
UNIVERSITY OF NAIROBI
COLLEGE OF BIOLOGICAL AND PHYSICAL

SCIENCES

SCHOOL OF MATHEMATICS
ON REDUCIBILITY AND QUASIREDUCIBILITY 

' OF OPERATORS IN HILBERT SPACES „
BY

ROSE KEMUNTO IMASISA

Supervisor

DR. BERNARD M. NZIMBI

A dissertation  subm itted  to  the school o f m athem atics in partial 
fulfillm ent for a degree o f M aster o f Science in Pure M athem atics

A U G U ST , 2015

University of NAIROBI Library

0439212 2



Declaration

This dissertation is my original work and has not been presented for a 
degree award in any other university.

ROSE K EM UN TO  M ASISA  

Reg. No. 156/68375/2013

Jo.? . J
Signature Date

This dissertation has been submitted for examination with my approval 
as the university supervisor.

D R. B E R N A R D  M. NZIM BI

. !.nfcO.Sr.%f9-
Signature Date

1



Dedication

I dedicate this dissertation to my spouse Stephen and my son Alfons.



Acknowledgements

The beginning looked so thin, the journey too long and success was 
therefore beyond my abilities. But I thank my God who has carried me 
through.
My sincere gratitude is also to my supervisor Dr. Nzimbi for his 
encouragement, patience, understanding and persistence assistance during 
the whole period of this study.
I wish also to acknowledge all my lecturers in the School of Mathematics; 
the former director of school of Mathematics, Dr. Were, Prof. Khalagai, 
Prof. Pokhariyal, Mr. Achola, Dr. Nkubi, Dr. Mile, Dr. Muriuki and Dr. 
Luketero who taught me in my postgraduate. I am thankful to Prof. Weke 
the director school of Mathematics and the entire team of the school of 
Mathematics for their understanding when i was not able to do my mock 
presentation as it was scheduled because of sickness. I am also grateful to 
my classmates Fidelis, Ambrose and Elvice for their support during the 
whole period of study.
Finally I am grateful to my spouse S.K. Migwa who not only financed my 
postgraduate studies but also encouraged me before and during my studies. 
I also wish to acknowledge my son Alfons Fred Migwa for his patience 
throughout the period and the rest of my family for their spiritual, moral 
and mental support without which I would have not gone this far. May 
God bless you all.

iii



Abstract

In this dissertation, we study invariant, reducing and hyperinvariant 
subspaces and how they play a key role in the study of reducibility and 
quasireducibility of operators. We also consider some equivalence relations 
and characterize operators in such equivalence relations and investigate 
which of the equivalence relations preserve reducibility and 
quasireducibility. The structure and relationship of invariant and 
hyperinvariant lattices for some classes of operators are investigated. The 
isomorphic lattices of similar and unitarily equivalent operators are also 
discussed.
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Abbreviations and Symbols

The following are the lists of abbreviations and symbols used in this paper.
B (H ) : Banach algebra of bounded linear operators
H : Hilbert space over the complex number C
T* : the adjoint of T
||7j| : the operator norm of T
||x|| : the norm of a vector x
p(T ) : the resolvent set of an operator T
a{T) : the spectrum of an operator T
uv(T) : the point spectrum of an operator T
oC(T) ; the continuous spectrum of an operator T
<tr (T) : the residual spectrum of an operator T
Ran(T) : the range of an operator T
K er(T) : the kernel of an operator T
M  © M 1 : the direct sum of the subspaces M  and M 1
{T } : the commutant of T
Dt  : the self commutator of T
D(T) : the domain of an operator T
Lat(T) : lattice of an operator T
HyperLat(T) : hyperlattice of an operator T
Red(T) : set of reducing subspaces of T
W OT  : weak operator topology
SOT : strong operator topology
UOT : uniform operator topology
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Chapter 1

PRELIMINARIES

This chapter, summarizes the background required for the rest of the study. 
Its purpose is fourfold: introduction, notation and terminology and basic 
results that will be needed in the sequel.

1.1 Introduction
The notion of quasireducibility of operators is the same as reducibility in 
finite dimensional space, but in infinite dimensional spaces it is much weaker 
relation. Clary (1978) [3] proved that quasi-similar hyponormal operators 
have equal spectra. This claim was supported by Douglas(1969),[4], who 
proved using the Putnam-Fuglede Commutativity Theorem that quasi-similar 
normal operators are unitarily equivalent and hence have equal spectra. Pear­
son [1898] gave the first modern definition of a linear operator. In the theory 
of linear operators, the major problem is that of approximating the various 
classes of linear operators by operators of comparatively simple structures 
such as self-adjoint and normal operators. The original model for operator 
theory is the study of matrices. Toeplitz [1909] found out that every linear 
operator can be represented by a matrix thus making it easy to analyze it. 
In the process of finding normal forms of quadratic functions, Cauchy in 
[1826] discovered eigenvalues and generalization of square matrices. Cauchy 
(1826) [2] also proved the spectral theorem for self-adjoint matrices. That 
is, every real symmetric matrix is diagonalizable. This spectral theorem for 
Hermitian matrices was later'generalized into spectral theorem for normal 
operators by Neumann (1942), that is every normal operator is diagonaliz­
able.
The concept of quasireducibility of operators was introduced by Kubrusly
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in (2002) [15]. He illustrates basic properties and examples in order to sit­
uate the class of quasireducible operators in their place. In particular he 
has shown that every quasinormal operator is quasireducible. The results 
linked quasireducible operators with the invariant subspace problem; essen­
tially normal quasireducible operators have non trivial invariant subspace. 
Kubrusly on the other hand stated the elementary facts about quasireducibil- 
ity and stated that quasireducibility (as reducibility) is preserved under uni­
tary equivalence. He has also shown the relationship between quasireducibil­
ity (reducibility) and similarity. Nilpotent operators of different indices are 
also discussed and related to quasireducibilty and reducibility.
Luo Yi Shi (1987) stated that every operator on a (separable) Hilbert space 
is the direct integral of irreducible operators but not every operator can 
be expressed as direct sum of irreducible operators. For instance it can be 
easily seen that a normal operator is irreducible if and only if it acts on a 
one-dimensional space and thus it is the direct sum of irreducible operators 
if and only if it is diagonalizable. Peter Rosenthal (1968) introduced the 
concept of completely reducible operators. He showed that a bounded linear 
operator T  on a Hilbert space H is completely reducible if whenever M is 
a reducing subspace of T  of dimension greater than one, the operator T \m 
has a nontrivial reducing subspace. The spectral theorem implies every nor­
mal operator is completely reducible. If H is finite dimensional then every 
completely reducible operator is normal. This is not the case in general.
The study of reducing, invariant and hyperinvariant subspaces plays a vi­
tal role in this research project. An operator T  with non-trivial reducing 
subspace or equivalently if it is the direct sum of two operators on nonzero 
subspace,then T  is said to be reducible. The spectral theorem implies every 
normal operator is completely reducible. If H is finite dimensional then every 
completely reducible operator is normal. This is not the case in general.
The invariant subspaces of an operator,their classification and description 
plays a vital role in operator theory. The invariant subspace of a given lin­
ear operator T  sheds light on the structure of T. When a Hilbert space H 
is finite dimensional over algebraically closed field, operators acting on H 
are characterized by the Jordan canonical form which decomposes H into 
invariant subspaces of T. The problem of invariant subspace is unsolved yet. 
There are operators without an invariant subspace due to Per Enflo (1976). 
A concrete example of an operator without invariant subspace was produced 
in 1985 by Charles Read. On the other hand, invariant subspaces are defined 
for sets of operators as subspaces invariant for each operator in the set. Let 
B(H) denote the algebra of linear operators in II and Lal(T) be the family 
of subspaces invariant under T  e  B (II).
The knowledge of hyperinvariant subspaces of an operator T  gives informa­
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tion on the structure of the commutant of T. Hoover (1973) [10] studied 
hyperinvariant subspaces and proved the result that if S  and T  are quasisim­
ilar operators on a Hilbert space H and K , respectively and if in addition S 
is normal, then the lattice of hyperinvariant subspaces for T  contains a sub­
lattice which is lattice isomorphic to the lattice of spectral projection for S. 
Fillmore, Herrero and Longstaff (1977) [6] showed that in a finite dimensional 
space H, Hyper Lat(T) is (lattice) generated by those subspaces which are ei­
ther K erp(T) or Ranq(T), where p and q are polynomials. Herrero(1969)[4] 
proved that the structure of hyperlattice of an operator is not preserved 
under quasisimilarity by giving an example of an operator T  such that T3 
=  0 which is quasisimilar to all Jordan nilpotent operator of order 3 but 
HyperLat(T) has five elements while such Jordan nilpotent operators have 
4,6 or 8 elements.

