cha 
heshim~ 

Property 

Lawrence Lawrence Lawrence Lawrence - Lawrence Instance 

.......... ..........  .......... -   

customers Customers customer wateja - ~teja Class 

employees employees employ~ wafanyakazi - ~fanyakazi Class 

City city cit~ mji - ~ji Property 

CompanyName company name compan~ 
name 

jina la kampuni - jina la 
kampuni 

Property 
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involves tokenizing, stemming, POS tagging and phrase formation as earlier explained. On the other 

hand ontology elements relating to class and property names as well as instances are normalized and 

stemmed. 

.  

 
 

Fig. 3.42 Architecture for Ontology-based NL Access to DBs (ONLAD) 

 
3.7 The Algorithms 

3.7.1 Semantically Augmented Concepts Matching Approach(SACoMa)  

The matching function takes the FSM and Gazetteer as input and generates a set of concepts not 

necessarily arranged in any order. This process is re-illustrated in figure 3.43. 
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Fig. 3.43      Location of Matching Function in OCM Approach 

The concepts that match from the two representation schemas form the backbone of the generated 

SPaRQL query. As established from experimentation, a lexical-level keyword-based matching 

method with lemmatization and improved by stemming was selected. The Levenshtein algorithm 

calculates the least number of edit operations that are necessary to modify one string to obtain 

another string. Levenshtein algorithm, also called edit-distance was selected for calculating distance 

between the two strings that is, the query concept and the ontology concept.  

A zero edit distance means that only perfectly matching strings are identified. This means that the 

model returns few but accurate pairs thereby attaining high precision levels. Recall on the other hand 

is hampered. If the edit distance is increased, precision decreases but recall increases. The optimum 

edit gap needed to be established experimentally.  

The Python implementation of Levenshtein distance calculator used in this research was adopted 

from (Korokithakis, 2008) and is shown in figure 3.44. 

 

    NL           Relational Database 

 

 

 

 

 Ontology 

 

 Features Rep. Model  Gazetteer 

                     Matching_Function    

      SPaRQL Generator 
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Fig. 3.44   Python Implementation of Edit-Distance Calculation  

As observed from data collected from the surveys reported in 3.3 equivalent concepts in NLQ and 

ontology elements are at times represented by different strings and therefore concept matching goes 

beyond simple string matching. The Levenshtein algorithm was enhanced through techniques 

borrowed from ontology matching strategies specifically semantic-based strategy as explained in 

section 2.6.4. The Semantic matching strategy combines integration of lexicon-based matching with 

the meaning of the words. This means that words identified to be semantically equivalent but having 

different surface forms are matched based on this fact.  

For example the concept ‘jimbi amekomaa’ (mature cock) is semantically equivalent to ‘jogoo 

aliyekomaa’ (mature cockerel). This implies that jimbi should map to jogoo before Levenshtein 

mapping is applied. Semantic mapping was achieved through incorporation of a lexical database that 

included synonyms at the FSM before matching. For English queries Wordnet (Miller G. , 1995) was 

used while the Kiswahili lexical database whose construction is described in section 4.2.2.2 was 

used. This algorithm assumes that the lexical database is large enough and contains most synonyms 

of words.    

def levenshtein_distance(first, second): 
    """Find the Levenshtein distance between two strings.""" 
    if len(first) > len(second): 
        first, second = second, first 
    if len(second) == 0: 
        return len(first) 
    first_length = len(first) + 1 
    second_length = len(second) + 1 
    distance_matrix=[[0] * second_length for x in range(first_length)] 
    for i in range(first_length): 
       distance_matrix[i][0] = i 
    for j in range(second_length): 
       distance_matrix[0][j]=j 
    for i in xrange(1, first_length): 
        for j in range(1, second_length): 
            deletion = distance_matrix[i-1][j] + 1 
            insertion = distance_matrix[i][j-1] + 1 
            substitution = distance_matrix[i-1][j-1] 
            if first[i-1] != second[j-1]: 
                substitution += 1 
            distance_matrix[i][j]=min(insertion,deletion,substitution) 
    return distance_matrix[first_length-1][second_length-1] 
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3.7.2  Structured Query Generator Function 

The various ‘concepts’ generated by the matching function form a set of unordered strings. The 

query generator’s task is to organize these ‘concepts’ into a structured query.  

Section 3.3.9.4 identified that meaning-bearing components have a tri-partite relation which may be 

formed between the three primary components (subject, verb and object) or, any two of these 

components and a modifier (or an interrogative of either) or any of the primary components and its 

modifiers which may appear as phrases such as a prepositions. If any of these meaning bearing 

components (which are stored in FSM) matches that in the gazetteer, then they qualify to be included 

in the SPaRQL query. 

Section 3.3.10 described how triples of concepts are formed through the kernelization process. The 

query is reduced to a set of triples which collectively represent the original query meaning. The 

triples are of the format ?element1 ?element2  ?element3. An illustrative example of the 

query ‘What is the phone number of the customer whose ID is 1’ was provided. This resulted into 

two triples and a filter as shown below 

?customer ?phone_number  ?Variable1 
?customer ?id_number  ? Variable2 
 

The first element in the set is the one that corresponds to the table name while the second relates to 

the column name. The gazetteer which contains an annotation of the type of concept, whether class, 

property or instance, provides for the identification and assignment of these elements. 

These are the basic building blocks of the SPaRQL query. The query generator function organizes 

these into a full SPaRQL query by following templates such as the one shown in figure 3.45.  
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Fig. 3.45   Template of Query Generator Function 

The alias name (the word appearing after the key word ‘PREFIX’) is pulled directly from ontology 

descriptions. The attributes to be returned by the query (attributes appearing after SELECT keyword) 

are picked from the query’s triple set, where specifically the middle element (element2 in the 

triple) is selected. 

The triples body (appearing within WHERE clause) are formed by heaping the triple sets 

(“?element1 ?element2  ?element3”) 

In section 3.3.10 it was stated that when specific row values are mentioned, the user’s intention is to 

constrain the number of records (rows) returned. In SPaRQL this is achieved through the FILTER 

command. The general syntax for this is,  

FILTER (?Variable = "value") 

In the example query ‘What is the phone number of the customer whose ID is 1’ there is a mention of 

a specific row value (instance) and hence a FILTER clause is required. The additional clause then 

becomes, 

 FILTER (? id_number = "1") 

The full SPaRQL query is thus given as shown in figure 3.46. 

PREFIX alias_name: <http://www.URL#> 

SELECT  ?Attribute1 ?Attribute2……?AttributeN 

WHERE{ ?Subject db:Predicate ?Object. 

     ?Subject db:Predicate ?Object. 

     ?............................... 

 ?Subject db:Predicate ?Object. 

  

FILTER(?Attribute = object)} 

http://www.URL#


Lawrence Muchemi-PhD Thesis 2014 

 

144 | P a g e  
 

 

Fig. 3.46   Example of a Generated SPaRQL Query 

3.7.3 Discovering Implicit Concepts 

In order to demonstrate how implicit concepts are discovered a representative sample database, 

‘Northwind database’ by Microsoft group is presented in figure 3.47. 

                        

 
Fig. 3.47   Example from Microsoft Northwind Sample DB (Microsoft, 2004) 

 

PREFIX moon: <http://www.owl-ontologies.com/NewNorthwind#> 

SELECT  ?orderID ?CustomerID ?CompanyName ?shipDate 

WHERE{ ?orders db:OrderID ?OrderID. 

     ?customers db:CustomerID ?CustomerID. 

     ?orders db:CustomerID ?CustomerID. 

 ?customers db:CompanyName ?CompanyName. 

 ?orders db:OrderID ?orderID. 

 ?orders db:ShippedDate ?shipDate 

FILTER(?CustomerID = 1)} 

 

SUPPLIERS 
SupplierID* 
CompanyName 
ContactName 
ContactTitle 
Address 
City 
Region 
PostalCode 
Country 
Phone 
Fax 

CATEGORIES 
CategoryID* 
CategoryName 
Description 
Picture 

EMPLOYEES 
EmployeeID* 
LastName 
Title 
TitleOfCourtesy 
BirthDate 
Hiredate 
Address 

PRODUCTS 
ProductId* 
ProductName 
SupplierID 
CategoryID 
QuantityPerUnit 
UnitPrice 
UnitsInStock 
UnitsOnOrder 
ReorderLevel 

CUSTOMERS 
CompanyName
* 
ContactName 
ContactTitle 
Address 
City 
Region 
PostalCode 
Country 

ORDER DETAILS 
OrderID* 
ProductID* 
UnitPrice 
Quantity 
Discount 

ORDERS 
OrderID* 
CustomerID 
EmployeeID 
OrderDate 
RequiredDate 
ShippedDate 
ShipperID 
ShipVia 
Freight 
ShipName 
ShipAddress 
ShipCity 
ShipRegion 
ShipPostalCod
e 

SHIPPERS 
ShipperID* 
companyName 
Phone 

http://www.owl-ontologies.com/NewNorthwind#
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The above database shows a certain company’s database where the company keeps an inventory of 

its customers, suppliers and the products they sell. Further the customers can make orders which can 

be transported by shippers whose information is also kept in the database. All information regarding 

to employees is also maintained.  

The examples so far used are all explicit in that they have direct mentions of properties or classes. In 

other scenarios there is no direct mention but implied concepts in a rather implicit manner. The 

model provides for this implicit concepts-discovery by performing simple inference. 

 

Consider this illustrative Example. 

 
In this case the following happens; 

‘Bottles’ is stripped to ‘bottle’ which in turn maps to instance ‘bottled’ which is found within the 

ontology as an instance. 

Since Bottled has been tagged in the Gazetteer as an instance of categories class through data type 

property Description, we discover two additional ontology concepts that is, 

Categories class and 

Description property 

The triple becomes 

The FILTER is necessary  for instantiating a class’s property value and is applied where there is 

direct mention of an instance such as ‘bottle’ in this example. 

Interrogatives 

Further the query has an interrogative of type “which” that suggests an identification problem. By 

default we return instances of classes with properties related to identification of the class; that is 

name, identification or both if present  in that particular class. 

Hence the triples would be: 

 

Sw: Bidhaa gani ambazo huja kwa chupa? 

{En: Which products come in bottles?”} 

?categories   db: categories.description  ?description 

  FILTER(?description = “bottled”) 

?products db: products.ProductID ?ProductID. 

?products db: products.ProductName?ProductName 
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3.7.4 Key Attributes (Foreign Key) 

When dealing with two classes related via a foreign key a heuristic was developed. This is stated as 

follows, “when two tables are involved in reply to a query, we introduce two triples one from each 

participating class and both having the common property”. 

In the example we have: 

 

This heuristic was validated by way of analyzing 20 queries that would require the answer to be 

generated from at least two tables. The heuristic was applied and the two possible triple sets 

generated manually. The two triples were then assessed for the type of answer they would jointly 

generate when applied to an OWL database and the results verified against the expected correct 

result. In all the cases selected for analysis, the heuristic was found to hold true. Some sample results 

are found in appendix 11. 

 

3.7.5 Triples Assembly 

Figure 3.48 shows the sets of triples obtained from the simple statement “which products come in 

bottles?” 

  
Fig. 3.48   SPaRQL Query that handles Implicit Concepts and Foreign Keys 

 

A further point to note is that in database ontologies it is preferable to use both class and property 

names so as to minimize ambiguity in case multiple classes are using similar property names as in 

the example customer’s phone and supplier’s phone. 

 

?products db: products.CategoryID ?CategoryID. 

?categories db: products.CategoryId ?CategoryID. 

{ ?products db: products.ProductID ?ProductID. 

    ?products db: products.ProductName?ProductName. 

    ?products db: products.CategoryID ?CategoryID. 

    ?categories db: categories.CategoryId ?CategoryID. 

    ?categories db: categories.Description ?Description. 

 FILTER( ?Description = "bottled") } 
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3.7.6 Overall Algorithm 

The processes described in this chapter were summarized into a high level algorithm which is 
presented in figure 3.49. 

 

Fig. 3.49 The Overall OCM Algorithm  

 

3.8 Prototype and Resources Used 

Availability of open source semantic web resources such as Protégé, Jena, and Sesame that edit and 

store ontologies as well as open source DB-ontology link tools such as Datamaster (Csongor, Martin, 

& Samson, 2009) of Stanford University have greatly informed the prototype development activities 

carried out in this research.  

 

3.8.1  Prototype Overview 

An overview of the main processes within the prototype and software used is illustrated in figure 

3.50. 

The OCM Algorithm 
 
1. Assemble tokens list (words and phrases) 
2. Comprehend ontology-strange terms (those without a lexical 

match in the ontology) that may be synonyms, hypernyms, 
hyponyms or even known jargon 

3. Assemble List of Concepts (Tokens which match ontology 
elements) 

- Explicit concepts 
- Implicit concepts 
- Concepts include matches to object and datatype properties, 
classes, instances, rdfs:labels, rdfs:comments  and special 
categories (superlatives and enumeratives). 

4. Assemble Triples 
- Determining participating relations along with Primary and 

Foreign keys 
 -Identify User required properties and constraining instances 

and their related properties (Filters) 
5. Assemble SPARQL Query 
- Progressively heap relevant triples until exhausted from 
user input 

6. Execute the query on the Protégé reasoner. 
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Fig. 3.50 Structural Design of Prototype 

 

3.8.2 Resources  

Figure 3.50 shows the main modules labeled A to F and whose purpose is described shortly. 
 

3.8.2.1 Module A: Bilingual List for Cross-lingual Solution  

In the model presented in section 3.6 and prototype shown in figure 3.50 it can be seen that if the 

language of querying is different from the language of naming database schema objects then 

translation is needed. This is the cross-lingual problem that the model has to grapple with. 

Translation may occur immediately after the NL input or during the gazetteer formation as a pre-

process. Experiments were carried out to find which of these two stages gives better results 

(translation experiments on figure 3.50). Further three approaches to translation were experimented 

 Swahili /English NL 
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on. These are dictionary-based methods in which Carabao11 tool was used, transfer method in which 

Apertium12 tool, was used and statistical machine translation in which Google Translate13 was used. 

A Dictionary based method where a bilingual word list was created and used was selected. This 

decision was arrived at on the basis of less configuration work and better performance recorded 

during test runs. 

3.8.2.2 Module B: Linguistic Processing 

The linguistic processing module was developed as a composite of many python sub-modules and 

was implemented using the natural language tool kit, NLTK14. It has several sub-modules that 

perform various functions for English and Kiswahili language such as normalizing, tokenizing, 

lemmatizing/stemming and POS Tagging, noun phrase chunking and noun entity/collocation 

identified. The module has access to several linguistic resources such as WordNet (Miller G. , 1995) 

and the Lancaster Stemmer15 (Paice, 1990) for English which easily integrate with NLTK. 

For ease of performing the experiments the modules were organized in a pipeline referred to as the 

test bed. A language selector module was implemented as the start point of the pipeline.  

a) Language Detection 

Several methodologies for implementing the language detection module that can be integrated with 

NLTK’s python code are available. These include stop-words frequency model, bi-gram and tri-

gram frequency models among others. For a model whose expected input is a single sentence or just 

key words, the stop-words frequency model would not be suitable. On a trial bases the tri-gram 

model was found to perform better compared to bi-gram or other N-gram models and was therefore 

selected for implementation.  

The procedure involved creating a list of trigrams from training texts for both English and Kiswahili. 

The probability distribution models for the trigrams (also known as language models) for the various 

languages (English and Kiswahili) were generated. The python code used was adopted from an open 

source forum on language identification in python by Cavar (2011) namely lidtrainer.py. The 
                                                             
11 Carabao  is a completely open machine translation toolkit. It allows creation of your own machine translation interlingua-modeled databases and 
using them on-the-fly. See http://www.uuucom.com/carabao-diy-machine-translation-kit-downloads-18340.html 
12 Apertium is a free/open-source machine translation platform, initially aimed at related-language pairs but recently expanded to deal with more 
divergent language pairs. See http://www.apertium.org/?id=whatisapertium 
13 Google Translate is a free translation service that provides instant translations between 64 different languages. See http://translate.google.com/ 
14 NLTK is a platform for building Python programs to work with human language data. And can be accessed at  http://nltk.org/ 
15 For the code see http://nltk.googlecode.com/svn/trunk/doc/api/nltk.stem.lancaster-pysrc.html#LancasterStemmer 

http://www.uuucom.com/carabao-diy-machine-translation-kit-downloads-18340.html
http://www.apertium.org/?id=whatisapertium
http://translate.google.com/
http://nltk.org/
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.stem.lancaster-pysrc.html#LancasterStemmer
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frequency of each trigram is the number of times it appears divided the total number of trigrams. The 

frequency is calculated for each trigram and then the trigrams are sorted according to the frequency 

in the training model. In order to determine the language model of the target text, the text is 

subjected to the module that determines the models and then calculates the distance between the two 

language models. The code that was used was adopted from Cavar (2011) and is called the lid.py. 

The distance between the two language models is obtained by getting the modulus of the difference 

between the probability of trigram in the training model and the target model and summing these up 

for all the trigrams in the target language model. The language model with the least distance is 

declared the identified language. 

b) Normalizing and Tokenizing 

Language detection is followed by a pre-process activity that involves normalizing and tokenizing 

with a view of standardizing all input texts to prepare them for further processing. Since normalizing 

and tokenizing are language independent a standard python routine was implemented. NLTK has a 

standard tokenizer but requires additional facilities for normalizing. The tool was enhanced by 

ensuring that it can recognize non-standard words like numbers, abbreviations and dates and convert 

them accordingly. 

c) Lemmatization and Stemming 

NLTK is integrated with several English Lemmatizing and Stemming tools. Two most used 

stemmers namely the Porter (Porter, Robertson, & Rijsbergen, 1980) and the Lancaster stemmers 

(Paice, 1990) were tried out. The Lancaster stemmer gave better results and therefore was selected. 

WordNet is the default lemmatizing tool for NLTK and was selected for the pipeline. WordNet 

lemmatizer uses the WordNet database to lookup lemmas. Lemmas differ from stems in that a 

lemma is a dictionary word, while a stem is a surface word less the affixes and not necessarily in the 

dictionary.  

Kiswahili does not have readily available lemmatizing and stemming. As a result of this, a 

lemmatizer and a stemmer were developed for use in the prototype. Two widely quoted approaches 

in literature are data-driven methods such as the 'Memory-Based Kiswahili Morphological Analyzer' 

(MBSMA16) reported by De Pauw and Schryver (2008) and finite state transducers on two levels 

                                                             
16 A demonstration system for the MBSMA-s system can be found on the AfLaT website http://aflat.org/?q=node/241). 

http://aflat.org/?q=node/241).
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such as SWATWOL (Hurskainen A. , 1992). These approaches perform morphological analysis and 

also give base form words that is, the lemmas. Another approach is the dictionary based approach. 

This approach has been used for the WordNet (Miller G. , 1995) lemmatizer where it uses a database 

to lookup for lemmas. For a limited experimental usage such as testing sample Kiswahili input 

sentences as is the case with the prototype being developed a look-up database was sufficient. 

Information from Helsinki Corpus of Kiswahili, HCS (Hurskainen A. , 2004) and the Kiswahili-

English Dictionary by Institute of Kiswahili Research, University of Dar es Salaam (TUKI, 2000) 

which already contains Kiswahili lemma and lexical categories (POS) were used to construct a 

Kiswahili lexical database. HCS is a corpus with over twelve and half million words and was 

annotated using SALAMA (Hurskainen A. , 1999) which is a language manager that performs 

morphological analysis among other tasks. Only a small section of the HCS was used specifically 

‘Alasiri’ genre whose origin was newspaper/magazine articles. 

 A section of the corpus is shown in figure 4.4. 

          

 

 

Fig 3.51 Structure of HCS Showing Lemma, Part-of-speech Label, Translation among others 

 

The structure of the Kiswahili-English dictionary (TUKI, 2000) is illustrated in figure 3.52. It shows 

how lemma, parts of speech the translation among others are represented in the dictionary. The 

electronic version was available.  

<s> 

            <w lemma="mshindi" type="N" msd="CAP 1/2-SG DER:verb (shinda)" trans="winner">Mshindi</w> 

            <w lemma="wa" type="GEN-CON" msd="1/2-SG">wa</w> 

            <w lemma="tatu" type="NUM" msd="NUM-INFL ORD" trans="third">tatu</w> 

            <w lemma="katika" type="PREP" trans="in , at">katika</w> 

            <w lemma="kinyang'anyiro" type="N" msd="7/8-SG DER:o" trans="stiff competition">kinyang'anyiro</w> 

            <w lemma="hicho" type="PRON" msd="DEM :hV ASS-OBJ 7/8-SG" trans="this">hicho</w> 

            <w lemma="ni" type="DEF-V:ni" trans="be">ni</w> 

            <w lemma="taus" type="PROPNAME" msd="&amp;lt;CAP&gt; &amp;lt;Heur&gt; SG">Taus</w> 

            <w lemma="Abdallah" type="PROPNAME" sem="AN HUM">Abdallah</w> 

          <s> 
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Fig 3.52 Structure of Swa-Eng TUKI Dictionary Showing Lemma, Pos Labels and Translation 

 

d) POS Tagging 

The objective was to develop a part of speech tagger which handles the input statements. NLTK tool 

comes with several taggers. These taggers require to be trained on one of the corpora that comes 

with NLTK and that has part of speech tags. The unigram tagger for example tags each word by 

checking what the most frequent tag for the word is in a training corpus. There are approximately 38 

sets of corpora that can be loaded onto NLTK and that one can choose from and includes such 

corpora as conll2000, brown, Stop words, NPS Chat, Universal Declaration of Human Rights 

Corpora among others. The main part of speech taggers integrate with NLTK include unigram, 

bigram, trigram, Regexp, affix, brill and hidden Markov model taggers. 

Various taggers were tested on selected corpora. The Brill tagger having been tested on the brown 

corpus was selected for English inputs. The Brill tagger uses an initial unigram tagger and a set of 

templates usually ten. The training procedure involves importing the Brill tagger and running an 

initial tagger in this case the unigram tagger, and then improving the tagging by applying a list of 

transformation rules. These transformation rules are automatically learned from the training corpus, 

based on one or more rule templates. Training the Brill tagger is carried out via few steps illustrated 

in figure 3.53. 

The tagger statistically computes the tag of each word, and then improves on the mistakes through 

the help of learning rules. In this way the Brill tagger successively transforms through rules an 

incorrect tagging of a word into a better one. Bird et al. (2008) explains that as with n-gram tagging, 

Brill tagger is a supervised learning method, since it requires annotated training data to figure out 

bingwa nm & kv ma- [a-/wa-] 1 specialist, adept, consultant, expert: ~ wa uchumi wa Afrika specialist in African economy. 2 
clever person, (michezo) champion, (sio rasmi) dab-hand: Kijana huyu ni ~ this youngman is very clever.  

bingwa tapeli nm ma- [a-/wa-] quack, conman. 

bin.i kt [ele] forge, counterfeit. (tde) binia, (tden) biniana, (tdew) biniwa; (tdk) binika; (tds) binisha. 

binti pia biti nm ma- [a-/wa-] daughter, miss, girl, young lady: ~ Juma Juma's daughter. 

binu.a kt [ele] protrude. (tde) binulia, (tdew)  
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whether the tagger's guess is a mistake or not. But unlike n-gram tagging, it does not count 

observations but compiles a list of transformational correction rules. 

 

Fig 3.53 Training and Evaluation of Part of Speech Taggers 

 

The Kiswahili POS tagger was also developed in a similar way as explained in figure 3.52 and 

preceding section. The Kiswahili corpus comprising of lemmas and part of speech tags was 

generated as a .txt file from the HCS corpus which is an xml file. The performance of the tagger was 

lower compared to the Data-Driven Part-of-Speech Tagger for Kiswahili (De Pauw, Schryver, & 

Wagacha, 2006)  which is reported to have an accuracy of 98.6% against 82.6% for the combined 

Brill and unigram tagger. The Data-Driven Part-of-Speech Tagger was not available online nor other 

taggers such as the SWATWOL (Hurskainen A. , 1992) and Morfessor (Creutz, Lagus, Linden, & 

Virpioja, 2005), hence the decision to use the combined Brill and unigram tagger. 

3.8.2.1 Module C: Concepts Generation 

a) Candidate Concepts Generation (Concepts Modeling) 

A term is a word or group of words used in a communicative setting to represent a concept within a 

domain. A term represents one concept within a domain. A term consisting of one or more words 

and can be categorized as a compound term or a term collocation. A Collocation is a sequence of 

 

 

 

 

 

>>> brown_tagged_sents = brown.tagged_sents(categories='news') // obtain a set of tagged sentences 
from brown corpus in the ‘news’ genre  

>>> size = int(len(brown_tagged_sents) * 0.9)// obtain total length of the tagged sentences 

>>> train_sents = brown_tagged_sents[:size]// define that from start of tagged sentences to the 90% mark, the 
sentences will be used for training 

>>> test_sents = brown_tagged_sents[size:]// define that from 90% mark to the end of tagged sentences will 
be used for training 

>>> unigram_tagger = nltk.UnigramTagger(train_sents)// Define a unigram tagger and initialize with the 
pre-defined training sentences 

>>> unigram_tagger.evaluate(test_sents)// Evaluate the unigram tagger… just to be sure that its working ok 

>>> trainer = FastBrillTaggerTrainer(initial_tagger=unigram, templates=templates, 
trace=3, deterministic=True) 
>>> brill_tagger = trainer.train(train_sents, max_rules=10)// define the brill tagger // Train brill 
tagger and run it. 
>>> print 'Accuracy: %4.1f%%' % (100.0 * nltk.tag.accuracy(brill_tagger, test_sents)) 
Accuracy: 82.6% 
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words or terms that co-occur more often than would be expected by chance. A phrase is used to refer 

to a building block of a sentence and so has a grammatical significance in a sentence. A multi-word 

phrase is a word group held tightly together by meaning relationships.  A phrase is built around a 

head word (Noun, Verb, Adjective, Adverb, and Preposition) and may also have several modifiers in 

it. Modifiers are expressions that add details of meaning to the head word.  

Phrase and terms generation from text relies on theories of chunking which are well established. The 

most dominant approaches include rule based methods and data-driven methods. Rule-based 

approaches use regular expressions while some of the successful machine learning methods include 

SVM-based chunkers such as YamCha17, chunking using transformation-based learning such as the 

java oriented Greenwood’s chunker18 and the C++ oriented fnTBL19 chunker and the NLTK 

chunkers. The default NLTK chunker is a classifier based chunker trained on the ACE corpus 

(Django Project, 2011). It recognizes noun phrases and named entities, such as locations, names, 

organizations, and only work well with an English tagger. NLTK also allows for definition and 

execution of either a machine learning based chunker or a regular expression chunker. Studies for 

Kiswahili text chunking have not been widely documented. The main challenge in machine learning 

chunking is in the creation of I-O-B tagged data if it does not exist, whereas the main challenge in 

regular expression based implementation is in the study and discovery of these patterns which is a 

manual task.  

In the methodology applied for this work the NLTK machine learning chunker was selected for 

English texts on the basis of its performance and the fact that it can easily be linked to other python 

implemented modules. Data that is already PoS tagged and annotated with I-O-B tags for English is 

available. PoS and I-O-B tagged CoNLL 2000 corpus was used for training. The CoNLL 2000 

corpus contains 270,000 words from the Wall Street Journal text and is already divided into training 

and testing portions. 

In training the classifier-based machine learning chunking a four stage process was used.  

                                                             
17 YamCha (Yet another multi-purpose Chunk annotator)is a generic, customizable, and open source text chunker oriented toward a lot of NLP tasks, 
such as POS tagging, Named Entity Recognition, base NP chunking, and Text Chunking and can be found at 
http://www.chasen.org/~taku/software/yamcha/ 
18 GATE framework linkable chunker done at University of Sheffield. Details found at 
http://www.dcs.shef.ac.uk/~mark/index.html?http://www.dcs.shef.ac.uk/~mark/phd/software/chunker.html 
19 A fast and flexible implementation of Transformation-Based Learning in C++. Includes a POS tagger, but also NP chunking and general chunking 
models.  Found at nlp.cs.jhu.edu/~rflorian/fntbl/ 

http://www.chasen.org/~taku/software/yamcha/
http://www.dcs.shef.ac.uk/~mark/index.html?http://www.dcs.shef.ac.uk/~mark/phd/software/chunker.html
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 The first stage involved a PoS tagger in which part of speech tags are assigned to a sentence. 

The result of this first stage is a list of tokens within a sentence that has PoS tags. The PoS 

tagged sentence forms the input of the next stage and that is chunk tagging.  

 The PoS tagged sentences are further annotated with I-O-B tags by the help of a chunk-

tagger. I-O-B tags specify if a particular token is inside, outside or at the beginning of a 

chunk. For example the sentence ‘ Nipe alama za mwanafunzi aitwae Julius’ (Give me the 

marks of a student called Julius) can be broken down into several noun phrases such as 

‘alama za mwanafunzi’(the marks of a student ). ‘alama’ can be labeled ‘B’ because it 

appears at the beginning of the noun phrase, ‘za’ appears inside the phrase and therefore is 

labeled ‘I’ while ‘Nipe’ is outside the phrase and is labeled ‘O’. The various PoS tagged 

tokens within a sentence are annotated with the I-O-B tags by the chunk-tagger. 

  The third stage was to convert these PoS and I-O-B tagged sentences into a chunk tree which 

is done by the chunk-parser.  

 The fourth stage involved conversion of the chunk tree into actual chunks and this is done by 

an extractor. A tree traversal function for extracting NP-chunks in the parsed tree was 

defined and used to extract all n-gram chunks. Segments of the python code used for training 

and testing the English-text chunk parser and extractor are shown in appendix 4. 

 

On the other hand Kiswahili does not have readily available I-O-B tagged data and an attempt to 

develop an I-O-B tagged corpus would require significant man-hours. However, Kiswahili has well 

documented regular patterns of noun-phrases which are presented by Ohly (1982) and recast by 

Sewangi (2001) as shown in figure 3.54 and term patterns. The phrase patterns are generalizable to 

many domains because they are common grammatical phrases. Another study done on patterns 

(Sewangi, 2001) sought to obtain term patterns in specific domains. It was demonstrated that term 

patterns are formed by words that function as members of a subcategory of the major categories. For 

example, the noun term and verbal noun act as subcategories of noun and verb major categories 

respectively. The study unearthed term patterns in two domains specifically health-care and 

literature domains. Though the patterns are domain specific one can obtain common templates that 

can be applied across domains. 
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Fig. 3.54 Regular Patterns of Noun-phrases (Source: Sewangi, 2001) 

 

The methodology applied in this study involved applying the common multi-word terms’ regular 

expressions (see appendix 5). These templates and the Ohly phrase templates were used as regular 

expressions in phrase chunking. These were applied to the NLTK RegExp chunker as its regular 

expressions as shown in appendix 6. 

 

b)  Concepts Pruning and Feature Space Model Construction 

The noun-phrases and terms generated from the section above are likely to be over generated 

especially due to the use of templates. Some phrases do not make semantic sense with respect to 

underlying concepts and therefore they need to be eliminated. The triples are pruned by eliminating 

triples not based on the composed semantic ontology of the database as these are less likely to yield 

results and ultimately assembled as SPARQL20. The Feature Space Model structure is described in 

section 3.3.2. It was implemented as an array using python. 

3.8.2.2 Module D, E, F: Database, RDF Framework and OCM Tools 

Module D was implemented using WampServer21 that consists of php, MySQL, and apache while 

module E was implemented using Protégé22, Datamaster and the protégé’s native RDF Reasoner. 

