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Abstract

HIV/AIDS remains one of the lethal diseases and leading global health predicament.

Ethiopia is one of the Sub-Saharan countries most a�ected by the HIV pandemic with a

prevalence of 1.5% among adults and it is one of the top 22 countries with the highest

number of pregnant women living with HIV/AIDS. This study was conducted with objec-

tive of formulating a model to determine the trend, prevalence and projecting HIV/AIDS

epidemics in Ethiopia. Data were obtained from UNAIDS and Ministry of Health bul-

letin in Ethiopia. The data was analyzed using Autoregressive Integrated Moving Average

(ARIMA) time series analysis model and the ARIMA (2,3,2) appeared to be providing

the best �t for the observed data. The trend revealed that the HIV/AIDS prevalence

was increasing in alarming rate from approximately mid 1990s and reached its climax in

the years 2002 to 2004 and decreased onward. The prediction showed that the prevalence

of HIV/AIDS would decrease in Ethiopia for the next 5 years. Both the trend and the

prevalence showed that the status of HIV/AIDS in Ethiopia could be controllable. Fur-

ther investigation including research on signi�cant contributing factors and predictors of

the disease will be required to perfect this study. It would also be good if this model can

be compared to other models used in HIV/AIDS research.
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Chapter 1

Introduction

1.1 Background

The acquired immuno de�ciency syndrome (AIDS) remains one of the lethal diseases

which cause millions of deaths in a year since the �rst case report in 1981 [1]. Much

has been done on the containing of HIV/AIDS in di�erent parts of the world but this

epidemic infectious disease remains one of the onerous health problems issue in devel-

oping countries a�ecting the working age cohort group of the population. This is due

to mainly its intractable mode of transmission and nature of the disease. UNAIDS and

WHO (2010) has reported that more than 40 million people have been infected with HIV

worldwide since the beginning of the epidemic and an estimated 70% of those infected

people live in Africa [2].

Young people are disproportionately a�ected by HIV globally of which 25% of infected

persons are aged between 10 and 24 years. Those aged 15�24 years have imminently 35%

probability for new infections, resulting in 900,000 new infections occurring annually [3].

Even though the prevalence of HIV/AIDS in Ethiopia is declining as a result of using

antiretroviral therapy (ART) medicine by people but it is still the major public health

problem with a prevalence of 2.3%. The prevalence of young women in sub Saharan

Africa have almost 8 times greater of the same age man, and their annual HIV incidence

is an estimated 8% [5].

The epidemiological estimates of HIV/AIDS infection and the mortality rate with this

disease are crucial for planning and monitoring of trends at the national, regional, and

worldwide level. Continued e�ort is mandatory to design a better way of improving the
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validity of the estimates and developing public health policy [9].

1.2 Pro�le of Ethiopia

Ethiopia is the second populous country in Africa and one of the largest HIV-infected

population in the world [4]. According to World Bank (2005) [21], Ethiopia is de�ned

as a low-income country with a low per capital gross national income and the country

national income is the second lowest world-wide and its main economic activity depends

on agriculture.

Ethiopia is one of the most a�icted sub-Saharan countries by HIV/AIDS epidemic with

a prevalence of 1.5% among adults, and it is one of the top 22 countries with the highest

number of pregnant women a�ected with HIV/AIDS. CSA (2005) [6] showed that 1.4%

of the Ethiopian population is infected with HIV and it is one of the highest rates in

Sub-Saharan Africa countries. The HIV/AIDS pandemic continues to present a major

health challenge for sub-Saharan Africa and in Ethiopia, adult HIV prevalence in 2009

was estimated to be between 1.4% and 2.8% [7]. Report from UNAIDS (2010) [3] pointed

out the number of adults and children in sub-Saharan Africa contracted with the human

immunode�ciency syndrome (HIV) has reduced from 2.2 million to 1.8 million in years

2001 and 2009 respectively.