1.2 N otations and Term inologies
Throughout this study Hilbert spaces are nonzero complex and separable. 
In principle, they may be finite or infinite dimensional. Capital letters H,K 
etc denotes Hilbert spaces or subspaces of Hilbert spaces and T, S, A, B etc 
denotes bounded linear operators.
D(H) denotes the Banach algebra of bounded linear operators on H. The 
subalgebra of all operators generated by an operator T  G B(H) denoted by 
W*(T) is called the weakly closed (von Neumann) algebra generated by T. 
B (H ,K ) denotes the set of bounded linear operators from H to K  equipped 
with the norm. By an operator we mean a bounded linear transformation 
(equivalently a continuous linear transformation T : H —>• K .
A linear operator is said to be bounded if its domain is the whole vector 
space. That is , if a linear operator acting on a Hilbert space H has a matrix 
representation T, then such an operator is bounded if D(T) =  H and there 
exists a positive real number m such that ||Tx|| =  m ||x||, for every vector x 
G H where D(T) denotes the domain of T.
If T is the matrix representation for a given linear operator on H, and the 
action of this T  to a vector say, x in H is equivalent to multiplying such an 
x by a number say, A, that is Tx =  Ax, then x is called an eigenvector of T 
corresponding to an eigenvalue A. The spectrum of a linear operator on a 
finite-dimensional Hilbert space is the set of all its eigenvalues. The set of all
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A such that (XI- T) has a densely defined continuous inverse is the resolvent 
set of T, denoted by p(T). The complement of p(T) denoted by a(T ) is the 
spectrum of T. The set of those A such that (A/ - T) has no inverse is the 
point spectrum denoted by ap(T) =  {A G €  : K e r ( \I  - T) ±  {0}}, which is 
the set of all eigenvalues of T. The set of those A for which (AI - T) has a 
densely defined but unbounded inverse is the continuous spectrum denoted 
by ac(T). Thus crc =  {A G C : K e r ( \I  - T) =  {0}, Ran(XI -  T) =  H and 
Ran(XI — T) H. If (XI - T ) has an inverse that is not densely defined, 
then A belongs to the residual spectrum denoted by g r . That is g r  = {A G 
C : Ker(XI - T ) =  {0}, Ran(XI -  T ) ^  H}.
Note that, the parts gp(T), gc(T), and gr(T) are pairwise disjoint and g(T) 
=  cjp(T) U ac(T) U or(T).
An operator T  is quasinilpotent if r(T ) =  0 where r(T) denotes the spectral 
radius of T  The numerical range W  (T ) of an operator T  is defined as W (T) 
=  {X G C : A =  (Tx, x), ||x|| =  1. The numerical radius w(T) of T  is defined 
as w(T) — S«p{|A| : A G W (T)}. An operator T  is spectraloid if r(T) =  
w(T) and normaloid if r(T) =  ||7j| or equivalently w(T) =  ||T||. Thus every 
normaloid operator is spectraloid.
T* denotes the adjoint of T .{T }' denotes the commutant of T. Dt denotes 
the self commutator of T. A'er(T), Ran(T), M 1 stands for Kernel, range 
and orthogonal complement of a closed subspace M  of H, respectively. By a 
subspace of a Hilbert space H we mean a closed linear manifold of H which 
also is a Hilbert space.
An operator X  G B (H ,K ) intertwines A G B(H) to B G B (K )  if X A  =  
HA.If A is densely intertwined to B, then there exists an operator with dense 
range intertwining A to B.
{O}, I denotes the null and identity operators,respectively. If M  and N  are 
orthogonal (denoted by M  1  N) subspaces of H then, their (orthogonal) 
direct sum M  © N  is a subspace of H. Two operators T  and S  are called 
orthogonal (denoted by T  J_ S) if TS =  {0} (zero operator).
For M  a closed subspace of / / ,  we have H = M  © M L which is called the
direct sum decomposition of H. This justifies the notation M 1 =  H © M.
An operator T  G B(H) is said to be;
normal if T * T  =  T  T  *
self adjoint (or Hermitian) if T  =  T *
unitary if T  * T  =  T T *  =  I
an isometry if T * T =  I
a co-isometry if T T  * =  I
a partial isometry if T  =  T T  * T
quasinormal if T (T  * T )=  (T * T)T
binormal if T  * T  and T T  * commutes
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subnormal if it has a normal extension,that is if their exist a normal operator 
N  on a Hilbert space K  such that H is a subspace of K  and the subspace 
H is invariant under the operator N  and the restriction of N  on H concides 
with T. Note that a part of an operator is the restriction of it to an invariant 
subspace.
hyponormal if T * T  >  T  T  *
scalar if it is a scalar multiple of the identity operator i.e T  =  oc T  where oc 
€ R or C.
contraction if ||T|| <  1 that is ||Tx|| < ||x|| for every x in H 
Two operators T  G B(H) and S  G B (K ) are said to be similar (denoted by 
T  ~  S) if there exists an invertible operator X  such that X T  — S X , (i.e T  
=  X  - 1 S X )
Two operators T  G B (H)and S  G B (K) are said to be unitarily equivalent 
if there exists a unitary operator U such that T — U * S  U 
An operator T  G B (H, K ) is said to be quasiinvertible or quasi-affinity if it 
is an injective operator with dense range i.e Ker(A) =  {0} and Ran(X) =  
H
An operator T  G B(!I) is a quasiaffine transform of another operator S  G 
B {K ) if there exists a quasi invertible operator X  G B (H , K ) such that X T  
=  SX .
Two operators T  G B(H) and S  G B (K ) are said to be quasi similar (denoted 
by T  ~  S) if they are quasi-affine transforms of each other, (i.e if there exists 
quasiaffinities X  G B(H, K ) and Y  G B{K. H) such that X T  =  S X  and Y S  
= TY).
Two operators A and B in B[H] are said to be metrically equivalent (denoted 
by A ~ m B) if || Ax || =  || Bx || for all x in H.
An operator P  on a Hilbert space H is idempotent if P  — P2. If P  is idem- 
potent then Ran(P) =  K er(I  — P) so that Ran(P) is a subspace of H .
A projection or orthogonal projection is an idempotent operator P  such that 
K er(P) _L Ran(P). If P  is a projection on H , then the Ran(P) — K er(P )1 
so that H =  K er(P )  © Ran(P). Conversely, if M  is a subspace of H, then 
there exist a unique projection P  : H —> M  such that Ran(P) — M. This is 
called the projection onto M. Therefore, associated with the decomposition 
H =  M  © M 1 ,there exists a unique projection P  on H such that M  =  
Ran(P) and M x =  K er(P).
T* g B[K, H] stands for the adjoint of T  G B[H, A'].Then, Ker{T*) =  
RaniT)1- so that Ran(T*) =  K er(T )x .
An operator TeB [II, K] has an inverse T -1 such that Ran{T) C K  —> H on 
its range (not necessarily bounded but certainly linear if and only if K er(T) 
=  {0}.) An important corollary to the Open Map Theorem(” a surjective 
bounded linear transformation between Banach spaces maps open sets into
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open sets”) says that such an inverse is bounded if and only if Ran(T) is 
closed in K  (i.e if and only if Ran(T) =  Ran(T).
T  G B[H , A'] is invertible if it has an inverse on Ran(T) =  K , and such an 
inverse must be bounded (i.e T _1 G B[K,H]).
Let >̂[H, K] denote the class of all invertible operators in B[H,K}. If T  
G K) then T* € S[K ,H ] and T*"1 =  T~u  G 5S[H, K]. An invertible 
operator for which T~l =  T* is called unitary or an isomorphism.
A subspace M  of a Hilbert space H is a closed linear manifold of H. If T  is 
an operator in H and T  (M ) C M, then M  is invariant for T  (or M  is T- 
invariant). An invariant linear subspace for an operator T  is linear subspace 
of H that as a subset of H is invariant for T. It is clear that 0 and the whole 
space H are invariant subspace for every T  in B(H). It is nontrivial if 0 ^  
M ^  H .lf M  is invariant subspace for T  then its orthogonal complement M  
x =  H © M  is a nontrivial invariant subspace for the adjoint T  * of T.
Let T  be an operator on a Hilbert space H and let M  be a subspace of H. If 
M and its orthogonal complement Mx are both invariant for T  (i.e T(M ) C 
M and T(A/X) C Mx ) then we say that M reduces T  (or M is a reducing 
subspace for T). If A/ reduces T  and {0} ^  A1 /  //,then M is a nontrivial 
reducing subspace for T.
An operator T  is reducible if it has a nontrivial reducing subspace (equiva­
lently, it it has a proper nonzero direct summand). (That is if there exists a 
subspace M  of H such that M  and M 1 are nonzero and T -invariant or equiv­
alently if M  is nontrivial and invariant for both T  and T*). Equivalently, an 
operator T  is reducible if and only if there exists a nonscalar operator L G 
{X1}' p| {T*}'.Equivalently T is reducible if and only if both T  and T* lie in 
{L}' for some nonscalar operator L.
An operator T  is quasireducible if there exist a nonscalar operator L such 
that, LT =  TL, rank((T*L -  LT*) T)- (T(T*L -  LT•)) < 1. In other words 
, T  is quasireducible if there exist a nonscalar L such that either T*L — LT* 
also lies in {T}' or the commutator [(T*L — LT*), T] is of rank one.
Recall that nonscalar operators exist only on spaces of dimension greater 
than one and so the concept of quasireducibility (and reducibility) is ger­
mane to operators on Hilbert spaces of dimension greater than one.Note also 
that rank means dimension of range and the only operator with rank zero 
is the null operator. Since one-dimensional linear space has no nontrivial 
subspace, we assume that all operators act on a(complex separable) Hilbert 
space H of dimension greater-than one.
An operator T  is finite dimensional if Ran(T) is finite dimensional. An op­
erator T  is compact if {'Tx G K  : ||.z)| <  1} has compact closure in K . An 
operator T  is called essentially normal if it has a compact self-commutator 
Dj*.
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The weak operator topology (WOT) on B(H) is the topology generated by 
collection {T  —> |(T(x), y)\ : x ,y  £ H } of seminorms. Equivalently it is the 
smallest topology in which all bounded linear operators on a vector space V 
are continuous. The strong operator topology (SOT) on B (H ) is the topology 
generated by the collection {T  -» ||T n ||: x £ H} of seminorms. Equivalently 
SOT is the topology of pointwise convergence.
The set of all subspaces of a finite-dimensional Hilbert space H  is a lattice 
(with respect to the operations of intersection and span) with zero element 
{0} as the least element and H as the greatest element. The subspace lattice 
of all invariant, reducing and hyperinvariant subspaces of T  is denoted by 
Lat(T), RedT, and HyperLatT, respectively.
Let L be either Lat(T) or HyperLat(T). If (f> : L —> L is an isomorphism 
(automorphism), then (t>(Mi\J M2 ) =  <t*(Mi) \J <?!>(M2) and <j)(M\/\M 2 ) =  
4>{M\) f\ <£(M2) for all Mi, M2 £ L and where V denotes span and f\ de­
notes intersection , f).
Let 91 and £  be lattices and (j): 91 —> £  be a map. We call <j> an isomorphism 
if it is one-to-one and onto and a < b if and only if 4>(a) <  4>(b) for all a 6 91, b 
6 £. As we noted earlier that lattices refers to Lat(T) or Hyperlat(T), then 
we can define isomorphism as follows. Let L\ and L2 be lattices of subspaces 
of H. An isomorphism (j> is a one-to-one and onto map with the property 
that if Mi, M2 6 Li then Mi C M2 if and only if cf>(Mi) =  0(M2).
An operator T  is reductive if all its invariant subspaces are reducing. Equiv­
alently, T  is reductive if and only if Lat{T) =  Lat(T*).

