

UNIVERSITY OF NAIROBI

School of Computing and Informatics

IMPLEMENTING DATA INTEGRITY AND CONFIDENTIALITY

IN MOBILE PHONE BASED CYBER FORAGING SYSTEM

BY:

ALFAYO OYUGI ADEDE

SUPERVISOR:

PROF. WILLIAM OKELO-ODONGO

Submitted in partial fulfillment of the requirement for the award of Masters of

Science in Computer Science.

October 2014

2

DECLARATION

This project is my original work and to the best of my knowledge it has not been presented in

any University or College.

SIGNED: _ _ _ _ _ __ _ __ _ __ _ _ DATE: _ _ _ _ _ __ _ __ _ __ _ _

ALFAYO OYUGI ADEDE

REG. No: P58/73066/2009

This report has been submitted as part of fulfillment of the requirements for the award of

Masters of Science in Computer Science at the School of Computing and Informatics,

University of Nairobi, with my approval as a University supervisor.

SIGNED: _ _ _ _ _ __ _ __ _ __ _ _ DATE: _ _ _ _ _ __ _ __ _ __ _ _

PROF. WILLIAM OKELO-ODONGO

SCHOOL OF COMPUTING AND INFORMATICS

UNIVERSITY OF NAIROBI (UON)

3

DEDICATION

This project is dedicated to my wife Christine Kagonya and my daughter Kayla Akoth for their

tremendous support and understanding when I had to put in long hours and effort into this

project.

4

ACKNOWLEDGEMENT

This project would not have been possible without the support of many people. It is with

immense gratitude that I express my sincere appreciation to my supervisor Prof. William

Okelo-Odongo, for his ideas, tireless effort and commitment in reading and correcting my

work.

I am also grateful to Mr. Eric Ayienga, Dr. Robert Oboko and Prof. Elijah Owenga for their

guidance and positive criticism during project presentation, which helped me to improve.

I am also grateful to every other persons whose ideas were applied in this project study.

Finally, I thank the Almighty God for giving me the grace to finish this project.

5

ABSTRACT

Following the emergence of cyber foraging systems small resource constrained mobile phone

devices are able to offload some of their resource intensive work to computationally powerful

surrogate computers accessible on LAN. However, mobile phone based cyber foraging system

also threatens control over data ownership, distribution and management. Users cannot be

guaranteed that surrogate computers do not share data with unauthorized entities. Likewise,

storing data on a mobile device causes user to lose control over that data when the device is

stolen or lost; hence cannot prevent data from being compromised. This project examines the

challenge of data integrity and confidentiality arising from using mobile phone based cyber

foraging systems. We implemented and integrated data integrity and confidentiality enforcing

mechanism based on Remote Access Control and Auditing (RACA) framework into an open

source mobile phone based cyber foraging system prototype using use case approach.

Experimental approach method is applied to measure and evaluate execution time overhead

cost attributed to RACA integration. Result obtained indicated that RACA not only enhances

data integrity and confidentiality but also imposes an insignificantly compromise on task

offloading execution time. However, for enhanced confidentiality and availability we

recommend the use of SSL protocol for data transmission and deployment of surrogate

computers through defensive responses to Denial of Service (DoS) attacks respectively.

Key words: Cyber foraging systems, data integrity, data confidentiality

6

TABLE OF CONTENT PAGES

DECLARATION ... 2

DEDICATION ... 3

ACKNOWLEDGEMENT... 4

ABSTRACT .. 5

ACRONYMS AND DEFINITIONS ... 9

LIST OF TABLES ... 13

LIST OF FIGURES ... 13

CHAPTER ONE: INTRODUCTION .. 15

1.1 Background ... 15

1.2 Motivation for Cyber Foraging ... 16

1.3 Data Integrity and Confidentiality .. 18

1.4 Problem Statement .. 18

1.5 Justification of the Study .. 19

1.6 Objectives of the Study ... 20

1.6.1 General Objectives ... 20

1.6.2 Research Objectives ... 20

1.7 Research Questions ... 20

1.8 Proposed Solution ... 21

1.9 Assumptions.. 25

1.10 Target Audience .. 25

CHAPTER TWO: LITERATURE REVIEW .. 26

2.1 Cyber Foraging Systems ... 26

2.1.1 Research Evolution .. 26

2.1.2 Security Challenge ... 27

2.2 Remote Access Control and Auditing (RACA) .. 29

2.2.1 Theft-Protection Systems ... 29

2.2.2 Data-Protection Systems .. 30

2.2.3 Networked File Systems (NFS) ... 30

CHAPTER THREE: METHODOLOGY .. 31

3.1 Introduction ... 31

3.2 Research Approach ... 31

3.3 RACA Framework Implementation.. 32

3.4 Prototype System Development.. 34

3.5 Execution Time Evaluation ... 35

3.6 Analysis and Interpretation Results .. 36

7

CHAPTER FOUR: REQUIREMENT SPECIFICATIONS ... 37

4.1 Introduction ... 37

4.2 Functional Requirements .. 37

4.3 Non-functional Requirements ... 38

4.4 Requirement Model .. 40

4.5 Functional Model ... 42

4.5.1 Use Case Diagram ... 42

4.5.2 Use Case Template .. 43

4.5.2.1 Encrypt File.. 43

4.5.2.2 Execution of an Offloadable Task ... 43

4.5.2.3 Database Tables Synchronization Service ... 44

4.5.2.4 View Performance Metrics Graphs.. 45

4.5.2.5 Remote Access Control Management.. 46

4.5.2.6 Audit File Access ... 47

4.5.3 Scenario: Extractive Text Summarization ... 47

4.5.3.1 Encrypt File.. 47

4.5.3.2 Execution of Extractive Text Summarization .. 48

4.5.3.3 File Access Control Management .. 48

4.5.3.4 Audit file Access .. 49

4.5.3.5 View Performance Metrics Graphs.. 49

4.6 Summary ... 49

CHAPTER FIVE: ANALYSIS AND DESIGN ... 50

5.1 Introduction ... 50

5.2 Analysis .. 50

5.2.1 Analysis Model .. 51

5.2.1.1 Object Model ... 51

5.2.1.2 Sequence Diagrams.. 54

5.2.1.3 Collaboration Diagrams ... 58

5.2.1.4 Activity Diagrams .. 59

5.2.1.5 State Machine Diagrams ... 62

5.3 Design ... 63

5.3.1 Overall System Design .. 63

5.3.2 Architectural Design .. 65

5.3.2.1 Infrastructure .. 65

5.3.2.2 Application... 66

5.3.3 Detailed Design.. 69

5.3.3.1 User Interface ... 69

5.3.3.2 Class Diagram .. 69

5.3.3.3 Package Diagram ... 70

8

5.3.3.4 Database Design .. 72

5.3.3.5 Integration Design.. 73

5.4. Conclusion ... 74

CHAPTER SIX: PROTOTYPE IMPLEMENTATION AND TESTING 75

6.1 Introduction ... 75

6.2 Implementation Environment ... 75

6.2.1 Implementation Platform ... 75

6.2.2 Programming Languages ... 75

6.2.3 CASE Tools ... 76

6.2.4 Application Servers.. 76

6.2.5 Core Development Libraries/API .. 77

6.3 User Interface Implementation .. 77

6.4 Database Implementation ... 78

6.5 Coding ... 79

6.6 Integration ... 79

6.7 Testing .. 80

6.8 Conclusion .. 83

CHAPTER SEVEN: RESULTS AND EVALUATION .. 84

7.1 Results ... 84

7.2 Analysis of System results .. 88

CHAPTER EIGHT: DISCUSSIONS AND CONCLUSION .. 92

8.1 Achievement Objectives ... 92

8.2 Limitation of the study .. 95

8.3 Recommendations ... 96

8.4 Conclusion .. 97

REFERENCES... 98

APPENDIX A: SAMPLE SOURCE CODE SNIPPETS... 102

APPENDIX B: TABULATION OF DATA .. 122

APPENDIX C: DETAILED CLASS DESIGN .. 123

APPENDIX D: DETAILED USER INTERFACE DESIGN .. 124

APPENDIX E: INSTALLATION GUIDE ... 130

APPENDIX F: USER MANUAL .. 131

APPENDIX G: PROJECT SCHEDULE AND RESOURCES REQUIREMENTS 139

9

ACRONYMS AND DEFINITIONS

AES Advanced Encryption System algorithm

AESTET Automated Estimation System of Task Execution

AOP Aspect-oriented programming

ApectJ Simple and practical aspect-oriented extension to Java™.

API Application Programming Interface

CASE Computer Aided Software Engineering

COCA Computation Offload to Clouds using AOP

CODA Constant Data Availability Files System

COMET Code Offload by Migrating Execution Transparently

CRC Classes-Responsibility and Collaboration

DRAM Dynamic random-access memory

DSM Distributed Shared Memory

EAI Enterprise application Integration

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

Java EE6 Java Enterprise Edition Version 6

JSP Java Server Pages

JSTL Java Server Pages Standard Tag Library

JVM Java Virtual Machine

LAN Local Area Network

LBFS Low Bandwidth File System

MAUI Mobile Assistance Using Infrastructure

MCC Mobile Cloud Computing

MCO Mobile Computation Offloading

NFS Network File System

OMT Object Modeling Technique

OOA Object Oriented Analysis

10

OOAD Object Oriented Analysis and Design

OOSE Object Oriented Software Engineering

ORM Object Relational Mapping

OS Operating System

OSGi Open Services Gateway initiative

PGP Pretty Good Privacy

RACA Remote Access Control and Auditing

R-OSGI Remote Remote OSGi

SDK Software Development Kit

SFS Secure File System

SRAM Static random-access memory

SSL Secure Sockets Layer

TLS Transport Layer Security

UI User Interface

UML Unified Modeling Language

USB Universal Serial Bus

VM Virtual Machine

WAN Wide Area Network

WiFi Wireless Fidelity

WLAN Wireless Local Area Network

XML eXtensible Markup Language

A side channel attack is any attack based on information gained from the

physical implementation of a cryptosystem, rather than brute force or theoretical weaknesses in

the algorithms (compare cryptanalysis). For example, timing information, power

consumption, electromagnetic leaks or even sound can provide an extra source of information

which can be exploited to break the system. Some side-channel attacks require technical

knowledge of the internal operation of the system on which the cryptography is implemented,

A cold boot attack (or to a lesser extent, a platform reset attack) is a type of side channel

attack in which an attacker with physical access to a computer is able to retrieve

11

encryption keys from a running operating system after using a cold reboot to restart the

machine. The attack relies on the data remanence property of DRAM and SRAM to retrieve

memory contents which remain readable in the seconds to minutes after power has been

removed

Android platform. A Google Company Inc.'s open and free software stack that includes

an operating system, middleware and also key application for use on mobile devices,

including smart phones.

Cloud computing Internet based computing, whereby shared resources, software, and

information are provided to computers and other devices on demand. It is a natural evolution of

the widespread adoption of virtualization, Service-oriented architecture and utility computing.

Details are abstracted from consumers, who no longer have need for expertise in, or control

over, the technology infrastructure "in the cloud" that supports them.

Cyber foraging Opportunistic use of available computing resources whereby mobile devices

offload some of their resource intensive work to computationally powerful surrogate

computers within LAN.

Data confidentiality Limiting data access and disclosure to authorized users/entities.

Data integrity Maintaining and assuring the accuracy and consistency of data.

Decryption The inverse of encryption.

Encryption The translation of data into a secret code.

Key management Refers Management of cryptographic keys in a cryptosystem. It entails

generation, exchange, storage, use, and replacement of keys. It also includes cryptographic

protocol design, key servers, user procedures, and other relevant protocols.

Man-in-the middle of attack. A form of active eavesdropping in which the attacker makes

independent connections with the victims and relays messages between them, making them

believe that they are talking directly to each other over a private connection, when in fact the

entire conversation is controlled by the attacker. The attacker must be able to intercept all

messages going between the two victims and inject new ones.

Mobile cloud computing Combination of cloud computing and mobile networks to bring

benefits for mobile users, network operators, as well as cloud computing providers

12

Network bandwidth is a measurement of bit-rate of available or consumed data communication

resources expressed in bits per second or multiples.

Network latency also called network delay, is an expression of how much time it takes for

a packet of data to get from one designated point to another.

Offloading. Migration of data and programs to be executed on remote computers

Pervasive Ubiquitous/Computing is one possible potential direction toward our future

computing lifestyle, in which computer systems seamlessly integrate into our everyday lives

providing services and information at any time and any place. It is envisaged that ultimately

different kinds of computer will become such a natural part of our environments that people

will not even be aware of their existence.

Self-signed SSL/TLS certificate an identity certificate that is signed by the same entity whose

identity it certifies.

Surrogate Computers within LAN used in execution of offloaded tasks.

Trusted Computing. Computing where the computer will consistently behave in expected

ways, and those behaviors will be enforced by computer hardware and software. Enforcing this

behavior is achieved by loading the hardware with a unique encryption key inaccessible to the

rest of the system.

Use case approach. Methodology used in system analysis to identify, clarify, and organize

system requirements. The use case is made up of a set of possible sequences of interactions

between systems and users in a particular environment and related to a particular goal.

Virtualization Refers to the act of creating a virtual (rather than actual) version of something,

including but not limited to virtual computer hardware platform, operating

system (OS), storage device, or computer network resources.

Wire-tapping. The practice of connecting a listening device to a telephone line to secretly

monitor a conversation.

13

LIST OF TABLES

Table 1: Previous cyber foraging research focus ... 26

Table 2 : Test case plan ... 82

Table 3 : Overall execution time (milliseconds) .. 84

Table 4 : Local execution time (milliseconds) ... 89

Table 5 : Surrogate execution time (milliseconds) .. 89

Table 6 : Relationship between encrypted input file size and execution time 91

Table 7 : Performance metrics data .. 122

Table 8 : Project implementation schedule ... 139

LIST OF FIGURES

Figure 1: Trend of processing capabilities of mobile devices .. 16

Figure 2: A typical high-level cyber foraging architecture ... 21

Figure 3: Security threats facing cyber foraging system ... 22

Figure 4: Integrating RACA mechanism in a typical cyber foraging architecture 23

Figure 5 : Conceptual illustration of RACA framework.. 24

Figure 6 : RACA process .. 33

Figure 7: Prototyping phases ... 34

Figure 8: System development as a construction of models .. 40

Figure 9: Incremental transition between from Requirement, Analysis and Design phases 41

Figure 10 Use Case Diagram .. 42

Figure 11: File Encryption object model .. 51

Figure 12 : Extractive text summarization object model ... 52

Figure 13: Access Control Synchronization object model .. 52

Figure 14: Update Access Control object model... 53

Figure 15 : View Audit log object model ... 53

Figure 16 : View Performance Metrics object model.. 53

Figure 17 : File Encryption Sequence diagram .. 54

Figure 18: Extractive text summarization sequence diagram ... 55

Figure 19 : Manage Access Control Sequence diagram ... 56

Figure 20 : View Audit log Sequence diagram .. 57

Figure 21 : View Performance metrics.. 57

Figure 22 : Client side Access Control Synchronization Collaboration diagram 58

Figure 23 : Server side Access Control Synchronization Collaboration diagram 58

Figure 24 : Extractive text summarization activity diagram ... 59

Figure 25 : Synchronize Access Control activity diagram .. 60

14

Figure 26 : File encryption activity ... 61

Figure 27 : Client side state machine diagram ... 62

Figure 28: Server side state machine diagram ... 63

Figure 29 : Overall system design ... 64

Figure 30: Infrastructure architecture .. 65

Figure 31 : Application architectural design .. 66

Figure 32 : High-level architecture of an ORM .. 68

Figure 33 : Using ORM in java application .. 68

Figure 34 : Mobile phone application packages ... 70

Figure 35 : Web- management system packages .. 71

Figure 36 : Entity-relationship model ... 72

Figure 37 : Application-level integration .. 73

Figure 38 : Data level integration ... 73

Figure 39 : User-Interface level integration ... 74

Figure 40 : RACA Database schema ... 78

Figure 41 : Illustration of User-interface level intergration ... 80

Figure 42 : Overall execution time line graph .. 85

Figure 43 : Overall execution time bar chart .. 85

Figure 44: Surrogate unencrypted input execution chart .. 86

Figure 45 : Surrogate encrypted input execution chart .. 86

Figure 46 : Mobile phone based unencrypted input execution chart .. 87

Figure 47 : Mobile phone based encrypted input execution chart .. 87

Figure 48 : Timeline of theft of mobile phone device .. 95

Figure 49 : Mobile phone application login page sketch .. 124

Figure 50 : Mobile phone home page sketch ... 124

Figure 51 : File selection page sketch .. 124

Figure 52 : File encryption result page sketch .. 125

Figure 53 :Text summarization page sketch .. 125

Figure 54 : Text summarization result page sketch ... 126

Figure 55: Offloading engine home page sketch ... 126

Figure 56 : Web Login page sketch .. 127

Figure 57 : Home page after login sketch ... 127

Figure 58 : Access control page sketch ... 128

Figure 59 : Audit log page sketch .. 128

Figure 60 : Performance bar chart sketch .. 129

Figure 61: Performance line graph sketch .. 129

15

CHAPTER ONE: INTRODUCTION

1.1 Background

Satyanarayanan (2001) coined the term Cyber foraging system and defined it as opportunistic

use of available computing resources by computationally deprived devices such as mobile

phone devices that offload some of their resource intensive work to computationally powerful

surrogate computers within LAN. However, the mobile phone device should not only be able

to use surrogates when available, but also be able to solve tasks own its own when no

surrogates are available i.e. the application does not cease to function when the mobile device

is on its own as affirmed by Balan et al. (2002).

Mobile phoned based Cyber foraging system envisioned a scenario in which when a mobile

phone device enters a neighborhood, it detects the presence of potential surrogates and

negotiates their use. Communication with a surrogate is via short-range wireless peer-to-peer

technology. When an intensive computation has to be performed, mobile phone device offload

the computation to the surrogate; the latter may cache data on its local disk in performing the

computation. Alternatively, the surrogate may have staged data ahead of time in anticipation of

the user’s arrival in the neighborhood. When mobile computer leaves the neighborhood, its

surrogate bindings are broken, and any data staged or cached on its behalf are discarded.

