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ABSTRACT 

Superensemble forecasts derived from a suite of multiple models are a useful tool in 

rainfall prediction, in which the models from THORPEX Interactive Grand Global 

Ensemble (TIGGE) operational suite are employed.  

The overall objective of this study was to assess the predictability of precipitation on 

medium range timescale over the Greater Horn of Africa region using the superensemble 

technique. Forecast datasets from TIGGE and rain rates from Tropical Rainfall 

Measuring Mission (TRMM) were used to construct a multimodel Superensemble 

precipitation forecast for the period 20 to 29 November, 2013. Previous 450 days of 

Multimodel forecast data of 2008 to 2012 during the months of October, November and 

December were used to train the model and calculate statistical weights.   

Standard metrics for forecast validations that included the Root Mean Square Error 

(RMSE), Equitable Threat Score (ETS), Spatial Correlation (SC) and Bias were used. 

Four individual runs were undertaken to ensure that the results were stable. In all runs, it 

was noted that the multimodel superensemble carried a consistent higher skill in terms of 

SC and RMSE as compared with that of the individual member models in the suite. The 

superensemble ETS and bias scores for all forecasts carried the best scores close to 1.0.   

Skill forecasts of precipitation clearly demonstrate that it is possible to obtain higher 

skills for precipitation forecasts for Days 1 through 10 of forecasts from the use of the 

multimodel superensemble as compared to the best model in the suite. The higher skills 

of the multimodel superensemble make it a very useful tool for prediction and early 

warning of the risks associated with extreme weather and climate events. 
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CHAPTER ONE 

1.0 Introduction 

This section provides a brief description on the background study, problem statement, 

study objectives, justification, hypothesis and area of the study. 

1.1 Background Study 

Understanding and predicting weather and climate system is a challenging problem of 

great scientific interest. Our growing understanding of interactions between the 

atmosphere, oceans, biosphere, cryosphere and land surface is revolutionizing the earth 

and atmospheric sciences. Owing to the complexity of interacting processes which 

constitute weather and climate, and the fact that weather affects man’s welfare; 

mathematical models have been developed at the numerical laboratories for studying how 

the system operates and predictions. Various numerical models perform to various levels 

of skill at different areas due to differences in modeling specific concepts and specifics of 

formulating processes applied by different model developers.  

The Superensemble technique was initially developed at Florida State University (FSU). 

It is a powerful post-processing method for the estimation of weather forecast parameters, 

reducing direct model output errors based on the availability of real time forecast outputs 

from various models. The uniqueness of this approach lies in model weighting 

methodology with uptake of performance from observations. Therefore, it differs from 

other ensemble prediction schemes (Krishnamurti et al., 1999; 2000a; 2000b; Chaves et 

al., 2005). 

The Superensemble (SE) technique is used to gather valuable predictive information from 

some of the best available weather model forecasts, and further, to combine that 

information to generate a forecast that has superior accuracy. A SE forecast is completely 

objective (Krishnamurti, 1999). Because of this, SE forecasts are ideal when weather 

forecasts must serve as inputs to other statistical models. Also of importance, the SE 

forecasts and their associated datasets form an objective basis for probabilistic 

forecasting. Probabilistic forecasts add value to decision making processes, particularly 

when examining risk associated with a weather hazard.  
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The Superensemble has higher forecast skills compared to that of the ensemble mean 

(Mishra et al., 2007). The difference arises because the ensemble mean assigns a weight 

of 1 to all participating models and does not correct the bias of the models based on their 

past behavior. This results in the inclusion of some of the poorer models as well, thus the 

skill of the ensemble mean is degraded. The Superensemble is selective in assigning 

weights and the past history of performance of models has a major role compared to that 

of current forecasts by the multi-models.  It assigns fractional or even negative weights 

and is very selective (Williford et al., 2003) 

The Superensemble also performs better than the ensemble means of individual models 

whose bias has been removed (Krishnamurti and Kumar, 2012). The removal of bias of 

poorer models does not appear to bring them up to the levels of the best models, and 

assigning an equal weight to such models for the construction of the ensemble mean does 

not bring it to the level of the proposed Superensemble. The latter benefits from the 

geographically selective weights based on past performance (Krishnamurti, 1999).  

It is important to note that the Superensemble is not a simple averaging technique. In 

many cases, its forecasts correctly lie outside the range of input model forecasts. In 

general, this process reduces the impact of initial errors in a forecast. Not only can an 

ensemble lead to a better forecast, it can also reveal how reliable a forecast is in judging 

from the spread of the different forecasts (Buizza, 1998).  

Medium range forecasts of up to 10 days is one of the key priorities at IGAD Climate 

Prediction and Applications Centre (ICPAC) and regional National Meteorological and 

Hydrological Services (NMHSs) due to the significant impacts of weather and climate 

extremes such as floods and drought in the region. The major focus of this study is to 

investigate the predictability of precipitation on medium range timescale over the Greater 

Horn of Africa region using the superensemble technique 
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1.2 Problem Statement 

There is increased need for improving accuracy of forecasts at all timescales in the 

region. Great strides have been achieved in meteorological research, forecasting and 

modeling. However, the existing forecast products fall short of the expectation, especially 

on the short to medium timescales. Skillful prediction in this range is thus a very 

important component in any operational weather and climate institution.  

The increased demand for the service by the user community is necessitated by the fact 

that the social and economic well being in the Greater Horn of Africa region is dependent 

on rain-fed agriculture. Weather and climate extremes like floods and drought pose the 

greatest risk in the region’s economy. The population is unable to absorb the shocks 

resulting from such events due to lack of information and resources. Accurate and timely 

forecasts on onset, intensity, distribution, and cessation should be attained.  

Currently, the region relies mostly on the use of point station data as the benchmark 

analysis. These data sets are from sparse networks. It is hardly possible to get uniformly 

consistent and continuous daily observations over this region. Such problems degrade 

forecast skill.  Satellite derived products, for instance TRMM, can provide a good proxy 

to this. The study seeks to incorporate dynamical products to complement the existing 

products in the region. 

This study therefore addresses prediction challenges on medium range timescale over the 

Greater Horn of Africa region using the superensemble technique, providing accurate 

medium scale early warning products for reducing various climate risks that often 

threaten life, livelihoods and sustainable development. 
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1.3 Study Objectives 

The overall goal of this research was to assess the predictability of precipitation on 

medium range (up to 10 days) timescale over the Greater Horn of Africa region using the 

superensemble technique. To achieve this objective, the following specific objectives 

were undertaken. 

i. Assess the space-time distribution of the observed precipitation over the Greater 

Horn of Africa region. 

ii. Evaluate the skill of the ensemble forecasts over the Greater Horn of Africa. 

1.4 Justification 

Medium range predictions of dry and wet spells are some of the most challenging tasks 

being addressed in current weather forecasting advancement.  Progress on the field is of 

great benefit to any community since early warning information over such time frame 

could initiate protective measures and thus, help in minimizing damages associated with 

weather and climate extremes. 

Although seasonal forecasts indicate a below normal, normal or above normal probability 

events, there is an increased demand from the user community (especially the agricultural 

sector) for rainfall variability in intra-seasonal timescales. The consistency with which 

the minimally required rainfall by a plant or crop is more important than the total rainfall 

received over the season. Crops are likely to do well in evenly distributed ‘light’ rains 

than a few isolated‘heavy’ ones interrupted by prolonged dry periods.  

Medium range forecasts of up to 10 days is one of the key priorities at ICPAC and 

regional NMHSs due to the significant impacts of weather and climate extremes such as 

floods and drought in the region. Skillful forecasts would be useful for decision making 

in health, agriculture hydropower, and other socio-economic sectors. Application of a 

superensemble scheme that takes advantage of the best available model forecasts and 

generates skillful rainfall prediction would allow more efficient planning and thus 

improve the quality of life, safety and health. 
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1.5 Hypothesis of the study 

The null hypothesis assumed for this study was that the “Superensemble technique has no 

significant skill in predicting weather on medium scale over the Greater Horn of Africa 

region”. 

1.6 Area of study 

The area of study is the Greater Horn of Africa (GHA) region. It lies between longitudes 

23.5
⁰
E to 52

⁰
E and latitudes 21

⁰
N to 12

⁰
S and has eleven countries namely Kenya, 

Uganda, Burundi, Rwanda, Tanzania, Somalia, Ethiopia, Djibouti, Eritrea, Sudan and 

South Sudan. IGAD Climate Prediction and Application Centre (ICPAC) is the 

designated body in coordinating weather and Climate issues affecting the region in 

collaboration with the National Meteorological and Hydrological Services (NMHSs).  
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Figure 1: Map of Greater Horn of Africa (Source: ICPAC, 2012) 

1.6.1 Physical Features of the Study Domain 

The GHA region constitutes of complex and diverse topographical features, a 

contributing factor to the complexity in weather and climate forecasting. Mt Kenya and 

Kilimanjaro, for instance, have permanent glaciers at their tops making them potential 

climate and weather indicators. Others include Mount Elgon (4321 m), Mau escarpment 

(3098 m), Aberdare Ranges (3999 m), Turkana channel and Ethiopian highlands to the 

northeast and the East African highlands to the Southwest.  
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The other unique physical features of the study area include the water masses, for 

example, Lake Victoria, Lake Tanganyika, Lake Malawi and the Indian Ocean, Eastern 

and Western Highlands which decline to a plain towards the Indian Ocean. This 

configuration generates land and sea breezes due to differential solar heating and 

radiative cooling of the two surfaces. Lake Victoria, for instance has a strong circulation 

of its own with a semi-permanent trough which migrates from land to lake and lake to 

land during the night and day respectively. 
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Figure 2: Topographic map depicting physical features of the Greater Horn of 

Africa. Elevation is in meters (Source: Bowden 2004) 
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1.6.2 Systems Influencing Rainfall Distribution over the GHA Region 

This Section provides a brief description on the systems influencing rainfall distribution 

over the Greater Horn of Africa region. Systems discussed here are the Inter-Tropical 

Convergence Zone (ITCZ), Tropical cyclones, El Niño Southern Oscillation (ENSO), 

Indian Ocean dipole (IOD), Subtropical anticyclones, Quasi-biennial Oscillation (QBO), 

the interseasonal 30-60 day Madden Julian Oscillation (MJO) and Easterly waves. 