1.3 Basic R esults
Here are useful results that will be required in the sequel.

Proposition 1.3.1. ([14], Proposition 1.3) If an operator T  acting on a 
Hilbert space H is quasireducible, then
(a) XT is quasireducible for every X € C
(b) XI +  T is quasireducible for every X £ C
(c) T* is quasireducible.

Let M  be a non empty subset of a Hilbert space H. The orthogonal comple­
ment of M denoted by M 1 =~x & H : x _L y, for every y £ M . Thus Mx is 
the set of all those vectors in / /  which are orthogonal to every vector in M.

Theorem  1.3.1. (Orthogonal Decomposition Theorem [22]) If M is a closed 
linear subspace of a Hilbert space H , then H =  M  © M 1 .

7
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Proof. Since M  is a subspace of H, M x is not only closed but also M  p)Mx 
=  {0}. Hence in order to show that H =  M © M x , it is enough if we verify 
H — M  +  M 1 since M  and M L are closed subspaces of H , M +  M 1 is also 
a closed subspace of H.
Let us take N =  M +  M x or show that N =  H. Prom the definition of N  
we get M C N  and M 1 C N. Then we have that N XC M  and N XC M ±x±. 
Hence N x C M x f] M x± =  {0}. Hence N x =  {0}, thus

N x± =  {0}x =  H (1.1)

since N  — M +  M x is a closed subspace of H, we have

N x± =  N  (1.2)

From (1.1) and (1.2) we have N =  M =  M x =  H.

Theorem  1.3.2. Unitary equivalence is an equivalence relation.

Proof. We show that unitary equivalence is (i) reflexive, (ii) symmetric and
(iii) transitive.
(i) Reflexive i.e T  =  T.
Let T  e B[H\. Then UT  =  TU  =  T =  UTU* where U is a unitary operator. 
Hence T =  T  (without loss of generality) let U =  I.
(ii) Symmetric, i.e T  =  S => S=T.
Now suppose that T = S . We show that S=T . Let T E B[H ] and S EB[K], 
There exist a unitary operator U E B[H,K] such that

T  =  U'SU  (1.3)

Pre-multiplying (1.3) by U and post-multiplying the same by U*, it gives
UTU* =  UU*SUU*, i.e
UTU* =  IS I =  S. Hence S =  T.
(iii) Transitivity i.e if T  =  S  and S =  V then T  =  V.
Suppose T =  S  and S =  V. Then there exists unitary operator U\E 2f(H, K ) 
and Ui € S( A', J) where J is a Hilbert space such that

T  =  U[SUX (1.4)

and
S =  U*2VU2 (1.5)

Using (1.4) and (1.5) we have that T =  U[(U2VU2 )U\ =  {U{U2)V(U*2Ux) =
UVU.
where U =  U2U\ is a unitary operator since Ux and U2 are unitary . Hence
T =  V. □

8



Theorem  1.3.3. ( [19], Theorem 2.6) lfT \,T 2 G B (H ) are quasisimilar with 
quasiaffines X  and Y , then X Y  G {7i}' a n d Y X  G {T2}'.

Proof. Suppose that T\ is quasisimilar to T2 with quasiaffinities X  and Y. 
Then,

TxX  =  XT2 (1.6)

and
T2Y  =  YTX (1.7)

Post-multiplying the equation (1.6) by Y  and using the equation (1.7) we have 
T \X Y  =  XT2Y =  X Y T \ which proves that X Y  G {Ti}'. Post-multiplying 
equation (1.7) by X  and using equation (1.6) we have T2Y X  =  YTxX  =  
Y X T 2 which proves that Y X  G {T2}'. □

An operator S+ acting on a Hilbert space H is a unilateral shift if there
exists a sequence of (pairwise) orthogonal subspaces {H k} : k >  0} such that 
H =  ©jf=0/ 4  and S+ maps each Hk isometrically onto Hk+\. According to 
this definition, S+(Hk) =  Hk+X and S+ \nk '■ Hk -» Hk+X is an isometry thus 
surjective isometry and hence unitary. Therefore Hk and Hk+X are unitarily 
equivalent so that dim l lk =  dim l lk+\ for every k >  0. Such a common 
dimension is the multiplicity of S+.

Theorem  1.3.4. (von Neumann Double Commutant Theorem) Let H be a 
Hilbert space and Ql C B (H ) be a unital (self-adjoint) *-algebra of B(H ). 
Then the following conditions are equivalent;

(i) 21 =  {01} '

(ii) 21 is closed with respect to the weak operator topology (WOT) on B (H )

(Hi) 21 is closed with respect to the strong operator topology (SOT) on B(H).

Remark 1.3.5. If 21 satisfies either of these three conditions we say that it 
is a von Neumann algebra.

Theorem  1.3.6. ( Fuglede-Putnam Theorem [18] pg 35) Let T  G B(H). If 
N  G B(H) is normal and N T = T N , then N*T =  TN*.
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Chapter 2

INVARIANT, 
HYPERINVARIANT AND  
REDUCING SUBSPACES

2.1 Invariant Subspaces
The lemma below gives sufficient condition for transferring nontrivial invari­
ant subspaces from B to A whenever A is densely intertwined to B.

