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ABSTRACT 

 

In Kenya property destruction and loss of life has occurred due to serious incidents of floods, 

along the Nzoia River catchment area Western Kenya. Despite having flood warning models 

along the Nzoia River basin; with a flood warning system at Rwambwa gauge station that sends 

out alerts on the river levels. These models are linear models and have overlooked the peak 

streamflows. A reliable intelligent nonlinear model that is capable of handling nonlinear 

estimation streamflow (discharge) problem is crucial in flood control operations. 

 

This research explores applicability and performance of flood forecasting models in the Nzoia 

River basin, Western Kenya, using two types of artificial neural network (ANNs), namely MLP-

ANN-FF a feedforward multilayer perceptron (MLP) network and GA-ANN-FF a genetic 

algorithm optimized multilayer perceptron feedforward neural network model. The aim of this 

study is to compare the performance of these two models (MLP-ANN-FF and GA-ANN-FF) and 

recommend the most suitable for this problem. 

 

The historical daily rainfall, and average temperature and discharge flow, obtained from Kenya 

Metrological Department (KMD) were used as inputs to the two ANN models for discharge flow 

(streamflow) forecast for Nzoia River basin at Rwambwa river gauge. The characteristic 

parameters such as number of neurons within hidden layers and the selection of input variables 

for the MLP-ANN-FF were optimized using genetic algorithm (GA), hence yielding a GA-ANN-

FF model. These two models were trained, cross verified and tested with daily rainfall, average 

temperature, and discharge flow.  

 

The architectural topology that trained well on MLP-ANN-FF model was one with 9 input 

variables, 2 hidden layers and 1 discharge flow output; a 9:7:12:1 configuration setting. This was 

later optimized with the genetic algorithm (GA) to develop a GA-ANN-FF model that was able 

to optimize the input variables reducing them from 9 to 4 inputs, and reducing the number of 

neurons in the 2 hidden layers yielding a 4:6:4:1 GA-ANN-FF model.  

 

The conventional ANN (MLP-ANN-FF) and a GA-ANN-FF model were used as the benchmark 
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for comparison of performances. The two models were developed using NeuroSolutions 

Software and were trained with 70% of the data set, 20% for cross validation and the remaining 

10% was used in testing the overall performance of the models. The results revealed that the GA-

ANN-FF (4:6:4:1) model was able to yield better accuracy in performance for Nzoia River basin 

at Rwambwa River gauge, with least input variables, and number of neurons in the hidden layers 

though it took  longer on the computation time. With a MSE of 0.021 and an r (correlation 

coefficient) of the desired and estimated discharge flow of 0.887 (89%), GA-ANN-FF performed 

satisfactory better than MLP-ANN-FF (9:7:12:1) with 9 input variables an MSE of 0.024 and r 

(correlation coefficient) of 0.84 (80%).  

 

The results showed that ANN integrated with GA has a better accuracy and therefore most 

suitable in developing flood forecast models with low MSE. This finding is important because it 

will eventually enable relevant agents in water resource planning and flood management and the 

public aware when a flood might occur and the  areas that would be affected to avoid disaster 

caused by floods.  
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Chapter 1 - Introduction 
 

1.1 Background 
 

Kenya has experienced serious incidents of floods, in different parts of the country, destroying 

property and resulting in loss of life. Occurrence of floods is due to natural factors like flash 

floods, river floods and coastal floods. Torrential rainfall has been the major cause of floods in 

Kenya. Nzoia River experiences perennial flooding in its lower reaches affecting areas such as 

Budalangi and Kano flood plains. (“Flood Mitigation Strategy,” 2009)  

 

The floods affecting Kenya are becoming increasingly predictable, with major floods occurrence 

in year 1961, 1997, 1998, and 2003 (“Kenya water security and climate resilience project,” 

2013). Due to the high inter-annual and intra-annual rainfall variability that results in frequent 

droughts and floods, major infrastructure investments for economic growth are getting damaged 

with single extreme flood events (“Flood Mitigation Strategy,” 2009). This has greatly impacted 

Kenya economy with a 2.4% of GDP cost every year, according to a 2006 World Bank report 

(“Kenya water security and climate resilience project,” 2013). 

 

The major rivers in Lake Victoria that experience floods have dykes installed. River Nzoia dykes 

measure 34.4 Km. During the long rains these dykes shield residents in Busia and Budalangi area 

in western Kenya from floods (Onywere et al., 2007). Although there several studies that have 

been done in Nzoia Basin in trying to find flood mitigation solutions effective structural and 

nonstructural mitigation measures have no yet being achieved (ADCL (Appropriate 

Development Consultants Limited), 2006). 

 

Hydrologists are involved in the research and development of hydrological processes such as 

flood forecasting. The flood forecast models used in hydrology field are divided into physically 

based rainfall-runoff and data-driven models or a combination of both (Kia et al., 2012).  

Hydrodynamic models require accurate river geometric data, which might not be available in 

many locations. Previous studies have explored more on data-driven approach, since some of the 

hydrology models have been unable to understand the dynamic changes inside the river basin, 



  2

and require robust optimization tools (Plate, 2009). 

 

Flood forecasting models assist in anticipating flood occurrence thus allowing sufficient time for 

action. Modeling has proved to be an important item in predicting floods; from physical based 

models to data mining models, this has driven researchers to use different approaches in 

modeling flood forecasting models (Onyari and Ilunga, 2010) 

 

In data mining lots of studies have been carried out especially in artificial neural networks 

(ANN) for flood forecasting modeling.  According to Tom M. Mitchell Artificial neural 

networks (ANN) is “a computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E" (Mitchell, 1997).  ANN is suitable for data classification, function 

approximation and pattern recognition, through a learning process (Mitchell, 1997). In recent 

years a lot of research has been done in hydrological modeling in respect to ANN to predict and 

forecast water resources variables. This is has been necessitated by the complexity of 

hydrological models unable handle excessive requirement of field data in case of physically 

based models rendering such models less attractive in flood forecasting. This is the reason why 

non-linear ANN model is being extensively used as flood forecasting to model non-linear 

relationships (Tingsanchali, 2000). 

 

The variability of a good flood forecasting model depends mostly on the flood forecasting 

approach used. In this research the aim is to model multilayer perceptron feed-forward (MLP-

ANN-FF) and a genetic algorithm (GA) optimized multilayer perceptron feed-forward (GA-

ANN-FF) for flood forecasting using metrological data (rainfall, temperature, and the discharge 

flow) to estimate the discharge flow of Nzoia River at Rwambwa River gauge. A case study for 

Nzoia River Basin at water level station Rwambwa River Gauge Station (RGS) in Western 

Kenya will demonstrate that the two models, using historical data; daily rainfall, average 

temperature, and discharge flow, can estimate the streamflow. Daily rainfall, temperature and 

discharge data of 2000 to 2003 obtained from Kenya Metrological Department (KMD) and was 

used in training, testing and determining the performance of the models. 

Though Kenya, has installed river-gauging stations in the rivers, for flood monitoring. There has 
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been irregular monitoring and communication of floods situation. It’s through the rainfall 

forecast and warning from Kenya Meteorological Department (KMD) that communicates the 

forecasts to the Disaster Operation Center (DOC) under the Ministry of Special Programme in 

the office of the President, who mobilizes various County Governments for rescue and relief 

operations. Due to lack of advance warning of impending floods the public is always caught 

unaware, leaving no time to take preventive measures. The existing flood management 

monitoring mechanism is in rescue and relief measures and not preventive action. Nobody is 

directly focused about proper and fast communication system between general public, County 

Governments and National Government (“Kenya water security and climate resilience project,” 

2013).  
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1.2  Problem Statement     

 

In 2007, a Flood Early Warning System Team (FEWST) through the strategic intervention 

initiated by the government for Nzoia River basin was started. A number of models on early 

flood warning were started giving discharge forecast. Although the monitoring has improved 

these models are linear models and have overlooked the peak streamflows (Masibayi et al., n.d.). 

Since streamflows process for the daily discharge is generally recognized as nonlinear and 

seasonal (Guven, 2009), reliable intelligent nonlinear transfer function that is capable of handling 

nonlinear estimation streamflow (discharge) problem is crucial in water resource planning and 

flood management. These early warming models initiated by FEWST for discharge forecast lack 

intelligence. 

 

In recent years a lot of research has been done in hydrological modeling in respect to ANN with 

BP to predict and forecast water resources variables, with a good success when used to estimate 

the discharge flow (Tingsanchali, 2000). The issues that limit the performance of ANN with BP 

are risk of network overfitting the training data, and trial and error in selecting the optimal inputs 

and determining the optimal number of neurons in the hidden layers.  

 

This project is aimed at alleviating some of these issue such as removing trial and error methods 

of setting parameters in ANN by employing a hybrid genetic algorithm (GA) with ANN (GA-

ANN-FF model) to enhance performance. The model can assist in predicting streamflows given 

historical data based on daily rainfall, temperature, and discharge flow. Such tools may also 

provide reliable intelligent estimation of Nzoia River Basin streamflow (discharge) that will 

enable relevant agents in water resource planning and flood management and the public aware 

when a flood might occur and the  areas that would be affected to avoid disaster caused by 

floods.  It’s therefore important to have a model that can provide reliable discharge forecasts by 

applying historical data that is available from KMD. The use of machine learning can assist in 

developing of such models.  
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1.3 Objectives   

 

The main objective of this research is to build two ANN models (MLP-ANN-FF and GA-ANN-

FF) for purpose of estimating the discharge flow of Nzoia River basin at Rwambwa River gauge, 

by applying artificial neural network (ANN) technique and optimizing the multilayer perceptron 

(MLP-ANN-FF) neural network model with a genetic algorithm (GA). 

 

The objectives are summarized below 

 

1. Design a hybrid algorithm of ANN and GA 

2. Develop a prototype based on the hybrid ANN with GA (GA-ANN-FF model) for 

purpose of estimating the discharge flow of Nzoia River Basin at Rwambwa River 

gauge. 

3. To evaluate and benchmark the hybrid ANN with GA algorithm by performing test 

on the GA-ANN-FF prototype and compare the results from MLP-ANN-FF base 

prototype. 

4. Recommend a suitable intelligent model based on the results of the two above 

objectives. 

1.4 Assumption 
 

This research has been carried out under the following assumptions. The methodology applied 

will predict the discharge flow of Nzoia River at Rwambwa River gauge given historical data on 

daily rainfall, temperature and discharge flow. The research also is based on simulations and 

experiments. In this research there only three input causative discharge flow factors, namely 

rainfall, temperature and the discharge (streamflow). The other discharge flow causative flood 

factors such, flood plain in the past, terrain elevation, water density, water blockage, sub basin 

areas, soil drainage capability, land use, were not considered. The training, verification and 

testing of both models is done offline. The flood forecasting models used data from Kitale 

metrological (SID-8834098), Kitale soil conservation service – office (SID-8834097), Leissa 

farm – Kitale (SID-8835039), and Rwambwa stations since they were within Nzoia River basin 
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our catchment area of interest. As a proof of concept the research study will cover Nzoia River 

basin in Western Kenya, but results obtained may be used in other flood prone areas.  

 

1.5 Limitations 

 

ANN is data dependant, they learn well with large volumes of datasets (Babinec and Pospíchal, 

2009). Although there was vast data available for period 1975 to 2012, from the three weather 

stations obtained from Kenya Metrological Department (KMD), and the raw discharge flow 

provided by Flood Diagnostics and Forecasting Centre (FDFC) at Kenya Meteorological 

Department for Rwambwa River Gauge Station (RGS). Only 4 year data for period 2000 to 2003 

that was concurrent in all three weather stations and the one river gauge was used. 

 

It was not be possible to integrate the developed models (MLP-ANN-FF and GA-ANN-FF) with 

the current early flood warning models managed by the Flood Early Warning System Team 

(FEWST) for Nzoia River basin. 

 

1.6 Significance of the study 

 

Currently, the Kenyan Government has initiated a Flood Early Warning System Team (FEWST) 

that has started a several models on early flood warning for the discharge forecast at Nzoia River 

basin. These models are linear models that issue alerts when the river levels at the river gauges 

reach a certain threshold of the water levels that floods might occur if flood level is between 

certain range (Masibayi et al., n.d.).  

 

For lack of reliable intelligence and nonlinearity in these models, an intelligent algorithm, the 

GA and ANN with nonlinear transfer function, can be used in developing such models that can 

assist metrologists in Kenya Meteorological Department (KMD) advice the County Governments 

and threatened residence on when and where the next flood is going to happen and what areas 

are going to be inundated due to such events. The models may also benefit the Kenya RedCross 

who can mobilize various County Governments for rescue and relief operations. The hydrologist 

can easily integrate these models with their hydrological processes for flood.   
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Therefore there is a need to develop ANN machine learning technique trained on patterns for 

flood forecasting integrated with GA technique to enhance the discharge flow predictability in 

order to prevent loss of lives and minimize damages. 

 

1.7 Chapter Summary 

 

Chapter 1 presented the background of flood forecasting and discharge flow in hydrological 

modeling in respect to ANN to predict and forecast water resources variables. The problem 

statement, research objectives, assumption, limitations and significance of the study were also 

review and discussed. 

 

The rest of the document is organized in four major sections. A review of current literature of 

study, previous work and approach of ANN and context of the GA with ANN hybrid model is 

discussed in Chapter 2. The methodology models architecture, data set or source, study area, 

flood simulation software to be used and design of the models is discussed in Chapter 3. The 

Evaluation of the Models, Results and discussion of the models is discussed in Chapter 4. Finally 

the Conclusions and recommendation is discussed in Chapter 5 followed by the reference and 

appendices. 
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Chapter 2 - Literature Review 

 

2.1 Flood Forecasting 

 

Over the years lots of research has been undertaken in the development of hydrological flood 

forecasting models. The aim into these models is to provide timely and accurate future discharge 

conditions at particular watershed. The most common models in flood forecasting applied by 

hydrologist are the physically based rainfall-runoff modeling approach, and data-driven model or 

a combination of both (See et al., 1997). The physically rainfall-runoff model is based on 

mathematical model. It uses a forecast updating intelligence; reviewing certain reference to state 

correction and error prediction approaches to improve its performance (Moore et al., 2001). An 

example of this type of physically based rainfall-runoff model is the European Hydrological 

System (SHE) (Maskey, 2004). In a data-driven model it tries to map data to form a pattern that 

best defines a certain particular data set. It has properties of linear regression model, but also 

boasts of complicated nonlinear models such as artificial neural network, fuzzy rule-based 

systems just to mention a few. (Modeling Uncertainty in Flood Forecasting Systems by Shreeda 

Maskey pg12) 

 

2.2 Artificial Neural Networks 

 

Artificial neural networks (ANN) is a mathematical model loosely designed based on the 

functioning of a human brain (Onyari and Ilunga, 2010).  The simplest kind of neural network 

(NN) mainly used for illustrative purposes is known as perceptron. It’s a neural network with no 

hidden layer, where the inputs units are directly connected to the output units; only capable to 

learn linearly separable functions (Mitchell, 1997).  There various type of ANN architectures 

such as Radial basis function neural network (RBF), multilayer perceptron neural network 

(MLP), self-organizing map (SOM) and Learning Vector Quantization (LVQ) (Cho and Park, 

2002).  The most commonly used of these is the feedforward network, or multilayer feedforward 

network (MLFN) (LUK et al., 2001). In general it’s composed of three layers; input, output and 

hidden layer. The input layer is made up of a set of input units, where when given some input 
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from an example will propagate through the network producing an output. Weighted sum of the 

output from the input units forms the input of every hidden unit in the hidden layer. The output 

or target layer, which consist of a set of output units get its input from a weighted sum of the 

output from the hidden units. In the node of the output layer the new weighted sum from the 

hidden layer is computed after de-normalization of the output, the sought forecasted value might 

be determined. Fig 2.0 shows the topology of a feedforward network, or multilayer feedforward 

network (MLFN) that includes an input layer, one hidden layer and an output layer.  Information 

is passed forward only. 

 

Fig 2.1 - A simple three-layer Artificial Neural Networks Topology  

 

The main steps involved in the design and development of ANN are training and testing. ANN 

model should always be trained properly before it’s used for testing. The training process is 

through adjusting weights between the nodes until the network is able to predict the target output 

(Heednacram, 2014). MLFN is trained in a supervised manner using a supervised 

backpropagation (BP) algorithm, that involves two reciprocal steps; forward pass and backward 

pass (Puttinaovarat et al., n.d.) MLFN uses this BP algorithm to adjusts the weights and biases of 

the network in order to minimize the error between its output and the target (over all output and 
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all examples).  Fig 2.0 shows the schematic diagram of the backpropagtion neural network; the 

hidden layer can be more than one (Onyari and Ilunga, 2010).  The backpropagation algorithm 

details are presented in Table 2.0. 

 

Table 2.1:  Backpropagation algorithm for a Multilayer feedforward neural network (Mitchell, 1997) 

Construct a Multilayer feedforward neural network with the desired number of hidden and output units 
Initialize all network weights to small random values() 
For each training example, present the training example to the network 
   Propagate the input forward through the network: 
   1. Input the instance x to the network and compute the output Ou of every unit u in the network. 
        Mathematically this can be expressed with the following formula 

 
                           O = S1(∑Oh.wh+wo), 
       Where  
                  O is the output from the ANN, 
                  Oh is the output value of the hth hidden unit 
 
                           Oh = S2(∑xI.wIh+who), 
 
                  XI are the inputs to the MLFN 
                  wh   are the connection weights between nodes of the hidden and output layer     
                  wIh   are the connection weights between nodes of the hidden and input layer 
                  S1 and S2  are activation functions. The most commonly used activation function is a logistic 
sigmoid function 
                              S(x) = 1/1 + e 
 
   Propagate the error backward through the network: 
   2. For each network output unit k, calculate its error term δk 
                               δk -> Ok(1-Ok)(tk-Ok) 
   3. For each hidden unit h, calculate its error term δh 

                           δh -> Oh(1-Oh) ∑wkh δk 
   4. Update each network weight wij 
                           Wji <- wji + wjire 
        Where 
                            Wji = n δj xji 
 

Backpropagation is a gradient descent algorithm; it will always convergences towards a solution 

by minimizing the error of the network. The issues with BP are on the risk of the network 

overfitting the training data. Overfitting (overtraining) occurs when the model begins to 

memorize the training data rather than learning to generalize from trends (Awan et al., 2012). 

Some of the ways the BP networks avoids overfitting in order to improve network generalization 

is though use of large network enough to provide an adequate fit. Unfortunately it impossible to 

know ahead how network layer should be for specific application, more so with large network 
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you might run into more complex function while building the network (Mitchell, 1997). 

 

Some attempts that have been made to stop the BP algorithm becoming stuck in “local minima” 

as a learning of the network process (Che et al., 2011). Genetic Algorithm (GA) has been able to 

evade “local minima” by searching in several points simultaneously; determining a good set of 

weight through performance value with no need of gradient information (NirmalaDevi et al., 

2009). GA is from the field of AI. It is a directed random search technique based on the concept 

of evolution. The search starts from random points and slowly converges to a solution (Yao and 

Liu, 1996).  Incorporating of GA on ANN builds a hybrid ANN model with evolutions 

adaptation on the architecture, learning and connection weights of the network. Evolution of the 

architecture enables the ANN to adapt on topologies to different task with no external 

intervention. Connection weights apply adaptive and global approach to training (NirmalaDevi et 

al., 2009).  