1.6.2.1  Inter-Tropical Convergence Zone 

Rainfall patterns over the region are controlled by the seasonal migration of the ITCZ. 

The ITCZ forms a quasi-continuous belt of unsettled, often rainy weather within the 

tropics, sandwiched between generally fine weather to the north and south of the sub-

tropical high pressure belts (Folland et al., 1991). 

The ITCZ is associated with the convergence of air streams from the subtropical highs. 

Where air streams meet, strong upward motion occurs that causes rainfall if the air 

contains sufficient moisture. It is therefore a region of large scale convergence of the 

inter-hemispheric tropical monsoonal wind system that generally moves meridionally 

with the overhead sun. Precipitation is thus controlled majorly by the seasonal migration 

of the inter-tropical convergence zone (ITCZ). During the OND season, the ITCZ 

experiences a southward progression and has both the Meridional and zonal arms. The 

zonal movement of the Meridional component is controlled by the prevailing ocean 

conditions in the adjacent Atlantic and Indian oceans. For instance, if the Atlantic Ocean 

sea surface temperatures are colder than that in Indian Ocean, pressure difference 

between the two oceans leads to zonal variation of the ITCZ. If the alignment is towards 

the Indian Ocean, strong westerly wind flow is generated causing the advection of Congo 

air mass towards the region. This air mass is moist, convergent and thermally unstable. 

This feature is a localized system that enhances precipitation in the region. 

1.6.2.2 Tropical Cyclones 

Tropical cyclones also play a very vital part in influencing rainfall in the region. They are 

low pressure systems that form on oceanic areas with sea surface temperatures greater 

than 26
⁰
c. They are cyclonic vortices whose origins are almost invariably in the low 
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latitudes where the earth’s rotation (corriolis force) is sufficient to create a circular 

motion. Corriolis force increases with increase in latitude. These systems can either cause 

advection of moisture to or away from the region. In Africa region, they form mostly in 

the Madagascar region and move towards the land or away. 

Tropical cyclones affecting the region form in the southwestern Indian Ocean and 

Arabian Sea. The tropical cyclone days in the Indian Ocean is linked with higher Quasi-

biennial Oscillation (QBO) frequencies, decadal cycles and positive relationship with the 

sea surface temperatures from September to march (Jury et al., 1999). Effects of tropical 

cyclones in the region are dependent on its location, and time of the year (Anyamba, 

1993). Cyclones that move to the Mozambique Channel can have adverse effects on 

weather and climate of the region during the March, April, May season. Such an 

occurrence was observed in 1984 which induced low-level diffluent flow and subsequent 

suppressed rainfall in the region (Anyamba, 1993). 

1.6.2.3 El Niño Southern Oscillation 

Another important feature is the El Niño Southern Oscillation (ENSO) phenomenon and 

associated Teleconnections. These are the fluctuations of sea surface temperatures at the 

tropical Central and Eastern pacific region (El Niño and La Niña), coupled with the air 

surface pressure in the tropical pacific (Southern Oscillation). Most regions in GHA 

receive enhanced rainfall and associated floods during an El Niño year and depressed 

rains (droughts) during the La Niña phase.  

ENSO has significant influence on rainfall over the GHA region (Indeje, 2000; Schreck 

and Semazzi 2004). It is also linked with the Indian Ocean variability through the 

modulation of walker circulation. Walker circulation is a zonal circulation of the 

atmosphere above the Pacific Ocean. It involves the rising of air currents (normally in the 

west) and sinking of air in the cold oceans (normally in the east). Once in a while ENSO 

perturbs the Walker circulation and triggers a major change in deep convection and 

tropical rainfall patterns, disrupting atmospheric circulations and climate across the 

globe.. 

An El Niño/ la Nina event is declared based on Oceanic Nino Index (ONI). ONI is a 3 

month running average of SST anomalies in the Niño 3.4 region (5
o
N-5

o
S, 120

o
-170

o
W). 
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An ONI value greater than +0.5 is an indication of an El Niño event whereas a value less 

than -0.5 is an indication of a la Nina.  

1.6.2.4 Indian Ocean Dipole 

Another sea surface temperature related phenomenon with marked influence on the 

weather and climate of the region is the Indian Ocean dipole (IOD). IOD is a major 

rainfall indicator within the region. IOD is basically the sea surface temperature gradient 

between the Western Equatorial Indian Ocean and South Eastern Equatorial Indian 

Ocean. Dipole Mode Index (DMI) is used to measure the strength of the dipole and it 

varies between -1⁰c and 1.5⁰c with a standard deviation of 0.3. Rainfall in the region has 

been shown to be above average during the September to December season, when the 

DMI is greater than one standard deviation above the mean. A positive dipole is 

associated with enhanced rainfall activities whereas a negative one leads to depressed 

activities. 

1.6.2.5  Subtropical anticyclones 

These are regions of high pressure belts in the northern and southern hemisphere, which 

form the sources of trade winds. They act as pumps of moisture into the low pressure 

areas. The subtropical anticyclones that have influence on the weather and climate of the 

region include the Mascarine, St. Helena, Azores, and Arabian high.  

The Mascarine and St. Helena high pressure ridge is a major pump of moisture into the 

region. St. Helena high pressure pumps moisture into the region from the Congo basin 

which is an important source of moisture to Uganda, Rwanda, Burundi and western parts 

of Kenya. These areas receive significant rainfall during the period June-August when the 

high pressure systems in the southern hemisphere are fully developed.   

Subtropical anticyclones have a marked influence on the movement and location of the 

ITCZ. During the Northern Hemisphere summer, the Azores and Arabian highs weaken 

whereas the St. Helena and Mascarine highs strengthen pushing the ITCZ belt 

northwards. St. Helena and Mascarine highs weaken during Southern Hemisphere with 

strengthening of the Northern hemisphere highs leading to a southward shift of the ITCZ. 
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1.6.2.6 Easterly waves 

These are westward propagating wavelike perturbations in the easterly current. They are 

seen equator-ward of the subtropical high pressure belts near the ITCZ. Their conditions 

at a specific location depend on location of origin, decay or growth. Easterly waves 

forming in the Pacific Ocean have been observed to cross the Indian Subcontinent into 

the Arabian Sea and weaken towards the western Arabian Sea (Asnani, 1993). 

Other factors which influence precipitation within the region are tropical storms, jet 

streams, continental low level troughs, extra-tropical weather systems (Ogallo, 1989), 

teleconnections with global scale climatic anomalies like those associated with SST, 

interactions between mesoscale flows and large scale monsoonal flows (Mukabana and 

Pielke, 1996), the Quasi-biennial Oscillation in the equatorial lower stratospheric zonal 

wind (QBO), the interseasonal 30-60 day Madden Julian Oscillation (MJO) (Anyamba, 

1992), solar and lunar forcing (Ogallo, 1988; Indeje and Semazzi, 2000), and local 

factors such as topography and water bodies. 
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CHAPTER TWO 

2.0 Literature review 

Rainfall prediction in the tropical region remains one of the most challenging problems in 

weather forecasting. Numerical models often do not reproduce the correct rain rate 

despite using analyses which have been produced by sophisticated data assimilation 

schemes.  

Many studies on the short to medium range scales have been undertaken by various 

researchers in the Greater Horn of Africa region with the sole aim of improving the 

prediction skill. Mukabana and Pielke (1996) noted that the short range rainfall forecasts 

over the Greater Horn of Africa are based on surface and upper air analysis of synoptic 

systems and mesoscale circulations. However, this method is only able to give subjective 

and qualitative forecast. In order to perform objective and quantitative predictions, 

numerical weather prediction models should be utilized. 

Mutemi et al., (2007) analyzed the forecasts of rainfall events over some regions of 

Africa. Results showed that the FSUSE RMSE, ETS, and the bias on the daily forecasts 

of rainfall were invariably superior to the best member model. Anyamba (1992) studied 

on the temporal variability of the 40-50 day oscillation in tropical convection. Results 

showed that apart from the well-known 40–50-day peak, there are other significant 

spectral peaks near 20–30 and 17 days. In much of the tropics, excluding the equatorial 

Indian and western Pacific Oceans, these higher frequency peaks appear to be distinct 

from the 40–50 day spectral peak. 

Webster et al., (1998) found out that the dynamical predictions suffer from a consistently 

large ensemble spread, which is compatible with the theory that chaotic weather systems 

in the southern Hemisphere may trigger breaks in the Asian monsoon, providing short 

term predictability, but limiting seasonal predictability. 

Nicholson, (2014) examined the predictability of seasonal rainfall over the Greater Horn 

of Africa. He examined the predictability of each of the three rainy seasons affecting the 

Horn of Africa is using multiple linear regression and cross validation. He noted that 

atmospheric variables generally provide higher forecast skill than surface variables, such 
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as sea surface temperatures and sea level pressure, and that ENSO and the Indian Ocean 

dipole provide less forecast skill than atmospheric variables associated with them. 