Lemma 2.1.1. [14] Let A £ B (H), B £ B (K ) and X  £ B(H, K ) be such 
that X A  = B X . Suppose M  c  K  is a nontrivial invariant subspace for B. 
If Ran(X) =  K and Ran(X) f] M ^  {0} the inverse image of M under X , 
X ~l (M ) is a nontrivial invariant subspace of A.

If the intertwining operator X  is surjective \.e X A  =  B X  and Ran(X) =  
K , then X ~ l (M) is a nontrivial subspace for A. Thus we have the following 
corollary.

Corollary 2.1.1. [20] If two operators are similar and if one of them has a 
nontrivial invariant subspace, then so has the other.

Corollary 2.1.2. [20] TakeT  € B(H ), L £ B (K ) and X  £ B (H ,K ) such 
that X T  =  L X . Let M  C K  be a nontnvial finite-dimensional reducing 
subspace for L. If R an(X ) =  K, then X ~ l (M-L) is a nontrivial invariant 
subspace for T.

In other words, if an operator^1 is densely intertwined to an operator L that 
has a nontrivial finite-dimensional reducing subspace, then T  has a nontrivial 
invariant subspace.

10



Corollary 2.1.3. If an operator T is a quasiaffine transform of another 
operator L that has a nontrivial finite-dimensional reducing subspace, then T  
has a nontrivial invariant subspace.

Theorem  2.1.1. ([13], Problem 4-3) Let T  be an operator on a Hilbert space 
H and let M be a subspace of LI then the following statements are true.

(a) M is invariant for T  if and only if M  x is invariant for T  *.

(b) M is invariant for every operator that commutes with T  if and only if 
M x is invariant for every operator that commutes with T *.

Proof, (a) Take an arbitrary y in M  x . If Tx & M  whenever x € M, then 
(x]T*y) =  (T x \y ) =  0 and therefore T  *yJ_ M  which means that T*y 
lies in M x . Conversely since this holds for every operator in B(H), it 
follows that T*(MX) C Mx =► T ** C Mxx . But T** =  T  and Mxx =  
M  =  M  and hence T*(M) C M 1 => T (M ) C M . Summing up: M  is 
invariant for T  if and only if M x is invariant for T*.

(b) Let {T} ’ be the commutant of T. It is clear that L 6 {T} ' if and only if 
L* € {T*} '. Suppose M  is invariant for every operator that commutes 
with T  which means that M  is L invariant whenever L 6 {T} '. This 
implies that M x is L*-invariant whenever L GfT}’, according to (a). 
Thus M x is invariant for every operator that commutes with T*, then 
Mxx — M — M  is invariant for every operator that commutes with T** 
=  T.

□
Remark 2.1.2. Therefore according to the above result an operator in a 
Hilbert space has a nontrivial invariant subspace if and only if its adjoint 
has.

Theorem  2.1.3. (Lomonosov) An operator has a nontrivial invariant sub­
space if it commutes with a nonscalar operator that commutes with a nonzero 
compact operator.

From Theorem 2.1.3 we can say that every nonscalar compact operator has 
a nontrivial hyperinvariant subspace . Recall that in infinite-dimensional 
setting the only scalar compact operator is the null operator. In finite­
dimensional setting every operator is compact, every operator has a non­
trivial invariant subspace and, if it is nonscalar a nontrivial hyperinvariant 
subspace as well.
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Theorem  2.1.4. ([13], Theorem 4-1) Every essentially normal quasireducible 
operator has nontrivial subspace.

Proof. According to Lomonosov Theorem, if a nonscalar operator commutes 
with a nonzero compact operator, then it has a nontrivial hyperinvariant 
subspace, that is if an operator L is such that rank(TL — LT) =  1 for some 
compact operator T, then L has a nontrivial hyperinvariant subspace. If 
there exist a nonscalar L such that LT — T L , and rank(T’L — LT) <  1 for 
some nonzero compact operator T,then the above results ensure that T has 
a nontrivial invariant subspace. This proves the theorem whenever the self­
commutator Dt =  [T*, T] is nonzero and compact. If DT — 0, then T  is 
normal and the result holds trivially. □

Proposition 2.1.1. [14] L etT  and L be nonzero operators on a Hilbert space 
H. If LT =  0, then K er(L ) and Ran(T) are nontrivial invariant subspaces 
for both T and L.

A straight forward corollary to proposition 2.1.1 is as follows.

Corollary 2.1.4. Every nilpotent operator has a nontrivial invariant sub­
space.

If M is an invariant subspace for T, then relative to the decompositio H =

M  © M 1 , T  can be written as T =

for operators X  : M 1- —> M and Y : M' -> M' where T\\M  denotes the 
restriction of T  to M .
With respect to the decomposition H =  M  © Mx , the projection onto M 
(i.e the unique projection P II —> M such that Ran(P) =  J\I) can be written

Theorem  2.1.5. Let H be a Hilbert space and M be a closed subspace of 
H.Let T  G B (H) and P  be a projection of H onto M . Then M  is invariant 
under T  if and only if P T P  =  TP.

Proof. => Let M be invariant under T  and let x 6 II then Px  G M (since P  
is a projection onto M). Thus TPx  G M. Since T P x  G M then P{TPx)) G 
M. Therefore, P{TPx) =  TPx. Hence P T P  =  TP.
<= Conversely, let P T P  =  TP. Let z  G M then, (P T P )x =  (T P )x =  T{Px). 
But,(PTP)x =  P (T P )x  G M  since M  is the range of P. Thus T(Px) G M. 
Thus Tx  is in M  since Px =  x. Thus M  is invariant under T. □
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2.2 H yper invariant Subspaces
The knowledge of hyperinvariant subspaces of an operator A in B(H ) give 
information about the structure of the commutant of A, the set of all oper­
ators B such that AB =  BA  as we can see in the results below.

Theorem  2.2.1. A linear subspace M of a Hilbert space H is hyperinvariant 
fo rT  in B (H ) if it is invariant for every operator in B (II) that commutes 
with T. In other words a linear manifold (or subspace) M is hyperinvariant 
fo rT  G B (H) if M is L- invariant for every L in B (H ) such that LT =  TL.

Lemma 2.2.1. ([13], Proposition 4-V Let H and K  be Hilbert spaces and 
suppose T  G B (H ) and S  G B (K ), X  G B (H ,K ) and Y  G B (K ,H ) such 
that X T  =  S X  and Y S  — T Y . If C  G B (H ) commutes with T and M is 
nontrivial hyperinvariant subspace for S with Ran(X) =  K  and K er(Y )  P) 
M =  {0} then M r is a nontrivial hyperinvariant subspace for T.

Corollary 2.2.1. ([13], proposition 4-8) If two operators are quasisimilar 
and if one of them has a nontrivial hyperinvariant subspace, then so has the 
other.

Proposition 2.2.1. [19] Let H and K  be Hilbert spaces and suppose T  G 
B(H ) and S  G B(I<), X  G B(H, I<) and Y  G B (K , H ) such that X T  =  SX  
and Y S  =  T Y . If C  G B (H ) commutes with T  and M is a hyperinvariant 
subspace for S then M is invariant for X C Y  whenever C  G {T}'.

From the above proposition, it is clear that every hyperinvariant linear man­
ifold (or subspace) for T  is invariant for {T}'.

Theorem  2.2.2. [8] Suppose T  is an operator in B (H ) and there exists a 
nonzero compact operator K  in B (H ) such that the rank o fT K  - K T  is less 
than or equal to one. Then T  has nontrivial hyperinvariant subspaces.

Theorem  2.2.3. [19] Let U G B (H ) be a unitary operator. A closed subspace 
M C H is hyperinvariant for U if and only if Pm commutes with {U }‘

Proof. •<=: If A commutes with Pm then AM  =  Pm AH  C Pm H =  M\ thus 
Pm  commutes with all these then M  is hyperinvariant for U.
=>■' Conversely if M G HyperLatf/, then A Pm =  Pm APm for every A G 
{U } . By Fuglede’s Theorem, A* also commutes with U (i.e AU =  UA => 
U* A =  U*AUU* =  U*UAU* =  AU* and also A*U =  UA*, so we have that 
A* Pm =  Pm A* and hence APM =  Pm APm =  (Pm APm)* =  Pm A. □
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Proposition 2.2.2. Let T  G B (H ) be quasisimilar to a unitary operator 
U £ B (K ) with implementing quasiaffinities X , Y  such that T X  =  XU  
and U Y  =  YT. If M  C K  is a hyperinvariant subspace o fT , then M is a 
hyperinvariant subspace ofU .