Module F whose components design was explained in section 3.3.2 through 3.6.2 were implemented 

as python functions.   
                                                             
20 SPARQL is a structured query language that can query RDF sources. See tutorial at http://www.w3.org/TR/rdf-SPaRQL-query/ and 
http://www.xml.com/pub/a/2005/11/16/introducing-SPaRQL-querying-semantic-web-tutorial.html?page=1 
21 WampServer: It allows you to create web applications with Apache2, PHP and a MySQL database. Alongside, PhpMyAdmin allows you to manage 
easily databases. See athttp://www.wampserver.com/en/ 
22 A free open-source Java tool providing an extensible architecture for the creation of customized knowledge-based applications. See 
protege.stanford.edu/ 

http://www.w3.org/TR/rdf-SPaRQL-query/
http://www.xml.com/pub/a/2005/11/16/introducing-SPaRQL-querying-semantic-web-tutorial.html?page=1
http://www.wampserver.com/en/
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3.9 Chapter Summary 

This chapter has presented details of research activities leading to the design of the Ontology 

Concept Model (OCM). In particular it has detailed the activities of several case studies aiming at 

linguistic characterization of NLQs for both Kiswahili and English and a study of nomenclature 

trends of database elements’. Table 3.15 shows a summary of the research objectives, how each 

objective was addressed and the main components that informed the resulting OCM model that is to 

be evaluated in chapter 4. 

Table 3.15 Summary of Objectives, Methods and Components Developed 

Research Objective How Addressed Main Components Developed 

Develop a suitable 
language and domain 
independ. methodology 

Design of conceptual framework The OCM Conceptual framework 
found in section 3.1. 

Design an architectural 

model and algorithms 
Case study for concepts discovery process Explicit and implicit concepts 

algorithms and heuristics 

Modeling Query Semantics Transfer 
Process (NLQ  DSF SPaRQL) 

QuSeT model 

Modeling of Feature Space schema FSM 

Case study for deciphering meanings from 
Schema Data 

Common nomenclature patterns 

Modelling ‘Concepts Re-construction’ OWoRA 

Design of data structures for schema data   Gazetteer 

Design of Concepts Mapping Algorithm SaCOMA 

Design of Structured Query-Generator 
function 

Structured Query-Generator 
function 

Design of MAIN Algorithms & Heuristics The OCM Algorithm 

Assembly of Components to form OCM-
based Architectural Model 

Architecture for Ontology-ased 
NL-Access to DBs (ONLAD) 

Evaluation Development of Prototype Test bed; OCM-based protype 

  

In summary results from these two studies gave rise to two important contributions namely a 

semantics transfer (QuSeT) model based on generative-transformation grammar and an ontology 

words reconstruction algorithm (OWoRA). The semantics transfer framework exploits kernelization 

procedures to express an NLQ into its constituent chunk phrases and presents these as triples of 

semantic bearing components. It was also shown how these triples are modeled into SPaRQL queries 
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that access ontologies build from relational databases.  The chapter also highlighted the procedures 

of designing two schemata, that is an FSM and a gazetteer as well as a Semantically Augmented 

Concepts Matching Approach (SACoMa) which are crucial components of the OCM. Other 

procedures presented included implicit concepts discovery, foreign keys handling, triples assembly, 

structured query generation and the overall OCM algorithm. The last section of the chapter dedicated 

itself to prototype development activities. 

The next chapter explains the experiments that were used in evaluating the OCM model described in 

this chapter as well as the results. 
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Chapter 4: EVALUATION AND FINDINGS  

4.0 Preamble 

There is no standard framework for evaluating the performance of NL access to DB models at 

present. Various researchers have used different evaluation parameters and procedures as described 

in detail in section 2.7 of the literature review. The dominant quantitative parameters observed from 

literature included precision, recall, accuracy and F-Score while qualitative measures have varied 

from one research to the other with no single dominant parameter. In fact some researchers do not 

include qualitative parameters for evaluation. Further to this, the procedure to be followed in 

measuring these quantities has not been standardized. This chapter therefore highlights the 

procedures and parameters selected or designed for evaluating the OCM model. 

4.1 Evaluation Framework (Parameters and Procedures) 

An evaluation framework describes the environment, procedures and parameters used in determining 

the performance of a model. To evaluate the OCM model, an evaluation framework was designed 

after analysis of literature. The general process flow for the evaluation process applied is illustrated 

in figure 4.1.

 

Fig. 4.1   General Evaluation Process Flow 

From literature slight variations are observed in the five components of figure 4.1 depending on the 

preferences of the researcher. For example in query collection, NL questions may be collected from 

paper-based questionnaires like was the case in EXACT (Yates, Etzioni, & Weld, 2003), AquaLog 

 

 

 

 

 

 

 

Collect Queries Process Queries 
Using Prototype 

Build Prototype 

Assess Quality of 
Responses 

Separate Queries 
(answerable &  
unaswerable) 

[OPTIONAL] 
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(Lopez, Pasin, & Motta, 2004)  among others or generated electronically as in Tiscover NL interface 

(Dittenbach & Berger, 2003), QuestIO (Tablan, Damljanovic, & Bontchev, 2008). Others prefer to 

use existing queries such as Geo-queries and Restaurant queries by Tang and Mooney (2001). This 

research utilized five datasets for evaluation as explained in 3.3 where one set was collected 

manually, another one electronically and three others were obtained from existing query-sets, the 

aim being to provide a bench mark result.  

The next task is to separate queries that may be answered by the system from those that cannot be 

answered due to lack of enough information or being out of context of the ontology. Popescu (2003) 

for example separated ‘semantically tractable’ questions from those that are not. Querix (Esther, 

Abraham, & Renato, 2006) separated what they termed as ‘nonsense’ questions from sensible ones. 

Yates et al. (2003) separated what they called ‘non-goal oriented’ questions from goal oriented. 

Some researchers however advocate for the use of raw question-sets as collected from users. Works 

such as e-tourism NL interface (Ruiz-Martınez, et al., 2009) and Tiscover NL interface (Dittenbach 

& Berger, 2003) used questions in their raw form to evaluate or perform analysis on questions. This 

research adopted the latter. This was motivated by the fact that users of these applications in the real 

world, submit all manner queries including the ones that yield no results. The model should provide 

the real performance under such circumstances. Since the queries within the query sets ware 

randomly collected, the true performance is therefore likely to be indicated. 

Building of prototypes is an important step in the evaluation process. However tools used for 

implementing these prototypes vary, thereby giving non-standard testing environments. If similar 

tools and resources are used, the testing environment can be standardized. Section 4.2 provides an 

in-depth discussion on tools and resources selected for this work.   

The last step in the evaluation framework involves assessing the quality of the output. Here 

variations occur with respect to what is being evaluated. For example PANTO (Wang, Xiong, Zhou, 

& Yu, 2007), e-tourism NL interface (Ruiz-Martınez, et al., 2009) among others manually inspected 

the quality of the structured query (SPaRQL) generated, while a large number of other researchers 

including QuestIO (Tablan, Damljanovic, & Bontchev, 2008), Querix (Esther, Abraham, & Renato, 

2006), AquaLog (Lopez, Pasin, & Motta, 2004) among others preferred subjecting the generated 

structured query to the ontology. This research selected the latter because it gives a better reflection 

of the expected performance if the system was to function in an environment where a user is 



Lawrence Muchemi-PhD Thesis 2014 

 

161 | P a g e  
 

querying an existing ontology. Moreover, there may exist errors unnoticeable by the eye if 

inspection of the structured queries is done manually. In assessing the quality of responses generated 

from the ontology, a given response can easily be classified as ‘correct’, ‘wrong’ and ‘no-answer’. 

Figure 4.2 illustrates this classification of answers generated by a SPaRQL query from the ontology, 

 

          
 

Fig. 4.2 Illustration of Categories Used in Evaluation 

The recorded answers from each category formed the basis for calculating the accuracy, precision 

and recall values as explained in section 4.11. 

The Evaluation framework used for this study had seven aspects as listed below, 

a) Four quantitative measurements namely Precision, Recall, Accuracy and F-score and  

b) Four qualitative measures namely Domain independence, Language-independence, Support 

for Cross-linguality and Effect of Query Complexity on Model. 

4.1.1 Quantitative Parameters  
 
From figure 4.2 it is observed that the model generates four categories of answers. True positives 

(tp) indicate cases where SPaRQL was generated and upon passing the query to the reasoner in the 

Protégé tool, a correct answer (as expected from the database point of view) was produced. False 

positives (fp) show cases where the SPaRQL generated an unexpected answer (not fulfilling the 

request expressed in NL). False negatives (fn) show cases where the system did not return any 

 Query expected to yield a SPaRQL   Query yielded a SPaRQL 

  

  

 

 

 

SPaRQL NOT yielded               SPaRQL yielded is TRUE    SPaRQL yielded is FALSE 
(but should have been yielded)          

fn tp fp tn 

Query NOT expected to 
yield a SPaRQL & DID NOT 
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SPaRQL although it was expected to, while true negatives (tn) indicate cases where the system did 

not produce a SPaRQL and was not expected to produce.  

Precision is calculated as a ratio of the SPaRQL queries generated (and that yield right answers) to 

the total queries generated by the system. It therefore indicates the quality of the answers obtained 

from the system. The higher the precision, the better the performance is.  

Recall is calculated as a ratio of the SPaRQL queries generated (and that yield right answers) to the 

total queries that should have been generated by the system. Recall indicates the extent to which our 

model generates true SPaRQL queries. The significance of recall is to show the range of questions 

the model is able to handle.  Models with higher recall values are said to have better performance 

over those with lower recall value.  

Another parameter used is accuracy. Accuracy is expressed as a percentage of sum of true positives 

and true negatives against the total number of queries passed to the system. Accuracy level shows 

the extent of the correct answers (tp and tn) users would obtain from a given query set. Accuracy 

therefore indicates the confidence one would have in a model given a specified query set.  

Another parameter used is the harmonic mean of precision and recall, also known as F-score. It 

allows for expression of precision and recall as a single value. The higher the F-score, the better the 

performance. These parameters are summarized in table 4.1. 

Table 4.1 Summary of Quantitative Parameters Used 

 
Measurement 
Parameter 

 
Formula for Obtaining Parameter 

 
Parameter Indicates 

 
Precision 

 
tp/ tp+ fp 

 
Quality of Answers Given 

 
Recall 

 
tp/ tp+ fn 

 
Range of Questions Answered 

 
Accuracy 

 
tp+tn/tp+fp+tn+fn 

 
User Confidence in the Model 

 
F-score 

 
2(Precision X Recall)/(Precision + Recall) 

 
Model’s Mean Performance 

 

4.1.2 Qualitative Parameters 
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Domain Independence: This is the ability of a model to be ported from one area of application to 

another without the deterioration of the performance of the model. Domain independence is obtained 

from variance analysis where one studies if significant variations occur when the domain is 

successively changed. Accuracy, recall and precision are calculated for each domain area while 

holding the querying language constant. 

Language Independence: This is the ability of a model to use two or more natural languages 

without the deterioration of the performance of the model. Language independence is obtained from 

variance analysis where one studies if significant variations occur when the language is successively 

changed. Accuracy, recall and precision are calculated for each language applied. Where multiple 

domains are involved the average value of each parameter is used while determining the variance 

value. 

Support for Cross-Lingual Querying: This is the ability of a model to use a certain natural 

language to query a database given that the language used to author ontology or database schema 

objects is different from the querying language.    

Effect of Query Complexity on the OCM model: 

The degree of complexity of a query is assumed to be proportional to the number of concepts within 

a query. Most models deteriorate in performance with an increase in the number of concepts within a 

query. 

The quantitative and qualitative parameters were experimentally obtained as described in the section 

4.3.4. 

4.2 Test-bed 

The test bed that was developed and used for experimental purposes is shown in figure 4.3.  
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Fig. 4.3 Test bed used in Prototypes Evaluation 

The python code developed for this prototype is found in Appendix 8. 

4.3 Evaluation Datasets 

In the experiments carried out, two models, the OCM and the TTM (Muchemi L. , 2008) were 

applied across five databases. Table 4.2 outlines a summary of these databases. These databases 

were specifically used for the following reasons, 

The farmers-db was mainly used to test Kiswahili aspects of the study while the UoN MSc 

coordinator’s correspondences database was used to study English aspects of the research. The 

Northwind database which is shipped with Microsoft database server provides a well-known 

database which can provide some standard testing environment. It has also been used to test other 

database access models such as ELF (Bootra, 2004).  The other two databases Restaurants-db and 

Job-search_db have been widely used by researchers in this area in evaluating their models. By using 

these databases to evaluate the OCM model, the results were easily bench-marked.  
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NB: TTM stands for Token-based Template Mapping (Muchemi L. , 2008) while OCM stands for Ontology 
Concepts Mapping. 
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 Table 4.2: Relational Databases Used in the Experiments 

  

Name  of Database 

No of 

Tables 

 

Description 

1 Chicken Farmers_db  8 Database created to mimic the one at Thika poultry 

farmers’ project help desk as reported in Muchemi, (2008) 

2 UoN MSc Coordinator_db  4 Database created to mimic students’ records database at 

University of Nairobi. 

3 Microsoft’s Northwind_db  8 Standard database shipped with Microsoft’s database 

server 

4 Restaurants_db 7 Database whose schema is described in Tang & Mooney, 

(2001) and has been quoted widely in experiments23 

5 Computer Jobs_db 4 Database whose schema is described in (Tang & Mooney, 

2001) and has been quoted widely in experiments24 

 

Each database was subjected to queries that had been collected through procedures described in 

section 3.3. The query sets were large and required sampling. Section 4.2.3 explains how sampling 

was done. 

 

4.4 Queries Sampling Procedure 

Each query set was treated as a separate population. Sampling was done from these query sets. A 

stratified random sampling approach was used to select queries from each population.  

Each population (single query set) was divided into eight strata where each stratum contained 

queries of varying complexity. Complexity was defined in a similar manner as in Tablan et al. 

(2008) where the complexity of a question was assumed to increase with the number of concepts 

present in a query. This was determined by counting the number of meaning bearing components in 

                                                             
23 See https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html for a reproduction 
24 See https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html for a reproduction 

https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html
https://files.ifi.uzh.ch/ddis/oldweb/ddis/index.php%3Fid=519&print=1&no_cache=1.html
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a query. A component was defined as a chunk of a phrase of any type, nouns, modifiers or 

collocation terms. 

 

Table 4.3: Query Sets Used for Evaluation 

 

Diversity of queries within a single stratum was ensured through selection of queries of different 

types where the types were as defined in section 3.3.7. These included ‘what’, ‘where’, 

‘enumerative’, ‘yes/no’, ‘list/show/give/find/describe’, ‘who’, ‘when’, ‘how’, ‘which’, ‘comparative’, 

‘superlative’ and disjunctive (choice) types. Figure 4.3 shows the number of queries selected per 

population. 

 

 

 

Name  of Query-set 

Total No. 

of 

Questions 

in Set 

No. of 

Queries 

Selected for 

Evaluation 

 

Description 

 

Original 

Source 

Farmers Queries  625 200 Swahili queries based on 

poultry farmers case study.  

Muchemi, 

(2008) 

UoN MSc Coordinator 

Queries  

310 200 English queries based on 

UoN MSc students’ 

coordinator query set. 

Coordinator 

e-mails  

ELF Queries to MS 

NorthwindDB  

120 120 English queries originally 

created by Bootra to 

evaluate ELF on Microsoft 

northwind-db at Virginia 

Commonwealth University 

(Bootra, 

2004) 

Computer Jobs Queries 500 250 English database and queries 

for computer jobs used 

originally by Tang under 

Ray Mooney  for PhD work 

at Texas State University 

Recreated 

from Tang 

& Mooney, 

2001 

Restaurant Queries 250 200 Same as above but for 

restaurant selection 

Tang & 

Mooney, 

2001 

Total 1805 970 
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4.5 Experimental Determination of Mean Performance of OCM Model 

The test procedures involved subjecting the OCM and TTM models to a complete set of queries 

from a given query set. Each question was run against the models as shown in the test bed in figure 

4.3. The models generated SPaRQL queries that were applied to the OWL ontology that had been 

formed from the respective relational database. Appendix 12 shows an example of an NLQ and its 

various transformations until a SPaRQL query is generated. It further shows results generated by the 

SPaRQL query upon application to the OWL ontology.  Human evaluators examined the answers 

generated from the database and classified each one of them as ‘true positive’, ‘false positive’, ‘true 

negative’ or ‘false negative’. Four human evaluators were used to perform the tests. The evaluators 

were recruited from undergraduate computer science students at the University of Nairobi. They 

were given basic training on handling input and output responses of the prototype. 

This section presents the experimental procedures and an outline of the analysis carried out. 

4.5.1 Results from Test-Sets 

The OCM model was applied across five databases as described in Table 4.2 of section 4.3.2 and the 

respective query sets described in Table 3.1 of section 3.3.4.4 used. The specific questions in each 

query set are found in appendix 1. In order to make a direct comparison with other models, the parse 

tree template mapping model (TTM) described in Muchemi (2008) was plugged into the test bed and 

results from these query sets obtained and tabulated.  

Evaluations were done with the value of Levenshtein gap, µ being 0 or 1, meaning perfect matching 

of strings within the gazetteer and the FSM or an allowance of one insertion, deletion or substitution 

of a single character respectively. The experiments were done in a comparative manner with the 

purpose of establishing the optimum OCM performance. 

The following section highlights these results. They are organized according to the five test sets done 

where each test set represents results for OCM and TTM for a particular query set.  

Tables 4.4 and 4.5 show a summary of results from first test set, 
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Table 4.4: Test Set 1- OCM - Kiswahili Queries (Poultry Farmers_db) 

 

Table 4.5: Test Set 1-TTM- Kiswahili Queries (Poultry Farmers_db)

 

Swahili_Queries (Farmers_db) 

Experiment 1 µ = 0 µ = 1 

 True Positives 118 116 

 False Positives 13 32 

 True Negatives 34 29 

 False Negatives 35 23 

 Total Queries 200 200 

 Precision 0.90 0.78 

 Recall 0.772 0.83 

 Accuracy 0.76 0.73 

 F-score 0.83 0.81 
 

 

Swahili_Queries (Farmers_db)  
TTM  

 True Positives 87 

 False Positives 42 

 True Negatives 29 

 False Negatives 42 

 Total Queries 200 

 Precision 0.67 

 Recall 0.67 

 Accuracy 0.58 

 F-score 0.67 
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Tables 4.6 and 4.7 show a summary of results from the second test set, 

Table 4.6: Test Set 2- OCM -English Queries (Microsoft’s Northwind_db)   

English_Queries (Microsoft_db) 

OCM µ = 0 µ = 1 

 True Positives 73 75 

 False Positives 5 12 

 True Negatives 5 7 

 False Negatives 37 26 

 Total Queries 120 120 

 Precision 0.94 0.86 

 Recall 0.66 0.74 

 Accuracy 0.65 0.68 

 F-score 0.78 0.79 
 

Table 4.7: Test Set 2- TTM -English Queries (Microsoft’s Northwind_db) 

 

 

English_Queries (Microsoft_db)  
TTM  

 True Positives 61 

 False Positives 28 

 True Negatives 8 

 False Negatives 23 

 Total Queries 120 

 Precision 0.68 

 Recall 0.73 

 Accuracy 0.57 

 F-score 0.70 



Lawrence Muchemi-PhD Thesis 2014 

 

170 | P a g e  
 

Tables 4.8 and 4.9 show a summary of results from the third test set, 

Table 4.8: Test Set 3- OCM - English Queries (UoN MSc Coordinator_db) 

English (UoN_MSc coordinator_db) 
OCM µ = 0 µ = 1 

 True Positives 110 103 

 False Positives 14 16 

 True Negatives 28 32 

 False Negatives 48 49 

 Total Queries 200 200 

 Precision 0.88 0.87 

 Recall 0.70 0.68 

 Accuracy 0.69 0.68 

 F-score 0.78 0.76 
 

Table 4.9: Test Set 3- TTM - English Queries (UoN MSc Coordinator_db) 

 
 

 

 

 

 

English (UoN_MSc coordinator_db))  
TTM  

 True Positives 90 

 False Positives 29 

 True Negatives 32 

 False Negatives 49 

 Total Queries 200 

 Precision 0.76 

 Recall 0.65 

 Accuracy 0.61 

 F-score 0.69 
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Table 4.10 and 4.11 shows a summary of results from the fourth test set, 

Table 4.10: Test Set 4- OCM - English Queries (Restaurants_db) 

 

 
Table 4.11: Test Set 4- TTM - English Queries (Restaurants_db) 

 
 

English_Queries (Restaurants_db) 
OCM µ = 0 µ = 1 

 True Positives 98 99 

 False Positives 11 20 

 True Negatives 40 33 

 False Negatives 51 48 

 Total Queries 200 200 

 Precision 0.90 0.83 

 Recall 0.66 0.67 

 Accuracy 0.69 0.66 

 F-score 0.76 0.74 
 

 

English (Restaurants_db)  
TTM  

 True Positives 85 

 False Positives 34 

 True Negatives 33 

 False Negatives 48 

 Total Queries 200 

 Precision 0.71 

 Recall 0.64 

 Accuracy 0.59 

 F-score 0.67 
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Tables 4.12 and 4.13 show a summary of results from the fifth test set, 

Table 4.12: Test Set 5- OCM - English Queries (Computer_Jobs_db) 

Table 4.13: Test Set 5- TTM - English Queries (Computer_Jobs_db) 

 

 

 

 

 

 

 

 

 

 

English_Queries (ComputerJobs_db) 
OCM µ = 0 µ = 1 

 True Positives 108 107 

 False Positives 15 20 

 True Negatives 27 28 

 False Negatives 50 45 

 Total Queries 200 200 

 Precision 0.89 0.84 

 Recall 0.68 0.70 

 Accuracy 0.68 0.68 

 F-score 0.77 0.77 
 

English (ComputerJobs_db)  
TTM  

 True Positives 88 

 False Positives 39 

 True Negatives 28 

 False Negatives 45 

 Total Queries 200 

 Precision 0.69 

 Recall 0.66 

 Accuracy 0.58 

 F-score 0.68 
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4.5.2 Discussion of Quantitative Evaluation Results 

A summary of the results presented in section 4.5.1 is presented in Table 4.14.  

Table 4.14 Summary of Results 

 Levens
gap) 

Exp. 1 
Swa- 
Farmers 

Exp. 2 
Northwind 

Exp. 3 
MSc_Coord 

Exp. 4 
Restaurant 
Search 

Exp. 5 
Jobs 

Average 

Precision 
(%) 

µ = 1 0.78 0.86 0.87 0.83 0.84 0.836 

µ = 0 0.90 
 

0.94 0.89 0.90 0.88 0.902 

TTM 0.67 0.69 0.76 0.71 0.69 0.704 

Recall (%) µ = 1 0.84 0.74 0.68 0.67 0.70 0.726 

µ = 0 0.77 0.66 0.70 0.66 0.68 0.694 

TTM 0.67 0.73 0.65 0.64 0.66 0.67 

Accuracy 
(%) 

µ = 1 0.73 0.68 0.68 0.66 0.68 0.686 

µ = 0 0.76 0.65 0.69 0.69 0.68 0.694 

TTM 0.58 0.58 0.61 0.59 0.58 0.588 

F-Score µ = 1 0.81 0.79 0.76 0.74 0.77 0.774 

µ = 0 0.83 0.78 0.78 0.76 0.77 0.784 

TTM 0.67 0.71 0.70 0.67 0.68 0.686 

 

The results indicate a model whose average precision at a Levenshtein distance µ, of 1 (within the 

matching function) is 0.84 and increases to 0.90 on decrease of µ to 0. Precision therefore increases 

with decrease of µ while recall decreases from 0.73 to 0.69 when the edit distance is changed from 

one to zero.  

Since precision indicates the quality of the answers obtained from the system, it is true that the 

higher the precision, the better the quality of the answers received by the user. Thus based on 
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precision alone µ should be restricted to zero. As stated in section 4.1.1, recall is an indicator of the 

extent to which OCM generates SPaRQL queries given a wide range of question types and varying 

complexity. The significance of recall is to show the range of questions the model is able to handle.  

The higher the recall value the better performance, thus based on recall, µ should be set to one. 

Accuracy on the other hand increases slightly from 0.686 to 0.694, a difference that is not significant 

enough for a clear performance enhancement to be concluded. Increasing µ from 0 to 1 (relaxing the 

matching constraint) means that instances where no SPaRQL is generated are decreased thereby 

increasing recall. However the generated SPaRQL gives many undesired results (many false 

positives). On the other hand, only a slight increase in true positives (‘tp’) is noted. By definition 

precision was given in table 4.1 as, tp/(tp+fp), meaning the precision decreases with increase in µ. 

Accuracy was also defined in table 4.1 as tp+tn/(tp+fp+tn+fn). As observed, increasing µ from 0 to 

1 decreases instances where no SPaRQL is generated but increases ‘fp’ with only a slight change in 

‘tp’. This in effect means that only a slight increase in accuracy is expected, as was the case with the 

observations made from the experiments. 

 A suitable parameter for gauging the overall suitability is the F-score, the harmonic mean of 

precision and recall, which records a slight increase from 0.774 to 0.784 on tightening µ from one to 

zero. This indicates that any NLQ system that relies on string matching for extracting explicit and 

implicit concepts from a database should have an edit distance of zero in the matching function if 

precision and F-score are the main considerations.  

4.6 Experimental Determination of Domain Independence 

4.6.1 Experiments Setup 

An experiment was set up to determine the degree of language independence. Four different domains 

were selected for testing the degree of independence. The domains were based on the fields of 

trading, student-management, job-search and finding-restaurants. The setup is as shown in figure 

4.4.  
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Fig. 4.4 Experimental Procedure for Domain Variance Experiments 
 
4.6.2 Analysis Overview 

By holding the querying language constant, accuracy, recall and precision were calculated for each 

domain and tabulated. The difference between the mean of each respective parameter (F-score, 

accuracy, precision or recall) and computed performance values was determined and expressed as a 

percentage. The results are shown in table 4.15.  

Further the standard deviation, σ for each parameter (F-score, Accuracy, Precision or Recall) was 

calculated and tabulated as shown in table 4.16. A variance analysis was performed on the four 

obtained values by way of determining standard deviation for the four domains. For every given 

domain the departure from the standard deviation was computed and noted if it was within the 

standard deviation and if not by what ratio.  

The standard deviation, σ was computed as follows, 

 The mean of a parameter say F-Score is worked out by calculating the arithmetic mean 

across the four domains.  

 For each domain, the mean parameter value is subtracted from the respective parameter value 

for that domain and the difference squared.  

 The average of those squared differences is then worked out. The average of the squared 

differences from the mean is the variance.  

 The standard deviation is obtained by obtaining the square root of the variance.  

 

 

 

 

 

 

 

Query 

Language 1 

Accuracy 

Precision 

Recall 

F-Score 

DB Schema 
(based on 

Language1) 

VARIANCE 

ANALYSIS 

Domain 1 

Domain 2 

Domain 3 

Domain 4 
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 To test whether the parameter value is outside the standard deviation, the standard deviation 

is subtracted from that value and if the difference is zero or less, then it is interpreted that the 

value is within the standard deviation. 

The standard deviation is an important indicative parameter because it shows what values are within 

‘normal range’ and which ones are not. This procedure was done for accuracy, precision, recall and 

F-score. 

4.6.3 Results for Domain Independence Experiments 

Since standard deviation is a measure of dispersion or volatility of data from its mean, then a 

parameter with high volatility indicates that it is affected by changes in data treatment, meaning 

domain change. The mean of the performance values for each domain and their aggregate mean were 

computed. The variance and standard deviation values were also determined and tabulated in table 

4.15. 

Table 4.15 Evaluating Domain Independence of the OCM Method (Std Deviation Analysis) 

 
Table 4.16 shows a deviation analysis that was done for each domain by finding out whether the 

performance value was outside the standard deviation or not.  

  

Levensht. 

Dist. (µ) 

 
DOMAIN (Mean Value) 

 

 

 

Mean 

 

Variance   

(σ2) 

 

Standard 

deviation 

(σ) 
Trade Stud Jobs Rest 

 

F-score 

1 0.71 0.71 0.76 0.74 0.730 0.00045 0.02121 

 0 0.77 0.7 0.69 0.73 0.722 0.00097 0.03112 

 

Accuracy 

 1 0.5 0.51 0.58 0.54 0.532 0.00097 0.03112 

0 0.61 0.51 0.5 0.54 0.540 0.00185 0.04301 

 

Recall 

1 0.68 0.66 0.74 0.76 0.710 0.00170 0.04123 

 0 0.65 0.59 0.57 0.7 0.627 0.00262 0.05117 

 

Precision 

1 0.73 0.78 0.78 0.71 0.750 0.00095 0.03082 

0 0.93 0.87 0.88 0.77 0.862 0.00337 0.05804 
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Table 4.16 Evaluating Domain Independence of the OCM Method (Outlier Points Analysis) 

 
 

When expressed as standard deviation, most values were found to be within the normal standard 

deviation. In a few cases (those having a value greater than one in the last four columns of table 

4.16) the deviation was found to be above the standard deviation. The Peirce Criterion (Ross, 2003) 

for determining outlier data was used to classify if the data was an outlier or not.  

In order to determine whether any of the values was an outlier, the following steps illustrated 

through an example were followed, 

 The standard deviation and the mean of the complete set (across the four domains) were 

determined (earlier determined and recorded in table 4.16). 

 The parameter, R was obtained from the Peirce’s table (Ross, 2003) for a four data point-one 

outlier condition, 

o From Peirce's Table, R was found to be 1.383. 

 The product of σ and R is therefore 1.383 x σ, which we refer to as S. 

 Assuming that the F-score for the Restaurant query set is under investigation (whether outlier 

or not), σ is read from table 4.16 above as 0.021, making the value of S to be 0.02904 

 The maximum allowable deviation, R was calculated as follows, 

o Rmax= (|xi- xm|max)/σ              

Where,  

o R is the ratio of the maximum allowable deviation of the measured value from the 

mean of the data to the standard deviation,  

    Deviation of Parameter (eg 
Accuracy) From Mean 

 No. of Times Means Deviates 
from std. deviation [(x-mean)/σ] 

 µ Mean σ TRADE STUD JOBS REST  TRADE STUD JOBS REST 
 
F-Score 

1 0.730 0.021 0.020 0.020 -0.030 -0.010  0.940 0.942 1.414 0.471 
0 0.722 0.031 -0.048 0.022 0.032 -0.007  1.520 0.722 1.044 0.240 

 
Accuracy 

1 0.532 0.031 0.033 0.022 -0.047 -0.007  1.040 0.722 1.526 0.240 
0 0.540 0.050 -0.070 0.030 0.040 0.000  1.627 0.697 0.929 0 

 
Recall 

1 0.710 0.041 0.030 0.050 -0.030 -0.005  0.727 1.212 0.727 1.212 
0 0.627 0.051 -0.022 0.037 0.057 -0.072  0.439 0.732 1.123 1.416 

 
Precision 

1 0.750 0.031 0.020 0.030 -0.030 0.040  0.648 0.973 0.973 1.297 
0 0.862 0.060 -0.067 0.007 0.017 0.092  1.162 0.129 0.301 1.593 
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o xi is the measured value (suspect data),  

o xm is the mean of the dataset and,  

o σ is the population’s standard deviation. 