 

Table 2.2:  Genetic algorithm for a Multilayer feedforward neural network (Perez, n.d.) 

Genetic Algorithm pseudo-code 

1). Generate initial population  

  - Chromosome (string or individual) encoding, weights (and biases) in the NN are encoded as a 

list of real numbers 

   - The GA starts by generating random generation of population (solution) of chromosomes. 

   - We encode weights using binary weight encoding 

2). While (! solution) 

The algorithm then proceeds by performing cyclic variation and combination of initial 

population, searching for the best solution. 

a). Evaluate the fitness of all the chromosomes of the population 

             By applying the Evaluation Function; 

 Assign the weights on the chromosome to the links in a network of a given architecture, 

run the network over the training set of examples, and return the sum of the squares of the 

errors. 

 At each evolution the output chromosomes are obtained by employing genetic operators 

(mutation, selection and crossover); to the input population and evaluating using fitness 

function the goodness of the new generated solution. The fitness function role is to give a 
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technique to eliminate worst chromosomes from the population (best problem solution)  

b). The best chromosome will be selected to reproduce using mutation and crossover 

c).  Substitute the worst chromosome of the previous generation by the new produced 

chromosome 

Finally the fittest chromosome will be selected as a solution. 

 

 The significance of training the neural networks using GA can be appreciated since GA will 

train the network no matter how its connected (feedforward or feedback network), unlike BP 

which trains certain restricted topologies and type of network (NirmalaDevi et al., 2009). When 

GA is incorporated into ANN the model may improve its performance by taking advantage of 

the characteristics of both ANN and GA. 

 

Testing process applies an independent test data set, which has not being used in the training. 

The test data set is used for checking or evaluating the overall performance of the neural network 

(NN). Commonly used performance criterion are MSE (Mean Square Error), NMSE 

(Normalized Mean Square Error), r (Correlation coefficient), root mean squared error, coefficient 

of determination ( R2 ) (Deshmukh and Ghatol, 2010a). 

 

In the water research arena, ANN has been applied to predict likelihood of impending floods and 

to determine water consumption. The success in these areas has lead ANN models to be 

extensively used in other water management areas such as river salinity, water table fluctuations, 

rainfall-runoff processes just to mention a few (Suliman et al., n.d.). 

 

2.3 Review of ANN flood forecasting models 

 

(Puttinaovarat et al., n.d.) Investigates on available techniques such as Multi Layer Perceptron 

(MLP) and Radial Basis Function (RBF) to improve generic ANN that only uses rainfall data for 

flood prediction in the Pathumani area in Thailand .RBF and MLP were used to develop two 

ANN flood prediction models. A comparison on both models was also done against flood data as 

it occurred in 2011. A  Back propagation learning algorithm was used in training the models. 

More reliable and current GIS data derived during actual flooding in 2006, 2010, and 2011 when 
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the city was most affected by floods.  In developing the ANN model, nine flood factors (rainfall, 

flood plain in the past, terrain elevation, water density, water blockage, sub basin areas, soil 

drainage capability, land use, monthly rainfall) were selected based on public hearing from the 

region. During the data processing of the nine factors min-max normalization was applied, where 

data was rated and normalized and trained using WEKA software. The application of MLP and 

RBF and inclusion of nine other flood factors on top of the standard rainfall factor, improved the 

predictability to 70-95% accuracy. MLP did better with accuracies of 71.3, 78.1 and 80.85 

percents compared to 74.45 and 81.05 of RBF. The flood forecasting ANN model in both RBF 

and MLP was able to improve the generalization and accuracy of the model. The improved ANN 

predication model has been used for flood hazard and risk assessment. 

 

(Deshmukh and Ghatol, 2010a) developed an ANN model for short term flood forecasting for 

the upper area of Wardha River in India. A comparison in the performance between Jordan and 

general recurrent neural networks (GRN) models and their application in real time predication of 

short term flood was also presented. Jordan model uses past output of context unit with present 

inputs to create memory trace. Unlike MLP that relies on static data, GRN uses temporary data. 

The methodology applied in training and generalization of these two models was through three 

performance measures namely MSE (Mean Square Error), NMSE (Normalized Mean Square 

Error) and r (Correlation coefficient). In the development of the two ANN models historical data 

from Wardha River and real time rainfall on hourly basis from eight telematic automatic rain 

gauging stations was used. After splitting the data into three (training, validation and test). 

Jordan and GRN were trained through 5000 epochs. GRN having unlimited memory depth 

emerged with a better performance over Jordan since Jordan weighting over time is not flexible. 

This study sought GRN as a good solution in short term flood forecasting. 

 

(Shrestha et al., 2005) investigates techniques for improving generalization of MLPN Artificial 

neural network by using different activation functions; sigmoidal, hyperbolic tangent, linear, and 

a combination of hyperbolic tangent and linear functions in the Neckar River in Germany. The 

data used in training the network was from historical flood data sets. This data set was divided 

into three; training set that consisted of flow time series from the 1998 flood events and 

validation and test data that consisted of flood event data from 1990 and 1993. For training the 



  14

network, backpropagation algorithm with the Levenberg-Marquardt approximation was used. It 

also applied four different activation functions (sigmoidal, hyperbolic tangent, linear, and a 

combination of hyperbolic tangent and linear functions). The network was designed using 

MATLAB neural network toolbox, where test data set was used for evaluation of the model 

performance. To optimally train the ANN model the river reach was divided into three ANN 

blocks. ANN was found to perform better compared to hydrodynamic numerical (HN) model, 

providing and efficient flood flowing forecasting. In the improvement of generalization of the 

ANN model, a combination of a hyperbolic tangent and linear transfer functions in the hidden 

layer provided the best performance. 

 

(Thirumalaiah and Deo, 1998) presents a real time neural networks flood forecasting application 

in Sajivali in India, to investigate flood forecast corresponding to warning times of 1, 2, and 3 

hours. The ANN real-time flood forecasting was developed using hourly runoff values for 14 

years individual’s storms, from 1969 to 1993. The first eleven years of these storms was used in 

the training the rest three years were used in the testing of the ANN. Three algorithms; error 

backpropagation, conjugate gradient and cascade correlation were used to train the ANN model 

in order to reduce the global error. 560 input-output data set was used to train ANN model, and 

cascade algorithm was found to be more efficient compared with the other two algorithms. 

Although conjugate gradient algorithm involved less iteration its completion time compared to 

the other algorithms was higher. On performance with lead times of 1, 2, 3 hours; 162 data set 

was used in testing the network these yielded a satisfactory predication with a low warning time. 

 

(Kia et al., 2012) to demonstrate ANN flood forecasting using GIS that adopts various flood 

causes factors to simulate flood prone areas in Johar River basin Malaysia. The final output of 

the study is a GIS flood map created through water levels produced by the ANN model. In the 

development of the ANN model, GIS, remote sensing data and field survey were used in 

deriving suitable thematic layers. Seven flood causes factors (topography, topographic slope, 

soil, land cover, lithology, and drainage) were then used as an input to the network. The data 

used in the network was divided into three; 60% training data, 20% validation data and 20% test 

data. The model architecture was on a three layer network. Input layer that consisted of seven 

input units each representing the seven flood causes factors two hidden layers, and an output 
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layer that consisted of a single output unit representing river flow. Backpropagation algorithm 

with a 7-N-N-1 format was used to train the ANN model. N was the hidden layers 7 number of 

input units and 1 number of output unit. MATLAB software with ease to integrate with GIS data 

was adopted in training the model. First the input data was processed using Levenberg-

Marquardt algorithm normalizing the data to be used in the model. A decaying trend of minimum 

mean square error in training and validation was used to yield an optimal learning model. The 

performance of the model was determined using three methods, coefficient of determination, 

sum squared error, mean squared error, and root mean squared error. The model yielded success 

with real data with coefficient of determination, but less with other methods. GIS flood maps 

generated with data output from ANN model were used visualization of flood coverage. In 

January 2007 the system was used to simulate floods that occurred in Johar River Basin. 

 

(Masibayi et al., n.d.) Presents a Real-Time River Stage Forecasting Using Upstream Stage 

Approach for Flood Management, in Nzoia River Basin, Western Kenya that uses a linear 

regression real-time flood forecasting model to predict river stage and thus discharge flow in 

Nzoia River Basin, Western Kenya. The daily rainfall, river levels and rating curve data (12,357 

data points) was divided into two; training (62%) and validation (38%), which was used to 

develop the model. These data was available on an hourly interval and not lump daily data, to 

avoid underestimating flood peaks, which are dependent on the lumped daily inputs. The model 

yielded an efficiency of (R2) of 98% on training and 96% on validation data on the relationship 

between the desired and predicted river stage. This implied that linear regression with 8 hours 

was able to estimate stage at the station (Rwambwa) thus the discharge flow. 
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2.4 Context of the GA-ANN-FF hybrid model 

 

The basic basis in the approach proposed is in building a flood forecasting model, more so in 

reducing the damages incurred by flood plain residents, hence enhancing their welfare. Although 

the main concern in this research is in creating ANN flood forecasting models, in this section a 

brief general description of the models components and their interrelationships will be discussed.  

Figure 2.2 shows a schematic framework of the ANN Flood Forecasting model based on four 

roles;  

1. Data collection,  

2. Data processing,  

3. ANN model, and  

4. Forecast dissemination  

These will be used in simulating the two ANN Flood forecasting models; MLP-ANN-FF and 

GA-ANN-FF to estimate the discharge flow for Nzoia River basin at Rwambwa rive gauge. 

 

 

Figure 2.2 - Schematic framework for ANN Flood forecasting models (GA-ANN-FF and MLP-ANN-FF) 

in the Nzoia River Basin. Based on 4 roles: Data Collection, Data Processing, ANN Flood Model and 

Forecast Dissemination (Source: Author). 
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2.4.1 Data Collection 

 

The catchment area of study in this research was around Nzoia River basin, Western of Kenya. 

Nzoia River originates from two high-ground areas of Mt. Elgon and Cherengany Hills; it 

gathers strength as it flows downstream to an extent of bursting as it reaches the Budalangi areas 

(Dulo et al., 2010). 

 

To develop the ANN flood models historical data on daily rainfall, average temperature and the 

simultaneous discharge flow (streamflow) were obtained from three weather stations, and one 

water level station, Rwambwa River Gauge Station (RGS) within Nzoia River Basin. These data 

was provided by Kenya Metrological Department (KMD). Other causative flood factors that 

were not considered in this research study were, flood plain in the past, terrain elevation, water 

density, water blockage, sub basin areas, soil drainage capability and land use (Puttinaovarat et 

al., n.d.). The available data was for the period 1975 to 2012, from the three weather stations 

obtained from Kenya Metrological Department (KMD), and the raw discharge flow provided by 

Flood Diagnostics and Forecasting Centre (FDFC) at Kenya Meteorological Department for 

Rwambwa River Gauge Station (RGS). Due to the anomalies in the data available only 4 year 

data for period 2000 to 2003 that was concurrent in all three weather stations and the one river 

gauge was used. 

 

2.4.2 Data Processing 

 

After the data collection three data processing processes were conducted to train the Flood 

Forecasting models more efficiently. These methods are solving missing data values, 

normalizing the data and performing logarithmic transformation. The missing data are replaced 

by average of neighbor’s values. Normalization was done to improve the performance of the 

models. The raw data obtained from KMD was first classified using Excel software and 

normalized using the Komaron formula in the excel software (Jemsi S. 2011).  

 

 



  18

Where, the Xnorm is a normalized value of each conveniently measurable input (X0). The (X0) is 

the value of each conveniently measurable input, X is the data mean, Xmax is the maximum data 

and Xmin is the minimum data. The normalized properties that included daily rainfall, 

temperature and discharge flow data were then transferred as input in to INPUT part in the 

NeuroSolutions software and the normalized data transferred as network real output (discharge 

flow)  in to OUTPUT part. Standardizing the inputs makes the training faster and reduces 

chances of getting stuck in local optima (Chen et al., 2013).  The log transformation was applied 

to make the skewed discharge flow output range less skewed (Limpert et al., 2001), by 

harmonizing the larger values in the data set, and stretching the smaller values. Log function was 

the preferred option since clipping higher values could have reduced the dataset significantly.  

By performing a log function of base 10 on the discharge flow output data the data range gets 

drastically reduced. 

 

2.4.3 ANN Flood Forecast Model 

 

The processed data was fed into the two ANN Flood forecast models (MLP-ANN-FF and GA-

ANN-FF), and were developed and simulated with NeuroSolution software separately. 

Backpropagation (BP) algorithm was used to train MLP-ANN-FF while Genetic Algorithm (GA) 

was applied on the GA-ANN-FF model. A comparative study between the two models was done 

to determine whether by applying GA technique the models can improve in their predication 

accuracy and model generalization.  

 

MLP-ANN-FF model with backpropagation, was trained based on  the daily rainfall, temperature 

and discharge data that was repeatedly presented to the MLP-ANN-FF. With each presentation 

the output of the MLP-ANN-FF was compared with the desired discharge flow output and an 

error was computed. This error was fed back (backpropagated) into the NN and used to adjust 

the weights, such that the error will decrease with each iteration and the ANN Flood forecast 

model got closer and closer to producing the desired flood forecast output (Priddy and Keller, 

2005)  Fig 2.3 shows MLP-ANN-FF flood forecast model trained with backpropagation. 
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Figure 2.3 – Context model the MLP-ANN-FF Flood forecasting model in the Nzoia River 

(Source: Author) 

 

Genetic algorithm is efficient in global sampling but have poor local convergence properties 

(NirmalaDevi et al., 2009). With genetic algorithm trained GA-ANN-FF model, the weights of 

the NN was joined to make on string (individual or chromosome). The string (individual) was 

then be used in the genetic algorithm as a member of the population. Each string represented the 

weights of the complete network. The weights of the initial individuals of the population was 

chosen at random with probability distribution (Perez, n.d.). This was different from the initial 

probability distribution of the weights that was given in backpropagation  which were in uniform 

distribution between -1.0 and 1.0 (LUK et al., 2001). The evaluation function returned a rating 

for each string, assigned weights on chromosome to the links of the GA-ANN-FF, and runs the 

network over training set of the daily rainfall, temperature, and the discharge data. Figure 2.4 

shows GA-ANN-FF flood forecast model trained with genetic algorithm (GA). 
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Figure 2.4 The block diagram of GA-ANN-FF procedure to predication of discharge flow in the Nzoia 

River Basin 

 

2.4.4 Forecast Dissemination 

 

In the Dissemination component, it serviced a dual purpose of generalizing the predictions into 

forecasts and diffusing such common information so that was beneficial for decision making in 

water resource management, and evacuations planning. A comparative prediction component 

was carried out on the basis of important performance measures such as r (correlation 

coefficient), and Mean-squared error (MSE) between MLP-ANN-FF and GA-ANN-FF models. 

 

In summary Fig x illustrates the four roles (data collection, data processing, ANN model, and 

forecast dissemination) of the context of ANN with GA hybrid model (GA-ANN-FF) that will be 

used in developing the two flood forecasting models (MLP-ANN-FF and GA-ANN-FF). In this 

research study the main role of focus will be ANN Flood Forecast model role. This is the role 
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that will be used in building the two models in estimating the discharge flow (streamflow) of 

Nzoia River Basin at Rwambwa River Gauge Station discussed in the next chapter. 
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Chapter 3 - Methodology 

 

3.1 Research Design 

 

The knowledge acquired from the context of the hybrid of ANN with GA model (GA-ANN-FF) 

discussed earlier in Chapter 2 section 2.4 for ANN Flood forecasting models was based on four 

roles (data collection, data processing, ANN model, and forecast dissemination) that were used 

in the model building process of estimating the discharge flow (streamflow) of Nzoia River 

Basin at Rwambwa River Gauge Station. The developed flood forecast ANN models can be 

useful to the metrologists in Kenya Meteorological Department (KMD) who can advice the 

County Governments and threatened residence on when and where the next flood is going to 

happen and what areas are going to be inundated due to such events.  

 

To develop the two ANN flood models historical data based on the daily rainfall, average 

temperature and the simultaneous discharge flow (streamflow) were obtained from three weather 

stations, and one water level station, within Nzoia River Basin. Although the data available was 

from January 1975 to December 2012 from the 3 weather stations provided by Kenya 

Metrological Department (KMD), and the raw discharge flow from January 2000 to December 

2012 obtained from Flood Diagnostics and Forecasting Centre (FDFC) at KMD. Only data from 

2000 to 2003 that was concurrent in all 3 weather stations and the one river gauge was used in 

the developing the two models (MLP-ANN-FF and GA-ANN-FF) 

 

The catchment area of study in this research was around Nzoia River basin, Western of Kenya. 

The Nzoia River originates from two high-ground areas of Mt. Elgon and Cherengany Hills; it 

gathers strength as it flows downstream to an extent of bursting as it reaches the Budalangi areas. 

(Khan et al., 2011).   The interest of Nzoia River Basin is because its where a number of models 

on early flood warning for discharge forecast have been initiated by the government through the 

Flood Early Warning System Team (FEWST) 

After data collection, 3 data processing were conducted to train the two flood forecast models 

(MLP-ANN-FF and GA-ANN-FF) more efficiently. These methods are normalization, 

logarithmic transformation and use of Microsoft Excel scatter plots to identify the outliers. The 
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use of normalization was to improve performance of the models with the normalized data. Since 

rainfall, temperature and the discharge flow had different units, the data was scaled between 0 

and 1 before it was used as input. The normalization process was done automatically through the 

NeuroSolution version 6.3.1 Software. The daily discharge flow was discovered to be having a 

skewed data range that was not evenly distributed. The log function transformation assisted in 

making the skewed discharge flow range less skewed, by harmonizing the larger values in the 

data set, and stretching the smaller values. The Excel scatter plots were used to identify the 

outliers and compute the smallest minimum value in the data range. This assisted in broadening 

up the range for the rest of the sample, providing much better information to the networks that 

we were modeling, while keeping the data intact. 

 

After the data was finally processed and reliable, the computational algorithms for both models 

(MLP-ANN-FF and GA-ANN-FF) was performed on commercial software; NeuroSolution, 

6.3.1, presented by NeuroDimension Inc. Intelligence simulation software to develop and 

simulate the two models. The software with a Microsoft Excel plug-in was used to develop the 

two models (MLP-ANN-FF and GA-ANN-FF), train and test their performance. 

 

In this research two learning algorithms; Genetic algorithm (GA) and Backpropagation (BP) 

algorithm were employed on the two models (MLP-ANN-FF and GA-ANN-FF).  In order to 

achieve the best performance from the two models the design process was divided into two 

experiments. Experiment 1 was applied to model the MLP-ANN-FF with backpropagation and 

Multilayer perceptron feedforward network based on the daily rainfall, average temperature and 

the discharge flow as inputs to estimate the discharge flow. Many MLP-ANN-FF network 

configuration settings were examined by determining the input variables, 9 inputs were the 

optimal input variables opted for MLP-ANN-FF model. Determining the number of hidden 

layers and number of neurons in the hidden layers was also conducted and a 9:7:12:1 

configuration setting was considered as optimal. Lastly checking the sensitivity of the optimal 

MLP-ANN-FF model (9:7:12:1) in regards to data splitting that included 50%, 60%, 70%, 80% 

and 90% MLP-ANN-FF with 70% was found to  be the optimal proportion for the training data 

set. In the experiment 2 using the same basis defined for MLP-ANN-FF model with 9:7:12:1 

configuration settings, genetic algorithm was applied to train and optimize the input variables 
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and the number of neurons in the hidden layers yielding a GA-ANN-FF model with optimal 

configuration of 4:6:4:1. 