Lee (2014) examined the usefulness of proxy quantitative precipitation estimates (QPEs) 

from the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for 

modeling hydrological processes. He made use of two sets of SCaMPR QPEs, one with 

Tropical Rainfall Measurement Mission (TRMM) version 6 data integrated and the other 

without as key forcing to the lumped National Weather Service (NWS) hydrological tool 

to study and generate flow simulations for 10 catchments areas in Texas over the period 

2000–07. The year 2000 data was used for the model spin up, 2001–04 for calibration, 

and 2005–07 for validation and later validated the results  using observed stream flow 

alongside similar simulations obtained using interpolated gauge QPEs with varying gauge 

network densities, and still others using the operational radar–gauge multi-sensor product 

(MAPX). He noted that calibrating the model using individual QPEs rather than the 

MAPX (the most accurate QPE), yielded overall improvements to the simulation 

accuracy but did not change the relative performance of the QPEs. 

Omeny et al., (2008) studied the effects of MJO on rainfall Variability over the East 

African region. He found out high association between rainfall and MJO indices and 

relatively high skill of predicting intra-seasonal rainfall over the west than the east. 

A comparative verification of the quantitative precipitation forecasts for UKMO, NCEP 

and MM5 NWP models have been carried out (Gitutu, 2006) over Kenya. He examined 

the level of skill of daily precipitation forecasts of numerical weather prediction (NWP) 

models where in all the models the RMSE was found to be largest during the rainy season 

of MAM and relatively low for the drier months. The RMSE was particularly high on 

occasions of heavy precipitation where all the models failed to simulate for the case of 

Lamu and Marsabit stations in July. There were no other significant differences between 

the models that could be discerned other than slightly large errors produced by the NCEP 

model. It was therefore noted that no model was better than the other in terms of accuracy 

and skills. 

Krishnamurti et al., (1999) showed that models over the tropics still show low 

predictability of rainfall. In contrast to this scenario, middle and higher latitudes depicts 
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relatively good accuracy in simulating the observed weather and this is attributed to the 

multilevel numerical modeling. 

Kibara (2011) looked into the predictability of weather on extended NWP time scales 

over Kenya using the NCEP GFS model. He found out that OND season is influenced by 

large scale systems. He also showed that the model was able to capture the wet events. 

However, it couldn’t capture well the dry events as there were incidents of false alarm 

and under-forecasting. 

Various studies have discussed extensively the multi-model short range predictions. 

Doblas-Reyes et al., (2000) combined seasonal forecasts from four different Atmospheric 

General Circulation Models (AGCMs) and found minimal skill improvement. Studies on 

the seasonal scale have also been undertaken by various researchers. Okoola et al., (2008) 

studied on the Wet periods along the East African Coast and the extreme wet spell of 

October 1997. The study showed a high spatial consistency in the precipitation over the 

EAC. The circulation features that were common during most of the wet events were 

westward-moving disturbances in the low-level Equatorial wind field, enhanced 

convergence between the Northern Hemisphere (NH) and Southern Hemisphere (SH) 

trade winds and weakening or reversal of the zonal (Walker type) circulation over the 

Indian Ocean.  

Anyah and Semazzi (2007) looked into the variability of East African rainfall based on 

multi-year RegCM3 model simulations. Their findings showed that spatial correlation 

between the global teleconnections and the simulated seasonal precipitation and some of 

(DMI and Nino3.4 indices) showed that the regional model conserves some of the 

observed regional features where rainfall-ENSO/DMI associations are strong.  

Ininda et al., (2008) researched on Seasonal Rainfall Forecasting through Model Output 

Statistics (MOS) Downscaling of ECHAM forecasts over Tanzania. The results indicated 

that the model was capable of simulating the observed climatological circulation and the 

annual rainfall pattern over Tanzania. The skill of simulation was highest during the 

October to December (OND) rainfall season where the model explained as high as 74% 

of the variance at some locations while during March to May (MAM) the variance 

explained over most locations was less than 40%. This result was consistent with the 
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previous studies that have shown high (low) correlation between the OND (MAM) 

rainfall and the SST. Moreover, the El Nino Southern Oscillation (ENSO) signals are 

observed to be stronger during the OND season. The results from the study showed that 

the use MOS for down scaling improves the simulation skill. 

Mutemi (2003) used ECHAM4.5 to study the variability of East African climate. The 

model reproduced the climatological mean pattern such as the bimodal seasonality of 

rainfall associated with the north–south migration of the ITCZ and monsoonal flow. The 

study however did not get the correct amplitudes of the inter-annual variability linked to 

extreme El Nino episodes such as the 1982 and 1997. The skill of ECHAM4.5 over East 

African sub region has been addressed by IRI/ICPAC collaboration (2002). The results 

indicated that ECHAM4.5 was the best model especially between July-December 

months. The skill of the model was found to be higher during ENSO when large SST 

values are found over many parts of the Equatorial tropics. 

Ogallo et al., (1979) performed a time series analysis for 69 stations in Africa. Trend 

analysis revealed that most of the annual series indicate some forms of oscillations rather 

than any particular trend.  He showed that use of binomial coefficients to smooth the 

series indicated positive or negative trends in recent years in 20 series, but only four of 

these were statistically significant judging by the Spearman rank correlation test.  

Omondi (2010) studied the Linkages between global sea surface temperatures and 

decadal rainfall variability over Eastern Africa region. The study revealed that forcing of 

decadal precipitation over the region is linked with El Niño mode that is prominent over 

the Pacific Ocean, while Indian Ocean dipole is the most important mode over the Indian 

Ocean. An inter-hemispheric dipole mode that is common during ENSO was a prominent 

feature in the Atlantic Ocean forcing regional decadal rainfall. 

In an extensive evaluation of FSUSE technique for numerical weather prediction over a 

global domain within 55 S-55 N, Ross and Krishnamurti (2005) showed that the scheme 

gives forecasts results that are superior to the member models and the ensemble mean in 

forecasts of mass field , motion field, and precipitation. For example, the authors found 

that Superensemble improved the worst model daily forecasts by 37% for day 1, 44% for 

day two, and 43% for day 3. On a season to season comparison, the transition seasons of 
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fall and spring were forecasted with much better skill than the extreme seasons of 

summer and winter. The Southern hemisphere models depicted larger and consistent 

systematic errors which the multi-model Superensemble is able to capitalize on in the 

training period to provide good results. 

The inter-annual variability of precipitation is extremely consistent throughout most of 

the East Africa despite quite diverse climatic mean conditions. The biggest portion of this 

variability is accounted for by the short rains season of OND (Mutai et al., 1998). 

Sakwa (2006) examined the skill of the High Resolution Regional Model in the 

simulation of airflow and rainfall over East Africa. He found out that the model simulated 

well though with some few cases of under estimation and overestimation. The experiment 

revealed that finer model resolution produced statistically significant improvements with 

the study recommending the use of ensemble schemes in Kenya. 

It is important to note that Global Circulation Models differ in many aspects including 

their resolution, physics and dynamics, representation of orography, initialization and 

data assimilation. Operationally, dynamical models do not perform equally well in 

different regions due to lack of data to correctly define initial conditions and the complex 

terrain. Moreover, the skillful performance of these models should be treated cautiously, 

considering their resolution. NWP quality evaluation determines the confidence related to 

a particular forecast over a specific region. However, the evaluation can also be thought 

of as a preliminary validation of simulated climate drift that can be expected from the 

model being tested. This idea is further illustrated by (Kamga et al., 2000) who analyzed 

the systematic errors of the ECMWF operational model (120h forecast). From this point 

of view, verification of model products can serve local forecast applications and a wider 

community that conducts research on a variety of timescales using global model forecasts 

and analyses.  

Kirtman et al., (2003) showed that a major stumbling block to the improvement of the 

skill of forecast is model error, as seen in the long-term simulations. He noted that all 

coupled models have serious systematic errors in terms of the mean, the annual cycle or 

the statistics of inter-annual variability and, in some cases, all three of these 

characteristics. 
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Operationally, model errors are still a shortcoming in forecasting (Latif et al, 2001). 

Model agreement with observation of current weather and climate is the only way to 

assign model confidence. A number of techniques have been proposed to improve the 

analysis of the moisture and divergence fields (Donner et al., 1999; Heckley et al., 1990; 

Puri and Miller, 1990; Puri and Davidson, 1992; Aonashi, 1993; Kasahara et al., 1994). 

One of the techniques proposed to improve the analysis of moisture and divergence fields 

is the physical initialization (PI) procedure. Krishnamurti et al., (1984; 1988; 1991) and 

Treadon (1996) have shown that there is a dramatic increase in the now casting skill of 

precipitation, with a subsequent improvement in the one-day forecast. The PI technique 

assimilates observed precipitation (often satellite derived) using a reverse cumulus 

algorithm, along with reverse algorithms for the physical process. 

With all these model shortcomings however, many authors have been able to achieve 

appreciable progress. Many scientific efforts have been made to provide the best of 

precipitation and temperature forecasts (Rajeevan et al., 2006). That progress largely 

came from a statistical multiple regression approach that included a number of 

predictands.  

The ensemble prediction schemes, single or multi-model, is a relatively recent 

contribution to the general area of weather and climate forecasting. Most deterministic 

and probabilistic ensemble forecast is produced with a single dynamical model, although 

sometimes a set of multi-models is used. The skill of a single and multi-model ensemble 

has been reported by many studies (Doblas-Reyes et al., 2000; Graham et al. 2000; 

Palmer et al., 2000).  

Such ensemble techniques are nowadays routinely used at operational weather 

forecasting centers (Molteni et al., 1996; Buizza, 1998; Toth and Kalnay, 1997). They are 

also applied in seasonal timescale climate studies (Brankovic and Palmer, 1997; Zwiers, 

1996; Doblas-Reyes 2000; Peng et al., 2002).  

Palmer et al., (2004) noted that ensemble modeling is now routinely applied on 

essentially all time scales, ranging from the scale of weather forecasts to the scale of 

climate-change scenarios. Its success has been demonstrated in many studies where 

simple ensemble models can be constructed by pooling together the available single 
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model predictions with equal weight. Straus and Shukla (2000) demonstrated that 

different models have its own variability generated by internal dynamics. As a result, the 

performance of a multi-model ensemble is generally more reliable than that of a single 

model. 