 For the suspect data, F-score of jobs query set with a µ of 1, the quantity R was calculated as 

follows,  

o Rmax = (|xi - xm|max)/σ|   

o xi, xm and σ are read from table 4.15 as 0.74, 0.73 and 0.02121 respectively, hence 

Rmax is 0.471475 

o If S > Rmax, then the data is classified as an outlier, else if S < Rmax, then it is 

classified as normal data 

  S has a value of 0.02904 while Rmax has a value of 0.471475, hence S < Rmax therefore the 

suspect data, F-score of jobs query set with a µ of 1 was classified as normal data. 

The above procedure was repeated for all data in table 4.16 and that was outside the respective 

normal deviation values and no data was found to be an outlier. This led to the conclusion that the 

model is not sensitive to domain change and is therefore to some extent domain independent. The  

case study involved four different domains (a number limited by practical reasons for the scope of 

this work), which may not be adequate to come to a conclusion that domain independence under all 

possible conditions has been achieved. However, this work contributes in a significant way by 

pointing to an approach that can be more rigously tested.   

 

4.7 Experimental Determination of Language Independence  

4.7.1 Experiments Setup 

In order to determine the degree of language independence, the performance values say the F-score, 

were determined in the set up illustrated in figure 4.5. The language of querying was successively 

changed in different set ups and the performance values calculated and tabulated. The mean, 

variance and standard deviation of each parameter was determined for query sets written in 

Kiswahili and English. 

For example, if Language 1 is English, the database schema was also based on English language 

abbreviations and concatenations. The performance values were determined and tabulated. 
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Fig. 4.5 Experimental Procedure for Language Independence Experiments 

4.7.2 Analysis Overview 

The aim was to evaluate the degree of language independence as opposed to evaluating handling of 

many languages concurrently. A similar variance analysis as described in section 4.6.2 was 

performed. The Peirce Criterion (Ross, 2003) for determining outlier data as described in section 

4.73 was again used to classify if data was an outlier or not. 

 

4.7.3 Results of Language Independence Experiments 

Table 4.17 shows the mean, variance and standard deviation of each parameter that was determined 

from the experiments described in 4.7.1. 
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Table 4.17 Evaluating Language Independence of OCM (Performance Variance Analysis) 

 

 
 

This model was tested using Kiswahili and English queries. The average F-score on Kiswahili 

queries was found to be 0.700 against 0.730 for English queries. The mean precision values for 

Kiswahili were 0.740 and 0.850 against 0.750 and 0.862 (with Levenshtein distance of 1 and 0 

respectively) for English queries. The variance for F-score ranged between 0.015 and 0.016 (1.5% 

and 1.6% in percentage form). The variance observed for the other performance values ranged 

between 0.05% (precision with µ of 1) and 2.5% (accuracy with µ of 0).  

The variances were subjected to Peirce Criterion and the change of language was found not to have 

an influence on the performance. This in turn means that the methods being used to convert the NLQ 

to SPaRQL are language independent. The  case study involved two different languages, a number 

limited by practical reasons for the scope of this work. This set may not be adequate to come to a 

conclusion that language independence under all possible conditions has been achieved. However, 

this work contributes in a significant way by pointing to an approach that can be more rigously 

tested 

  

Levensht. 

Dist. (µ) 

 
Language 

(Mean 
performance) 

 

 

Mean 

 

Variance   (σ2) 

 

Standard 

deviation (σ) 
Swahili English 

F-score  1 0.700 0.730 0.715 0.000225 0.015 

  0 0.690 0.722 0.706 0.000256 0.016 

Accuracy  1 0.500 0.532 0.516 0.000256 0.016 

  0 0.490 0.540 0.515 0.000625 0.025 

Recall  1 0.670 0.710 0.690 0.000400 0.02 

  0 0.580 0.627 0.604 0.000552 0.0235 

Precision  1 0.740 0.750 0.745 0.000025 0.005 

  0 0.850 
 

0.862 0.856 0.000036 0.006 
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4.8 Experimental Determination of Cross-Lingual Querying Ability 

4.8.1 Experiments Setup 

As set out in the problem statement, the issue of cross-lingual querying was central in this research. 

To determine the extent to which the model supports cross-lingual querying, an experimental set up 

shown in figure 4.6 was used. 

 

Fig. 4.6 Experimental Determination of Cross-Lingual Support 

A total of four experiments were done. In the first experiment Kiswahili language was selected for 

querying. The underlying database schema authorship language was made similar to the querying 

language that is, Kiswahili. The performance parameters were determined and recorded. These 

included the F-score, accuracy, recall and precision.  

In the second experiment the querying language was changed to English but the underlying database 

schema authorship language remained Kiswahili. The values for the performance parameters were 

 

 

 

 

 

 

 

 

 

 

 

Query 
Language 1 Accuracy 

Recall 

DB Schema 
(based on 

Language1) 
Query 
Language 2 

Query 
Language 2 

Precision 

F-Score 

DB Schema 
(based on 

Language2) 

VARIANCE 

ANALYSIS 

Query 
Language 1 

Precision 

F-Score 

Recall 

Accuracy 



Lawrence Muchemi-PhD Thesis 2014 

 

182 | P a g e  
 

determined and recorded. Observations to check whether there were significant differences between 

the calculated values, that is while cross-lingual querying is present and when absent were made. In 

the third experiment the database was changed from farmers-db to UoN MSc coordinator’s database. 

The underlying database schema authorship language for this database was English. Querying was 

done with English queries meaning there was no cross-lingual querying. The querying language was 

changed to Kiswahili in the fourth experiment meaning there was cross-lingual querying. The 

performance parameter values were calculated and observations made to check whether there were 

significant differences between the two calculated values (i.e. with cross-lingual and without cross 

lingual arrangement).  A variance analysis was then carried out. The results obtained are tabulated in 

table 4.18. 

 

4.8.2 Analysis Overview 

A variance analysis similar to that described in 4.6.2 was applied to the performance values obtained 

from section 4.8.1 above. The Peirce Criterion (Ross, 2003) was used to determine if querying in an 

Interlingua manner had a significant effect or not. A significant deviation would indicate poor 

support for cross-lingual querying. 

 

4.8.3 Results from Cross-lingual Support Experiments 

 Table 4.18 summarizes the results obtained from the cross-lingual experimentation study. The 

mean, variance and standard deviation were determined for each experiment and the results recorded 

in the table. 
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Table 4.18 Cross-Lingual Mean Variances and Standard Deviation Analysis 

 

 
 

In order to determine if the OCM model was significantly affected by cross lingual usage, the Peirce 

Criterion described in 4.6.3 was applied on data that was beyond the standard deviation. The affected 

data is indicated on table 4.19 as that with a value of greater that one (or negative one) in the last 

four columns of table 4.19, for example F-score of experiment two with a Levenshtein distance of 

one. 
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Table 4.19 Cross-Lingual Outlier Performance Analysis 

 

 
 

A significant deviation as indicated by the Peirce criteria would indicate poor support for cross-

lingual querying. Table 

None of the performances showed outlier behaviour implying that the model was not affected by the 

cross-lingual querying, therefore it was concluded that the model is independent of cross lingual 

querying.  

Figure 4.7 shows a graphical analysis of the performance values. From this graph it is observed that 

cross-lingual querying has significant effect on the performance. 

    Difference of Performance & Mean  No. of Times Performance 
Deviates from std. deviation 
[(x-mean)/σ]      Swahili 

(Farmers_db) 
     English 
(Coordinator_db) 

 µ Mean σ Swahili 

Queries 

English 

Queries 

English 

Queries 

Swahili 

Queries 

 Expt 1 
 

Exp 2 Exp 3 Exp 4 

F-Score 1 
0.710 0.015 0.006 0.020 -0.021 -0.006 

 
0.440 1.320 

-
1.388 

-
0.372 

 0 
0.702 0.020 0.013 0.027 -0.020 -0.019 

 
0.626 1.314 

-
0.994 

-
0.945 

Accuracy 1 
0.516 0.024 0.016 0.031 -0.017 -0.030 

 
0.645 1.268 

-
0.686 

-
1.227 

 0 
0.511 0.035 0.021 0.046 -0.029 -0.039 

 
0.606 1.319 

-
0.820 

-
1.105 

Recall 1 
0.690 0.016 0.020 0.010 -0.020 -0.010 

 
1.265 0.632 

-
1.265 

-
0.632 

 0 
0.606 0.019 0.026 0.011 -0.022 -0.015 

 
1.347 0.555 

-
1.136 

-
0.766 

Precision 1 
0.730 0.019 -0.010 0.030 -0.020 0.000 

 -
0.535 1.604 

-
1.069 0.000 

 0 
0.838 0.034 -0.012 0.058 -0.024 -0.022 

 -
0.355 1.716 

-
0.710 

-
0.651 
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Fig. 4.7 Graphical Representation of Variances (µ = 0) 

4.9 Effect of Concepts Complexity 

Performance of most models depreciates with an increase in the complexity of the concepts 

(Dittenbach & Berger, 2003). The issue of complexity was handled in a similar manner as handled 

by Tablan et al. (2008) where the complexity of a query was assumed to increase with the number of 

concepts present in a query.  

As noted in section 4.4, a stratified random sampling approach was used to select queries from each 

query set where each population was divided into eight strata. Each stratum contained queries of 

varying complexity. Complexity of a question was assumed to increase with the number of concepts 

present in a query. The effect of complexity of the query to F-score was studied by determining the 

performance value per stratum. Figure 4.8 presents a graph showing the mean F-score value across 

the datasets.  
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Fig 4.8 Relative Performance (F-score) versus Complexity of Query 

4.10 Comparative Analysis  with other Models  

In order to make a direct comparison with other models both experimental and literature analysis 

methods were used.  

In literature analysis, comparative study with several models was done. Benchmarking was achieved 

through comparison of performance with various published works as shown in table 4.20. 

Specifically where the test sets (queries and databases) and results were available a direct results 

comparison was done. As discussed in section 2.5 of the literature review and summarized in figure 

2.11, the models were grouped into various categories. These included, 

 Machine learning approaches such as semantic parsing where statistical methods were used, 

for example as in WASP by Ge and Mooney (2005) or grammar-based machine learning 

methods (e.g. machine learning with synchronous context free grammar with λ-expressions 

(λ-SCFG) by Minock, Olofsson and Naslund (2008))  
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 Logic based approaches where token or phrase-based methods were used. Examples included 

token-based graph-matching approach by Popescu, Etzioni and Kautz (2003) also known as 

PRECISE for English queries, token-based template matching approach for Kiswahili also 

known as TTM by Muchemi (2008) and tiscover’s English NL interface (Dittenbach & 

Berger, 2003) which is a phrase-based approach among others.  

 Ontology-based approach for related tasks such as access to application specific ontologies 

such as the GATE ontology (Tablan, Damljanovic, & Bontchev, 2008) or Health-e-Child 

database (Munir, Odeh, & McClatchey, 2008) 

For the experimental investigation, the test bed illustrated in figure 4.3 was used. In particular the 

token based template mapping model (TTM) was run with the same test sets as OCM (queries and 

databases) and the results tabulated and compared. Results from other published works where the 

query sets and performance results were available were also used to conduct comparative analysis. 

Specifically OCM was evaluated on the same query set and database (Microsoft’s Northwind-db) as 

was used to evaluate commercially available software namely the English Wizard (EasyAsk), 

English Query (Microsoft) and ELF (Elf Software Co) by Bootra (2004) and therefore its 

performance was directly comparable to these systems. PRECISE (Popescu, Etzioni & Kautz, 2003) 

was tested on three databases and query sets namely Restaurants-search, Computer-jobs-search and 

US Geography all from Tang and Mooney (2001). Out of these three, two of the sets namely 

Restaurants-search and Computer-jobs-search were used to evaluate OCM. The published results for 

PRECISE were therefore directly comparable to OCM’s experimentally obtained results. 

4.10.1 Summary of Performance Comparisons 

Minock et al. (2008) has provided an elaborate review of performance of the most competitive 

models in logic-based mapping and semantic parsing approaches. A brief summary of the 

performance of the reviewed models together with the experimentally obtained results are provided 

in Table 4.20 below. Most of the models discussed in this section were developed and evaluated 

under different environments, therefore a direct comparison of results is not foolproof in itself. 

However the comparison has been provided to indicate a general performance trend as opposed to an 

absolute value. 
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Table 4.20 Comparison of Performance Values 

 
Method 

 
Model 

 
Precision 

 
Recall 

 
Accuracy 

F-
Score 

 
Main Principle 

 
Machine 
Learning 

WASP 0.800 – 
0.915 

0.600- 
0.940 

0.500 – 
0.866 

0.690- 
0.930 

Semantic Parsing using 
SCFG (Statistical)(Ge & 
Mooney, 2005) 

Minock  
et al.  
Model 

0.600- 
0.850 

0.500- 
0.800 

0.800 0.550- 
0.820 

SCFG with Lambda 
(Miock, Olofsso & 
Naslund, 2008) 

 
Logic 
Mapping 

PRECISE 0.800- 
0.100 

0.550- 
0.775 

0.450- 
0.775 

0.650- 
0.870 

Graph Matching 
(Popescu, Etzion & 
Kautz, 2003) 

 
TTM 

0.704 0.670 0.588 0.686 Semantically Tagged 
phrase trees (Muchemi, 
2008) 

 
Ontology 
based 
Matching 

CBM 0.575 Not 
provided 

Not 
provided 

Not 
provid
ed 

Constraint-based 
Method. From NL to 
OWL (Gao, Liu, Zhong & 
Chen, 2007) 

QUERIX 0.777 0.786 Not 
provided 

0.781 NLI to Ontologies 
(Kauffman, Bernstein & 
Zustein, 2006) 

QuestIO 0.667 0.680 0.545 0.735 NLI to GATE (Tablan, 
Damljanovic, Botcheva, 
2008) 

OCM 0.836- 
0.902 

0.726- 
0.694 

0.686- 
0.694 

0.774- 
0.784 

Ontology Concept 
Mapping (This Thesis) 

 

The models highlighted in table 4.20 are representatives of the three main categories identified from 

literature. The models are among the highly performing and widely quoted within each category.  

The mean performance of the OCM model is shown in the last row of the table. A high precision is 

important because it indicates the quality of the parsed queries while recall indicates the extent to 

which a model generates the correct SPaRQL queries. It is also true that all models decline to answer 

some questions hence the need for recall. Accuracy on the other hand indicates the extent to which a 

user expects the correct answer from a given set of questions. 

4.10.2 Comparisons with Logic-Mapping based Methods  

It was noted that OCM had a precision ranging between of 0.836 and 0.902 which is close to the 

other models selected for comparison purposes. PRECISE seems to hit a high of 100% apparently 

because the question sets (also used in this work) seem to have been cleaned first, by eliminating 
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non-semantically tractable queries, thereby giving a 100% performance. The similarity in evaluating 

PRECISE and OCM converges at the selection of common databases namely Restaurants-search and 

Computer-jobs-search databases. These databases are published along with the query sets and 

therefore the queries used were from the same pool. However differences may arise from sampling 

techniques. The sampling method used in PRECISE was not indicated and therefore it was difficult 

to compare the actual questions used for evaluating. On average OCM performs marginally better on 

the lower limit of all performance indicators compared to PRECISE which means that OCM has a 

better guaranteed minimum performance. This may be attributed to the fact that OCM uses both 

tokens and phrase chunks as opposed to PRECISE which uses tokens only. The performance of 

TTM is also lower than OCM’s on average and is close to PRECISE’s because they use the same 

linguistic processing and the difference comes in the mapping of tokens to SQL fragments. The 

results obtained from tests carried out by Bootra (2004) on commercial systems showed that English 

Wizard (EasyAsk) had a precision of 0.484 and a recall of 0.31 while English Query (Microsoft) had 

a precision of 0.461 and a recall of 0.39. The query sets and results published by Bootra (2004) are 

presented in appendix 9 for ease of reference.   

4.10.3 Comparisons with Machine Learning Methods  

Research in machine learning approach has been active as noted in literature. The two most 

prominent methods are statistical parsing based and grammar-based machine learning approaches. 

Minock et al. (2008) has presented a synchronous CFG-grammar approach which produces meaning 

representations which are then mapped by a secondary process to the database elements as reviewed 

in the literature.  The lower and upper bound values reported in Minock’s et al. (2008) model seem 

slightly lower than those of OCM. The Minock et al. (2008) utilizing λ-SCFG had an F-score of 

between 0.550 and 0.820. The big range between the high and lower scores appears to be caused by 

distribution drift caused by requirement for prior training because it relies on semantic parsing which 

is based on machine learning. Another machine learning model is WASP which seemingly has 

higher performance values. Though WASP has seemingly higher values it is important to note that 

this technique requires to be interfaced with an SQL classifier thereby lowering these values by a 

factor equivalent to the precision of the SQL classifier. 
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4.10.4 Comparisons with Ontology based Methods 

Table 4.20 shows some published results for models that rely on NLP to access general ontologies. 

OCM’s functioning differs from these in that it’s a general purpose model that accesses ontologies 

built on relational databases, while the others access ontologies which in most cases are built for 

specific purposes (e.g. the GATE ontology). The major difference in the ontology-based approaches 

indicated in table 4.20 is mainly in the manner in which each method handles the natural language 

query before producing the structured query. While OCM converts NLQ into kernel form and builds 

triples from the kernel and other linguistic components such as modifiers, the CBM converts an 

NLQ into an optimization mathematical formula, while Querix and QuestIO convert the NLQ into a 

bag-of-words and makes direct mappings to the ontology.  A direct comparison of the results to 

these published performances may not be very suitable because of the different testing environments. 

For example Querix was tested on 250 queries of the US Geography (Tang & Mooney, 2001) while 

QuestIO was tested on 22 questions only from the GATE ontology project. CBM on the other hand 

was tested on 35 simulated and 40 real questions. While the number may not affect the results 

significantly, sampling methods need to be stated where data is provided. However the results 

published are indicative figures and may be used for comparative purposes in trying to establish 

explanations for various performances. CBM has the least precision at 0.575 followed by QuestIO at 

0.667. Querix has a performance in the same range as OCM at 0.77. Although Querix and QuestIO 

use bag-of-words, Querix has a user feedback component which assists in guiding the questions 

posed by the user. This intervention may possibly explain the better performance of Querix 

compared to QuestIO. Apart from this performance enhancement feature, the main point of 

departure with the OCM is in the linguistic processing where OCM employs the kernelization 

process explained in 3.3.9.2 while Querix uses bag-of-words. This therefore indicates that the use of 

concepts, arising from a kernelization process, as opposed to bag-of-words leads to a better 

performance as is the case with OCM.  

4.10.5 Summary of Comparisons with other Methods 

A suitable parameter for gauging the overall suitability is the F-score, the harmonic mean of 

precision and recall. The model developed has been evaluated on five databases three of which are 

publicly available and hence results were easily comparable with the other state-of-the-art models.  
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OCM has marginally better results on recall for the lower bound value compared to all the other 

models. This can be explained by the fact that OCM exploits the idea of ‘concept’ as opposed to for 

example logic or machine learning models which utilize ‘tokens’ and ‘phrase trees’ respectively. A 

concept is comprised of tokens (mainly nouns), noun phrases, and multi-word terms including 

collocations. It means OCM is better able to comb through a query looking for more items to match 

against the database elements as opposed to the other approaches.  

The model however suffers from low maximum recall and accuracy levels compared to other 

approaches as evident from results because it requires someone to enter information that sometimes 

is regarded as obvious or superfluous. For example the query ‘give me customers who come from 

Nairobi’ might require one to add the word ‘name’ within the query so that the system realizes we 

require ‘customers’ names’. While it is not surprising that all models decline to answer some 

questions, a good model should answer as many queries as possible. Recall indicates the extent to 

which the model generates SPaRQL queries. The better lower bound value compared to the others 

indicates more SPaRQL queries will be generated. On average the results show between 60 and 70% 

rate of conversion which is not a significant departure from the state of the art.  

Accuracy shows the extent to which a user expects the correct answer from a given set of questions. 

From the results obtained one notices that OCM has a better minimum bound value at 0.686 

compared to all the others except the model by Minock et al. (2008). The lower bound value for this 

model was not published and therefore cannot be assessed. Users can expect more accurate answers 

with OCM as compared to other approaches. Compared to PRECISE which has an upper bound 

value of 0.775, OCM has a lower value. However looking at the way experiments were conducted, 

PRECISE had to eliminate some questions which were found to be semantically not tractable and 

this obviously means better results. OCM on the other hand used the raw query set as collected and 

therefore has no bias. 

4.11 Summary 

This chapter was divided into ten subsections that highlighted various aspects of the evaluation 

methodologies, results, their analysis and a comprehensive discussion on performance evaluation.  
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An elaborate evaluation framework has been presented. The 8-point framework was one of the 

contributions made in this chapter. The chapter has presented the data sets and the query sampling 

techniques that were used. 

The chapter has provided the procedures of obtaining the four quantitative parameters (precision, 

accuracy, recall and F-score) and the four qualitative parameters (domain independence, language 

independence, support for cross-lingual querying and effect of query complexity on the 

performance) that are central to NL access to relational database evaluation method. The chapter 

showed how through variance analysis the degree of independence was evaluated. These evaluation 

procedures were an achievement that may be replicated for this kind of analysis. Finally a 

comprehensive discussion on the comparative analysis study was made where it emerged that OCM 

has opened new frontiers in terms of new guaranteed minimum of performance and high F-score 

values. 
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Chapter 5: CONCLUSION 

5.0 Preamble 
 
This chapter provides an overview of the research carried out. In particular it revisits the focus of the 

problem, main objectives, approaches followed and the main results. The chapter focuses on the 

contributions, achievements and proposed recommendations for furtherance of this work.    

5.1 Overview of Research 
 
The unresolved issue of natural language processing for relational database access was the main 

problem addressed in this research. The challenge of developing a generalizable methodology that 

maps any given natural language to a suitable structured query language is the main issue that was 

tackled. The problem had three sub-components which are listed here below; 

 lack of a generic language and domain independent methodology for understanding un-

restrained natural language text and converting it to structured query language (SPaRQL) in 

the context of Kiswahili-English cross-lingual database, 

 lack of language and domain independent parsers that convert free text into concepts. It is 

taken that relational database metadata which is organized as tuples is readily mapped to 

these concepts, 

 Lack of domain independent ontology-parsers that convert meta-data from databases into 

suitable concepts that are mapped to natural language queries. 

 
The main objectives were based on these three areas namely design and development of a generic 

language and domain independent approach, development of NL parsers and development of domain 

independent ontology-metadata parsers. The research therefore embarked on a rigorous literature 

review with a view of understanding the main schools of thought within this problem area, assessing 

the development trends of each and thereafter proposing the most suitable approach. This led the 

focus of the research to ontology mapping methods where a novel approach known as ‘Ontology 

Concept Modeling (OCM)’ was developed and used as the basis for the research. 

To address the issue of the development of language and domain independent NL parsers, the 

research explored various linguistic theories with a view of proposing a universal language theory 
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that address the requirements of NL parsing regardless of the language. The Generative-

Transformational grammar was used in the studies. It formed the theoretical bases of NL parsing. 

Field surveys were also conducted to collect data regarding NL usage specifically as an input to a 

relational database access method. Studies were done for Kiswahili and English and characterization 

done. This led to the development of a novel query modeling framework based on ‘kernelization’ 

where a query is converted to its deep structure form before concepts and their relationships can be 

isolated. The challenge of development of domain independent ontology-metadata parsers was 

addressed through field data collection and analysis. This led to the development of a novel 

algorithm for parsing the meta-data which was earlier presented. Algorithms and heuristics were 

developed for concepts mapping, discovery of implicit concepts as well as handling of foreign keys. 

A large portion of the research was dedicated to the evaluation of the OCM model. A prototype was 

developed for the purpose of evaluation. In addition an elaborate 8-point evaluation framework was 

presented. The results were presented and bench marked against some of the most successful models 

in this area.  

The section that follows provides details of the specific contributions and achievements that were 

realized in this research. The contributions and achievements which add to the body of knowledge 

are sub-divided into two main areas namely, theoretical and technical contributions. Theoretical 

contributions are further sub-divided into two specific areas which include methodological and non-

methodological contributions.  

5.2 Theoretical Contributions 
 
In their book The Unwritten Rules of PhD Research (Open up Study Skills), Petre & Rugg (2010) 

have detailed what constitutes a theoretical contribution in a PhD thesis. They argue that 

characterizing a theoretical contribution as significant or not amounts to articulating the answers to 

the following four questions,  

 How important is the issue. Is the research question important and why is it worth asking? 

 How significant are the findings or the contributions? Why should anyone care? Why do 

they matter? 

 What are the implications to theory and to the body of knowledge in general  

 What are the limitations to generalization? 
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This section discusses those original contributions and achievements made in light of these four 

tenets.  

5.2.1 Modeling of Trends in the Approaches to NL access to Databases 
 
No published source was available that provides a comprehensive analysis of the trends of the 

methods used in NL access to databases. This research analyzed these trends and documented them. 

The trends were presented in a concise graphical manner that was presented in section 2.5. Figure 

5.1 below re-illustrates this analysis. 

 

Fig 5.1 Concise Graphical Presentation of Methods and Trends in NL Access to Databases 

In analyzing the significance of this contribution to the body of knowledge, the four tenets described 

in 5.2.1 were applied.  It is true that researchers in this area have been grappling with the problem of 

literature that is widely dispersed and therefore organizing it into distinct schools of thought namely 

semantic parsing (which includes statistical and machine learning methods), logic mapping (which 

includes token and phrase based mapping) and Ontology Mapping (which involves the use of 

ontologies as an intermediate layer) is import theoretical contribution.  
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Arising from linguistic characterization of NL inputs to a database access model, several important 

conclusions were made. These included the idea that the kernelization process originally proposed in 

the Generative-Transformational grammar for sentences, is a viable method of NLQ parsing. 

Further, it was observed that there exists a regular process in which the general semantics of a query 

are transferred from the surface structure to the base meaning-bearing components. This process was 

modeled and presented as the Query Semantics Transfer Model (QuSeT) Model in section 3.3.9.3. 

The model is re-illustrated in Figure 5.2. 

 

Fig 5.2 Query Semantics Transfer (QuSeT) Model based on Generative-Transformational Grammar 

The QuSeT model was qualitatively and quantitatively validated as explained in section 3.3.9.3 and 

3.3.9.4 respectively. In the qualitative analysis, the model was validated using primary data collected 

from one of the surveys where the twelve most prevalent NLQ types were applied and tested through 

generative-transformation modeling specifically the kernelization process.   
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This model, whose mean accuracy was determined as 94%, is an important contribution in that 

NLQs may be converted to the equivalent semantic bearing components which are in turn organized 

in form of triples that form the backbone of the SPaRQL query. Only the language’s generative-

transformational, as explained in publications such as  Encyclopedia Britanica Inc, (2014), 

Massamba, Kihore, & Hokororo (1999), Zellig (1951) among others and phrase chunking rules 

which are expressed as regular expressions are required for this model to be complete for any given 

language. Once rules have been extracted from a particular language manually, they can then be 

deployed in a language independent manner as explained in QuSeT. 

5.2.3 Ontology Words Recreation Algorithm (OWoRA) 
 

One of the objectives in this work was the creation of a generic parsing method for ontologies 

created from relational databases. In particular this problem is challenging because no previous 

studies have been done with a view of characterizing database schema naming methods. Some of the 

research questions addressed in the database schema authorship survey were as follows, 

 Is there a finite set of patterns that database schema authors’ use in representing 

database schema object names?  

 ‘How can we decipher the meaning of ‘intended concept’ from the schema names? 

 How can a general ‘Concepts Re-construction Algorithm’ be built from an ontology 

created from relational database source? 

The conclusions obtained from the database nomenclature surveys were used in the creation of an 

Ontology Words Reconstruction Algorithm (OWoRA). This was presented in section 3.4.7. This 

algorithm, which had an average performance on accuracy of 92.5%, is important contribution to the 

body knowledge because any RDF-based ontology, such as an OWL ontology created from a 

relational database, may be parsed by this algorithm to reconstruct the full words that would be used 

in an equivalent manner if short-forms such as abbreviations and concatenations were not used.  

In about 7.5% of the observations automatic methods could not guarantee deduction of meaning 

from short-hand forms due to over abbreviation or use of acronyms that do not have direct mapping 

to meaning. 
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5.2.4  Ontology Concept Model (OCM) 
 
As articulated in chapter one, this research revolved around the provision of a generic language and 

domain independent methodology for understanding un-restrained natural language text and 

converting it to structured query language (SPaRQL). Further the research aimed at tackling the 

challenges encountered in cross-lingual querying especially in the context of Kiswahili-English 

cross-lingual databases.  

Section 2.6.1 presented the conceptual framework that provided the road map to the development of 

the architectural model presented in section 3.6. The overall algorithm for this model was presented 

in section 3.76. The following section discusses these key theoretical contributions.   

5.2.4.1 Conceptual Framework 

The conceptual framework articulated the main processes required for a solution to be obtained. This 

framework is presented in figure 2.12 and its components discussed in sections 2.6.1 through section 

2.64. Given this framework any researcher may design an ontology based method without 

necessarily going the way of OCM. It is therefore an important theoretical contribution emanating 

from the literature analysis. From the Petre and Rugg (2010) criteria of assessing significance this is 

an important contribution with great significance to potential ontology-based researchers.  

 

5.2.4.2 Architectural Model of the OCM  

One major contribution of this work is in the design of an architectural model for the OCM 

approach. Figure 5.3 re-illustrates this architecture named in section 3.6 as ‘Architecture for 

Ontology-based NL Access to DBs (ONLAD)’. It is an important contribution to the body of 

knowledge because it has provided a methodology based on the ontology approach that can be used 

as a template upon which a system is developed. In this work, the architectural model led to the 

development of a prototype whose performance compared favorably to the cutting-edge-tools. 
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Fig 5.3 Architecture for an Ontology-based NL Access to DBs (ONLAD) 

 

The ONLAD architecture was published as a book chapter in Springer Lecture Notes in Computer 

Science (LNCS 2013) (Muchemi & Popowich, 2013).  

 

5.2.4.3 Implementation Algorithms 

The OCM algorithms were presented in section 3.7 while their implementation is reported in 

appendix 8. The algorithms and the architectural model described in 3.6 formed the basis for the 

actual implementation of the OCM-based prototype. Other important components were designed and 

discussed in detail in various sections of this report.  

Section 3.5.1 highlighted the process of designing a suitable feature space model, section 3.5.2 

provided details for the design of a gazetteer while section 3.7.1 provided details for the design of a 

Semantically-Augmented Concept Matching (SACoMA) function.  

This research has also brought forth a new approach in the handling of foreign keys that are present 

in tables and constraining the results formed by SPaRQL triples using the transferred keys. This was 

developed as a heuristic and was presented in section 3.7.4. Other heuristics included discovery of 
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implicit concepts and the query generation of actual structured queries in form of SPaRQL. Without 

these algorithms, designs and heuristics, the actual implementation would have been difficult.  

 

In summary, these designs, algorithms and heuristics form important methodological contributions 

to the body of knowledge.  

The model’s significance to the community of researchers is great because it forms the basis for 

replication or bench-marking other models. The community of developers benefit in that they may 

use the model to develop systems that achieve high performance as demonstrated by the prototype. 

Its limitations, such as suffering from low maximum recall and accuracy levels compared to other 

approaches, were discussed in section 4.10.5 and these may be addressed by future research. 

 

5.2.5 Evaluation Framework 
An evaluation framework describes the environment, procedures and parameters used in determining 

the performance of a model. As established in literature, there does not currently exist a standard or 

de facto evaluation framework for a NL database access model. This work has researched and 

presented an elaborate evaluation framework informed by a comprehensive review of literature. This 

research developed an 8-parameter evaluation framework that sought to fill this gap. The framework 

has been fully described and used to evaluate the OCM model. 