 

After training the two models (GA-ANN-FF and MLP-ANN-FF), the test dataset; daily rainfall, 

average temperature and the discharge flow for Nzoia River Basin at Rwambwa River gauge, 

that was not part of training was used to determine and check the overall performance of the 

models. The significance of applying the test data was to determine whether the models would 

identify values similar as training stage .(Suliman et al., n.d.)  

 

The accuracy of the estimation was evaluated on the basis of well known performance criteria 

such as r (Correlation coefficient), MSE (Mean Square Error), and Coefficient of determination 

(r2) (Deshmukh and Ghatol, 2010b) 

 

MSE (Mean Square Error): 

The formula for the mean square error is given by Equation 3.0 

………………………………………………………………………….. 3.1 

Where 

P = number of output Processing Elements (PEs),  

N = number of exemplars in the data set,  

yij = network output for exemplar i at PE j,  

diy = desired output for exemplar i at PE 

 

r (correlation coefficient): 

The size of the mean square error (MSE) was used to determine how well the network output 

fitted the desired output, but it did not necessarily reflect whether the two sets of data moved in 

the same direction. For instance, by simply scaling the network output, the MSE could be 

changed without changing the directionality of the data. The correlation coefficient (r) solved 

this problem. By definition, the correlation coefficient between a network output x and a desired 

output d is: 
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…….………………..………………. 3.2 

The correlation coefficient was confined to the range [-1, 1]. When r = 1 there was a perfect 

positive linear correlation between x and d, that is, they co-vary, which means that they vary by 

the same amount. 

 

Coefficient of determination (r2) 

The coefficient of determination based on the rainfall estimation errors will be calculated as  

……………………………………………….3.3 

Where  

= predicted and observed streamflow; 

= mean predicted and observed streamflow respectively, and  

N = total number of observations. 
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3.2 Data Sources 
 

The catchment around Nzoia River basin has several weather stations and water level gauging 

stations (Hydrometric Stations).  To develop the ANN flood models historical data on daily raw 

rainfall, average temperature and the simultaneous discharge flow (streamflow) were obtained 

from three weather stations, namely Kitale metrological, Kitale soil conservation service, and 

Leissa farm - Kitale and one water level station, Rwambwa River Gauge Station (RGS) within 

Nzoia River Basin.  

 

As shown in Table 3.1 there were 3 weather stations namely Kitale metrological (SID-8834098), 

Kitale soil conservation service (SID-8834097), Leissa farm - Kitale (SID-8835039)  and 1 water 

level gauging station (Hydrometric Station) Rwambwa River Gauge Station (RGS) (SID-

1EF01), from where data was collected from within the Nzoia River basin.  

 

Although the data available was from January 1975 to December 2012 from the three weather 

stations provided by Kenya Metrological Department (KMD), and the raw discharge flow from 

January 2000 to December 2012 obtained from Flood Diagnostics and Forecasting Centre 

(FDFC) at Kenya Meteorological Department for Rwambwa River Gauge Station (RGS) 

(1EF01). Only data from 2000 to 2003 that was concurrent in all 3 weather stations and the one 

river gauge was used as shown in Table 3.1. The missing data was on: 

 Temperature recordings from 1975 to 1999 at the Kitale metrological (SID-8834098), 

 Discharge flow recordings from 1975 to 1999 at the Rwambwa River Gauge Station 

(RGS) (SID-1EF01)  

 Rainfall recordings from 2004 to 2012 at the Kitale metrological (SID-8834098), Kitale 

soil conservation service (SID-8834097), and Leissa farm - Kitale (SID-8835039)  

 

Due to these anomalies in the data only concurrent data for 4 years from 2000 to 2003 at Kitale 

metrological (SID-8834098), Kitale soil conservation service (SID-8834097), Leissa farm - 

Kitale (SID-8835039) and the one Hydrometric Station Rwambwa River Gauge Station (RGS) 

(SID-1EF01) was used in the development of the two ANN models (MLP-ANN-FF and GA-
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ANN-FF). The sample data for the period 2000 to 2003 obtained from Kenya Metrological 

Department (KMD) is shown in Appendix 1. 

 

Table 3.1 Summary of available data for Nzoia River catchment 

No. Station ID Station Name Data Available Missing or unfixable 

Data part 

Data used 

1. 8834098 KITALE MET  

Daily Rainfall (mm) 1975 - 2012 1975 -1978 2000 - 2003 

Daily Temperature (oC) 2000 - 2012 1975 – 1999 2000 - 2003 

 

2. 08835020 KITALE SOIL CONs  

Daily Rainfall (mm) 1988 - 2003 1975 – 1987 2000 - 2003 

 

3. 8835039 LEISSA FARM  

Daily Rainfall (mm) 1975 - 2008 2009 - 2012 2000 - 2003 

 

1. 1EF01 Rwambwa  RGS (River Gauge Station) 

Daily Discharge (m/c) 2000 - 2012 1975 - 1999 2000 - 2003 

 

This research therefore used primary data obtained from Kenya Metrological Department 

(KMD) in regards to daily rainfall and average temperature. The secondary data was provided by 

Flood Diagnostics and Forecasting Centre (FDFC) at Kenya Meteorological Department for 

Rwambwa River Gauge Station (RGS). 

 

3.2.1 Study Area 

 

The area of interest chosen in the development of an ANN flood forecasting models was Nzoia 

river basin located in western of Kenya as shown in Figure 3.1. It lies between latitudes 1º 30’N 

and 0º 05’S and longitudes 34º and 35º 45’E, and originates from Cherangani Hills at a mean 

elevation of 2300 m above sea level and flows into Lave Victoria at an altitude of 1000m (Khan 

et al., 2011).  It runs approximately South-West and measures about 334 km with a catchment 

area of about 12,900 km2, with a mean annual discharge of 1777 x 106 m3/year. The population 

within the Basin is more than 3 million (“Nzoia River Basin management initiative,” 2006).  
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Fig 3.1 - The Nzoia River Basin, location of the study area (“Nzoia River Basin management initiative,” 
2006) 
 

The interest of Nzoia River Basin is due to several damages and loss of lives from rainfall-

induced floods, especially around lowland areas of Budalangi where flood deposit sediments 

contribute to the fertility of the soil in the area. This area is also the Kenya Government pilot 

basin for integrated management approach for flood management through the Western Kenya 

community driven development and flood mitigation project(ADCL, 2006) (“Flood Mitigation 

Strategy,” 2009). Most sectors in commercial and agriculture within Nzoia catchment area their 

main source of water are from the river basin thus it’s of great economic importance. 
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3.2.2 Data Pre-processing 
 

In order to train the ANN models efficiently and yield valid results pre-processing of data was 

conducted on the daily rainfall, average temperature and the discharge flow data, and missing 

data was corrected. The three data processing; normalization, Logarithmic Transformation and 

Excel scatter plots to identify the outliers, were conducted to train the two flood forecast models 

(MLP-ANN-FF and GA-ANN-FF) more efficiently. 

 

3.2.2.1 Normalization 

 

Processing of the data was necessary before it was fed into the neural network, thus the 9 inputs 

and 1 output variables in regards to the daily rainfall, temperature, and discharge flow data were 

first normalized. Since they were of different units, the data was scaled between 0 and 1 before 

been used as input, otherwise there could not have been a correlation between the input and 

output values (Abhishek et al., 2012). Normalization of all the data was done separately on the 

rainfall, temperature and the discharge flow data, by taking their mean. 

 

Mean = Sum of all values (x) /Number of Values (x) 

 

A standard deviation (SD), for each of the input output variables were then calculated; finally 

normalizing each input variable. 

 

Normalized Value(x) = (x – Mean)/SD 

 

This normalization process was done automatically through the NeuroSolution version 6.3.1 

Software, which was used in developing and simulating the two models. The normalized data 

values (x) were eventually used for training and testing the two ANN Models. 
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3.2.2.2 Logarithmic Transformation 

 

The output daily discharge flow was discovered to be having a skewed data range, of between, 

10.94 to 394.40; where the range was not evenly distributed, hence yielding erroneous mean 

square error (MSE) of over 6000 as discussed in section 3.3 during the formulation of the input 

variables. There were two approaches that were considered;  

 Applying a log function transformation of base 10 or  

 Clipping out the higher values in the discharge flow output parameter.  

 

Log function was the preferred option since clipping higher values could have reduced our 

dataset significantly.  By performing a log function of base 10 on the discharge flow output data 

the range came down to between 1.594393 to 2.595937 ranges from previous data output range 

of 10.94 to 394.40. The log transformation applied assisted in making the skewed discharge flow 

output range less skewed (Limpert et al., 2001), by harmonizing the larger values (394.40) in the 

data set, and stretching the smaller values (10.94). Figure 3.2 shows the log normal distribution 

of the discharge flow and after logarithmic with base 10 transformation. This was important in 

making the discharge flow more interpretable. The sample discharge flow output data 

transformed with Logarithmic transformation is shown in Appendix 3. 

 

 

Histogram of a log-normal distribution in the Discharge Flow 

indices before the screening 

Histogram after logarithmic transformation in the 

Discharge Flow indices after screening 

Figure 3.2 - change in the measured discharge flow amounts from Rwambwa River Gauge Station (RGS) 

from January 2000 to December 2003, before and after after logarithmic transformation 
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3.2.2.3  Excel scatter plots to identify the outliers 

 

ANN is a statistical model that calculates the weights in order to estimate an outcome, thus 

provides useful information regarding the events patterns. The ANN results can never be better 

than the original data, to get good results from the ANN models the original dataset has to be 

reliable. Processing of the original dataset is therefore very important to treat the outliers (Steege 

et al., n.d.). By treating the outliers the negative on the estimation performance of the two models 

(MLP-ANN-FF and GA-ANN-FF) was eliminated. 

  

The 9 input variables in regards to the rainfall, average temperature and daily discharge from 

2000 to 2003 were also screened using a scatter plot from the Neurosolution Software for Excel 

by identifying the outliers. The inputs variables that had few outliers with an excess either in the 

rainfall and temperature range from the majority sample had to be screened either by locating the 

outliers and removing or treating the excess samples that was above the majority like they were 

at the range of the majority by computing the smallest minimum value in the data range. This 

enabled to broaden up the range for the rest of the sample, providing much better information to 

the networks that we were modeling, while keeping the dataset of 1488 points intact. Figure 3.2, 

3.3, 3.4, 3.5, 3.6 and 3.7 shows the daily rainfall and average temperature data used before and 

after scatter plot transformation, on the left of the Figures specified in the red circle are some of 

the outliers. 

 

 

 

 



  32

The distribution in the Rainfall indices indices before the 

screening. The red circle are some of the outliers 

Scatter plot of distribution in the Rainfall indices after 

the screening 

Figure 3.2 change in the measured rainfall amount from Kitale-Met Rainfall from January 2000 to 

December 2003, before and after screening 

 

 

Scatter plot of distribution in the Rainfall indices before 

the screening. Specified in the red circle are some of the 

outliers 

Scatter plot of distribution in the Rainfall after indices 

after the screening 

Figure 3.3 change in the measured rainfall amount from KITALE SOIL CONSERVERSION station 

Rainfall from January 2000 to December 2003, before and after screening 
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Scatter plot of distribution in the Rainfall indices 

before the screening. Specified in the red circle are 

some of the outliers 

Scatter plot of distribution in the Rainfall after indices after 

the screening 

Figure 3.4 change in the measured rainfall amount from Leissa Farm weather station Rainfall from 

January 2000 to December 2003, before and after screening 

 

 

Scatter plot of distribution in the Temperature indices 

before the screening. specified in the red circle are some 

of the outliers 

Scatter plot of distribution in the Temperature after 

indices after the screening 

Figure 3.5 change in the temperature values from Kitale Met station from January 2000 to December 

2003, before and after screening 

 

Data pre-processing of the daily raw rainfall, and average temperature was processed, by 

computing the smallest minimum value in the data range, broadening up the range for the rest of 

the sample, thus providing much better information to the networks that we were modeling, 
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while keeping the dataset of 1488 points intact. 

 

It’s essential to avoid numerical difficulties during the computation. In this research, TanhAxon 

was used as a transfer function since it’s the most widely used. It was applied at the output and 

hidden layers in models topologies, by employing bias and hyperbolic tangent (tanh) function to 

each nodes between the hidden and the output layers, thus yielding values between -1 to +1 for 

each node in the layers. Such nonlinear units enable a network gain the ability to make soft 

decisions. (Chen et al., 2013).   

 

3.2.3 Tools for modeling 

 

In this research the main objective was to model multilayer perceptron feed-forward (MLP-

ANN-FF) and a genetic algorithm (GA) optimized multilayer perceptron feed-forward (GA-

ANN-FF) for flood forecasting using metrological data (rainfall, temperature, and the discharge 

flow) to estimate the discharge flow of Nzoia River at Rwambwa River gauge.  After the data 

was finally processed and reliable, the data was used in NeuroSolution, 6.3.1, presented by 

NeuroDimension Inc. Intelligence simulation software to develop and simulate the two models 

(MLP-ANN-FF and GA-ANN-FF).   

 

3.3 Designing the Proposed Models 

 

The overall aim of this research was to develop two ANN models (MLP-ANN-FF and GA-

ANN-FF) to estimate the discharge flow of Nzoia River at Rwambwa river gauge. In order to 

develop a better ANN model for estimating the discharge flow; this design process was divided 

into two groups:  

- Experiment 1 (MLP-ANN-FF) and  

- Experiment 2 (GA-ANN-FF)  

 

Figure 3.8 shows the experiment studies of the two models, which were studied differently thus 

developing two different ANN models; MLP-ANN-FF and GA-ANN-FF.  In the experiment 2 

the model was built by optimizing the model developed from experiment 1. The performance 
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and accuracy were later analyzed and compared. The input output variables of each experiment 

were made based on the method discussed later.  

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Experiments studies (Source: Author) 

 

The constant conditions that were used in training the two models are shown in Table 3.2 

 

   Table 3.2 Constant conditions for training the two models 

Training variables Assigned value 

Number of epochs 1000 

Variation of hidden neurons from 2 to 30  

Learning Rate   0.1 

Transfer function Tanh 

Momentum factor  0.1 

Network Type  Feed Forward 

Learning Function  Back propagation With momentum 

Weights Randomize 
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3.3.1 Experiment 1 (MLP-ANN-FF Model) 

 

An artificial neural network (ANN) has the ability to train and learn the outputs from inputs by 

mimicking the function of the human brain and nervous system. Mostly widely used ANN is 

feed-forward backpropagation network (BPN). The major drawback of the conventional BPN 

with the gradient descent learning is the slow convergence rate (Mitchell, 1997). In this section 

an MLP-ANN-FF model for predicting discharge flow of Nzoia River at Rwambwa river gauge 

was developed with feedfoward multilayer network. MLP-ANN-FF was trained tested without 

genetic algorithm (GA) optimization; instead backpropagation (BP) was used in the training of 

the model.  

 

3.3.1.1 Selection of input output variables for MLP-ANN-FF model 

 

Determination of enough model input variables is the first and important step of any modeling 

practice, hence the model accuracy is determined by a proper selection of input data (Abhishek et 

al., 2012).  The main objective of this research was to model two ANN models (MLP-ANN-FF 

and GA-ANN-FF) for purpose predicting the discharge flow of Nzoia River Basin on Rwambwa 

river gauge, by applying artificial neural network (ANN) and genetic algorithm (GA) techniques.  

 

To achieve this objective we applied used the historical data on daily raw rainfall, average 

temperature and discharge flow from 1975 to 2012, but only part of the data was considered 

useful as mentioned in section 3.2. In this research we have explored the data of 4 years from 

2000 to 2003, where there was 744 entries in the input output, in this case 9 inputs and one 

output were considered making it a 9 * 744 matrix. The output parameter was daily discharge 

flow to be estimated for Nzoia River Basin at Rwambwa River gauge for period 2002 to 2003. 

Table 3.3 shows the 9 inputs and one input used for period 2002 to 2003 used. 

 

 

 

 

 



  37

       Table 3.3   9 Inputs and 1 Output variables selected. 

# 9 input variables 1 Output 
1 Kitale-Met Rainfall 2000- 2001  

 
 

Discharge Flow 2002 - 2003 
 

2 Kitale-Soil Rainfall 2000- 2001 
3 Leissa-Farm Rainfall 2000- 2001 
4 Kitale-Met Temp 2000- 2001 
5 Kitale-Met Rainfall 2002- 2003 
6 Kitale-Soil Rainfall 2002- 2003 
7 Leissa-Farm Rainfall 2002- 2003 
8 Kitale-Met Temp 2002- 2003 
9  Rwambwa Discharge Flow 2000 - 2001  

              

The number of the 9 input variables was determined, by the experiment 1 realized after further 

experiments performed in section 3.3.1.2, while determining the number of variables in the 

MLP-ANN-FF model, where an erroneous mean square error (MSE) of over 6000 was 

discovered having initiated the model with 4 input parameters and 1 output as shown in the Table 

3.4 

Table 3.4    4 Inputs and 1 Output variables selected. 

# 4 input variables 1 Output 
1 Kitale-Met Rainfall 2002- 2003  

Discharge Flow 2000 - 2003 
 

2 Kitale-Soil Rainfall 2001- 2002 
3 Leissa-Farm Rainfall 2001- 2002 
4 Kitale-Met Temp 2002- 2003 

 

In order to resolve the erroneous mean square error (MSE) value to be less than zero, further 

experiments were done by varying the number of input parameters, and pre-processing the data 

values (discussed in section 3.2.2) which had outliers thus arriving at an optimal number of 9 

inputs that offered the most information to our discharge flow output. The sample input output 

data applied with the 9 inputs and 1 output are shown in Appendix 2. 

 

3.3.1.2 Determining the number of variables in the MLP-ANN-FF model  

 

In order to determine the optimal network topology that holds a good generalization, MLP-ANN-

FF the model was trained by varying the number of hidden nodes under a trial and error 

procedure. The proposed MLP-ANN-FF model was initiated with following baselines: 

- Configuration setting of 4:20:1 (4 inputs nodes, 1 hidden layer with 20 nodes and 1 
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discharge flow output ) 

- Using 70 % training, to determine the weights  

- 20 % cross-validation for validating the training stage and  

- 10 % testing data to evaluate the overall performance of the model 

-  

The 4:20:1 MLP-ANN-FF topology was discarded as it exhibited worse performances yielding 

an mean square error (MSE) of over 6000, while a good network when trained should always 

have an MSE of below zero (Gonzalez et al., 2000). In fact, data collected in Table 3.5 show an r 

(coefficient correlation) between the predicted and the desired discharge flow was at 7.03%, this 

indicated the MLP-ANN-FF model could not train well, and it was likely because of the 

anomalies in the input output data set.  A review on the input output data set was performed by 

reverting back to section 3.3.1.1 (Selection of input output data) and pre-processing the data 

further. As describe in section 3.2.2, further screening of data was required, hence leading to 

changing the input variables, from 9 inputs up to 4 inputs. 