Offloading goal is accomplished by following six steps. First mobile client discovers

surrogates available within WLAN. Once the surrogate discovery is completed the application

is partitioned into either locally or remotely executable tasks. This is followed by selection of

the best execution strategy that decides on which tasks and where tasks will be executed in

current environment by weighing performance cost penalties in undertaking such decision.

Next a trust relationship is established between mobile client and the surrogate computer. Once

these entire prerequisite steps are completed; the execution of tasks on surrogate computers

takes place. The task to be executed can either be pre-installed or migrated on-demand. Last

steps involve mobile client constant monitoring of their execution environment and adapting

the cyber foraging process accordingly.

16

1.2 Motivation for Cyber Foraging

Mobile computing devices, such as smart phone, are becoming ubiquitous and an increasing

number of users are carrying such a device at all time. Barton et al. (2006) predicted that the

smart phones are quickly advancing to provide full-fledged personal computing due to rapid

improvement in their display size, network connectivity and input methods. However,

relatively powerful, mobile devices remain constrained in terms of physical size, thus leading

to limitations in their computing and communication capabilities, battery lifetime, as well as

screen and keyboard size. These constraints inhibit mobile devices from fully supporting

increasingly demanding mobile applications. Furthermore, despite rapid improvement in

processing capabilities of mobile devices, battery energy density that is critical resource on

mobile devices has experienced the slowest improvement trend according to Paradiso and

Starner (2005) illustrated in figure 1 below.

Figure 1: Trend of processing capabilities of mobile devices

Source: Adapted from Paradiso and Starner (2005)

Cyber foraging is one of the effective ways to deal with this problem as it attempts to reconcile

the contradictory requirements of having longer battery life while at the same time meeting the

ever-growing expectations of mobile users to execute intensive computation and data

manipulation applications that are well beyond those of a lightweight mobile computing device

with long battery life.

17

Another form of pervasive computing model closely related to cyber foraging system that has

gained popularity in recent years is mobile cloud computing. However, its failure to address

the following challenges continues to inspire interest in cyber foraging system as a possible

alternative.

i. Monetary cost. When using a mobile device, accessing the Internet comes at a cost

while accessing a locally available Wi-Fi network does not.

ii. Network latency. Whereas network bandwidth when connecting to the Internet has

increased rapidly recently, the latency has not been reduced sufficiently thus making

cloud computing infeasible for deploying applications where response time is crucial.

iii. Internet bandwidth. While mobile Internet speeds are increasing they are still slower

than the speed of local WLAN networks. This renders cloud computing useless in data

intensive scenarios such as image manipulation, speech recognition.

iv. Energy efficiency. Finally, by using the unused resources of machines that are already

running, cyber foraging uses little or no extra power, whereas cloud computing

applications are run in large data centers where hundreds of power hungry dedicated

servers may be running 24/7.

Notwithstanding the aforementioned challenges; Satyanarayanan (2009) suggested that mobile

cloud computing can be used in some scenarios to complement cyber foraging whereby task

schedulers would consider local execution, execution at available surrogates, and execution in

the cloud when choosing where to perform a task.

18

1.3 Data Integrity and Confidentiality

Avizienis et al. (2004) defined computer security as a composite confidentiality, integrity and

availability (also called CIA) attributes. They defined confidentiality as absence of

unauthorized information disclosure; Integrity as absence of improper (meaning unauthorized)

system and underlying data alteration while availability as continued readiness for authorized

actions. Avizienis et al. (2004) maintained that a system with appropriate security should

maximize the balance of the these three attributes. Moreover, privacy is defined as a subset of

confidentiality and integrity. In other words, users have the right to be sure that their data is not

disclosed.

This project focuses on implementing Data integrity and Confidentiality attributes in mobile

phone based cyber foraging system. Whereas the availability attribute is not covered we

recommend that the same be enforced through deployment of surrogate computers in manner

that is defensive to responses of Denial of Service attacks.

1.4 Problem Statement

Even though offloading some of resource intensive work to powerful surrogate computers

reachable on LAN is advantageous, cyber foraging systems do compromise users’ control over

data integrity and confidentiality.

Present solutions to enforce data integrity and confidentiality rely on data protection systems

that are implemented using encrypted file systems such as Microsoft BitLocker, Apple OS X

FileVault, PGP Whole Disk Encryption and TrueCrypt systems as observed by Casey and

Stellatos (2008). However, this is only possible because conventional in-house computing

environment offers trusted, flexible customization and certainty in enforcement of data security

policies. Regrettably, Mobile phone based cyber foraging systems exhibit opposite of these

properties i.e. untrusted computing environments as data and applications physically migrate to

“insecure” surrogate computers; inflexible customization as regards to assured data deletion

coupled with lack of uniform access control policies management.

19

Existing encrypted file systems do not provide remote auditing capabilities thus security breach

may go undetected. This is because they focus on data exposure prevention yet ignore data

exposure detection. They also rely on locally stored key that is protected by user’s passphrase

that may be insecure. Furthermore, encrypted file systems potentially compromise integrity

and confidentiality as users find it difficult to create, remember, and manage passphrases or

keys.

We propose to address the challenge of data integrity and confidentiality by implementing

Remote Access Control and Auditing (RACA) mechanism that augment existing solutions

based on encrypted file systems as suggested by Geambasu et al. (2011). RACA mechanism

combines encryption, remote key storage and audit server hence capable of augmenting

encrypted file system with auditability and remote data control. It provides file audit that

provides explicit evidence on whether or not a file access was made. It also allows users to

disable file access by configuring an audit server to refuse to return a particular file decryption

key.

1.5 Justification of the Study

Geambasu et al. (2011) applied RACA technique christened Keypad in auditing file

system/forensic mechanism for theft-prone devices, such as mobile phones, laptops, tablets,

and USB stick. Keypad provided explicit evidence on whether or not files in such devices were

accessed after device loss. Similarly, Rahim and Saravanan (2013) used RACA technique in

mobile cloud computing to implement secure cloud storage system that achieves policy-based

access control and file assured deletion together with an information accountability cloud

framework to track actual usage of client data.

However, in existing literature on cyber foraging, use of RACA technique appears non-existent

thus the relevance of this work. Furthermore, virtually all related works in cyber foraging have

had a focus on how to design and implement a functional cyber foraging system with

insignificant attempt made to address security challenges arising therein.

20

Our initial assessment revealed that RACA technique is suitable in cyber foraging domain

because mobile phone devices used in cyber foraging system are highly vulnerable to theft and

loss; an issue that greatly compromises data integrity and confidentiality. Secondly, the

technique effectively augments existing solutions based on encrypted file systems by

addressing their shortcomings in untrusted, inflexible customization and uncertain enforcement

of data security policies environment such as in cyber foraging.

1.6 Objectives of the Study

1.6.1 General Objectives

To enhance security of mobile phone based cyber foraging system by implementing a

mechanism that enforce data integrity and confidentiality.

1.6.2 Research Objectives

i. To examine existing mobile phone based cyber foraging systems with a focus on data

integrity and confidentiality security challenges.

ii. To design and implement data integrity and confidentiality enforcing mechanism in

mobile phone based cyber foraging system based on Remote Access Control and

Auditing framework.

iii. To integrate the implemented mechanism in objective (ii) above into an open source

mobile phone based cyber foraging system prototype.

iv. To evaluate offloading performance overhead costs attributed to the integration of

integrity and confidentiality enforcing mechanism in mobile phone based cyber

foraging system prototype.

1.7 Research Questions

i. How can RACA framework be integrated into mobile based cyber foraging system?

ii. Does the integration of RACA mechanism significantly undermine task offloading

execution time performance in mobile phone based cyber foraging system?

21

1.8 Proposed Solution

Conventional data-protection systems such as Microsoft BitLocker, PGP Whole Disk

Encryption and TrueCrypt system enforce data integrity and confidentiality through encrypted

file system. We propose a solution that entails the use of Remote Access Control and Auditing

(RACA) framework originally described by Geambasu et al. (2011). The proposed solution

augments traditional encrypted file systems by providing remote access control and auditing in

a mobile phone based cyber foraging system as illustrated in figure 2 and 4 (shaded parts

depict RACA integration). Figure 3 illustrates threats/vulnerability a typical mobile phone

based cyber foraging is exposed to. Our proposed solution addressed threats arising from

disclosure of information to unauthorized individuals, potential inaccuracy and inconsistency

of data compromises. The threat of interception of data during communication is mitigated

upon through transmission based on SSL protocol.

Figure 2: A typical high-level cyber foraging architecture

Source: Adapted from Mads and Bouvin (2010)

22

NB: Threat on Denial of service(DoS) is not covered within the scope of the system.

Figure 3: Security threats facing cyber foraging system

Source: Author’s compilation

23

Figure 4: Integrating RACA mechanism in a typical cyber foraging architecture

Source: Author’s compilation

The proposed solutions is motivated by the fact that traditional file encryption systems do fail

to guarantee data integrity and confidentiality as users find it difficult to create, remember and

manage passphrases or keys. Furthermore encrypted file systems often rely on a locally stored

key that is protected by a user’s passphrase that may be insecure and are easily vulnerable to

physical attacks through “cold-boot attack”. In addition when encrypted file system is

compromised, it does so “silently” without providing data owners with a means of discovering

the access, thus they may lead to a false sense of protection to mobile device users. Figure 5

illustrates RACA conceptual mechanism.

24

Figure 5 : Conceptual illustration of RACA framework

Source: Adapted from Geambasu et al. (2011)

On the mobile client device, each file F has a unique identifier (IDF) and the file’s data is

encrypted with a unique symmetric key, KF . A remote key service maintains the mappings

between audit IDs and keys. When an application wants to read or write a file, RACA looks up

the file’s audit ID and requests the associated key from the service. Before responding to the

request, the service durably logs the requested ID and a timestamp. In addition to the key

service, RACA contains a metadata service that maintains information needed by users to

interpret the logs. The file metadata (MF) information includes a file’s path, the process that

created it, and the file’s extended attributes.

According to Geambasu et al. (2011), RACA combines encryption, remote key storage and an

audit server to provide two important properties. First is a fine grained file auditing that offers

explicit evidence on whether or not a file access was made. Secondly, it allows users to disable

future file access on the device once the device is lost by allowing a configuration on the audit

server to refuse to return a particular file key.

25

Hence, RACA augments encrypted file systems with auditability and remote data control. This

is achieved by (1) encryption of each file with its own symmetric key, (2) storage of all keys

on a remote audit service, (3) downloading the key for a file each time it is accessed, and (4)

destruction of the key immediately after use. By configuring the audit service to log all storage

accesses, we obtain fine-grained auditability; by disabling all keys associated with a stolen

device on the service, we prevent further data access.

1.9 Assumptions

i. Remote Access Control and Auditing mechanism should be able to prevent unaudited

access.

ii. Once mobile device is stolen, the victim should be able to disable access to protected

file after the device is lost.

iii. File access latency and throughput arising from the use of RACA should be acceptable.

1.10 Target Audience

The research targets individuals who own smart mobile phone devices and would like to

benefit from using cyber foraging systems but are dissuaded from doing so due to inadequate

security mechanism in such systems. These are individuals in possession of confidential data

mainly from security based agencies (Intelligence Officers, Military Strategist), product

developers and academic researchers among others owing to fact that unwarranted compromise

on data integrity and confidentiality can result into devastating consequences. The target group

is expected to benefit significantly from this research as cyber foraging systems do send users'

data and programs to servers which are not necessarily under users’ control.

26

CHAPTER TWO: LITERATURE REVIEW

2.1 Cyber Foraging Systems

2.1.1 Research Evolution

Research in cyber foraging has evolved considerably. According to Kumar et al. (2012),

studies on cyber foraging systems can be traced from the year 1996. These studies focused

mainly on exploring cyber foraging feasibility, designing efficient offloading decisions

algorithms and development of offloading infrastructures as summarized in table 1 below.

Period Research focus

1996-2000 Offloading feasibility

2000-2005 Suitable offloading decision algorithms

2005-date Provision of offloading infrastructure

Table 1: Previous cyber foraging research focus

Source: Adapted from Kumar et al. (2012)

During the period between 1996-2000, the struggle to overcome limitation on wireless network

as a result of low bandwidth was primarily the driving force, thus majority studies primarily

focused on exploring offloading feasibility.

Between 2000-2005 majority of studies shifted and focused on how to design an efficient

decision making algorithm aimed at objectively determining whether offloading would benefit

mobile users. Researchers during this period designed both static and dynamic based

offloading decision making algorithms.

Since 2005-to date, improvement in virtualization technologies, increased network bandwidth

and emergence of cloud computing infrastructure continue to significantly influence research

studies on cyber foraging. Hence the shift has been on how to leverage on these infrastructures

while building cyber foraging systems.

27

Whereas the trend indicates considerable efforts directed towards the design and

implementation of a functional cyber foraging system, it also reaffirms the assertion that no

substantial effort have been made to address security related challenges arising in these

systems as elucidated below. Hence, the significance of this research as an attempt to address

the gap.

2.1.2 Security Challenge

Flinn et al. (2001) and Balan et al (2003) pioneered the development of cyber foraging systems

by developing Spectra and Chroma sytstems respectively. They focused on partitioning the

application into modules and calculating the optimal offloading strategy. These partitioning

schemes require significant modification of the original application and lacked mechanism to

enforce security and privacy needs.

Cuervo et al. (2010) developed the MAUI system that provide fine-grade code offload. Their

result showed that minimizing the size of the application state that is sent over the network

significantly improves performance by allowing more methods to be offloaded. However,

MAUI serializes the application state using XML which is slower than binary serialization. It

also modifies the .NET bytecode and creates two separate code bases:- one for the mobile

device and another one for the server thus making debugging more difficult. Furthermore, no

security enforcement mechanism is provided.

Chun et al. (2011) developed CloneCloud system that uses virtualization technology to migrate

Dalvik Virtual Machine (VM) from an Android phone on which the application is running to a

backend server. It does not require developer’s intervention for offloading since this is

accomplished at the Operating System (OS) level. Its major shortcoming is the overhead

required to migrate the entire VM from the mobile device to the server. Unlike other systems,

it attempts to enforce security mechanism by encrypting data during transmission, but the

cloned stored files are unencrypted thus remains vulnerable.

28

Kosta et. al (2012) developed ThinkAir system that performs method level code offloading but

focuses more on scalability issues through parallel execution of offloaded tasks. Like

CloneCloud, it attempts to enforce security mechanism by encrypting data during transmission,

but the stored files are unencrypted.

Kemp et al (2010) developed Cuckoo offloading framework that leverages the existing

activity/service model in Android platform to offload computation intensive portions of the

applications. Developers are forced to write offloadable methods twice; one for local

computations and another one for remote computations resulting into to unnecessary code

duplication. No security enforcement mechanism is provided.

Chen et al. (2012) developed Computation offload to clouds using AOP (COCA) system that

uses AspectJ to offload Android applications to the cloud environment. The system offloads

pure functions without transferring application state and does not implement any security

mechanism.

Giurgiu et al. (2009) proposed “Calling the Cloud” middleware platform that can automatically

distribute different layers of an application between the phone and the server by optimizing a

variety of objective functions. It requires the application to be partitioned into several software

modules using the R-OSGi. No security enforcement mechanism is provided.

Mark et al (2012) proposed Code Offload by Migrating Execution Transparently (COMET)

system that leverage Distributed Shared Memory (DSM) to provides a virtual shared memory

space that is accessible by threads on different machines without any work on the part of the

developer. It offloads fine-grained parallel algorithms to multiple machines, resulting in

improved performance. Its shortcoming is that developers remain oblivious that a simple

memory access can result in a network call thus resulting into inefficient applications that do

not scale. No security enforcement mechanism is provided.

29

Recently, Verbelen (2013) developed AIOLOS cyber foraging system on Android platform

based on OSGi components replicated on remote server. At runtime method calls are

forwarded either to the local or remote OSGi component instance. Similarly, Mads (2010)

developed Scavenger system aimed at providing developers with a complete cyber foraging

toolbox that can ease the process of developing applications that utilize cyber foraging. Though

these two systems are robust, Verbelen (2013) and Mads (2010) did not address any security

challenges.

Lastly, Griera (2013) implemented a simplified open source Mobile Computation Offloading

(MCO) system based on Android platform. MCO utilizes Automated Estimation System of

Task Execution (AESTET) in offloading decision making. It also implements basic

authentication mechanism as part of its security mechanism. It is of interest in our study since

unlike the aforementioned systems it is freely available and further enhancement can done on it

to achieve our project objectives.

2.2 Remote Access Control and Auditing (RACA)

According to Geambasu et al. (2011) Remote Access Control and Auditing (RACA)

mechanism is related to work in three areas: (1) theft-protection systems, (2) data-protection

systems, and (3) distributed /network file systems.

2.2.1 Theft-Protection Systems

Theft-Protection Systems such as MobileMe and Adeona rely on software running on a device

that can monitor file accesses, report device locations and file accesses to a remote trusted

server. However, these systems are vulnerable to hardware and disconnection attacks as

determined attacker can circumvent these protections and analyze the device’s media using his

own hardware, without the associated monitoring software installed. RACA provides a strong

auditing support and data-destruction capabilities even against thieves who use their own

hardware and software to attack a protected file system or (temporarily) block the device’s

access to the network. Unlike in MobileMe and Adeona, where the audit log for a file access

occurs after the fact, the audit log in RACA is produced before the access can occur, making it

mandatory.

30

2.2.2 Data-Protection Systems

Data-Protection Systems such as Microsoft BitLocker, Pretty Good Privacy (PGP) Whole Disk

and TrueCrypt are based on encrypted file systems. However, none provide remote auditing

capabilities; therefore a security breach may go undetected. On the other hand RACA provide

a stronger barrier to access and a forensic trail whenever that barrier is breached. Geambasu et

al. (2011) argued that data-protection systems differ from RACA system as the former focus

on data exposure prevention, whereas RACA focuses on data exposure detection should

prevention systems fail and thus the two should be considered as complementary rather than

competitors.

2.2.3 Networked File Systems (NFS)

NFS allow a server to share directories and files with clients over a network as if they are

stored locally. Notable benefit of NFS is that data that would otherwise be duplicated on each

client can be kept in a single location and accessed by clients on the network. Examples of

some of existing NFS are Constant Data Availability Files System (CODA) developed by

Satyanarayanan et al. (1991), Low-Bandwidth Network File System (LBFS) developed by

Muthitacharoen et al. (2001) and Secure File System (SFS) developed by Mazieres et al.