1.3 Statement of the problem

The Federal Republic of Ethiopia government has taken and put in place a lot of pre-

ventive and controlling measures to address the HIV/AIDS pandemic through creation

of awareness to society, training many health extension workers to a village level to edu-

cate the society against the repercussion e�ect of the disease and increase the budgetary

allocation to control HIV/AIDS prevalence. Despite all these measures taken by the

government, the incidence and prevalence of HIV/AIDS is still high compared to other

countries with minimum rates even if it goes down from time to time sporadically. There

is therefore a need of considering the past and present preventive measures to come across

precise and accurate information on the nature of trends of HIV/AIDS in order to develop
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better planning and accurate evaluation on the impact of these preventive interventions

and progress in the �ght against HIV/AIDS. Mathematical modeling is deemed as the

only likely way of measuring the e�cacy of HIV intervention in order to predict, assess

the past and future events and explaining the impact of the disease.

The availability of such precise estimates and projections is thought essential in sup-

porting decision-makers to understand the magnitude of the HIV/AIDS problem and

supporting e�orts to improve prevention and health-care programs. Projecting the fu-

ture prevalence and its impact of HIV/AIDS demands a sound methodology for projecting

the number of future HIV infections and determining the impact of those infections on

the future pattern of adult and child deaths.

1.4 Objectives

The overall objective of this study is to establish a model which helps to determine

the magnitude, prevalence and status of HIV/AIDS epidemic in Ethiopia which could

potentially be used as a tool to monitor the status of HIV/AIDS in the country. The

speci�c objectives of the project are:

• to recognize the trend and prevalence of HIV/AIDS for the next 5 years.

• to predict the number of people that will be infected by the disease in the country.

1.5 Justi�cation of the study

The knowledge of the prevalence of HIV/AIDS disease helps in providing information on

designing appropriate controlling and preventive integrative measures in order to bring a

long term solution. The study will be helpful in order to recognize the status and predict

the prevalence of HIV/AIDS so that it gives insight to take pre-cautionary measures.

It also guides policy makers to make appropriate intervention on how to control and

minimize the repercussion e�ect of HIV/AIDS.
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Chapter 2

Literature Review

2.1 Theory of ARIMA

Time series analysis helps to come up with a model using a historic data and allows

predicting the future. This includes naive method, moving average, trend analysis, ex-

ponential smoothing and the autoregressive integrated moving average (ARIMA). These

methods are suitable in the description of the general tendencies or patterns without

considering the factors of a�ecting the variable to be predicted [8].

In univariate time series, forecasting is based on the past values of the variables being

forecast. Zhang (2003) [11] explained the autoregressive integrated moving average model

(ARIMA) as the future value of a variable of interest is the linear combination of a num-

ber of previous observations and random error and the underlying process that produces

time series is given by:

Yt = φ0 + β1Yt−1 + β2Yt−2 + ...+ βpYt−p + εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q

,

Where Yt and εt the current observation value and random error at time t respectively;

βi(i = 1, 2, ..., p) and θj(j = 1, 2, ..., q) are the parameters of the model. p and q are

the order of the autoregressive and moving average models respectively and the random

errors, εt is assumed to be independent and identically distributed with constant mean,µ

and variance of σ2.

Time series data does not follow the normality assumption that the error and successive

observation are uncorrelated each other and this e�ect which is autocorrelation, biases
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the standard error connected with regression estimates of slope parameters and the usual

normal statistical tests like t-test will be invalid. The Box-Jenkins method helps to relate

the time sequenced observation statistically to the others in the same series [14]. The

Box-Jenkins models are particularly suitable for short term predicting as most ARIMA

models gives greater importance on the recent past than the distant past.

2.2 Mathematical models for HIV/AIDS

Several mathematical and statistical models have been used to estimate and project inci-

dent HIV infection [10]. The AIDS Impact Model (AIM) is a computer software program

used for projecting the trends in the impact of the AIDS epidemic [12]. This model

can also be utilized for projection of future number of HIV infections, cases and deaths

through HIV/AIDS taking into consideration adult HIV prevalence. Much has not been

done on time series analysis of HIV/AIDS epidemics but a study in Ghana showed that

time series modeling on trend analysis of past growth patterns revealed an increase in

new cases of HIV infection in the Northern part of the country, with the greatest increase

happening among persons aged 30 years and over. The epidemic in the southern sector

appeared to be constant [10].

A time series forecasting which predicts the future values of the observed time series vari-

ables by extrapolating trends and patterns from the past values of the series was carried

out in South Africa with the purpose of using the available antenatal HIV seroprevalence

data to predict the future trend of the HIV epidemic. This study used quadratic model

and found out that the coe�cient of determination R2 is 0.97. It also indicated that the

time series forecasting exercise using the quadratic model and trend exhibited there was

likelihood decreasing of HIV trend beyond the year 2010 [13].