In this new framework, traditional practices of determining quantitative parameters such as accuracy, 

precision and recall were augmented with a further quantitative parameter, the F-score which was 

borrowed from related NLP tasks such as information extraction. The framework was enhanced by 

incorporation of four other qualitative parameters which in the context of the objectives of this 

research, are vital in the conclusive evaluation of performance. 

The framework also describes the experimental procedures in detail. The standard deviation analysis, 

coupled with Peirce’s criterion (Ross, 2003), were determined as the most suitable independence 

analysis measures and were presented in sections 4.1. The detailed experimental and analysis 

procedures are explained in sections 4.6 through to section 4.8.  

As a contribution to the body of knowledge, this research has brought forth an evaluation framework 

that can be a point of reference in evaluating other database access models.  
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5.3 Technical Contributions 
Petre and Rugg (2010) describe the implementation of theoretical principles as an important 

contribution to the body of knowledge. In this work several theoretical principles were pooled 

together and formed important practical contributions which were demonstrated through the 

prototype illustrated in figure 3.50. Examples of these theoretical principles included the use of 

Chomsky (1970), Transformational Grammar theory and formation of Kiswahili terms and 

collocations described in Sewangi (2001). These together with other resources described in 3.8 were 

constructed into one coherent practical implementation. Some of the important functions which were 

implemented in python are shown in appendix 8. 

This work made further technical contributions in the area of creation of two datasets (queries and 

databases) that may be used by the research community for development of models and their 

evaluation. These are the Kiswahili dataset developed for the farming domain and an English dataset 

developed for the students’ queries management. The Kiswahili dataset, being the first in the study 

of DB access using Kiswahili language may act as a ‘gold standard’ in the area of testing and 

evaluation of NL access models. 

5.4 Achievements on Performance Advancement 

5.4.1 Advancement of F-Score Performance  
 

One significant achievement of this research was in the advancement of the F-Score performance. 

OCM has an F-score of between 0.774 and 0.784. The token-based graph-matching approach by 

Popescu et al. (2003) had a minimum F-score of 0.65 while the token and phrase based Kiswahili 

template mapping (TTM) by Muchemi (2008) has a score of 0.686. On the other hand the most 

successful machine learning models such as the λ-SCFG grammar based learners by Minock et al. 

(2008) and the statistical based learners such as WASP by Ge and Mooney (2005) had an F-score of 

between 0.550 and 0.820 and 0.69 and 0.930 respectively. Machine learning approach usually 

requires a secondary classifier that converts the meaning representations from a semantic parser such 

as WASP to a structured query such as SQL. This cascading of machine learning approaches reduces 

the overall F-score. For example Superimposing an SQL classifier such as that by Giordani & 

Moschiti, (2010) with an F-Score of 0.759 to say WASP with an F-score of 0.81, the overall DB-

Access F-Score would be (0.81x0.759) which is 0.615. This is much lower than OCM’s  average of 

0.78. 
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The model was tested using Kiswahili and English queries. The average F-score on Kiswahili 

queries was found to be 0.76 against 0.79 for English queries while precision for Kiswahili ranged 

between 0.74 and 0.85 against 0.75 and 0.86 for English queries.  

The results from the OCM model were bench marked against the state-of-the-art models as presented 

in section 4.10.The model and the results were published in Muchemi & Popowich (2013b).  

5.4.2 Attainment of Domain-Independence  
 
The model was evaluated across four different domains where it was shown through domain-

independence experiments and analysis to be domain independent. It was demonstrated in section 

4.6 that the OCM model is insensitive to domain change thereby leading to the conclusion that the 

OCM model is domain independent. This is a significant contribution in that the developers can 

apply this model to many different domains without deterioration of the performance levels. 

5.4.3 Attainment of Language Independence  
 
Experimental results found in section 4.7 showed that OCM is applicable to different languages 

without deterioration in performance. This universality was achieved through application of 

universal language theory, specifically ‘Transformational Grammar’ theory by Chomsky (1970), to 

augment natural language processing. This is a significant contribution to both research and 

developers communities. 

5.4.4 Achievement of Cross-lingual Querying  
 
Most databases have to grapple with the challenge of cross-lingual interaction. This is the inability of 

a model to use a certain natural language to query a specified database given that the language used 

to author the ontology or the database schema objects is different from the one used in querying. 

Experiments reported in 4.8 showed that the OCM model handles this challenge effectively. This 

was effected through introduction of a gazetteer which is the manipulated accordingly. The 

attainment of cross-lingual querying is an important technical contribution.   

5.5 Limitations  
 

The main limitation of the developed solution is the lack of machine learning capacity where users’ 

previous inputs, results and feedback can be utilized to improve performance. This means that the 
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model cannot learn and so will have a static performance level. While this may not necessarily be a 

bad thing, models which are self-improving are better than static ones.  

As earlier stated, the model also suffers from low maximum recall level as evident from results 

because it requires full information that sometimes may be regarded as obvious or superfluous. The 

low recall levels would lead to no answers being generated which is better than having SPaRQL 

generate wrong or unexpected answers. For example the query ‘give me customers who come from 

Nairobi’ might require you to add the word ‘name’ within the query so that the system realizes we 

require ‘customers’ names’. Though OCM tried to avoid this by giving all possible answers, it would 

be desirable to learn users’ behaviour and make intelligent guesses, rather than giving unnecessary 

information.  

Another drawback which is on implementation rather than methodological approach is that the OCM 

implementation relies on the integration of several modules and resources. If the individual modules 

are not well implemented, say training of phrase chunkers, the overall result would be lower than the 

one reported here.  

5.6 Recommendations for Further Work 
 
This work has made several contributions to the body of knowledge, however a few areas have the 

potential to be advanced further. This section highlights these areas 

5.6.1 Scalability Study 
 
The model developed in this study supports concurrent access to multiple tables but not to multiple 

databases. The ability to support multiple databases is important because it gives an indication of the 

potential for scalability. A study in this area would provide a useful extension to the OCM model 

because querying can be done concurrently to several databases over a network or even the internet. 

Research into the incorporation of multiple web crawling agents that carry OCM-based models can 

possibly solve this problem.  Scalability study is an area that is potential for further work.  

5.6.2 Discourse Processing Study 
   
As explained earlier, deletion of agents transformation (DAT) occurs in close to 20% of the 

occurrences. For example, nouns are replaced with pronouns. This is common especially when users 

ask consecutive questions and they expect the system to ‘remember’ the subject being discussed. For 



Lawrence Muchemi-PhD Thesis 2014 

 

204 | P a g e  
 

example the interrogator may be inquiring on the amount of food a layers chicken requires. In a 

consecutive question, the interrogator may want to know about the quantity of water required by the 

same subject. The interrogator makes an assumption that the system has a memory of the subject 

being discussed and therefore implicitly refers to the layers chicken by the use of a pronoun. This 

implicit way of referencing concepts leads to lower rates of recall because even though the pronoun 

is recognized as a subject by the QuSeT model, a direct mapping of this subject to the core-

referenced subject is not possible without a context processor. Incorporation of content processing to 

decipher meaning of pronouns and other deleted agents for DAT transformed sentences would be a 

useful extension to this work because it would guarantee relatively higher recall rates. 

5.6.3 Application of OCM to Object-Oriented Databases 
 
This is another potential area of study in which researchers can explore the possibility of applying 

OCM to object oriented databases. These databases are gaining traction in the applications world 

especially in multi-media and game applications and it would be insightful to study, extend and 

evaluate performance of OCM in this data representation paradigm. 

In conclusion this research ventured into the area of natural language access to relational databases 

and has brought forth new contributions in this area. A high performance architectural model that 

provides for both natural language query parsing and RDF ontology schema parsing as well as data 

structures and processing algorithms have been developed and evaluated. Looking back at the set 

objectives in chapter one, all have been successfully met.  

5.7 Relevant Publications and Associated Conferences 
 
BOOK CHAPTERS 

Muchemi, L & Popowich, F.(2013). An Ontology-Based  Architecture for  Natural Language 
 Access to Relational Databases. Springer Lecture Notes in Computer Science. HCI (6) 2013: 
490-499 Vol. 8009 2013. Las Vegas, USA. ISBN 978-3-642-39188-0 

JOURNAL PUBLICATION 

Muchemi, L. (2008). Towards Full Comprehension of Swahili NL for Database Querying. 
Strengthening the Role of ICT in Development (pp. 50-58). Kampala-Uganda: Fountain 
Publishers. 
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Conference.   Makerere  University, Kampala, Uganda, August 2008 
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Appendix 1: Characterizing Linguistic Features of user Inputs  
Segment of Farmers Query Set (Reprinted from original Set (Muchemi L. , 2008) ) 

1. Ametoka nchi ipi Which country Ametoka 
2. Ana tabia gani What Has character 
3. inataga kwa mda gani inataga for what time 
4. vifaranga ni bei gani What is the price chick 
5. wakisha komaa nitauzaje When mature, they will uzaje 
6. baada ya kutaga nitauza aje After I sell come lay 
7. nitaagiza vifaranga kupitia nani I suffered through the chick who 
8. nitaletewa vifaranga siku ngapi baada ya kuagiza I brought the chick, how many days after ordering 
9. nitabebewa vifaranga na nani Who will bebewa chick 
10. kuku wakigojeka nitamwona nani hen I saw who they gojeka 
11. kuna vipingo ngapi vya ukuaji How much growth there Vipingo 
12. unaweza badilisha chakula bila kuangalia watengenezaji You can eat without looking at the developers changed 
13. nafaa kuwapa kuku maji kiasi kipi nafaa much water to give a chicken 
14. kuna shida maji yakimwagika sakafuni There are water problems on the floor yakimwagika 
15. vyumba vya kuku vinafaa kujegwaje You should kujegwaje chicken rooms 
16. vinafaa kujenga vikielekea jua au la You should know or not to build vikielekea 
17. chini kwa sakafu inafaa kukorogwa au la under the floor or the appropriate kukorogwa 
18. ni chombo kipi kinafaa cha kuleta joto inayofaa What are expedient tool to bring the appropriate temperature 
19. wakati gani mtu anafaa kujua joto limezidi when does a person need to know the temperature limezidi 
20. nibaridi kiasi gani inatakikana How nibaridi inatakikana 
21. chombo kipi kinafaa kutumika What are expedient tool used 
22. ni vyombo vipi vinafaa kwa usafi. How nivyombo You should clean. 
23. kuku wanafaa kuachana katika ukuaji na “gap” gani They should stop the chicken growth and, Äúgap, or what 
24. kuku akikomaa anafaa kuwa na uzito kimo gani If chicken is perfect height and weight should be what 
25. dawa huharibika baada ya mda upi medicine perishes after what time 
26. kuku anayepigwa na wengine anafaa kutengwa chickens that received by others is appropriate isolation 
27. nidalili gani zilizo za kawaida kuku akiugua nidalili What if chickens are common illnesses 
28. nafaa kutumia dawa gani What medications nafaa 
29. ni njia gani mwafaka ya kuzuia magonjwa What is the best way to prevent diseases 
30. unaweza kula kuku mgonjwa You can eat sick chickens 
31. unajua aje kuku amefikisha wakati wake wa kuuzwa You know how chicken is delivered during his sold 
32. wanunuzi bora best buyers 
33. bei bora best price 
34. je tunaweza kutafutiwa soko how can we market kutafutiwa 
35. unajua aje kuku amefikisha … ** You know how chicken is delivered, a ¶ 
36. aina hii imetoka nchi gani ** This kind from what country 
37. Kukua na kuishi kukoje ** Growth and living kukoje 
38. anataga kwa mda upi ** What time he lay with 
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39. vifaranga ni pesa ngapi ** Chick is how much 
40. bei yao wakisha komaa ni ngapi ** Their price when they mature is how many 
41. baada ya kutaga nitauzaje ** After I lay uzaje 
42. nitaagiga vifaranga kupitia nani ** Who will agiga chick through 
43. nitaletewa vifaranga siku ngapi baada ya kuagiza ** I brought the chick, how many days after ordering 
44. nitabebewa vifaranga na nani ** Who will bebewa chick 
45. kuku wakiugua nitamwona nani ** I saw chickens who were suffering from 
46. kuna vipingo ngapi vya ukuaji How much growth there Vipingo 
47. je ni salama kubadilisha chakula bila kuzingatia 

mtengenezaji Is it safe to change the food regardless of manufacturer 
48. nafaa kuwapa kuku maji nafaa giving chickens water 
49. kiasi kipi cha maji much water 
50. kuna shida yakimwagika sakafuni There are problems on the floor yakimwagika 
51. kuku wanafaa kuachana katika ukuaji na “gap” gani They should stop the chicken growth and, Äúgap, or what 
52. kuku akikomaa anafaa kuwa na uzito kimo gani If chicken is ready to be mature height and weight did 
53. dawa huharibika baada ya mda upi medicine perishes after what time 
54. kuku anayepigwa na wengine anafaa kutengwa chickens that received by others is appropriate isolation 
55. nidalili gani zilizo za kawaida kuku akiugua nidalili What if chickens are common illnesses 
56. nafaa kutumia dawa gani What medications nafaa 
57. ni njia gani mwafaka ya kuzuia magonjwa What is the best way to prevent diseases 
58. unaweza kula kuku mgonjwa You can eat sick chickens ==== 
59. kuku wakutaga mayai anapatikana aje wakutaga chicken eggs is found to come 
60. naweza kumpata kuku wa nyama I find chicken meat 
61. kifaranga wa kuku wa nyama anapatikana na pesa ngapi chick chicken meat is available and how much 
62. je, unastahili kuagiza kuku wako kabla ya siku ngapi Do you need to order your chickens before how many days 
63. je, ni chakula kipi unaweza patia kuku wa nyama na wa 

mayai Is what you eat can give the chicken meat and eggs 
64. kuku wa nyama anastahili kuwa na kilo ngapi kwa siku 

arobainne poultry meat should be and how many kilograms arobainne 
65. vyumba vyafaa kujengwa kwa nini Why vyafaa apartments built 
66. vifaa vipi vya faa kutumiwa kupima joto how materials should be used to measure temperatures of 
67. nyumba ya faa kusafishwa vipi How the house should be cleaned 
68. vyumba vya faa kusafishwa baada ya mda upi. rooms should be cleaned after what time. 
69. kuku afaa kuwa na kilo ngapi baada ya wiki 6 afaa a chicken, how many kg after 6 weeks 
70. anapewa chajo baada ya mda upi He received chajo after what time 
71. anapewa chajo wapi Where is given chajo 
72. kuhara ni ugonjwa diarrheal disease is 
73. bona kuku hutetemeka Why chickens are trembling 
74. kuku wanao kuwa na kukosa kutembea kwa nini. lack of chickens who had walked for what. 
75. kuku akihara apewa dawa zipi chicken, and diarrhea what drug apewa 
76. akitetemeka afanywe nini What trembling afanywe 
77. naweza kuzuia kuhara vipi How can I prevent diarrhea 
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78. kuku wa nyama auzwe baada ya siku ngapi auzwe chicken meat after how many days 
79. kuku wa nyama auzwe wapi. Where poultry meat auzwe . 
80. broilers? Broilers? 
81. shilingi hamsini kila kifaranga fifty shillings each chick 
82. unaenda kujichukulia You go kujichukulia 
83. mwangaza wa masaa ishirini na nne. manifestation of twenty-four hours . 
84. kuku aina ngapi za kuku za mayai How many types of poultry chicken egg 
85. kuna aina ngapi za kuku There are how many types of poultry 
86. kuna aina ngapi za chakula How many kinds of food there 
87. kuku za mayai ni bei gani hen's eggs, what is the price 
88. kuku za nyama ni bei gani poultry meat, what is the price 
89. kuagiza ni nini (how do I book) What order is (how do I book) 
90. mtu huchukua wiki ngapi How someone can take weeks 
91. kuku za paswa kupewa chakula mara ngapi of chicken meat should be many times 
92. kuku aina ngapi za chakula How many types of poultry meat 
93. kuku za nyama zinapaswa kunywa maji mara ngapi poultry meat should drink water often 
94. kuna aina ngapi za maji There are how many types of water 
95. nyumba ya kuku inapaswa kujengwa aje The chicken house should be built to come 
96. unapaswa kuwasha taa kila siku You should light a candle every day 
97. kuku za nyama huuzwa kwa bei gani poultry meat is sold for what price 
98. kuku za [mayai] huuzwa bei gani hen the [eggs] are sold, what price 
99. chakula cha kuku wa mayai ni bei gani eat the chicken's eggs, what is the price 
100. utapata wapi soko ya kuku za mayai Where will the market find a chicken egg 
101. utapata wapi soko ya kuku za nyama Where you will find a market of poultry meat  
102. kama za kienyenji as kienyenji 
103. kama za mayai as egg 
104. kama za nyama as meat 
105. ya kienyenji pesa ngapi of how much kienyenji 
106. za nyama pesa ngapi How much money meat 
107. za mayai pesa ngapi how much egg 
108. nani ataniletea Who will me 
109. nanikijichukulia Nanikijichukulia 
110. utanidai pesa ukiniletea the money you gave me nidai  
111. naweza pata aina ya kutaga I get kind of lay 
112. kuna aina ya nyama any kind of meat 
113. nay a nyama na mayai nay a meat and eggs 
114. ya kutaga pesa ngapi how much of the lay 
115. ya mayai pesa ngapi of how much eggs 
116. 50 za mayai pesa ngapi 50 eggs, how much 
117. kuchukua kuku uanze vipi How to take chicken begin 
118. kuagiza ningonje mpaka lini When ordering ningonje until 
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119. kuku 50 pesa ngapi kuagiza how much chicken to order 50 
120. nitaletewa baada ya siku ngapi I brought how many days 
121. ninani atanichukulia kuku Who will take chicken 
122. zinachukuliwa wapi Where zinachukuliwa 
123. vifaranga wa nyama wanakaa kwa wiki ngapi chick of the meat they spent how many weeks 
124. vifaranga wa nyama wakula chakula kipi chick eat meat what  
125. broilers ni zipi na ni za nini What are broilers and what are 
126. layers ni zipi What layers are 
127. za mayai ni pesa ngapi of eggs is how much 
128. zikichinjwa pesa ngapi how much zikichinjwa 
129. mtu anaagiza wakati upi What is allowed during one 
130. mtu anangojea siku ngapi How many days a person is waiting 
131. nitachukua na nini gari ‘carton ‘ama nini What will I take the car, Äòcoton, what Äòama 

 

Elf’s Queries to Microsoft’s North-Wind Database Questions 

Segment of Trade Query Set (Reprinted from original Set by (Bootra, 2004)) 

1. where are the suppliers from Germany located 
2. show the names and complete address of the biscuit companies 
3. at which company does Ian work 
4. who handles the specialty items(Modify to: who supplies speciality items?) 
5. show the domestic suppliers 
6. show the New Orleans suppliers 
7. show the New England suppliers 
8. which company handles the specialty products 
9. which companies have Product Managers 
10. show the Product Managers 
11. show the orders by Leverling to Hanover Sq 
12. which products come in bottles 
13. What are the names of our Canadian customers? 
14. Give the name and location of suppliers from Germany. 
15. Which are our Australian suppliers? 
16. List the countries where suppliers are located, arranging the countries in alphabetical order. 
17. Products with names that start with "La". 
18. Suppliers who are not located in Canada 
19. Find the products that have between 10 and 20 units in stock 
20. Records for customers who are located in Canada and whose names begin with the letter "M" 
21. Suppliers who are located in Canada and whose names begin with the letters A-N. 
22. Suppliers who have a fax number 
23. Show the employees hired between May 1, 1992 and June 1, 1993 
24. Employees who live in the United Kingdom or employees who live in Seattle 
25. Orders placed before 1-Jan-93 
26. Customers whose company names start with N-Z and who are located in either the United Kingdom or Paris 
27. Orders that were placed during the month of February 93 
28. Find customers from Canada or the UK who have placed over 15 orders 
29. Suppliers who provide seafood products and who are from Singapore or Japan. 
30. Find the customers who ordered the "Chef Anton's Cajun Seasoning" product 
31. information on orders that were placed after 31-Mar-92, including the employee who made the sale and the 

customer who placed the order 
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32. What's the average price of all our products 
33. Give the name and id for each category. 
34. List the customers 
35. Count the orders that have been placed for each seafood product 
36. Show the ship date and order subtotals since March of 1994 
37. Display the subtotal and shipping date of all orders 
38. List the suppliers in alphabetical order 
39. Find the total number of Northwind suppliers 
40. orders that were shipped today 
41. orders that were shipped during the past ten years 
42. The number of orders that were shipped within the past 3100 days 
43. Find the total value of orders that have been shipped to each country 
44. Which products cost between $3 and $6? 
45. Give the order id, product name, product id, price, quantity, discount and extended price for each purchase 
46. Show catalog information for the active products. 
47. the minimum price of all products in the Products table 
48. all records with the current date 
49. What's the total number of orders we received this month 
50. all employees who have birthdays today 
51. all employees who have birthdays on July 2 
52. All employee records that contain photos 
53. Find the total number of customers in Canada or the United Kingdom who have placed orders, and group them 

by country 
54. Find the total value of orders shipped to each customer within each country 
55. Which employee sold the most units of tofu? 
56. Subtotal and customer for orders shipped between 10/1/91 and 12/31/91, sorting on the value 
57. photos of employees whose last names start with "B" 
58. show photos of employees hired during 1991 
59. which customers have ordered both Konbu and Filo Mix? 
60. which products are more expensive than chai 
61. how much does chai cost 
62. customers that ordered both chai and filo 
63. how many products are there in each category 
64. which customers have ordered every meat/poultry product 
65. which customers have never ordered seafood 
66. which customers ordered Longlife tofu but not filo mix 
67. which customers always use Federal Shipping 
68. which product costs the most 
69. which customers have placed more orders than average 
70. show the seafood products in reverse price order 
71. customers that have ordered from both Ma Maison and Tokyo Traders 
72. show company names of the suppliers that have more than 3 products 
73. which orders were neither shipped to Canada nor sent via Speedy Express 
74. which orders were not both shipped to Canada and sent via Speedy Express 
75. how many customers have ordered every meat/poultry product 
76. what percentage of customers have ordered every meat/poultry product 
77. which customers bought products from every category 
78. which customers ordered the fewest items 
79. show the names and complete address of the pear companies 
80. which of the clients that purchased tofu have also purchased chai? 
81. Show the ship date and subtotals for all orders since March of 1991 
82. how many customers in each country have ordered tofu? 
83. which customers exclusively use Federal Shipping 
84. which customers use Federal Shipping exclusively 
85. customers that work at 12 Orchestra Terrace 
86. customers in the t2f area 
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87. count the orders for tofu versus those for chai 
88. graph the number of tofu or chai orders 
89. graph the number of Seattle employees against London 
90. graph the sum of subtotals for seafood against beverages 
91. graph the average subtotal for each category 
92. graph the sum of subtotals for tofu, chai and konbu 
93. show the average number of products sold by each employee sales representative 
94. compare the average unit price showing employee and product 
95. which products were shipped by Federal in the last 5 years 
96. list employees with home phones = (206) 555-8122, (206) 555-8122 
97. Find the total number of different customers in Canada or UK who have placed orders 
98. find the total number of DISTINCT customers in Canada or the United Kingdom who have placed orders, and 

group them by country 
99. which suppliers have order dates that are newer than 600 months old 
100. show the difference between discount and unit price 

COMPUTER JOBS QUERIES 

Segment of Jobs Search Query Set (Recreated from Original set by Tang & Mooney, 2001) 