(1999).

CODA supports disconnected file operations through data catching. It also supports encrypted

communication but not encrypted storage. LBFS focuses on minimizing communication

bandwidth between clients and servers by compressing file data on transit to reduce latency for

interactive file access over slow wide-area networks. SFS provides secure file transfer by

embedding public key in file pathnames.

In general these systems neither encrypt data stored on the disk, nor provide auditing

mechanism as it is in RACA. Furthermore, RACA is concerned with encryption key

management and its transfer between a file system and a remote server. On the other hand

existing NFS are concerned with the transfer of file data between the client and the server.

Geambasu et al. (2011) maintain that RACA uniqueness is evident through the integration of

both encryption and audit logging; thus demonstrating the advantage of separating encryption

and key management to enforce auditing in a distributed file system.

31

CHAPTER THREE: METHODOLOGY

3.1 Introduction

The goal of research methodology is to provide a standard method and guidelines to ensure

that project is completed on time and is conducted in a disciplined, well-managed, and

consistent manner that promotes the delivery of quality product and results. This section

presents an overview of the methods used in the study.

This project consists of four (4) main tasks. The first task is to analyze and examine existing

mobile phone based cyber foraging systems with a focus on how data integrity and

confidentiality security challenges is addressed. Second task is to design and implement data

integrity and confidentiality enforcing mechanism in mobile phone based cyber foraging

systems derived from RACA framework. Third task is to integrate implemented RACA

framework in an open source mobile phone based cyber foraging system while the last task is

to examine actual offloading performance overhead costs attributed to the integration of RACA

mechanism in mobile phone based cyber foraging system.

3.2 Research Approach

This research begins by studying existing theories and techniques related to research problem

area hence deductive approach is used. In order to implement, integrate data integrity and

confidentiality enforcing mechanism into prototype mobile phone based cyber foraging

systems we use a use case approach as proposed by Jacobson et al. (1994). Finally, to

evaluate the resulting execution overhead cost attributed to the integration of RACA

framework an experimental method is used with extractive text summarization application

adopted as a test case scenario.

32

3.3 RACA Framework Implementation

Implementation of RACA framework to mitigate on security threats facing mobile phone based

cyber foraging highlighted in figure 3, follows the following steps.

STEP 1 : Registration/Encryption of a file

File to be secured is first registered into the system. This entails encrypting the file using 128-

bit Advanced Encryption System (AES) algorithm. A symmetric key, encrypted file and

Access Control List (ACL) of the file is generated as output. Encrypted file name, secret key

among other attributes are recorded and stored on local database of the mobile phone.

STPEP 2: Synchronization of access control and auditing records

This step is achieved through database synchronization service that execute automatically on

the background ensuring that any changes on access control and audit log of a registered file is

consistently reflected on both mobile phone device and at surrogate computer.

STEP 3 : Decryption of encrypted file

This step is invoked whenever, an encrypted file is accessed on the mobile phone device. The

system first interrogate file Access Control List (ACL) to ascertain whether access to the file is

allowed. If it is permitted secret key is returned from the key registry that is used to decrypt the

file. Otherwise, no secret key is returned and file access is denied, this prevents disclosure of

information to unauthorized individuals and also Inaccuracy and Inconsistency of data that

could arise in the event unauthorized individual access the file. Figure 6 in the next page

illustrate the steps above.

It is worth pointing out that RACA framework presented in figure 5 above does not address

security threats posed by interception of data during transmission and denial of service attack

(DoS). To mitigate on interception threat we use HTTPS for transmission. Threat of DoS is not

covered within the scope of this study.

33

Figure 6 : RACA process

Source: Author's compilation

34

3.4 Prototype System Development

The prototype system development is done using use case approach methodology for Object

Oriented Software Engineering (OOSE). This involve identification of functional requirements

from which use case artifacts is developed. Thereafter the dynamic and static behaviour of the

system is analysed and modelled. The modelling of static behaviours is done through

identification of objects and classes which are represented using Unified Modelling Language

(UML) diagrams. The dynamic aspects of the system are modelled using sequence, interactive,

state diagrams and collaboration diagrams.

RACA implementation is done using Java programming language on both Android based

mobile phone and surrogate computer module. Two raca databases are maintained on the

mobile phone and surrogate computer from which database synchronization is implemented in

order to enforce access control and auditability requirements In addition, the integration of

RACA into an open source mobile phone cyber foraging system is done at application,

database and user interface levels.

As regards to implementation prototyping technique is followed. The prototype development

entails four phases namely functional selection, construction, evaluation, and further use as

suggested by Floyd (1984) depicted in Figure 7 below.

 Figure 7: Prototyping phases

 Source: Adapted from Floyd (1984).

35

i. Functional selection refers to the functionality chosen for the prototype. In general, the

chosen functionality should be a subset of the functionality one would expect to exist in

the final product. Within functional selection Floyd identifies two differing ways of

prototyping: vertical prototyping, where the implemented functionality is presented in

its intended final form, but only a small subset of the total functionality is included.

Alternatively horizontal prototyping can be employed, where the entire functionality is

represented, but the functions are not implemented in detail. In our case we followed

vertical prototyping.

ii. Construction refers to the actual implementation of the prototype. The effort involved

constructing a prototype should be much smaller than that involved in building the final

product. We use Integrated Development Environment (IDE) and other CASE tools in

this phase.

iii. Evaluation is the phase where the implemented prototype is tested and evaluated in

order to inform the development process of the final product. This is done through Use

case testing and statistical analysis (Descriptive and Inferential statistics) of execution

time performance.

iv. Further use this may vary depending on the kind of prototype being developed. In

some projects the prototype is used exclusively for learning purpose, and is thus thrown

away after prototyping. Other prototypes may be matured and then used fully or

partially as a component in the final product. The developed prototype is used

exclusively for learning purpose.

3.5 Execution Time Evaluation

In order to evaluate the execution time overhead attributed to RACA integration; we use

experimental approach and extractive text summarization is experimented upon as test case

scenario. Extractive text summarization is executed on both mobile phone and surrogate

computer. We implement execution performance introspection mechanism that records various

variables values namely overallTime, realServerTime, overhead, estServerRuntime,

estOffloadingTime, decryptionTime and estAndroidRuntime in miliseconds during extractive

text summarization. These values are stored in the database and thereafter execution runtime

analysis is carried out and displayed using bar chart and line graph for visual interpretation.

36

In order to generate the adequate samples for evaluation, we used Microsoft word document

text files whose sizes are 20kb, 40 kb, 60 kb, 80kb and 100 kb as input from which relevant

parameters outlined above are recorded. This is carried out for both encrypted and unencrypted

files with and without extractive text summarization offloading.

The experimental approach is preferred in this project because integration of RACA in cyber

foraging demands imposes additional execution time. This is because data

encryption/decryption comes at a significant offloading execution overhead cost that might

considerably undermine the goal of offloading resource intensive tasks in a cyber foraging

environment.

Furthermore, experimental designs allow us to test for causal relationships between variables

instead of just correlation relationships. Controlling an experimental situation also allows us to

minimize or eliminate confusing effects from variables other than our variables of interest.

3.6 Analysis and Interpretation Results

Descriptive analysis on how the proposed RACA mechanism enhances confidentiality and

integrity and RACA shortcoming in enforcing the same will be provided.

A comparative analysis of execution time overhead associated with RACA mechanism

integration vis-à-vis its absence of in a mobile cyber foraging system is also provided. This is

achieved through using bar chart and line graph for visual interpretation. This is carried out for

both local and offloaded task execution times. Local execution time is the time taken to solve

the task when no LAN connection is available or when offloading is infeasible while

offloading task execution time is the actual time that the whole process of offloading the task

takes.

Finally, Chi-Square (X
2
) and Persons correlation coefficient (r) are applied as part of

inferential statistics to rigorously ascertain occurrence of experimental control variability and

also establish existence of casual relationship between the input file size and execution time

categorized under encrypted and unencrypted input files.

37

CHAPTER FOUR: REQUIREMENT SPECIFICATIONS

4.1 Introduction

In order to achieve project objectives specified as in Chapter one, section 1.6; requirement

specification, analysis, design, implementation of prototype system was undertaken. This

chapter describes system requirements for the implemented prototype system.

Schach (2011) asserted that the any system requirements can be classified as either functional

or non-functional requirement; both of which technical design and actual implementation of

the system must satisfy. The functional requirement analysis was carried out by adopting user-

case approach proposed by Jacobson et al. (1994) together with use case scenarios as

advocated by Alexander et al. (2009). As regards non-functional requirement, various

categories such as architectural requirements, structural requirements, availability requirements

and performance requirements were specified as constraints.

4.2 Functional Requirements

i) The system should be able to offload execution of computationally intensive

tasks (extractive text summarization in our case) to surrogate computer within

WLAN.

ii) The mobile phone client should be able to execute task on its own when

surrogate computers are not available within its range.

iii) The system should be able encrypt and decrypt a text file using Advanced

Encryption System (AES) algorithm on Android based mobile phone deployed

as mobile phone client in cyber foraging system.

iv) The system should be able to associate the secret encryption/decryption

(symmetric) key to the encrypted file.

v) The system should provide Remote Access Control mechanism that can disable

or enable access to encrypted file on mobile phone client.

vi) The system should provide explicit evidence of any file access from mobile

phone at the remote auditing server.

38

vii) The system should be able to synchronize Access Control changes between

mobile phone client and the Remote Access Control server.

viii) The system should be able to record performance metrics during execution of

offloaded task (extractive text summarization) at a remote server.

ix) The system should be able to provide graphical interpretation (bar charts and

line graphs) of performance metrics for both offloaded and non-offloaded task

in mobile phone based cyber foraging system.

4.3 Non-functional Requirements

 Performance

a) Response Time: The system should be able to provide response within 60 seconds

after being issued with the command.

b) Memory: Runtime Memory for the system should be within 32 MB for mobile

client while 1 GB RAM for Surrogate computers.

 Dependability:

a) Robustness: The system should not crash for bad inputs and for that matter under

any circumstance (unless the reason is external to the system like OS failure).

b) Reliability: The system should generate correct response for at least 99 out of

randomly selected 100 inputs.

 Cost

a) Development man power : Should be restricted to 1 masters student under the

supervision of 1 lecturer.

b) Resources:

 The hardware resources should be restricted to The Galaxy Grand Duos (GT-

19082) on Android v4.1.2 (Jelly Bean) OS with Wi-Fi support, One (1)

Toshiba Laptop running on Intel (R) Core i5-3230 M @ 2.60 GHz with 8 GB

RAM on Windows 8 x64 bit and TP-LINK, 3G/4G Wireless N Router TL-

MR3220.

39

 Software resources used to develop and deploy the system should be restricted

to freeware/open source software. It will include Java SDK version 1.6_25,

Android Development Tools build 22.6.2, Netbeans IDE version 6.9.1, Apache

Tomcat version 6.0.20, SQLite database system among others.

 Maintenance:

a) The document/code should be self explanatory with comments in codes wherever

necessary.

b) The code should follow the Java coding standards.

 End-User:

a) Usability: A naïve end-user should be able to understand and use the system given

within five minutes of training.

 Pseudo Requirements

a) The code should be written in Java.

b) The code written should be compiled using Android SDK version 4.4.2 while the

Surrogate server mobile should be compiled using Java SDK Version 1.6_25.

c) The documents for the code written should be generated using Java doc.

40

4.4 Requirement Model

The requirement model was carried out using ‘A use case driven approach’ as advocated by

Jacobson et al. (1994) in development of Object-Oriented Software Engineering (OOSE). A

use case driven approach focuses on specification of actors, use cases, interface descriptions

and problem domain objects while all relevant notations are drawn using Unified Modeling

Language (UML).

Subsequently, a set of functional, object and dynamic models were developed to facilitate

better understanding of the system. The choice of use-case driven approach during the

prototype system development was motivated by existence of seamless incremental transition

between development stages and models as depicted in figure 8 and 9.

Figure 8: System development as a construction of models

Source: Adapted from Jacobson et al. (1994)

41

Figure 9: Incremental transition between from Requirement, Analysis and Design phases

Source: Adapted from Jacobson et al. (1994)

Other popular Object-Oriented Software Development approaches include Object Modeling

Technique (OMT) by Rumbaugh (1996), The Booch Method by Booch (1994), Object-

Oriented Analysis (OOA) by Coard and Yourdon (1991) and also Classes-Responsibility and

Collaboration (CRC) approach by Wirfs-Brock (1989) among others. None of these

approaches provide seamless incremental transition from requirement analysis, design,

implementation, testing and deployment phases comparable to use-case approach.

Nevertheless, an attempt to address the aforementioned limitation was made in the year 1999

by Jacobson, Booch and Rumbaugh (1999) through the development of a Unified Software

Development Process.

42

4.5 Functional Model

The functional model was represented with the help of use case diagrams and describes the

functionality of the system from users’ perspective.

4.5.1 Use Case Diagram

Figure 10 below illustrates the users’ view of prototype system and their interactions with the

system.

Figure 10 Use Case Diagram

Source: Author's compilation

43

4.5.2 Use Case Template

4.5.2.1 Encrypt File

Use Case Name: Encrypt file

Participating Actor: Initiated by Mobile Phone User

Entry Condition:

i) Mobile Phone User is ready to select a Microsoft word document that will be used as

input in the system.

Flow of Events:

ii) Mobile Phone User clicks on “File Registration” button on Mobile phone enable

cyber foraging application and select a file using a file browser pop up on an

Android based phone.

iii) The system encrypt the file and save encrypted file in the disk storage by

appending encrypted_{file_name}

iv) The System generates an Audit log and Access Control records and save the same

on the mobile phone.

v) The System initializes Access Control for encrypted file as unrestricted and

launches Remote Access Control and Auditing synchronization service in the

background.

Exit Condition:

vi) The Mobile Phone User is notified of the outcome of the encryption.

Special Requirements:

A plain text file to be encrypted must be uploaded prior to the invocation of Encrypt file use

case..

4.5.2.2 Execution of an Offloadable Task

Use Case Name: Execution of an offloadable task

Participating Actor: Initiated by Mobile phone User

Communicates with Offloading Engine, Security, Persistence and

Performance Metrics modules.

44

Entry Condition:

i) Mobile phone User is ready to select an encrypted file as an input into for

potentially offloadable task.

Flow of Events:

ii) Mobile phone user select an encrypted file and click on “Task execution” button.

iii) The request is processed by Persistence and Security modules to make a

determination on allowed access control. If access is allowed; input file is decrypted

and handed over to Offloading Engine else the execution of task is terminated and

an access denied message displayed to mobile user.

iv) The Offloading Engine makes a determination on whether to execute the task

locally or remotely.

v) Performance Metrics module captures the execution times and stores them on the

mobile phone.

vi) Security module logs the Audit log for the file access locally.

iv) The result obtained is displayed to mobile phone user transparently i.e. without him

being aware on whether the task was executed locally or remotely.

Exit Condition:

 v) Mobile phone user receives results of task execution.

Special Requirements:

Access Control record must be in existence and associated with the selected file in Mobile

Phone device prior to execution of potentially offloadable task.

4.5.2.3 Database Tables Synchronization Service

Use Case Name: Synchronization of Access Control, Audit log and Performance metrics

Participating Actor: Initiated by the Mobile Computing Offloading (MCO) system or Mobile

Phone User.

Communicates with Offloading Engine and Persistence modules.

Entry Condition:

i. Existence of dissimilar Access Control, Audit log and Performance metrics records in

either Mobile Phone client and offloading server.

45

Flow of Events:

ii. Database synchronization service polls Access Control, Audit log and Performance

metrics records from the mobile phone.

iii. Performs a ”wget” operation to determine the availability of the server. If it is available

it hand the records to server synchronization module one record at a time.

iv. The server synchronization module performs database synchronization and returns the

updated record and a instruction indicating whether an update is required on the client

side or not.

v. Mobile phone database synchronization module updates local database ones instructed

by the server to do so, otherwise the update is ignored.

vi. Database synchronization service resumes polling Access Control, Audit log and

Performance metrics records and repeats the (i-v) above.

Exit Condition:

Existence of similar Access Control, Audit log and Performance metrics records in both

Mobile Phone client and offloading server.

4.5.2.4 View Performance Metrics Graphs

Use Case Name: Generate Performance Metrics charts

Participating Actor: Web-browser client user and MCO

Communicates with Persistence, Performance Metrics and Chart

modules.

Entry Condition:

i. A potentially offloadable task has been executed (either locally or remotely) and the

database table records in the server have been synchronized.

Flow of Events:

ii. Web-browser client user clicks on a link “View chart” on the web page.

iii. The System processes the request by using Persistence module to Query the database

and Performance metrics module to generate required input to the Chart module.

46

iv. The Chart module generates the graph a visual representation of the same to the

mobile client.

 Exit Condition:

v. Web-browser client user view performance metric chart (bar graph or line graph).

Special Requirements:

Existence of task execution time metrics records at the server.

4.5.2.5 Remote Access Control Management

Use Case Name: Update Remote Access Control

Participating Actor: Web-Browser client user and MCO Administrator

Entry Condition:

i. Existence of Access Control record at the server.

Flow of Events:

ii. Web-Browser client user clicks on a link “Access Control” on the application’s web

page.

iii. The System generates a table of all Access Control records together with their updated

access permission status.

iv. Web-Browser client user enables or disables access permission status “Check box” of

any of the Access Control records he/she deems necessary. The user can also disable or

enable all permission on Access Control from a single click.

v. The Web-Browser client user clicks on “Save button”.

vi. The system updates server-side Access control record and returns a confirmation

message to the user.

vii. The Database Synchronization module schedules updated Access Control record for

client-side synchronization.

Exit Condition:

viii. Modified Access Control record at the server side.

47

4.5.2.6 Audit File Access

Use Case Name: View Audit log

Participating Actor: Web-Browser client user and MCO Administrator

Entry Condition:

i. Existence of Audit record at the server.

Flow of Events:

ii. Web-Browser client user clicks on a link “Audit” on the application’s web page.

iii. The System generates a table of all Audit log records

iv. Web-Browser client user views the record and exit the page.

 Exit Condition:

v. File Access log audited.