Time series models try to predict ahead the epidemiological behaviors through modeling

and considering the past surveillance data. Many researchers have been applying di�er-

ent time series models to forecast epidemic incidence in previous studies. Exponential

smoothing and generalized regression methods by international groups in 2010 were used

to forecast the epidemic infection and incidence of cryptosporidiosis respectively.

The Univariate time series modeling and Estimating and Projection Package (EPP) ap-
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proaches forecasted an increase in incident HIV infection over a three-year period 2008,

2009 and 2010 in a study which was carried out in Ghana, whereas the Box-Jenkins model

projected an increase in incident HIV infection among males for the three-year period

and the EPP models forecasted a decline in incident of HIV infection by 2010 [10].
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Chapter 3

Methodology

3.1 Data source

The data comprised annual data of HIV/AIDS infected people from 1990 to 2013 in

Ethiopia. The data embraced the whole region of Ethiopia and most of the national

and regional HIV/AIDS estimates made for Ethiopia were extracted from UNAIDS data

source and Ministry of Health in Ethiopia.

3.2 The Box-Jenkins methodology

This method embraces three iterative procedures of model speci�cation, model �tting

and model diagnostics.

3.2.1 Model speci�cation

The central idea behind model identi�cation is a time series derived from ARIMA process

has some sort of theoretical autocorrelation properties. Fitting the empirical autocorre-

lation patterns with the theoretical ones helps to identify the potential tentative model

for the given time series data [11]. In this step, transformation of observed time series

to stationary is inevitable. A stationary time series has constant mean, variance and co-

variance statistical characteristics over time. Box and Jenkins (1976) recommended the

autocorrelation and partial autocorrelation function as main tool to identify the order of

ARIMA model [14].

The general ARIMA(p, d, q) model is explained by:
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β(B)5d Yt = θ0 + θ(B)εt (3.1)

Where

β(B) = 1− β1B − β2B2 − ....− βpBp;

θ(B) = 1− θ1B − θ2B2 − ...− θqBq;

5Yt = Yt − Yt−1;

5dYt = 5(5d−1Yt);

BYt = Yt−1;

βnYt = Yt−n;

The autocovariance function, Cov(Yt, Ys),of a stationary time series Yt having mean

E(Yt = µ and variance V ar(Yt) = E(Yt−µ)2 = σ2, which are constant, and the covaraince

is symbolized by γ(k) and given by:

γ(k) = Cov(Yt, Yt+k) = E(Yt − µ)(Yt+k − µ), (3.2)

where k is an integer and γ(k) is the autocovariance function (ACVF) at lag k (Wei,

2006) [15]. The covariance, Cov(Yt, Ys), is a function of the time series di�erence |t− s|.

As the size of ACVF depends on the units which Yt is measured, it is standardized for

rendering suitable interpretation and producing a function called the Autocorrelation

function (ACF), given by:

ρ(k) = Corr(Yt, Yt+k) =
γ(k)

γ(0)
(3.3)

ρ(k) =
Cov(Yt, Yt+k)√
V arYt,

√
V arYt+k

(3.4)

ρ(k) is the autocorrelation funciton.

The ACF of a stationary time series is a signi�cant tool for assess its properties.

The sample autocorrelation is a good indicator of the order of the process in MA (q)

models since the autocorrelation function is zero for lags beyond q. However, a di�erent

function is needed to determine the order of autoregressive models as AR (p) model does

not turn into zero after a certain number of lags in autocorrelation function as the model

attenuates instead of cut o�. Such a function can be described as the correlation between

Yt and Yt−k excluding the e�ect of the intervening variables, Yt−1, Yt−2, Yt−3, ..., Yt−k+1.
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This coe�cient is called the partial autocorrelation at lag k and will be designated by

βkk.

According to Cryer and Chan (2008), the partial autocorrelation function for non-normal

distribution at lag K is then de�ned by the correlation between the prediction errors

which is given by [16]:

βkk = corr((Yt − E(YtYt+1, , Yt+k−1), Yt+k − E(Yt+k|Yt+1, , Yt+k−1)))

Where E(Yt|Yt+1, , Yt+k−1) and E(Yt+k|Yt+1, , Yt+k−1) are the predictions of Yt and Yt+k

respectively.