Theorem  2.2.4. ([19], Theorem 2.22) Let T  be a nilpotent operator such 
that T =  Tn © Tn_i © ... © T\, where Tn is such that T n =  0. Then T  has 2" 
hyperinvariant subspaces.

2.3 R educing Subspaces o f Operators
If T has nontrivial reducing subspace then the dimension of H is greater than 
one since a one-dimensional space has no nontrivial subspace. Suppose M 
reduces T  then T can be written with respect to the decomposition H =  M

( T \ o \
), where T  I M in B[M] is the restriction of

0 T  \M± J
T  to M  and T \M± in B[M X] is the restriction of T  to M x . Conversely A
6 B[M] and D G B[M X], If T =

A 0 
0 D

on H =  M  © Mx then M

reduces T, A =  T  \m and D =  T  \M±. Hence we can write T =  A © D  and 
say that T  is the orthogonal direct sum of A and D  where the operators A 
and D are referred to as direct summands of T.
Recall that with respect to the decomposition H — M  © M x ,where M  and 
M 1 are closed subspaces of H , then M ^  0 if and only if M x ^  H and M x 
^ 0 if and only if M ±  H. Thus an operator T on H is reducible if there 
exist a subspace M  of H such that both M  and Mx are nonzero, not equal 
to H and are T-invariant.

Theorem  2.3.1. [14] A subspace M of a Hilbert space H reduces T  G B[H] 
if and only if M is invariant for both T  and T*.

Proof. Let M  reduce T. Then M  and Mx are invariant for T  by definition. 
M 1 invariant for T  means that M  is invariant for T*. Hence M  is invariant 
for both T and T*.
Conversely if M  is invariant for T* it implies that Mx is invariant for T. 
Thus M  and M x are invariant for T. Hence A1 reduces T.

Theorem 2.3.2. [13] Let II be a Hilbert space and T  G B[H]. Let M be 
a closed subspace of H . Then M reduces T  if and only if T P  =  P T  where
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^ is the unique projection onto M such that Ran(P) =  M .

Proof. Let M  reduce T, then M  is invariant for both T  and T* (by Theorem 
2.3-1).From Theorem 2.1.6 we have that, M is invariant for

T  &  P T P  =  T P  (2.1)

M is invariant for
T* <=> P T 'P  =  T*P  (2.2)

Taking adjoints in (2.2) we have P*TP* =  P*T i.e

P T P  =  P T  (2.3)

since P* =  P. From (2.1) and (2.3) the equality follows, that is
T P  =  PT. □

Proposition 2.3.1. ([13], Proposition 1.1) Let T  be an operator on a Hilbert 
space H of dimension greater than one. The following assertions are equiva­
lent.

(a) T  is reducible

(b) T  commutes with a nonscalar projection

(c) T commutes with a nonscalar normal operator

(d) there exist a nonscalar operator that commutes with T  and T*.

Thus, an operator T  is reducible if and only if there exist a nonscalar oper­
ator L such that LT =  TL  and T*L - LT* =  0, that is if and only if there 
exist a nonscalar operator L in (T}'p) {T"*}'.

Proposition 2.3.2. Every operator that commutes with a nonscalar normal 
operator is reducible.

Proposition 2.3.3. ([13], Proposition 5.2) An operator T  is reducible if and 
only if there exist a nonscalar L such that

(a) LT =  TL, Dt L =  LV T and (b) (T*DL - DLT*)T =  T(T*DL - 
DlT •)
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Proof. If T  is reducible, then there exist a nonscalar L in {T }' p| {T*}'. Thus 
assertions (a) and (b) holds trivially. Conversely take a nonscalar L and set 
C  =  T*L - LT*. Recall that assertion (a) is equivalent to LT =  TL  and CT  
= TC. Hence , if (a) holds, Dc  =  C*C - C C * =  {L*T - TL*)C - C{L*T - 
TL*) =  (L*C -CL*)T - T(L*C -CL*).
However as L*T* =  T*L*, L*C - CL* =  L* (T*L - LT* - (T*L - LT*)L* =  
T*Dl - DlT*
Therefore, if assertion (b) also holds, D c  =  0 that is C  is normal. If C  is 
nonscalar, then T  is reducible (since CT =  TC). If C  is scalar,then C — 0 
(C is a commutator and nonzero commutators are nonscalar) and hence the 
nonscalar L lies in {T}' P) {T*}', that is T  is reducible. □

Recall that an operator T  is quasireducible if there exist a non scalar L in 
{T }1 such that either
T*L - LT* lie in {T}' ( equivalently if the commutator [(T*L — LT*),T] has 
rank zero) or the commutator [('T*L — LT*),T] has rank one. This gives the 
following results.

Theorem  2.3.3. [14] Every reducible operator is quasireducible.

Indeed an operator is reducible if and only if there exist a nonscalar L such 
that LT =  TL  and T*L — LT* =  0 which trivially imply (T*L - LT*)T - 
T(T*L - LT*) =  0

Theorem  2.3.4. An operator T  is quasireducible if and only if there exist a 
nonscalar L such that LT =  TL and rank(DrL — LDt)< 1.

Proof. Let Dt denote the self commutator of T, that is Dt — T*T - TT*. If 
LT =  TL  then DTL -  LDT =  (T*L -  LT*)T - T(T*L -  LT*) so that T is 
quasireducible if and only if there exist a nonscalar L such that LT =  TL, 
rank(Dt L — LDt ) < 1  □

Theorem  2.3.5. ([11], Problem 4-5) Let L and T  be operators on a Hilbert 
space H. If L commutes with both T  and T*, then K er(L ) and Ran(L) 
reduce T.

Proof. Let H be a Hilbert space and take T  and L in B[H]. If L commutes 
with T  then Ker(L) and RarfL) are T-invariant. Similary if L commutes 
with T*, then Ker(L) and Ran(L) are T*-invariant. Therefore according 
to theorem 2.3.1 if L commutes with T  and with T* then subspaces on H, 
Ker(L) and Ran(L) reduce T. □

16



Theorem  2.3.6. [14] Let T  be an operator on a Hilbert space H .

(a) ifT  commutes with an orthogonal projection P, then Ran(P) is a reduc­
ing subspace for T

(b) T is reducible if and only if it commutes with a nontrivial orthogonal 
projection.

Proof. Let H space. Take an operator T e B[II] and an orthogonal projection 
PeB[H \.

(a) If PT =  T P  (by Theorem 2.3.2), then it is clear that Ran(P) is T- 
invariant. Moreover since P  is self-adjoint it follows that PT* =  T*P 
and hence Ran(P) is T*-invariant. Therefore Ran(P) reduce T  (Theo­
rem 2.3.1).

(b) Recall that {0} ^  Ran(P) ^  H if and only if 0 ^ P  ^  I. Thus accord­
ing to (a), if T  commutes with a nontrivial orthogonal projection, then 
Ran(P) is nontrivial reducing subspace for T ; that is T is reducible. 
Conversely, suppose T  is reducible so that there exists a nontrivial sub­
space M  such that both M  and Mx are T-invariant. Since M  is invariant 
for T, it follows that the nontrivial orthogonal projection P  onto M  is 
such that P T P  =  T P  (Theorem 2.1.6). Similary since M L is T-invariant 
it also follows that the complement projection E  =  ( /  — P) into M 1 is 
such that E TE  =  TE  and hence P T P  — TP. Therefore P T  =  TP.

□
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Chapter 3

ON SOME EQUIVALENCE 
RELATIONS OF 
OPERATORS

In this chapter we consider some equivalence relations and characterize op­
erators in such equivalence classes and which equivalence relations preserve 
reducibility and quasireducibility.

Remark 3.0.7. Note that we first need the following known results.

Theorem  3.0.8. ([20], Theorem 2.1) If T is a normal operator and S 
€B(H ) is unitarily equivalent to T, then S is normal.

Proof. Suppose S =  U*TU, where U is unitary and T  is normal.Then S*S 
= (U*T*U){U*TU) =  U*T*TU =  U*TT*U = SU*T*U =  SU*S*U =  SS*. 
Which proves the claim. □

A necessary and sufficient condition that an operator T e B(H) be normal is 
that ||Tx|| =  ||T*z|| for every x € H.

Corollary 3.0.1. ([20], Corollary 2.3) An operator T E B(H) is normal if 
and only if T  and T* are metrically equivalent.

Theorem  3.0.9. ([20], Theorem 2.11) If S E B{H) and T E B(H) are 
similar then S* and T* are similar.