Goerss (2000) examined the usefulness of putting together three dynamical models into 

an equally weighted ensemble mean. He used GFDL, NOGAPS, and United Kingdom 

Meteorological Office. The resulting ensemble mean showed greater skill than the 

majority of single models. 

Kirtman et al., (1997) found that a combination of physical ocean models, AGCMs and 

statistical models is useful in predicting seasonal rainfall because different models 

addresses different problems. However, given that models may differ in their quality and 

skill, it has been suggested to further optimize the effect by weighting the participating 

models according to their prior performance in its simplest form.  

Several approaches have attempted to combine model ensemble forecast to a single 

reliable forecast that carries higher skills when compared to the individual member 

models. These include the simple ensemble mean (Peng et al., 2002; Doblas-Reyes et al., 

2000; Palmer et al., 2004), regression improved ensemble mean (Kharin and Zwiers, 

2002), bias removed ensemble mean (Kharin and Zwiers, 2002), and the multi-model 

Superensemble (Krishnamurti et al., 1999).  

Veenhuis (2013) researched on the spread calibration of Ensemble Model Output 

Statistics (MOS) Forecasts. He used a post-processing ensemble technique called kernel 

density model output statistics (EKDMOS). Forecasts from this technique had an 

improved calibrated spread–error relationship, and showed increased day-to-day spread 

variability and were more reliable. 

Calvetti and Filho (2014) carried out a research on Ensemble Hydrometeorological 

Forecasts using Weather Research and Forecasting (WRF) hourly Quantitative 

precipitation forecast (QPF) for the Iguaçu river watershed (IRW) in southern Brazil. He 

found out that the ensembles yielded up to 20% better skill than single WRF forecasts for 

the events analyzed.  
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Following intensive studies (Krishnamurti et al., 1999; 2000b; 2005; Williford et al., 

2003), at FSU, the multi-model forecast data set constitutes a valuable basis upon which 

the super ensemble has evolved.  

Krishnamurti et al., (2000a) and Chaves et al., (2005) showed that Superensemble is a 

powerful post-processing tool that makes use of forecasts from global producing centers. 

The technique has been proven to be successful in producing a deterministic forecast 

superior not only to any of the individual models going into it, but also to the multi-

model ensemble forecast. Research so far has been done on the Superensemble as a 

deterministic forecast, and it has been shown that using the Superensemble method leads 

to a significant reduction in RMSE.  

The superensemble methodology (Krishnamurti et al., 1999) issues a consensus forecast 

from a set of dynamical model forecasts by applying a collective bias correction in a 

manner unlike classical bias corrections. The latter weight every model equally both in 

bias calculation and forecast construction. In contrast, the Superensemble technique 

considers the past performance of each model in assigning its relative forecast weight. 

This is carried out for each of the models, variables and at every grid location.  

The technique has been shown to yield superior forecasts when applied to weather and 

climate prediction (Krishnamurti et al., 2000a;2000b; 2001; 2002; 2003; Chakraborty et 

al., 2006) 

Its algorithm entails the division of a time line into two parts, a training phase and a 

forecast phase. In this technique, the different model forecasts are statistically combined 

during the training phase using multiple linear regression with the skill of each ensemble 

member implicitly factored into the Superensemble forecast. The least square 

minimization method leads to calculation of statistical weights. 

Weights calculated vary geographically, thus taking into account the regional variation 

and biases of each model. The weights therefore make the Superensemble an exceptional 

tool compared to other ensemble schemes (Stefanova and Krishnamurti, 2002; 

Chakraborty and Krishnamurti, 2006). 
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Mutemi et al., (2006) noted that as the number of training Days increases successively 

from 60, 90, 120 and 150, the RMSE continues to decrease. He found out that roughly 

150 days of training are minimally needed for improved forecasts. 

The forecast resulting from the projection of these weights into a forecast phase has small 

errors and higher skill than most conventional models and conventional ensemble 

techniques. The ensemble mean assigns a weight of 1/N to each of the N member models 

everywhere regardless of their relative performance. As a result assigning the same 

weight of 1/N to some poorer models has been noted to degrade the skill of the ensemble 

mean. It is possible to remove the bias of models individually and to compute an 

ensemble mean of the bias-removed models. This too has somewhat lower skill compared 

to the Superensemble, which carries selective weights distribution in space, multi-

models, and variables.  

The skill of the multi-model superensemble method significantly depends on the error 

covariance matrix since the weights of each model are computed from a designed 

covariance matrix. The classical method for the construction of the superensemble 

utilizes a least square minimization principle within a multiple regression of model output 

against observed ‘analysis’ estimates. This entails a matrix inversion that is solved by 

Gauss Jordan elimination technique. The matrix can be ill-conditioned and singular 

depending on the interrelationships of the member models of the superensemble. 

Recently designed (Wilks, 1995) based on is a singular value decomposition (SVD) 

method for the multi-model superensemble that overcomes this problem and removes the 

ill conditioning of the covariance matrix entirely (Yun et al., 2003). Tests of this method 

have shown great skills in weather and seasonal climate forecasts compared to the Gauss 

Jordan elimination method. 

Many enhancement of the superensemble technique have been made in past studies 

(Krishnamurti et al., 2001; 2003; Stefanova and Krishnamurti, 2002; Yun et al., 2003) 

and it has been shown that this technique provides higher skill forecasts compared to all 

participating member models and the ensemble mean. Krishnamurti et al., (2003) noted 

that the Superensemble skill during the forecast phase could be degraded if the training 

was executed with either poorer analysis or poorer forecasts. This indicates that the 
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forecast will be improved when higher quality training data sets are deployed for the 

evaluation of the multi-model statistics.  

A mix of multi-model based medium range forecasts and a comprehensive downscaling 

and the construction of Superensemble from model outputs is therefore the approach to 

be followed in this study. The availability of a comprehensive rainfall data archive from 

TRMM at a horizontal resolution of 25km and the model output from the Global 

Circulation Models will make this process possible. 
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CHAPTER THREE 

3.0 DATA AND METHODOLOGY 

This chapter is devoted to the discussion of the data and the various methods employed to 

achieve the main objective. 

3.1 Data 

The data used in this study included rainfall estimates from Tropical Rainfall Measuring 

Mission (TRMM) and model outputs from THORPEX (The Observing system Research 

and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE).TIGGE 

datasets is an effort by the World Weather Watch Programme to improve on the forecast 

skill of 1 day to 2 weeks.  

3.1.1 Satellite Rainfall Estimates  

Although the National Meteorological and Hydrological Centers (NMHCs) all over the 

world have a network of observing stations, they are not dense enough. Data from such 

stations are thus not adequate and cannot be used as a representative of a very large area. 

TRMM, which is a joint venture between National Aeronautics and Space Agency 

(NASA) and Japan Aerospace Exploration Agency (JAXA), is therefore, a grand idea as 

they provide high resolution data (25km) spanning the entire tropical belt.  

TRMM has been availing accurate observational sets of precipitation over the global 

tropics since its launch on 27 November 1997. It was designed to monitor tropical and 

subtropical precipitation and to estimate its associated latent heat using precipitation 

radar (PR) and the TRMM Microwave Imager (TMI) instruments (Kummerow et al., 

2000). 

The algorithm used is the TRMM Microwave Imager (TMI) 2A12 rainfall algorithm, 

(Kummerow et al., 1996; 2000) that is supplemented by the National Oceanic and 

Atmospheric Administration/ National Environmental Satellite, Data, and Information 

Service Special Sensor Microwave/Imager (NOAA/NESDIS SSM/I) algorithm (Ferraro 

et al., 1995).  
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The TRMM satellite has 5 sensors on board, which are precipitation radar (PR), TRMM 

Microwave Imager (TMI), Visible Infrared Scanner (VIRS), Clouds and the Earths 

Radiant Energy System (CERES), and Lighting Imaging Sensor (LIS). PR, TMI, and 

VIRS are sensors for measuring the rain, but the observation principle and the swath 

width of each sensor are different from each other. PR measures three dimensional 

distribution of rainfall by means of receiving retuned signals from the rain after it 

transmits a microwave. 

3.1.2 Model Output (Hind casts) 

Model outputs from THORPEX Interactive Grand Global Ensemble (TIGGE) were used 

in this study. Most operational Numerical Weather Prediction (NWP) centers run models 

that span the global domain. These centers have jointly agreed to provide their outputs to 

TIGGE. TIGGE is a noble idea that envisages a world free of weather related 

catastrophes by routinely providing real time daily weather forecasts from ten global 

centers for research purposes. These centers are the European Centre for Medium Range 

Weather Forecasts (ECMWF), the National Centre for Environmental Prediction 

(NCEP),  the Center for Weather Forecast and Climatic Studies (CPTEC), the China 

Meteorological Agency (CMA),  the Canadian Meteorological Centre (CMC), the United 

Kingdom Meteorological Office (UKMO), the Australian Bureau of Meteorology 

(BOM), the France Meteorological Agency (MeteoFrance), the Korea Meteorological 

Agency (KMA) and  the Japan Meteorological Agency (JMA). A brief description of the 

TIGGE models is provided in Table 1.  

In this study, the FSUSE utilizes outputs from four centers namely ECMWF, NCEP, 

CPTEC and UKMO to make consensus forecasts of up to 10 day lead time by utilizing 

the Superensemble technique. The four center models were chosen based on their 

consistency in terms of runs and data availability and forecast data validity time (12.00 

GMT). Validity time was taken to be 12.00 GMT so as to coincide with the TRMM data. 