 

       Table 3.5 Results from 4:20:1 

Performance Discharge 

MSE  6101.59311

r  0.07037457
          

When the new screened data plus the 9 input variables were processed, the new proposed MLP-

ANN-FF was now initiated with two configuration baselines:  

1. One with a 9:2:1 configuration setting; 9 is the number of input neurons, 2 represent 

number of neurons in the 1 hidden layer, while 1 is the node in the output layer 

2. Second one was setup with a 9:2:2:1 configuration setting; 9 nodes in the input layer, 

2 neurons in each hidden layer and 1 node in the output layer 

 

The two MLP-ANN-FF configuration baselines were trained separately using 70 % training data, 

to determine the weights 20 % cross-validation to validate the training stage and 10 % for 

testing, by varying the hidden parameters, to determine the optimal number of neurons per 

hidden layer that would yield the optimal MLP-ANN-FF architecture.  

This experiment was performed with NeuroSolution software to determine the configuration 
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setting with the lowest mean square error (MSE) and the highest r (correlation coefficient) 

between the training and testing data. The models were trained simultaneously by adjusting the 

number of neurons in the hidden layers, and testing performed to determine the optimal 

configuration.   

 

The results obtained from the two models (9:2:1 and 9:2:2:1) are shown on Table 3.6 for the 1 

hidden layer configuration setting and Table 3.7 for 2 hidden layer configuration setting, 

based on transformed data shown on Appendix 2. 

 

Table 3.6 Results for varying the number hidden nodes model with 1 hidden layer; optimal model 9:20:1 had the 

lowest MSE in the training and testing set data set and highest r (correlation coefficient) in the training data set. 

  Training     Cross Validation     Testing 

Model 
Name  MSE  r  MAE    MSE  r  MAE    MSE  r  MAE 

9:2:1  0.0800402  0.5749488  0.2264159     0.0805559  0.3914515  0.236481     0.018129  0.8573719  0.1080291 

9:4:1  0.1253977  0.4463966  0.3047871     0.0521263  0.0960869  0.1856546     0.0964388  0.6448018  0.2969536 

9:5:1  0.3847673 
‐

0.2020086  0.5513144     0.0442147 
‐

0.1575949  0.1811349     0.2031433 
‐

0.3093116  0.4373314 

9:7:1  0.0835307  0.5489058  0.2321032     0.078891  0.2543722  0.2294663     0.0267411  0.8252383  0.1362502 

9:10:1  0.0795199  0.5787468  0.2255599     0.0853671  0.3640532  0.2443749     0.0158739  0.8551264  0.1044595 

9:14:1  0.0858865  0.5379508  0.2352832     0.0775939  0.2688148  0.2292453     0.0224148  0.8101179  0.1256643 

9:17:1  0.1595401  0.377754  0.3358166     0.0387975  0.1387518  0.1652888     0.1443018  0.7239412  0.3691882 

9:20:1  0.0794266  0.5791895  0.2257717     0.0885497  0.3201568  0.2531144     0.0148782  0.8314039  0.0935311 

9:21:1  0.0797859  0.5767509  0.2263295     0.0784509  0.3446653  0.229554     0.0205487  0.8544861  0.1129936 

9:24:1  0.2000889  0.3277104  0.3922777     0.0609927  0.0024084  0.2015982     0.1179068  0.3628258  0.332802 
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Table 3.7  Results for varying the number hidden nodes model with 2 hidden layers; optimal model 9:7:12:1 had 

the lowest MSE in the training and testing data set and the highest r (correlation coefficient)  

  Training    Cross Validation    Testing 

Model 
Name  MSE  r  MAE    MSE  r  MAE    MSE  r  MAE 

9:2:7:1  0.1771167  0.4150153  0.3667779    0.0452347  0.0334711  0.1728962    0.1463524  0.6259338  0.3716803 

9:5:10:1  0.0899985  0.5119762  0.2456375    0.0644381  0.253477  0.1984272    0.0388028  0.8431966  0.1661868 

9:6:13:1  0.179792  0.2749852  0.3629996    0.0725573  0.0009024  0.2071176    0.1327768  0.2972192  0.344872 

9:7:12:1  0.0782435  0.5880668  0.2246031     0.0850055  0.307332  0.2416476     0.0186295  0.8468048  0.1098313 

9:9:4:1  0.4863892  0.1168536  0.6242649    0.0546319 
‐

0.0911218  0.1801003    0.3230873  0.0593746  0.5610587 

9:14:9:1  0.12457  0.4319092  0.2882586    0.0571963  0.0970688  0.1881058    0.1283893  0.7321138  0.329759 

9:17:12:1  0.1895695  0.1569145  0.3777435    0.073585  0.054433  0.2093954    0.1077899  0.5224977  0.3153984 

9:20:15:1  0.123923  0.4032671  0.2753434    0.0501379  0.1253049  0.1702657    0.1057649  0.764553  0.2963579 

9:21:16:1  0.1307582  0.4462096  0.2950252    0.0498985  0.211071  0.1715911    0.0993123  0.7397556  0.2803737 

9:24:19:1  0.1077014  0.4541041  0.2627175    0.0583737  0.2939058  0.1880984    0.0719495  0.7832782  0.1935121 

 

Table 3.6 shows the optimal configuration setting with 1 hidden layer was one with 9:20:1, 

while Table 3.7 shows that 9:7:12:1 with 2 hidden layers was the optimal configuration setting.  

 

The two configuration settings (9:20:1 and 9:7:12:1) were then compared and the 2 hidden 

layer configuration setting of 9:7:12:1 emerged to be the most optimal for MLP-ANN-FF model 

as shown on Table 3.8 

 

Table 3.8  Results of between for varying 1 hidden layer (9:20:1) and the 2 hidden layer (9:7:12:1); optimal 

model (9:7:12:1) had the highest r in training and testing data and lowest MSE in the training data set therefore the 

9:7:12:1 topology was the opted architecture for the MLP-ANN-FF model. 

  Training     Cross Validation     Testing 

Model 
Name  MSE  r  MAE    MSE  r  MAE    MSE  r  MAE 

9:20:1  0.0794266  0.5791895  0.2257717     0.0885497  0.3201568  0.2531144     0.0148782  0.8314039  0.0935311 

9:7:12:1  0.0782435  0.5880668  0.2246031     0.0850055  0.307332  0.2416476     0.0186295  0.8468048  0.1098313 

 

 

After performing these experiments the MLP-ANN-FF model was finally developed using 

9:7:12:1 configuration setting; 9 inputs variables with 2 hidden layers one with 7 neurons and 

the other 12 and 1 output layer. 
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3.3.1.3  Determining the proportion of the training data set. 

 

In order to check the sensitivity of the optimal MLP-ANN-FF model (9:7:12:1) in regards to 

data splitting, a percentage of the training data set was used and varied, to avoid the model from 

overfitting the training data; where the training data set closely matches the output. First, the 

training data set applied would generate errors prompting update on the connection weights, 

verification data was then applied to cross validate and supervise the training set and to evaluate 

the performance of the model at various stages of training the model, and finally test data set an 

independent data set for to evaluate accuracy of the overall of the ANN models, was used in 

testing the model generalization ability (Rezaeianzadeh et al., 2014)  

 

An experiment simulation was applied by using 60%, 70%, 80% and 90 % of the total data set as 

training and the rest for cross validation and testing. The MLP-ANN-FF model was trained and 

tested. Table 3.9 shows the variations of training data set percentages, and corresponding MSE 

and r (correlation coefficient). The transformed data set used for this experiment is shown in 

Appendix 2. 

 

            Table 3.9   Selection of appropriate MLP-ANN-FF model in terms of data percentage 
Model (% Training Data Set) MSE Correlation Coefficient 
MLP-ANN-FF  50% 0.088918483 0.440935144 
MLP-ANN-FF  60% 0.05474843 0.580985432 
MLP-ANN-FF  70% 0.023684652 0.835305308 
MLP-ANN-FF  80% 0.049885615 0.88409909 
MLP-ANN-FF  90% 0.053452338 0.868147588 

 

The MLP-ANN-FF (9:7:12:1) developed with 70% training data set emerged to be the best 

model that estimated the discharge flow with a r (correlation coefficient) of the desired and the 

estimated discharge flow of 0.835 and least MSE of 0.023, and. Therefore MLP-ANN-FF 

(9:7:12:1) trained with 70% was chosen and applied on our MLP-ANN-FF architecture 

modeling, 20%  and the remaining 10% were used for cross validation and testing respectively. 
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3.3.1.4 Final MLP-ANN-FF Model  

 

The model that was finally considered after the experiments in phase 1 was 9:7:12:1 MLP-ANN-

FF model, using 70% training data set, available from the daily rainfall, average and the 

discharge flow to estimate discharge flow for Nzoia River at Rwambwa river gauge. The model 

was developed trained and implemented using NeuroSolution with backpropagation algorithm. 

Figure 3.9 shows the basic flow that was used in developing, training and testing the MLP-ANN-

FF model. 

 

 

 

 

 

 

 

  Figure 3.9 Proposed training procedure for MLP-ANN-FF model (9:7:12:1) flow (Source: Author) 

 

The obtained results in this research are discussed in Chapter 4.  Figure 3.10 shows a schematic 

of a MLP-ANN-FF (9:7:12:1) model. This is the model that was finally considered for training 

and testing the MLP-ANN-FF model. There were 9 input neurons, 2 hidden layers, with the first 

hidden layer made up of 7 neurons and the second layer 12 neurons, the output consisted of 1 

neuron the discharge flow. The optimal MLP-ANN-FF (9:7:12:1) model that was finally trained 

and tested using the NeuroSolutions software is shown Appendix 5; Figure 5A-1 
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Figure 3.10 Schematic of MLP-ANN-FF (9:7:12:1) model (Multilayer Perceptron artificial neural 

network) (Source: Author) 

 

3.3.2 Experiment 2 (GA-ANN-FF Model) 

 

In this section GA-ANN-FF model for estimating the discharge flow of Nzoia River at 

Rwambwa river gauge was developed. A genetic algorithm based artificial neural network (GA-

ANN-FF) model was built, by optimizing the MLP-ANN-FF model already developed from 

experiment 1, to determine whether the integration of ANN and GA algorithm would yield better 

performance. In this research genetic algorithm was applied primarily  

 To avoid the trial and error in selecting the optimal input parameters,  

 To determine the number of neurons in the two hidden layers, and  

 To train the network weights hence yielding an optimized GA-ANN-FF model.   

 

Using the same basis defined for the optimal MLP-ANN-FF model with 9:7:12:1 configuration 

settings. 9 inputs and 1 output were applied on the GA-ANN-FF model, the data values were 
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normalized to between 0 and 1, then fed into the network and trained. Genetic algorithm (GA) 

was used as an alternative to the backpropagation (BP) algorithm to update weight in the neural 

network model. Training with genetic algorithm was started by initializing the weights and 

neurons in the input layer, with a 70% training data set. The global error generated at the output 

layer of the GA-ANN-FF model was computed as the fitness to rank the potential solution. This 

process was iterated for 50 generation with potential solution getting to a global optimal solution 

after the 21  generation. The main goal in training a model is to adjust the weights between the 

layers (Mitchell, 1997), the weights were well updated at the 21 generation. The fitness value of 

the rank was then computed, with the model opting for a GA-ANN-FF model of 4:6:4:1 

topology as shown in Fig 3.11 below. The transformed data set used for this experiment is shown 

in Appendix 2. 

 

This new configuration setting of 4:6:4:1 was generated using NeuroSolutions for Excel 

Software after training GA-ANN-FF model with genetic algorithm. The model input parameters 

were reduced from 9 to 4 inputs, the hidden neurons in the two hidden layers were also reduced, 

thus reducing the complexity of the GA-ANN-FF model, providing a much leaner network, since 

the input variables selected by the genetic algorithm offered much information to the desired 

discharge flow output. Kitale-Met Temp 2001 - 2002, Leissa-Farm Rainfall 2001 - 2002, Leissa-

Farm Rainfall 2002 - 2003 and Rwambwa Discharge Flow 2001 – 2002 were the selected 4 input 

variables by the GA offering most information to the discharge flow output.  

 

3.3.2.1 Final GA-ANN-FF Model  

 

The model that was finally considered after the experiment 2 was a, GA-ANN-FF model with 

4:6:4:1 configuration setting using 70% training data set.  Figure 3.11 shows a schematic of a 

GA-ANN-FF model opted for this research study. There were 4 input neurons, 2 hidden layers, 

with the first hidden layer made up of 6 neurons and the second hidden layer  consist of 4 

neurons, the output consist of 1 neuron the discharge flow. The sample data which was used for 

the GA-ANN-FF model with 4:6:4:1 configuration setting for this experiment is shown in 

Appendix 4.  The optimized GA-ANN-FF (4:6:4:1) model that was finally trained and tested 

using the NeuroSolutions software is shown Appendix 5; Figure A5-2 
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Figure 3.11 Schematic of the designed GA-ANN-FF (4:6:4:1) model (Source: Author) 
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Chapter 4 – Evaluation of the ANN Model 

 
4.1 Evaluating the Models 
 

Machine learning approach; whether an artificial neural network (MLP-ANN-FF), or a genetic 

optimized ANN (GA-ANN-FF) model, will have trained well if they had good generalization 

ability (Che et al., 2011). The performance of the estimating the discharge flow for Nzoia River 

at Rwambwa river gauge resulting from training, validation and testing the models was evaluated 

on the basis of the values of mean square error (MSE),  r (correlation coefficient) and coefficient 

of determination ( R2 ).   

 

The evaluation was performed on the two models; MLP-ANN-FF and GA-ANN-FF developed 

with NeuroSolutions software from the two experiments in section 3.3.1 and 3.2.2. Configuration 

setting of 9:7:12:1 topology, and  data percentages of 70% training, cross validation 20% and the 

remaining 10%  testing data was applied to evaluate the overall performance of the models. GA-

ANN-FF model after training it with genetic algorithm yielded a 4:6:4:1 configuration setting 

which was opted as the optimal network for the GA-ANN-FF model. 

 

4.2 Evaluation of the MLP-ANN-FF model 
 
The purpose of this evaluation test was examine the accuracy, and performance of the developed 

MLP-ANN-FF model using the 10% of the metrological test dataset (rainfall, temperature, and 

the discharge flow) to estimate the discharge flow of Nzoia River at Rwambwa River gauge.  

This was done using the developed MLP-ANN-FF model by activating the training and testing 

process in Neurosolution Software with backpropagation algorithm. The 10% test data used in 

this evaluation test is shown in Appendix 7; Table A7-1 

  

4.2.1 Results 
 
The best input parameters and the number of neurons in the hidden layers were adopted as 

discussed in experiment 1 (section 3.3.1) arriving at an optimal topology of 9:7:12:1 MLP-

ANN-FF model. First the epoch of the model was fixed to 1000 for training, with a learning rate 
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of 0.1 with a backpropagation learning function. Figure 4.1 shows the MSE trend of the 9:7:12:1 

topology of the best MLP-ANN-FF model according to the number of 1000 epochs. The training 

process stopped when the MSE in the validation data set was at 0.0609 after 151 iteration. In fact 

increasing the number of epochs to highs of 1000 the network model started decaying in the 

performance, thus increasing the error to highs of 0.075 for the validation data set. 

 
 

 
Best Networks  Training  Cross Validation 

Epoch #  1000  151 

Minimum MSE  0.056437  0.060977962 

Final MSE  0.056437  0.075864209 
 
Figure 4.1 MSE Analysis of 9:7:12:1 best topology for MLP-ANN-FF model over 1000 epochs for 
training data set. 
 

Figure 4.2 show the comparison between the actual discharge flow and the desired output of the 

trained MLP-ANN-FF (9:7:12:1) model. As seen MLP-ANN-FF model estimated the discharge 

flow at Rwambwa river gauge for period 2002 to 2003 with an r (correlation coefficient) of 0.84 

(80%) slightly lower value from 1 and a MSE of 0.024. This can be assumed as satisfactory 

results as compared to other researchers (Puttinaovarat et al., n.d.) Discussed in section 2.3.  The 

test results obtained for the MLP-ANN-FF (9:7:12:1) model is shown in Appendix 6 
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Performance  Discharge 

MSE  0.024031731 

MAE  0.126664591 

r  0.843375453 
 
Figure 4.2 MLP-ANN-FF model; estimated data (testing stage) and error measures. 
 

Figure 4.3 shows a scatter plot diagram showing the desired versus predicted values of the 

discharge flow with a good r (correlation coefficient) of 0.84 (80%). As seen, the values are 

evenly distributed around the regression line, indicating that there was neither overwhelming 

over prediction nor under prediction. 
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Figure 4.3 Predicted versus measured data (testing stage). The correlation between the Rwambwa River 
gauge daily discharge and output of MLP-ANN-FF model 

 

4.2.2 Observations and Analysis 
 
The MSE of the training data reduced sharply in 56 iterations and continued to decrease to levels 

of 0.56437 to the last 1000 epoch. This is the trend suggested in the literature review 

(Puttinaovarat et al., n.d.). It’s clear that the learning on the training data set is best and minimum 

after 151 epochs for validation data set and 1000 epoch for training data with a MSE of 0.5643. 

On the cross validation data applied during the training the min MSE was at 0.060977 after 151 

iteration, this is when the network started to learn.  

 

As indicated in Figure 4.2 Testing data set which was not part of the training set was used to test 

the model predictability in order to evaluate whether the MLP-ANN-FF model after successfully 

training as shown in Figure 4.1 could test data well.  
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4.2.3 Discussions 
 
The MLP-ANN-FF model learnt well with minimal iteration of 151 as indicated in Figure 4.1 

with a minimum MSE of 0.0609 on the cross validation data.  Figure 4.1 shows the trend of the 

error function as the number of iteration increases.  As seen, the MLP-ANN-FF model estimates 

the discharge flow at Rwambwa river gauge for period 2002 to 2003 with MSE of 0.024 and r 

(correlation coefficient) of 0.84 (80%). This can be assumed as satisfactory results. With the 

scatter plot diagram Figure 4.3 supporting the same trend indicating an evenly distribution 

around the regression line, indicating that there was neither overwhelming over prediction not 

under prediction. The results of r of 0.84 and MSE of 0.024 obtained compare well with those 

obtained by other researchers (Puttinaovarat et al., n.d.) as discussed in section 2.3 

 

4.3  Evaluation the GA-ANN-FF model  
 
To test the accuracy, and performance of the developed GA-ANN-FF model using the 10% of 

the metrological test dataset (rainfall, temperature, and the discharge flow) to estimate the 

discharge flow of Nzoia River at Rwambwa River gauge.  This was done using the developed 

GA-ANN-FF model trained with genetic algorithm by activating the training and testing process 

in Neurosolution Software. The 10% test data used in this evaluation test is shown in Appendix 

7; Table A7-2. 

 

4.3.1 Results 
 

For a good comparison GA-ANN-FF model was trained and tested using the same data set 

applied on the MLP-ANN-FF model. The estimation of the discharge flow for Nzoia River Basin 

at Rwambwa River gauge based on MLP-ANN-FF was implemented with genetic algorithm 

technique to model GA-ANN-FF model.  The model was trained using a population size of 50 

and max generation of 50. The training was iterated for 50 generation with potential solution 

getting to a global optimal solution after the 21 generation. The GA-ANN-FF model finally 

yielded an optimal 4:6:4:1 configuration setting reducing the number of input variables from 9 to 

4 and the number of neurons in the 2 hidden layers, from 7 to 6 in the first hidden layer and from 

12 to 4 in the second hidden layer. 
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Figure 4.4 shows the MSE trend of the 4:6:4:1 topology of the best GA-ANN-FF model 

according to the number of 50 generation. The best fitness was determined when a minimum 

MSE of 0.02 was achieved after 21 generation.  