4.5.3 Scenario: Extractive Text Summarization

4.5.3.1 Encrypt File

Use Case Name: Encrypt file

Participating Actor: John: Mobile Phone User

Flow of Events:

i) John has mobile phone and would like to secure a Microsoft word document in it

containing confidential text. He would also like to control the document access

remotely incase his mobile phone device is lost.

ii) He clicks on “File Registration” button on Android phone enable mobile phone

based cyber foraging application and select a file using a file browser.

iii) The system encrypt the file and save encrypted file in the disk storage by appending

Encrypted_{file_name}

iv) The System generates an Audit log and Access Control records and save the same

on the mobile phone.

v) The System initializes Access Control for encrypted file as unrestricted and

launches Remote Access Control and Auditing synchronization service in the

background.

vi) The system notifies John on the outcome of file encryption.

48

4.5.3.2 Execution of Extractive Text Summarization

Use Case Name: Execution of an offloadable task

Participating Actor: John: Mobile phone User

Communicates with Offloading Engine, Security, Persistence and

Performance Metrics modules.

Flow of Events:

i) John select an encrypted file, enters the number of sentences expected in output text

summary and click “Summarize” button.

ii) The request is processed by Persistence and Security modules to make a

determination on allowed access control. If access is allowed, the input file is

decrypted and handed over to Offloading Engine else the task is terminated and an

access denied message displayed to John.

iii) The Offloading Engine makes a determination on whether to execute the task

locally or remotely. This is done transparently and John is not aware of it.

iv) Performance Metrics module captures the execution times and stores them on the

mobile phone.

v) Security module logs the Audit log for the file access locally.

iv) The result obtained from is displayed to the John transparently without him being

aware on whether the task was executed locally or remotely.

4.5.3.3 File Access Control Management

Use Case Name: Update Remote Access Control

Participating Actor: John: Web-Browser client user

Flow of Events:

i. John has lost his mobile phone device but the device is within WLAN. He clicks on

“Access Control” link on the application’s web page.

ii. The System generates a table of all Access Control records together with their updated

access permission status.

iii. John disables access permission status “Check box” of a specific file he considers

sensitive and clicks on “Save button”.

49

iv. The system updates server-side Access control record and returns a confirmation

message to the John.

v. The Database Synchronization module schedules updated Access Control record for

client-side synchronization. Consequently locking out access to the file.

4.5.3.4 Audit file Access

Use Case Name: View Audit log

Participating Actor: John: Web-Browser client user

Flow of Events:

i. John clicks on a link “Audit” on the application’s web page.

ii. The System generates a table of all Audit log records

iii. John undertakes a forensic Audit and exit the page.

4.5.3.5 View Performance Metrics Graphs

Use Case Name: Generate Performance Metrics charts

Participating Actor: John: Web-browser user

Flow of Events:

i. John clicks on a link “View chart” on the web page.

ii. The System processes the request, generates a graph (Bar and line chart) and displays it

to John.

iii. John studies the graph (Bar and line chart) and exit the page.

4.6 Summary

This chapter adopted use-case approach to specify system requirements for Secure Mobile

Phone based Cyber foraging prototype system. Despite numerous object-oriented related

references made in this chapter, the use-case approach is also applicable when constructing

software systems based on non object-oriented techniques. The perspective provided by use

cases reinforces the ultimate goal of software engineering by assisting involved-analysts and

end-users to arrive at a common, shared vision of what the product they are specifying will do.

This is a key aspect in constructing quality software as asserted by Karl (1997).

50

CHAPTER FIVE: ANALYSIS AND DESIGN

5.1 Introduction

In this chapter we will convert use cases specified during requirement specification in Chapter

four of this document into analysis and design models. This is achieved through use-case

analysis and design approach as proposed by Jacobson et al. (1994). This entailed.

i. Identification of classes which perform a use case’s flow of events.

ii. Distribution of use case behavior to those classes, using use-case realizations.

iii. Identification of responsibilities, attributes and associations of the classes.

iv. Identification of usage of architectural mechanisms.

5.2 Analysis

The following steps were followed from which various analysis models were developed:-

STEP I: Supplementing the Use-Case Descriptions

STEP II: For each use case realization

o Finding Analysis Classes from Use-Case Behavior

o Distribution of Behavior to Analysis Classes

STEP III: For each resulting analysis class

o Description of Responsibilities

o Description of Attributes and Associations

o Definition of Attributes

o Establishment of Associations between Analysis Classes

o Description of Event Dependencies between Analysis Classes

o Qualification of Analysis Mechanisms

STEP IV: Evaluation of Results of Use-Case Analysis

STEP I: Was carried out to capture additional information needed in order to understand the

required internal behavior of the system that were missing from the use-case description.

51

STEP II: Was carried out to identify a candidate set of model elements (analysis classes

modeled as object models) which were capable of performing the behavior described in use

cases. Similarly use-case behavior in terms of collaborating analysis classes and

responsibilities of analysis classes were determined. This were then expressed in terms of

Sequence and Collaboration model diagrams

STEP III: Was carried out to enrich analysis classes identified by identifying attributes,

methods and association for each class. Furthermore, Event Dependencies between Analysis

Classes were identified for objects that needed to know when an event occurs in some "target"

object, without the "target" having to know all the objects which require notification when the

event occurs. Event Dependencies were modeled using Subscribe-Association model.

Thereafter, we qualified Analysis Mechanisms (special information that were of interest) for

each class that could substantially influence architectural design. Analysis Mechanisms

identified were captured using a note attached to a diagram to convey the information.

5.2.1 Analysis Model

Figure 11 to 28 illustrates various analysis model identified in the prototype system.

5.2.1.1 Object Model

Figure 11: File Encryption object model

Source: Author's compilation

52

ii. Execute offloadable method (Extractive text summarization)

Figure 12 : Extractive text summarization object model

Source Author’s compilation

iii. Synchronize Access Control

Figure 13: Access Control Synchronization object model

Source: Author’s compilation

53

iv. Update Access Control management

Figure 14: Update Access Control object model

Source: Author’s compilation

v. View Audit log

Figure 15 : View Audit log object model

Source: Author’s compilation

vi. View Performance Metrics

Figure 16 : View Performance Metrics object model

Source: Author’s compilation

54

5.2.1.2 Sequence Diagrams

i. File Encryption

Figure 17 : File Encryption Sequence diagram

Source: Author’s compilation

55

ii. Extractive Text Summarization

Figure 18: Extractive text summarization sequence diagram

Source: Author’s compilation

56

iii. Update Access Control

Figure 19 : Manage Access Control Sequence diagram

Source: Author’s compilation

57

iv. View Audit log

Figure 20 : View Audit log Sequence diagram

Source: Author’s compilation

v. View Performance metrics

Figure 21 : View Performance metrics

Source: Author’s compilation

58

5.2.1.3 Collaboration Diagrams

i. Client side: synchronize Access Control

Figure 22 : Client side Access Control Synchronization Collaboration diagram

Source: Author’s compilation

ii. Server side: synchronize Access Control

Figure 23 : Server side Access Control Synchronization Collaboration diagram

Source: Author’s compilation

59

5.2.1.4 Activity Diagrams

i. Extractive text summarization

Figure 24 : Extractive text summarization activity diagram

Source: Author’s compilation

60

ii. Synchronize Access Control

Figure 25 : Synchronize Access Control activity diagram

Source: Author’s compilation

61

iii. File encryption activity

Figure 26 : File encryption activity

Source: Author’s compilation

62

5.2.1.5 State Machine Diagrams

To model the dynamic behavior of the entire system we used the following state machines.

i. Client side (Mobile Phone)

Figure 27 : Client side state machine diagram

Source : Author's compilation

63

ii. Server side (Surrogate computer)

Figure 28: Server side state machine diagram

Source : Author's compilation

5.3 Design

5.3.1 Overall System Design

The prototype system (Secure Mobile phone based Cyber foraging system) hereafter

christened as Secure-MCO is made up of many interactive software systems which

collectively present a complex structure of components. In order to clearly envision the overall

blueprint of the system, multiple views or the overall system are needed. These views were

classified as either infrastructure architecture or application architecture. Figure 29 in the next

page gives an overview of these views.

64

Figure 29 : Overall system design

Source: Author’s compilation

Infrastructure

architecture

Application

architecture

65

Application Architecture as illustrated in figure 29 the previous page, provides the view of how

various modules of Secure-MCO work together to support mobile phone based cyber foraging

capabilities while at the same time enforcing Remote Access Control and Auditing (RACA)

mechanism thus enhancing data integrity and confidentiality. These modules and components

are categorized as:

i. Front-end User Interface (e.g. Mobile phone UI and Web-based UI)

ii. Application-level Communication Protocol (e.g XMLHttpRequest/XMLHttpResponse)

iii. Core Application (e.g. Client/ Remote Offloading Engine, Client/Remote Database

Synchronization module)

iv. Back-end data storage (e.g Flat file and SQLite Database)

The Infrastructure Architecture illustrates a view of how the hardware and network topology

are deployed to support Secure-MCO system. This includes Android based Wi-Fi enabled

smart phone, Wireless access point (Wireless-Router), Several Desktop Computers configured

to be accessible on WLAN.

5.3.2 Architectural Design

5.3.2.1 Infrastructure

Figure 30: Infrastructure architecture

Source: Author’s compilation

66

As regards Infrastructure design illustrated in figure 30 no special configuration is required except a wireless access point from which

a mobile phone user can access WLAN to execution offloadable tasks on surrogate computers. In addition a web application user

should be able to access the system both within and outside LAN.

5.3.2.2 Application

Figure 31 : Application architectural design

Source: Author’s compilation

67

Figure 31 in the previous page illustrates application architectural design. We used layered

software architectural pattern in designing the application. This enabled Secure-MCO to be

robust, reliable, user-friendly and high-performance. This approach enables extension of the

application and reusability of components across various modules. An overview of components

in each tier is elucidated below.

i. Presentation Tier

Presentation tier contains components directly interfacing with end-users. These users include

Mobile Phone User and Web-Based Users.

ii. Application Logic Tier

Application Logic tier is the backbone and integrator of various components of Secure-MCO.

Though depicted as dependent with Remote modules located in Surrogate computer, both

client-side and server-side application modules were designed to run independently and the

presence or absence of any module does not prevent the other module from running. Another

notable aspect of the application layer above is the communication between mobile phone

application and the server through XML over HTTPS protocol (XMLHttpRequest and

XMLHttpResponse) this allows easier access of surrogate computer located behind a firewall.

Client and Remote Database Synchronization module together with Security module

implement RACA mechanism. Furthermore, Client and Remote offloading Engine modules

were integrated into the system to support offloading capability feature.

iii. Persistence layer

This tier connects the application logic and the data layer in Secure-MCO system. In order to

bridge the disconnect between Object-Oriented (OO) and Relational Database we opted to use

ORMLite library as an Object Relational Mapping (ORM). The choice of ORMLite was

made due to its light-weight and Android platform support; contrary to existing heavy weight

ORM such as Hibernate, NHibernate and Oracle Toplink ORM among others. Figure 32

and 33 in the next page illustrate high-level architecture and java based implementation of an

ORM.

68

Figure 32 : High-level architecture of an ORM

Source: Author's compilation

Figure 33 : Using ORM in java application

Source : Author's compilation

iv. Data Tier

Data tier contains the back-end data store for Secure-MCO. The database used in this tier was

SQLite owing to its light-weight with minimal memory foot print (it successfully starts with

memory footprint starts at about 50 kilobyte) thus suitable for resource constrained mobile

phone.

69

5.3.3 Detailed Design

This section undertakes a detailed design of Secure-MCO with an aim of addressing

inadequacy arising from Analysis and high-level architectural design phases above.

5.3.3.1 User Interface

The user interface is divided into two (for Mobile phone application and for Web-based

application) as illustrated in Appendix D..

5.3.3.2 Class Diagram

Detailed class diagrams for both mobile phone based application and the Web-based

application offloading application designed and implemented in the system is illustrated in

Appendix C.

70

5.3.3.3 Package Diagram

Figure 34 and figure 35 illustrates package design for mobile application module and web

application module respectively.

i. Mobile phone application packages

Figure 34 : Mobile phone application packages

Source: Author's compilation

71

ii. Web- management system packages

Figure 35 : Web- management system packages

Source : Author's compilation

72

5.3.3.4 Database Design

We followed Chen (1976), Entity-Relationship (ER) model in modeling our data base design

as depicted in the below.

Figure 36 : Entity-relationship model

Source : Author's compilation

Execution Performance

Audit Log

Algorithm

Access Control User

Input

Representation

Access

Date

File

Name

Runtime

Server

runtime

User Name

Password

Secret

Key

IP Address

Last

Update date

Permission

Status

User Name

File Name

Algorithm

Name

Offloading

status

Estimated

Android time

Estimated

Offloading

Time

Estimated

Server

Time

Overall

Time

Real Server

runtime

Overhead

Has

Executes

Has

Has

1

0..N

1..N

1..N

1

0..N

0..N

1

73

5.3.3.5 Integration Design

Linthicum (2000), described four types of Enterprise Application Integration (EAI) namely:-

Data-level integration, Application-level integration, Method-level integration and User

interface (UI)-level integration. In our project we used Data-level integration, Application-

level integration and User interface (UI)-level integration as follows.

i. Application-level Integration

Application-level integration was used to integrate extractive text summarization module with

an open Mobile Computation Offloading (MCO) system based on Android platform developed

by Griera (2013). This is depicted below.

Figure 37 : Application-level integration

Source : Author's compilation

ii. Data-level Integration

Data level integration was used to integrate Client-side Security module running on Android

based application and Remote-side security module of running on Apache Tomcat web server.

This is depicted below.

Figure 38 : Data level integration

Source : Author's compilation

74

iii. User-Interface (UI) level Integration

Griera (2013) implemented an open source Mobile Computation Offloading (MCO) system,

that has a web management interface; its integration with RACA at the User-Interface (UI)

level is illustrated below.

Figure 39 : User-Interface level integration

Source : Author's compilation

5.4. Conclusion

In this chapter we undertook Object Oriented Analysis and Design (OOAD) that involved

identification and modeling both static and their dynamic aspects of the Secure-MCO

prototype system following a use-case approach. However, OOAD carried out is partly an

extension of use-cases modeled during requirement specifications in Chapter four; thus a

justification of seamless incremental transition of development phases described in Chapter

four, Section 4.4.

75

CHAPTER SIX: PROTOTYPE IMPLEMENTATION AND TESTING

6.1 Introduction

This chapter provides a detailed description on how various design artifacts explored in

Chapter five were implemented. It also describes an implementation of RACA framework

originally proposed by Geambasu et al. (2011). Thereafter we describe the integration of the

same into an open source Mobile Computation Offloading (MCO) system based on Android

platform developed by Griera (2013); with Secure-MCO prototype system as the resulting

product thus effectively fulfilling our set out project specific objective number (ii) and (iii)

respectively as outlined in Chapter One, Section 1.6.2.

6.2 Implementation Environment

6.2.1 Implementation Platform

Mobile phone application was implemented on Android platform v4.1.2 (Jelly bean) while the

server side was implemented on Java EE6 web platform (based on Servlet 2.5 API).

6.2.2 Programming Languages

The system was implemented using mainly using Java programming language though JSP,

JSTL, XML and HTML were also used. Java programming was used to implement complete

Mobile phone application components on Android platform. It was also used to implement the

Remote application logic and Persistence layer as per the application architectural design in

figure 32.

The choice of Java was made because it has the following features:-

i. Simple - It is easy to write and has a concise, cohesive set of features that makes it

easy to learn and use.

ii. Secure - It provides a secure means of creating Internet applications and also

provides secure way to access web applications.

iii. Portable - Java programs can execute in any environment for which there is a Java

run-time system (JVM).

76

iv. Object-oriented - Java programming is object-oriented programming language.

v. Robust - It encourages error-free programming by being strictly typed and

performing run-time checks.

vi. Multithreaded - It provides integrated support for multithreaded programming.

vii. Architecture-neutral - It is not tied to a specific machine or operating system

architecture.

viii. Interpreted - Java supports cross-platform code through the use of Java bytecode.

ix. Distributed - It was designed with the distributed environment in mind hence can be

transmitted, run over internet.

x. Dynamic - Java programs carry with them substantial amounts of run-time type

information that is used to verify and resolve accesses to objects at run time.

6.2.3 CASE Tools

Among case tools used were:-

 Android Developer Tools version 22.6.2-1085508 and Netbeans IDE v. 6.9.1 were used

as Integrated Development Environment (IDE).

 Microsoft Visio 2007 was used to draw design artifacts of the prototype.

 Microsoft Excel 2007 was used to analyze data and draw graphs and charts

 SqliteMan v. 1.2.2 was used to browse SQLite database.

 The ObjectAid UML Explorer for Eclipse was used for generating class diagrams.

 Macromedia Fireworks MX 2004 was used for image editing

6.2.4 Application Servers

 Apache Tomcat v. 6.0.20 was used as web server

 SQLite Database was used as a data storage.

77

6.2.5 Core Development Libraries/API

The following were among key API/libraries were used in the implementation of prototype

system:-

i. Core API

 Java Security API from javax.crypto package to implement Advanced Encryption

System (AES) algorithm

 Simple XML Serialization API for Unmarshalling and Marshalling XML and Java

Object respectively.

 Java Reflection API for inspecting classes, interfaces, fields and methods at

runtime, without knowing the names of the classes, methods etc. at compile time. It

was also used to instantiate new objects, invoke methods and get/set field values

using reflection.

ii. Libraries

 http-client-4.0.3.jar used to provide http communication within Java source

code

 ormlite-core-4.48.jar and ormlite-android-4.48.jar both were to used to provide

ORM support in Remote sever application and Android application

respectively.

 jfreechart-1.0.9.jar used to generate bar and line chart of execution performance

metrics within the Server-side application module

 classifier4j-0.6.jar used implement extractive text summarization.

6.3 User Interface Implementation

The User interfaces were implemented derived from sketches depicted in section 3.3.3.1.

 Three fundamental principles taken into consideration while implementing the same were:-

i. Organization: provide the user with a clear and consistent conceptual structure

ii. Economize: do the most with the least amount of cues

iii. Communicate: match the presentation to the capabilities of the user.

Appendix E: (User Manual) contains sample illustration of both mobile application and Web

application User interfaces implemented.