1. 'All of it?' 
2. 'All the jobs please?' 
3. 'All?' 
4. 'Any jobs available using database?' 
5. 'Are there ada jobs outside austin?' 
6. 'Are there any autocad jobs open?' 
7. 'Are there any computer jobs for the playstation?' 
8. 'Are there any computer jobs in the field of statistics?' 
9. 'Are there any jobs at applied materials that require a bscs?' 
10. 'Are there any jobs at dell that require no experience and pay 50000?' 
11. 'Are there any jobs for a client server specialist?' 
12. 'Are there any jobs for a data warehousing specialist?' 
13. 'Are there any jobs for a graphics specialist?' 
14. 'Are there any jobs for a odbc specialist?' 
15. 'Are there any jobs for a programmer?' 
16. 'Are there any jobs for people in austin that want to program in lisp but do not have a degree?' 
17. 'Are there any jobs in austin developing games in x86 using assembly?' 
18. 'Are there any jobs in austin paying over 100000 per year?' 
19. 'Are there any jobs in austin requiring at least a bscs and knowing latex?' 
20. 'Are there any jobs in austin?' 
21. 'Are there any jobs in 'c++' that the salary is 50000?' 
22. 'Are there any jobs in houston?' 
23. 'Are there any jobs in lan?' 
24. 'Are there any jobs in san antonio?' 
25. 'Are there any jobs in tcp ip?' 
26. 'Are there any jobs in the us with the title verification engineer?' 
27. 'Are there any jobs in usa?' 
28. 'Are there any jobs on ibm?' 
29. 'Are there any jobs on novell?' 
30. 'Are there any jobs on pc?' 
31. 'Are there any jobs on sun?' 
32. 'Are there any jobs on vax?' 
33. 'Are there any jobs on windows?' 
34. 'Are there any jobs requiring a bscs for boeing in seattle?' 
35. 'Are there any jobs requiring ba?' 
36. 'Are there any jobs requiring bs?' 
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37. 'Are there any jobs requiring bscs?' 
38. 'Are there any jobs requiring bsee?' 
39. 'Are there any jobs specializing in ai with jpl?' 
40. 'Are there any jobs that do not require 5 years of experience?' 
41. 'Are there any jobs that require a knowledge of linux in san antonio?' 
42. 'Are there any jobs that require the knowledge of linux platform?' 
43. 'Are there any jobs using assembly in usa?' 
44. 'Are there any jobs using 'c++' with dell?' 
45. 'Are there any jobs using cobol?' 
46. 'Are there any jobs using java that are not with ibm?' 
47. 'Are there any jobs using java that are not with tivoli?' 
48. 'Are there any jobs using java that dont require a bscs?' 
49. 'Are there any jobs using powerbuilder?' 
50. 'Are there any jobs using sql?' 
51. 'Are there any jobs using 'vc++'?' 
52. 'Are there any jobs with a salary of 100000?' 
53. 'Are there any jobs with microsoft involving sql?' 
54. 'Are there any jobs with microsoft?' 
55. 'Are there any mac jobs open?' 
56. 'Are there any mac programmer jobs open in austin?' 
57. 'Are there any mac programmer jobs?' 
58. 'Are there any programmer jobs open?' 
59. 'Are there any project manager positions open?' 
60. 'Are there any software developer jobs requiring bs?' 
61. 'Are there any systems administrator jobs in austin?' 
62. 'Are there any unix jobs?' 
63. 'Are there jobs that do not require a degree in houston?' 
64. 'Are there jobs using vb in seattle with sql server and on windows nt?' 
65. 'Can i find a job making more than 40000 a year without a degree?' 
66. 'Can you offer anything with at least 60000 on a sun?' 
67. 'Can you show me all the jobs?' 
68. 'Can you show me vb jobs with 50000 salary with databases and excel?' 
69. 'Could a senior consulting engineer find work in boston?' 
70. 'Could i have some jobs using sql with oracle?' 
71. 'Could you list all the jobs?' 
72. 'Do any jobs exist programming for apple on pdp11s?' 
73. 'Do you have any jobs involving 'c++' on aix?' 
74. 'Does anyone still use mvs?' 
75. 'Does apple have any software engineer positions?' 
76. 'Does national instruments have any positions that dont require experience?' 
77. 'Everything?' 
78. 'Find all 'c++' jobs in austin?' 
79. 'Find all network administration jobs in austin?' 
80. 'Give me a list of all the jobs?' 
81. 'Give me 'c++' jobs on windows nt?' 
82. 'Give me jobs for a data warehousing specialist?' 
83. 'Give me jobs for a games specialist?' 
84. 'Give me jobs in cobol ii?' 
85. 'Give me jobs in dallas?' 
86. 'Give me jobs in san antonio using cobol?' 
87. 'Give me jobs in san antonio?' 
88. 'Give me jobs in usa?' 
89. 'Give me jobs on the mac using perl?' 
90. 'Give me jobs on vms using sql?' 
91. 'Give me jobs requiring bs?' 
92. 'Give me jobs that require ethernet experience but no html?' 
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93. 'Give me jobs using visual 'c++'?' 
94. 'Give me the jobs for a database specialist in usa?' 
95. 'Give me the jobs for a games specialist?' 
96. 'Give me the jobs for a ole specialist?' 
97. 'Give me the jobs in 'c++'?' 
98. 'Give me the jobs in dallas?' 
99. 'Give me the jobs in houston?' 
100. 'Give me the jobs in visual 'c++'?' 
101. 'Give me the jobs on novell?' 
102. 'Give me the jobs on unix?' 
103. 'Give me the jobs on vms in assembly?' 
104. 'Give me the jobs on windows nt?' 
105. 'Give me the jobs requiring bscs?' 
106. 'Give me the jobs requiring bsee?' 
107. 'Give me the jobs using c?' 
108. 'Give me the jobs using 'c++' that dont require windows?' 
109. 'Give me the jobs using cobol?' 
110. 'Give me the jobs using sql?' 
111. 'Give some jobs in dallas on a sun system?' 
112. 'Greed for 80000 and java plagues developer wanting to live in san jose at apple?' 
113. 'How much experience is wanted for a job at microsoft?' 
114. 'I hold a degree in bscs in austin are there any jobs for me?' 
115. 'I sure do wish there were java assembly jobs out there '.'' can you help?' 
116. 'I sure would like a perl job at microsoft involving databases?' 
117. 'I want a job that doesnt use windows?' 
118. 'I want a job that use 'c++'?' 
119. 'I wish there were some perl jobs in boston?' 
120. 'I wonder what jpl does on unix with prolog and vax?' 
121. 'I would like to find a job using java?' 
122. 'I would like to see all the jobs?' 
123. 'Id like to see everything?' 
124. 'Id like to see the jobs in houston for a prolog programmer making at least 50000 a year involving 
databases?' 
125. 'If i moved to california and learned sql on oracle could i find anything for 30000 on unix?' 
126. 'Is anyone offering 40000 for ai work?' 
127. 'Is fortran required for any jobs?' 
128. 'Is there anything for an old cobol programmer on mvs?' 
129. 'List all jobs using 'c++' and java in california?' 
130. 'List jobs in austin?' 
131. 'List jobs in client server?' 
132. 'List jobs in cobol ii?' 
133. 'List jobs in usa?' 
134. 'List jobs in wan?' 
135. 'List jobs on sun?' 
136. 'List jobs on vms?' 
137. 'List jobs on windows?' 
138. 'List jobs requiring ba?' 
139. 'List jobs requiring bscs using java?' 
140. 'List jobs requiring bsee?' 
141. 'List jobs using assembly?' 
142. 'List jobs using cobol ii?' 
143. 'List jobs using java?' 
144. 'List jobs using sql?' 
145. 'List the companies that desire 'c++' experience?' 
146. 'List the jobs for a client server specialist?' 
147. 'List the jobs for a database specialist?' 
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148. 'List the jobs in 'c++'?' 
149. 'List the jobs in database?' 
150. 'List the jobs in san antonio?' 
151. 'List the jobs in visual 'c++'?' 
152. 'List the jobs on unix?' 
153. 'List the jobs requiring bs?' 
154. 'List the jobs requiring java a bscs 2 years experience?' 
155. 'List the jobs using assembly?' 
156. 'List the jobs using cics?' 
157. 'List the jobs using cobol ii?' 
158. 'List the jobs using html for a games specialist?' 
159. 'List the positions that require a knowledge of microsoft excel?' 
160. 'List the required experience for a job using lisp?' 
161. 'Moving to canada need a job with unix java and ibm?' 
162. 'Mvs cobol and databases are the key to tivoli?' 
163. 'Only microsoft vb windows nt and excel and 70000 dollars can satiate me?' 
164. 'Prolog ai and lisp and graphics?' 
165. 'Show a list of jobs requiring experience in 'c++' or java?' 
166. 'Show all intern positions in texas with network and java?' 
167. 'Show jobs for a com specialist?' 
168. 'Show jobs for a data warehousing specialist?' 
169. 'Show jobs for a shell programmer familiar with the unix environmen?' 
170. 'Show jobs in austin that require a bscs?' 
171. 'Show jobs in html?' 
172. 'Show jobs in usa?' 
173. 'Show jobs on windows?' 
174. 'Show jobs requiring ba?' 
175. 'Show jobs requiring bsee?' 
176. 'Show jobs that are not in austin pay less than 10000 require knowledge of 'c++' pascal and java and 
desire a phd?' 
177. 'Show jobs that do not require a degree for visual basic programmers?' 
178. 'Show jobs using cics?' 
179. 'Show jobs using powerbuilder?' 
180. 'Show jobs using visual basic?' 
181. 'Show me a dell job in austin requiring a bscs?' 
182. 'Show me a job not requirng java and not in austin?' 
183. 'Show me a job that requires 'c++' and java and is in austin?' 
184. 'Show me all job that are available?' 
185. 'Show me all of the software engineer jobs in austin?' 
186. 'Show me all of the software qa jobs in austin?' 
187. 'Show me austin jobs desiring a bscs?' 
188. 'Show me austin jobs requiring a bscs degree with a salary greater than 50000 per year?' 
189. 'Show me austin jobs requiring a bscs?' 
190. 'Show me austin jobs with a salary of 50000?' 
191. 'Show me 'c++' jobs requiring a bscs in austin?' 
192. 'Show me dallas jobs requiring a bscs?' 
193. 'Show me developer jobs requiring experience with mac?' 
194. 'Show me everything?' 
195. 'Show me graphics jobs which phil smith is recruiting for?' 
196. 'Show me houston jobs using c in the specialty area of oil pipeline modeling?' 
197. 'Show me houston jobs using 'c++' on pc?' 
198. 'Show me jobs are dell requiring experience on unix?' 
199. 'Show me jobs at dell earning 60000?' 
200. 'Show me jobs at dell requiring a bscs degree?' 
201. 'Show me jobs at dell requiring no experience and a bscs?' 
202. 'Show me jobs desiring a ma in austin with microsoft?' 
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203. 'Show me jobs desiring a mscs in austin with microsoft?' 
204. 'Show me jobs for dell requiring experience on unix?' 
205. 'Show me jobs in austin that use java on unix for a developer paying at least 50000?' 
206. 'Show me jobs in austin using solaris that do not require a bscs?' 
207. 'Show me jobs in computer graphics requiring a ba in art and knowledge of 'speedy3dgraphics'?' 
208. 'Show me jobs in dallas requiring knowledge of linux and pays more than 50000 a year?' 
209. 'Show me jobs in texas?' 
210. 'Show me jobs in tulsa using fortran on vax requiring a bscs?' 
211. 'Show me jobs located in austin for 'c++' programmers?' 
212. 'Show me jobs not involving 'c++'?' 
213. 'Show me jobs paying greater than 50000 per year?' 
214. 'Show me jobs requiring a bscs on sun?' 
215. 'Show me jobs requiring a bscs on suns?' 
216. 'Show me jobs requiring no experience?' 
217. 'Show me jobs that require 3 years work experience in 'c++'?' 
218. 'Show me jobs using lisp that require a bscs and desire a msee?' 
219. 'Show me jobs with a salary greater than 50000 dollars a year?' 
220. 'Show me jobs with the playstation in the specialty area of animation?' 
221. 'Show me management jobs in boston requiring an mba and the knowledge of visual basic?' 
222. 'Show me new york jobs requiring a bscs?' 
223. 'Show me positions in web programming?' 
224. 'Show me programmer jobs in tulsa?' 
225. 'Show me programmer jobs requiring no experience on unix?' 
226. 'Show me something that requires oracle?' 
227. 'Show me systems analyst jobs at ibm?' 
228. 'Show me systems analyst jobs at tivoli?' 
229. 'Show me the 'c++' jobs in nashville that desire 2 years experience?' 
230. 'Show me the hardware platforms associated with a netware administrator with ibm?' 
231. 'Show me the job application for ic design engineer?' 
232. 'Show me the jobs at companies in austin that want a degree in bscs?' 
233. 'Show me the jobs concerning game developer on a playstation?' 
234. 'Show me the jobs concerning games development on a playstation?' 
235. 'Show me the jobs in austin that desire 3 years of experience and use 'c++'?' 
236. 'Show me the jobs in texas using ai on unix?' 
237. 'Show me the jobs requiring 3 years of experience at ibm?' 
238. 'Show me the jobs requiring 3 years of experience at tivoli?' 
239. 'Show me the jobs that are not in haskell?' 
240. 'Show me the jobs that operate on sun?' 
241. 'Show me the jobs that require 1 year of experience but desire 2 years of experiences?' 
242. 'Show me the jobs that require 2 years experience?' 
243. 'Show me the jobs using 'c++' that require a bscs but desire a mscs?' 
244. 'Show me the jobs using java with salaries greater than 50000 per year?' 
245. 'Show me the jobs using lisp requiring a bscs?' 
246. 'Show me the jobs using perl with lockheed martin aeronautics in colorado?' 
247. 'Show me the jobs which use excel?' 
248. 'Show me the jobs with 30000 salary?' 
249. 'Show me the jobs with a salary of 50000?' 
250. 'Show me the networking jobs in houston with a salary of 50000?' 
251. 'Show me the research assistant job in austin?' 
252. 'Show me the senior development engineer jobs which require a master?' 
253. 'Show me the senior software developer jobs which require a master?' 
254. 'Show me the titles of the available jobs using prolog in houston?' 
255. 'Show me web developer job opennings at trilogy?' 
256. 'Show me what jobs there are?' 
257. 'Show me what needs experience?' 
258. 'Show me whats out there for perl developers on windows?' 
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259. 'Show the jobs for a odbc specialist?' 
260. 'Show the jobs for bscs in austin?' 
261. 'Show the jobs in austin?' 
262. 'Show the jobs in client server?' 
263. 'Show the jobs in dallas?' 
264. 'Show the jobs in san antonio?' 
265. 'Show the jobs in visual 'c++'?' 
266. 'Show the jobs offering 40000 working with c on windows nt?' 
267. 'Show the jobs on mvs?' 
268. 'Show the jobs on pc requiring bscs?' 
269. 'Show the jobs on pc?' 
270. 'Show the jobs on sun?' 
271. 'Show the jobs on vms?' 
272. 'Show the jobs requiring ba?' 
273. 'Show the jobs requiring bs in usa?' 
274. 'Show the jobs requiring bsee?' 
275. 'Show the jobs using html?' 
276. 'Show the jobs using lisp not requiring a degree in cs?' 
277. 'Show the jobs using powerbuilder?' 
278. 'Show the jobs with the title systems analyst requiring 2 years of experience?' 
279. 'Tell me jobs for a device driver specialist?' 
280. 'Tell me jobs for a mfc specialist?' 
281. 'Tell me jobs in austin?' 
282. 'Tell me jobs in networking?' 
283. 'Tell me jobs on sun?' 
284. 'Tell me jobs on windows 95 in mfc?' 
285. 'Tell me jobs requiring ba?' 
286. 'Tell me jobs requiring bscs?' 
287. 'Tell me jobs using cobol ii?' 
288. 'Tell me jobs using html?' 
289. 'Tell me jobs using visual basic?' 
290. 'Tell me the jobs in '3d' graphics?' 
291. 'Tell me the jobs in lan?' 
292. 'Tell me the jobs in usa?' 
293. 'Tell me the jobs on mvs?' 
294. 'Tell me the jobs on windows nt?' 
295. 'Tell me the jobs requiring ba using cobol?' 
296. 'Tell me the jobs requiring bs in usa?' 
297. 'Tell me the jobs requiring bs?' 
298. 'Tell me the jobs using powerbuilder?' 
299. 'Tell me the jobs using 'vc++'?' 
300. 'Tell me the jobs using visual basic?' 
301. 'Tell me what jobs there are?' 
302. 'Test engineer in need of 40000 in seattle on windows nt?' 
303. 'There must be some jobs out there for a 'c++' programmer that thinks in unix databases?' 
304. 'Vanity wants 5000 a month with buzwords like java apple internet and california?' 
305. 'What ai jobs are there in texas that pay 65000?' 
306. 'What ai positions require only a bscs?' 
307. 'What are all the jobs?' 
308. 'What are the 'c++' jobs in austin requiring a bscs?' 
309. 'What are the degree requirements for a software engineer?' 
310. 'What are the jobs for a 'c++' programmer in austin?' 
311. 'What are the jobs for programmer in austin that has salary 50000 that uses 'c++' and not related with 
ai?' 
312. 'What are the jobs in austin requiring knowledge of oracle?' 
313. 'What are the jobs in washington that require at least 5 years of experience?' 
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314. 'What are the jobs that pay 50000 per year?' 
315. 'What are the jobs that require experience with aix but not windows nt?' 
316. 'What are the jobs that require experience with microsoft word?' 
317. 'What are the jobs using 'c++' with salaries of 50000?' 
318. 'What are the positions within dell that requires bscs?' 
319. 'What are the positions within hp that pay 40000 per year?' 
320. 'What are the software engineer jobs available using ada?' 
321. 'What are the software engineering jobs available using ada?' 
322. 'What austin area web jobs require java and 'c++'?' 
323. 'What austin jobs that use cobol do not require any experience?' 
324. 'What 'c++' jobs are in austin?' 
325. 'What can i find using java on unix?' 
326. 'What database jobs are there?' 
327. 'What developer jobs in austin require a bscs and 'c++'?' 
328. 'What do you have paying over 40000 on the vax?' 
329. 'What engineer positions in telecommunications companies in dallas do not require 'c++'?' 
330. 'What ibm jobs require using java on commodores?' 
331. 'What is out there?' 
332. 'What java jobs are there with ibm in austin?' 
333. 'What job is there for a bscs with 5 years of experience?' 
334. 'What job is there for 'c++' but not visual 'c++'?' 
335. 'What jobs are available for a solaris systems administrator?' 
336. 'What jobs are available for someone who knows oracle on solaris?' 
337. 'What jobs are available that require java but not internet experience or ai experience?' 
338. 'What jobs are available using apache with a specialty area of networking?' 
339. 'What jobs are available?' 
340. 'What jobs are in seattle that are not at microsoft?' 
341. 'What jobs are longhorn employment hiring for?' 
342. 'What jobs are there doing computer graphics on silicon graphics machines?' 
343. 'What jobs are there for a '3d' graphics specialist?' 
344. 'What jobs are there for a com specialist?' 
345. 'What jobs are there for a graphics specialist?' 
346. 'What jobs are there for a gui specialist?' 
347. 'What jobs are there for a networking specialist?' 
348. 'What jobs are there for a test engineer using java?' 
349. 'What jobs are there for a visual basic developer?' 
350. 'What jobs are there for assembly programer that require a bscs?' 
351. 'What jobs are there for austin mac programmer using 'c++'?' 
352. 'What jobs are there for 'c++' programmers which pay more than 60000 per year?' 
353. 'What jobs are there for 'c++' unix developer?' 
354. 'What jobs are there for pascal programers who dont know 'c++'?' 
355. 'What jobs are there for programmers that know assembly?' 
356. 'What jobs are there for programmers who know java?' 
357. 'What jobs are there for web developer who know 'c++'?' 
358. 'What jobs are there for windows nt developers that know oracle?' 
359. 'What jobs are there in austin for people with knowledge of the application oracle?' 
360. 'What jobs are there in austin for project manager area games on mac using pascal?' 
361. 'What jobs are there in austin requiring a phd?' 
362. 'What jobs are there in austin that require 5 years experience?' 
363. 'What jobs are there in austin that require a bscs degree?' 
364. 'What jobs are there in austin that requires experience with unix?' 
365. 'What jobs are there in austin with a salary of at least 100000 per year?' 
366. 'What jobs are there in dallas that requires a mscs?' 
367. 'What jobs are there in data warehousing?' 
368. 'What jobs are there in games?' 
369. 'What jobs are there in houston?' 
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370. 'What jobs are there in odbc?' 
371. 'What jobs are there in sql?' 
372. 'What jobs are there in texas that use java and require no experience?' 
373. 'What jobs are there in usa on ibm?' 
374. 'What jobs are there in usa?' 
375. 'What jobs are there on aix?' 
376. 'What jobs are there on ibm?' 
377. 'What jobs are there on novell involving the internet?' 
378. 'What jobs are there on vms?' 
379. 'What jobs are there on windows 95?' 
380. 'What jobs are there on windows nt?' 
381. 'What jobs are there on x86?' 
382. 'What jobs are there on x86?' 
383. 'What jobs are there outside austin which pay less than 60000 per year?' 
384. 'What jobs are there requiring ba?' 
385. 'What jobs are there requiring bs?' 
386. 'What jobs are there requiring bscs?' 
387. 'What jobs are there requiring bsee?' 
388. 'What jobs are there that dont require a degree but use perl?' 
389. 'What jobs are there using cics?' 
390. 'What jobs are there using cobol ii?' 
391. 'What jobs are there using cobol?' 
392. 'What jobs are there using rpg?' 
393. 'What jobs are there using sql?' 
394. 'What jobs are there using 'tcl/tk'?' 
395. 'What jobs are there using 'vc++'?' 
396. 'What jobs are there using visual basic?' 
397. 'What jobs are there which require java on windows and unix?' 
398. 'What jobs are there with a salary of 40000?' 
399. 'What jobs are there with a salary of more than 50000 dollars per year?' 
400. 'What jobs are there working for microsoft programming lisp for autocad?' 
401. 'What jobs are there?' 
402. 'What jobs as a senior software developer are available in houston but not san antonio?' 
403. 'What jobs as an sql engineer pay 100000?' 
404. 'What jobs as manufacturing manager pay 100000?' 
406. 'What jobs at dell require a bscs?' 
407. 'What jobs can a delphi developer find in san antonio on windows?' 
408. 'What jobs can i find with tivoli?' 
409. 'What jobs desire 2 years of experience with powerbuilder on windows nt?' 
410. 'What jobs desire a degree but dont use 'c++'?' 
411. 'What jobs do not require a degree but pay more than 60000?' 
412. 'What jobs do you have?' 
413. 'What jobs does lcs recruit for?' 
414. 'What jobs does microsoft recruit for?' 
415. 'What jobs give me 40000 to work in houston on internet and web with perl?' 
416. 'What jobs have a recruiter named phil smith?' 
417. 'What jobs have a salary greater than 20 and hour?' 
418. 'What jobs in austin are for a lisp programmer that involve unix and the internet?' 
419. 'What jobs in austin are there that pay at least 100000 per year?' 
420. 'What jobs in austin desiring a bscs are there for a 'c++' programmer?' 
421. 'What jobs in austin have a salary of 60000?' 
422. 'What jobs in austin need knowledge in unix?' 
423. 'What jobs in austin only require a bscs and no experience?' 
424. 'What jobs in austin or dallas desire a degree?' 
425. 'What jobs in austin require 10 years of experience?' 
426. 'What jobs in austin require 5 years of experience but desire 10 years of experience?' 
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427. 'What jobs in austin require a bscs degree and deal with 'tcp/ip'?' 
428. 'What jobs in austin require 'c++' and unix?' 
429. 'What jobs in austin require knowledge of the platform unix?' 
430. 'What jobs in austin require no experience?' 
431. 'What jobs in austin use 'c++' and java?' 
432. 'What jobs in boston have openings for a 'c++' programmer?' 
433. 'What jobs in california pay 60000 for sql development?' 
434. 'What jobs in california require java and internet experience?' 
435. 'What jobs in dallas require a bscs and 'c++' but not java?' 
436. 'What jobs in dallas require experience with unix?' 
437. 'What jobs in houston are there that requires a bscs with 1 year of experience?' 
438. 'What jobs in houston require a bacs?' 
439. 'What jobs in ibm in austin do not need a degree?' 
440. 'What jobs in san antonio require the use of cobol?' 
441. 'What jobs in san jose offer a java programmer for 40000 a year?' 
442. 'What jobs need at least 2 years of experience?' 
443. 'What jobs need knowledge of 'c++' or java?' 
444. 'What jobs on pc are for programming assembly and desire 5 years experience?' 
445. 'What jobs pay 40000 per year that require a bscs?' 
446. 'What jobs pay 40000?' 
447. 'What jobs pay 60000 are located in austin and require a bscs?' 
448. 'What jobs pay 60000 are located in austin and require a degree?' 
450. 'What jobs pay at least 80000 dollars per year?' 
451. 'What jobs require 10 years of experience require a phd are in cobol and are located in texas?' 
452. 'What jobs require 10 years of experience require a phd in cs are in cobol and are located in texas?' 
453. 'What jobs require a bscs 4 years of experience pay 50000 and are in san jose?' 
454. 'What jobs require a bscs and experience with oracle?' 
455. 'What jobs require a bscs and no experience?' 
456. 'What jobs require a bscs degree and desire an mscs degree?' 
457. 'What jobs require a bscs?' 
458. 'What jobs require a degree for pascal programmers who do not know 'c++'?' 
459. 'What jobs require a msee and pays more than 100000 per year?' 
460. 'What jobs require at least 1 year of experience in 'c++'?' 
461. 'What jobs require 'c++' and pays a salary greater than 90000 per year?' 
462. 'What jobs require experience in 'c++' and java but not perl?' 
463. 'What jobs require knowledge of 'c++' but not perl?' 
464. 'What jobs use 'c++' on mac and pay 70000?' 
465. 'What jobs use 'c++' with the web on macs?' 
466. 'What jobs use cobol on ibm machines and pay 70000?' 
467. 'What jobs use html but do not require a degree?' 
468. 'What jobs using fortran are there in houston?' 
469. 'What jobs using fortran are there in los alamos?' 
470. 'What jobs using java and perl are available in dallas and pay 50000 a year?' 
471. 'What kind of jobs could i find for an old cobol programmer?' 
472. 'What kinds of jobs are available for visual basic consultants in boston?' 
473. 'What level of experience does ibm desire?' 
474. 'What locations offer jobs using java on sun?' 
476. 'What microsoft jobs do not require a bscs?' 
477. 'What oracle jobs are there with compaq in houston using pc?' 
478. 'What oracle jobs are there with compaq in houston using pcs?' 
479. 'What position in microsoft do i need a phd to work?' 
480. 'What positions are there in networking?' 
481. 'What positions are there that use 'c++' and java?' 
482. 'What programmer positions in austin require no experience?' 
483. 'What programming jobs are there in austin that uses java?' 
484. 'What programming languages are desired for a job as a programmer at ibm?' 
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485. 'What project manager jobs are there that require experience?' 
486. 'What software engineer jobs are there that use 'c++'?' 
487. 'What system administrator jobs are available from dell?' 
488. 'What systems analyst jobs are there in austin?' 
489. 'What tivoli jobs are there that require a bscs degree?' 
490. 'What web developer jobs are there in austin?' 
491. 'What web jobs are available that need mac experience and no degree?' 
492. 'What web related jobs require a bscs but no experience?' 
493. 'What work do you have available?' 
494. 'Whats all there?' 
495. 'Whats available on vax and near austin?' 
496. 'Whats in dallas that pays over 60000 on linux with graphics and java?' 
497. 'Where can i work with a bscs and no experience?' 
498. 'Which jobs are for bsee majors with at least 5 years experience in windows nt?' 
499. 'Which jobs at trilogy deal with 'c++'?' 
500. 'Which jobs in austin offer for students fresh out of college in networking?' 
501. 'Which jobs in houston offer over 50000 in graphics?' 
502. 'Which jobs offer me 40000 to work on internet and web with perl?' 
503. 'Which jobs pay 60000 that do not require a phd?' 
504. 'Which jobs require c and 'c++' but not java?' 
505. 'Which jobs require knowledge of lisp but dont specialize in ai?' 
506. 'Which jobs use visual 'j++' as their development tool?' 
507. 'Which system administrator jobs in dallas require 2 years’ experience and pay 50000?' 
508. 'Who gives 50000 for fortran?' 
509. 'Who might offer me 50000 for web development?' 
 
RESTAURANT QUERIES SET 
Segment of Restaurants Search Query Set (Recreated from Original set by Tang & Mooney, 2001) 
1. 'Give me a good american restaurant on fairgrounds dr in sunnyvale?'  
2. 'Give me a good bakery in aptos?'  
3. 'Give me a good bakery in berkeley?'  
4. 'Give me a good bakery in bethel island?'  
5. 'Give me a good bakery on appleton dr in aptos?'  
6. 'Give me a good bakery on bethel island rd in bethel island?'   
7. 'Give me a good bakery on shattuck ave in berkeley?'  
8. 'Give me a good chinese restaurant in the bay area?'  
9. 'Give me a good chinese restaurant on buchanan in san francisco?'  
10. 'Give me a good french restaurant in alameda?'  
11. 'Give me a good italian restaurant in the yosemite and mono lake area?'  
12. 'Give me a good place in san francisco for french food?'  
13. 'Give me a good place in the bay area for french food?'  
14. 'Give me a good place on buchanan in san francisco for arabic food?'  
15. 'Give me a good restaurant in alameda?'  
16. 'Give me a good restaurant in san francisco for french food?'  
17. 'Give me a good restaurant in the bay area for french food?'  
18. 'Give me a good restaurant in the bay area?'  
19. 'Give me a good restaurant on el camino in palo alto?'  
20. 'Give me a good restaurant on soquel dr in aptos for french food?'  
21. 'Give me a restaurant in alameda?'  
22. 'Give me a restaurant in aptos that serves good french food?'  
23. 'Give me a restaurant in san francisco that serves good chinese food?'  
24. 'Give me a restaurant in sunnyvale that serves good american food?'  
25. 'Give me a restaurant in the bay area?'  
26. 'Give me a restaurant on buchanan in san francisco that serves good arabic food?'  
27. 'Give me a restaurant on el camino in palo alto?'  
28. 'Give me a restaurant on fairgrounds dr in sunnyvale that serves good american food?'   
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29. 'Give me a restaurant on soquel dr in aptos that serves good french food?'  
30. 'Give me some good arabic restaurants in mountain view?'  
31. 'Give me some good cafes in alameda?'  
32. 'Give me some good cafes on webster st in alameda?'  
33. 'Give me some good places for ice cream in alameda?'  
34. 'Give me some good places for ice cream in alameda?'  
35. 'Give me some good places for ice cream on blanding ave in alameda?'  
36. 'Give me some good places for ice cream on blanding ave in alameda?'  
37. 'Give me some good places for pizza in alameda?'  
38. 'Give me some good places for pizza in alameda?'  
39. 'Give me some good places for pizza on el camino in palo alto?'  
40. 'Give me some good places for pizza on el camino in palo alto?'  
41. 'Give me some good places for pizza on webster st in alameda?'  
42. 'Give me some good places for pizza on webster st in alameda?'  
43. 'Give me some good places on fairgrounds dr in sunnyvale for american food?'  
44. 'Give me some good places on soquel dr in aptos for french food?'  
45. 'Give me some good restaurants in alameda?'   
46. 'Give me some good restaurants in mountain view?'  
47. 'Give me some good restaurants in the bay area?'  
48. 'Give me some good restaurants on bethel island rd in bethel island?'  
49. 'Give me some good restaurants on blanding ave in alameda?'  
50. 'Give me some good restaurants on buchanan in san francisco for chinese food?'  
51. 'Give me some good restaurants on el camino in palo alto?'  
52. 'Give me some good restaurants on fairgrounds dr in sunnyvale for american food?'  
53. 'Give me some restaurants good for arabic food in mountain view?'  
54. 'Give me some restaurants good for arabic food in the bay area?'  
55. 'Give me some restaurants good for arabic food on buchanan in san francisco?'  
56. 'Give me some restaurants good for arabic food?'   
57. 'Give me some restaurants good for french food in the yosemite and mono lake area?'  
58. 'Give me some restaurants good for french food on fairgrounds dr in sunnyvale?'   
59. 'Give me some restaurants good for french food?'  
60. 'Give me some restaurants good for italian food in alameda?'  
61. 'Give me some restaurants in alameda?'  
62. 'Give me some restaurants in mountain view?'  
63. 'Give me some restaurants in the bay area?'  
64. 'Give me some restaurants on bethel island rd in bethel island?'  
65. 'Give me some restaurants on blanding ave in alameda?'   
66. 'Give me some restaurants on el camino in palo alto?'  
67. 'Give me the best bakery in fremont?'  
68. 'Give me the best bakery in palo alto?'  
69. 'Give me the best bakery in the bay area?'  
70. 'Give me the best bakery in the bay area?'  
71. 'Give me the best french restaurant in san francisco?'  
72. 'Give me the best french restaurant in sunnyvale?'  
73. 'Give me the best french restaurant in the bay area?'  
74. 'Give me the best french restaurant in the bay area?'  
75. 'Give me the best place in alameda for french food?'  
76. 'Give me the best restaurant in fremont for american food?'  
77. 'Give me the best restaurant in fremont for chinese food?'  
78. 'Give me the best restaurant in monterey for french food?'  
79. 'Give me the best restaurant in monterey for french food?'  
80. 'Give me the best restaurant in palo alto for chinese food?'  
81. 'Give me the best restaurant in palo alto for italian food?'  
82. 'Give me the best restaurant in san jose for american food?'   
83. 'Give me the best restaurant in san jose for french food?'  
84. 'Give me the best restaurant in sunnyvale for french food?'  
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86. 'Give me the best restaurant in the bay area for american food?'  
87. 'Give me the best restaurant in the bay area for chinese food?'  
88. 'Give me the best restaurant in the bay area for chinese food?'  
89. 'How many bakery are there in the bay area?'  
90. 'How many buttercup kitchen are there in san francisco?'  
91. 'How many buttercup kitchen are there in walnut creek?'  
92. 'How many chinese restaurant are there in palo alto?'  
93. 'How many chinese restaurant are there in san jose?'  
94. 'How many chinese restaurant are there in the bay area?'  
95. 'How many chinese restaurants are there in palo alto?'  
96. 'How many chinese restaurants are there in the bay area?'  
97. 'How many 'denny''s' are there in fremont?'  
98. 'How many 'denny''s' are there in monterey county?'  
99. 'How many 'denny''s' are there in palo alto?'  
100. 'How many 'denny''s' are there in san francisco?'  
101. 'How many 'denny''s' are there in san mateo county?'  
102. 'How many 'denny''s' are there in sunnyvale?'   
103. 'How many 'denny''s' are there in the bay area?'  
104. 'How many french restaurant are there in palo alto?'  
105. 'How many french restaurant are there in the bay area?'  
106. 'How many french restaurants are in the santa clara county?'  
107. 'How many french restaurants are in the yolo county?'  
108. 'How many french restaurants are there in fremont?'  
109. 'How many french restaurants are there in the bay area?'  
110. 'How many italian restaurant are there in san jose?'  
111. 'How many italian restaurant are there in the bay area?'   
112. 'How many italian restaurants are in the santa clara county?'  
113. 'How many italian restaurants are in the yolo county?'  
114. 'How many italian restaurants are there in san francisco?'  
115. 'How many italian restaurants are there in the bay area?'  
116. 'How many jamerican cuisine are there in san francisco?'  
117. 'How many jamerican cuisine are there in santa cruz county?'  
118. 'How many jamerican cuisine are there in sunnyvale?'  
119. 'How many places for chinese food are there in the bay area?'  
120. 'How many places for chinese food are there in the bay area?'  
121. 'How many places for french food are there in palo alto?'  
122. 'How many places for french food are there in the bay area?'  
124. 'How many places for ice cream are there in fremont?'  
125. 'How many places for ice cream are there in the bay area?'  
126. 'How many places for italian food are there in the bay area?'  
127. 'How many wendys are there in the bay area?'   
128. 'Show me a good italian restaurant in palo alto?'   
129. 'What are some good places for ice cream in alameda?'  
130. 'What are some good places for ice cream on blanding ave in alameda?'  
131. 'What are some good places for pizza in alameda?'  
133. 'What are some good places for pizza on el camino in palo alto?'   
134. 'What are some good places for pizza on webster st in alameda?'  
135. 'What are some good places in mountain view for chinese food?'  
136. 'What are some good places in the bay area for chinese food?'  
137. 'What are some good restaurants in alameda?'  
138. 'What are some good restaurants in mountain view for arabic food?'  
139. 'What are some good restaurants in mountain view?'  
140. 'What are some good restaurants in the bay area for chinese food?'  
141. 'What are some good restaurants in the bay area?'  
142. 'What are some good restaurants on bethel island rd in bethel island?'  
143. 'What are some good restaurants on blanding ave in alameda?'  
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144. 'What are some good restaurants on el camino in palo alto?'   
145. 'What is a good restaurant in alameda?'   
146. 'What is a good restaurant in the bay area?'  
147. 'What is a good restaurant on el camino in palo alto?'  
148. 'What is the best bakery in fremont?'  
149. 'What is the best bakery in the bay area?'  
150. 'What is the best french restaurant in san francisco?'  
151. 'What is the best french restaurant in the bay area?'  
152. 'What is the best place in alameda for french food?'  
153. 'What is the best restaurant in fremont for american food?'  
154. 'What is the best restaurant in monterey for french food?'  
155. 'What is the best restaurant in palo alto for chinese food?'   
156. 'What is the best restaurant in palo alto for italian food?'  
157. 'What is the best restaurant in san jose for french food?'  
158. 'What is the best restaurant in the bay area for american food?'  
159. 'What is the best restaurant in the bay area for chinese food?'  
160. 'Where are some good cafes in alameda?'  
161. 'Where are some good cafes on webster st in alameda?'  
162. 'Where are some good chinese restaurants in mountain view?'   
163. 'Where are some good places for ice cream in alameda?'  
164. 'Where are some good places for ice cream on blanding ave in alameda?'  
165. 'Where are some good places for pizza in alameda?'  
166. 'Where are some good places for pizza on webster st in alameda?'  
167. 'Where are some restaurants good for arabic food in mountain view?'  
168. 'Where are some restaurants good for arabic food in the bay area?'  
169. 'Where are some restaurants good for arabic food on buchanan in san francisco?'  
170. 'Where are some restaurants good for arabic food?'  
171. 'Where are some restaurants good for french food in alameda?'  
172. 'Where are some restaurants good for french food in the yosemite and mono lake area?'  
173. 'Where are some restaurants good for french food?'  
174. 'Where are some restaurants good for italian food on fairgrounds dr in sunnyvale?'  
175. 'Where can i eat american food on fairgrounds dr in sunnyvale?'  
176. 'Where can i eat arabic food in alameda?'   
177. 'Where can i eat arabic food on buchanan in san francisco?'  
178. 'Where can i eat chinese food in the bay area?'   
179. 'Where can i eat french food in mountain view?'  
180. 'Where can i eat french food in the bay area?'  
181. 'Where can i eat french food on buchanan in san francisco?'  
182. 'Where can i eat italian food in san francisco?'  
183. 'Where can i eat italian food in the bay area?'   
184. 'Where can i eat some good american food on fairgrounds dr in sunnyvale?'  
185. 'Where can i eat some good arabic food in alameda?'  
186. 'Where can i eat some good arabic food in the bay area?'  
187. 'Where can i eat some good chinese food on buchanan in san francisco?'  
188. 'Where can i eat some good french food in mountain view?'  
189. 'Where can i eat some good french food in the bay area?'  
190. 'Where can i eat some good french food on fairgrounds dr in sunnyvale?'  
191. 'Where can i eat some good italian food in san francisco?'  
192. 'Where can i eat some good italian food in the bay area?'  
193. 'Where can i find a 'denny''s' in san francisco?'  
194. 'Where can i find a jamerican cuisine in san francisco?'  
195. 'Where can i find a restaurant in the bay area?'  
196. 'Where can we find a restaurant in alameda?'  
197. 'Where can we find a restaurant on el camino in palo alto?'  
198. 'Where can we find some restaurants in alameda?'   
199. 'Where can we find some restaurants in mountain view?'  
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200. 'Where can we find some restaurants in the bay area?'  
201. 'Where can we find some restaurants on bethel island rd in bethel island?'  
202. 'Where can we find some restaurants on blanding ave in alameda?'  
203. 'Where can we find some restaurants on el camino in palo alto?'  
204. 'Where is a 'denny''s' in san francisco?'  
205. 'Where is a french restaurant on bethel island rd in bethel island?'  
206. 'Where is a good american restaurant on fairgrounds dr in sunnyvale?'  
207. 'Where is a good arabic restaurant in the bay area?'  
208. 'Where is a good arabic restaurant on buchanan in san francisco?'  
209. 'Where is a good bakery in aptos?'  
210. 'Where is a good bakery in berkeley?'  
211. 'Where is a good bakery in bethel island?'  
212. 'Where is a good bakery on appleton dr in aptos?'  
213. 'Where is a good bakery on bethel island rd in bethel island?'  
214. 'Where is a good bakery on shattuck ave in berkeley?'  
215. 'Where is a good french restaurant in alameda?'  
216. 'Where is a good place in alameda for arabic food?'  
217. 'Where is a good place in the bay area for chinese food?'  
218. 'Where is a good place on buchanan in san francisco for chinese food?'  
219. 'Where is a good place on fairgrounds dr in sunnyvale for american food?'  
220. 'Where is a good place on soquel dr in aptos for french food?'  
221. 'Where is a good restaurant in alameda for chinese food?'   
222. 'Where is a good restaurant in the bay area for arabic food?'  
223. 'Where is a good restaurant on buchanan in san francisco for arabic food?'  
224. 'Where is a good restaurant on fairgrounds dr in sunnyvale for american food?'  
225. 'Where is a good restaurant on soquel dr in aptos for french food?'   
226. 'Where is a italian restaurant on el camino in palo alto?'  
227. 'Where is a jamerican cuisine in san francisco?'  
228. 'Where is a restaurant in alameda?'  
229. 'Where is a restaurant in aptos that serves good french food?'  
230. 'Where is a restaurant in san francisco that serves good chinese food?'  
231. 'Where is a restaurant in sunnyvale that serves good american food?'   
232. 'Where is a restaurant on buchanan in san francisco that serves good chinese food?'  
233. 'Where is a restaurant on fairgrounds dr in sunnyvale that serves good american food?'  
234. 'Where is a restaurant on soquel dr in aptos that serves good french food?'   
235. 'Where is buttercup kitchen?'  
236. 'Where is 'denny''s' in san francisco?'  
237. 'Where is 'denny''s' in the bay area?'  
238. 'Where is 'denny''s'?'  
239. 'Where is jamerican cuisine in san francisco?'  
240. 'Where is jamerican cuisine in the bay area?'  
241. 'Where is jamerican cuisine?'  
242. 'Where is the best bakery in palo alto?'  
243. 'Where is the best bakery in the bay area?'  
244. 'Where is the best french restaurant in sunnyvale?'  
245. 'Where is the best french restaurant in the bay area?'   
246. 'Where is the best restaurant in fremont for chinese food?'  
247. 'Where is the best restaurant in monterey for french food?'  
248. 'Where is the best restaurant in san jose for american food?'  
249. 'Where is the best restaurant in sunnyvale for french food?'  
250. 'Where is the best restaurant in the bay area for american food?'  
251. 'Where is the best restaurant in the bay area for arabic food?' 
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Appendix 2: Illustrative Examples Of Kernelization Process 

 

 

      

  Me        share      email address   

             please        the       of 

                            lecturer 
                   in charge of  
                      ICS 645 

Fig. App1: Please share with me email address of the lecturer in charge of ICS 645  

      

   MSc proposal Scheduled      is                  when? (date)            

    This month                              

          Fig. App2: When is this month’s MSc proposal presentation scheduled?    