TIGGE is therefore a key component of World Weather Watch Programme attempt to 

improve on the forecast skill for the medium range scales of 1 day to 2 weeks and also 

bridge the gap that exists between the academic and operational worlds.  
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Table 1: Descriptions of NWP models from the TIGGE archive 
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3.2 Methodology 

This Section presents the various methods employed in this study to achieve the set 

objectives.  Subsection 3.3.1 addresses the first objective which involves the assessment 

of the Spatial and temporal Distribution of Observed rainfall. 3.3.2 And 3.3.3 involves 

the assessment of model skill and measures of accuracy and the superensemble 

methodology respectively. 

3.2.1 Assessment of the Spatial and temporal Distribution of Observed rainfall 

This subsection was examined by use of simple spatial and temporal analysis that 

included time series plots and spatial maps. Spatial maps and time series plots were 

obtained by use of Grid Analysis and Display System (GrADS) software.  

3.2.2 Assessment of model skill and measures of accuracy 

This section presents various statistical measures of accuracy and goodness used to assess 

skill of SE performance in this study. These include Root Mean Square Error (RMSE), 

Spatial Correlation (SC), Bias and Equitable Threat Scores (ETS). 

3.2.2.1 Root mean square error 

Root mean square error is a measure for computing the differences between values 

predicted by a model and the actual observations and is represented by the Equation 1. 

…………………………………………..............................1 

In Equation 1, N is the total number of the observations or the forecasts, Fi and Oi are the 

predicted and the observed values at time i. 

3.2.2.2 Spatial Correlation analysis 

Correlation analysis provides the degree of linear association between a pair of variables. 

The simple correlation coefficient (r) between a model output variable (fi) and the 

corresponding observation (oi) is given by Equation 2. 
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 ……………………………………………………2 

 

In Equation 2, and  are sample means of observed data and model outputs, 

respectively, and N is the total number of cases used in the analysis. The r value indicates 

the correlation of the forecasts to the observation; a high (low) r value indicates higher 

(lower) correlation between the two. 

Correlation alone is not sufficient to delineate linkages between multiple dependent/ 

independent variables. The statistical significance of r may be tested using the standard 

student t-test. Test significance level to be considered is 95% confidence. If found that 

computed value of t is greater than tabulated value, then correlation coefficient is 

significant. This will be done using Equation 3. 

.………………………………………………………..………..….3 

Spatial correlation gives the areal average performance of a forecast. For this study, a 

grid by grid mapping between the forecast and observed rainfall values were done to 

establish the overall performance of the models. 

3.2.2.3 Equitable Threat Scores and Bias Scores 

The Equitable Threat Score (Schaefer, 1990) measures the skill in predicting the area of 

precipitation amounts over any given threshold with respect to a random (no skill) control 

forecast and is defined by Equation 4.  

………………………………………………………..………4 

In Equation 8, F is the number of grid boxes that forecast more than the threshold, O is 

the number of grid points that observe more than the threshold, H is the number of grid 

points that correctly forecast more than the threshold and CH is the expected number of 

hits in a random forecast of F points for O observed points. CH is expressed as shown in 

Equation 5. 



28 
 

………………………………………………………………………..….5 

In Equation 5, T is the total number of grid boxes inside the verification domain. The 

ETS seems to be a good estimate for overall forecast skill. The higher the ETS value, the 

better the forecast skill for that particular threshold. It can vary from a small negative 

number to 1.0, where 1.0 represents a perfect score. The ETS is basically the ratio of the 

correct forecast area to the total area of the forecast and observed precipitation. The 

model gets penalized for forecasting rain in the wrong place as well as for not forecasting 

rain in the right place. Therefore the model with the highest score is the best model. 

Bias score is the ratio of the forecast area (points) to observed area (points) of 

precipitation amounts over any given thresholds (Anthes, 1983). It is defined by Equation 

6. 

…………………………………………………………………..………….6 

Bias score is a very simple equation. It does not comment at all on the skill of a model 

forecast in terms of placement of precipitation, but does give an indication if a model is 

consistently over-forecasting or under-forecasting rainfall areas. A model that remains 

near the 1.0 line is the best. If the model verifies over 1.0, it is over-forecasting and if 

below 1.0 then it is under forecasting. 

3.2.3 Superensemble Methodology 

The super ensemble approach is a recent contribution to the general area of weather and 

climate forecasting.  This has been discussed in a series of publications (Krishnamurti et 

al., 1999; 2000a; 2000b; 2001).  

The technique entails the partitioning of a timeline into two parts. One part is the control 

(training) phase, where forecasts by a set of member models, are compared to the 

observed field. This is done in order to develop statistics i.e. weights ai (Equation 7) on 

the least squares fit of the forecasts to the observations. The second part is the forecast 

phase where weight estimates from the training phase are used to create the 

superensemble.  
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The performance of the individual models is thus obtained in the training phase using 

multiple linear regressions against observed (analysis) fields. The outcome of this 

regression is the weights assigned to the individual models in the ensemble, which are 

then passed on to the forecast phase to construct the Superensemble forecasts. The 

temporal model anomalies of the variables are regressed against the observed anomalies 

when formulating the Superensemble forecasts, and the weights are multiplied to the 

corresponding model anomalies. The constructed superensemble forecast is as shown in 

Equation 7. 

 

In Equation 7, is the observed climatology over the training period;  is the weight for 

the i
th 

member in the ensemble; and   and  are the i
th 

models forecasts and the forecast 

mean (over the training period) respectively. N is the number of member models. The 

weights   are obtained by minimizing the error term E, where E is expressed as shown 

in Equation 8. 

 

In Equation 8,  is the number of time samples in the training phase, and  and  

are the respective superensemble and observed field anomalies at training time t. This 

exercise is done at all model grid points. A fit performed for all model variables at all 

model grid points at all vertical levels typically yields close to 10
7
 regression weights. 

These spread of weights are fractional, positive or negative. This large number arises 

from the number of transform grid points, number of vertical levels, number of basic 

variables and the number of models. Over many such locations, diverse performance 

characteristics of the member models that arises from differences in horizontal and 

vertical discretization, treatment of physics, handling of inhomogeneity of land surface, 

orography, water bodies, surface physics and boundary conditions have been noted.  
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3.2.3.1 Downscaling methodology 

The daily mean datasets from the multi-models was interpolated to 0.25
o
x0.25

o
 resolution 

for the period 1997-2013 to conform to the TRMM resolution. This was done by use of 

bilinear interpolation. The procedure involves calculation of regression coefficients 

which can be done using Equation 9. 

……………………………………………………………………9 

In Equation 9, , , a, b and e are the observed rainfall, interpolated model 

forecasts, regression coefficient and the error term respectively.  The basic principle here 

is to minimize the absolute value of the error term (│e│). Downscaled model rainfall is 

then obtained using these coefficients.  

…………………………………………………...............................10 

From Equation 10, , (a) and (b) are the downscaled rainfall forecast of the model, 

slope and the intercept of the least square fitting. The regression coefficients (a) and (b) 

are computed using Equation 3 at each grid point and separately for each day. They carry 

information that varies temporally and spatially and are to be used to predict the regional 

precipitation over GHA. The schematic procedure for downscaling and Superensemble 

forecasting is as shown in Figure 3. 
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(a)  

 

 

 

 

 

(b) 

 

 

 

 

Figure 3: Schematic diagram showing the steps involved in: (a) Downscaling 

methodology, and (b) Superensemble forecasts. The model’s forecasts are 

statistically evaluated for their errors during the training phase and the resulting 

statistical weights are used to construct the multi-model super ensemble (adapted 

from Krishnamurti, 2010) 
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSIONS 

This chapter presents the results obtained in this study. Spatial and temporal distribution 

of the observed rainfall and forecast skill scores of TIGGE multi-models and the final 

Superensemble ten day rainfall forecasts are presented. 

4.1 Spatial and temporal distribution of the observed precipitation over the Greater 

Horn of Africa Region 

Rainfall estimates from the Tropical Rainfall Monitoring Mission were used. The 

assessment was done by use of spatial and temporal analysis that included the use of 

spatial maps and time series plots. This was done in a series of intervals spanning the ten 

day and monthly average distribution for the period 2008 to 2010.  

Figure 4 shows the distribution of observed (TRMM) 10 day mean rainfall (in mm/day) 

over the GHA region during the months of October to December 2008. The figure shows 

that in the first dekad of October, much of Western Kenya, Uganda, South Sudan, 

Southern Ethiopia and Southern Somalia received rainfall amounts of between 1.0 

mm/day to 10 mm/day with some small patches near the Lake Victoria region receiving 

up to 20 mm/day. These amounts can be seen in Figure 4 (a). There were no much 

changes in the second dekad. During the third dekad of October and first dekad of 

November, a north easterly shift of rainfall activities were noted with rainfall amounts 

between 30 mm/day to 50 mm/day recorded in Central Eritrea (Figure 4 c, and d). During 

the last two dekads of November (Figure 4 e and f) and all the December dekads (Figure 

4 g, h and i) for the period 2008, much of the northern sectors of the GHA remained dry. 