Hence, βkk , K ≥ 2 is the correlation of the two residuals obtained after regressing Yt+k

and Yt on the intervening observations. In other words, it is the correlation between

prediction errors. Generally, the sample partial autocorrelation function is given by

Levinson (1947) [20] and Durbin (1960) [19]:

βkk =
ρk −

∑k−1
j=1 βk−1,jρk−j

1−
∑k−1

j=1 βk−1,jρj
(3.5)

Where

βk,j = βk−1,j − βkkβk−1,k−jfor : j = 1, 2, , k − 1

Therefore, the PACF can help to determine the order of an AR (p) process as the ACF

helps to determine the order of an MA(q) process. For an AR(p) model, the PACF �drops

o�� to zero after the pth lag.

Table 3.1: Typical features of a sample ACF and sample PACF for AR and MA models

Conditional Mean Model ACF PACF

AR(p) Tails o� gradually Cuts o� after p lags

MA(q) Cuts o� after q lags Tails o� gradually

ARMA(p, q) Tails o� gradually Tails o� gradually
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3.2.2 Model �tting

After the order of the ARIMA(p, d, q) for a given time series data has been speci�ed,

the parameters should be estimated. Model �tting engages estimating the parameters of

the ARIMA model from the observed time series Y1, Y2, ..., Y n using method of moment,

least square and maximum likelihood. It generally involves parameter estimates, �tted

values, residuals, signi�cance check of estimated parameters, stationary and invertibility

conditions, and correlation check of estimated parameters. Here, Maximum likelihood

estimation method in relation to least square estimation will be discussed as it is the most

e�cient method of estimation in time series data. Method of moment is less e�cient even

if it is relatively easy to calculate.

1. Maximum Likelihood Estimation

Maximum likelihood estimation o�ers a uni�ed approach for parameters estimation

for ARMA process. It is the most e�cient and preferred method of parameter

estimation. It also o�ers a standard way to deal with models of stochastic time

processes. In time series analysis because of interrelated observation, the likelihood

approach using probability density function is given as follows:

Assuming the error follows white noise which is ε ∼ N(0, σ2), the joint prob-

ability distribution function: f(ε1, ε2, ε3, ..., εn) = f(ε1)f(ε2), ..., f(εn) instead of

f(Y1, Y2, ..., Yn) as there is dependency between time series observation which will

not be written as a multiplication of marginal probability density functions.

For a general ARIMA (p, q) stationary process:

Ŷt = β1Ŷt−1 + β2Ŷt−2 + ...+ βpŶt−p + εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q (3.6)

Where

Ŷt = Yt − µ

[15].

The joint probability distribution function of (ε1, ε2, ..., εn) is given by:

f(ε1, ε2, ..., εn|µ, β, θ, σ2
e) = (2πσ2

e)
−n
2 exp

{
−1

2σ2
e

n∑
t=1

ε2t

}
(3.7)

Let Y = (Y1, ..., Yn) and assume that the initial conditions Y∗ and ε∗, The condi-
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tional log-likelihood function is given by:

ln(L∗)(µ, β, θ, σ
2
e) = (

−n
2

ln(2πσ2
e))− (

S∗(µ, β, θ)

2σ2
e

) (3.8)

Where S∗(µ, β, θ) =
∑n

t=1 ε
2(µ, β, θ|Y, Y∗, ε∗ is the conditional sum of square.

For the specifying the initial condition, the assumptions of Yt stationary and εt ∼

N(0, σ2
e) random variable, the unknown Yt can be replaced by the sample mean Ȳ

and the unknown εt by its expected value of 0. For the model ARMA (p, q), it may

be assumed εp = εp−1 = ... = εp+q−1 = 0 , and calculate εt for t ≥ (p+ 1), gives

S∗(β, µ, θ) =
n∑

t=p+1

ε2(β, µ, θ|Y ) (3.9)

It is this form of an equation that most computer programs also utilize in estimation.

3.2.3 Model diagnostics

This deals with the goodness of �t a model or checking the �t of the model which is

an iterative process and it is also imperative if the model can be improved [16]. Model

adequacy is assessed through checking whether the model assumptions are satis�ed and

it is carried out after estimation of parameter [15]. The principal assumption of the time

series include the error εt is white noise, this is to say that the errors are uncorrelated

random shocks having mean zero and constant variance. Hence, this indicates that the

residuals are estimates of the unobserved white noise εs.