  

            Students              access         mailing address                   

           How many? (number)              can            the          mscis_07@students.uonbi.ac.ke 

Fig. App3: How many students can access the mailing address mscis_07@students.uonbi.ac.ke 
       

       I; me     like; to pursue;  know    master’s degree in CS; prerequisites 

            would          please let         the         for 

               master’s degree  
             (implicit = CS)                  
 

Fig. App4: I would like to pursue a master’s degree in CS, please let me know the prerequisites for 
course   

                            

 venue                    is         where  (location?) 

   the     for                          

MSc proposal presentation scheduled for 14th August  

Fig. App5: Where is the venue for MSc proposal presentation scheduled for 14th August 

mailto:mscis_07@students.uonbi.ac.ke
mailto:mscis_07@students.uonbi.ac.ke
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 deadline       is              28th may 2007 

              for                               still 
 returning MSc marked scripts    

 
Fig. App6: Is deadline for returning MSc marked scripts still 28th may 2007? 

                              

me           assist                tentative program 

                                kindly      with             a    for         
                this year   

 
Fig. App7: Kindly assist me with a tentative program for this year  

 

      ni (me)        pe (give)   wanunuzi (buyers) 

                 bora(better) 

Fig. App8: [Nipe] wanunuzi bora ([Give me] better buyers) 

 

      i-na (It)      taga (lay)  gani? (what?)  

                    does  kwa(in)  
         mda (period)   
 

Fig. App9: i-na-taga  (In what period it lays) 
 
     vifaranga (chicks)   kula (eat)                          chakula (food) 

             (the)                             Je    wali (did)   
 

Fig. App10: ‘Je, vifaranga walikula chakula? (Did the chicks eat food) 
 
 

        chakula (food)     liwa (eaten)    vifaranga (by the chicks)  

                   (the) Je    ili (was)    
          
Fig. App11:‘Je, chakula ililiwa na vifaranga?’ (Was the food eaten by the chicks?) 
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Appendix 3: Survey on Database Schema Authorship 

QUESTIONNAIRE ON NOMENCLATURE OF DB SCHEMA ATTRIBUTES  

This questionnaire is administered by Mr. Lawrence Muchemi a PhD student at University of 
Nairobi. The purpose of this survey is to identify if there exists any common practice naming 
procedures or policies for database-names, tables-names’ and column-names’. The survey will lead 
to a better understanding of database schema authorship characteristics.  

1. In what position do you serve in your organization? …………………………………….  
  

2. What have you been actively involved in?  (tick all applicable)  
a. Database design ………………………………..….. Yes   No  
b. Database Development ……………………….... Yes   No  
c. Database administration ……………………….. Yes   No 
d. Web designer/developer/ admin……………. Yes               No 
e. Other ………………………………. 

3. List the names of some databases you have worked with  
a. ………………….… 
b. ……….……………

      

c. ……………………        
d. ……………………

  

e. …………………… 
f. …………………… 

4. List the names of some tables you have worked with in any of the databases named 3 above 
a. …………………… 
b. …………………… 
c. …………………… 
d. …………………… 

e. …………………… 
f. …………………… 
g. ………………… 
h. ………………… 

i. …………………… 
j. …………………… 
k. …………………… 
l. …………………… 

5. List the some names of columns you have worked with in any of the tables named in 4 
above  
…..................... ………………………. ………………. ………………….. 
…..................... ………………………. ………………. ………………….. 
…..................... ………………………. ………………. ………………….. 

6. Does your organization have a policy on naming procedure for databases, table names or 
column names (It can be formal/non-formal or documented/ undocumented).  

 Yes               No             If yes provide some detail ……………………………………………………………………………. 

7. Do you personally have a common practice that you use in naming tables and columns 
Yes       No.        .    If yes provide some details …………………………………………………..…… 

8. 
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8.  
Do you know somebody in a different organization who can help in giving similar 
information as required above? Please recommend someone and give contact information. 
……………………………………………………………………………………………

Please fill in this table the extent of usage of each of the indicated schema objects’ naming styles 
(ie table names, column names, database names etc). Use a scale of 1 to 5 where 5 indicates the 
mostly used style while 1 indicates the least. Indicate a 0 where you have not used that style. 

 

 Pattern Extent of usage 
(scale of 1-5; 5=most 

used, 1= least used; 0= 

never used) 

 Comments 

    

1 Under_score   

 

2 camelCase   

 

3 Da-sh   

 

4 Abbreviations emp for employe   

 

5 Pascal Casing   

 

6 Finger_Breaking_Underscore   

 

7 SCREAMING_UNDERSCORE   

 

8 Acronyms eg ID, UI, IO   

 

9 Dot eg     hr.hire_date   

 

10 “string like this”   
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Appendix 4: Training the Chunk Parser and Evaluating its Performance 
 
 
 

 
 

 
 

 
 

 
 
 
 

 
 

 
 

 
 

 
 
 

 

 
 

 
 

>>> from nltk.corpus import conll2000 // load the CoNll corpus 

>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])// define testing set and 
types of phrases 

>>> train_sents = conll2000.chunked_sents('train.txt', chunk_types=['NP'])// define training set and 
types of phrases 

>>> class ChunkParser(nltk.ChunkParserI): // Defining chunk parser class 

      def __init__(self, train_sents): 

       train_data = [[(t,c) for w,t,c in nltk.chunk.tree2conlltags(sent)] 

              for sent in train_sents] 

       self.tagger = nltk.TrigramTagger(train_data) 

      def parse(self, sentence): 

       pos_tags = [pos for (word,pos) in sentence] 

       tagged_pos_tags = self.tagger.tag(pos_tags) 

       chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags] 

       conlltags = [(word, pos, chunktag) for ((word,pos),chunktag) 

             in zip(sentence, chunktags)] 

       return nltk.chunk.conlltags2tree(conlltags) 

>>> NPChunker = ChunkParser(train_sents)// Training the chunker 

>>> print NPChunker.evaluate(test_sents)// Evaluating performance 

ChunkParse score: 

    IOB Accuracy:  93.3% 

    Precision:     82.5% 

    Recall:        86.8% 

    F-Measure:     84.6% 

>>> 
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Appendix 5: Concept Templates used 
NB: Concept Patterns = Nouns + Noun phrases + Verb phrases+ Term Collocations) 

A: Regular Patterns of Noun-phrases (reported by Ohly, (1982) and recast by Sewangi, (2001)) 
 nominalized verb phrase (VN N)  for example ‘kukaza uzi’ (stretching thread),  
 deverbative head with a noun complement  (DV N)  for example  ‘kiweka damu’,  
 two nouns (N N) for example ‘haidrogeni peroksaidi’,   
 combination of noun and adjective (N Adj),  
 noun construction with a connecter -a  (N -a  N) for example 'rangi za moto’  
 and constructions with connecter -a followed  by a verb noun qualifier  (N -a VN)  for example sindano ya 

kutungia’ (boring needle). 
A: Patterns Of Kiswahili Common Multi-Word Terms’ (Term Collocations, Noun-Phrases and 
Verb Phrases) Sewangi, (2001) 
PATTERNS OF KISWAHILI TERM (PHRASES) COLLOCATIONS  

1. DOMAIN-N + A-INFL "2" 
2. DOMAIN-N + GEN-CON + ADV "2" 
3. DOMAIN-N + GEN-CON + DOMAIN-N "2" 
4. DOMAIN-N + GEN-CON + DOMAIN-V "2" 
5. DOMAIN-N + GEN-CON + N "2" 
6. DOMAIN-N + DOMAIN-N "2" 
7. DOMAIN-N + INF "2" 
8. DOMAIN-N + N "2" 
9. DOMAIN-N + POSS + N "2" 
10. DOMAIN-N + PREP + DOMAIN-N "2" 
11. DOMAIN-V + ADV "2" 
12. DOMAIN-V + GEN-CON + DOMAIN-N "2" 
13. DOMAIN-V + GEN-CON + N "2" 
14. DOMAIN-V + DOMAIN-N "2" 
15. DOMAIN-V + N "2" 
16. INF + GEN-CON + DOMAIN-N "2" 
17. INF + DOMAIN-N "2" 
18. N + GEN-CON + DOMAIN-N "2" 
19. N + GEN-CON + DOMAIN-V "2" 
20. N + DOMAIN-N "2" 
21. DOMAIN-N + A-INFL + GEN-CON + N "3" 
22. DOMAIN-N + A-UNINFL + GEN-CON + N "3" 
23. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + ADV "3" 
24. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + N "3" 
25. DOMAIN-N + GEN-CON + DOMAIN-N + PREP + DOMAIN-N "3" 
26. DOMAIN-N + GEN-CON + DOMAIN-V + GEN-CON + N "3" 
27. DOMAIN-N + GEN-CON + DOMAIN-V + DOMAIN-N "3" 
28. DOMAIN-N + GEN-CON + INF + GEN-CON + DOMAIN-N "3" 
29. DOMAIN-N + GEN-CON + INF + DOMAIN-N "3" 
30. DOMAIN-N + GEN-CON + INF + N "3" 
31. DOMAIN-N + GEN-CON + N + A-INFL "3" 
32. DOMAIN-N + GEN-CON + N + CC + N "3" 
33. DOMAIN-N + GEN-CON + N + GEN-CON + DOMAIN-N "3" 
34. DOMAIN-N + GEN-CON + N + DOMAIN-V "3" 
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35. DOMAIN-N + GEN-CON + N + PREP + N "3" 
36. DOMAIN-N + GEN-CON + PREP + N "3" 
37. DOMAIN-N + GEN-CON- DOMAIN-N + GEN-CON + DOMAIN-N "3" 
38. DOMAIN-N + N + GEN-CON + DOMAIN-N "3" 
39. DOMAIN-N + POSS + DOMAIN-N + CARD "3" 
40. DOMAIN-N + PREP + DOMAIN-N + GEN-CON + DOMAIN-N "3" 
41. DOMAIN-N + PREP + N + GEN-CON + DOMAIN-N "3" 
42. DOMAIN-V + GEN-CON + DOMAIN-N + A-INFL "3" 
43. DOMAIN-V + GEN-CON + N + GEN-CON + ADV "3" 
44. DOMAIN-V + GEN-CON + N + GEN-CON + DOMAIN-N "3" 
45. DOMAIN-V + DOMAIN-N + PREP + DOMAIN-V "3" 
46. DOMAIN-V + N + GEN-CON + DOMAIN-N "3" 
47. DOMAIN-V + N + GEN-CON + N "3" 
48. INF + DOMAIN-N + GEN-CON + INF "3" 
49. INF + DOMAIN-N + GEN-CON + N "3" 
50. INF + DOMAIN-N + LOC "3" 
51. INF + N + DOMAIN-N "3" 
52. N + A-INFL + GEN-CON + DOMAIN-N "3" 
53. N + GEN-CON + ADV + GEN-CON + DOMAIN-N "3" 
54. N + GEN-CON + DOMAIN-N + A-INFL "3" 
55. N + GEN-CON + DOMAIN-N + GEN-CON + N "3" 
56. N + GEN-CON + N + GEN-CON + DOMAIN-N "3" 
57. N + GEN-CON + ORD + GEN-CON + DOMAIN-N "3" 
58. N + POSS + DOMAIN-N + GEN-CON + N "3" 
59. N + PREP + N + GEN-CON + DOMAIN-N "3" 
60. DOMAIN-N + A-UNINFL + GEN-CON + N + GEN-CON + DOMAIN-N "4" 
61. DOMAIN-N + A-UNINFL + GEN-CON + N + GEN-CON + DOMAIN-V "4" 
62. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + N + GEN-CON + DOMAIN-N "4" 
63. DOMAIN-N + GEN-CON + INF + GEN-CON + DOMAIN-N + GEN-CON + ADV "4" 
64. DOMAIN-N + GEN-CON + N + GEN-CON + N + GEN-CON + DOMAIN-N "4" 
65. DOMAIN-N + GEN-CON + N + N + GEN-CON + DOMAIN-N "4" 
66. DOMAIN-N + INF + PREP + N + GEN-CON + DOMAIN-N "4" 
67. DOMAIN-N + GEN-CON + DOMAIN-N + PREP + N + GEN-CON + DOMAIN-N "4" 
68. DOMAIN-N + GEN-CON + DOMAIN-V + DOMAIN-N + DOMAIN-V "4" 
69. DOMAIN-V + ADV + GEN-CON + DOMAIN-N + GEN-CON + DOMAIN-N "4" 
70. DOMAIN-V + GEN-CON + N + GEN-CON + N + GEN-CON + DOMAIN-N "4" 
71. DOMAIN-V + DOMAIN-N + PREP + N + GEN-CON + DOMAIN-N "4" 
72. DOMAIN-V + N + GEN-CON + ADV + ADV "4" 
73. DOMAIN-V + N + DOMAIN-N + GEN-CON + N "4" 
74. DOMAIN-V + ADV + N + GEN-CON + ADV "4" 
75. INF + ADV + PREP + DOMAIN-N + GEN-CON + DOMAIN-N "4" 
76. INF + GEN-CON + N + N + GEN-CON + DOMAIN-V "4" 
77. INF + DOMAIN-N + N + GEN-CON + INF "4" 
78. INF + DOMAIN-N + POSS + DOMAIN-N + LOC "4" 
79. INF + DOMAIN-N + PREP + DOMAIN-N + GEN-CON + DOMAIN-V "4" 
80. N + GEN-CON + ADV + GEN-CON + DOMAIN-V + DOMAIN-N "4" 
81. N + GEN-CON + DOMAIN-N + INF + CC + DOMAIN-N "4" 
82. N + GEN-CON + N + GEN-CON + DOMAIN-N + GEN-CON + N "4" 
83. N + GEN-CON + N + GEN-CON + DOMAIN-N + N "4" 
84. N + GEN-CON + N + GEN-CON + N + GEN-CON + DOMAIN-N "4" 
85. DOMAIN-N + GEN-CON + DOMAIN-N + GEN-CON + DOMAIN-N + A-INFL + GEN-CON + DOMAIN-N "5" 
86. DOMAIN-V + CC + DOMAIN-V + GEN-CON + DOMAIN-N + GEN-CON + N + GEN-CON + DOMAIN-N "5" 
87. DOMAINV + DOMAIN-N + ADV + DOMAIN-N + A-UNINFL "5" 
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Appendix 6: Regular Expressions to the NLTK RegExp Chunker for Kiswahili Texts 
#Define tag patterns to find NP-chunks; PP-Chunks (prepositional phrases chunks) ; terms/collocations etc 
patterns1 = """ 
 NP: {<DT|PP\$>?<JJ>*<NN>} 
 {<NNP>+} 
 {<NN>+} 
 {<DT>?<JJ>*<NN>} 
""“ 
patterns2 = """ 
 PP: {<DT|PP\$>?<JJ>*<NN>} 
 {<NNP>+} 
 {<NN>+} 
""“ 
patterns3 = """ 
 TP: {<DT|PP\$>?<JJ>*<NN>} 
 {<NNP>+} 
 {<NN>+} 
""“ 
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Appendix 7: List of Institutions and Companies 
1. University of Nairobi 
2. Iron-Speed 
3. Jomo Kenyatta University of Agriculture and Technology 
4. Africa Nazarene University 
5. Inoorero University 
6. Daystar University 
7. Kabarak University 
8. Kenya Methodist University 
9. KCA University College 
10. Zetech College 
11. Institute of Advanced Technology (IAT) 
12. Nairobi Institute of Business Studies (School of Computer Sciences) 

Software Development Companies 
1. Futures Group, Kenya office- Ngong Road 
2. Sybrin Kenya Ltd,  Victoria Towers, Kilimanjaro Ave, Nairobi Hill  
3. Ascribe Ltd, Software Developers, Citadel Bldg, 3rd Flr, Muthithi Rd, Nairobi 
4. Seven seas Technology Group, Riverside Drive, Nairobi 
5. System Integration Limited, Symphony Place, Waiyaki Way, Westlands, Nairobi 
6. Idea Kenya, Nairobi 
7. Safemark Group Ltd, Crawford Business Park, State Hse Road 
8. ICT Center, University of Nairobi 
9. Wilcom Systems Kenya Limited 
10. Software Dynamics, Nairobi 
11. TechnoBrain (K) Ltd, Nairobi 
12. Software Technologies Limited, Gigiri Shopping Center, Limuru Rd Nairobi 
13. Comp-rite Kenya Limited, Crescent Business Centre, Parklands Road, Nairobi, Kenya. 
14. Adelphi Africa (Software Developers) Ltd, Vision Plaza, Mombasa Rd, Nairobi 
15. Digital Horizons (Software Developers) Ltd, Occidental Plaza, Muthithi Rd, Parklands, Nairobi 
16. Computech Limited, Nairobi 
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Appendix 8: Prototype’s Python Code for Concept Identification and Assembly 
from __future__ import division 

def sasa(): 

    """ IDENTIFIES QUERY CONCEPTS & MATCHES AGAINST ONTOLOGY ELEMENTS; PRUNES 
CANDIDATES & ASSEMBLES. """ 

    import nltk, re, pprint 

    #works with object property 

    kount = 0 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw1 = "start" 

    outputk = nltk.word_tokenize(raw1) 

    while outputk != '''[]''' and outputk is not []: 

        if outputk != []: 

            kount += 1 

            raw1 = fr.readline() 

            outputk = nltk.word_tokenize(raw1) 

        else: 

            print " Prototype by Lawrence Muchemi - UoN (Kenya) & SFU (BC-Canada)" 

            print "         PhD Supervisor - Dr. Wanjiku Nga'ng'a- Uon-Kenya"    

            print "             Supervised - Prof. Fred Popowich- SFU-Canada"   

            print "     Ontology: OWL Full; Size = ", kount, 'lines' 

            print "             (March-Sept. 2010)"  

            print "----------------------------------------------------------------" 

            break 

    output2,origlist,initialist, multitablist = askprune() 

    head(output2) 

    body(output2,origlist,multitablist) 

    constraint (output2,origlist, multitablist) 

    superative(output2,origlist, initialist) 

    if 'maximum' not in initialist and 'minimum' not in initialist and 'largest' not in initialist and 'biggest' not in initialist 
and 'least' not in initialist and 'smallest' not in initialist and 'shortest' not in initialist and 'lowest' not in initialist and 
'highest' not in initialist and 'longest' not in initialist and 'most' not in initialist: 
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        print '}' 

    print "----------------------------------------------------------------" 

    print "Now copy and paste me on SPARQL Query Panel of Protege" 

def askprune(): 

    import nltk, re, pprint 

    lancaster = nltk.LancasterStemmer() 

    raw = raw_input("Enter your NL query here: ") 

    tokens = nltk.word_tokenize(raw) 

    output2 = [w.lower() for w in tokens] 

    initialist= output2 

    multitablist= output2 

    #multitablist = list(set(multitablist)) 

    #print "---Tokenized Raw Input from User", output2 

    mylist = list(output2) 

    #print mylist 

    lex(mylist) 

    mmlist = list(output2) 

    syno(mylist) 

    #print mylist 

    lexlist = syno(mylist) 

    mylist = [w.lower() for w in lexlist] 

    mylist = set(mylist) 

    mmlist = set(mmlist) 

    mylist = sorted(mylist | mmlist) 

    mylist = list(mylist) 

    output2=mylist 

    origlist=mylist 

    #print origlist 

    output2=[lancaster.stem(t) for t in output2] 

    output2 = sorted (set(output2)) 

    output2 = list(output2) 

    #print "---Expanded & stemmed with synonyms", output2, origlist,initialist, multitablist 
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    print '                                                ' 

    return output2,origlist,initialist, multitablist 

 

def head(output2): 

    import nltk, re, pprint 

    lancaster = nltk.LancasterStemmer() 

    kount = 0 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw1 = "start" 

    outputk = nltk.word_tokenize(raw1) 

    while outputk != '''[]''' and outputk is not []: 

        if outputk != []: 

            kount += 1 

            raw1 = fr.readline() 

            outputk = nltk.word_tokenize(raw1) 

            if 'xmlns'in outputk and '='in outputk and 'http'in outputk and '.owl'in outputk[5]: 

                print 'PREFIX dbs: <'+outputk[3]+outputk[4]+outputk[5]+outputk[6]+'>' 

        else: 

            print 'SELECT', 

            break 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw = "start" 

    kount = kount - 2 

    count=0 

    k=0 

    while kount != 0: 

        kount += -1 

        k += 1 

        raw = fr.readline() 

        #print 'raw.......', raw, k 

        tokens = nltk.word_tokenize(raw) 

        #print 'tokens.......', tokens 
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        otherlist = [w.lower() for w in tokens] 

        #print 'otherlist.......', otherlist 

        output1 = nltk.word_tokenize(raw) 

        #print ' 22222 Tokens Output', output1 

        #print 'output1 list before filter', output1 

        if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty' 
in output1):#and ('''ID'''in output1) \remov DatatypeProperty feb5/2' funct prop 

            n = output1.index('=') 

            #print 'output1 list after index', output1 

            #print '.......', n 

            m = n+6 

            q = output1[m] 

            #print '--', q 

            r = q[:3] 

            r1 = q[:2] 

            #print r #'calling head here ' 

            if (r != 'has') and (r1 != 'is'): 

                s = q.split('.') 

                #print '--', s 

                t1 = s[1] 

                t2 = s[0] 

                #print r 

                list2 = t2 

                list1 = t1 

                #print 't1 and t2', t1, t2 

                list21= lancaster.stem(list2) 

                mylist = output2 

                #print 'mylist===', mylist 

                for t in mylist: 

                    d = mylist[mylist.index(t)] 

                    #print 'd===', d 

                    if d in list21 and len(d)>=3: 
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                        p=t1 

                        #print 'd in list21 d=', d 

                        #print 't1===property', t1 

                        head_prop(p,otherlist,mylist,output1,k,t2,t1) 

        elif ('''>''' is output1[0]) and (''':''' in output1) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and 
('''/'''in output1[output1.index('<')+1]): 

            a = output1[output1.index(':')+1] 

           # print "this is for split:", a 

            b = a.split('.') 

            t1 = b[1] 

            t2 = b[0] 

            t21 = lancaster.stem(t2) 

            mylist = output2 

            for t in mylist: 

                d = mylist[mylist.index(t)] 

                if d in otherlist and d!= "'" and d!= '''"''' and d!= "[" and d!= "]" and  d!= "." and d!= ":" and d!= "," and d!= 
")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!= "tp3": 

                    p=t1 

                    print 'calling 2' 

                    head_prop(p,otherlist,mylist,output1,k,t2,t1)     

                tx = t1.lower() 

                if d in tx: 

                    p=tx 

                    print 'calling 3' 

                    head_prop(p,otherlist,mylist,output1,k,t2,t1)     

                     

        elif ('''>''' is output1[0]) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and ('''/'''in 
output1[output1.index('<')+1]): 

            a = output1[output1.index('<')+1] 

            #print "this is for split:", a 

            b = a.split('.') 

            t1 = b[1] 

            t2 = b[0] 
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            t3 = t2[1:] 

            mylist = output2 

            for t in mylist: 

                d = mylist[mylist.index(t)] 

                if  d in otherlist and d!= "'" and d!='the' and d!='and'and d!='all'and d!= '''"''' and d!= "[" and d!= "]" and d!= 
"." and d!= ":" and d!= "," and d!= ")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!= "tp3": 

                    inst =output1[1:output1.index('<')] 

                    count += 1 

                    p=t1 

                    i= inst 

                    #print 'calling 4' 

                    head_prop(p,otherlist,mylist,output1,k,t2,t1)     

                    head_inst(i,count,t1,mylist,t3) 

           

    print ' ' 

    print 'WHERE  {',                     

 

def head_prop(p,otherlist,mylist,output1,k,t2,t1): 

    import nltk 

    lancaster = nltk.LancasterStemmer() 

    p1=p 

    p1 = lancaster.stem(p1) 

    t21= lancaster.stem(t2) 

    if p1 in mylist and t21 in mylist: 

        tscore=1 

        print  ' ?'+p, 

    else: 

        s=p 

        kn = 0 

        for t in s: 

            if t.isupper(): 

                s.find(t) 
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                kn += 1 

        tscore=0 

        #print s, tscore 

        for t in s: 

            if t.isupper(): 

                s0=s.split(t) 

                #print s0 

                s1=s0[0] 

                s2=t.lower()+s0[0]# return to 1 

                #print '+++', s2 

                #print '****',t.lower() 

                s=s2 

                #print 's2=........', s2 

                s1 = lancaster.stem(s1) 

                if s1 in mylist: 

                    score=1/kn 

                    tscore=tscore+score 

        s2 = lancaster.stem(s2) 

        t21= lancaster.stem(t2) 

        if s2 in mylist and t21 in mylist: 

            tscore= tscore +1/kn 

            #print tscore 

            if tscore >=0.5: 

                #print s2,t21,tscore,mylist 

                print  ' ?'+p, 

    if 'who' in mylist: 

        if p.lower() == 'firstname': 

            print  ' ?'+p, 

    if 'who' in mylist: 

        if p.lower() == 'lastname': 

            print  ' ?'+p, 

    if 'who' in mylist: 
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        if 'contact' in p.lower(): 

            print  ' ?'+p, 

    if 'wher' in mylist and 'country' not in mylist: 

        if p.lower() == 'country': 

            if p.lower() in mylist: 

                print  ' ?'+p, 

    if 'wher' in mylist and 'reg' not in mylist: 

        if p.lower() == 'region': 

            if p.lower() in mylist: 

                print  ' ?'+p, 

    if 'wher' in mylist and 'city' not in mylist: 

        if p.lower() == 'city': 

            print  ' ?'+p, 

    if 'when' in mylist: 

        if 'hir' in p.lower(): 

            print  ' ?'+p, 

    if 'when' in mylist: 

        if 'bir' in p.lower(): 

            print  ' ?'+p, 

    if 'when' in mylist: 

        if p.lower() == 'dat': 

            print  ' ?'+p, 

    if 'which' in mylist: 

        if 'id' in p.lower(): 

            if p.lower()!= 'categoryid' : 

                if t21 in mylist: 

                    print  ' ?'+p, 

    if 'which' in mylist: 

        if 'nam' in p.lower(): 

            if p.lower()!= 'firstnam'and p.lower()!= 'lastnam' and p.lower()!= 'contactnam' and p.lower()!= 'categoryna': 

                if t21 in mylist: 

                    print  ' ?'+p, 
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def head_inst(i,count,t1,mylist,t3): 

    import pprint, pickle, nltk 

    lancaster = nltk.LancasterStemmer() 

    scor=0.75 

    s=t1 

    kn = 0 

    for t in s: 

        if t.isupper(): 

            s.find(t) 

            kn += 1 

    tscore=0 

    for t in s: 

        if t.isupper(): 

            s0=s.split(t) 

            s1=s0[0] 

            s2=t.lower()+s0[0] # Return to s0[1] 

            s=s2 

            s11= lancaster.stem(s1) 

            if s11 in mylist: 

                score=1/kn 

                tscore=tscore+score 

                s21= lancaster.stem(s2) 

                t31= lancaster.stem(t3) 

                if s21 in mylist and t31 in mylist: 

                    tscore=1 

                    print ' ?'+t1, 

 

def body(output2,origlist, multitablist): 

    running = True 

    import nltk, re, pprint 

    lancaster = nltk.LancasterStemmer() 

    kount = 0 
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    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw1 = "start" 

    outputk = nltk.word_tokenize(raw1) 

    while outputk != '''[]''' and outputk is not []: 

        if outputk != []: 

            kount += 1 

            raw1 = fr.readline() 

            outputk = nltk.word_tokenize(raw1) 

        else: 

            print ' ' 

            break 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw = "start" 

    kount = kount - 2 

    count=0 

    k=0 

    classlist = [] 

    while kount != 0: 

        kount += -1 

        k += 1 

        raw = fr.readline() 

        tokens = nltk.word_tokenize(raw) 

        otherlist = [w.lower() for w in tokens] 

        output1 = nltk.word_tokenize(raw) 

        if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty' 
in output1):#changed 

            n = output1.index('=') 

            m = n+6 #changed 

            q = output1[m] 

            r = q[:3] 

            r1 = q[:2] 

            if (r != 'has') and (r1 != 'is'): 
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                s = q.split('.') 