Much of Sudan, South Sudan, Eritrea, Djibouti and Somalia; most parts of Ethiopia and 

Northern Kenya received less than 1.0 mm of rainfall. Over the same period, the south 

western sector of the region including Western Kenya, Most parts of Tanzania, Uganda, 

Rwanda and Burundi received rainfall amounts between 2.0 mm to 15.0 mm (Figure 4 e 

and f). 
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Figure 4: Spatial distribution of observed (TRMM) 10 day mean rainfall (mm/day) 

over the GHA region during the months of October to December 2008 
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Figure 5 shows the distribution of observed (TRMM) 10 day mean rainfall (in mm/day) 

over the GHA region during the months of October to December 2009. Figure (a), (b) 

and (c) shows rainfall distribution for the month of October. It is evident that the rains are 

concentrated in the equatorial sector during the months of October with a slight 

southward shift in the November month. By December, the rains are fully concentrated in 

the south (Figure g, h, and i). Coastal Kenya and South Somalia received rainfall amounts 

of between 30 mm/day to 50 mm/day (Figure 5 c). 
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Figure 5: Spatial distribution of observed (TRMM) 10 day mean rainfall (mm/day) 

over the GHA region during the months of October to December 2009 
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Figure 6 shows the distribution of observed (TRMM) 10 day mean rainfall (in mm/day) 

over the GHA region during the months of October to December 2010. An almost similar 

pattern is again noted as was the case with 2008 and 2009 dekads. Rainfall amounts 

greater than 10mm/day were recorded in Central highlands of Kenya (Figure 6 d) and 

Central Tanzania (Figure 6 g). 
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 Figure 6: Spatial distribution of observed (TRMM) 10 day mean rainfall (mm/day) 

over the GHA region during the months of October to December 2010 
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Figure 7 shows the spatial distribution of the observed (TRMM) monthly mean rainfall 

over the GHA region during the months of October to December 2008 to 2010. The 

pattern shows that the TRMM rainfall estimates is consistent with the North to South 

migration of the ITCZ during the period with wet activities concentrated northwards and 

at the equator at the beginning of the October month (Figure 7 a, b, and c) and 

southwards towards the end of the season (Figure 7 g, h, and i). 

 Figure 7: Spatial distribution of observed (TRMM) monthly mean rainfall over the 

GHA region during the months of October to December 2008, 2009 and 2010 
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Figure 8 shows the time series plots of observed (TRMM) daily rainfall over the GHA 

region for the October to December 2012 for some selected stations in the region. Wet 

conditions were experienced over the south-western parts of the equatorial sector 

represented by Entebbe, Kigoma and Dagoretti stations during the months of October and 

November 2012 with a maximum recorded amount of 62 mm/day recorded in Kigoma. 

Khartoum station which is in the northern part of the region remained dry for the entire 

season. 

 

Figure 8: Time series plots showing the overall distribution of observed (TRMM) 

rainfall over the GHA region for the October-December 2012 for some selected 

stations 
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From the assessment of the spatial and temporal patterns of the observed (TRMM) 

precipitation, it is clear that rainfall distribution exhibits a Southward shift in 

precipitation with a marked shift in the month of December. This is consistent with the 

temporal and spatial pattern of the ITCZ, the main rain bearing synoptic system across 

the tropical Africa. OND is the season where the ITCZ migrates towards the South.  

During this period, the zone has both the Meridional and Zonal arms with Meridional arm 

responsible for the East –West variation of precipitation in the region. The intensity of 

Westerlies also determines the advection of the Congo air mass which is a very important 

rain bearing system in the region. Presences of tropical cyclones in the South West Indian 

Ocean also affect the rainfall distribution in both space and time. Depending on their 

location, intensity and track, they act to either enhance or suppress the rains. Localized 

features like water bodies e.g. Lake Victoria and orography also played a big role in the 

observed rainfall trends and patterns. 
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4.2 Representativeness of TRMM Rainfall Estimates over some stations in the 

Greater Horn of Africa region 

This section utilized correlation and RMSE scores to present the performances of the 

TRMM rainfall estimates that was used in this study. The findings of RMSE and 

correlation coefficients over some stations in Kenya and Uganda during the month of 

October, November and December, 2012 are presented in Figure 9 and Tables 2 and 3. 

The results showed RMSE values in the range of 0.8 to 10 mm/day for the October 

month and 6 to 20 mm/day for the November month. On average, Figure 9 shows that the 

values of RMSE were highest for the month of November with a RMSE value of 20 

mm/day.  

Correlation coefficient values were fairly good over most stations indicating significant 

correlations between the TRMM and observed rainfall during most of the months. The 

highest correlation values were recorded for the month of October 2012 in Dagoretti, 

Lamu and Voi with values of 0.889, 0.794 and 0.904 respectively. This corresponded 

with the lowest RMSE values of 2.368217, 5.036191 and 0.672204 mm/day. The shaded 

values in table 2 give the significant correlation scores tested at 95% confidence level. 

In conclusion, the results from both RMSE and correlation analysis indicated that TRMM 

precipitation is a fairly good representation of observed rainfall over the selected stations. 

However, future analysis should strive to incorporate more of in-situ observations. 
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Table 2: Correlation coefficient values for the month of October, November and 

October, November and December (OND) season 2012 between the TRMM rainfall 

estimates and actual observations for some selected stations in the Greater Horn of 

Africa. Green shading represents positive significant correlation coefficients at 95% 

confidence level 

 

OCTOBER   

CORRELATION 

 NOVEMBER 

CORRELATION 

 OND 

CORRELATION 

ELDORET  0.3928 

 

0.4165 

 

0.2174 

KAKAMEGA             0.3845 

 

                 0.3110 

 

0.1083 

KISUMU 0.2523 

 

0.6704 

 

0.3304 

NAROK 0.2432 

 

0.6890 

 

0.1216 

DAGO 0.8892 

 

                 0.2923 

 

0.2701 

LAMU 0.7944 

 

0.3030 

 

0.4454 

VOI 0.9043 

 

0.5945 

 

0.5357 

MOMBASA 0.4797 

 

                -0.0916 

 

0.1920 

KAMPALA 0.1546 

 

0.2596 

 

0.1741 

JINJA 0.4518 

 

0.5782 

 

0.3590 

ENTEBBE  -0.2165 

 

0.1927 

 

                0.1875 
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Table 3: RMSE values (mm/day) for the month of October, November, December 

and October, November and December (OND) season 2012 between the TRMM 

rainfall estimates and actual observations for some selected stations in the Greater 

Horn of Africa 

  

OCTOBER 

RMSE 

 

NOVEMBER 

RMSE 

 

DECEMBER 

RMSE 

 

OND 

RMSE 

ELDORET 

 

8.152 

 

8.177 

 

8.321 

 

8.217 

KAKAMEGA 

 

9.306 

 

8.022 

 

      14.709 

 

11.094 

KISUMU 

 

10.133 

 

11.005 

 

16.427 

 

12.846 

NAROK 

 

6.166 

 

8.388 

 

11.300 

 

8.876 

DAGO 

 

2.368 

 

19.752 

 

17.462 

 

15.227 

LAMU 

 

5.036 

 

8.272 

 

9.285 

 

7.740 

VOI 

 

0.672 

 

         

16.149 

 

11.525 

 

11.400 

MOMBASA 

 

9.614 

 

15.803 

 

1.6163 

 

10.651 

KAMPALA 

 

6.841 

 

14.360 

 

13.949 

 

12.189 

JINJA 

 

9.776 

 

6.959 

 

12.094 

 

9.863 

ENTEBBE 

 

        7.834 

 

12.929 

 

10.605 

 

10.635 
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Figure 9: Correlation and RMSE analysis between the TRMM rainfall estimates 

and actual observations for the October, November and December 2012 
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4.3 Assessment of model skill and measures of accuracy 

This section presents results from various statistical methodologies used to assess various 

skills in this research. They include RMSEs, Spatial Correlation, Bias and Equitable 

Threat Scores. 

4.3.1 Time series plots of spatial correlation and root mean square errors for 

multimodels and Superensemble precipitation forecasts 

Forecast datasets from TIGGE and rain rates from TRMM were used to construct a 

Superensemble precipitation forecast for the period 20 to 29 November, 2013. The past 

450 days of multimodel forecast data of 2008 to 2012 (October, November and 

December) were used to train the model and calculate statistical weights.  Time series of 

spatial correlation and RMSE scores of Multimodels and Superensemble forecasts over 

the Greater Horn of Africa are presented on Figure 10. These are three case runs starting 

at 20, 21 and 22, November 2013 respectively each with a forecast lead time of 10 days. 

These plots show consistently high and low spatial correlation and RMSE scores 

respectively for the Multimodel Superensemble forecasts as compared with that of 

individual models. 

The RMSE of the FSU superensemble ranges from 4.8 to 8.0 mm/day (Figure 10 b and f) 

for all 10 days of forecasts. Irrespective of the forecast day, SE forecasts RMSE ranges 

have a small spread as compared with the individual multimodels. This indicates a major 

improvement for the forecast for all the forecast days.  
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Figure 10: Time series of spatial correlation and RMSE (mm/day) scores of 

Multimodels and Superensemble forecasts over the Greater Horn of Africa. These 

are three case runs starting at 20, 21 and 22 November 2013 respectively each with 

lead times of 10 days 
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4.3.2 Spatial plots of Multimodel and Superensemble precipitation forecasts 

(mm/day) 

In this section, observed rain, as seen from the TRMM files, the individual member 

model forecasts and the FSU superensemble forecasts is shown. Also included on top of 

each panel are the values for the Spatial Correlation and RMSE. The construction of the 

superensemble made it possible to achieve consistent and better scores. If the member 

models carry consistent and large systematic errors then the superensemble is able to 

capitalize on these and reduce them. 