 

 

 
Optimization 
Summary 

Best 
Fitness 

Average 
Fitness 

Generation #  21  21 

Minimum MSE  0.02006049  0.020620811 

Final MSE  0.02006049  0.021135689 

 
Figure 4.4 MSE Analysis of 4:6:4:1 best topology for GA-ANN-FF model over 50 generations for 
training data set. 
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Figure 4.5 shows the predicted discharge flow of the trained GA-ANN-FF (4:6:4:1) model, 

testing data set which was not part of the training set was used in testing the model predictability 

in order to evaluate whether the GA-ANN-FF model after successfully training as shown in 

Figure 4.4 could test data well. As seen, the GA-ANN-FF model estimates the discharge flow at 

Rwambwa river gauge for period 2002 to 2003 with MSE of 0.021 and r (correlation coefficient) 

of 0.887 (89%).  

 

 
Performance  Discharge 

MSE  0.02176209 

NMSE  3.357740688 

MAE  0.123583328 

r  0.887479548 

 
Figure 4.5 GA-ANN-FF model; estimated data (testing stage) and error measures. 

 

Figure 4.5 shows a scatter plot diagram showing the desired versus predicted values of the 

discharge flow with a good r (correlation coefficient) of 0.887 (89%). As seen, the values are 

evenly distributed around the regression line, indicating that there was neither overwhelming 

over prediction not under prediction. The test results obtained from GA-ANN-FF (4:6:4:1) are 

shown in Appendix 6; Table A6-2. 
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Figure 4.6  Predicted versus measured data (testing stage). The correlation between the 
Rwambwa River gauge daily discharge and output of GA-ANN-FF model 
 

4.3.2 Observations and Analysis 
 
The MSE trend of the 4:6:4:1 topology of the best GA-ANN-FF model according to the number 

of 50 generation arrived at the best fitness when a minimum MSE of 0.02 was achieved after 21 

generation.  

 

The discharge flow for Nzoia River Basin at Rwambwa River gauge for period 2002 to 2003 

Figure 4.4 shows the trend of the error function as the number of generation increases. As seen, 

the error sharply decreases at 4 generations and continues to decrease and levels off around 

(0.0211) in 21 generations.  As indicated in Figure 4.5 Training data set which was not part of 

the training set was used in testing the model predictability in order to evaluate whether the GA-

ANN-FF model after successfully training as shown in Figure 4.4 could test data well with an r 

(correlation coefficient) of 0.887 (89%). As seen, the values are evenly distributed around the 

regression line, indicating that there was neither overwhelming over prediction not under 

prediction. 
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4.3.3 Discussions 
 

As seen, the GA-ANN-FF model estimates the discharge flow at Rwambwa river gauge for 

period 2002 to 2003 with MSE of 0.021 and r (correlation coefficient) of 0.887 (89%). This can 

be assumed as satisfactory results. With the scatter plot diagram Figure 4.6 supporting the same 

trend indicating an evenly distribution around the regression line, indicating that there was 

neither overwhelming over prediction not under prediction.  

 

4.4 Evaluating GA-ANN-FF performance with MLP-ANN-FF base model  
 
The aim of this evaluation is to compare the performance of MLP-ANN-FF base model with 

GA-ANN-FFF model using 10% test dataset from Nzoia river basin for Rwambwa river gauge as 

shown in Appendix 7. This is done using the developed MLP-ANN-FF and GA-ANN-FF model 

by activating the training and testing process in Neurosolution Software. 

 

4.4.1 Results 
 
The results obtained by using GA-ANN-FF model are compared to those from MLP-ANN-FF 

base model, using the 10% test dataset of the total dataset, as shown in the Table 4.1 below. The 

table results shows a data column (column one) that indicates dates the actual discharge flow 

(column 2), the third and fourth columns shows the predicted discharge flow values of the 

models and their errors between the predicted and the actual discharge values. The results 

obtained are also illustrated using graphs as shown in figure 4.7 below. 
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Figure 4.7  Comparison on the GA-ANN-FF and MLP-ANN-FF test results with the Actual discharge 
flow 

 
Table 4.1: Test dataset (10%)  of the total data Results– Comparing developed GA-ANN-FF model  
with MLP-ANN-FF 

   Developed GA‐ANN‐FF  Developed MLP‐ANN‐FF 

Date  Actual  Predicted  Error%  Actual  Predicted  Error% 

10/20/2003  1.96693916  2.1239635  7.98  1.9669392  2.154443 9.53

10/21/2003  1.97043986  2.1460355  8.91  1.9704399  2.180509 10.7

10/22/2003  1.96857634  2.199884  11.75  1.9685763  2.171373 10.3

10/23/2003  1.96922948  2.2328021  13.38  1.9692295  2.210722 12.3

10/24/2003  1.96899633  2.2048195  11.98  1.9689963  2.211793 12.3

10/25/2003  1.96501345  2.1567738  9.76  1.9650135  2.153446 9.59

10/26/2003  1.94870631  2.126117  9.10  1.9487063  2.124298 9.01

10/27/2003  1.93976878  2.094534  7.98  1.9397688  2.074249 6.93

10/28/2003  1.93318348  2.0933027  8.28  1.9331835  2.074037 7.29

10/29/2003  1.92982748  2.0859502  8.09  1.9298275  2.121682 9.94

10/30/2003  1.92890769  2.0970214  8.72  1.9289077  1.969742 2.12

10/31/2003  1.92844706  2.0654236  7.10  1.9284471  2.023615 4.93

11/1/2003  1.92251786  2.0695073  7.65  1.9225179  2.098919 9.18

11/2/2003  1.92059286  2.1329441  11.06  1.9205929  2.127686 10.8

11/3/2003  1.91970554  2.140393  11.50  1.9197055  2.117277 10.3

11/4/2003  1.91539984  2.1668135  13.13  1.9153998  2.185884 14.1

11/5/2003  1.91174338  2.1615363  13.07  1.9117434  2.175991 13.8
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11/6/2003  1.91169016  2.1895741  14.54  1.9116902  2.191931 14.7

11/7/2003  1.91211573  2.1838297  14.21  1.9121157  2.190439 14.6

11/8/2003  1.91603261  2.1812808  13.84  1.9160326  2.174468 13.5

11/9/2003  1.92127019  2.191733  14.08  1.9212702  2.213124 15.2

11/10/2003  1.91661185  2.2226028  15.97  1.9166118  2.241209 16.9

11/11/2003  1.91222206  2.1600876  12.96  1.9122221  2.167013 13.3

11/12/2003  1.90509397  2.1227297  11.42  1.905094  2.261883 18.7

11/13/2003  1.93956917  2.1282523  9.73  1.9395692  2.111586 8.87

11/14/2003  1.9492924  2.1069914  8.09  1.9492924  2.125341 9.03

11/15/2003  1.95206559  2.1728318  11.31  1.9520656  2.210732 13.3

11/16/2003  1.95573584  2.0835761  6.54  1.9557358  2.043797 4.5

11/17/2003  1.97053283  2.0634057  4.71  1.9705328  1.986326 0.8

11/18/2003  1.96932271  2.0535951  4.28  1.9693227  2.129429 8.13

11/19/2003  1.95621647  2.1656787  10.71  1.9562165  2.16657 10.8

11/20/2003  1.95051089  2.0826036  6.77  1.9505109  2.096929 7.51

11/21/2003  1.93606112  2.0794301  7.41  1.9360611  2.085433 7.72

11/22/2003  1.91970554  2.0521021  6.90  1.9197055  2.059307 7.27

11/23/2003  1.90660437  2.0361006  6.79  1.9066044  2.021408 6.02

11/24/2003  1.90611946  2.0192261  5.93  1.9061195  2.016191 5.77

11/25/2003  1.909235  2.0110842  5.33  1.909235  1.995828 4.54

11/26/2003  1.90085851  2.00107  5.27  1.9008585  2.004162 5.43

11/27/2003  1.90085851  1.9874908  4.56  1.9008585  1.974819 3.89

11/28/2003  1.9099837  1.9699898  3.14  1.9099837  1.975825 3.45

11/29/2003  1.9209056  1.9669662  2.40  1.9209056  1.964299 2.26

11/30/2003  1.91576907  1.9504687  1.81  1.9157691  1.94909 1.74

31/11/2003  1.90558003  1.949718  2.32  1.90558  1.784349 -6.36

12/1/2003  1.89164894  1.9305343  2.06  1.8916489  1.928971 1.97

12/2/2003  1.87760168  1.9235019  2.44  1.8776017  1.922583 2.4

12/3/2003  1.86858567  1.9181425  2.65  1.8685857  1.925205 3.03

12/4/2003  1.86248917  1.9248801  3.35  1.8624892  1.913041 2.71

12/5/2003  1.86664172  1.9168336  2.69  1.8666417  1.928023 3.29

12/6/2003  1.84298347  1.8326756  ‐0.56  1.8429835  2.075329 12.6

12/7/2003  1.76297849  1.9073084  8.19  1.7629785  1.856216 5.29

12/8/2003  1.75959231  1.8691127  6.22  1.7595923  1.874467 6.53

12/9/2003  1.7594412  1.8974752  7.85  1.7594412  1.936101 10

12/10/2003  1.77144049  1.8644689  5.25  1.7714405  1.857611 4.86

12/11/2003  1.7761198  1.8585038  4.64  1.7761198  1.869813 5.28

12/12/2003  1.78161178  1.8513147  3.91  1.7816118  1.850942 3.89

12/13/2003  1.78089311  1.8388804  3.26  1.7808931  1.818504 2.11

12/14/2003  1.77458995  1.8347369  3.39  1.77459  1.795361 1.17

12/15/2003  1.76671021  1.8263404  3.38  1.7667102  1.807657 2.32
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12/16/2003  1.76522137  1.8235748  3.31  1.7652214  1.80253 2.11

12/17/2003  1.76671021  1.8175714  2.88  1.7667102  1.798654 1.81

12/18/2003  1.75853342  1.8069099  2.75  1.7585334  1.796841 2.18

12/19/2003  1.71650416  1.7933446  4.48  1.7165042  1.782422 3.84

12/20/2003  1.71374248  1.7949984  4.74  1.7137425  1.798215 4.93

12/21/2003  1.71991106  1.8169762  5.64  1.7199111  1.820559 5.85

12/22/2003  1.74311763  1.8280999  4.88  1.7431176  1.822957 4.58

12/23/2003  1.7947668  1.8108608  0.90  1.7947668  1.802008 0.4

12/24/2003  1.81170903  1.8069099  ‐0.26  1.811709  1.816582 0.27

12/25/2003  1.80834604  1.8204014  0.67  1.808346  1.818646 0.57 

12/26/2003  1.81029974  1.7969504  ‐0.74  1.8102997  1.780542 -1.64

12/27/2003  1.79975397  1.7877483  ‐0.67  1.799754  1.792119 -0.42

12/28/2003  1.77597433  1.7824216  0.36  1.7759743  1.778662 0.15

12/29/2003  1.73519955  1.7804761  2.61  1.7351995  1.791945 3.27

12/30/2003  1.73375884  1.7877008  3.11  1.7337588  1.787277 3.09

12/31/2003  1.75694024  1.8161234  3.37  1.7569402  1.82077 3.63

Performance  Discharge     Performance  Discharge 

MSE  0.0217621     MSE  0.0240317 

r  0.8874795     r  0.8433755 

 
4.4.2 Observations and Analysis 
 
The MSE and r (correlation coefficient) were used to evaluate the performance of GA-ANN-FF 

and MLP-ANN-FF for the test dataset.  It was observed that r (correlation coefficient) for the 

overall performance of the models was above 80%. GA-ANN-FF performed slightly better with r 

(correlation coefficient) of 88% on the desired discharge flow compared to the predicted 

discharge output and a MSE of 0.0217 as compared to the MLP-ANN-FF model that had an 84% 

r (correlation coefficient) and a MSE of 0.024 on the test dataset. It should be noted that models 

were trained with 70% data, 20% was used for validation and the remaining 10% was used in 

testing the overall performance of the models. The MSE of both GA-ANN-FF and MLP-ANN-

FF was close, with close prediction range where they both exhibit an 80%  r (correlation 

coefficient). 
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4.4.3 Discussions 
 
The results show the GA-ANN-FF model has a slightly superior performance in predicting the 

discharge flow with an r (correlation coefficient) of 0.887 (88%) (Table 4.1) as compared to 

MLP-ANN-FF with a r (correlation coefficient) of 0.84 (84%) (Table 4.1). We can conclude that 

GA-ANN-FF is superior in terms of estimating the discharge flow with minimal error and since 

it train well with less MSE of 0.028 it can always predict a discharge flow of Nzoia River basin 

of Rwambwa river gauge well with a minimal MSE.  

 
 

4.5 Sensitivity of the reference discharge flow 
 
The sensitivity testing assists in evaluating the relative importance among the input variables in 

the neural network model and how the output would estimate in response to the variation of an 

input. Results were generated giving variation of the discharge flow output with respect to the 

variation in each input variables. This was to determine the sensitivity of the input variables that 

provided much information to the desired discharge flow out. The input variables that yield low 

sensitivity values were disregarded or removed from the model since they are regarded to be 

insignificant (Gonzalez et al., 2000).  This reduced the size of the network model thus reducing 

the complexity of the training time; more so might have improved the model performance. 

Therefore after training the two models (MLP-ANN-FF and GA-ANN-FF), the effect of each 

input variable on the discharge output was evaluated using NeuroSolution Software. 

 

4.5.1 Results 
 
The sensitivity of the reference discharge flow to the input variables in regards to the daily 

rainfall, temperature and the discharge flow was performed on both models (MLP-ANN-FF and 

GA-ANN-FF) differently as shown in Table 4.2, and Table 4.3.  

 

Figure 4.8 and 4.9 indicate the plotted input sensitivity applied on the two models. This analysis 

assisted in explaining explains the objective in section 3.3.3.1 determining the number of input 

variables in the MLP-ANN-FF model, in order find out the effect of the input parameters that 

offered much information to the desired discharge flow output. 
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Table 4.2 The Sensitivity of the discharge flow output to the 9 metrological variables using the 
MLP-ANN-FF (9:7:12:1) model 

Sensitivity Discharge Flow 

Kitale‐Met Rainfall 2002‐ 2003  0.081845594 

Kitale‐Soil Rainfall 2001‐ 2002  0.125622744 

Leissa‐Farm Rainfall 2001‐ 2002  0.068546469 

Kitale‐Met Temp 2002‐ 2003  0.020486424 

Kitale‐Met Rainfall 2001‐ 2002  0.047385864 

Kitale‐Soil Rainfall 2001‐ 2002  0.022324005 

Leissa‐Farm Rainfall 2001‐ 2002  0.003845752 

Kitale‐Met Temp 2001‐ 2002  0.06555623 

Rwambwa Discharge Flow 2001   0.199008292 

 
 

 
 

Figure 4.8 - The Sensitivity of the discharge flow output to the 9 metrological variables using the 
MLP-ANN-FF model 

 
 

Table 4.3 The Sensitivity of the discharge flow output to the 4 optimized metrological variables 
using the GA-ANN-FF (4:6:4:1) model 

Sensitivity  Discharge 

Kitale‐Met Rainfall 2002‐ 2003  0.035235 

Leissa‐Farm Rainfall 2001‐ 2002  0.012333 

Leissa‐Farm Rainfall 2001‐ 2002  0.028584 

Rwambwa Discharge Flow 2001 ‐ 2002  0.327179 
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Figure 4.9 - The Sensitivity of the discharge flow output to the 4 optimized metrological 
variables using the GA-ANN-FF (4:6:4:1) model 

 

4.5.2 Observations and Analysis 
 
From the Figure 4.8 and 4.9 it was certain that Rwambwa Discharge Flow 2001, Kitale-Met 

Temp 2001- 2002, Leissa-Farm Rainfall 2001- 2002, Kitale-Met Rainfall 2002- 2003 were the 

most input sensitive variables. Rwambwa Discharge Flow 2001 input variable emerged the best 

scoring the highest in both models.  The 4 optimized inputs that the GA-ANN-FF (4:6:4:1)  

model provided; Rwambwa Discharge Flow 2001 – 2002 scored the highest.  

 

4.5.3 Discussions 
 
This analysis was to assist explains the objective in section 3.9.1 determining the number of 

variables in the MLP-ANN-FF model, and find out the impact of the input parameters and 

remove unnecessary inputs. After performing a sensitivity analysis, it was concluded that all the 

selected input parameters in Figure 4.8 were necessary for modeling our MLP-ANN-FF 

(9:7:12:1) models, but for GA-ANN-FF (4:6:4:1) model the input variables were reduced from 9 

to 4 inputs, these were the input variables that offered much information to the desired discharge 

flow output, reducing the complexity of the network hence better accuracy. 
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4.6 Summary 
 
The results realized show it was possible to develop an ANN model optimized by genetic 

algorithm (GA) in the estimation of the discharge flow for Nzoia River basin at Rwambwa river 

gauge. There were two ANN models that were developed. MLP-ANN-FF that was developed 

with feedforward multilayer perceptron with BP as the training algorithm, the second model was 

developed using the same basis of the optimal MLP-ANN-FF model, but its inputs and number 

of neurons within the hidden layers were optimized with genetic algorithm (GA); GA was used 

as an alternative to BP in training of the model that yielded a 4:6:4:1 GA-ANN-FF model.  

 
A comparison between the hybrid of neural network and genetic algorithm (GA-ANN-FF) and 

MLP-ANN-FF model and performance measures values were performed. The MSE, and r 

(correlation coefficient) were used to evaluate the performance of GA-ANN-FF and MLP-ANN-

FF for data set.  It was observed that r (correlation coefficient) for the overall performance of the 

models was above 70%. GA-ANN-FF performed slightly better with r (correlation coefficient) of 

88% on the desired discharge flow compared to the predicted output and a MSE of 0.021 as 

compared to the MLP-ANN-FF model that had an 84% r (correlation coefficient) and a MSE of 

0.024 on the training data. It should be noted that models were trained with 70% data, 20% was 

used for validation and the remaining 10% was used in testing the overall performance of the 

models. 

 
GA-ANN-FF model shows a slightly superior performance in predicting the discharge flow with 

an r (correlation coefficient) of 0.87813 (88%) (Figure 4.5) as compared to MLP-ANN-FF with a 

r (correlation coefficient) of 0.84 (80%) (Figure 4.2). We can conclude that GA-ANN-FF is 

superior in terms of estimating the discharge flow with minimal error and since it train well with 

the least MSE of 0.0217 it can always predict a discharge flow well with a minimal MSE.  
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Chapter 5 – Conclusion and Recommendations 

 

5.1 Conclusion 

 

This chapter will serve to review the problem statement, objectives, and the methods applied on 

the objectives. The findings of the research are also discussed providing the behavior of the 

results obtained. Finally we conclude with the summary of the achievements and contributions. 

 

5.2 Problem statement and objectives 

 

There are a number of models on early flood warning initiated by the government for Nzoia 

River basin that give discharge forecast, they are linear models, where to some extent their 

performance in regards to the peak streamflows is inconsistent (Masibayi et al., n.d.). Since 

streamflow course for the daily discharge flow is generally recognized as nonlinear (Guven, 

2009), reliable intelligent nonlinear transfer function that capable to handle nonlinearity 

estimation problem for streamflow (discharge) is crucial in water resource planning and flood 

management.   