1. Residual analysis

In any statistical models, residuals can be calculated as a di�erence between the

observed (actual) and predicted value. If the residuals can nearly attain white noise

properties, this reasonably would indicate that the model is appropriately speci�ed

and the parameter estimates are convincingly close to the true values. They should

behave roughly like independent, identically distributed normal variables with zero

mean and constant variation. Deviations from these properties can help us discover

a more appropriate model.

2. Normality and Independence

The normality assumptions can be checked by histograms and quantile-quantile (Q-

Q) plot of the residuals. The hypothesis test of the normality can also be con�rmed

using Shapiro-Wilk test and independence is using runs test.
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3. Residual autocorrelation and Partial autocorrelation Function

The residuals of ACF and PACF should not be forecastable, that is the terms of

the residual ACF and residual PACF should all approximately lie between the 95%

con�dence limit. If this is not the case, there are elements of residuals which can

be forecastable.

4. Portmanteau Test (Ljung-Box-Pierce Q-statistic)

This test helps to determine if there is any pattern left in the residual which can be

modeled. This can be achieved by testing the signi�cance of the autocorrelations

up to a certain lag.

Q(k) = n(n+ 2)
k∑
i=1

r2j
n− j

(3.10)

Where rj is the j
th residual autocorrelation, n is the total number of data points

and k is the lag.

3.2.4 Model selection criteria

In any data analysis, a given data set may su�ciently be represented by �tting model.

It is sometimes easy to choose the best model but it is not always be the case. The

model identi�cation tools such as ACF and PACF are only utilized for identifying the

most likely adequate models [15]. Residuals from adequate models are approximately

white noise and indistinguishable in terms of these functions. For a given data set, when

there are multiple adequate models, the selection criterion is normally based on summary

statistics from residuals computed from a �tted model or on forecast errors calculated

the out-sample forecasts.

Based on residuals, the following model selection criteria are used:

1. Akaike's Information Criteria (AIC)

If a statistical model of k parameters is �tted to the observed data, the quality of

the model �tting can be assessed using information criteria. One of the criteria is

Akaike's information criterion which is given in the literature [15]

AIC = −2 ln(maximum likelihood) + 2k (3.11)

Where k is the number of parameters in the model and the maximum likelihood

estimates is given in equation 3.8 above. The value of AIC will be high with the
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number of model parameters (k).

2. Akaike's Bayesian Information Criteria (BIC)

Akaike (1978) [22] and (1979) [23] has developed an extension of Bayesian of the

minimum AIC, known as the Bayesian Information Criterion (BIC) and given by:

BIC = −2 ln(maximum likelihood) + k ln(n) (3.12)

Where n is the number of observations in the given stationary time series data

and, k is the number of parameter. In similar fashion to AIC, the best model

taking part in ARIMA (p,d,q) models is the one with the smallest BIC.

3.2.5 Forecasting

Forecasting in time series model involves uses of historical epoch data for the variable of

interest that is going to be forecasted and it requires routine calculations to make use of

a large number of events [11]. Forecasting helps to achieve one of the most important

objectives in dealing with modeling exercise that able to predict the value of the random

variable in the future from the currently existed one and get information in advance.

From the observed time series data, Y1, Y2, ..., Yt, the forecasted value would be given by

Yt+l, where l ≥ 1 and t is the forecast origin and l the lead time for the forecast. The

value Yt+l gives �l steps ahead� of the observed time series value Yt [16]. Producing an

optimum forecast with no or little error leads to minimum mean square error forecast.

This forecast will generate an optimum future value having minimum error in terms of

mean square error criterion [15].