78

6.4 Database Implementation

The database was implemented on SQLite database. The schema of the raca.db database is

illustrated below. Though it is possible to access raca.db from standard SQL language, the

prototype system was implemented using ORMLite ORM, to facilitate Rapid Application

Development (RAD) by transparently addressing type mismatch between our Object-Oriented

application entity objects and the SQL statements required to query/update the SQLite

database.

Figure 40 : RACA Database schema

Source : Author's compilation

79

6.5 Coding

Java programming language was used to implement virtually the whole prototype except user

interface of Web-management module that relied on JSP, JSTL, JavaScript and HTML for

dynamic web pages implementation.

Appendix A contains sample source code snippets implemented in java. Coding in java was

done by strictly following Java Code Conventions as described by Chaudhuri and Depradine

(2003).

6.6 Integration

i. Application-level Integration

Open Mobile Computation Offloading (MCO) system based on Android platform developed

by Griera (2013) provides three Java classes (Engine.java, Algorithms.java and

DataBaseHelper.java) that a developer must add to his Android application in order to

enjoy MCO functionality. We included them and invoked MCO API as shown in the code

snippet below from TextSummarizationActivity.java class.

ii. Data-level Integration

This was done through synchronization of raca.db database located on Android phone based

application running Extractive text summarization and remote raca.db running Access Control

Management application. The code snippet for the integration is illustrated in Appendix A

under DatabaseService.java and SyncKeyServiceDatabase.java for mobile phone application

while SyncKeyServiceRegistryServlet.java was used for Remote database synchronization.

80

iii. User-Interface (UI) level Integration

To integrate RACA Access Control pages into Open Mobile Computation Offloading (MCO)

system based on Android platform developed by Griera (2013) Access Control, Audit and

Performance Analysis links were added on the MCO link menu as depicted below.

Figure 41 : Illustration of User-interface level intergration

Source : Author's compilation

6.7 Testing

Three types of test were conducted during the implementation of the prototype system as

highlighted below.

i. Unit testing – The functionalities implemented within each java classes written were

tested to ensure they methods returns the expected results.

ii. Integration testing – This test was conducted to on database synchronization

modules on remote and mobile application performs its functionality as expected.

Offloading Engine modules on remote and mobile application, Security module

with Text Summarization modules were also subjected to this test.

User-Interface (UI) level

integration

81

iii. System testing – This test was carried out after the entire prototype system was

implemented to ascertain whether it was implemented as per the requirements specified

in the Use-Cases. This was done by running the prototype to test for overall functional

requirements specification provided in section 4.2 of Chapter Four.

Tabulated below is a summary of test plan conducted in the system.

 Test case description Expected result Observed Corrections

1. Test file encryption and decryption in

the system

A word file (.doc)

file is encrypted using

AES algorithm and

the decryption yield

the same content

results

Word file

successfully

encrypted and

decrypted as

expected.

NIL

2. Test extractive text summarization in

both mobile application and remote

offloading engine

The system should

generate a text

summary as per the

required number of

lines.

Text summarization

successfully

performed.

However, existence

of stopping tokens

within a sentence

degrades the quality

of summary.

Handling of stopping

token remains

unresolved.

3. Test offloading engine to ensure

computationally intensive tasks are

offloaded to surrogate computer.

Computationally

intensive tasks are

offloaded.

Network monitoring

status parameters

within Engine.java

class threw

NullPointer

Exeception owing

initialization failure.

A method public void

updateServerStatus()

was implemented to

fix the initialization

bug. Hence

Computationally

intensive tasks were

offloaded correctly.

4. Test the synchronization of SQLite

databases on both Mobile phone and

surrogate computer

Whenever, there is a

network connectivity

the two databases

should always be

sync.

In presence of

network

connectivity the

database service

module

NIL

82

synchronizes the

databases

transparently

without users

intervention.

5. Test remote access control

functionality i.e users can enable or

disable file access remotely.

Users can access

remote access control

interface and enable

or disable file access

on the mobile phone

Web application

users were able to

successfully enable

and disable file

access on the mobile

phone.

NIL

6. Test to ensure that all access to

encrypted file on the mobile phone is

logged on the remote auditing server

whenever there is a network between

mobile phone application and the

audit server.

All access to

encrypted file is

logged on the audit

server.

All access to

encrypted file

logged on audit

server.

NIL

7. Test to ensure that all task execution

performance metrics recorded and

saved into the surrogate computer.

All task execution

performance metrics

are recorded on

surrogated computer.

Performance metrics

recorded as

expected.

NIL

8. Test to ensure that performance

metrics analysis is done and line and

bar charts of the same generated

The system to

perform performance

metrics analysis and

generate bar chart and

line graph from the

same

Analysis done, both

line graph and bar

chart generated as

expected.

NIL

Table 2 : Test case plan

Source : Author's compilation

83

6.8 Conclusion

This Chapter described our implementation of RACA framework as proposed by Geambasu et

al. (2011). This was achieved by implementing a file encryption/decryption key management

mechanism within the Security module of the prototype. In order to support remote

functionality database synchronization modules were implemented.

File encryption was done using Advanced Encryption System (AES) algorithm implemented in

Java Security API from javax.crypto package. The generated secret key was encoded

to base64 to allow the key to stored a String data type thereafter stored in Access Control

object and later used to control encrypted file access.

Remote Audit mechanism was implemented by ensuring that all file access made on encrypted

file are recorded on Audit object on the phone application and immediately posted to the Audit

Server whenever there was a network connectivity between the two. This was achieved

through database synchronization modules.

Extractive text summarization was implemented as a scenario in our prototype system to test

the integration of offloading functionality. Though overall text summarization goal was

successfully achieved the quality of summary remained degraded due to lack of refined

implementation of stopping tokens in Classifier4j-0.6.jar library that was used to in the

prototype system.

Lastly, to facilitate the fulfillment of our specific objective (iv) outlined in Chapter One

section 1.6.2, relevant parameters values of extractive text summarization execution time in

the prototype system were recorded in the remote database. The database data was then

retrieved, statistically analyzed and presented using bar and line graph.

84

CHAPTER SEVEN: RESULTS AND EVALUATION

7.1 Results

Whereas main outcome of the study was a Secure-MCO prototype system presented in

Chapter four that fulfilled our specific objective number (ii) and (iii); the study further traced

execution time of the prototype system and analyzed the resulting metrics to establish the

impact of integrating RACA mechanism in order to fulfill our specific objective (iv). This

chapter presents the results obtained and discussion of analysis conducted.

We set out the experiment by using the prototype system to summarize text content of

Microsoft word document files whose sizes were 20kb, 40 kb, 60 kb, 80kb and 100 kb. This

were carried out using both encrypted files and unencrypted files. The resulting execution time

were recorded when extractive text summarizations were carried out in surrogate computer

during offloading and when no offloading took place. Appendix B provides a tabulation of

execution time data extracted from the database while tabulated in table 3 is a summarization

of overall execution time taken. Figure 42 to figure 47 illustrate generated bar charts and

corresponding line graph.

Overall execution time (Milliseconds)

Input file

size

(Kb)

Local/Mobile phone based

 execution

Offloaded/Surrogate computer

execution

Encrypted Unencrypted Encrypted Unencrypted

20 56.4575220048428 33.3251969963312 54.59513701 2.287513018

40 246.704110994935 146.972658008337 104.503583 7.08398807

60 233.581547990441 167.99926699698 53.81384403 12.95967805

80 404.388442993164 212.127693995833 95.72965501 20.092219

100 529.693617984653 309.753429993987 102.549233 23.54184306

Table 3: Overall execution time (milliseconds)

Source: Author's compilation

85

Overall execution time (Milliseconds) against file size is illustrated below:

Figure 42 : Overall execution time line graph

Source: Author's compilation

Figure 43 : Overall execution time bar chart

Source: Author's compilation

86

Depicted below are bar charts depicting performance metrics result obtained.

i. Surrogate computer execution of unencrypted input files

Figure 44: Surrogate unencrypted input execution chart

Source: Author's compilation

ii. Surrogate computer execution of encrypted input files

Figure 45 : Surrogate encrypted input execution chart

Source: Author's compilation

87

iii. Local/Mobile phone based execution of unencrypted input files

Figure 46 : Mobile phone based unencrypted input execution chart

Source: Author's compilation

iv. Local/Mobile phone based execution of encrypted input files

Figure 47 : Mobile phone based encrypted input execution chart

Source: Author's compilation

88

7.2 Analysis of System results

Section 7.1 provided execution time descriptive statistics of Secure-MCO prototype

system using bar chart; however adequate fulfillment of specific objective (iv) demanded a

rigorous demonstration in order to ascertain the impact of RACA integration. Furthermore, it

was necessary to ascertain whether or not a causal relationship existed between various

variables involved. We applied inferential statistics as affirmed by Currell et al. (2009) to

rigorously demonstrate whether or not there was a relationship between the input file size and

execution time categorized under encrypted and unencrypted input files among other execution

time related metrics. We formulated the following questions and the corresponding

hypotheses:-

QUESTION I: Is there a significant difference between the distributions of encrypted and

unencrypted input file execution times outcomes for both surrogate and local execution? This

question was formulated to test the presence of experimental control variability in the study.

To answer this question we formulated the following hypothesis and tested it using chi-square

statistics as per the following equation

Hypotheses:

 Null (Ho): No difference in conditional distributions/No real relationship

 Alternate (H1): There is a real relationship.

89

i. Local execution

Input file size

(Kb)

Local/Mobile phone based

execution

Encrypted Unencrypted

20 56.4575220048428 33.3251969963312

40 246.704110994935 146.972658008337

60 233.581547990441 167.99926699698

80 404.388442993164 212.127693995833

100 529.693617984653 309.753429993987

Table 4 : Local execution time (milliseconds)

Source: Author's compilation

Results:

Computed X
2
= 5.786698

Degrees of freedom = (Rows – 1)(Columns – 1) = 4

Computed X
2
= 5.786698 is less than tabulated χ2 at 0.05, 0.01 and even 0.001

probability columns presented as 9.49, 13.28 and 18.47 respectively. Hence we

accepted Null (Ho) hypothesis and concluded that there were no errors/ experimental

control variability in local execution scenario that interfered with the experiment

outcome.

ii. Offloaded/Surrogate computer execution

Input file size

(Kb)

Offloaded/Surrogate computer execution

Encrypted Unencrypted

20 54.59513701 2.287513018

40 104.503583 7.08398807

60 53.81384403 12.95967805

80 95.72965501 20.092219

100 102.549233 23.54184306

Table 5 : Surrogate execution time (milliseconds)

Source: Author's compilation

90

Results

 Computed X
2
= 14.74009

Degrees of freedom = (Rows – 1)(Columns – 1) = 4

Computed X
2
= 14.74009 is greater than tabulated χ2 at 0.05, 0.01 but not at 0.0005

probability columns presented as 9.49 13.28 and 18. 86 respectively. Hence we rejected

Null (Ho) hypothesis and concluded that there was a 99% probability there were

experimental control variability during surrogate execution scenario consequently

impacting on experiment outcome. However, this conclusion was made cognizance of

the fact that text summarization algorithm exhibit intractable execution time owing

to the fact that it is an heuristic algorithm hence it doesn't necessarily execute

following a particular distribution function.

QUESTION II: Is there a significant relationship between file input size and text

summarization performance?

To answer this question we formulated the following hypothesis, computed Pearson’s r

correlation coefficient, calculated the t-ratio and determined the hypothesis significance from

t-tables. Moreover we computed R-Squared values to determine portion of variance in the

execution time (dependant variable) that can be attributed to file input size (independent

variable) as suggested by Currell et al. (2009).

Hypotheses:

 Alternate (H1): The greater the file input size, the greater the text summarization

execution time

 Null (H0): There is no relationship between file input size and text summarization

execution time.

Table five below tabulates the execution time of various encrypted input files obtained during

the experiment.

Input File size (Kb)
(X)

Execution time (Milliseconds)
(y)

20 56.457522

20 54.59513701

40 246.704111

91

40 104.503583

40 7.08398807

60 167.999267

60 53.81384403

80 404.388443

80 95.72965501

100 20.092219

100 102.549233

Table 6 : Relationship between encrypted input file size and execution time

Source: Author's compilation

We computed

i. Pearson’s (r) correlation coefficient using the following formulae.

ii. t- ratio using the following equation

iii. R-Squared = r

2

Results

Computed r= 0.110211123 and ratio t= 0.470452094

Degrees of freedom (df) = N-2 = 10-2 = 8

Since our computed value of t is less than tabulated t-table values at 0.1 probability. We reject

Alternate (H1) and assert that the probability that a significant relationship exist between input

file size and the execution time is less that 0.1%. However, this can be attributed to the

intractable nature of heuristic algorithm in text summarization algorithm used as far as

its execution time is concerned.

Computing R-Squared gives 0.012146491632921129, This was interpreted by stating that

Input file size explains 1.21465% of the variance in execution time.

92

CHAPTER EIGHT: DISCUSSIONS AND CONCLUSION

8.1 Achievement Objectives

This project achieved the overall objective it was set out to carry; this was to enhance security

of mobile phone based cyber foraging system by implementing a mechanism that enforce data

integrity and confidentiality. The study achieved its stated specific objectives as highlighted

below.

OBJECTIVE I: To examine existing mobile phone based cyber foraging systems with a

focus on data integrity and confidentiality security challenges.

This was achieved through detailed review of literatures on cyber foraging systems. However,

we focused on integrity and confidentiality security challenges exhibited in the existing

systems. Literature review revealed that related works in cyber foraging have had a focus on

how to design and implement a functional cyber foraging system with insignificant effort

made to address security challenges arising in such systems; notwithstanding obvious

vulnerability such system are expose to owing to migration of data to remote surrogate

computers. Furthermore, through literature review it become evident that the application of

RACA framework to address such problem was non-existent thus establishing the foundation

for relevance of the study.

OBJECTIVE II: To design and implement data integrity and confidentiality enforcing

mechanism in mobile phone based cyber foraging system using Remote Access Control and

Auditing model.

The project successfully implemented data integrity and confidentiality enforcing mechanism

based on RACA framework originally developed by Geambasu et al. (2011). This was

achieved by combining encryption based on 128-bit Advanced Encryption System (AES)

algorithm, remote key storage and an audit server to provide two important properties. First is a

file auditing that offers explicit evidence on whether or not a file access was made. Secondly, it

allows users to disable future file access on the device once the device is lost by allowing a

configuration on the audit server to refuse to return a particular file key.

93

OBJECTIVE III: To integrate the implemented mechanism in objective (ii) above into an

open source mobile phone based cyber foraging system prototype.

RACA implementation was successfully integrated into an open source Mobile Computation

Offloading (MCO) system based on Android platform developed by Griera (2013). This was

done at Application, Data and User-interface levels as described in Chapter six Section 6.6 of

this document.

OBJECTIVE IV: To evaluate offloading performance overhead costs attributed to the

integration of RACA implementation in mobile phone based cyber foraging system

prototype.

Using extractive text summarization as a use case scenario in the prototype system, we

analyzed and evaluated execution time performance overhead arising from integration of

RACA implementation into MCO. The result indicated that despite the intractable execution

time of extractive text summarization algorithm owing to it heuristic properties, the execution

time overhead arising from the integration was minimal hence integration of RACA into MCO

was deemed feasible.

Lastly, in order to provide robust secure mechanism; the prototype system implemented a basic

authentication while the communication between Mobile Phone application and Surrogate

computer was implemented based on Hypertext Transfer Protocol Secure (HTTPS). HTTPS

provides layering of Hypertext Transfer Protocol (HTTP) on top of the SSL/TLS protocol, thus

adding the security capabilities of SSL/TLS to standard HTTP communications. The main

motivation behind the use of HTTPS implementation was to prevent chances of

wiretapping and man-in-the-middle attacks whenever the system offload a sensitive

confidential data to surrogate computer. This feature is not covered in RACA framework.

94

Research questions were answered as follows:-

iii. What are security challenges facing mobile phone based cyber foraging system?

It was established that data integrity and confidentially remains unaddressed hence among

major security challenges facing mobile phone based cyber foraging system.

iv. Does RACA security model improve data integrity and confidentiality in mobile phone

based cyber foraging system?

RACA framework sufficiently augment traditional encryption based file system by combining

encryption, remote key storage and an audit server to provide explicit evidence on whether or

not a file access was made. It also allows users to disable future file access on mobile phone

device once the device is lost by allowing a configuration on the audit server to refuse to return

a particular file key. However, RACA need to be complemented with Secure transport

between Mobile Phone device and Surrogate Computer based on SSL/TLS in order to

prevent chances of wiretapping and man-in-the-middle attacks. This was achieved in the

prototype system through the use of HTTPS.

v. Can RACA mechanism be integrated into mobile phone based cyber foraging system?

Yes. This can be effectively achieved at both data, application and User interface level

integration.

vi. Does the integration of RACA mechanism significantly undermine task offloading

performance in mobile phone based cyber foraging system?

Execution time overhead penalty attributed to RACA mechanism integration is minimal hence

the proposed solution is feasible.

95

8.2 Limitation of the study

Two major limitations were identified in the study.

i. Enforcing data integrity and confidentiality after loss/theft of mobile phone device.

Key: T loss - Time when mobile phone device user losses control of the device

T notice - Time when user realizes he/she lost the device

Figure 48 : Timeline of theft of mobile phone device

Source: Author’s compilation

Illustrated above in figure 48 is the timeline of theft/loss of mobile phone device deployed in

the Cyber foraging system. The implemented solution fall short of enforcing 100% data

integrity and confidentiality during loss/theft of a mobile phone device between T loss and T

notice interval. This is because during this interval user would not have disable file access on the

mobile device through remote access control functionality thus the file may remain accessible

to a user who has basic authentication login access on the mobile phone application.

Furthermore, file access on the mobile phone device can only be accessible when the device is

accessible within WLAN.

No viable solution was found on how to mitigate on this limitation without contradicting the

goal of cyber foraging that demands that the mobile phone application ought to be capable of

executing offloadable tasks on its own whenever, surrogate computer remains inaccessible

within WLAN as affirmed Balan et al. (2002). Hence this challenge remains open/unaddressed.

96

ii. Prevention of wire-tapping and man-in-the middle of attack

RACA framework addresses data integrity and confidentiality challenges at file system level.