Figure 11shows spatial plots for RMSE and Spatial Correlation scores between TRMM 

and model outputs (individual models and SE forecasts) over the Greater Horn of Africa 

region for day 1 (20 November 2013) and day 2 (21 November 2013). SE forecast 

product for both day 1 and day 2 outperformed all the individual models in the suite with 

a RMSE of 4.83 mm/day and 5.75 mm/day and SC of 0.47 and 0.44 for day 1 and day 2 

respectively (Figure 11 (i)b and (ii)b). CPTEC model had the highest RMSE of 8.81 

mm/day (Figure 11 (i) f). CPTEC indicated that for day 1, the south western part of the 

region could receive rainfall amounts of up to 50 mm/day which was contrary to the 

observation. 
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(i)  

 (ii) 

Figure 11: Spatial Plots showing RMSE and Spatial Correlation scores between 

TRMM and model outputs (individual models and SE forecasts) over the Greater 

Horn of Africa region. (i) And (ii) Shows Plots for Day 1 (20 November 2013) and 

Day 2 (21 November 2013) respectively. Numbers in every forecast panels show the 

RMSE and SC 
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Figure 12 shows spatial plots for RMSE and Spatial Correlation scores between TRMM 

and model outputs (individual models and SE forecasts) over the Greater Horn of Africa 

region for day 3 (22 November 2013) and day 4 (23 November 2013). The output from 

ECMWF had a better RMSE of 5.14 mm/day for day 3 (Figure 12 (i) d) as compared to 

that from SE which had a value of 5.19 mm/day (Figure 12 (i) b). For day 4, UKMO 

model performed well individually with a SC and RMSE score of 0.33 and 8.57 mm/day 

(Figure 12 (ii) c). The SE outperformed all the models in the suite as it had the highest 

SC of 0.5 (Figure 12 (i) b). CPTEC model performed poorly individually with a RMSE 

of 10.46 mm/day for day 4 (Figure 12 (ii) f).  

 

 

 

 

 

 

 

 



50 
 

(i) 

(ii) 

Figure 12: Spatial Plots showing RMSE and Spatial Correlation scores between 

TRMM and model outputs (individual models and SE forecasts) over the Greater 

Horn of Africa region. (i) and (ii) Shows Plots for Day 3 (22 November 2013) and 

Day 4 (23 November 2013) respectively. Numbers in every forecast panels show the 

RMSE and SC 



51 
 

 

Spatial plots of RMSE and SC scores between TRMM and model outputs (individual 

models and SE forecasts) over the Greater Horn of Africa region for day 5 (24 November 

2013) and day 6 (25 November 2013) are shown in Figure 13. For both day 5 and 6, the 

SE had superior forecasts in terms of RMSE and SC. Individually, ECMWF had a better 

SC and RMSE score of 0.28 and 5.99 mm/day (Figure 13 (i) d). This compares with a SE 

score of 0.37 and 5.43 mm/day for SC and RMSE respectively (Figure 13 (i) c). UKMO 

model performed better in day 6 with a SC and RMSE score of 0.34 and 5.82 mm/day 

(Figure 13 (ii)c) with SE scores of 0.50 and 5.41 mm/day for the same day (Figure 13 

(ii)b). CPTEC model performed poorly individually with SC and RMSE scores of 0.24 

and 9.64 mm/day for day 5 (Figure 13 (i) f) and 0.29 and 9.22 mm/day for day 6 (Figure 

13 (ii) f). 
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(i) 

 

(ii) 

Figure 13: Spatial Plots showing RMSE and Spatial Correlation scores between 

TRMM and model outputs (individual models and SE forecasts) over the Greater 

Horn of Africa region. (i) and (ii) Shows Plots for Day 5 (24 November 2013) and 

Day 6 (25 November 2013) respectively. Numbers in every forecast panels show the 

RMSE and SC 
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Figure 14 shows spatial plots for RMSE and Spatial Correlation scores between TRMM 

and model outputs (individual models and SE forecasts) over the Greater Horn of Africa 

region for day 7 (26 November 2013) and day 8 (27 November 2013). Again, the SE 

forecast gave better results than the individual models as were seen in the SC and RMSE 

scores. The TRMM showed an intensification of rainfall activities in the south western 

part of the region and most of it was captured by the SE and ECMWF model. 

Individually, UKMO model had a better SC and RMSE score for both day 7 and 8 of 

0.36 and 6.46 mm/day and 0.41 and 5.50 mm/day respectively (Figure 14 (i) c and Figure 

14 (ii) c ). This compares with a SE score of 0.49 and 6.88 mm/day for day 7 and 0.48 

and 5.56 mm/day for day 8 for SC and RMSE respectively (Figure 14 (i) b and Figure 14 

(ii) b).  
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(i) 

(ii) 

Figure 14: Spatial Plots showing RMSE and Spatial Correlation scores between 

TRMM and model outputs (individual models and SE forecasts) over the Greater 

Horn of Africa region. (i) and (ii) Shows Plots for Day 7 (26 November 2013) and 

Day 8 (27 November 2013) respectively. Numbers in every forecast panels show the 

RMSE and SC 
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Figure 15 shows spatial plots for RMSE and Spatial Correlation scores between TRMM 

and model outputs (individual models and SE forecasts) over the Greater Horn of Africa 

region for day 9 (28 November 2013) and day 10 (29 November 2013). In terms of the 

SC and RMSE, the SE had better scores. TRMM pattern for day 9 forecast showed a 

reduction of rainfall activities from the previous day (day 8) in the south western part of 

the region.  Individually, ECMWF model had a better SC and RMSE score for both day 9 

and 10 of 0.37 and 7.35 mm/day and 0.42 and 6.49 mm/day respectively (Figure 15 (i) d 

and Figure 15 (ii) d ). This compares with a SE score of 0.45 and 7.02 mm/day for day 9 

and 0.54 and 6.42 mm/day for day 10 for SC and RMSE respectively (Figure 15 (i) b and 

Figure 15 (ii) b). In summary, the superensemble carried consistent and better values for 

these skills through Day 10 of forecasts as compared to the individual models. 
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(i) 

(ii) 

Figure 15: Spatial Plots showing RMSE and Spatial Correlation scores between 

TRMM and model outputs (individual models and SE forecasts) over the Greater 

Horn of Africa region. (i) and (ii) Shows Plots for Day 9 (28 November 2013) and 

Day 10 (29 November 2013) respectively. Numbers in every forecast panels show the 

RMSE and SC 
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Table 4 shows the Comparison between the best of the four individual models 

participating in the superensemble suite and the Superensemble (SE) forecast in terms of 

spatial correlation and RMSE scores. It is noted that for all the forecast days, the UKMO 

and ECMWF performed better individually as compared to other individual models in the 

suite. 

Table 4: Comparison between the best of four individual models participating in the 

superensemble suite and the Superensemble (SE) forecast in terms of Spatial 

Correlation and RMSE scores 

Day Model Correlation coefficient RMSE (mm/day) 

1 SE 0.47 4.83 

ECMWF 0.32 4.36 

2 SE 0.44 5.75 

UKMO 0.31 5.58 

3 SE 0.50 5.19 

UKMO 0.32 5.58 

4 SE 0.38 8.10 

ECMWF 0.33 8.67 

5 SE 0.37 5.43 

ECMWF 0.28 5.89 

6 SE 0.50 5.41 

NCEP 0.39 7.66 

7 SE 0.49 6.88 

UKMO 0.36 6.46 

8 SE 0.48 5.56 

UKMO 0.41 5.60 

9 SE 0.45 7.02 

ECMWF 0.37 7.35 

10 SE 0.54 6.42 

ECMWF 0.42 6.49 
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4.3.3 Equitable Threat Scores and bias scores for different thresholds 

Equitable Threat Scores (ETS) and Bias scores were computed for the precipitation 

forecasts for all the models for each day of forecast over the region, i.e. Day 1 to 10 for 

different thresholds. For this study, arbitrary thresholds of 0.2, 2, 5, 10, 25, 35 and 50 

mm/day were chosen.  

Figure 16 shows ETS and Bias scores for Day 1(20 Nov. 2013), Day 2 (21 Nov. 2013) 

and Day 3 (22 Nov. 2013) forecasts of FSU multimodel superensemble and the individual 

models forecasts over the Greater Horn of Africa region.  Left and right panels are ETS 

and Bias scores respectively. The abscissas in these diagrams are the rainfall rate 

thresholds, for instance, number 5 denotes all rainfall in excess of 5 mm/day. The 

ordinate denotes the ETS in the left panels and the bias scores in the right panels. The 

Day 1 ETS for most member models ranges from 0.133 (CPTEC) to 0.279 (UKMO) for 

0.2 mm/day threshold and 0.142 (CPTEC) to 0.262 (UKMO/ECMWF). This compares 

with superensemble ETS values of 0.308 and 0.274 for 0.2 and 2 mm/day thresholds 

respectively. The day 1 bias for most member models ranges from 1.962 (UKMO) to 

2.784 (CPTEC) for 0.2 mm/day threshold and 1.56 (ECMWF) to 2.935 (CPTEC) for 2 

mm/day threshold.  This compares with superensemble bias scores of 1.348 and 1.451 for 

0.2 and 2 mm/day thresholds respectively. Forecasts from NCEP model had a tendency to 

over-forecast at precipitation thresholds greater than 10 mm/day. 
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Figure 16: Equitable Threat Score (ETS) and Bias scores for Day 1(20 Nov. 2013), 

Day 2 (21 Nov. 2013) and day 3 (22 Nov. 2013) forecasts of FSU multimodels over 

the Greater Horn of Africa region.  Left and right panels are ETS and Bias scores 

respectively 
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Figure 17 shows ETS and Bias scores for Day 4(23 Nov. 2013), Day 5 (23 Nov. 2013) 

and Day 6 (25 Nov. 2013) forecasts of FSU multimodel superensemble and the individual 

models forecasts.  Forecast from CPTEC model had the lowest ETS score of 0.083 at 

Day 5 while NCEP and ECMWF models performed better individually with ETS scores 

of 0.202 (Day 5) and 0.298 (Day 6) respectively for precipitation thresholds of 0.2 and 2 

mm/day. This compares with slightly better score of 0.334 (Day 6) for the superensemble 

forecast at the same thresholds. All the models had a tendency to over-forecast 

precipitation as they had Bias scores greater than one with the highest bias score of 2.44 

(Day 5)  for CPTEC model. Superensemble forecast had a superior bias score of 1.138 

(Day 6). 
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Figure 17: Equitable Threat Score (ETS) and Bias scores for Day 4(23 Nov. 2013), 

Day 5 (24 Nov. 2013) and day 6 (25 Nov. 2013) forecasts of FSU multimodels over 

the Greater Horn of Africa region.  Left and right panels are ETS and Bias scores 

respectively 
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Figure 18 shows ETS and Bias scores for Day 7(26 Nov. 2013), Day 8 (27 Nov. 2013), 

Day 9 (28 Nov. 2013) and Day 10 (29 Nov. 2013) forecasts of FSU multimodel 

superensemble and the individual models forecasts.  All the models had Bias scores 

greater than one with the highest bias score of 2.233 (Day 9) for CPTEC model. 