1. Minimum mean square error forecasting

The objective of minimum mean square error forecasting is producing an optimum

predicts that has no error or as minimum error as possible which directs to the

minimum mean square error forecast [16]. Based on this mean square error

criterion, the forecast will produce an optimum future value with minimum error

and the minimum mean square error forecast Ŷt(l) which is given by:

Ŷt(l) = E(Yt+1|Y1, Y2, ..., Yt) (3.13)

13



Equation 3.13 is derived from di�erentiating E[(Yt+1 − Ŷt(l))2|Y1, Y2, ..., Yt] with

respect to Ŷt(l) and equating to zero. Given the ARMA(p, q) time series model,

Yt = β1Yt−1 + β2Yt−2 + ...+ βpYt−p + εt − θ1ε1 − θ2ε2 − ...− θqεt−q (3.14)

This implies that unknown Yt+l is given by:

Yt+l = β1Yt+l−1+β2Yt+l−2+...+βpYt+l−p+εt−θ1εt+l−1−θ2εt+l−2−...−θqεt+l−q (3.15)

Hence, using equation 3.13 and 3.15, the minimum mean square error forecast for

the Yt+l is given by:

Ŷt(l) = E[Yt+l|Y1, Y2, ..., Yt]

= β1E[Yt+l−1|Y1, Y2, ..., Yt] + β2E[Yt+l−2|Y1, Y2, ..., Yt] + ...+ βpE[Yt+l−p|Y1, Y2, ..., Yt]

− θ1E[εt+l−1|Y1, Y2, ..., Yt]− θ2E[εt+l−2|Y1, Y2, ..., Yt]− ...− θqE[εt+l−q|Y1, Y2, ..., Yt]

= β1Ŷt(l − 1) + β2Ŷt(l − 2) + ...+ βpŶt(l − p)− θ1E[εt+l−1|Y1, Y2, ..., Yt]

− θ2E[εt+l−2|Y1, Y2, ..., Yt] (3.16)

Where

E[εt+l−j|Y1, Y2, ..., Yt] =

0 if l > j

εt+l−j if l ≤ j

(3.17)

Ŷt(l − j) =

Ŷt(l − j) if l > j

Yt+l−j if l ≤ j

(3.18)

The minimum mean square forecast error of Ŷt(l) is given in the random shock

model form as:

et(l) = Yt+1 − Ŷt(l)

=
∑l−1

j=0 φjεt+l−j (3.19)

Where the φj(j = 1, 2, ...) weights are the functions of ARMA(p, q) model

parameters. The forecast error variance which is used to determine the con�dence

interval for Yt+l under the assumption of εt ∼ N(0, σ2) is given by:

V ar(et(l)) = σ2

l−1∑
j=0

φ2
j (3.20)

14



The
(

1− β
2

)
∗ 100% con�dence interval of Yt+1 of φ ∈ (0, 1) assuming the

assumption holds, is given by:

Ŷt(l)± Zα
2

√
V ar(εt(l)) (3.21)

where Zα
2
is the

(
1− α

2

)
∗ 100% percentile of the standard normal distribution.

Model selection using forecast errors

The �nal choice of a model may rely on the goodness of �t like the residual mean

square or information criteria. But, if the main objective of a model is to forecast

future values based on the current and past values, then the criteria for model

selection can be based on forecast errors [15]. If the forecast error l step ahead be,

el = Yn+l − Ŷn(l) (3.22)

where n is the forecast which is greater or equal to the length of the series. The

comparison of the forecast error measures which help us to know how much we

should rely on the chosen prediction method is based on the following statistics.

1. Mean percentage error (MPE), it is also called bias as it measures forecast bias.

This is given by the mathematical formula:

MPE =

(
1

j

j∑
l=1

el
Yn+l

)
(3.23)

2. Mean square error (MSE)

MSE =
1

j

j∑
l=1

e2l (3.24)

3. Mean absolute error (MAE)

MAE =
1

j

j∑
l=1

|el| (3.25)

4. Mean absolute percentage error (MAPE)

MAPE =

(
1

j

j∑
l=1

∣∣∣∣ elYn+l

∣∣∣∣
)

(3.26)

The model with the smallest MPE, MSE, MAE and MAPE will be selected the best

model for forecasting. But, Hyndman and Koehler (2005) proposed the mean absolute

scaled error become the standard measure for comparing forecast accuracy across

multiple time series.
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Chapter 4

Results and Discussions

4.1 Data analysis and results

A time series analysis model for HIV/AIDS was developed to examine the prevalence,

trend and forecast the future in Ethiopia. Data from UNAIDS and Ministry of Health

in Ethiopia was used for this study. The data was initially non-stationary and it was

transformed to stationary through di�erencing. After making the data di�erencing

three times, the data attained stationarity and the tentative model appeared to be

ARIMA(2, 3, 1) but the �nal model ARIMA(2, 3, 2) was �tted using the information

criterion. The �nal model was tested through di�erent diagnostics methods and

provided the best �t for the observed data. ARIMA(2, 3, 2) was able to capture the

most important features of the data. The �tted model is then used to forecast the

number of people that will be infected with HIV/AIDS in Ethiopia.