Corollary 3.0.2. ([20], Corollary 2.12) If S  E B (H ) and T  E B(H ) are 
unitarily equivalent, then S and T  are similar.
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Proposition  3.0.4. ([20], Proposition 2.13) If S and T are normal operators 
in a Hilbert space H , then S is unitarily equivalent to T  if and only if S is 
similar to T .

Two operators are considered to be the same if they are unitarily equivalent 
since they have the same properties of invertibility, norm and the spectral 
picture.

Theorem  3.0.10. ([20] Theorem 2.14) I fT  and S are metrically equivalent 
operators on H, then 11511 =  ||T||.

Proof. The proof follows immediately from ||T ||2 =  ||T*T|| =  ||TT*|| =  
115*511 =  1155*11 =  ||5 ||2. The converse of the above theorem is not always 
true. There exist operators with the same norm which are not metrically 
equivalent. □

Corollary 3.0.3. ([20] Corollary 2.6) If S andT  are metrically equivalent 
normal operators, then there exists a unitary operator U such that S — UT.

Theorem  3.0.11. ([20], Theorem 2.26) If 5  andT are metrically equivalent 
projections then they are unitarily equivalent.

Proof. Since 5  is metrically equivalent to T, from corollary 3.0.3 there exists 
a unitary operator U such that 5  =  t/T.This with the fact that both 5  and 
T are projections, we have that 5  =  5 2 =  5*5 =  T*T =  UTT*U* =  UT2U2 
=  UTU* which shows that 5  and T  are unitarily equivalent. □

Exam ple 3.0.1. Let 5 ,T € B(l2(N)) be defined as follows; 5 (x i, x2, x3...) 
=  (x i ,x i ,x 2,x 3, ...) and T (x i,x2,x 3,...) =  (x0,x i ,x 2,x 3, .... A simple com­
putation shows that 5  and T are not metrically equivalent and hence they 
are not unitarily equivalent.

Proposition  3.0.5. ([20], Proposition 2.36) I fT  is a normal operator and 
S is metrically equivalent to T, then S is normal.

3.1 Spectral P icture and Equivalence R ela­
tions

A.

Remark 3.1.1. (i) If T is finite-dimensional operator ( i.e Ran(T) is finite­
dimensional), then cr(T) =  ap(T ) which is finite.

19



(ii) If T is compact, then <7(T')\{0}C <jp{T) which is countable.

(iii) If T  is normal, then crR(T) =  0. A unitary operator in B(H) ( which 
is normal) has its spectrum in the unit circle {A G <C : |A| =  1}. A 
self-adjoint operator (which is also normal), has a real spectrum ( i.e it 
lies in the real line.

(iv) Positive operators have nonnegative real spectra and if P  is a nontrivial 
idempotent operator, then cr(P) =  ap(P ) =  {0,1}.

(v) The spectral radius of an operator T  is such that r(T) =  Limn-+ ̂  
||Tn||" (Beurling formula).

Proposition 3.1.1. Unitarily equivalent operators have equal numerical range.

Theorem  3.1.2. ([20], Theorem 2.15) If S ,T  G B(H) are metrically equiv­
alent, then w(\S\) =  w(\T\).

Proof: By the theorem 3.0.10, we have that ||S|| =  ||7j|. Since T*T is self- 
adjoint, it is normal and thus w(T*T) =  ||Tj|2. Thus w(T*T) =  w(S*S). 
Hence u;(|7j) =  u;(|Sj). □

Proposition 3.1.2. ([20], Proposition 2.16) I fT ,S  € B(H) are metrically 
equivalent operators, then T and S need not to have equal numerical range.

Proposition 3.1.2 is illustrated below.

Let T  and S  be operators represented by the matrices, T  =  I  ̂ * ) and
\ 1  0 /

s=0 i ) inc2'
A simple computation shows that a{T) — { -1 ,1 }  and a(T) =  {1} and W (T)
7̂  1P(5). Therefore, unlike unitarily equivalent operators, metric equivalence 
operators does not preserve numerical range.

Proposition 3.1.3. Suppose that A and B are quasireducible (reducible) 
operators in Hilbert space H . Then the following assertions are true.
(a) a (A) =  a (B )

(b) op(A) =  ap(B)
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3.2 Equivalence R elations Preserving Reducibil- 
ity and Quasireducibility

In this section we investigate different equivalence relations which preserve 
reducibility and quasireducibility. For example we have that unitary equiva­
lence preserves reducing subspaces, i.e if A,B  6 B[H} such that A is unitarily 
equivalent to B  and there exists a subspace M of H which reduces A, then 
M  reduces B [13].

Proposition  3.2.1. ([13]proposition 1.4) Every operator unitarily equiva­
lent to a reducible (quasireducible) operator is reducible (quasireducible).

Since unitary equivalence preserves reducibility, (quasireducibility) (Propo­
sition 3.2.1) and numerical range (see Proposition 3.1.1) then we have the 
following theorem.

Theorem  3.2.1. If S and T are unitarily equivalent reducible (quasire­
ducible) operators, then VF(S) =  W (T).

Proposition 3.2.1 does not hold under similarity.

Remark 3.2.2. Every operator similar to a reducible (quasireducible) oper­
ator need not to be reducible (quasireducible).

For instance consider a nonquasireducible operator that is similar to a re­
ducible one.

Exam ple 3.2.1. Set H =  C and identify the operators on C3 with their
/  i _ i  1 \

matrices with respect to the canonical basis for C3. Let T =
1 - 1  1 
0 0 0 

V °  1 0 /

OOi~H - 2 - 2  2 N
T* = - 1  0 1 . Then DT =  T*T -  TT* = - 1  2 - 1

I—1 o o l  2 - 1  0 j

 ̂ a  ft ip ^
Any nonscalar L that commutes with T  is of the form, L 0 a — ip 0

 ̂ 0 —ft a  — ip i
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where a and ip cannot be both zero.

Dt L —

LDt

- 2 a - 4  P — a +  ip —4 ip +  2a
—a 2a -  2 4> —a
2ip 2 P -- a  +  ip 2 xp

- 2 a - P  + 2 ip —a  + 2 P - r p
a  +  ip 2a - 2  xp

P + 2a -  2ip - 2 P -  a +  ip

f p - 2 ip 2 ip -6 p
— LDt = -Tp 0

\  2 iP - P 4 P

and

2a — p  \  
—a  +  ip

P J

P — 4tp ^

-V»
W - P  J

and hence rank Dt L - LDt >  2 for every nonscalar L that commutes with 
T. Thus T  is not reducible.

^ 1 0  0 ^ 1 1 0 1 ^
Now put T  = 0 0 0 >w = 0 1 0

O H-‘ o k 0 0 1 /

so that W  is invertible

and W T =  T W . Therefore, the reducible T  =  1 0 0 
1 0

is similar to

T, which is not even quasireducible. Thus (as reducibility) quasireducibility 
also is not preserved under similarity.

3.3 Operators Enjoying the P roperty of R e­
ducibility and Quasireducibility

Clearly every normal operator is quasinormal (and also is every isometry). If 
T is quasinormal, then either ('T*T - T T *) =  0 or (T*T - TT*) ^  0 and 
(T*T - TT*)T =  0.
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Proposition 3.3.1. ([13], Proposition 3.1) Every quasinormal operator is 
quasireducible.

Proof. We split the proof into four parts.
(a) An normal operator is trivially reducible and hence qusireducible.

(b) A pure isometry(i.e a completely nonunitary isometry) is precisely a 
unilateral shift. If its multiplicity is greater than one, then it is the di­
rect sum of two unilateral shifts, thus reducible. If it has a multiplicity 
of one, then it is not reducible but quasireducible. If 5+ is a unilateral 
shift of multiplicity one, then (5+5+ - 5+5+)5+ - 5+(5+5+ - 5+5+) =  
5+(5+5+ - I) is a rank-one operator.

(c) The von Neumann-Wold decomposition says that every isometry is the 
direct sum of a unilateral shift and a unitary operator (i.e normal isom­
etry) where any of the direct summands may be missing. Thus parts 
(a) and (b) ensures that every isometry is quasireducible and so is every 
multiple of an isometry.

(d) An operator T  is a multiple of an isometry if and only if the nonnegative 
operator T*T is a scalar (an isometry is precisely an operator V such that 
V*V — I). If T  is quasinormal but not a multiple of an isometry, then T*T is 
nonscalar normal operator in {T}' by the very definition of quasinormality. 
Thus T  is reducible and hence quasireducible.

Theorem 3.3.1. ([13], Proposition 3.2) Every injective unilateral weighted 
shift whose self-commutator has multiplicity one is not quasireducible.