 

For lack of intelligence and nonlinearity in these early warming models initiated by FEWST for 

discharge forecast, an intelligent algorithm, the ANN with nonlinear transfer function of 

TanhAxon, was used in developing such models that were capable to handle nonlinearity 

problem. The models could eventually be used to assist in predicting streamflows given 

historical data based on daily rainfall, temperature, and discharge flow. Such tools can provide 

reliable intelligent estimation of Nzoia River Basin streamflow (discharge) that will enable 

relevant agents in water resource planning and flood management and the public aware when a 

flood might occur and the  areas. 

 

5.3 Methods used to achieve the objectives 

 

In this research an artificial neural network (ANN) technique and optimizing the multilayer 

perceptron with a genetic algorithm (GA), has been studied. The objectives that were on focus to 
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investigate whether genetic algorithm (GA) can lead to better accuracy and least errors of the 

ANN model, for estimating the discharge flow of Nzoia River Basin at Rwambwa River gauge. 

To develop two ANN models (MLP-ANN-FF and GA-ANN-FF) for purpose of estimating the 

discharge flow of Nzoia River Basin at Rwambwa River gauge, by applying artificial neural 

network (ANN) technique and optimizing the multilayer perceptron (MLP-ANN-FF) neural 

network model with a genetic algorithm (GA). After training the two models the research also 

intended test and evaluate the overall performance of the models, by comparing their 

performance with the Rwambwa River gauge discharge flow data for 2000 to 2003. 

Recommending a suitable intelligent model based on the results of the two above objectives was 

the final objective. The data for Nzoia River Basin at Rwambwa River gauge for period 2002 to 

2003 that was concurrent in all 3 weather stations and the one river gauge was used, to achieve 

these objectives. 

 

The techniques that were employed in developing the two models were ANN MLP feed forward 

and use of genetic algorithm (GA) to optimize the input parameters, and number of neurons in 

the hidden layers. This research uses two experiments to develop the two models (MLP-ANN-FF 

and GA-ANN-FF). In experiment 1; MLP-ANN-FF was developed with a feed forward 

Multilayer perceptron network with 3 layers (Input, Hidden and Output). Backpropagation with 

momentum was applied as the training algorithm, using nonlinear TanhAxon transfer function. 

 

Proper selection of input data was determined through a series of experiments. High MSE were 

observed and these were resolved by preprocessing the data further hence arriving at an optimal 

9 input variables for the MLP-ANN-FF model. Number of hidden layers and neurons in the 

hidden layers was also determined arriving at an optimal 9:7:12:1 configuration setting. To 

determine the sensitivity of the optimal MLP-ANN-FF (9:7:12:1) model in regards to data 

splitting that included 50%, 60%, 70%, 80% and 90% of the total used for training. MLP-ANN-

FF with 70% training set performed sufficiently well in estimating the discharge flow.  In 

experiment 2 GA-ANN-FF model was developed using the same basis for the optimal MLP-

ANN-FF (9:7:12:1) model. Genetic algorithm (GA) was then applied on the GA-ANN-FF model 

to avoid the trial and error in selecting the optimal inputs and determining the optimal number of 

neurons in the hidden layers. This optimized the GA-ANN-FF model yielding a 4:6:4:1 
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topology. This reduced the size of the network, reducing the inputs from 9 to 4 and number of 

neurons within the 2 hidden layers, thus reducing the complexity of the model. It was a leaner 

network as compared to MLP-ANN-FF model of 9:7:12:1 topology. 

 

5.4 Major findings of this research 

 

After training the two models (MLP-ANN-FF and GA-ANN-FF), they were tested based on the 

daily rainfall,  average temperature for Nzoia River Basin at Rwambwa River gauge that was not 

part of training to determine the overall performance of the models. 

 

The overall performance and accuracy of the integration of ANN MLP and GA algorithm (GA-

ANN-FF) model was compared with MLP-ANN-FF to find the effect of genetic algorithm on 

ANN MLP. The issues with ANN trained with BP algorithm not able to out of local minima 

(Devi et al., 2012). The main advantage of to genetic optimized ANN model (GA-ANN-FF) is it 

does not get stuck into the local minima and that’s why it has been applied in this research study. 

 

At the first experiment MLP-ANN-FF was developed trained and tested without any genetic 

optimization. The evaluation criterion that was used to compare and evaluate the results of the 

two models was r (correlation coefficient) and mean square error (MSE). In determining the 

optimal configuration setting for MLP-ANN-FF model a baseline of 9:2:1 and 9:2:2:1 was 

employed. The activation function of the hidden layers and output layer was set to TanhAxon. 

Varying the number of neurons in the hidden layers was from 2 to 30 with a learning rate of 0.1. 

The optimal configuration setting was realized to be 9:7:12:1. A least MSE in training of 0.078 

and r (correlation coefficient) of 0.84 was realized. Also it was observed that the number of the 

number of neurons increased from the baseline of 9:2:2:1 to the optimal configuration of 

9:7:12:1. This can be attributed by the complexity of the input data used in the training stage, 

starting the model with low network complexity (9:2:2:1) that yielded poor performance this 

necessitated an increase in of the number of neurons in the hidden layers to a 9:7:12:1 due to the 

complexity of the data. With data splitting that included 50%, 60%, 70%, 80%, and 90% of the 

total used for training. MLP-ANN-FF with 70% training set was realized to be the best model 

that  estimated the discharge flow with a least MSE of 0.023 and an r (correlation coefficient) of 
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desired versus predicted values of the discharge flow. This shows that MLP-ANN-FF is sensitive 

to data splitting 

 

In the second experiment; using the same basis defined for MLP-ANN-FF, GA was applied to 

optimize the input parameters and neurons with the hidden layers for GA-ANN-FF model. 

Although by applying the GA there was an increased computational time there was considerable 

improvement in GA-ANN-FF performance. When GA optimization algorithm was applied the 

input variables were reduced from 9 to 4 with the hidden layers were neurons reduced to 6 and 4 

yielding a  GA-ANN-FF  with configuration setting of 4:6:4:1. It was observed that, the number 

of input variables reduced to 4 this is the ideal number that offered much information to the 

desired discharge flow output, hence reducing the complexity of the network with lesser neurons 

in the hidden layers thus better accuracy. Also it can be attributed the evolution nature of the GA 

optimization that it’s a fitness that is used to rank the potential solution. 

 

Machine learning methods are data dependant and perform significantly well when large data set 

is applied (Babinec and Pospíchal, 2009). The two models (MLP-ANN-FF and GA-ANN-FF) 

were found to estimate the discharge flow significantly well despite inadequate training data. The 

predictive accuracy of GA-ANN-FF was observed to be better than that of MLP-ANN-FF 

developed using the same basis and the same data. GA-ANN-FF with 4:6:4:1 configuration 

setting estimated the discharge flow better with a MSE of 0.0217 and r (correlation coefficient) 

of 0.88 (90%). This can be assumed as satisfactory results as it compares well with those 

obtained by other researchers (Puttinaovarat et al., n.d.) As discussed in the literature review 

section 2.3. 

 

5.5 Discussion 

 

Applying the two models on Nzoia River at Rwambwa river gauge in western Kenya has 

demonstrated the possibility of using climatic data in a given river basin to estimate the 

discharge flow. GA-ANN-FF (4:6:4:1) model has shown a slightly superior performance in 

predicting the discharge flow for Nzoia River Basin at Rwambwa river gauge, with a r 

(correlation coefficient) of 0.898 (90%) (Figure 4.3.2) as compared to MLP-ANN-FF (9:7:12:1) 
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with a r (correlation coefficient) of 0.84 (80%)  (Figure 4.2.1). This can be assumed as 

satisfactory results as it compares well with those obtained by other researchers (Puttinaovarat et 

al., n.d.) As discussed in the literature review section 2.3. 

 

Although genetic algorithm (GA) reduces the complexity of the model, it trains for long as 

compared to the conventional multilayer perceptron. In the literature review section 2.3 

(Masibayi, and Mutua, 2010) presents a linear regression model for real-time River stage 

forecasting in Nzoia River Basin, Western Kenya. The linear regression presented shows a 

superior performance in predicting with better accuracy of coefficient of determination (R2) of 

0.987 as compared to the GA-ANN-FF model that predicts with an accuracy of 0.771 coefficient 

of determination (R2). The superior performance on linear regression may attributed to the hourly 

input data applied with a sample size of over 12,000 entries as compared to the GA-ANN-FF 

model that uses inputs of lumped daily data with a sample size of 744 entries. This confirms that 

ANN is data dependant and performs significantly well when large data set is applied (Babinec 

and Pospíchal, 2009). 

 

Due to the inadequate data collected it was not possible to make estimation based on hourly 

periods. Both models were found to predict and train well despite inadequate training data 

obtained from KMD. The GA-ANN-FF model was also able to optimize the input variables to 4 

from 9 and reduced the neurons in the 2 hidden layers yielding a neural network topology with a 

4:6:4:1 configuration setting, which was more optimal as compared to the MLP-ANN-FF 

(9:7:12:1) model though it took long in training. This confirms genetic algorithm (GA) 

combination with ANN can improve the model performance by optimizing the input variables 

and reducing the number of neurons in the hidden layers hence reducing the complexity of the 

model and estimating well for the desired output. 

 

5.6 Summary of Achievements 

 

The integration of GA with ANN MLP has shown a good effect in the discharge estimation 

results. It can therefore be concluded that the objectives of developing an ANN MLP that can be 

optimized with GA for estimating the discharge flow for Nzoia River at Rwambwa River gauge. 



  67

This confirms the integration of GA with ANN MLP can develop and reduce the complexity of 

the neural network architecture, where the data input variables were reduced from 9 to 4 that 

offered much information to the desired discharge flow output, and more so reducing the neurons 

in within the hidden layers. The estimation of the discharge flow of GA-ANN-FF model was 

found to predict well with a least MSE of 0.0217 and r (correlation coefficient) of 0.887 (88%) 

despite inadequate training data. This means that the proposed genetic optimized model (GA-

ANN-FF) can be relied upon to yield good results despite insufficient data set. 

 

The contribution of this research is an optimized GA-ANN-FF model with least MSE and 

satisfactory r (correlation coefficient) on the desired discharge flow compared to the predicted 

output. It’s a model that can be applied on other discharge flow catchment area, with a varying 

configuration setting on its parameters.  
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5.6 Recommendations  

 

In this research there were only three input factors, namely rainfall, temperature and discharge 

(streamflow). Other causative flood factors such, flood plain in the past, terrain elevation, water 

density, water blockage, sub basin areas, soil drainage capability, land use, are should be 

considered. Further training on the two models should be performed with larger data sets tom 

compare the performance of the models in the discharge flow. Also more training should be 

performed on the GA-ANN-FF model varying the population size. Developed model can be 

useful in decision making for metrologists and others who work with discharge flow forecast. 

More tests should be carried out to observe whether a multilayer neural network optimized with 

genetic algorithm is sensitive to data splitting.  

  



  69

Reference 

 

Abhishek, K., Kumar, A., Ranjan, R., Kumar, S., 2012. A rainfall prediction model using 
artificial neural network, in: Control and System Graduate Research Colloquium (ICSGRC), 
2012 IEEE. IEEE, pp. 82–87. 
 

ADCL (Appropriate Development Consultants Limited), 2006. Western Kenya Community–
Driven –Development and Flood Mitigation Project. 
 

Awan, Z.K., Khan, A., Iftikhar, A., Zahid, S., Malik, A., 2012. Analysis of Hybrid Neural 
Networks for Improved Performance. Int. J. Comput. Appl. 50. 
 

Babinec, Š., Pospíchal, J., 2009. Echo State and FIR Neural Networks: Comparison of Predictive 
Abilities, in: Proceedings of the 15th International Conference on Soft Computing, Mendel 2009. 
pp. 160–165. 
 

Che, Z.-G., Chiang, T.-A., Che, Z.-H., 2011. Feed-forward neural networks training: a 
comparison between genetic algorithm and back-propagation learning algorithm. Int J Innov 
Comput Inf 7, 5839–5850. 
 

Chen, S.M., Wang, Y.M., Tsou, I., 2013. Using artificial neural network approach for modelling 
rainfall–runoff due to typhoon. J. Earth Syst. Sci. 122, 399–405. 
 

Cho, H., Park, W.S., 2002. Neural network applications in automated optical inspection: state of 
the arts, in: International Symposium on Optical Science and Technology. International Society 
for Optics and Photonics, pp. 224–236. 
 

Deshmukh, R.P., Ghatol, A.A., 2010a. Comparative study of temporal neural networks for short 
term flood forecasting. Int. J. Comput. Appl. 5, 24–28. 
 

Deshmukh, R.P., Ghatol, A.A., 2010b. Short Term Flood Forecasting using Static Neural 
Networks a Comparative Study. Int. J. Comput. Sci. Netw. Secur. 10, 69–74. 
 

Devi, C.J., Reddy, B.S.P., Kumar, K.V., Reddy, B.M., Nayak, N., 2012. ANN Aproach for 
Weather Prediction using Back Propagation. Intenational J. Eng. Trends Technol. 3. 
 

Dulo, S.O., Odira, P.M.A., Nyadwa, M.O., Okelloh, B.N., 2010. Integrated flood and drought 
management for sustainable development in the Nzoia River Basin. Nile Basin Water Sci Eng J 
3. 
 

Flood Mitigation Strategy, 2009. 
 

Gonzalez, S., Economic, C., Branch, F.P., 2000. Neural networks for macroeconomic 
forecasting: a complementary approach to linear regression models. Department of Finance 
Canada. 



  70

Guven, A., 2009. Linear genetic programming for time-series modelling of daily flow rate. J. 
Earth Syst. Sci. 118, 137–146. 
 

Heednacram, A., 2014. Suspended Sediment Forecast of Khlong Bang Yai, Phuket. Int. J. Eng. 
Technol. 338–345. doi:10.7763/IJET.2014.V6.723 
 

Kenya water security and climate resilience project, 2013. 
 

Khan, S.I., Adhikari, P., Hong, Y., Vergara, H., F Adler, R., Policelli, F., Irwin, D., Korme, T., 
Okello, L., 2011. Hydroclimatology of Lake Victoria region using hydrologic model and satellite 
remote sensing data. Hydrol. Earth Syst. Sci. 15, 107–117. doi:10.5194/hess-15-107-2011 
 

Kia, M.B., Pirasteh, S., Pradhan, B., Mahmud, A.R., Sulaiman, W.N.A., Moradi, A., 2012. An 
artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. 
Environ. Earth Sci. 67, 251–264. doi:10.1007/s12665-011-1504-z 
 

Limpert, E., Stahel, W.A., Abbt, M., 2001. Log-normal Distributions across the Sciences: Keys 
and Clues On the charms of statistics, and how mechanical models resembling gambling 
machines offer a link to a handy way to characterize log-normal distributions, which can provide 
deeper insight into variability and probability—normal or log-normal: That is the question. 
BioScience 51, 341–352. 
 

LUK, K., BALL, J.E., SHARMA, A., 2001. An Application of Artificial Neural Networks for 
Rainfall Forecasting. Math. Comput. Model. 33, 683–693. 
 

Masibayi, E., Mutua, F., Otengi, S.B.B., Wakhungu, J.W., n.d. Real-Time River Stage 
Forecasting Using Upstream Stage Approach for Flood Management, in Nzoia River Basin, 
Western Kenya. Reduct. Confl. Resolut. Sustain. Dev. 422. 
 

Maskey, S., 2004. Modelling Uncertainty in Flood Forecasting Systems. Taylor & Francis. 
 

Mitchell, T.M., 1997. Machine Learning. McGraw-Hill, New York. 
 

Montana, D.J., Davis, L., 1989. Training Feedforward Neural Networks Using Genetic 
Algorithms., in: IJCAI. pp. 762–767. 
 

Moore, R.J., Bell, V.A., Environment Agency, 2001. Comparison of rainfall-runoff models for 
flood forecasting: part 1: literature review of models. Environment Agency. 
 

NirmalaDevi, M., Mohankumar, N., Arumugam, S., 2009. Modeling and Analysis of Neuro-
Genetic Hybrid System on FPGA. Electron. Electr. Eng. 
 

Nzoia River Basin management initiative. A public private partnership programme Between 
water resources management authority and civil society, learning institutions and communities., 
2006. 
 



  71

Onyari, E., Ilunga, F., 2010. Application of MLP neural network and M5P model tree in 
predicting streamflow: A case study of Luvuvhu catchment, South Africa, in: International 
Conference on Information and Multimedia Technology (ICMT 2010), Hong Kong, China. pp. 
V3–156. 
 

Onywere, S.M., Getenga, Z.M., Baraza, W., Mwakalila, S.S., Twesigye, C.K., Nakiranda, J., 
2007. Intensification of Agriculture as the Driving Force in the Degradation of Nzoia River 
Basin: the Challenges of Watershed Management, in: Publication of the Lake Abaya Research 
Symposium. 
 

Perez, S., n.d. Apply genetic algorithm to the learning phase of a neural network. 
 

Plate, E.J., 2009. HESS Opinions:“ Classification of hydrological models for flood 
management”. Hydrol. Earth Syst. Sci. 13. 
 

Priddy, K.L., Keller, P.E., 2005. Artificial Neural Networks: An Introduction. Society of Photo 
Optical. 
 

Puttinaovarat, S., Horkaew, P., Khaimook, K., n.d. Configuring ANN for Inundation Areas 
Identification based on Relevant Thematic Layers. 
 

Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S., Kalin, L., 2014. Flood flow forecasting 
using ANN, ANFIS and regression models. Neural Comput. Appl. 25, 25–37. 
doi:10.1007/s00521-013-1443-6 
 

See, L., Dougherty, M., Openshaw, S., 1997. Some initial experiments with neural network 
models of flood forecasting on the river ouse, in: Second Annual Conference of 
GeoComputation’97 & SIRC’971997. 
 

Shrestha, R.R., Theobald, S., Nestmann, F., 2005. Simulation of flood flow in a river system 
using artificial neural networks. Hydrol. Earth Syst. Sci. 9. 
 

Steege, F.-F., Stephan, V., Gro\s s, H.-M., n.d. Effects of Noise-Reduction on Neural Function 
Approximation. 
 

Suliman, A., Nazri, N., Othman, M., Abdul, M., n.d. ARTIFICIAL NEURAL NETWORK AND 
SUPPORT VECTOR MACHINE IN FLOOD FORECASTING: A REVIEW. 
 

Thirumalaiah, K., Deo, M.C., 1998. Real-Time Flood Forecasting Using Neural Networks. 
Comput.-Aided Civ. Infrastruct. Eng. 13, 101–111. 
 

Tingsanchali, T., 2000. Forecasting model of Chao Phraya river flood levels at Bangkok, in: 
International Conference on Chao Phraya Delta. Bangkok. Thailand. 
   



  72

APPENDICES 
 

APPENDIX 1 – Sample concurrent data from 2000 to 2003  

 

The complete data set is made up of 1488 data points, for period 2000 to 2003. 