4.1.1 Plotting the observed time series data against time

The �rst step in time series analysis is plotting the observed data against time to see

whether the data has constant mean and variance. From the original graph , Figure

(4.1), it can be observed that the data is non-stationary and it is imperative to change

this data to stationary through di�erencing to deal with time series. It is not intractable

to see the possible change in mean and dispersion of the data over time series. The

trend of the mean may be upward and downward, so the mean is de�nitely varying and

the series is non-stationary. This non-stationarity can also be observed from the plot of

ACF and PACF. Since the original data demands transformation for stationarity, �rst

16



Figure 4.1: Time series plot of number of infected people with HIV/AIDS in Ethiopia

di�erencing was carried out and the following graphs was obtained. The resulting time

series of �rst di�erencing of Figure (4.2) does not appear stationary and there is a need

again to transform the data to stationary using second di�erencing. The time series of

second di�erencing Figure (4.3) below does not appear to be stationary in mean and

variance, as the level of the series stays di�ers over time, and the variance of the series

appears and di�erencing is required further. Using the �rst and second di�erencing to

make the non-stationary to stationary still does not make it stationary and it goes up to

making third di�erencing to change this data to stationary. It can be observed from the

graph in the Figure(4.4), the variation is constant over time and the data is stationary.
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Figure 4.2: Time series plot of the HIV/AIDS infected people after �rst di�erencing

Unit root test for stationarity

The presence of unit root exhibits that the observed time series is not stationary. Unit

root test is one of the methods objectively used to determine if di�erencing is required

by the observed time series to achieve stationarity. Among the most popular method of

testing stationarity, the Augmented Dickey-Fuller (ADF) test is used in this project.

The ADF test is estimated by the following regression model [17].

From the given ADF test, it is con�rmed the third di�erenced data is stationary as null

hypothesis which says that the data is non stationary (random walk) is rejected

(p = 0.01). It is actually described in the R-software that the p-value is smaller than
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Figure 4.3: Plot of second di�erencing of the HIV/AIDS infected people data in Ethiopia

the given value above in the test.

4.1.2 Identifying tentative ARIMA model

Once stationarity is attained through transformation using di�erencing, the next step is

to select the appropriate order of ARIMA model, which means �nding the values of

most appropriate values of p and q for an ARIMA(p, d, q) model. To identify tentative

model, we usually need to examine the correlogram and partial correlogram of the

stationary time series. It is not usually possible to recognize the values of p and q from

the time plot from the given data. Therefore, it would be imperative to use the ACF
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Figure 4.4: Plot of the third di�erencing of the HIV/AIDS data in Ethiopia

and PACF plot to determine the proper values of p and q.

If the data follow ARIMA(p, d, 0), the ACF pattern is exponentially decaying and there

is a signi�cant spike at lag p of PACF and it gradually cuts o� after p lags. On the other

hand, if the data follow ARIMA(0, d, q) model, the PACF is exponentially decaying

and there is signi�cant spike at lag q of ACF which gradually cuts o� after q lags.

For this particular study p appeared to be 2, d is 3 and q is 2. It can be seen from the

autocorrelation plot (correlogram), Figure(4.5), the autocorrelations at lag 1 which is

about −0.715 exceeds the signi�cance bounds and the signi�cance shows that the q

value, i.e, q = 1 for the order of moving average.

The partial correlogram in Figure(4.6), shows that the partial autocorrelations exceed
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Figure 4.5: The Autocorrelation function of the stationary time series data

the non-signi�cant bounds lag 1 and 2 which gives an idea on what should be on p, i .e,

p = 2 for the order of the autoregressive. Pertinent to ACF and PACF plots, the model

has been found out that ARIMA(2, 3, 1) as the potential candidate model for the given

time series data. This model should be checked with information criteria like AIC which

are useful in determining the order of ARIMA model. These information criteria help to

pick the one with lowest value of AIC, BIC, etc since good models are obtained by

minimizing either the AIC or BIC.