However, the framework does not provides mechanism of addressing data confidentiality and

integrity vulnerability exposed to data during transmission. This becomes an

hindrance/limitation whenever a distributed system such as cyber foraging is involved. This is

because data transmission between mobile phone device and surrogate computer is susceptible

to interception with a potential of compromise thereafter. This is particularly so through wire-

tapping and man-in-the-middle attacks. We mitigated on this limitation by relying on HTTPS

for communication between Mobile phone device and surrogate computer based on self-signed

SSL/TLS certificates.

8.3 Recommendations

The ever-increasing amount of valuable digital data needs to be protected, since its irrevocable

loss is unacceptable. In recent years, cyber foraging systems popularity has increased

dramatically. However, individuals in possession of confidential data hesitate to entrust their

data to cyber foraging systems since they fear that they will lose control over it. This is

exacerbated by rudimental enforcement of computer security attributes namely confidentiality,

integrity and availability (also called CIA) as recommended by Avizienis et al. (2004) in these

systems.

In this study we have enforced confidentiality and integrity attributes using RACA framework.

However, the framework exhibits several inadequacies such as lack of transport security

during transmission and lack of a discretionary access control among others. Consequently, in

order to improve RACA framework to sufficiently support CIA attributes we recommend the

following:-

i. System Access Controls.

The framework should not only support strong identification and authentication mechanism

but also encourage (and sometimes force) authorized users to be security-conscious–for

example, by changing their passwords on a regular basis.

97

ii. Data Access Controls.

Whereas the framework supports Remote Access Control and Auditing features, there is need

for enhancement so that it supports fine-grained discretionary access control by determining

whether other people can read or change file data i.e. -rwxrwxrwx . The system might also

support mandatory access controls; whereby the system determines access rules based on the

security levels of the system users.

iii. Encryption

The framework supports encryption of stored data and not across-the-wire transmission.

However, this can easily be mitigated upon by using secure transmission protocol based on

self-signed SSL/TLS certificates.

8.4 Conclusion

The study implemented data integrity and confidentiality mechanism in Mobile phone based

cyber foraging system based on RACA framework. The mechanism provides users with

evidence on weather sensitive data/file was accessed or not. If file was accessed, it provide

users with an audit log indicating the same. It also allows users to disable file access on lost

devices. These goals were achieved through integration of encryption, remote key management

and auditing. An analysis of our experimental results showed that this approach works properly

and is feasible. Thus our contribution within the mobile phone based cyber foraging is twofold

namely:-

i. Application of RACA framework in mobile phone based cyber foraging to enhance

data integrity and confidentiality.

ii. Evaluation of execution time overhead cost attributed to integration of RACA

mechanism in mobile phone based cyber foraging.

98

REFERENCES

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr (2004). "Basic concepts and taxonomy

of dependable and secure computing". Dependable and Secure Computing, IEEE Transactions,

Vol.1, Iss.1, pages 11–33, 2004.

A. Muthitacharoen, B. Chen, and D. Mazières (2001). “A Low-bandwidth Network File

System”. Proc. 18th Symposium on Operating Systems Principles. Banff, Canada.

B. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti (2011). “CloneCloud: elastic execution

between mobile device and cloud”. In Proceedings of the sixth conference on Computer

systems (EuroSys '11). ACM, New York, NY, USA, 301-314.

C. Floyd (1984).”A systematic look at prototyping”. Approaches to prototyping, pages 1–18,

Casey E., & Stellatos G. J. (2008). “The impact of full disk encryption on digital forensics”

. ACM SIGOPS Operating Systems Review, 42(3), 93-98.

Chen, P. P. S. (1976). "The entity-relationship model- toward a unified view of data". ACM

Transactions on Database Systems (TODS), 1(1), page 9-36.

D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel (1999). “Separating key

management from file system security”. In Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP),

David S. Linthicum (2000), Enterprise Application Integration, Addison-Wesley Professional

Depradine, C., & Chaudhuri, P. (2003). "P³: a code and design conventions preprocessor for

Java". Software: Practice and Experience, Vol. 33(1), page 61-76.

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra and P. Bahl

(2010). “MAUI: making smartphones last longer with code offload”, In Proceedings of the 8th

international conference on Mobile systems,applications, and services (MobiSys '10). ACM,

New York, NY, USA, 49-62.

G. Booch (1994), Using the Booch Method: A Rational Approach, Benjamin Cummings

Publishing Company.

G. Currell, A. Dowman and W. Blackwell (2009), Essential Mathematics and Statistics for

Science, 2
nd

 Edition , John Wiley & Sons, Ltd., Publication

99

H. Y. Chen, Y. H. Lin, and C. M. Cheng (2012). “COCA: Computation offload to clouds using

AOP”. In 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid 2012), May 2012, 466-473.

I. Alexander and Beus-Dukic Ljerka (2009), Discovering Requirements: How to Specify

Products and Services, John Wiley Publisher.

I. Giurgiu, O. Riva, D. Juric, I. Krivulev and G. Alonso (2009). “Calling the cloud: enabling

mobile phones as interfaces to cloud applications”. In Proceedings of the ACM/IFIP/USENIX

10th international conference on Middleware (Middleware'09), Jean M. Bacon and Brian F.

Cooper (Eds.). Springer-Verlag, Berlin, Heidelberg, 83-102.

I. Jacobson, M. Christerson, P. Jonsson and G. Overgaad (1994), Object-Oriented Software

Engineering: A Use Case Driven Approach, Addison Wesley Publisher.

J. Flinn, D. Narayanan and M. Satyanarayanan (2001). “Self-Tuned Remote Execution for

Pervasive Computing”, In Proceedings of the Eighth Workshop on Hot Topics in Operating

Systems (HOTOS '01). IEEE Computer Society, Washington, DC, USA, 61-63.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N.

Sidebotham, and M. J. West (1998). Scale and performance in a distributed file system. ACM

Transactions on Computer Systems (TOCS),

J. J. Barton, S. Zhai, and S. B. Cousins (2006). “Mobile phones will become the primary

personal computing devices”. In WMCSA ’06: Proceedings of the Seventh IEEE Workshop on

Mobile Computing Systems & Applications, pages 3–9, Washington, DC, USA, 2006. IEEE

Computer Society.

J. J. Kistler and M. Satyanarayanan (1991) “Disconnected operation in the Coda file system”.

In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),

J. Rumbaugh (1996), OMT Insights: Perspectives on Modeling from the Journal of Object-

Oriented Programming, SIGS Books & Multimedia publisher.

K. Kumar, J. Liu, Y. Lu and B. Bhargava (2012) “A Survey of Computation Offloading for

Mobile Systems”, Springer Science Business Media, LLC

Karl E. Wiegers (1997), "Listening to the Customer's Voice", Software Development

Magazine, March 1997, available at: http://www.processimpact.com/articles/usecase.html

accessed on Wednesday 18
th

 June 2014 at 1845 hours.

http://www.processimpact.com/articles/usecase.html

100

M. Blaze (1993). “A cryptographic file system for UNIX”. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS).

M. Griera (2013). “Improving the reliability of an offloading engine for Android mobile

devices and testing its performance with interactive applications” MSc. Thesis, Department of

Mathematics and Computer Science, Institute of Computer Science, Freie Universitat.

M. Satyanarayanan (2001). “Pervasive computing: vision and challenges. Personal

Communications IEEE”, Vol. 8(4):10–17.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies (2009). “The case for VM based

cloudlets in mobile computing”. IEEE Pervasive Computing, 8:14–23,

 M.S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao and X. Chen (2012). “COMET: Code

Offload by Migrating Execution Transparently”. In Proceedings of OSDI.

Mads D. K, Bouvin, N.O (2010), “Scavenger: Transparent Development of Efficient Cyber

Foraging Applications”. In Journal of Pervasive and Mobile Computing (PMC), Elsevier.

Mads D. K. (2010). “Empowering Mobile Devices Through Cyber Foraging: The

Development of Scavenger, an Open, Mobile Cyber Foraging System” Ph.D dissertation,

Faculty of Science, Aarhus University.

N. Rahim and K. Saravanan (2013). “Secured Image Sharing and Deletion in the Cloud

Storage Using Access Policies”, International Journal on Computer Science and Engineering

(IJCSE)

P. Coard and E. Yourdon (1991), Object-Oriented Analysis, (2
nd

 ed.) Yourdon Press, Upper

Saddle River, NJ USA.

R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang (2002) “The case for

cyber foraging” . In EW10: Proceedings of the 10th workshop on ACM SIGOPS European

workshop: beyond the PC, pages 87–92, New York,NY, USA, 2002. ACM Press.

R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy (2011). “Keypad: An

auditing file system for theft-prone devices”. Proceedings of the ACM European Conference

on Computer Systems (Eurosys)

101

R. K. Balan, M. Satyanarayanan, S.Y Park and T. Okoshi (2003). “Tactics-based remote

execution for mobile computing”. In Proceedings of the 1st international conference on Mobile

systems, applications and services (MobiSys '03). ACM, New York, NY, USA, 273-286.

R. Kemp, N. Palmer, T. Kielmann, and H. Bal (2010). “Cuckoo: a Computation Offloading

Framework for Smartphones”. In MobiCASE '10: Proceedings of The Second International

Conference on Mobile Computing, Applications, and Services, pp. 62-81, 2010.

R. Wirfs-Brock,, and B. Wilkerson, (1989). "Object-oriented design: a responsibility-driven

approach. In ACM SIGPLAN Notices Vol. 24, No. 10, pp. 71-75 . ACM.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang (2012). “Thinkair: Dynamic resource

allocation and parallel execution in the cloud for mobile code offloading”. In IEEE Infocom.

SSN 1536-1268.

Stephen R. Schach (2011), Object-Oriented and Classical Software Engineering, 11
th

 Edition,

McGraw Hill Companies Inc. ISBN 978-0-07-337618-9.

T. Paradiso, J.A.; Starner (2005). “Energy scavenging for mobile and wireless electronics”

.Pervasive Computing, IEEE, 4(1):18–27.

T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno (2008). “Privacy-preserving

location tracking of lost or stolen devices: Cryptographic techniques and replacing trusted third

parties with DHTs”. In Proceedings of the USENIX Security Symposium.

T. Verbelen (2013). “Adaptive Offloading and Configuration of Resource Intensive Mobile

Applications” PhD dissertation, Faculty of computer Science, University Kent.

102

APPENDIX A: SAMPLE SOURCE CODE SNIPPETS

/**

*===

* KeyService.java

*===

* This class implement the core security function of RACA framework

* It provides methods for encryption and decryption of file

* Using Advanced Encryption System (AES)on 128 bit.

* The secret key is generated encoded/decoded to Base64

*

* @authors Alfayo oyugi Adede Email: alfayaoyugi@googlemail.com

*

* @version $Date: 2014-05-14 13:29:34 +0200 $ $Revision: 1 $

*/

package adede.msc.project.keyservice;

import java.io.File;

import java.security.SecureRandom;

import java.util.HashMap;

import java.util.Map;

import javax.crypto.Cipher;

import javax.crypto.KeyGenerator;

import javax.crypto.spec.SecretKeySpec;

import adede.msc.project.util.FileUtil;

import android.annotation.SuppressLint;

import android.util.Base64;

public class KeyService {

 public KeyService() {

 super();

 }

 /**

 * @param plainTextFile: unencrypt input file

 * @return: Map <Absolute_Encrypted, SecretKeySpec> used to encrypt

 * @throws Exception

 */

 public Map<String, SecretKeySpec> encrypt(File plainTextFile)

 throws Exception {

 // Map <Absolute_Encrypted, SecretKeySpec> used to encrypt

 Map<String, SecretKeySpec> encryptResult = new HashMap<String, SecretKeySpec>();

 String fileName = plainTextFile.getName().substring(0, plainTextFile.getName().lastIndexOf("."))+ ".doc";

 File encryptedFile = new File(plainTextFile.getParent()+ File.separator + "Encrypted_" + fileName);

 //Encrypt file, encode file result to base 64 and write it to file.

 SecretKeySpec secretKeySpec = getSecretKeySpec(plainTextFile.getAbsolutePath());

103

 FileUtil.writeFile(encrypt(secretKeySpec, FileUtil.readFileDoc(plainTextFile.getAbsolutePath())),

encryptedFile);

 encryptResult.put(encryptedFile.getAbsolutePath(), secretKeySpec);

 return encryptResult;

 }

 /**

 * @param seed : This used the generate Secure random number

 * @return : Is a 128 bit SecretKeySpec based on AES

 */

 @SuppressLint("TrulyRandom")

 public SecretKeySpec getSecretKeySpec(String seed) {

 // Set up secret key spec for 128-bit AES encryption and decryption

 SecretKeySpec sks = null;

 try {

 SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");

 sr.setSeed(seed.getBytes());

 KeyGenerator kg = KeyGenerator.getInstance("AES");

 kg.init(128, sr);

 sks = new SecretKeySpec((kg.generateKey()).getEncoded(), "AES");

 } catch (Exception e) {

 e.printStackTrace();

 }

 return sks;

 }

 /**

 * This method act as helper method during encryption

 * @param sks

 * @param input

 * @return

 */

 public String encrypt(SecretKeySpec sks, String input) {

 // Encode the original data with AES

 byte[] encodedBytes = null;

 try {

 Cipher c = Cipher.getInstance("AES");

 c.init(Cipher.ENCRYPT_MODE, sks);

 encodedBytes = c.doFinal(input.getBytes());

 } catch (Exception e) {

 e.printStackTrace();

 }

 return new String(Base64.encodeToString(encodedBytes, Base64.DEFAULT));

 }

 /**

 * This method act as helper method during decryption

104

 * @param inkey

 * @param encryptedFile

 * @return

 * @throws Exception

 */

 public String decrypt(String inkey, File encryptedFile) throws Exception

 {

 String plainText = null;

 //Construct key

 SecretKeySpec key = new SecretKeySpec(Base64.decode(inkey, Base64.DEFAULT), "AES");

 plainText = decrypt(key, FileUtil.readFile(encryptedFile));

 return plainText;

 }

 /**

 * Used to decrypt encryted input string that has been encoded to base64 and returns plain text

 * @param sks : Secret key specification

 * @param inputBase64Encoded

 * @return : decrypted plain text

 */

 public String decrypt(SecretKeySpec sks, String inputBase64Encoded) {

 // decode inputBase64Encoded

 byte[] encodedBytes = Base64.decode(inputBase64Encoded, Base64.DEFAULT);

 // Decode the encoded data with AES

 byte[] decodedBytes = null;

 try {

 Cipher c = Cipher.getInstance("AES");

 c.init(Cipher.DECRYPT_MODE, sks);

 decodedBytes = c.doFinal(encodedBytes);

 } catch (Exception e) {

 e.printStackTrace();

 }

 return new String(decodedBytes);

 }

}

105

/**

*===

* Engine.java

*===

* This is core of the offloading engine.

* It contains all functionalities needed to obtain the values relevant parameters

* that affect offloading process, keep them updated, load and store the persistent ones,

* and decide in agiven situation whether it is worth or not to start an offloading process.

* This file shouldn't be modified by the programmer who wants to use the engine in his application

*

* @authors Alfayo oyugi Adede Email: alfayaoyugi@googlemail.com

*

* @version $Date: 2014-05-14 13:29:34 +0200 $ $Revision: 1 $

*/

package adede.msc.project.core;

import java.io.IOException;

import java.io.InputStream;

import java.io.StringReader;

import java.util.ArrayList;

import java.util.EnumMap;

import java.util.HashMap;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.apache.http.NameValuePair;

import org.apache.http.client.ResponseHandler;

import org.apache.http.client.entity.UrlEncodedFormEntity;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.BasicResponseHandler;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.message.BasicNameValuePair;

import org.apache.http.params.BasicHttpParams;

import org.apache.http.params.HttpConnectionParams;

import org.apache.http.params.HttpParams;

import org.w3c.dom.CharacterData;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

106

import adede.msc.project.core.Algorithms.AlgName;

import adede.msc.project.entity.ExecutionPerformance;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.content.SharedPreferences;

import android.net.ConnectivityManager;

import android.net.NetworkInfo;

import android.os.AsyncTask;

import android.telephony.TelephonyManager;

import android.util.Log;

public class Engine {

 private static final String TAG = "Engine";

 //Constants

 public static final String BASE_SERVER_URL = "http://192.168.0.101/offload/";

 private static final String SERVER_URL = Engine.BASE_SERVER_URL+"run"; //Right now we assume we only have 1

server (in the future we could search the nearest server)

 private static final String PREFS_NAME = "OffloadingEnginePrefs";

 public static final double SERVER_INST_MS = 6666666; //Calculated through practical values (javap -c), although we

know the server has 4 cores of 2.5GHz

 public static final double MIN_RELEVANT_TIME = 15.0;

 private final Context appContext; //The context of the main Activity of the Android application using this engine

 private int pingCounter; //Needed to calculate the ping

 private double timePingStart; //Needed to calculate the ping

 private double[] pingsArray; //Needed to calculate the ping

 private double ping; //Represents the time to query and get an answer from the server (actually not done with a real

ping command over ICMP)

 private double transferredBytesMs; //Indicates the quality of the connection bandwidth

 private double transferredBytesMsUpdatesCounter;

 private boolean connAvailable;

 private boolean serverAvailable;

 private String connType; //Wi-Fi, 3G or Other. Not needed, just to display info.