 

Table A1-1: Sample data collected from 3 Weatherstations, and 1 water level station, Rwambwa Gauge 
Station (RGS) (SID-1EF01). Data Provided by KMD 
Kitale metrological (SID-8834098), Kitale soil conservation service – office (SID-8834097), Leissa farm – 
Kitale (SID-8835039) 

Input   Output 

Daily Rainfall (mm) (3 Stations)   
Daily Temp 
(Kitale-Met) 

Daily Ave 
Temp 

Daily 
Discharge 

# of 
data Date 

Kitale 
Met 

KitaleSCO 
Met 

LeissaFarm 
Met 

Ave 
Rainfall 

Temp 
Max 

Temp 
Min 

Ave 
Temp Discharge 

1 1/1/2000 0 0 0 0 28.6 9.8 19.2 39.3 

2 1/2/2000 0 0 0 0 28 10.9 19.45 38 

3 1/3/2000 0 0 0 0 28 10.6 19.3 36.1 

4 1/4/2000 0 0 0 0 28 9.8 18.9 33.9 

5 1/5/2000 0 0 0 0 28.8 8.5 18.65 31.9 

6 1/6/2000 0 0 0 0 28.4 8.3 18.35 30.5 

7 1/7/2000 0 0 0 0 28.7 9.6 19.15 29.5 

8 1/8/2000 0 0 0 0 28.5 10.2 19.35 29 

9 1/9/2000 0 0 0 0 27.3 11.2 19.25 28.1 

10 1/10/2000 0 0 0 0 24.9 13.2 19.05 26.8 

11 1/11/2000 0 0 0 0 27.9 12.4 20.15 27.1 

12 1/12/2000 0 0 0 0 29 10.9 19.95 27.3 

13 1/13/2000 0 0 0 0 28.8 10.3 19.55 28 

14 1/14/2000 0 0 0 0 29 9.6 19.3 27.5 

15 1/15/2000 0 0 0 0 28 9.8 18.9 27.7 

16 1/16/2000 0 0 0 0 29.2 8.9 19.05 27.9 

17 1/17/2000 0 0 0 0 29.9 10.1 20 27.4 

18 1/18/2000 0 0 3 1 28.9 11.4 20.15 28.3 

19 1/19/2000 0 0 0 0 26.7 10 18.35 29.4 

20 1/20/2000 0 0 0 0 27 10.7 18.85 27.9 

21 1/21/2000 13.6 2.5 0 5.366666667 26.4 13.4 19.9 28 

22 1/22/2000 5.7 20.1 0 8.6 27.4 11.8 19.6 25.4 

23 1/23/2000 0 0 0 0 28 10.7 19.35 23.1 

24 1/24/2000 0 0 0 0 28.3 10.2 19.25 23.1 

25 1/25/2000 0 0 0 0 27.5 10.1 18.8 29.58 

26 1/26/2000 0 0 0 0 28 6.5 17.25 28.08 

27 1/27/2000 0 0 0 0 28 8.1 18.05 26.68 

28 1/28/2000 0 0 0 0 29.2 7.7 18.45 24.44 

29 1/29/2000 0 0 0 0 29.7 9.8 19.75 23.01 

30 1/30/2000 0 0 0 0 29.8 9.4 19.6 23.01 

31 1/31/2000 0 0 0 0 28.7 8 18.35 22.94 



  73

32 2/1/2000 0 0 0 0 28.5 8.8 18.65 21.97 

33 2/2/2000 0 0 0 0 28.1 9.3 18.7 21.77 

34 2/3/2000 0 0 0 0 28.7 13 20.85 21.24 

35 2/4/2000 0 0 0 0 28.8 10.3 19.55 22.24 

36 2/5/2000 0 0 0 0 28 11.5 19.75 21.98 

37 2/6/2000 0 0 0 0 29.2 9.1 19.15 22.27 

38 2/7/2000 0 0 0 0 29.6 8.2 18.9 21.75 

39 2/8/2000 0 0 0 0 29 9.4 19.2 21.02 

40 2/9/2000 0 0 0 0 28.2 10 19.1 20.88 

41 2/10/2000 0 0 0 0 27.5 10.2 18.85 21.34 

42 2/11/2000 0 0 0 0 29 9.5 19.25 20.9 

43 2/12/2000 0 0 0 0 28.3 9 18.65 19.98 
44 2/13/2000 0 0 0 0 29.9 8.8 19.35 18.68 
45 2/14/2000 0 0 0 0 30 11 20.5 17.55 
46 2/15/2000 0 0 0 0 29.8 11.2 20.5 17.14 
47 2/16/2000 0 0 0 0 29.9 9.3 19.6 17.26 
48 2/17/2000 0 0 0 0 28.8 9.7 19.25 16.7 
49 2/18/2000 0 0 0 0 28.7 9.8 19.25 16.72 
50 2/19/2000 0 0 0 0 28.5 9.2 18.85 16.78 
51 2/20/2000 0 0 0 0 29.3 10.2 19.75 17.46 
52 2/21/2000 0 0 0 0 30.2 8.6 19.4 16.52 
53 2/22/2000 0 0 0 0 30 10.2 20.1 15.99 
54 2/23/2000 0 0 0 0 30.6 9.6 20.1 15.31 
55 2/24/2000 0 0 0 0 29.8 11 20.4 14.81 
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APPENDIX 2 – The sample input output data applied with the 9 inputs 

 

The complete data set is made up of 744 data points. 

 
Table A2-1: Input output data, 9 inputs and 1 output 

9 inputs 1 output 
Kitale-

Met 
Rainfall 

2002- 
2003 

Kitale-
Soil 

Rainfall 
2002- 
2003 

Leissa-
Farm 

Rainfall 
2002- 
2003 

Kitale-
Met 

Temp 
2002- 
2003 

Kitale-
Met 

Rainfall 
2000- 
2002 

Kitale-
Soil 

Rainfall 
2000- 
2001 

Leissa-
Farm 

Rainfall 
2000- 
2001 

Kitale-
Met 

Temp 
2000- 
2001 

Rwambwa 
Discharge 
Flow 2000 

-2001 

Rwambwa 
Discharge Flow 

2002 - 2003 

0  0  0  19.85  0  0  0  19.2  1.5943926  1.804616 

2.1  0  18.2  20.9  0  0  0  19.45  1.5797836  1.790144 

0  0  0  20.1  0  0  0  19.3  1.5575072  1.775173 

0  6  0  18.95  0  0  0  18.9  1.5301997  1.783904 

1.8  0  0  19.35  0  0  0  18.65  1.5037907  1.739018 

0  0  0  20.4  0  0  0  18.35  1.4842998  1.697578 

0  0  0  19.75  0  0  0  19.15  1.469822  1.676053 

0  0  0  18.8  0  0  0  19.35  1.462398  1.650405 

0  0  0  20.45  0  0  0  19.25  1.4487063  1.631951 

0  0  0  20.4  0  0  0  19.05  1.4281348  1.631241 

0.5  0  27.3  20.1  0  0  0  20.15  1.4329693  1.66096 

1.1  0  0  19.65  0  0  0  19.95  1.4361626  1.651181 

0  0  0  19.05  0  0  0  19.55  1.447158  1.646502 

1.4  0  0  19.15  0  0  0  19.3  1.4393327  1.64286 

0.6  0  0  17.7  0  0  0  18.9  1.4424798  1.642761 

0  0  0  17.7  0  0  0  19.05  1.4456042  1.605413 

0  0  0  19.15  0  0  0  20  1.4377506  1.586362 

0  0  0  20.2  0  0  3  20.15  1.4517864  1.563718 

0  0  0  20.05  0  0  0  18.35  1.4683473  1.546296 

0  0  0  19.5  0  0  0  18.85  1.4456042  1.530328 

2.4  0  0  20.75  13.6  2.5  0  19.9  1.447158  1.505693 

0  0  0  5.95  5.7  20.1  0  19.6  1.4048337  1.480869 

0  0  0  19.95  0  0  0  19.35  1.363612  1.467312 

0  0  0  19.45  0  0  0  19.25  1.363612  1.459392 

0  0  0  19.9  0  0  0  18.8  1.4709982  1.453471 

0  0  0  18.45  0  0  0  17.25  1.4483971  1.449478 

0  0  0  19.5  0  0  0  18.05  1.4261858  1.427973 

0.5  0  0  20.85  0  0  0  18.45  1.3881012  1.417306 

0  0  0  20.2  0  0  0  19.75  1.3619166  1.421275 

0  0  0  19.4  0  0  0  19.6  1.3619166  1.422426 

0  0  0  19.35  0  0  0  18.35  1.3605934  1.416807 

0  0  0  19.7  0  0  0  18.65  1.3418301  1.429914 

0  0  0  0  0  0  0  18.7  1.3378584  1.466571 

0  0  0  20.9  0  0  0  20.85  1.3271545  1.445293 

0  0  0  0  0  0  0  19.55  1.3471348  1.451172 

0  0  0  20.6  0  0  0  19.75  1.3420277  1.455758 

0  0  0  20.65  0  0  0  19.15  1.3477202  1.473049 
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0  0  0  21.25  0  0  0  18.9  1.3374593  1.500785 

0  0  0  21.1  0  0  0  19.2  1.3226327  1.494711 

0  0  0  22.05  0  0  0  19.1  1.3197305  1.457125 

0  0  0  20.9  0  0  0  18.85  1.3291944  1.427811 

0  0  0  21.1  0  0  0  19.25  1.3201463  1.393926 
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APPENDIX 3 – The sample discharge flow output data transformed with Logarithmic  

 

Logarithmic transformation; column 10 was transformed with log base 10; output is shown in 

column 11. Complete data set is made up of 744 data points. 

 

Table A3-1: Sample data discharge output transformed with Logarithmic transformation of log base 10 

9 inputs 1 output 

Kitale-
Met 

Rainfall 
2002- 
2003 

Kitale-
Soil 

Rainfall 
2002- 
2003 

Leissa-
Farm 

Rainfall 
2002- 
2003 

Kitale-
Met 

Temp 
2002- 
2003 

Kitale-
Met 

Rainfall 
2000- 
2002 

Kitale-
Soil 

Rainfall 
2000- 
2001 

Leissa-
Farm 

Rainfall 
2000- 
2001 

Kitale-
Met 

Temp 
2000- 
2001 

Rwambwa 
Discharge 
Flow 2000 

-2001 

Rwambwa 
Discharge 

Flow 
RawData 

2002 - 
2003 

Rwambwa 
Discharge 

Flow 
LogBase10 

Tranformed 
2002 - 2003 

0  0  0  19.85  0  0  0  19.2  1.594393  63.77 1.804616417 

2.1  0  18.2  20.9  0  0  0  19.45  1.579784  61.68 1.790144365 

0  0  0  20.1  0  0  0  19.3  1.557507  59.59 1.775173385 

0  6  0  18.95  0  0  0  18.9  1.5302  60.8 1.783903579 

1.8  0  0  19.35  0  0  0  18.65  1.503791  54.83 1.739018246 

0  0  0  20.4  0  0  0  18.35  1.4843  49.84 1.697578034 

0  0  0  19.75  0  0  0  19.15  1.469822  47.43 1.676053125 

0  0  0  18.8  0  0  0  19.35  1.462398  44.71 1.65040467 

0  0  0  20.45  0  0  0  19.25  1.448706  42.85 1.631950826 

0  0  0  20.4  0  0  0  19.05  1.428135  42.78 1.63124078 

0.5  0  27.3  20.1  0  0  0  20.15  1.432969  45.81 1.660960292 

1.1  0  0  19.65  0  0  0  19.95  1.436163  44.79 1.651181063 

0  0  0  19.05  0  0  0  19.55  1.447158  44.31 1.64650175 

1.4  0  0  19.15  0  0  0  19.3  1.439333  43.94 1.642860053 

0.6  0  0  17.7  0  0  0  18.9  1.44248  43.93 1.642761203 

0  0  0  17.7  0  0  0  19.05  1.445604  40.31 1.605412798 

0  0  0  19.15  0  0  0  20  1.437751  38.58 1.586362223 

0  0  0  20.2  0  0  3  20.15  1.451786  36.62 1.56371834 

0  0  0  20.05  0  0  0  18.35  1.468347  35.18 1.546295835 

0  0  0  19.5  0  0  0  18.85  1.445604  33.91 1.53032779 

2.4  0  0  20.75  13.6  2.5  0  19.9  1.447158  32.04 1.505692508 

0  0  0  5.95  5.7  20.1  0  19.6  1.404834  30.26 1.480868924 

0  0  0  19.95  0  0  0  19.35  1.363612  29.33 1.467312063 

0  0  0  19.45  0  0  0  19.25  1.363612  28.8 1.459392488 

0  0  0  19.9  0  0  0  18.8  1.470998  28.41 1.453471234 

0  0  0  18.45  0  0  0  17.25  1.448397  28.15 1.449478399 

0  0  0  19.5  0  0  0  18.05  1.426186  26.79 1.427972714 

0.5  0  0  20.85  0  0  0  18.45  1.388101  26.14 1.417305583 

0  0  0  20.2  0  0  0  19.75  1.361917  26.38 1.421274791 

0  0  0  19.4  0  0  0  19.6  1.361917  26.45 1.422425676 

0  0  0  19.35  0  0  0  18.35  1.360593  26.11 1.416806872 

0  0  0  19.7  0  0  0  18.65  1.34183  26.91 1.429913698 

0  0  0  0  0  0  0  18.7  1.337858  29.28 1.466571072 
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0  0  0  20.9  0  0  0  20.85  1.327155  27.88 1.445292769 

0  0  0  0  0  0  0  19.55  1.347135  28.26 1.451172158 

0  0  0  20.6  0  0  0  19.75  1.342028  28.56 1.455758203 

0  0  0  20.65  0  0  0  19.15  1.34772  29.72 1.473048805 

0  0  0  21.25  0  0  0  18.9  1.337459  31.68 1.500785173 

0  0  0  21.1  0  0  0  19.2  1.322633  31.24 1.494711025 

0  0  0  22.05  0  0  0  19.1  1.31973  28.65 1.457124626 

0  0  0  20.9  0  0  0  18.85  1.329194  26.78 1.427810573 

0  0  0  21.1  0  0  0  19.25  1.320146  24.77 1.393926007 
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APPENDIX 4 – The sample data which was used to develop GA-ANN-FF model  

 

This data was applied on the 4:6:4:1 configuration setting; complete data set is made up of 744 

data points 

Table A4-1: The sample data applied on GA-ANN-FF model 

4 Inputs  1 Output 

Kitale-Met Rainfall 
2002- 2003 

Leissa-Farm Rainfall 
2002- 2003 Leissa-Farm Rainfall 2000- 2001 

Rwambwa Discharge 
Flow 2000 -2001 

Rwambwa Discharge 
2002 - 2003 

0  0  0  1.59439255  1.8046164 

2.1  18.2  0  1.579783597  1.7901444 

0  0  0  1.557507202  1.7751734 

0  0  0  1.530199698  1.7839036 

1.8  0  0  1.503790683  1.7390182 

0  0  0  1.484299839  1.697578 

0  0  0  1.469822016  1.6760531 

0  0  0  1.462397998  1.6504047 

0  0  0  1.44870632  1.6319508 

0  0  0  1.428134794  1.6312408 

0.5  27.3  0  1.432969291  1.6609603 

1.1  0  0  1.436162647  1.6511811 

0  0  0  1.447158031  1.6465018 

1.4  0  0  1.439332694  1.6428601 

0.6  0  0  1.442479769  1.6427612 

0  0  0  1.445604203  1.6054128 

0  0  0  1.437750563  1.5863622 

0  0  3  1.451786436  1.5637183 

0  0  0  1.46834733  1.5462958 

0  0  0  1.445604203  1.5303278 

2.4  0  0  1.447158031  1.5056925 

0  0  0  1.404833717  1.4808689 

0  0  0  1.36361198  1.4673121 

0  0  0  1.36361198  1.4593925 

0  0  0  1.47099817  1.4534712 

0  0  0  1.448397103  1.4494784 

0  0  0  1.426185825  1.4279727 

0.5  0  0  1.388101202  1.4173056 

0  0  0  1.361916619  1.4212748 

0  0  0  1.361916619  1.4224257 

0  0  0  1.360593414  1.4168069 
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0  0  0  1.341830057  1.4299137 

0  0  0  1.337858429  1.4665711 

0  0  0  1.327154512  1.4452928 

0  0  0  1.347134783  1.4511722 

0  0  0  1.342027688  1.4557582 

0  0  0  1.347720217  1.4730488 

0  0  0  1.337459261  1.5007852 

0  0  0  1.322632712  1.494711 

0  0  0  1.319730494  1.4571246 

0  0  0  1.329194415  1.4278106 

0  0  0  1.320146286  1.393926 

0  0  0  1.300595484  1.3523755 

0.7  0  0  1.271376872  1.3289909 

0  0  0  1.244277121  1.3283796 

0  0  0  1.234010818  1.3312248 

0  43  0  1.237040791  1.3523755 

30.3  0  0  1.222716471  1.3484996 

0  0  0  1.223236273  1.3410386 

0  0  0  1.224791956  1.3889888 

0  0  0  1.242044239  1.4258601 

0  0  0  1.218010043  1.5571461 

0  0  0  1.203848464  1.5842181 

0  0  0  1.184975191  1.5956064 
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APPENDIX 5 - Optimized GA-ANN-FF (4:6:4:1) and MLP-ANN-FF (9:7:12:1) models  

 

The figures below illustrate the two models that were finally developed using NeuroSolutions 

software. The pointed circles contain the neurons in the layers. 