Superensemble forecast however had a superior bias score of 1.01 (Day 8). At 

precipitation thresholds greater than 10 mm/day, NCEP model had a tendency to over-

forecast precipitation with a bias of up to 9 (Day 8). NCEP and ECMWF models 

performed better individually for all the thresholds. The best ETS score of 0.353 (Day 7) 

was recorded for the superensemble forecast. 

The question is how good is an ETS in this range? That is the current now casting skill 

for most global operational models. This score does signify some degree of usefulness of 

forecast over a large-scale model whose horizontal resolution is of the order of 100 km. 

This skill cannot be directly compared to that of mesoscale models.  

Another aspect, we see here is that the skills for light rains, i.e. thresholds less than 10 

mm/day are predicted with better skills by the multimodel superensemble and even the 

individual models. This is due to the nature of the consistent systematic errors of the 

member models which are easily exploited by the multimodel superensemble in its 

forecasts. However, thresholds greater than 10 mm/day are predicted with lower skills by 

the multimodel superensemble and even the individual models. 

It is seen from these figures that individual models carry large bias errors which are very 

much improved by the multimodel superensemble.  
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Figure 18: Equitable Threat Score (ETS) and Bias scores for Day 7(26 Nov. 2013), 

Day 8 (27 Nov. 2013), Day 9 (28 Nov. 2013) and day 10 (29 Nov. 2013) forecasts of 

FSU multimodels over the Greater Horn of Africa region.  Left and right panels are 

ETS and Bias scores respectively 
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Table 5 and 6 shows the ETS and bias for each individual model and superensemble 

forecasts for all the forecast days for thresholds of 0.2, 2 and 5 mm/day.  ECMWF and 

UKMO performed better individually in terms of ETS and bias scores. The 

superensemble however outperformed all the individual models. 

Table 5: Equitable Threat Scores for each individual model and superensemble 

forecasts for 0.2, 2 and 5 mm/day thresholds for all the forecast days 

DAY 

Model Threshol

ds 

(mm/day) 

1 2 3 4 5 6 7 8 9 10 

SE 0.2 

0.308 0.33 0.276 0.216 0.251 0.334 0.352 0.311 0.273 0.335 

 2 

0.274 0.325 0.225 0.195 0.23 0.33 0.353 0.307 0.212 0.211 

 5 
0.203 0.184 0.173 0.149 0.197 0.255 0.248 0.267 0.09 0.075 

CPTEC 0.2 

0.133 0.128 0.107 0.112 0.138 0.163 0.137 0.2 0.138 0.1 

 2 
0.142 0.172 0.109 0.154 0.083 0.131 0.055 0.097 0.105 0.07 

 5 

0.163 0.146 0.094 0.161 0.082 0.148 0.018 0.087 0.076 0.057 

ECMWF 0.2 

0.236 0.292 0.2 0.203 0.202 0.27 0.315 0.297 0.25 0.368 

 2 
0.262 0.34 0.227 0.224 0.201 0.298 0.305 0.27 0.228 0.27 

 5 

0.194 0.247 0.155 0.191 0.17 0.231 0.272 0.232 0.162 0.144 

NCEP 0.2 
0.254 0.263 0.182 0.214 0.202 0.29 0.341 0.314 0.217 0.301 

 2 

0.24 0.311 0.19 0.165 0.171 0.292 0.404 0.266 0.118 0.223 

 5 

0.203 0.277 0.148 0.083 0.121 0.22 0.246 0.235 0.047 0.158 

UKMO 0.2 
0.279 0.255 0.205 0.216 0.198 0.266 0.277 0.3 0.214 0.232 

 2 

0.262 0.28 0.194 0.211 0.178 0.253 0.32 0.305 0.153 0.173 

 5 

0.167 0.221 0.165 0.164 0.13 0.212 0.264 0.253 0.082 0.111 
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Table 6: Bias scores for individual models and superensemble forecasts for 0.2, 2 

and 5 mm/day thresholds for all the forecast days 

DAY 

Model Thresholds 

(mm/day) 

1 2 3 4 5 6 7 8 9 10 

SE 0.2 

1.348 1.272 1.927 1.499 1.326 1.138 1.301 1.01 1.186 0.976 

 2 

1.451 1.254 2.344 1.52 1.492 1.245 1.326 1.092 1.362 0.943 

 5 

1.475 1.064 2.4 1.335 1.324 1.274 1.247 0.97 0.956 0.633 

CPTEC 0.2 

2.784 2.382 2.894 2.393 2.023 1.77 1.986 1.822 2.102 1.976 

 2 

2.935 1.814 2.85 2.211 2.444 1.932 1.919 1.727 2.233 1.93 

 5 

2.782 1.171 2.716 1.947 2.379 1.955 1.931 1.546 1.947 1.515 

ECMWF 0.2 

1.993 1.838 2.408 1.967 1.71 1.533 1.666 1.603 1.869 1.632 

 2 

1.56 1.406 2.135 1.583 1.538 1.347 1.67 1.607 2.095 1.371 

 5 

1.294 1.239 2.004 1.454 1.386 1.35 1.545 1.45 2.102 1.107 

NCEP 0.2 

2.1 1.858 2.522 2.058 0.198 1.431 1.534 1.337 1.607 1.403 

 2 

2.07 1.604 2.372 1.772 0.178 1.387 1.447 1.289 1.487 2.268 

 5 

1.86 1.486 2.177 1.119 0.13 1.403 1.238 1.124 1.347 1.207 

UKMO 0.2 

1.962 2.027 2.548 2.112 1.911 1.706 1.791 1.654 1.962 1.646 

 2 

1.94 1.956 3.02 2.2 2.148 1.795 1.861 1.821 2.449 1.57 

 5 

1.835 1.395 2.89 2.126 2.29 1.834 1.816 1.584 2.264 1.418 
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CHAPTER FIVE 

5.0 CONCLUSIONS AND RECOMMENDATIONS 

This chapter provides conclusions drawn from the results and recommendations for 

further work. 

5.1 Conclusions 

This study was carried out to investigate the predictability of daily precipitation over the 

Greater Horn of Africa region using the multimodel Superensemble technique. The 

multimodel superensemble contains training and a forecast phase. During the training 

phase, statistical weights are generated based on recent past performances of the member 

models and their collective bias errors are minimized by this procedure. Statistical 

weights for each day of forecast were prepared recognizing that some models are more 

skillful early on in their forecasts, whereas some models carry more skills later in their 

forecasts.  

A large suite of large scale global models from the THORPEX Interactive Grand Global 

Ensemble (TIGGE) archive were used to examine the state of the art skills through Day 

10 of forecasts for precipitation over the Greater Horn of Africa belt. They include 

European Centre for Medium Range Weather Forecasts (ECMWF), National Centre for 

Environmental Prediction (NCEP), Center for Weather Forecast and Climatic Studies 

(CPTEC) and United Kingdom Meteorological Office (UKMO). 

From the assessment of the spatial and temporal patterns of the observed (TRMM) 

precipitation, it is clear that rainfall distribution exhibits a Southward shift in 

precipitation with a marked shift in the month of December. This is consistent with the 

temporal and spatial pattern of the ITCZ, the main rain bearing synoptic system across 

the tropical Africa. 

The construction of the superensemble did provide the best product in terms of RMS 

error and spatial correlations for each of the forecast days. The superensemble forecasts 

showed skill scores much higher than both the ensemble mean and the best performing 
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model in the suit. For example, equitable threat scores and bias scores for all forecasts for 

the region carried the best scores close to 1.0.   

The superensemble is thus a robust technique that can improve the geographical location 

and even the amplitude of the predicted rains as trained and validated with the blended 

TRMM product resolution. The systematic errors in the geographical locations of the 

rains are much improved by the superensemble. The amplitude of the predicted rains is 

corrected towards the TRMM based estimates by this procedure. 

The multimodel superensemble technique is therefore a feasible proposition in real time 

forecasting that can be implemented in the Greater Horn of Africa region as one of the 

forecasting tool.  

5.2 Recommendations 

Further work in multimodel superensemble forecasting is possible from a suite of 

mesoscale high resolution models. A superensemble forecasts based on mesoscale 

models would be more suitable and would improve future versions of superensemble 

forecast products. 

In this research, satellite rainfall estimates were used as the analysis fields. Future 

research in the region should endeavor to incorporate the real station observed data as it 

gives what actually happened. Blending of the two will definitely improve the results. 

However, the challenge with this is that the region has a sparse station network and 

therefore data is not adequate. There is need for policy makers in the region to set aside 

adequate financial resources to be used in carrying out a station mapping exercise to 

identify areas to build new ones in accordance with the World Meteorological 

Organization (WMO) recommended standards. 

A similar study should be undertaken for other weather parameters such as temperature, 

wind and moisture for the whole Greater Horn of Africa region in order to get the overall 

performance of the multimodel superensemble.  Further, there is need to extend the range 

of forecasts to seasonal scale and beyond. 

A further detailed study on the factors that influence weather over the GHA region 
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should be carried out in order to understand all the systems. This would lead to 

discovery of better forecasting techniques. The physics and the configuration of the 

regional models should in future consider factoring in the unique features that 

characterize the region.  

Finally, IGAD Climate Prediction and Application Centre, being the focal point at the 

region should be enhanced especially in terms of computing facilities. This will enable 

the Centre to adopt current and emerging forecasting technologies. 
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