                t1 = s[1] 

                t2 = s[0] 

                list2 = t2 

                list1 = t1 

                list11= lancaster.stem(list1) 

                list21= lancaster.stem(list2) 

                mylist = output2 

                for t in mylist: 

                    d = mylist[mylist.index(t)] 

                    if d in otherlist and d!= "'"and len(d)>=3 and d!='the': 

                        p=t1 

                        #print 'calling a' 

                        triples(p,otherlist,mylist,output1,t2,t1, multitablist)     

                         

                    if d in list11 and len(d)>=3 and d!='the': 

                        p=t1 

                        #print 'calling b' 

                        triples(p,otherlist,mylist,output1,t2,t1, multitablist)     

                    if d in list21 and len(d)>=3: 

                        p=t1 

                        #print 'calling c' 

                        triples(p,otherlist,mylist,output1,t2,t1, multitablist) 

                        d1 = [mylist[mylist.index(t)]] 

                        if classlist != None and d1 != []: 

                            pass 

                        d2= classlist.insert(0, (d1)) 

        elif ('''>''' is output1[0]) and (''':''' in output1) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and 
('''/'''in output1[output1.index('<')+1]): 

            a = output1[output1.index(':')+1] 

           # print "this is for split:", a 

            b = a.split('.') 
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            t1 = b[1] 

            t2 = b[0] 

            t21 = lancaster.stem(t2) 

            mylist = output2 

            for t in mylist: 

                d = mylist[mylist.index(t)] 

                if d in otherlist and d!= "'" and d!= '''"''' and d!= "[" and d!= "]" and  d!= "." and d!= ":" and d!= "," and d!= 
")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!= "tp3": 

                    p=t1 

                    print 'calling e' 

                    triples(p,otherlist,mylist,output1,t2,t1, multitablist)     

                tx = t1.lower() 

                tx1= lancaster.stem(tx) 

                if d in tx1: 

                    p=tx 

                    print 'calling f' 

                    triples(p,otherlist,mylist,output1,t2,t1, multitablist)     

         

                         

    if multitablist != None : 

        multitablist = list(set(multitablist)) 

        multitablist=[lancaster.stem(t) for t in multitablist] 

        multitablist = list(set(multitablist)) 

        #33print 'this is ~~~', multitablist,type(multitablist) 

    #classlist = list(set(classlist)) 

    #33print 'finaly', classlist 

    #33print 'individual', classlist[2], 

    common=[] 

    j=len(multitablist)-1 

    while j>=0: 

        #print j, multitablist[j], str(classlist) 

        if multitablist[j] in str(classlist): 
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            #print 'Participating classes', multitablist[j],list11 

            s=list([multitablist[j]]) 

            common1=common.append(s) 

        j-=1 

    #print 'commons==', common 

    #33print 'am done' 

    if len(common)>1 and len(common)<=3 : 

        fkey(common, mylist) 

     

def triples(p,otherlist,mylist,output1,t2,t1, multitablist): 

    import nltk, re, pprint 

    lancaster = nltk.LancasterStemmer() 

    p1=p 

    p1 = lancaster.stem(p1) 

    t21= lancaster.stem(t2) 

    if p1 in mylist and t21 in mylist: 

        tscore=1 

        print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.'# causes lots of repetations in properties list 

        #type(t2) 

        multitablist = multitablist.append(t2) 

        #multitablist = list(set(multitablist)) 

    else: 

        s=p 

        kn = 0 

        for t in s: 

            if t.isupper(): 

                s.find(t) 

                kn += 1 

        tscore=0 

        for t in s: 

            if t.isupper(): 

                s0=s.split(t) 
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                s1=s0[0] 

                s2=t.lower()+s0[0] # return to s[1] 

                s=s2 

                s11 = lancaster.stem(s1) 

                if s11 in mylist: 

                    score=1/kn 

                    tscore=tscore+score 

        s21 = lancaster.stem(s2) 

        t21= lancaster.stem(t2) 

        if s21 in mylist and t21 in mylist: 

            tscore= tscore +1/kn 

            if tscore >= 0.5: 

                print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

                multitablist = multitablist.append(t2) 

                 

    if 'who' in mylist and t21 in mylist: 

        if p.lower() == 'firstname': 

             print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'who' in mylist and t21 in mylist: 

        if p.lower() == 'lastname': 

            print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'who' in mylist and t21 in mylist: 

        if 'contact' in p.lower(): 

            print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'wher' in mylist and 'country' not in mylist: 

        if p.lower() == 'country': 

            if p.lower() in mylist: 

                print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'wher' in mylist and 'reg' not in mylist: 

        if p.lower() == 'region': 

            if p.lower() in mylist: 

                print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 
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    if 'wher' in mylist and 'city' not in mylist: 

        if p.lower() == 'city': 

            print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'when' in mylist: 

        if 'hir' in p.lower(): 

            print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'when' in mylist: 

        if 'bir' in p.lower(): 

            print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'when' in mylist: 

        if p.lower() == 'date': 

            print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'which' in mylist: 

        if 'id' in p.lower(): 

            if t21 in mylist: 

                    print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

    if 'which' in mylist: 

        if 'nam' in p.lower(): 

            if p.lower()!= 'firstnam'and p.lower()!= 'lastnam' and p.lower()!= 'contactnam' and p.lower()!= 'categoryna': 

                if t21 in mylist: 

                    print '?'+t2,'dbs:'+t2+'.'+p, ' ?'+p+'.' 

  

def constraint (output2,origlist, multitablist): 

    import nltk, re, pprint 

    lancaster = nltk.LancasterStemmer() 

    kount = 0 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw1 = "start" 

    outputk = nltk.word_tokenize(raw1) 

    while outputk != '''[]''' and outputk is not []: 

        if outputk != []: 

            kount += 1 
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            raw1 = fr.readline() 

            outputk = nltk.word_tokenize(raw1) 

        else: 

            print ' ' 

            break 

    #output2 = askprune() 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw = "start" 

    kount = kount - 2 

    count=0 

    k=0 

    while kount != 0: 

        kount += -1 

        k += 1 

        raw = fr.readline() 

        tokens = nltk.word_tokenize(raw) 

        otherlist = [w.lower() for w in tokens] 

        output1 = nltk.word_tokenize(raw) 

        #########print 'output1------', output1 

        #if ('''>''' is output1[0]) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and ('''/'''in 
output1[output1.index('<')+1]): 

        #if ('''>''' is output1[0]) and ('''<''' in output1) and ('''.''' in output1[output1.index('<')+1]) and ('''/'''in 
output1[output1.index('<')+1]): 

        if ('''db''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('datatype' in output1) 
and ('hasPrimaryKeyFields' not in output1) and ('isBridgeTable' not in output1) and ('hasOrigColumnName' not in 
output1): 

            a = output1[output1.index(':')+1] 

            #print "this is for split:", a 

            b = a.split('.') 

            t1 = b[1] 

            t3 = b[0] 

            t2 = t3[1:] 

            t21 = lancaster.stem(t2) 
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            mylist = output2 

            for t in origlist: 

                d = origlist[origlist.index(t)] 

                if  d in otherlist and d!= "+" and d!= "'" and d!='the' and d!='and'and d!='all'and d!= '''"''' and d!= "[" and d!= 
"]" and d!= "." and d!= ":" and d!= "," and d!= ")" and d!= "(" and d!= "p0" and d!= "p1" and d!= "p2" and d!= 
"tp3": 

                    inst =output1[1:output1.index('<')] 

                    count += 1 

                    p=t1 

                    i= inst 

                    filter1(i,count,t1,mylist,t2,origlist) 

                    t11 = lancaster.stem(t1) 

                    t21 = lancaster.stem(t2) 

 

     

def filter1(i,count,t1,mylist,t2,origlist): 

    import nltk, re, pprint, pickle 

    ln=0 

    ct=0 

    lancaster = nltk.LancasterStemmer() 

    listinst=[t2,t1,i] 

    t11 = lancaster.stem(t1) 

    t21 = lancaster.stem(t2) 

    l=[w.lower() for w in i] 

    r= [w.lower() for w in origlist] 

    #print 'r===', r 

    for w in l: 

        ln += 1 

    if ln >1: 

        for w in l: 

            if w in origlist: 

                ct+=1 
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        print ct, ln 

        conf=ct/ln ## pushed in one step 

    if ln > 1 and conf>0.5 and t21 in mylist and t11 in mylist : 

        ir= ' '.join(i) 

        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

        print 'FILTER(?'+t1,'='," '"+ir+"' " ,')' 

        #____________________ 

    ##>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not' not in mylist and ('mor' not in 
mylist and 'gre' not in mylist) and ('less' not in mylist and 'few' not in mylist):## This works fine: print 'kkkk', if l[0] 
in r  

        #print '----', l[len(i)-1] #, t1, str(i) 

        if t1.lower() not in str(i): 

            if '+'in i: 

                inw = l.remove('+') 

                u=str(l) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'='," '+"+i[len(i)-1]+"' " ,')' 

            if '@' in i: 

                ir= ''.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'='," '"+ir+"' " ,')' 

            if ',' in i: 

                for w in i: 

                    if ',' in i : 

                        i.remove(',') 

                ir= ', '.join(i) 

                ir= str(ir) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'='," '"+ir+"' " ,')' 

            elif '+'not in i and '@' not in i : 

                ir= ' '.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 
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                print 'FILTER(?'+t1,'='," '"+ir+"' " ,')' 

                #== less than Begins =============# 

    ##>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not' not in mylist and ('less' in mylist or 
'few' in mylist) and ('mor' not in mylist and 'gre' not in mylist):## This works fine: print 'kkkk', if l[0] in r  

        #print l[len(i)-1], t1, str(i) 

        if t1.lower() not in str(i): 

            if '+'in i: 

                inw = l.remove('+') 

                u=str(l) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<'," '+"+i[len(i)-1]+"' " ,')' 

            if '@' in i: 

                ir= ''.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<'," '"+ir+"' " ,')' 

            if ',' in i: 

                for w in i: 

                    if ',' in i : 

                        i.remove(',') 

                ir= ', '.join(i) 

                ir= str(ir) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<'," '"+ir+"' " ,')' 

            elif '+'not in i and '@' not in i : 

                ir= ' '.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<'," "+ir+" " ,')' 

                #== Greater than Begins =============# 

    #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not' not in mylist and ('mor' in mylist or 
'gre' in mylist) and ('less' not in mylist and 'few' not in mylist):## This works fine: print 'kkkk', if l[0] in r  

        #print l[len(i)-1], t1, str(i) 

        if t1.lower() not in str(i): 
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            if '+'in i: 

                inw = l.remove('+') 

                u=str(l) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>'," '+"+i[len(i)-1]+"' " ,')' 

            if '@' in i: 

                ir= ''.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>'," '"+ir+"' " ,')' 

            if ',' in i: 

                for w in i: 

                    if ',' in i : 

                        i.remove(',') 

                ir= ', '.join(i) 

                ir= str(ir) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>'," '"+ir+"' " ,')' 

            elif '+'not in i and '@' not in i : 

                ir= ' '.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>'," "+ir+" " ,')' 

                #== Negation Begins===============# 

    #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not'in mylist and ('less' not in mylist and 
'few' not in mylist) and ('mor' not in mylist and 'gre' not in mylist):## This works fine: print 'kkkk', if l[0] in r  

        if t1.lower() not in str(i): 

            if '+'in i: 

                inw = l.remove('+') 

                u=str(l) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'!='," '+"+i[len(i)-1]+"' " ,')' 

            if '@' in i: 

                ir= ''.join(i) 
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                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')' 

            if ',' in i: 

                for w in i: 

                    if ',' in i : 

                        i.remove(',') 

                ir= ', '.join(i) 

                ir= str(ir) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')' 

            elif '+'not in i and '@' not in i : 

                ir= ' '.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')' 

                #== Negation of less than Begins===============# 

    #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not'in mylist and ('less' in mylist or 'few' 
in mylist) and ('mor' not in mylist and 'gre' not in mylist):## This works fine: print 'kkkk', if l[0] in r  

        #print l[len(i)-1], t1, str(i) 

        if t1.lower() not in str(i): 

            if '+'in i: 

                inw = l.remove('+') 

                u=str(l) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>='," '+"+i[len(i)-1]+"' " ,')' 

            if '@' in i: 

                ir= ''.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>='," '"+ir+"' " ,')' 

            if ',' in i: 

                for w in i: 

                    if ',' in i : 

                        i.remove(',') 
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                ir= ', '.join(i) 

                ir= str(ir) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>='," '"+ir+"' " ,')' 

            elif '+'not in i and '@' not in i : 

                ir= ' '.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'>='," "+ir+" " ,')' 

                #== Negation of Greater than Begins===============# 

    #>>>>>if l[len(i)-1] in r and t21 in mylist and t11 in mylist and ln==1 and 'not'in mylist and ('mor' in mylist or 'gre' 
in mylist) and ('less' not in mylist and 'few' not in mylist):## This works fine: print 'kkkk', if l[0] in r  

        #print l[len(i)-1], t1, str(i) 

        if t1.lower() not in str(i): 

            if '+'in i: 

                inw = l.remove('+') 

                u=str(l) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<='," '+"+i[len(i)-1]+"' " ,')' 

            if '@' in i: 

                ir= ''.join(i) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<='," '"+ir+"' " ,')' 

            if ',' in i: 

                for w in i: 

                    if ',' in i : 

                        i.remove(',') 

                ir= ', '.join(i) 

                ir= str(ir) 

                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<='," '"+ir+"' " ,')' 

            elif '+'not in i and '@' not in i : 

                ir= ' '.join(i) 
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                print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                print 'FILTER(?'+t1,'<='," "+ir+" " ,')' 

                #== Half Named Properties Begins===============# 

    s=t1 

    kn = 0 

    for t in s: 

        if t.isupper(): 

            s.find(t) 

            kn += 1 

    tscore=0 

    for t in s: 

        if t.isupper(): 

            s0=s.split(t) 

            s1=s0[0] 

            s2=t.lower()+s0[0] #return to s0[1] 

            s=s2 

            s11 = lancaster.stem(s1) 

            if s11 in mylist: 

                score=1/kn 

                tscore=tscore+score 

                s21 = lancaster.stem(s2) 

                t21= lancaster.stem(t2) 

                if s21 in mylist and t21 in mylist and ln==1 and 'not' not in mylist and ('less' not in mylist and 'few' not in 
mylist) and 'mor' not in mylist and 'gre' not in mylist: 

                    tscore=1 

                    if '@' in i: 

                        ir= ''.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'='," '"+ir+"' " ,')' 

                    else: 

                        ir= ' '.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 
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                        print 'FILTER(?'+t1,'=', " '"+ir+"' " ,')' 

                        #== Less than Begins =============# 

                if s21 in mylist and t21 in mylist and ln==1 and 'not' not in mylist and ('less'in mylist or 'few' in mylist) and 
('mor' not in mylist or 'gre' not in mylist): 

                    #print 'seen', s1,s2 

                    tscore=1 

                    if '@' in i: 

                        ir= ''.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'<'," '"+ir+"' " ,')' 

                    else: 

                        ir= ' '.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'<', " "+ir+" " ,')' 

                        #== Greater than Begins ===========# 

                if s21 in mylist and t21 in mylist and ln==1 and 'not' not in mylist and ('mor' in mylist or 'gre' in mylist) and 
('less' not in mylist or 'few' not in mylist): 

                    #print 'seen', s1,s2 

                    tscore=1 

                    if '@' in i: 

                        ir= ''.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'>'," '"+ir+"' " ,')' 

                    else: 

                        ir= ' '.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'>', " "+ir+" " ,')' 

                        #== Negation Begins ==============# 

                if s21 in mylist and t21 in mylist and ln==1 and 'not' in mylist and ('less' not in mylist and 'few' not in mylist) 
and ('mor' not in mylist and 'gre' not in mylist): 

                    tscore=1 

                    if '@' in i: 

                        ir= ''.join(i) 
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                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'!='," '"+ir+"' " ,')' 

                    else: 

                        ir= ' '.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'!=', " '"+ir+"' " ,')'#, mylist 

                        #== Negation of less than Begins ==# 

                if s21 in mylist and t21 in mylist and ln==1 and 'not' in mylist and ('less'in mylist or 'few' in mylist) and 
('mor' not in mylist and 'gre' not in mylist): 

                    tscore=1 

                    if '@' in i: 

                        ir= ''.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'>='," "+ir+" " ,')' 

                    else: 

                        ir= ' '.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'>=', " "+ir+" " ,')0000', tscore, s21 

                        #== Negation of Greater than Begins =# 

                if s21 in mylist and t21 in mylist and ln==1 and 'not' in mylist and ('less'not in mylist or 'few' not in mylist) 
and ('mor' in mylist or 'gre' in mylist): 

                    tscore=1 

                    if '@' in i: 

                        ir= ''.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'<='," "+ir+" " ,')' 

                    else: 

                        ir= ' '.join(i) 

                        print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                        print 'FILTER(?'+t1,'<=', " "+ir+" " ,')' 

                if ln > 1 and conf>0.5 and t21 in mylist and s21 in mylist : 

                    ir= ' '.join(i) 
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                    print '?'+t2,'dbs:'+t2+'.'+t1, ' ?'+t1+'.' 

                    print 'FILTER(?'+t1,'='," '"+ir+"' " ,')' 

 

def syno(mylist): 

    import nltk 

    lexlist = [] 

    from nltk.corpus import wordnet as wn 

    for s in mylist: 

        for synset in wn.synsets(s): 

            L = synset.lemma_names 

            lexlist.extend(L) 

    lexlist = list (sorted(set(lexlist))) 

    return lexlist 

def lex(mylist): 

    # Geographical Database Module ## 

    if 'kenya' in mylist: 

        mylist.append('country') 

    s= 'usa' 

    syn(s, mylist) 

    s= 'germany' 

    syn(s, mylist) 

    if 'japan' in mylist: 

        mylist.append('country') 

    if 'mexico' in mylist and 'city' not in mylist: 

        mylist.append('country') 

    if 'uganda' in mylist: 

        mylist.append('country') 

    if 'canada' in mylist: 

        mylist.append('country') 

    s= 'uk' 

    syn(s, mylist) 

    if 'ghana' in mylist: 
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        mylist.append('country') 

    if 'nairobi' in mylist: 

        mylist.append('city') 

    if 'rome' in mylist: 

        mylist.append('city') 

        mylist.append('shipcity') 

    if 'new_york' in mylist and 'city' not in mylist: 

        mylist.append('state') 

    if 'new' in mylist and 'york' in mylist: 

        mylist.append('city') 

    if 'embu' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'london' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'vancouver' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'toronto' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'seattle' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'liverpool' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'berlin' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'kampala' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'chicago' in mylist and 'city' not in mylist: 

        mylist.append('city') 

    if 'kumasi' in mylist and 'city' not in mylist and 'region' not in mylist: 

        mylist.append('city') 

    if 'karatina' in mylist and 'city' not in mylist: 

        mylist.append('city') 
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    if 'where' in mylist and 'city' not in mylist and 'countries' not in mylist and 'country' not in mylist and 'region' not in 
mylist: 

        mylist.append('city') 

        #== Jargon Here ====# 

    if 'retailers' in mylist or 'retailer' in mylist: 

        mylist.append('supplier') 

    if 'domestic' in mylist: 

        mylist.append('kenya') 

        mylist.append('country') 

        #== Normalization of Country Names Begins Here ==# 

    if 'german' in mylist: 

        mylist.remove('german') 

        mylist.append('germany') 

        mylist.append('country') 

    if 'canadian' in mylist: 

        mylist.remove('canadian') 

        mylist.append('canada') 

        mylist.append('country') 

    if 'ugandan' in mylist: 

        mylist.remove('ugandan') 

        mylist.append('uganda') 

        mylist.append('country') 

    if 'ghanaian' in mylist: 

        mylist.remove('ghanaian') 

        mylist.append('ghana') 

        mylist.append('country') 

        #== dealing with challenges brought about by synonym set/ stem e.g. find has syn notice stemmed to not==# 

 

    if 'find' in mylist: 

        mylist.remove('find') 

        mylist.append('list') 

    if 'biggest' in mylist: 
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        mylist.remove('biggest') 

        mylist.append('most') 

    if 'largest' in mylist: 

        mylist.remove('largest') 

        mylist.append('most') 

    if 'maximum' in mylist: 

        mylist.remove('maximum') 

        mylist.append('most') 

    if 'minimum' in mylist: 

        mylist.remove('minimum') 

        mylist.append('smallest') 

    #== anticipating usage of verbs in question ======# 

    if 'give' in mylist: 

        mylist.append('list') 

    if 'day' in mylist or 'days' in mylist: 

        mylist.append('date') 

def syn(s,mylist): 

    import nltk 

    from nltk.corpus import wordnet as wn 

    #mylist = lex(mylist) 

    for synset in wn.synsets(s): 

        sn = synset.lemma_names 

        sn = [x.lower() for x in sn] 

        for w in sn: 

            if w in mylist: 

                mylist.append('country') 

 

def superative(output2,origlist, initialist): 

    import nltk, re, pprint 

    lancaster = nltk.LancasterStemmer() 

    kount = 0 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 
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    raw1 = "start" 

    outputk = nltk.word_tokenize(raw1) 

    while outputk != '''[]''' and outputk is not []: 

        if outputk != []: 

            kount += 1 

            raw1 = fr.readline() 

            outputk = nltk.word_tokenize(raw1) 

        else: 

            print ' ' 

            break 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw = "start" 

    kount = kount - 2 

    count=0 

    k=0 

    while kount != 0: 

        kount += -1 

        k += 1 

        raw = fr.readline() 

        tokens = nltk.word_tokenize(raw) 

        otherlist = [w.lower() for w in tokens] 

        output1 = nltk.word_tokenize(raw) 

        if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty' 
in output1): 

        # This is the section that selects Classname and Property(for ALL tables) 

            n = output1.index('=') 

            m = n+6 

            q = output1[m] 

            r = q[:3] 

            r1 = q[:2] 

            if (r != 'has') and (r1 != 'is'): 

                #print "this is for split:", q 
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                s = q.split('.') 

                t1 = s[1] 

                t2 = s[0] 

                #t2 = lancaster.stem(t2) 

                list2 = t2 

                list1 = t1 

                t11= lancaster.stem(list1) 

                t21= lancaster.stem(list2) 

                mylist = output2 

                for t in mylist: 

                    d = mylist[mylist.index(t)] 

                    if (d in t21) and len(d)>=3 and d!='the' and d!= "tp3" :# ((d in otherlist) or (d in t11) or   

                        p=t1 

                        if t11 in mylist and t21 in mylist and ('less' not in mylist and 'few' not in mylist) and 'mor' not in mylist 
and 'gre' not in mylist: 

                            if 'maximum'in initialist or'highest'in initialist or 'longest'in initialist or 'most' in initialist or 'biggest' 
in initialist or 'largest' in initialist: 

                                print '} ORDER BY DESC','(?'+t1+')' 

                                print 'LIMIT 1' 

                            if  'minimum'in initialist or'lowest'in initialist or 'shortest' in initialist or 'least' in initialist or 'smallest' 
in initialist: 

                                print '} ORDER BY ','?'+t1 

                                print  'LIMIT 1' 

                        else: 

                            s=p 

                            kn = 0 

                            for t in s: 

                                if t.isupper(): 

                                    s.find(t) 

                                    kn += 1 

                            tscore=0 

                            for t in s: 

                                if t.isupper(): 



Lawrence Muchemi-PhD Thesis 2014 

 

Lawrence Muchemi - PhD Thesis                                                                                                                                         274 
 
 

 

 

 

                                    s0=s.split(t) 

                                    s1=s0[0] 

                                    s2=t.lower()+s0[0] # return to s0[1] 

                                    s=s2 

                                    s11 = lancaster.stem(s1) 

                                    if s11 in mylist: 

                                        score=1/kn 

                            s21 = lancaster.stem(s2) 

                            t21= lancaster.stem(t2) 

                            #print s11, kn, s2 

                            if s21 in mylist and t21 in mylist: 

                                tscore= tscore +1/kn 

                                #scored =0 

                                if tscore >= 0.3 and  'not' not in mylist and ('less' not in mylist and 'few' not in mylist) and 'mor' not 
in mylist and 'gre' not in mylist: 

                                    if 'maximum'in initialist or'highest'in initialist or 'longest'in initialist or 'most' in initialist or 
'biggest' in initialist or 'largest' in initialist: 

                                        if 'highest'in initialist: 

                                            t='highest' 

                                            superbig(t,initialist,t1, kn) 

                                        if 'longest'in initialist: 

                                            t='longest' 

                                            superbig(t,initialist,t1, kn) 

                                        if 'most'in initialist: 

                                            t='most' 

                                            superbig(t,initialist,t1, kn) 

                                        if 'biggest'in initialist: 

                                            t='biggest' 

                                            superbig(t,initialist,t1, kn) 

                                        if 'largest'in initialist: 

                                            t='largest' 

                                            superbig(t,initialist,t1, kn) 
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                                        if 'maximum'in initialist: 

                                            t='maximum' 

                                            superbig(t,initialist,t1, kn) 

                                         

                                    if  'minimum'in initialist or'lowest'in initialist or 'shortest' in initialist or 'least' in initialist or 
'smallest' in initialist: 

                                        if 'lowest'in initialist: 

                                            t='lowest' 

                                            supersmall(t,initialist,t1, kn) 

                                        if 'shortest'in initialist: 

                                            t='shortest' 

                                            supersmall(t,initialist,t1, kn) 

                                        if 'least'in initialist: 

                                            t='least' 

                                            supersmall(t,initialist,t1, kn) 

                                        if 'smallest'in initialist: 

                                            t='smallest' 

                                            supersmall(t,initialist,t1, kn) 

                                        if 'minimum'in initialist: 

                                            t='minimum' 

                                            supersmall(t,initialist,t1, kn) 

  

def supersmall(t,initialist,t1,kn): 

    scored = 0 

    u = initialist[(initialist.index(t)+1):] 

    if u != []: 

        u = initialist[(initialist.index(t)+1):] 

        for w in u: 

            if w in t1.lower(): 

                scored += 1 

        scoredf= scored*(1/kn) 

        if scoredf > 0.5:     
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            print '} ORDER BY ','?'+t1 

            print  'LIMIT 1' 

    else:  

        u = initialist[-6:(initialist.index(t)+1)] 

        for w in u: 

            if w in t1.lower(): 

                scored += 1 

        scoredf= scored*(1/kn) 

        if scoredf > 0.5:     

            print '} ORDER BY ','?'+t1 

            print  'LIMIT 1' 

def superbig(t,initialist,t1,kn): 

    scored = 0 

    u = initialist[(initialist.index(t)+1):] 

    if u != []: 

        u = initialist[(initialist.index(t)+1):] 

        for w in u: 

            if w in t1.lower(): 

                scored += 1 

        scoredf= scored*(1/kn) 

        if scoredf > 0.5:     

            print '} ORDER BY DESC','(?'+t1+')' 

            print  'LIMIT 1' 

    else:  

        u = initialist[-6:(initialist.index(t)+1)] 

        for w in u: 

            if w in t1.lower(): 

                scored += 1 

        scoredf= scored*(1/kn) 

        if scoredf > 0.5:     

            print '} ORDER BY DESC','(?'+t1+')' 

            print  'LIMIT 1' 
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def fkey (common, mylist): 

    running = True 

    import nltk, re, pprint 

    lancaster = nltk.LancasterStemmer() 

    kount = 0 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw1 = "start" 

    outputk = nltk.word_tokenize(raw1) 

    while outputk != '''[]''' and outputk is not []: 

        if outputk != []: 

            kount += 1 

            raw1 = fr.readline() 

            outputk = nltk.word_tokenize(raw1) 

        else: 

            print ' ' 

            break 

    fr = open('C:/Program Files/Protege_3.4.4/JulyNortha.owl', 'rU') 

    raw = "start" 

    kount = kount - 2 

    count=0 

    k=0 

    proplist=[] 

    proplist1 = [] 

    proplist2 = [] 

    proplist3 = [] 

    #common = [['produc'], ['supply']] 

    #print 'common', common 

    while kount != 0: 

        kount += -1 

        k += 1 

        raw = fr.readline() 
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        output1 = nltk.word_tokenize(raw) 

        if ('''owl''' in output1) and ('''rdf''' in output1) and (''':''' in output1) and ('''=''' in output1) and ('FunctionalProperty' 
in output1): 

            n = output1.index('=') 

            m = n+6 

            q = output1[m] 

            r = q[:3] 

            r1 = q[:2] 

            if (r != 'has') and (r1 != 'is'): 

                #print "this is for split:", q 

                s = q.split('.') 

                t1 = s[1] 

                t2 = s[0] 

                t21= lancaster.stem(t2) 

                t11= lancaster.stem(t1) 

                proplist.append(t1) 

                for t in mylist: 

                    if t in t2 and t21 in mylist and t in common[0]: 

                        t2=s[0] 

                        proplist1.append(t1) 

                        t0=t2 

                        #print 'this is my t2',t2 

                ##if t21 in common[0] and t21 in mylist: 

                    ##proplist1.append(t1) 

                    #print t21 

                if t21 in common[1]and t21 in mylist: 

                    proplist2.append(t1) 

                    t3=t2 

                if len(common)==3 and t21 in common[2]and t21 in mylist: 

                    proplist3.append(t1) 

                    t4=t2 

    #print 'proplist1', proplist1 
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    #print '--------' 

    #print 'proplist2',proplist2 

    proplist1 = set(proplist1) 

    proplist2 = set(proplist2) 

    proplist3 = set(proplist3) 

    prop_comm = sorted(proplist1 & proplist2) 

    prop_comm1 = sorted(proplist1 & proplist2) 

    prop_comm2 = sorted(proplist1 & proplist3) 

    prop_comm3 = sorted(proplist2 & proplist3) 

    #print mylist, t2    

    #print prop_comm1 

    #print prop_comm2 

    #print prop_comm3 

    #print proplist1 

    if prop_comm != [] and len(common)==2: 

        print '?'+str(t0),'dbs:'+str(t0)+'.'+str(prop_comm[0]), ' ?'+str(prop_comm[0])+'.' 

        print '?'+str(t3),'dbs:'+str(t3)+'.'+str(prop_comm[0]), ' ?'+str(prop_comm[0])+'.' 