 

 

        Input Layer                   1st Hidden Layer           2nd Hidden Layer                 Output Layer  

9 input parameters              6 neurons                         4 neurons                             1 neuron (discharge output) 

 

 
Figure A5-1:  a MLP-ANN-FF (9:7:12:1) neural network model developed with the Excel based version of 

NeuroSolution Software 

 

 

    Input Layer                   1st Hidden Layer           2nd Hidden Layer                 Output Layer  

9 input parameters              6 neurons                         4 neurons                             1 neuron (discharge output) 

 
Figure A5-2: a GA-ANN-FF (4:6:4:1) neural network model developed with the Excel based version of 

NeuroSolution Software 
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APPENDIX 6– The sample results obtained for the MLP-ANN-FF (9:7:12:1) model  

 

That estimated the discharge flow of Nzoia River at Rwambwa River gauge for MLP-ANN-FF (9:7:12:1) 

model 

 

Table A6-1: Test results obtained for the MLP-ANN-FF (9:7:12:1) model to estimate the discharge flow 

of Nzoia River at Rwambwa River gauge 

Date Actual Predicted Error% 

10/20/2003  1.9669392  2.154443 9.53 

10/21/2003  1.9704399  2.180509 10.66 

10/22/2003  1.9685763  2.171373 10.30 

10/23/2003  1.9692295  2.210722 12.26 

10/24/2003  1.9689963  2.211793 12.33 

10/25/2003  1.9650135  2.153446 9.59 

10/26/2003  1.9487063  2.124298 9.01 

10/27/2003  1.9397688  2.074249 6.93 

10/28/2003  1.9331835  2.074037 7.29 

10/29/2003  1.9298275  2.121682 9.94 

10/30/2003  1.9289077  1.969742 2.12 

10/31/2003  1.9284471  2.023615 4.93 

11/1/2003  1.9225179  2.098919 9.18 

11/2/2003  1.9205929  2.127686 10.78 

11/3/2003  1.9197055  2.117277 10.29 

11/4/2003  1.9153998  2.185884 14.12 

11/5/2003  1.9117434  2.175991 13.82 

11/6/2003  1.9116902  2.191931 14.66 

11/7/2003  1.9121157  2.190439 14.56 

11/8/2003  1.9160326  2.174468 13.49 

11/9/2003  1.9212702  2.213124 15.19 

11/10/2003  1.9166118  2.241209 16.94 

11/11/2003  1.9122221  2.167013 13.32 

11/12/2003  1.905094  2.261883 18.73 

11/13/2003  1.9395692  2.111586 8.87 

11/14/2003  1.9492924  2.125341 9.03 

11/15/2003  1.9520656  2.210732 13.25 

11/16/2003  1.9557358  2.043797 4.50 

11/17/2003  1.9705328  1.986326 0.80 

11/18/2003  1.9693227  2.129429 8.13 

11/19/2003  1.9562165  2.16657 10.75 

11/20/2003  1.9505109  2.096929 7.51 

11/21/2003  1.9360611  2.085433 7.72 

11/22/2003  1.9197055  2.059307 7.27 

11/23/2003  1.9066044  2.021408 6.02 

11/24/2003  1.9061195  2.016191 5.77 

11/25/2003  1.909235  1.995828 4.54 
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11/26/2003  1.9008585  2.004162 5.43 

11/27/2003  1.9008585  1.974819 3.89 

11/28/2003  1.9099837  1.975825 3.45 

11/29/2003  1.9209056  1.964299 2.26 

11/30/2003  1.9157691  1.94909 1.74 

31/11/2003  1.90558  1.784349 -6.36 

12/1/2003  1.8916489  1.928971 1.97 

12/2/2003  1.8776017  1.922583 2.40 

12/3/2003  1.8685857  1.925205 3.03 

12/4/2003  1.8624892  1.913041 2.71 

12/5/2003  1.8666417  1.928023 3.29 

12/6/2003  1.8429835  2.075329 12.61 

12/7/2003  1.7629785  1.856216 5.29 

12/8/2003  1.7595923  1.874467 6.53 

12/9/2003  1.7594412  1.936101 10.04 

12/10/2003  1.7714405  1.857611 4.86 

12/11/2003  1.7761198  1.869813 5.28 

12/12/2003  1.7816118  1.850942 3.89 

12/13/2003  1.7808931  1.818504 2.11 

12/14/2003  1.77459  1.795361 1.17 

12/15/2003  1.7667102  1.807657 2.32 

12/16/2003  1.7652214  1.80253 2.11 

12/17/2003  1.7667102  1.798654 1.81 

12/18/2003  1.7585334  1.796841 2.18 

12/19/2003  1.7165042  1.782422 3.84 

12/20/2003  1.7137425  1.798215 4.93 

12/21/2003  1.7199111  1.820559 5.85 

12/22/2003  1.7431176  1.822957 4.58 

12/23/2003  1.7947668  1.802008 0.40 

12/24/2003  1.811709  1.816582 0.27 

12/25/2003  1.808346  1.818646 0.57 

12/26/2003  1.8102997  1.780542 -1.64 

12/27/2003  1.799754  1.792119 -0.42 

12/28/2003  1.7759743  1.778662 0.15 

12/29/2003  1.7351995  1.791945 3.27 

12/30/2003  1.7337588  1.787277 3.09 

12/31/2003  1.7569402  1.82077 3.63 

Performance  Discharge 

Mean Square Error  0.024031731 

  r (correlation coefficient)  0.843375453 
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Table A6-2: Test results obtained for the GA-ANN-FF (4:6:4:1) model to estimate the discharge flow of 

Nzoia River at Rwambwa River gauge 

Date  Actual  Predicted  Error% 

10/20/2003  1.96693916  2.12396347  7.98318 

10/21/2003  1.97043986  2.14603548  8.911493 

10/22/2003  1.96857634  2.19988399  11.75 

10/23/2003  1.96922948  2.23280205  13.38455 

10/24/2003  1.96899633  2.20481946  11.97682 

10/25/2003  1.96501345  2.15677383  9.758731 

10/26/2003  1.94870631  2.12611697  9.104022 

10/27/2003  1.93976878  2.09453404  7.978542 

10/28/2003  1.93318348  2.09330268  8.28267 

10/29/2003  1.92982748  2.08595024  8.089985 

10/30/2003  1.92890769  2.09702138  8.715487 

10/31/2003  1.92844706  2.06542355  7.102943 

11/1/2003  1.92251786  2.06950733  7.645675 

11/2/2003  1.92059286  2.13294407  11.05654 

11/3/2003  1.91970554  2.14039301  11.4959 

11/4/2003  1.91539984  2.1668135  13.12591 

11/5/2003  1.91174338  2.1615363  13.06624 

11/6/2003  1.91169016  2.18957405  14.53603 

11/7/2003  1.91211573  2.18382966  14.21012 

11/8/2003  1.91603261  2.18128075  13.84361 

11/9/2003  1.92127019  2.19173299  14.07729 

11/10/2003  1.91661185  2.22260277  15.9652 

11/11/2003  1.91222206  2.16008757  12.96217 

11/12/2003  1.90509397  2.12272974  11.42389 

11/13/2003  1.93956917  2.12825226  9.728093 

11/14/2003  1.9492924  2.10699142  8.090065 

11/15/2003  1.95206559  2.17283181  11.30937 

11/16/2003  1.95573584  2.08357605  6.536681 

11/17/2003  1.97053283  2.06340572  4.713085 

11/18/2003  1.96932271  2.05359507  4.279256 

11/19/2003  1.95621647  2.16567867  10.70752 

11/20/2003  1.95051089  2.08260362  6.772212 

11/21/2003  1.93606112  2.07943014  7.405191 

11/22/2003  1.91970554  2.05210207  6.89671 

11/23/2003  1.90660437  2.03610061  6.791983 

11/24/2003  1.90611946  2.01922612  5.93387 

11/25/2003  1.909235  2.0110842  5.334555 

11/26/2003  1.90085851  2.00106999  5.271907 
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11/27/2003  1.90085851  1.98749079  4.557535 

11/28/2003  1.9099837  1.9699898  3.141708 

11/29/2003  1.9209056  1.96696619  2.397858 

11/30/2003  1.91576907  1.95046866  1.811262 

31/11/2003  1.90558003  1.94971802  2.31625 

12/1/2003  1.89164894  1.93053431  2.055633 

12/2/2003  1.87760168  1.92350189  2.444619 

12/3/2003  1.86858567  1.91814249  2.652103 

12/4/2003  1.86248917  1.92488009  3.349867 

12/5/2003  1.86664172  1.91683358  2.688886 

12/6/2003  1.84298347  1.83267561  ‐0.5593 

12/7/2003  1.76297849  1.9073084  8.186709 

12/8/2003  1.75959231  1.86911274  6.224194 

12/9/2003  1.7594412  1.8974752  7.845332 

12/10/2003  1.77144049  1.86446887  5.251567 

12/11/2003  1.7761198  1.85850384  4.638428 

12/12/2003  1.78161178  1.85131465  3.912349 

12/13/2003  1.78089311  1.83888037  3.256078 

12/14/2003  1.77458995  1.83473686  3.389342 

12/15/2003  1.76671021  1.82634042  3.375212 

12/16/2003  1.76522137  1.82357477  3.305727 

12/17/2003  1.76671021  1.81757141  2.878865 

12/18/2003  1.75853342  1.80690988  2.750955 

12/19/2003  1.71650416  1.79334458  4.476564 

12/20/2003  1.71374248  1.7949984  4.741431 

12/21/2003  1.71991106  1.81697616  5.643611 

12/22/2003  1.74311763  1.82809991  4.875304 

12/23/2003  1.7947668  1.81086081  0.896719 

12/24/2003  1.81170903  1.80690988  ‐0.2649 

12/25/2003  1.80834604  1.82040144  0.666654 

12/26/2003  1.81029974  1.79695044  ‐0.73741 

12/27/2003  1.79975397  1.78774832  ‐0.66707 

12/28/2003  1.77597433  1.7824216  0.363027 

12/29/2003  1.73519955  1.78047613  2.609301 

12/30/2003  1.73375884  1.7877008  3.111273 

12/31/2003  1.75694024  1.81612343  3.368538 

Performance  Discharge 

MSE  0.02176209 

r  0.887479548 
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APPENDIX 7 –Test data used to evaluate MLP-ANN-FF and GA-ANN- models 

 

This 10% test data was applied on the 9:7:12:1 configuration setting; the 10% test dataset is 

made up of 74 data points 

 

Table A7-1: The 10% test dataset applied on MLP-ANN-FF model 

9 Inputs  1 Output 

Kitale‐Met 
Rainfall 
2002‐ 2003 

Kitale‐Soil 
Rainfall 
2002‐ 2003 

Leissa‐
Farm 
Rainfall 
2002‐ 
2003 

Kitale‐
Met 
Temp 
2002‐ 
2003 

Kitale‐Met 
Rainfall 
2000‐ 2002 

Kitale‐Soil 
Rainfall 
2000‐ 2001 

Leissa‐
Farm 
Rainfall 
2000‐ 
2001 

Kitale‐
Met 
Temp 
2000‐ 
2001 

Rwambwa 
Discharge 
Flow 2000 ‐
2001 

Rwambwa 
Discharge 
Flow 2002 ‐ 
2003 

0  0  0  19.55  0  0  0  19.85  2.332034277  1.966939163 

0  0  0  19.3  0  0  0  20.1  2.380211242  1.970439863 

0  0  0  19.05  0  20  0  19.05  2.50609896  1.968576335 

0.5  0  0  19.35  26.4  13  5.5  19.25  2.592842683  1.96922948 

0  0  0  16.45  2.5  0  3.7  19.6  2.516931809  1.968996327 

0.7  0  0  19.25  20.8  8  14  19.8  2.401745082  1.96501345 

0  0  0  18.65  8.5  9  0  20.1  2.336659823  1.948706309 

5.6  0  0  19.8  7.6  10  10.2  19.45  2.28057837  1.939768776 

0  0  0  19.95  6.7  5  21.8  18.75  2.253822439  1.933183479 

0  0  0  18.6  21.9  0  13.7  19.55  2.239049093  1.929827481 

1.8  4.5  4.5  19.15  4.7  24  12.3  18.9  2.226599905  1.92890769 

0  0  0  19  17.9  16  1.7  18.75  2.208978517  1.928447063 

0.6  0  0  20.65  30.1  0  7.5  17.7  2.211654401  1.92251786 

3.7  10  10  19.1  0  0  4.6  17.85  2.265525335  1.920592862 

0  0  0  20.05  2.5  10  0  18.25  2.367728546  1.919705535 

0  0  0  20.1  9.5  0  0.9  18.3  2.426511261  1.915399835 

0  0  0  17.95  0  0  0  18.3  2.415140352  1.911743378 

0.5  0  0  19.25  0.7  6  0  18.2  2.48301642  1.911690159 

0  0  0  23.15  7.4  5.1  2.1  18.4  2.465828815  1.912115729 

0  0  0  18.85  6.2  2.3  10.1  19.3  2.457730548  1.91603261 

1  0  0  18.95  3.7  0  3.8  19.45  2.488691698  1.921270185 

1.1  7.5  7.5  19.6  0  0  2.7  19.15  2.494015375  1.916611845 

7.8  0  0  19.05  2.3  10  2.2  18.55  2.443262987  1.912222056 

0  0  0  19.45  6.4  13.2  58  18.75  2.387033701  1.905093968 

3.4  0  0  19.35  9.2  8.6  4.5  18.8  2.349471799  1.939569169 

5.8  0  0  19.7  10.8  3.6  6  19  2.310905629  1.949292401 

7.7  21  21  18.55  7.9  0  1.4  18.55  2.276461804  1.95206559 

0  0  0  20.6  30.6  20  1  18.6  2.246498581  1.955735842 

4.8  0  0  20.1  0.6  27.7  2.9  19  2.218010043  1.97053283 
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1.6  0  0  18.8  38.2  0  2.5  19.85  2.188928484  1.969322706 

0  26  26  20.35  0  0  1.5  18.55  2.181271772  1.956216469 

0  4.1  4.1  17.95  0  0  0  20.05  2.206825876  1.950510893 

0  0  0  19.9  1.1  0  0  18  2.239549721  1.936061117 

3.6  0  0  18.6  1.2  0  3.5  18.45  2.190611798  1.919705535 

0  0  0  19.25  0  0  6.5  19  2.144262774  1.906604372 

0  0  0  19.1  0  0  0  18.15  2.122215878  1.906119458 

0  0  0  20.15  0  0  0  17.05  2.106870544  1.909235003 

0  0  0  19  0  0  0  18.8  2.088136089  1.900858505 

0  0  0  20.5  0  0  0  17.45  2.062957834  1.900858505 

4  0  0  19.95  0  0  0  17.5  2.040206628  1.909983695 

0.7  0  0  18.3  0.8  0  2.9  19.25  2.021189299  1.920905604 

0.4  0  0  20.05  0.3  0  1.8  19.05  1.992553518  1.915769066 

3.45900068  3.21218344  2.8476386  0  3.45900068  3.21218344  2.8476386  0  1.969415912  1.905580028 

0  0  0  20.25  0.8  0  0  18.65  1.959566047  1.891648944 

2.8  0  0  18.6  0  0  0  18.05  1.952986065  1.87760168 

0  0  0  18.55  0  0  0  19.6  1.937417582  1.868585666 

0.4  3.6  3.6  19.3  0  0  0  18.4  1.916401304  1.862489167 

1.9  4.2  4.2  19.3  0  0  0  19.55  1.899711095  1.866641721 

36.9  0  0  18.55  0  0  0  19.25  1.884115362  1.84298347 

0  5.4  5.4  20.45  0  7  0  18.5  1.867408557  1.762978491 

4.1  0  0  20  4  0  0  17.65  1.858837851  1.759592309 

11  7.9  7.9  18.75  0  0  0  17.9  1.852967691  1.759441197 

0  0  0  18.8  0.4  0  0  18.8  1.842172229  1.771440487 

0  0  0  22.8  0  0  0  19.55  1.831613855  1.776119799 

0  0  0  19.4  0  0  0  19.25  1.818885415  1.781611782 

0  0  0  18.6  0  0  0  18.05  1.796851749  1.780893109 

0  0  0  16.55  2.4  0  3.3  17.35  1.781468143  1.77458995 

0  0  0  17.15  0  0  0  18.35  1.77458995  1.766710207 

0  0  0  18.65  0  0  0  18.05  1.769672664  1.765221366 

0  0  0  19.2  0  0  0  18.15  1.758987547  1.766710207 

0  0  0  19.8  0  0  0  18.7  1.739967697  1.758533422 

0  0  0  19.1  0.5  0  0  18.7  1.715669142  1.716504164 

1.3  0  0  20.45  0  0  0  19.1  1.721315881  1.713742478 

0  0  0  20.3  0  0  0  19.5  1.757927183  1.719911064 

0  0  0  19.5  0  0  0  19  1.777716739  1.743117625 

0  0  0  19.55  0  0  0  18.8  1.747023177  1.794766798 

0  0  0  20.8  0  0  0  19.85  1.739967697  1.811709027 

0  0  0  16.9  0  0  0  19.5  1.764026608  1.808346036 

0  0  0  19  0  0  0  18.4  1.722140125  1.810299741 

0  0  0  19.2  0  0  0  19.75  1.705607163  1.799753966 
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0  0  0  19.15  0  0  0  19.25  1.696006715  1.775974331 

0  0  0  19.3  0  0  0  20.2  1.692494408  1.735199548 

0  0  0  18.2  0  0  0  19.55  1.705521614  1.733758836 

0  0  0  20.05  0  0  0  19.6  1.756407872  1.756940236 

 

This 10% test data was applied on the 4:6:4:1 configuration setting; the 10% test dataset is made 

up of 74 data points 

 

Table A7-2: The 10% test dataset applied on GA-ANN-FF model 

4 Inputs  1 Output 

Kitale‐Met 
Rainfall 
2002‐ 2003 

Leissa‐
Farm 
Rainfall 
2002‐ 
2003 

Leissa‐
Farm 
Rainfall 
2000‐ 
2001 

Rwambwa 
Discharge 
Flow 2000 ‐
2001 

Rwambwa 
Discharge 
Flow 2002 ‐ 
2003 

0  0  0  2.332034277  1.966939163 

0  0  0  2.380211242  1.970439863 

0  0  0  2.50609896  1.968576335 

0.5  0  5.5  2.592842683  1.96922948 

0  0  3.7  2.516931809  1.968996327 

0.7  0  14  2.401745082  1.96501345 

0  0  0  2.336659823  1.948706309 

5.6  0  10.2  2.28057837  1.939768776 

0  0  21.8  2.253822439  1.933183479 

0  0  13.7  2.239049093  1.929827481 

1.8  4.5  12.3  2.226599905  1.92890769 

0  0  1.7  2.208978517  1.928447063 

0.6  0  7.5  2.211654401  1.92251786 

3.7  10  4.6  2.265525335  1.920592862 

0  0  0  2.367728546  1.919705535 

0  0  0.9  2.426511261  1.915399835 

0  0  0  2.415140352  1.911743378 

0.5  0  0  2.48301642  1.911690159 

0  0  2.1  2.465828815  1.912115729 

0  0  10.1  2.457730548  1.91603261 

1  0  3.8  2.488691698  1.921270185 

1.1  7.5  2.7  2.494015375  1.916611845 

7.8  0  2.2  2.443262987  1.912222056 

0  0  58  2.387033701  1.905093968 

3.4  0  4.5  2.349471799  1.939569169 

5.8  0  6  2.310905629  1.949292401 
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7.7  21  1.4  2.276461804  1.95206559 

0  0  1  2.246498581  1.955735842 

4.8  0  2.9  2.218010043  1.97053283 

1.6  0  2.5  2.188928484  1.969322706 

0  26  1.5  2.181271772  1.956216469 

0  4.1  0  2.206825876  1.950510893 

0  0  0  2.239549721  1.936061117 

3.6  0  3.5  2.190611798  1.919705535 

0  0  6.5  2.144262774  1.906604372 

0  0  0  2.122215878  1.906119458 

0  0  0  2.106870544  1.909235003 

0  0  0  2.088136089  1.900858505 

0  0  0  2.062957834  1.900858505 

4  0  0  2.040206628  1.909983695 

0.7  0  2.9  2.021189299  1.920905604 

0.4  0  1.8  1.992553518  1.915769066 

3.45900068  2.8476386  2.8476386  1.969415912  1.905580028 

0  0  0  1.959566047  1.891648944 

2.8  0  0  1.952986065  1.87760168 

0  0  0  1.937417582  1.868585666 

0.4  3.6  0  1.916401304  1.862489167 

1.9  4.2  0  1.899711095  1.866641721 

36.9  0  0  1.884115362  1.84298347 

0  5.4  0  1.867408557  1.762978491 

4.1  0  0  1.858837851  1.759592309 

11  7.9  0  1.852967691  1.759441197 

0  0  0  1.842172229  1.771440487 

0  0  0  1.831613855  1.776119799 

0  0  0  1.818885415  1.781611782 

0  0  0  1.796851749  1.780893109 

0  0  3.3  1.781468143  1.77458995 

0  0  0  1.77458995  1.766710207 

0  0  0  1.769672664  1.765221366 

0  0  0  1.758987547  1.766710207 

0  0  0  1.739967697  1.758533422 

0  0  0  1.715669142  1.716504164 

1.3  0  0  1.721315881  1.713742478 

0  0  0  1.757927183  1.719911064 

0  0  0  1.777716739  1.743117625 

0  0  0  1.747023177  1.794766798 

0  0  0  1.739967697  1.811709027 
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0  0  0  1.764026608  1.808346036 

0  0  0  1.722140125  1.810299741 

0  0  0  1.705607163  1.799753966 

0  0  0  1.696006715  1.775974331 

0  0  0  1.692494408  1.735199548 

0  0  0  1.705521614  1.733758836 

0  0  0  1.756407872  1.756940236 

 