Proposition 3.3.2. ([13], Proposition 2.2) Let T  be an operator acting on 
an arbitrary Hilbert space H .If T is a nilpotent operator of index (n + 1) for 
some n>  1 ,then either Tn is reducible or T  is quasireducible with nilpotence 
index 2 on a two-dimensional space.

Proof. : Take a nonzero operator T  on H. Since Ker(T) is T-invariant,

With respect to the decomposition H =  A'er(T)© K er(T )x where X  : 
Aer(T)-1-—> A'er(T) and Y  : K er(T )L—> K er(T )L are bounded and lin­
ear. If 7"n+1 =  T T n =  0 is nontrivial (0 is an eigenvalue of T) so that both 
Aer(T) and K er(T )x are nonzero and Y n =  0 ,y n+1 ^ 0 and X ^  0. Hence
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Tn _ o z
0 0

with Z =  X Y n~l K er(T )x -> A'er(T).

Therefore with respect with the same decomposition, H =  A'er(T)® A'er(T)x ,set

Q =  (  ZZ* 0 Y  so that QTn = T nQ =  (  0 )  where Z* :
V 0 Z*Z J V 0 0 /

A'er(T)—> K er(T )x is the adjoint of Z.
If the nonnegative Q is nonscalar then Tn is reducible. Supose that Q is 
scalar. In this case Z =  X^U for some positive scalar A and some unitary 
transformation U so that K er(T) and K er(T)x are unitarily equivalent and 
hence dim K er(T  =  dim K er(T )x .
Now take an arbitrary operator A : Ker(T) -» K er(T ) and set still on H

= Ker(T) ® K er(T )x , N =  ( A ° | so that, NT" =  T"N =V 0 X~l Z*AZ )

^ . If dim K er(T ) > 2 then let A be nonscalar normal operator

so that N is nonscalar normal operator as well,and therefore T n is reducible. 
If dim A'er(T) — 1, then dim // =  2. In this case,we may assume without

(  0 AZ  
\  0 0

loss of generality that T" = 0 1 
0 0

on C2. This implies that n — 1 and

hence any nonscalar L that commutes with T  is of the form L = P
a

with ft ^  0, which is never normal. Thus T  is irreducible. However T  is 
quasireducible because rank (DtL - LDt) =  1. □

Note that (n =  1) every nilpotent operator of index 2 is quasireducible. 
A nilpotent operator of index 2 acting on a Hilbert space of dimension 
greater than two is reducible; on a two-dimensional space, it is irreducible 
but quasireducible.

Remark 3.3.2. Nilpotent operators of higher index are not necessarily quasire­
ducible.

This is illustrated in the example below.
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Exam ple 3.3.1. Set T = on C3 be a nilpotent operator of
'  0 1 1  ̂

0 0 1 
 ̂0 0 0 /

index 3 that is not quasireducible. Dt =  TT* — T*T

OOO

' 2 1 0 N ( - 2 - 1  0 N
T*T = 0 1 1 and TT* = 1 1 0 . Then, Dt = - 1 0 1

1 °  1 2 )

OOo

l  0 1 2 /
 ̂ a  /3

If L that commutes with T  is in the form L 0 a  /3
^  0  0  Q  j

so that

/

d t l  — l d t =

\[3 —2/3 — if —2/3 — Aip 
0 a p
0 0 /3 J

> 2 whenever L is nonscalar, then T  is not quasireducible.
V

and hence rank (Dt L - LDt )

Finally, we end this chapter by looking at the product and sum of reducible 
or quasireducible operators. The example below shows that the product and 
(ordinary) sum of quasireducible operators are not necessarily quasireducible.

'  0 1 0 ^ ^ 0 0 1 ^
Exam ple 3.3.2. Set T = 0 0 1 so that T2 = 0 0 0

v 0 0 0 ) O O O

The operator T2 is nilpotent of index 2 on C3 thus reducible and T  is quasire­
ducible (since rank(T’2Z>r - D^T2) =  1 ) so that I +  T  is quasireducible by 
proposition 1.3.1 (b). However T(I +  T) — T  +  T2 which is both a product 
and a sum of quasireducible operators, is not quasireducible.

Question: Is the square of a quasireducible operator quasireducible? 
Question: Is Tn quasireducible for every integer n> 1 whenever T  is quasire­
ducible?

Proposition 3.3.3. Every polynomial of T is not quasireducible whenever 
T is quasireducible.

Observe that there exist operators for which all (positive) powers are not
7 1 1 '

0 0
quasireducible. For example; T = on C2 is idempotent and not
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quasireducible (actually Dj-L - LDt is full rank for every nonscalar L in {T}' 
) and hence every polynomial of T  is not quasireducible by proposition 1.3.1
(a) and (b).
Question: If every polynomial of T  is reducible ( or quasireducible) must T  
be reducible (or quasireducible)?

Exam ple 3.3.3. Let the operator T  be an operator with matrix

T = then T  is quasireducible.

Solution 3.3.1. Let L =  ( 0 h
\  c d

mutator of T  is {T }' =  { f a ^
\  0 a

[ ° ~ b ) and T(T*L -  LT*) =
V 0  0

A simple computation shows that com-

:a, be R} and that (T*L — LT*)T =

) and therefore (T*L — LT*)T - 
0 0 /

T(T*L — LT*) =  [ ], T  is quasireducible since rank (T*L -  LT*)T
\ 0  0 )

- T(T*L — LT*)= 1 <  1. However T  is irreducible.

Note that a 2 x 2 matrix is irreducible and so is every normal operator with­
out an eigenvalue i.e T*T =  TT* and the point spectrum, crp(T) =  0.

Remark 3.3.3. From the results of this chapter we have the following in­
clusions
Reducible C Irreducible C Quasireducible
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Chapter 4

INVARIANT AND  
HYPERINVARIANT  
LATTICES OF SOME 
OPERATORS

The von Neumann algebra generated by an operator T  6 B(H) is used to 
investigate the structures of invariant and hyperinvariant lattices for some 
operators. The double commutant theorem relates the closure of a set of 
bounded operators on a Hilbert space in certain topologies to the bicommu- 
tant of that set and thus it gives the connection between the algebraic and 
topological side of operator theory. The family of invariant and hyperinvari­
ant subspaces is denoted by Lat(T) and HyperLat(T), respectively.In this 
project, the lattices refers to Lat(T) or Hyperlat(T).

4.1 Structure of Invariant and H yperinvari­
ant Subspaces

Note that the lattices Lat(T) and Hyperlat(T) have set-theoretic set inclu­
sion ordering (C) of the power set P(H) as a partial order < on them. With 
this partial order each of Lat(T) or Hyperlat(T) is a complete lattices with 
H as the greatest element and {0} as the least . If L\ and L2 are complete 
lattices, we write L\ =  L2 to signify that there is a complete lattice isomor­
phism of one onto the other.

Lemma 4.1.1. For every net {Tn} 6 B(H) we have {T*} converges in the
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WOT to T  if and only if {Tnx, y) -» {Tx, y} for a llx ,y  £ H. In this case T  
is called the weak limit ofTn.

We say that {T„} converges strongly to T  which is called the strong limit of 
{Tn} if ||(Tn -  T):r|| -> 0 for every x £ H. Furthermore, we say that {Tn} 
converges uniformly to T  which we call the uniform limit of {Tn} if ||Tn - T|| 
-> 0.

Remark 4.1.1. (i) Note that uniform convergence implies strong conver­
gence and strong convergence implies weak convergence.

(ii) The WOT is weaker than SOT and SOT is weaker than the UOT.
From the above remaks we have the following lemma.

Lemma 4.1.2. [19] For a Hilbert space H and a subset A of B{H ), the 
commutant {A}' is always strongly closed.

Remark 4.1.2. The Double Commutant Theorem says that the unital self- 
adjoint subalgebra 21 of B(H) in the WOT and the SOT are equal,and are 
equal to the bicommutant {21}' of 21.

Theorem  4.1.3. ([19], Proposition 2.1) F orT  £ B(H) and for every M £ 
Hyperlat(T), Pm belongs W*(T) where Pm is the (orthogonal) projection of 
H onto M .

Proof. By the Double Commutant Theorem, it is enough to show that if Q 
= Q2 =  Q* £ {W*(T)}' =  {T}' fj {T*Y , then PmQ =  QPm or equivalently 
that QM  C M since Q £ {T }' and M £ Hyperlat(T). □

We prove the following theorem by use of this result.

Theorem  4.1.4. ([19], Theorem 2.1) Let B £ B(H ). If an operator A £ 
B(II) is in W*(B), then Lat(B) C Lat(A).