 //Parameters with information about the last offloading attempt

 private boolean doOffloading; //True if start an offloading process was decided, false otherwise

 private double estAndroidRuntime; //The estimation (in milliseconds) of the runtime in the Android mobile device of the

potentially offloadable code

 private double estOffloadingTime; //The estimation (in milliseconds) of the offloading process duration

 private double estServerRuntime; //The estimation (in milliseconds) of the runtime in the server of the potentially

offloadable code

 private double overallTime; //The time (in milliseconds) that took the execution of an algorithm (both if it was executed

locally or offloaded to the server)

 private double realServerTime; //The time (in milliseconds) that the server needed to execute an algorithm (in case of

offloading). Not needed, just to display info.

 private double parametersSize; //The sum of the sizes of each of the parameters that were sent to the server

107

 private double overhead; //The overhead that produces estimating the execution times of the potentially offloadable

tasks

 //Persistent parameters

 private class CsrPair {

 public float csrServerDevice; //The computation speed relation between the server and the Android mobile

device for a particular algorithm

 public float csrUpdatesCounter; //How many times this computation speed relation has been updated for a

particular algorithm

 }

 SharedPreferences sPrefs; //Provides access to the persistent variables

 Map<AlgName, CsrPair> algCsrs;

 private class NetworkReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 ConnectivityManager conn = (ConnectivityManager)

context.getSystemService(Context.CONNECTIVITY_SERVICE);

 NetworkInfo networkInfo = conn.getActiveNetworkInfo();

 if (networkInfo != null && networkInfo.isConnected()) {

 if (connAvailable == false) calcPingAndBandwidth();

 connAvailable = true;

 int netType = networkInfo.getType();

 int netSubtype = networkInfo.getSubtype();

 if (netType == ConnectivityManager.TYPE_WIFI) connType = "Wi-Fi";

 else {

 if (netType == ConnectivityManager.TYPE_MOBILE && netSubtype ==

TelephonyManager.NETWORK_TYPE_UMTS) connType = "3G";

 else connType = "Other";

 }

 }

 else {

 connType = "None";

 connAvailable = false;

 serverAvailable = false;

 }

 }

 }

 private NetworkReceiver networkStatusReceiver;

 //To be called onCreate in your Activity

 public Engine(Context theContext) {

 transferredBytesMsUpdatesCounter = 0;

 appContext = theContext;

 sPrefs = appContext.getSharedPreferences(PREFS_NAME, Context.MODE_PRIVATE);

 Algorithms.setOffloadingEngine(this);

 //We initialize some variables with default values although they will be properly obtained soon (just in case

there is an early potentially offloadable algorithm)

 ping = -1;

108

 transferredBytesMs = 200.0;

 connAvailable = false;

 serverAvailable = false;

 connType = "Unknown";

 estAndroidRuntime = -1;

 estOffloadingTime = -1;

 estServerRuntime = -1;

 realServerTime = -1;

 overallTime = -1;

 overhead = -1;

 loadPersistentParams(); //Load the stored parameters of the engine

 updateServerStatus();

 keepNetworkInfoUpdated(); //Register a listener to keep updated the network information

 Algorithms.loadAlgCostsDB(appContext);

 }

 public void updateServerStatus()

 {

 try {

 if(new ServerStatus().execute(SERVER_URL).get().intValue() == 0)

 {

 connAvailable = true;

 serverAvailable = true;

 Log.v(TAG, " Server is available==>");

 }

 } catch (Exception e) {

 // TODO Auto-generated catch block

 Log.v(TAG, " Server not availabile==>"+e);

 e.printStackTrace();

 }

 }

 private class ServerStatus extends AsyncTask<String, Void, Integer> {

 @Override

 protected Integer doInBackground(String... urlAddress) {

 try {

 DefaultHttpClient httpClient = new DefaultHttpClient();

 HttpGet httpGet = new HttpGet(urlAddress[0]);

 ResponseHandler<String> resHandler = new BasicResponseHandler();

 httpClient.execute(httpGet, resHandler);

 return 0;

 } catch (Exception e) {

 Log.v(TAG, " Server not available"+e);

 e.printStackTrace();

 }

 return -1;

 }

 }

109

 private void loadPersistentParams() {

 algCsrs = new EnumMap<AlgName, CsrPair>(AlgName.class);

 AlgName[] algNamesEnum = AlgName.values();

 for (int i = 0; i < algNamesEnum.length; i++) {

 CsrPair itCsrPair = new CsrPair();

 itCsrPair.csrServerDevice = sPrefs.getFloat(algNamesEnum[i] + "Csr", -1);

 itCsrPair.csrUpdatesCounter = sPrefs.getFloat(algNamesEnum[i] + "Count", 0);

 algCsrs.put(algNamesEnum[i], itCsrPair);

 }

 }

 //To be called onPause in your Activity

 public void savePersistentParams() {

 SharedPreferences.Editor sPrefsEditor = sPrefs.edit();

 Iterator<AlgName> enumKeySet = algCsrs.keySet().iterator();

 while (enumKeySet.hasNext()) {

 AlgName itAlgName = enumKeySet.next();

 CsrPair itCsrPair = algCsrs.get(itAlgName);

 sPrefsEditor.putFloat(itAlgName + "Csr", itCsrPair.csrServerDevice);

 sPrefsEditor.putFloat(itAlgName + "Count", itCsrPair.csrUpdatesCounter);

 }

 sPrefsEditor.commit();

 }

 private void keepNetworkInfoUpdated() {

 networkStatusReceiver = new NetworkReceiver();

 IntentFilter connFilter = new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION);

 appContext.registerReceiver(networkStatusReceiver, connFilter);

 }

 //To be called onDestroy in your Activity, undoes the changes made by keepNetworkInfoUpdated() and closes the

DataBaseHelper

 public void unregisterBroadcastReceivers() {

 if (networkStatusReceiver != null) appContext.unregisterReceiver(networkStatusReceiver);

 Algorithms.closeAlgCostsDB();

 }

 /*

 * Updates the Csr and/or the costs DB when needed.

 * Needs to read global variables to check the state of the offloading procedure.

 * There are two systems to calculate the cost estimations:

 * 1. The developer provides a function to do so

 * 2. The developer provides a DB with input-cost pairs (can be generated in our server)

 * Depending on which system has been used for the current case (algName) there will be different updating needs

 */

 private void updateCostCalcSystems(AlgName algName) {

 if (!Algorithms.isAlgInCostsDB(algName)) {

/*With the first system we only update the Csr when the algorithm has been executed locally and if we already calculated

estServerRuntime; we don't want to calculate the estimated cost of this algorithm only for the purpose of updating the Csr as the

calculations could be a bit expensive (although they shouldn't). More important, this case would occur when there is no network,

110

and then any execution, even the heavy ones, would be done locally. We don't want to make the Csr fit with such cases, as

Android gives more priority to heavy executions than to small ones (thus running proportionally faster the heavy ones); this would

lead to a not consistent Csr. In the offloading decision scenario, when there is network connection, the heavy executions would

always be offloaded. We check the time the algorithm took to execute to be greater than 15 ms (smallervalues might be not

accurate enough).*/

if (!doOffloading && estServerRuntime != -1 && overallTime > MIN_RELEVANT_TIME)

 updateCsr(algName, (float) (overallTime/estServerRuntime)); //!doOffloading, so overallTime is an Android runtime

 }

 else {/*With the second system we always update the costs database. Even for heavy executions produced locally

 because of no network connection.*/

 if (!doOffloading) Algorithms.updateCostsDB(algName, overallTime, false);

 else Algorithms.updateCostsDB(algName, realServerTime, true);

 }

 }

 //Updates the Csr for the algorithm algName

 public void updateCsr(AlgName algName, float recentCsr) {

 CsrPair csrPair = algCsrs.get(algName);

 csrPair.csrServerDevice = csrPair.csrServerDevice * csrPair.csrUpdatesCounter /

(csrPair.csrUpdatesCounter+1) + recentCsr / (csrPair.csrUpdatesCounter+1);

 if (csrPair.csrUpdatesCounter < Algorithms.MAX_REPETITIONS) csrPair.csrUpdatesCounter++;

 }

 /*

 * Execute an algorithm in the Android device with a known cost in the server,

 * in order to establish a computation speed relation (how many times faster the server is)

 * This function will be called during the first offloading attempt of an Android application using this engine

 */

 private void calculateRelation() {

 double startAlgorithmTime = ((double) System.nanoTime()) / 1000000.0;

 Algorithms.executeLocally(AlgName.doSomeLoops, Long.valueOf(1000000).toString());

 double timeTaken = ((double) System.nanoTime()) / 1000000.0 - startAlgorithmTime;

 double AndroidInstMs = Algorithms.getCost(AlgName.doSomeLoops, Long.valueOf(1000000).toString()) /

timeTaken;

 float firstTimeCsr = (float) (SERVER_INST_MS / AndroidInstMs);

 Iterator<AlgName> enumKeySet = algCsrs.keySet().iterator();

 while (enumKeySet.hasNext()) {

 AlgName itAlgName = enumKeySet.next();

 CsrPair itCsrPair = algCsrs.get(itAlgName);

 itCsrPair.csrServerDevice = firstTimeCsr;

 itCsrPair.csrUpdatesCounter++;

 }

 }

111

 /*

 * Decides where to execute the algorithm, locally (no offloading) or on the server (offloading is done).

 * Returns true if the decision is to offload, false otherwise.

 */

 public boolean decide(AlgName algName, String... parameters) {

 Log.v(TAG, "Making decision...........");

 estAndroidRuntime = -1;

 estOffloadingTime = -1;

 estServerRuntime = -1;

 if (connAvailable && serverAvailable) {

 Log.v(TAG, "At if (connAvailable && serverAvailable) { block");

 //Only the very first time that there is the possibility to do offloading, a initial computation speed relation is calculated

 if (getCsrUpdCountFromAlg(algName) == 0) calculateRelation();

 double startAlgorithmTime = ((double) System.nanoTime()) / 1000000.0;

 this.estServerRuntime = Algorithms.getCost(algName, parameters) / SERVER_INST_MS;

//Estimated server execution time

 this.overhead = ((double) System.nanoTime()) / 1000000.0 - startAlgorithmTime;

 this.estAndroidRuntime = estServerRuntime * getCsrFromAlg(algName);

//Estimated Android execution time

 for (int i = 0; parameters != null && i < parameters.length; i++) parametersSize +=

parameters[i].length();

 this.estOffloadingTime = ping + estServerRuntime + parametersSize/transferredBytesMs;

 Log.v(TAG, " estServerRuntime==>"+estServerRuntime);

 Log.v(TAG, " overhead ===>"+overhead);

 Log.v(TAG, " estAndroidRuntime===>"+estAndroidRuntime);

 Log.v(TAG, " estOffloadingTime===>"+estOffloadingTime);

 Log.v(TAG, " returning"+(estOffloadingTime < estAndroidRuntime));

 //Time saving criteria

 return estOffloadingTime < estAndroidRuntime;

 }

 else

 {

 Log.v(TAG, "Failed to execute block if (connAvailable && serverAvailable) { ");

 return false;

 }

 }

112

 /*

 * To be called wherever in your Activity, replacing where you had a potentially offloadable part of code.

 * Decides where to execute the algorithm, locally (no offloading) or on the server (offloading is done), executes it and

retrieves the result.

 * Returns the result on success (in String form), or the String "Error" on failure.

 */

 public Map<String, ExecutionPerformance> execute(boolean forceOffloading, AlgName algName, String...

parameters) {

 Map<String, ExecutionPerformance> resultMap = new HashMap<String, ExecutionPerformance>();

 parametersSize = 0;

 overhead = -1;

 if (forceOffloading) doOffloading = true;

 else doOffloading = decide(algName, parameters);

 String algResult = "";

 realServerTime = -1;

 overallTime = -1;

 double startTime = ((double) System.nanoTime()) / 1000000.0;

 //Execute to forcefully intialize performnce metrics

 //decide(algName, parameters);

 if (doOffloading) { //Do offloading

 int execParamsLength = 1;

 if (parameters != null) execParamsLength += parameters.length;

 String[] execParams = new String[execParamsLength];

 execParams[0] = algName.toString();

 for (int i = 1; i < execParams.length; i++) execParams[i] = parameters[i-1];

 GetServerData getServerData = new GetServerData();

 getServerData.execute(execParams);

 try {

 algResult = getServerData.get(); //This can also return the word "Error"

 } catch (Exception e) {

 Log.v(TAG, " Server execution error#flaging as not available"+e);

 e.printStackTrace();

 serverAvailable = false;

 algResult = "Error";

 }

 if (algResult.equals("Error")) { //Unable to retrieve the data. URL may be invalid or the server may be down.

 serverAvailable = false;

 }

 else {

 try {

 realServerTime = Double.parseDouble(getElementValueFromXML(algResult, "runtime"));

 algResult = getElementValueFromXML(algResult, "result");

 } catch (Exception e) {

 e.printStackTrace();

 Log.v(TAG, " Error retrieveing Server results"+e);

113

 algResult = "Error";

 }

 }

 }

 //In case of a failed offloading attempt, we don't retry offloading, we make the system behave like the

decision would have been to not offload

 //(the main reason of failing is losing the network connection, which takes too long to recover)

 if (algResult.equals("Error")) {

 Log.v(TAG, " Diabling offloading to false and revering to local execution");

 doOffloading = false;

 startTime = ((double) System.nanoTime()) / 1000000.0;

 }

 //Do not offload, execute locally in the Android mobile device

 if (!doOffloading) algResult = Algorithms.executeLocally(algName, parameters);

 //This can be either the Android runtime or the total offloading time

 this.overallTime = ((double) System.nanoTime()) / 1000000.0 - startTime;

 Log.v(TAG, " Overall time ==>"+overallTime);

 if (doOffloading && !algResult.equals("Error")) { //If offloading was done successfully

 if (parametersSize == 0) { //decide was not called

 for (int i = 0; parameters != null && i < parameters.length; i++) parametersSize +=

parameters[i].length();

 }

 double transferDataTime = overallTime - realServerTime - ping;

 //If the size of the sent parameters was big enough to be significant and the transferDataTime is

also significant (bigger than 5 milliseconds), update the transferredBytesMs.

 if (parametersSize > 1024 && transferDataTime >= 5.0) {

 if (transferredBytesMsUpdatesCounter < 20) transferredBytesMsUpdatesCounter++;

 transferredBytesMs = transferredBytesMs * transferredBytesMsUpdatesCounter /

(transferredBytesMsUpdatesCounter+1) + (parametersSize / transferDataTime) / (transferredBytesMsUpdatesCounter+1);

 }

 }

 //Updates the Csr and/or the costs DB when needed

 if (!doOffloading || !algResult.equals("Error")) {

 UpdateCostCalcSystemsThread updateCostCalcSystemsThread = new

UpdateCostCalcSystemsThread(algName);

 updateCostCalcSystemsThread.start();

 }

 //Save performance execution

 ExecutionPerformance executionPerformance = new ExecutionPerformance();

 executionPerformance.setAlgorithmName(algName.toString());

 executionPerformance.setDoOffloading(this.doOffloading);

 executionPerformance.setEstAndroidRuntime(this.estAndroidRuntime);

114

 executionPerformance.setEstOffloadingTime(this.estOffloadingTime);

 executionPerformance.setEstServerRuntime(this.estServerRuntime);

 executionPerformance.setOverallTime(this.overallTime);

 executionPerformance.setOverhead(this.overhead);

 executionPerformance.setRealServerTime(this.realServerTime);

 resultMap.put(algResult, executionPerformance);

 return resultMap;

 }

 /*

 * execute can be called only with an algName and its parameters. By default, forceOffloading = false.

 */

 public Map<String, ExecutionPerformance> execute(AlgName algName, String... parameters) {

 return execute(false, algName, parameters);

 }

 private class UpdateCostCalcSystemsThread extends Thread {

 AlgName currentAlgName;

 UpdateCostCalcSystemsThread(AlgName currentAlgName) {

 this.currentAlgName = currentAlgName;

 }

 public void run() {

 updateCostCalcSystems(currentAlgName);

 }

 }

 private class GetServerData extends AsyncTask<String, Void, String> {

 @Override

 protected String doInBackground(String... execParams) {

 try {

final HttpParams httpParams = new BasicHttpParams();

HttpConnectionParams.setConnectionTimeout(httpParams, 60000);

HttpConnectionParams.setSoTimeout(httpParams, 60000);

 DefaultHttpClient httpClient = new DefaultHttpClient(httpParams);

 HttpPost httpPost = new HttpPost(SERVER_URL);

 List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>();

 nameValuePairs.add(new BasicNameValuePair("algName", execParams[0]));

for (int i = 1; i < execParams.length; i++)

nameValuePairs.add(new BasicNameValuePair("param" + i, execParams[i]));

 UrlEncodedFormEntity entity = new UrlEncodedFormEntity(nameValuePairs);

 httpPost.setEntity(entity);

 ResponseHandler<String> resHandler = new BasicResponseHandler();

 String responseData = httpClient.execute(httpPost, resHandler);

 return responseData;

 } catch (Exception e) {

 e.printStackTrace();

 return "Error";

 }

 }

115

 }

private void calcPingAndBandwidth() {

 pingCounter = 0;

 pingsArray = new double[10];

 timePingStart = ((double) System.nanoTime()) / 1000000.0;

 //The next will call itself recursively 10 times and calculate the average ping (removing outliers)

 //Once done, it will call calcTransferredBytesPerMs() to calculate the bandwidth quality

 new GetPing().execute(SERVER_URL);

 }

private class GetPing extends AsyncTask<String, Void, Integer> {

 @Override

 protected Integer doInBackground(String... urlAddress) {

 try {

 DefaultHttpClient httpClient = new DefaultHttpClient();

 HttpGet httpGet = new HttpGet(urlAddress[0]);

 ResponseHandler<String> resHandler = new BasicResponseHandler();

 httpClient.execute(httpGet, resHandler);

 return 0;

 } catch (Exception e) {

 e.printStackTrace();

 return -1;

 }

 }

 @Override

 protected void onPostExecute(Integer respCode) {

 if (respCode == -1) { //Ping failed

 serverAvailable = false;

 connAvailable =false;

 }

 else {

 pingsArray[pingCounter] = ((double) System.nanoTime()) / 1000000.0 - timePingStart;

 pingCounter++;

 if (pingCounter < 10) {

 timePingStart = ((double) System.nanoTime()) / 1000000.0;;

 new GetPing().execute(SERVER_URL);

 }

 else if (pingCounter == 10) {

 serverAvailable = true;

 connAvailable =true;

 ping = Engine.calcAverage(pingsArray);

 calcTransferredBytesPerMs();

 }

 }

 }

 }

116

 private void calcTransferredBytesPerMs() {

 String fileContent = "";

 try {

 InputStream is = appContext.getAssets().open("fileToSend");

 byte[] buffer = new byte[is.available()];

 is.read(buffer);

 is.close();

 fileContent = new String(buffer);

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 //This should update transferredBytesMs in almost all cases

 //If not, the value assigned in the Engine constructor function (200), will be used until the next update

 execute(true, AlgName.fileAndLoops, Long.toString(0), fileContent);

 }

 private static String getElementValueFromXML(String xmlString, String tagName)

 throws ParserConfigurationException, SAXException, IOException {

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 DocumentBuilder db = dbf.newDocumentBuilder();

 InputSource is = new InputSource();

 is.setCharacterStream(new StringReader(xmlString));

 Document doc = db.parse(is);

 NodeList summary = doc.getElementsByTagName(tagName);