     

    if prop_comm1 != [] and len(common)==3: 

        print '?'+str(t0),'dbs:'+str(t0)+'.'+str(prop_comm1[0]), ' ?'+str(prop_comm1[0])+'.' 

        print '?'+str(t3),'dbs:'+str(t3)+'.'+str(prop_comm1[0]), ' ?'+str(prop_comm1[0])+'.' 

    if prop_comm2 != [] and len(common)==3: 

        print '?'+str(t0),'dbs:'+str(t0)+'.'+str(prop_comm2[0]), ' ?'+str(prop_comm2[0])+'.' 

        print '?'+str(t4),'dbs:'+str(t4)+'.'+str(prop_comm2[0]), ' ?'+str(prop_comm2[0])+'.' 

    if prop_comm3 != [] and len(common)==3: 

        print '?'+str(t3),'dbs:'+str(t3)+'.'+str(prop_comm3[0]), ' ?'+str(prop_comm3[0])+'.' 

        print '?'+str(t4),'dbs:'+str(t4)+'.'+str(prop_comm3[0]), ' ?'+str(prop_comm3[0])+'.' 

def quset (common, mylist): 

# Python code for BASE COMPONENTS IDENTIFICATION (Includes segmentation of sentences, 
tokenization, POS tagging, phrase-chunking)  
import nltk 
rawtext = open(plain_text_file).read()# Plain text file contains entire query set 
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sentences = nltk.sent_tokenize(rawtext) # NLTK default sentence segmenter 
sentences = [nltk.word_tokenize(sent) for sent in sentences] # NLTK word tokenizer 
sentences = [nltk.pos_tag(sent) for sent in sentences] # NLTK POS tagger 
#Example: sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), ("dog", "NN"), ("barked","VBD"), ("at", 
"IN"), ("the", "DT"), ("cat", "NN")] # a simple sentence with POS tags 
#Simplified Part-of-Speech Tagset 
#Tag  Meaning  Examples 
#ADJ  adjective  new, good, high, special, big, local 
#ADV  adverb   really, already, still, early, now 
#CNJ  conjunction  and, or, but, if, while, although 
#DET  determiner  the, a, some, most, every, no 
#N  noun   year, home, costs, time, education 
#NP  proper noun  Alison, Africa, April, Washington 
#NUM  number   twenty-four, fourth, 1991, 14:24 
#PRO  pronoun  he, their, her, its, my, I, us 
#P  preposition  on, of, at, with, by, into, under 
#UH  interjection  ah, bang, ha, whee, hmpf, oops 
#V  verb   is, has, get, do, make, see, run 
#VD  past tense  said, took, told, made, asked 
#VG  present participle  making, going, playing, working 
#VN  past participle  given, taken, begun, sung 
#WH  wh determiner  who, which, when, what, where, how  
 

#Define tag patterns to find NP-chunks; PP-Chunks (prepositional phrases chunks) ; terms/collocations etc 
patterns1 = """ 
 NP: {<DT|PP\$>?<JJ>*<NN>} 
 {<NNP>+} 
 {<NN>+} 
 {<DT>?<JJ>*<NN>} 
""“ 
patterns2 = """ 
 PP: {<DT|PP\$>?<JJ>*<NN>} 
 {<NNP>+} 
 {<NN>+} 
""“ 
patterns3 = """ 
 TP: {<DT|PP\$>?<JJ>*<NN>} 
 {<NNP>+} 
 {<NN>+} 
""“ 
NPChunker = nltk.RegexpParser(patterns1) # create a NP-chunk parser 
PPChunker = nltk.RegexpParser(patterns2) # create a PP-chunk parser 
TPChunker = nltk.RegexpParser(patterns3) # create a TP-chunk parser 
result1 = NPChunker.parse(sentences) # parse the queries 
result2 = PPChunker.parse(sentences) # parse the queries 
result3 = TPChunker.parse(sentences) # parse the queries 
print result1, result2, result3 
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Appendix 9: Query Sets and Results for Evaluation of English Wizzard, Easy Query and ELF 
(Reproduced from Bootra (2004)) 

 Query ELF 
Response 

EQ Response EW Response 

 where are the suppliers from 
Germany located 

+ Sorry, I didn't understand that. + 

 show the names and complete 
address of the biscuit companies 

+ Sorry, I didn't understand that. Please 
check your spelling or phrasing. 
-If you capitalize proper names, it will 
be easier for me to understand you. 

INCORRECT: show employees, 
Discontinued 126 times (crosses with 
Order Details) 

 at which company does Ian work INCORRECT: 
work=>worker=>
employee 
(crosses with 
Employee table) 

Based on the information I've been 
given about this database, I can't 
answer: 
"At which companies Ian does works?". 
I haven't been given any information 
on companies. 

INCORRECT: No rows returned. 

 who handles the specialty 
items(Modify to: who supplies 
speciality items?) 

+ INCORRECT: No appropriate choice I'm not familiar with the word: handles 

 show the domestic suppliers + Based on the information I've been 
given about this database, I can't 
answer: 
"How domestic are suppliers?". 
I haven't been given any information 
on domesticness. 

I'm not familiar with the word: 
domestic 

 show the New Orleans suppliers + INCORRECT: No answer because New 
Orleans is part of name, not whole 
name of company 

+ 

 show the New England suppliers + INCORRECT: Same problem as New 
Orleans 

I'm not familiar with the words: New 
England 

 which company handles the 
specialty products 

+ INCORRECT: No appropriate choice I'm not familiar with the word: handles 

 which companies have Product 
Managers 

+ Based on the information I've been 
given about this database, I can't 
answer: 
"Which companies have Product 
Managers?". 
I haven't been given any information 
on companies. 

+ 

 show the Product Managers + INCORRECT: + 

 show the orders by Leverling to 
Hanover Sq 

+ I need to know how to interpret the 
name "Leverling to Hanover Sq" 

You must specify 2 values to select a 
range of values. 

 which products come in bottles + INCORRECT: No appropriate choice I'm not familiar with the word: come 
 What are the names of our 

Canadian customers? 
+ Based on the information I've been 

given about this database, I can't 
answer: 
"Which customers have countries?". 
I haven't been given any information 
on countries. 

I'm not familiar with the word: 
Canadian 
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 Give the name and location of 
suppliers from Germany. 

+ Sorry, I didn't understand that. INCORRECT: Gives address field only, 
270 times 

 Which are our Australian 
suppliers? 

+ Based on the information I've been 
given about this database, I can't 
answer: 
"Which suppliers have countries?". 
I haven't been given any information 
on countries. 

I'm not familiar with the word: 
Australian 

 List the countries where 
suppliers are located, arranging 
the countries in alphabetical 
order. 

INCORRECT:  Suppliers aren't there. Customers are 
there. 

I'm not familiar with the word: 
arranging 

 Products with names that start 
with "La". 

+ INCORRECT: Wrong answer. Shows all 
containing, not starting with! 

INCORRECT: Offers choice of Employee 
first or last name only 

 Suppliers who are not located in 
Canada 

+ Based on the information I've been 
given about this database, I can't 
answer 

I'm confused by the word: Canada 

 Find the products that have 
between 10 and 20 units in stock 

+ Sorry, I didn't understand that. + 

 Records for customers who are 
located in Canada and whose 
names begin with the letter "M" 

+ INCORRECT: Neither choice is correct. I'm not familiar with the word: letter 
"M" 

 Suppliers who are located in 
Canada and whose names begin 
with the letters A-N. 

+ Sorry, I didn't understand that. "letters" must be numeric. 

 Suppliers who have a fax number + INCORRECT: show suppliers with or 
without faxes 

+ 

 Show the employees hired 
between May 1, 1992 and June 
1, 1993 

+ + + 

 Employees who live in the United 
Kingdom or employees who live 
in Seattle 

+ I don't understand the phrase: "t_or I 
list every employee that lives in 
Seattle". 

I'm not familiar with the words: United 
Kingdom 

 Orders placed before 1-Jan-93 + Based on the information I've been 
given about this database, I can't 
answer: 
"Which orders are placed before 1-Jan-
93?"."Which orders are placed?" 
doesn't depend on 1-Jan-93. 

1' is not the expected type. 

 Customers whose company 
names start with N-Z and who 
are located in either the United 
Kingdom or Paris 

INCORRECT:  I don't understand the word 
"company" in the phrase "company 
start". 

"N" must be numeric. 

 Orders that were placed during 
the month of February 93 

+ + (' required after builtin function "month 
of". 

 Find customers from Canada or 
the UK who have placed over 15 
orders 

+ I don't understand the phrase: "from 
UK". 

15' is not the expected type. 

 Suppliers who provide seafood 
products and who are from 
Singapore or Japan. 

+ I don't understand the phrase: "from 
Singapore". 

+ 

 Find the customers who ordered 
the "Chef Anton's Cajun 
Seasoning" product 

+ + + 
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 information on orders that were 
placed after 31-Mar-92, including 
the employee who made the sale 
and the customer who placed 
the order 

+ Sorry, I didn't understand that. Please 
check your spelling or phrasing. 
If you capitalize proper names, it will 
be easier for me to understand you. 

31' is not the expected type. 

 What's the average price of all 
our products 

+ I haven't been given any information 
on prices. 

I'm not familiar with the word: price 

 Give the name and id for each 
category. 

+ INCORRECT: gives names but not Ids INCORRECT: Offers only [Region ID] 
choices. 

 List the customers + + + 

 Count the orders that have been 
placed for each seafood product 

+ + By "address", do you mean Customers, 
Employees, Suppliers? 

 Show the ship date and order 
subtotals since March of 1994 

+ I don't understand the phrase: "since 
March, 1994". 

I cannot connect the table "Order 
Subtotals" to the other tables in your 
request. 

 Display the subtotal and shipping 
date of all orders 

+ Sorry, I didn't understand that. I cannot provided (sic) both summary 
and detail information in the same 
request. 

 List the suppliers in alphabetical 
order 

+ I don't understand the phrase: "in 
orders". 

+ 

 Find the total number of 
Northwind suppliers 

+ Sorry, I didn't understand that. I'm not familiar with the word: 
Northwind 

 orders that were shipped today + + What date does "today" refer to? 
 orders that were shipped during 

the past ten years 
+ + + 

 The number of orders that were 
shipped within the past 3100 
days 

+ + What date does "last" refer to? 

 Find the total value of orders 
that have been shipped to each 
country 

+ I haven't been given any information 
on values. 

I'm not familiar with the word: value 

 Which products cost between $3 
and $6? 

+ Products don't have net costs. Line 
items have net costs. 

I'm not familiar with the word: cost 

 Give the order id, product name, 
product id, price, quantity, 
discount and extended price for 
each purchase 

+ Sorry, I didn't understand that. Please 
check your spelling or phrasing. 
 
If you capitalize proper names, it will 
be easier for me to understand you. 

I'm not familiar with the word: price 

 Show catalog information for the 
active products. 

INCORRECT: 
"catalog" and 
"active" are not 
defined 

I haven't been given any information 
on catalogs. 

I'm not familiar with the word: catalog 

 the minimum price of all 
products in the Products table 

+ I haven't been given any information 
on prices. 

I'm not familiar with the word: price 

 all records with the current date + I don't understand the word "current" 
in the phrase "current date". 

INCORRECT: show no records, only a 
count 

 What's the total number of 
orders we received this month 

+ I haven't been given any information 
about people. 

I'm not familiar with the word: received 

 all employees who have 
birthdays today 

+ + INCORRECT: interprets this as "who was 
born today"! 

 all employees who have 
birthdays on July 2 

+ + + 

 All employee records that 
contain photos 

INCORRECT:  I don't understand the word 
"employee" in the phrase "employee 
record". 

INCORRECT: Wrong, interprets Photo as 
a True/False, which shows all records 
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 Find the total number of 
customers in Canada or the 
United Kingdom who have 
placed orders, and group them 
by country 

+ INCORRECT: Neither choice is correct. I'm not familiar with the words: United 
Kingdom 

 Find the total value of orders 
shipped to each customer within 
each country 

+ Sorry, I didn't understand that. I'm not familiar with the word: value 

 Which employee sold the most 
units of tofu? 

INCORRECT:  Based on the information I've been 
given about this database, I can't 
answer: 
"Which employees sold products?". 

I'm not familiar with the word: units 

 Subtotal and customer for orders 
shipped between 10/1/91 and 
12/31/91, sorting on the value 

+ Sorry, I didn't understand that. Please 
check your spelling or phrasing. 
If you capitalize proper names, it will 
be easier for me to understand you. 

I'm not familiar with the word: value 

 photos of employees whose last 
names start with "B" 

+ I haven't been given any information 
on photos. 

+ 

 show photos of employees hired 
during 1991 

+ I haven't been given any information 
on photos. 

+ 

 which customers have ordered 
both Konbu and Filo Mix? 

+ + INCORRECT 

 which products are more 
expensive than chai 

+ Sorry, I didn't understand that. I'm not familiar with the word: 
expensive 

 how much does chai cost + Products don't have net costs. Line 
items have net costs. 

I'm not familiar with the word: cost 

 customers that ordered both 
chai and filo 

+ Sorry, I didn't understand that. Please 
check your spelling or phrasing. 
If you capitalize proper names, it will 
be easier for me to understand you. 

I'm not familiar with the word: filo 

 how many products are there in 
each category 

+ Products aren't in categories. Products 
are in orders. 

Warning: due to a limitation of 
Microsoft Access the count displayed 
may include duplicates. 

 which customers have ordered 
every meat/poultry product 

+ + INCORRECT 

 which customers have never 
ordered seafood 

+ + I'm not familiar with the word: never 

 which customers ordered 
Longlife tofu but not filo mix 

+ + INCORRECT 

 which customers always use 
Federal Shipping 

+ Sorry, I didn't understand that. I'm not familiar with the words: always 
use 

 which product costs the most Sorry, unable to 
interpret the 
question. 

I could not find a meaning for the noun 
"more". 

I'm not familiar with the word: costs 

 which customers have placed 
more orders than average 

+ + I'm confused by the word "orders". 

 show the seafood products in 
reverse price order 

+ I haven't been given any information 
about prices. 

I'm not familiar with the words: reverse 
price 

 customers that have ordered 
from both Ma Maison and Tokyo 
Traders 

+ Suppliers have not had customers 
orderring from them. Employees have 
had customers orderring from them. 

INCORRECT: No records; shows orders 
from any company which is named 
both Tokyo Traders and Ma Maison, 
which is pretty darned unlikely 

 show company names of the 
suppliers that have more than 3 
products 

+ I don't understand the word 
"company" in the phrase "company 
name". 

+ 
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 which orders were neither 
shipped to Canada nor sent via 
Speedy Express 

+ INCORRECT: Neither choice is correct. I can't relate "ship" to a seach value. 

 which orders were not both 
shipped to Canada and sent via 
Speedy Express 

+ I don't understand the phrase: "via 
Speedy Express". 

I'm confused by the word "ship". 

 how many customers have 
ordered every meat/poultry 
product 

+ + Misinterprets as "how many customers 
ordered EACH meat product" we'd give 
them that, but then they answer that 
question wrong by counting each 
customer once for each meat order, 
inflating the numbers 

 what percentage of customers 
have ordered every meat/poultry 
product 

+ + Warning: due to a limitation of 
Microsoft Access the count displayed 
may include duplicates. (Percentages 
inflated as in above query) 

 which customers bought 
products from every category 

+ Based on the information I've been 
given about this database, I can't 
answer 

INCORRECT: just shows every order 

 which customers ordered the 
fewest items 

INCORRECT: 
shows who 
placed the 
fewest orders 

Based on the information I've been 
given about this database, I can't 
answer:"Which items did customers 
order?". I haven't been given any 
information on items. 

I'm not familiar with the words: fewest 
items 

 show the names and complete 
address of the pear companies 

+ I don't know what the companies are. I'm not familiar with the word: pear 

 which of the clients that 
purchased tofu have also 
purchased chai? 

+ Based on the information I've been 
given about this database, I can't 
answer 

Error in CreateEWQueryDef: join 
expression not supported 

 Show the ship date and subtotals 
for all orders since March of 
1991 

+ I don't know how to connect subtotals 
to orders or ship dates, 
so I can't answer this question. 

I cannot provided both summary and 
detail information in the same request. 

 how many customers in each 
country have ordered tofu? 

+ Based on the information I've been 
given about this database, I can't 
answer. I haven't been given any 
information on countries. 

Warning: due to a limitation of 
Microsoft Access the count displayed 
may include duplicates. (As warned, it 
incorrectly includes duplicates) 

 which customers exclusively use 
Federal Shipping 

+ Based on the information I've been 
given about this database, I can't 
answer 

I'm not familiar with the word: use 

 which customers use Federal 
Shipping exclusively 

+ Based on the information I've been 
given about this database, I can't 
answer 

I'm not familiar with the word: use 

 customers that work at 12 
Orchestra Terrace 

+ Based on the information I've been 
given about this database, I can't 
answer 

INCORRECT: crosses customers with 
employees table 

 customers in the t2f area + INCORRECT: No appropriate choice I'm not familiar with the word: t2f 
 count the orders for tofu versus 

those for chai 
+ Sorry, I didn't understand that. I'm not familiar with the word: versus 

 graph the number of tofu or chai 
orders 

+ I didn't understand the meaning of 
"number of order". 

I'm not familiar with the word: graph 

 graph the number of Seattle 
employees against London 

+ Based on the information I've been 
given about this database, I can't 
answer 

I'm not familiar with the word: against 

 graph the sum of subtotals for 
seafood against beverages 

+ Sorry, I didn't understand that. I'm not familiar with the word: against 
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 graph the average subtotal for 
each category 

+ Sorry, I didn't understand that. Error processing query 

 graph the sum of subtotals for 
tofu, chai and konbu 

+ I haven't been given any information 
on subtotals. 

Error processing query 

 show the average number of 
products sold by each employee 
sales representative 

INCORRECT I don't understand the word "sales" in 
the phrase "sales representative". 

Error processing query 

 compare the average unit price 
showing employee and product 

+ I don't understand the words 
"unit_price showing" in the phrase 
"unit_price showing employee". 

INCORRECT: shows one number, not a 
crosstab 

 which products were shipped by 
Federal in the last 5 years 

+ INCORRECT: "Federal" is not an 
Employee's firstname! 

I'm not familiar with the word: Federal 

 list employees with home 
phones = (206) 555-8122 (206) 
555-8122       

+ INCORRECT: replaces '(206) 555-8122' 
with '(206)555-8122' which leads to no 
rows retrieved 

I'm not familiar with the word: 206 

 Find the total number of 
different customers in Canada or 
UK who have placed orders 

+ Sorry, I didn't understand that. Error processing query 

 find the total number of 
DISTINCT customers in Canada or 
the United Kingdom who have 
placed orders, and group them 
by country 

+ INCORRECT: Neither choice is correct. I'm not familiar with the words: United 
Kingdom 

 which suppliers have order dates 
that are newer than 600 months 
old 

+ Sorry, I didn't understand that. I'm not familiar with the words: newer 

 show the difference between 
discount and unit price 

+ Customers don't have unit prices. 
Products have unit prices. 

I'm not familiar with the word: 
difference 
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Appendix 10: Some of the Databases Used in Nomenclature Analysis 

A: HUMAN RESOURCE MANAGEMENT (Oracle, 2008) 

HR_DB Schema 
Object Type and Objects 
Index: COUNTRY_C_ID_PK, DEPT_ID_PK, DEPT_LOCATION_IX, EMP_DEPARTMENT_IX, EMP_EMAIL_UK, EMP_EMP_ID_PK, 
EMP_JOB_IX, EMP_MANAGER_IX, EMP_NAME_IX, JHIST_DEPARTMENT_IX, JHIST_EMPLOYEE_IX, JHIST_EMP_ID_ST_DATE_PK, 
JHIST_JOB_IX, JOB_ID_PK, LOC_CITY_IX, LOC_COUNTRY_IX, LOC_ID_PK, LOC_STATE_PROVINCE_IX,REG_ID_PK 
Procedure: ADD_JOB_HISTORY, SECURE_DML 
Sequence: DEPARTMENTS_SEQ, EMPLOYEES_SEQ, LOCATIONS_SEQ 
Tables: COUNTRIES, DEPARTMENTS, EMPLOYEES, JOBS, JOB_HISTORY, LOCATIONS, REGIONS 
Trigger: SECURE_EMPLOYEES, UPDATE_JOB_HISTORY 
View: EMP_DETAILS_VIEW 
Table HR.COUNTRIES  
COUNTRY_ID NOT NULL CHAR(2) 
COUNTRY_NAME VARCHAR2(40) 
REGION_ID NUMBER 
Table HR.DEPARTMENTS  
DEPARTMENT_ID NOT NULL NUMBER(4) 
DEPARTMENT_NAME NOT NULL VARCHAR2(30) 
MANAGER_ID NUMBER(6) 
LOCATION_ID NUMBER(4) 
Table HR.EMPLOYEES  
EMPLOYEE_ID NOT NULL NUMBER(6) 
FIRST_NAME VARCHAR2(20) 
LAST_NAME NOT NULL VARCHAR2(25) 
EMAIL NOT NULL VARCHAR2(20) 
PHONE_NUMBER VARCHAR2(20) 
HIRE_DATE NOT NULL DATE 
JOB_ID NOT NULL VARCHAR2(10) 
SALARY NUMBER(8,2) 
COMMISSION_PCT NUMBER(2,2) 
MANAGER_ID NUMBER(6) 
DEPARTMENT_ID NUMBER(4) 
Table HR.JOBS  
JOB_ID NOT NULL VARCHAR2(10) 
JOB_TITLE NOT NULL VARCHAR2(35) 
MIN_SALARY NUMBER(6) 
MAX_SALARY NUMBER(6) 
Table HR.JOB_HISTORY  
EMPLOYEE_ID NOT NULL NUMBER(6) 
START_DATE NOT NULL DATE 
END_DATE NOT NULL DATE 
JOB_ID NOT NULL VARCHAR2(10) 
DEPARTMENT_ID NUMBER(4) 
Table HR.LOCATIONS  
LOCATION_ID NOT NULL NUMBER(4) 
STREET_ADDRESS VARCHAR2(40) 
POSTAL_CODE VARCHAR2(12) 
CITY NOT NULL VARCHAR2(30) 
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STATE_PROVINCE VARCHAR2(25) 
COUNTRY_ID CHAR(2) 
Table HR.REGIONS 
REGION_ID NOT NULL NUMBER 
REGION_NAME VARCHAR2(25) 
 
B: ORDER ENTRY DB (Oracle, 2008) 

Order Entry Db-SCHEMA 
Object Type and Objects 
Index: CUSTOMERS_PK, CUST_ACCOUNT_MANAGER_IX, CUST_EMAIL_IX, CUST_LNAME_IX, CUST_UPPER_NAME_IX, INVENTORY_IX, 
INV_PRODUCT_IX, ITEM_ORDER_IX, ITEM_PRODUCT_IX, ORDER_ITEMS_PK, ORDER_ITEMS_ 
UK, ORDER_PK, ORD_CUSTOMER_IX, ORD_ORDER_DATE_IX, ORD_SALES_REP_IX, PRD_DESC_PK, PRODUCT_INFORMATION_PK, 
PROD_NAME_IX, PROD_SUPPLIER_IX, PROMO_ID_PK 
Tables: CUSTOMERS, INVENTORIES, ORDERS, ORDER_ITEMS, PRODUCT_DESCRIPTIONS, PRODUCT_INFORMATION, WAREHOUSES 
Triggers: INSERT_ORD_LINE, ORDERS_ITEMS_TRG, ORDERS_TRG 
View:  ACCOUNT_MANAGERS, BOMBAY_INVENTORY, CUSTOMERS_VIEW, DEPTVIEW, OC_CORPORATE_CUSTOMERS, 
OC_CUSTOMERS, OC_INVENTORIES, OC_ORDERS, OC_PRODUCT_INFORMATION, ORDERS_VIEW, PRODUCTS, PRODUCT_PRICES, 
SYDNEY_INVENTORY, TORONTO_INVENTORY 
Table OE.CUSTOMERS  
CUSTOMER_ID NOT NULL NUMBER(6) 
CUST_FIRST_NAME NOT NULL VARCHAR2(20) 
CUST_LAST_NAME NOT NULL VARCHAR2(20) 
CUST_ADDRESS CUST_ADDRESS_TYP 
PHONE_NUMBERS PHONE_LIST_TYP 
NLS_LANGUAGE VARCHAR2(3) 
NLS_TERRITORY VARCHAR2(30) 
CREDIT_LIMIT NUMBER(9,2) 
CUST_EMAIL VARCHAR2(30) 
ACCOUNT_MGR_ID NUMBER(6) 
CUST_GEO_LOCATION MDSYS.SDO_GEOMETRY 
DATE_OF_BIRTH DATE 
MARITAL_STATUS VARCHAR2(20) 
GENDER VARCHAR2(1) 
INCOME_LEVEL VARCHAR2(20) 
Table OE.INVENTORIES  
PRODUCT_ID NOT NULL NUMBER(6) 
WAREHOUSE_ID NOT NULL NUMBER(3) 
QUANTITY_ON_HAND NOT NULL NUMBER(8) 
Table OE.ORDERS  
ORDER_ID NOT NULL NUMBER(12) 
ORDER_DATE NOT NULL TIMESTAMP(6) WITH LOCAL TIMEZONE 
ORDER_MODE VARCHAR2(8) 
CUSTOMER_ID NOT NULL NUMBER(6) 
ORDER_STATUS NUMBER(2) 
ORDER_TOTAL NUMBER(8,2) 
SALES_REP_ID NUMBER(6) 
PROMOTION_ID NUMBER(6 
ORDER_STATUS NUMBER(2) 
ORDER_TOTAL NUMBER(8,2) 
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SALES_REP_ID NUMBER(6) 
PROMOTION_ID NUMBER(6) 
Table OE.ORDER_ITEMS  
ORDER_ID NOT NULL NUMBER(12) 
Table OE.WAREHOUSES  
WAREHOUSE_ID NOT NULL NUMBER(3) 
WAREHOUSE_SPEC SYS.XMLTYPE 
WAREHOUSE_NAME VARCHAR2(35) 
LOCATION_ID NUMBER(4) 
 
C: RETAIL MANAGEMENT (Vertica Systems, 2011) 
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D: PHONE COMPANY (Vertica Systems, 2011) 

 

E: STOCK EXCHANGE (Vertica Systems, 2011) 
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Appendix 11: Foreign Key Attribute Processing  
Examples from the Northwind Database and related Ontology (See section 3.73 and Table 3.47) 

 
 
Sample Query 2:  “Which products come in bottles?” 
 

 
 

Sample Query 1: Show the 'names' and complete 'address' of the 'chai companies'? 
Worked Example with Explanations 
.................................................................... 
The concepts to be picked are indicated. 
‘chai company’ implies a ‘company’>> that ‘supplies’ etc>> ‘product named’, ‘chai'. 
'Supplies' suggests use of <supplies Table> and 'product name' suggests <products table>. 
Presence of ‘names’ suggests use of <~name>. Possible combinations include ‘company name, product 
name etc, thus <ProductName> and < CompanyName>. 
The concept ‘address’ implies the use of attribute <address> 
Additionally we include <SupplierID> to uniquely identify supply company and <product name> to 
identify chai. To say we only want chai products, we include a filter for product name 
======================================================================= 
PREFIX chema: <http://www.owl-ontologies.com/NewNorthwind#> 
SELECT ?SupplierID ?CompanyName ?Address ?ProductName 
WHERE { ?suppliers db:SupplierID ?SupplierID. 
                ?suppliers db:CompanyName ?CompanyName. 
                ?suppliers db:Address ?Address. 
                 ?products db:ProductName ?ProductName 
                   FILTER(?ProductName = "chai") } 
--------------------------------------------------------------------- 
Results: 
SupplierID   CompanyName                Address              ProductName 
2      Charlotte Coopermaners 666663777    chai 
1      Exotic Liquids        49 gilbert street    chai 
>>>>>>>>>>>>>>>> 

PREFIX chema: <http://www.owl-
ontologies.com/NewNorthwind#>
SELECT DISTINCT ?ProductID ?ProductName
?Description ?CategoryID
WHERE { ?products db:ProductID ?ProductID.

?products db:ProductName?ProductName.

?categories db:Description ?Description.
FILTER( ?Description = "bottled") }

?products db:CategoryID ?CategoryID.
?categories db:CategoryId ?CategoryID.

http://www.owl-ontologies.com/NewNorthwind#
http://www.owl-
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Appendix 12: Sample Results that Demonstrate Query Transformation 

 

A. The NL QUERY 
Give me the ids of order and the date goods were shipped pertaining customer 1.  Give me also his full 
name. 

B. THE CONCEPTS IN THE NL QUERY (Identified by OCM PROTOTYPE) 
“ids of order”  ‘id’ ‘ord’  Maps to OrderID 
“date goods were shipped” ‘dat’ ‘good’ ‘ship’  maps to shippedDate 
“customer 1”  ‘cust’ ‘1’; ‘id’=implicit  Maps to customerID = ‘1’ 
“full name”  ‘nam’ which implies a relationship in ‘orders’ or ‘customer’ (implicit)  
table   CompanyName, ShipName (‘his’ in the query refers to subject ‘customer’ 
therefore ‘shipName is dropped and only CompanyName is considered). These are 
organized into triples as per OCM algorithm. 
 

C. THE ONTOLOGY DERIVED FROM NORTHWIND DB (Derived using Mysql db, Datamaster,  
Protégé) 

<db:orders rdf:about="&db;orders_Instance_1"> 
                <db:orders.CustomerID rdf:datatype="&xsd;int">1</db:orders.CustomerID> 
                <db:orders.EmployeeID rdf:datatype="&xsd;int">1</db:orders.EmployeeID> 
                <db:orders.Freight rdf:datatype="&xsd;string">mv nyayo</db:orders.Freight> 
                <db:orders.OrderDate rdf:datatype="&xsd;date">2010-04-29</db:orders.OrderDate> 
                <db:orders.OrderID rdf:datatype="&xsd;int">1</db:orders.OrderID> 
                <db:orders.RequiredDate rdf:datatype="&xsd;date">2010-04-29</db:orders.RequiredDate> 
                <db:orders.ShipAddress rdf:datatype="&xsd;string">italiano</db:orders.ShipAddress> 
                <db:orders.ShipCity rdf:datatype="&xsd;string">rome</db:orders.ShipCity> 
                <db:orders.ShipCountry rdf:datatype="&xsd;string">japan</db:orders.ShipCountry> 
                <db:orders.ShipName rdf:datatype="&xsd;string">the wrecker</db:orders.ShipName> 
                <db:orders.ShippedDate rdf:datatype="&xsd;date">2010-04-20</db:orders.ShippedDate> 
                <db:orders.ShipPostalCode rdf:datatype="&xsd;string">777</db:orders.ShipPostalCode> 
                <db:orders.ShipRegion rdf:datatype="&xsd;string">europe</db:orders.ShipRegion> 
                <db:orders.ShipVia rdf:datatype="&xsd;string">mombasa</db:orders.ShipVia> 
 </db:orders> 
Nb. The ontology triples are formed from the class-names, Attribute-names and instances  
 

D. THE SPARQL QUERY (Generated by the OCM PROTOTYPE) 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
PREFIX moon: <http://www.owl-ontologies.com/NewNorthwind#> 
SELECT  ?orderID ?CustomerID ?CompanyName ?shipDate 
WHERE { ?orders db:OrderID ?OrderID. 
        ?customers db:CustomerID ?CustomerID. 
        ?orders db:CustomerID ?CustomerID. 
 ?customers db:CompanyName ?CompanyName. 
 ?orders db:OrderID ?orderID. 
 ?orders db:ShippedDate ?shipDate 
FILTER(?CustomerID = 1)} 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

E. THE ACTUAL RESULTS (Generated by the  owl-reasoner) 
orderID  CustomerID  CompanyName  shipDate 
3     1          Alfreds Futterkiste 2010-05-24 
1     1          Alfreds Futterkiste 2010-04-20 

http://www.owl-ontologies.com/NewNorthwind#