Proof. It is clear that HyperLat(T) C Lat(T) for any T £ B(H) since T 
commutes with itself. Since A £ W*(B), then QPM =  Pm Q where Q 6 
{W *(B)Y =  {B }' fj {B*}' is an orthogonal projection in {B }' and M  £ 
Hyperlat(B), hence Pm A Pm =  Pm A where Pm £ W*{A) is the orthogonal 
projection of H onto M. This means that M £ H yperlat(B) C Lat(B) => 
M e  Lat(A). □

Proposition 4.1.1. ([19] Corollary 2.2) If A £ W*(B) then Hyperlat(B) 
C Hperlat(A).
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Proof. This follows from the proof of theorem 4.1.4 and the fact that for any 
operator T  G B(H ), H perlat(T) C Lat(T). □

Theorem  4.1.5. [1](Proposition 2.2) Let T be normal operator in B(H). 
Then Hyperlat(T) =  {M  G H : PM € W *(T)}

Theorem  4.1.6. [17] I f T e  B {H ) double commutes A and B and Lat(A)
P) Lat(B) is trivial, then T  is ether zero or quasiaffinity.

Proof. T  doubly commutes the pair A, B implies TA — B T  and TB =  AT. 
Since TA  =  BT, then Ran(T) G Lat(B) and Ker(T) G Lat(A). Since TB  
= AT  we deduce that Ran(T) G Lat(A) f |  Lat(B) and Ker(T) G Lat(A) fj 
Lat(B). If Ran{T) =  {0}, then T =  0. If Ran(T) =  H, the I<er(T) =  {0} 
and hence T  is injective and hence has dense range, hence a quasiaffinity. □

We can strengthen the above result as follows.

Corollary 4.1.1. ([19], Corollary 2-4) If T  commutes with A and B and 
Lat(A) P) Lat(B) is trivial then T is either zero or quasiaffinity.

Proof. If T  commutes A and B, then TA — AT  and T B  — BT. Using the 
theorem above, we have llan(T) G Lat(A) fj Lat(B) and K er(T ) G Lat(A) 
fj Lat(B). Thus by the same argument either T  is zero or quasiaffinity. The 
triviality of Lat(A) p| Lat(B) follows from the orthogonality of Ran(T) and 
Ker{T). □

Theorem  4.1.7. [19] Let A, B G B(H). If Lat(A) =  Lat(B), then Hyperlat(A) 
— Hyperlat(B).

This theorem says that if A and B in B(H) have the same invariant sub­
spaces, then they have the same hyperinvariant subspaces.

4.2 Lattice Isom orphism
Corollary 4.2.1. [19] If B\ : H\ —> Hi and B2 : H2 -> H2 and Lat{B\) =  
Lat{B2 ), then H yperlat(Bi) =  Hyperlat(B 2 ) where =  denotes isomorphic.

Proposition 4.2.1. ([19], Proposition 2.5) If A and B are similar operators, 
they have isomorphic lattice of invariant and hyperinvariant subspace. That 
is Lat(A) — Lat(B) and Hyperlat(A) =  Lat(B).
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Proof. We proof the case of invariant. Suppose A, B E B(H)  such that A 
= X ~ xBX.  Then X A  =  B X  and AX =  XB.  This means that X  double 
commutes the pair {A, B ) and by theorem 4.1.7 and the invertibility of X  
we have that Ran(X) =  Ran(X) =  H E Lat(A) p) Lat(B) and Ker ( X)  =  
{0} E Lat(A) p| Lat(B). We now show that any nontrivial subspace M E 
Lat(A) if and only if the subspace X M  = { X x  : x E M} C H is in Lat(B). 
Let M E Lat(A) and let x E X M  so that x =  X y  for some y E M. Let Bx 
= B X y =  X A y  and since y E M, we find that Bx E X M . This means that 
X M  is in Lat(B). □

Conversely we assume that X M  is in Lat(B). Then for y E M  we have B X y  
E X M  and thus Ay =  X ~ lX y  E X ~ x( XM)  =  M.  Thus M E Lat(A).
The above proposition shows that there is a natural correspondence between 
the sets of invariant and hyperinvariant subspaces of similar operators.

Theorem  4.2.1. ([19] Lemma 2.20) Suppose S and T  are bounded linear 
operators with direct sum decompositions S =  S2 and T  =  T\ © T2. If 
the respective direct summands of S and T are similar, then S and T are 
hyper-quasisimilar operators and HyperLat(S) =  Hyperlat(T).

Theorem  4.2.2. ([19] Theorem 2.9) If Ti and T2 are hyper-quasisimilar 
then Hyperlat(T\) =  Hyperlat(T2) and Lat(T\) =  Lat(T2).

Proof. Since T\ x  T2, we have quasiaffinities X  and Y  satisfying Y X M i  =  Mi 
and X Y M 2 =  M2 for every Mi E HyperLat{T\) and M2 E HyperLat(T2) us­
ing theorem [4.2.3] X Y  E {Ti} and Y X  E {T2}, Mi E HyperLat(T2) for every 
Mi E HyperLat(Ti and M2 E HyperLat(Ti) for every M2 E HyperLat(T2. 
This means that every hyperinvariant subspace of Ti is a hyperinvariant sub­
space for T2 and vice versa. □

We now consider the relationship between reductive operators and the lat­
tices of invariant and hyperinvariant subspaces.

Theorem  4.2.3. ([19] Theorem 2.10) Every reductive operator is normal if 
and only if it has nontrivial invariant subspace.

Theorem  4.2.4., ([19] Theorem 2.11) If M reduces every operator A in 
the commutant of T  ( i.e M i^ Hyper — reducing, then M E Lat{A}' p) 
Lat{A*}).

Corollary 4.2.2. ([19] corollary 2.12) T is reductive if Lat(T) C Lat(T*).
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Remark 4.2.5. Note that an operator may be reducible and fail to be reduc­
tive since not every invariant subspace can reduce the operator in question. 
If the operator is not normal, it also fails to be reductive (see Theorem 4.2.3).

Corollary 4.2.3. ([16],corollary 1) If A is reductive, then every hyperinvari­
ant suhspace of A ts hyper-reducing (equivalently Lat({A }') =  Lat({A*}')).

Remark 4.2.6. Note that the members of Lat{A}' are called the hyperin­
variant subspaces of A.

Theorem 4.2.7. If T £ B(H) is normal, then every hyperinvariant sub­
space of T is a hyperinvariant subspace of T*. That is Hyperlat(T) =  
Hyperlat(T*).

Proof. Since T  is normal if and only if T* is normal, the result follows from 
the fact that if T* £ {T}' then T  £ {T*}' and vice versa. □

Theorem 4.2.8. ([19] Theorem 2.29) Let H be n-dimensional Hilbert space, 
T £ B(H) and <p : B(H)  -> B(H) be a linear map. Then the following 
statements are equivalent.

(a) Lat(T) =  Lat(<p(T)) for every T £ B{H)

(b) Hyperlat(T) =  Hyperlat(cj)(T)) for every T  G B{H)

(c) Red(T) =  Red((f>(T)) for every T  £ B(H).
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Chapter 5

CONCLUSION AND  
RECOMMENDATION FOR 
FURTHER RESEARCH

5.1 Conclusion
Invariant and hyperinvariant subspaces are very important in the study of 
reducibility and quasireducibility of operators in Hilbert space. Right from 
the definitions to the structures of reducible and quasireducible operators, we 
find out that nontrivial invariant and hyperinvariant subspaces are vital. We 
have also found out that unlike unitary equivalence, reducibility and quasire­
ducibility is not preserved under similarity. Unitary equivalence on the other 
hand preserves the numerical range of reducible and quasireducible operators 
while metrically equivalent reducible and quasireducible operators need not 
to have same numerical range. We have also observed that every nilpotent 
operator of of index two is quasireducible, on a Hilbert space of dimension 
greater than two it is reducible and on a two-dimensional space it is reducible 
but quasireducible. It is now clear that not all quasireducible operators are 
reducible or irreducible. But every reducible operator is quasireducible.

5.2 R ecom m endations

There is a gap between reducibility and quasireducibility of operators. For 
consider the class 0  of all operators for which there exists a nonscalar L such 
that LT =  TL,  Dt L =  LD?. Clearly, 0  includes the class of reducible op­
erators and it is included in the class of all quasireducible operators. That is
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Reducible C 0  c  Quasireducible. Note that the second inclusion is proper i.e 
there exists quasireducible operators not in <5. However, we failed to show 
whether metric equivalence preserves reducibility and/or quasireducibility. 
Coining up with sufficient conditions under which metric equivalence implies 
reducibility or quasireducibility can be recommended as an area for further 
research.

/
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