 Element line = (Element) summary.item(0);

 return getCharacterDataFromElement(line);

 }

 private static String getCharacterDataFromElement(Element e) {

 Node child = e.getFirstChild();

 if (child instanceof CharacterData) {

 CharacterData cd = (CharacterData) child;

 return cd.getData();

 }

 return "";

 }

 private static double calcAverage (double[] valuesArray) {

 //Calculate the average

 double valuesSum = 0;

 for (int i = 0; i < valuesArray.length; i++) {

 valuesSum += valuesArray[i];

 }

 double average = valuesSum / ((double) valuesArray.length);

117

 //Recalculate the average omitting all values with a high deviation

 double niceValuesSum = 0;

 double niceValuesCount = 0;

 double auxValue, auxAverage;

 for (int i = 0; i < valuesArray.length; i++) {

 auxValue = valuesArray[i];

 if (auxValue < 0) auxValue *= -1;

 auxAverage = average;

 if (auxAverage < 0) auxAverage *= -1;

 if (auxValue <= auxAverage * 2) {

 niceValuesSum += valuesArray[i];

 niceValuesCount++;

 }

 }

 return niceValuesSum/niceValuesCount;

 }

}

/**

===

 SyncKeyServiceDatabase.java

===

* SyncKeyServiceDatabase submits database records the server for synchronization

*

* @authors Alfayo oyugi Adede Email: alfayaoyugi@googlemail.com

*

* @version $Date: 2014-05-14 13:29:34 +0200 $ $Revision: 1 $

*

*/

package adede.msc.project.async;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import org.apache.http.NameValuePair;

import org.apache.http.client.ResponseHandler;

import org.apache.http.client.entity.UrlEncodedFormEntity;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.BasicResponseHandler;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.message.BasicNameValuePair;

import org.apache.http.params.BasicHttpParams;

import org.apache.http.params.HttpConnectionParams;

import org.apache.http.params.HttpParams;

import adede.msc.project.core.Engine;

import adede.msc.project.util.JavaBeanUtil;

import android.os.AsyncTask;

import android.util.Log;

118

public class SyncKeyServiceDatabase<T> extends AsyncTask<T, Void, T>{

 private static final String SERVER_URL = Engine.BASE_SERVER_URL+"SyncKeyServiceRegistry";

 private static final String TAG= "SyncKeyServiceDatabase";

 @SuppressWarnings("unchecked")

 @Override

 protected T doInBackground(T... entityArray) {

 try {

 final HttpParams httpParams = new BasicHttpParams();

 T entity = entityArray[0];

 //Wait max. 60 seconds to establish a TCP connection

 HttpConnectionParams.setConnectionTimeout(httpParams, 60000);

 //Wait max. 60 seconds for a subsequent byte of data

 HttpConnectionParams.setSoTimeout(httpParams, 60000);

 DefaultHttpClient httpClient = new DefaultHttpClient(httpParams);

 HttpPost httpPost = new HttpPost(SERVER_URL);

 List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>();

 Map<String, String> attributeMap = JavaBeanUtil.getFieldMap(entity);

 for(String key : attributeMap.keySet())

 {

 nameValuePairs.add(new BasicNameValuePair(key, attributeMap.get(key)));

 }

 //To be used Servlet invocation during invocation using Java Reflection API

 nameValuePairs.add(new BasicNameValuePair("entity", entity.getClass().getCanonicalName()));

 UrlEncodedFormEntity encodedEntity = new UrlEncodedFormEntity(nameValuePairs);

 httpPost.setEntity(encodedEntity);

 ResponseHandler<String> resHandler = new BasicResponseHandler();

 String responseData = httpClient.execute(httpPost, resHandler);

 //Convert XML to JAVA Bean

 return JavaBeanUtil.xmlToObject(responseData, (Class<T>) entity.getClass());

 } catch (Exception exception) {

 Log.v(TAG,"Error SyncKeyServiceDatabase "+exception);

 }

 return null;

 }

 }

119

/*

 * ==

 * DatabaseService.java

 * ==

* The DatabaseService an android application Service performing long-running

* synchronization in the background without involving user interface.

* This class polls the database and submit the data to the server for synchronization

* It also update the local database thus synchronizing the two databases

* The class uses a timer to schedule the the synchronization task.

* The task is also executed in async to avoid user interface blocking

* It extends OrmLiteBaseService<MySQLiteHelper> to support

* managed SQLite database access through ORMLite

*

* @authors Alfayo oyugi Adede Email: alfayaoyugi@googlemail.com

* @version $Date: 2014-05-14 13:29:34 +0200 $ $Revision: 1 $

*/

package adede.msc.project.async;

import java.util.List;

import java.util.Timer;

import java.util.TimerTask;

import adede.msc.project.entity.AccessControl;

import adede.msc.project.entity.AuditLog;

import adede.msc.project.entity.ExecutionPerformance;

import adede.msc.project.persistence.MySQLiteHelper;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.util.Log;

import com.j256.ormlite.android.apptools.OrmLiteBaseService;

public class DatabaseService extends OrmLiteBaseService<MySQLiteHelper> {

 private static final int UPDATE_ENTRY = 999;

 private static final long POLL_INTERVAL = 15000;

 private static final String TAG = "DatabaseService";

 public static DatabaseService instance = null;

 private Timer timer;

 private TimerTask task = new TimerTask() {

 @Override

 public void run() {

 // Query the AccessControl, AuditLog and ExecutionPerformance

 List<AccessControl> accessControlList = null;

 List<AuditLog> auditLogList = null;

 List<ExecutionPerformance> executionPerformanceList = null;

 try {

 accessControlList = getHelper().getAccessControlDao().queryForAll();

120

 auditLogList = getHelper().getAuditLogDao().queryForAll();

 executionPerformanceList = getHelper().getExecutionPerformanceDao().queryForAll();

 } catch (Exception exception) {

 Log.v(TAG, "Error polling local database##AccessControl##AuditLog#ExecutionPerformance"+ exception);

 }

 //Submit AccessControl to the server asynchronous

 for (AccessControl accessControl : accessControlList) {

 SyncKeyServiceDatabase<AccessControl> syncAccessControl = new SyncKeyServiceDatabase<AccessControl>();

 syncAccessControl.execute(new AccessControl[] { accessControl });

 try {

 // Check if the AccessControl requires an update

 AccessControl serverEntry = syncAccessControl.get();

 if (serverEntry.getId() == UPDATE_ENTRY) {

 serverEntry.setId(accessControl.getId());

 getHelper().getAccessControlDao().update(serverEntry);

 }

 } catch (Exception exception) {

 Log.v(TAG, "Error Synchronizing database##AccessControl "+ exception);

 }

 }

 //Submit AuditLog to the server asynchronous

 for (AuditLog auditLog : auditLogList) {

 Log.v(TAG, "Synchronizing AuditLog");

 SyncKeyServiceDatabase<AuditLog> syncAuditLog = new SyncKeyServiceDatabase<AuditLog>();

 syncAuditLog.execute(new AuditLog[] { auditLog });

 try {

 //ignore since local log need not to be more updated

 //getHelper().getAuditLogDao().update(syncAuditLog.get());

 } catch (Exception exception) {

 Log.v(TAG, "Error Synchronizing database##AuditLog" + exception);

 }

 }

 //Submit ExecutionPerformance to the server asynchronous

 for (ExecutionPerformance executionPerformance : executionPerformanceList) {

 SyncKeyServiceDatabase<ExecutionPerformance> syncExecutionPerformance= new

SyncKeyServiceDatabase<ExecutionPerformance>();

 syncExecutionPerformance.execute(new ExecutionPerformance[] {

executionPerformance });

 Log.v(TAG, "==========Synchronizing

ExecutionPerformance====================");

 Log.v(TAG, executionPerformance.toString());

 Log.v(TAG, "===============================");

 try {

 //ignore since local ExecutionPerformance need not to be more updated

121

 //getHelper().getExecutionPerformanceDao().update(syncExecutionPerformance.get());

 } catch (Exception exception) {

 Log.v(TAG, "Error Synchronizing database##ExecutionPerformance" +

exception);

 }

 }

 }

 };

 @Override

 public void onCreate() {

 timer = new Timer();

 instance = this;

 super.onCreate();

 }

 @Override

 public void onDestroy() {

 instance = null;

 super.onDestroy();

 }

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 timer.schedule(task, 5000, DatabaseService.POLL_INTERVAL);

 return Service.START_STICKY;

 }

 @Override

 public IBinder onBind(Intent intent) {

 return null;

 }

}

122

APPENDIX B: TABULATION OF DATA

Table 7 : Performance metrics data

Source : Author's compilation (extracted from execution_performance table in raca.db)

FILE SIZE

(Kb)
OFFLOAD_STATUS EST_ANDROID_TIME EST_OFFLOADING_TIME ESTIMATED_SERVER_TIME OVERALL_TIME REAL_SERVER_TIME OVER_HEAD DECRYPTION_TIME

20 1 0.00028886 8.695004176 4.18E-06 54.59513701 54.59513701 8.911134005 20.41625901

40 1 0.000125871 59.94500733 7.33E-06 104.503583 104.503583 24.71923999 36.62109399

60 1 0.000269582 83.27501604 1.60E-05 53.81384403 53.81384403 31.616211 36.10229599

80 1 0.000472205 150.8500287 2.87E-05 95.72965501 95.72965501 76.965332 44.95239399

100 1 0.000575282 210.3700316 3.16E-05 102.549233 102.549233 81.48193601 87.09717199

20 0 -1 -1 -1 33.325197 -1 -1 0

40 0 -1 -1 -1 146.972658 -1 -1 0

60 0 -1 -1 -1 167.999267 -1 -1 0

80 0 -1 -1 -1 212.127694 -1 -1 0

100 0 -1 -1 -1 309.75343 -1 -1 0

20 0 -1 -1 -1 56.457522 -1 -1 12.634278

40 0 -1 -1 -1 246.704111 -1 -1 103.240971

60 0 -1 -1 -1 233.581548 -1 -1 83.557128

80 0 -1 -1 -1 404.388443 -1 -1 127.258306

100 0 -1 -1 -1 529.693618 -1 -1 162.353521

20 1 7.37E-05 8.695004176 4.18E-06 2.287513018 2.287513018 6.46972701 0

40 1 0.000152716 59.94500733 7.33E-06 7.08398807 7.08398807 24.780275 0

60 1 0.000270235 83.27501604 1.60E-05 12.95967805 12.95967805 33.538819 0

80 1 0.000694281 150.8500287 2.87E-05 20.092219 20.092219 118.804932 0

100 1 0.000900889 210.3700316 3.16E-05 23.54184306 23.54184306 84.411621 0

123

APPENDIX C: DETAILED CLASS DESIGN

Attached is a detailed class diagrams of:-

i. Mobile application module

ii. Web application module

124

APPENDIX D: DETAILED USER INTERFACE DESIGN

i. Mobile phone application User Interface sketches

Login interface

Figure 49 : Mobile phone application login page sketch

Source : Author's compilation

Home page interface

Figure 50 : Mobile phone home page sketch

Source : Author's compilation

Select file for encryption

Figure 51 : File selection page sketch

Source : Author's compilation

Enter Password

Enter User Name

Login

Secure-MCO

Welcome: [User Name]

Secure Mobile Computing offloading

File Registration

Key Service Synchronization

Text Summarization

Select file

Application

Android

Download

/storage/sdcard0

Cancel OK

125

File encryption result

Figure 52 : File encryption result page sketch

Source : Author's compilation

Text summarization

Figure 53 :Text summarization page sketch

Source : Author's compilation

Welcome: [User Name]

Secure Mobile Computing offloading

File Registration

Key Service Synchronization

Text Summarization

File: [File Name] successfully encrypted

Summarize file

Text Summarization

Select file
Browse

Summary No. of line:

126

Text file summarization result

Figure 54 : Text summarization result page sketch

Source : Author's compilation

ii. Web-based application User Interface sketches

Home page before login

Figure 55: Offloading engine home page sketch

Source : Author's compilation

Welcome: [User Name]

Secure Mobile Computing offloading

File Registration

Key Service Synchronization

Text Summarization

Message: [File Name] successfully summarized

Android Mobile Device Computation Offloading Project

Home Management Contact us

Welcome!

< Message >

© 2014

127

Login Page

Figure 56 : Web Login page sketch

Source : Author's compilation

Home page after login

Figure 57 : Home page after login sketch

Source : Author's compilation

Android Mobile Device Computation Offloading Project

Home Management Contact us

Password:

User name:

Login

© 2014

Android Mobile Device Computation Offloading Project

Home Management Access control

 Upload java classes

Management area – Main Menu

© 2014

Audit log Performance Analysis Download Contact us Logout

 Automate Cost estimation

128

Access Control page

Figure 58 : Access control page sketch

Source : Author's compilation

Audit log interface

Figure 59 : Audit log page sketch

Source : Author's compilation

129

Performance metrics analysis-Bar Chart

Figure 60 : Performance bar chart sketch

Source : Author's compilation

Performance metrics analysis-line graph

Figure 61: Performance line graph sketch

Source : Author's compilation

130

APPENDIX E: INSTALLATION GUIDE

The application is distributed through two (2) main packages. For mobile application

it is Secure-MCO.apk while the server module is distributed as offload.war. To

install mobile phone module, copy Secure-MCO.apk and double click on it to run

installation setup.

Installation of offload.war requires the prior the installation of Apache Tomcat

6.0_20 Servlet/JSP Container. The procedure for tomcat installation can be found

online at http://tomcat.apache.org/tomcat-6.0-doc/setup.html. Furthermore, the User

must follow the steps outlined at http://tomcat.apache.org/tomcat-6.0-doc/ssl-

howto.html to configure SSL on tomcat to allow the use of HTTPS.

Furthermore, the surrogate machine used to host offload.war application be

accessible on WLAN with 192.168.0.101 as its IP.

http://tomcat.apache.org/tomcat-6.0-doc/setup.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

131

APPENDIX F: USER MANUAL

Mobile phone application

To access the system click on the Secure-MCO icon illustrated below

The login interface will be launched.

After entering the login details the home page below is displayed. Click on File

Registration to encrypt a word file and register it for extrative text summarization

from the pop up below.

Launch the application

Enter login details

Default user name and

password is admin

132

Upon successful registration of the file the a notification will be displayed as follows.

Click of File

Registration to register

file

Browse and select a

specific file

Click OK to register

133

To summarize the text file click on Text summarization button.

The following page will be displayed

Message notification upon

successful registration

Click on text

summarization

134

Select encrypted

 file for summarization

Enter the number of

lines

Click on Summarize file

to initiate

summarization process

Message notification upon

successful summarization

135

Web application module

To access the web application module from the web browser enter following URL:

https://192.168.0.101:8443/offload/. The interface below is displayed.

Click on Management to login

Click on management

link to login

Enter login details

Default username is:

katinka while default

password is admin

https://192.168.0.101:8443/offload/

136

Upon Sucessful login the following page is displayed

Click on Access Control link to access Remote Access Control functionality

Used to manage and

deploy offloaded MCO

application

Access Control link

Allow/Disallow file

access in mobile

device remotely

Click on save button to save

updated access control

137

Click on Audit link to access Audit functionality

Click on Performance Analysis to access Execution time evaluation functionality

Audit link

Audit log

Performance

Analysis link

Click to view Bar

chart/line graph

138

Upon clicking View Bar Chart the following chart is displayed

Upon clicking View Line Graph the following graph is displayed

Sample Line graph

generated

Sample Bar chart

generated

139

APPENDIX G: PROJECT SCHEDULE AND RESOURCES REQUIREMENTS

Project schedule

Activities

YEAR 2014

Progress

Jan Feb March April May June July

Aug

Study and Review of Literature Done

Project Proposal

 Done

Milestone I: Proposal presentation

 Done

Requirements Specification

 Done

Analysis and Design

 Done

Prototype development, Integration and

Testing

 Done

Milestone II: Progress report

presentation

 Done

Evaluation

 Done

Final Report preparation

 Done

 Milestone III: Final report presentation

 Done

Table 8: Project implementation schedule

Source: Author’s compilation

140

Resource requirement

i. One Smart mobile phone device estimated at a cost of KSh 25,000/= with the

following minimum technical specification will be used to test the prototype

system.

The Galaxy Grand Duos (GT-19082) on Android

v4.1.2 (Jelly Bean) OS, 5-inch capacitive touch

screen, with Wi-Fi support, expandable storage

capacity of 64 GB and 1.2 GHz dual core

processor.

ii. Two (2) desktop computers to act as servers estimated at a total cost of KSh

36,000/= with the following minimum technical specification will be used

Processor: Intel (R) Pentium (R) Dual CPU, 1.86

GHz.

Main memory: 2.0 GB

Hard drive: 80 GB

Network: Wi-Fi support

Operating System: Windows 7.

Java version: 1.6 (free)

HTTP Server: Apache Tomcat 6 (open source)

141

iii. TP-LINK, 3G/4G Wireless N Router TL-MR3220 estimated at a cost of KSh

4,000/= with the following minimum technical specification will be used

HARDWARE FEATURES

Interface

USB 2.0 Port for LTE/HSPA+/HSUPA/HSDPA/UMTS/EVDO USB

Modem

1 10/100Mbps WAN Port, 4 10/100Mbps LAN Ports, support the auto-

Negotiation and auto-MDI/MDIX

Button

WPS/Reset Button

Wireless On/Off Switch

Power On/Off Button

External Power Supply 9VDC/0.85A

Dimensions (W x D x H) 8*5.4*1.7 in. (204*138*44mm)

Antenna Type Omni directional, Detachable, Reverse SMA

Antenna Gain 5dBi

WIRELESS FEATURES

Wireless Standards IEEE 802.11n*, IEEE 802.11g, IEEE 802.11b

Frequency 2.4-2.4835GHz

EIRP <20dBm

Wireless Security
Support 64/128 bit WEP, WPA-PSK/WPA2-PSK,

Wireless MAC Filtering

Modulation Technology DBPSK, DQPSK, CCK, OFDM, 16-QAM, 64-QAM

SOFTWARE FEATURES

Security
NAT Firewall, SPI Firewall, MAC / IP / Packet / Application / URL

Filtering, Denial of Service(DoS), SYN Flooding, Ping of Death

Management Web Based Configuration(HTTP), Web Based Firmware Upgrade

≈≈ The End ≈ ≈

	OLE_LINK1