The selection of ARIMA processes was conducted using Akaike's information criterion

(AIC), which measures how well the model �ts the series. According to Hyndman and
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Figure 4.6: The Partial autocorrelation function of the stationary time series data

Athanasopoulos (2014) [17], the values of p and q are chosen by minimizing the AIC

after di�erencing the data d times[17]. If d ≥ 1, the constant in a model set to zero and

the model is called �current model.� To get the best model, vary p and/or q from the

current model by ±1 and therefore, the best model with smallest AIC is selected

among: ARIMA(2, d, 2), ARIMA(0, d, 0), ARIMA(1, d, 0), ARIMA(0, d, 1).

Therefore, based on the criteria of Hyndman and Athanapouls (2014), the best model

with smallest AIC is ARIMA(2, 3, 2) [17]. From the Table (4.3), it can be easily

observed that ARIMA (2,3,2) model has the lowest AIC value.
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Table 4.1: The coe�cients of the parameters and Information Criteria of ARIMA(2, 3, 1)

model

ar1 ar2 ma1 AIC AICc BIC σ2

Coe�cients -1.3249 -0.660 -1.000 489.46 492.54 493.02 1.622e+10

Standard error 0.1511 0.1456 0.152

log likelihood -240.73

Table 4.2: The coe�cients of the parameters and Information Criteria of ARIMA(2, 3, 2)

model

ar1 ar2 ma1 ma2 AIC AICc BIC σ2

Coe�cients -1.2232 -0.6180 -1.9292 0.997 479.71 484.71 484.16 6.136e+09

Standard error 0.1627 0.1567 0.2288 0.2203

log likelihood -234.85

Table 4.3: The value of some tested ARIMA models using AIC criteria

Model AIC value

ARIMA (0, 3, 0) 532.13

ARIMA (0, 3, 1) 513.99

ARIMA (1, 3, 0) 514.24

ARIMA (2, 3, 0) 502.22

ARIMA (2, 3, 1) 489.46

ARIMA (2, 3, 2) 479.91

4.2 Model Diagnostic

4.2.1 Examine the residuals of ACF and PACF

Since the residuals should be independent and contain no elements are predictable, the

ACF and PACF of the residuals should all lie between the approximate 95% con�dence

interval limits. The residuals of ACF and PACF indicate that the residuals are not

forecastable and this suggests that the ARIMA(2, 3, 2) is adequate considering this

criterion.

23



4.2.2 The Box-Pierce statistic (Portmanteau test)

The purpose of this test is used to verify if the residuals are independent and the null

hypothesis is that the residuals are independent and the alternative is they are not

independent. From the Box-Ljung test, we fail to reject the null hypothesis

(χ2 = 16.1004, df = 16, p− value = 0.446) which indicates the residuals are independent.

4.2.3 Normality of residuals

The residuals have been assumed to be normally distributed throughout the model.

Quantile - Quantile plots (QQ) plots are an e�ective tool for assessing the normality of

residuals. From the plot in Figure(4.7), it can be easily observed that the Q-Q plot is

approximately normally distributed.

4.2.4 Signi�cance of parameters

To test the signi�cance of the parameters, a standard error of the parameter estimates

are computed and roughly speaking, the parameters of a model are accepted as

signi�cant if the estimated values of the parameter is twice the standard error of this

estimate or more. If a parameter shows up as not statistically signi�cant, it will be

removed. But in this study, all the parameters are signi�cant.

4.2.5 The cumulative periodogram

The cumulative periodgram is a very useful tool for describing a time series data set in

identi�cation and diagnostic test of model development. It is useful especially when the

data set is small. The observed data set in the cumulative periodgram of Figure(4.8) is

within the con�dence interval of 95% con�dence limit and the model is adequately �t.

4.2.6 Trend of the observed time series data

The trend in Figure (4.9) revealed that the HIV/AIDS prevalence was increasing in

alarming rate from approximately mid 1990s and reached its climax in the years 2002 to

2004 and decreased onwards.
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Figure 4.7: The Normal Q-Q Plot of the HIV/AIDS data

4.3 Forecasting (Prediction)

Time series forecasting tells future values of time series variables by extrapolating

trends and patterns of past values of the series or by extrapolating the e�ect of other

variables of the series [13]. It is often overarching to �t a trend curve to successive value

and extrapolate yearly and non-seasonal data for long-term forecasting [18]. The
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Figure 4.8: The Cumulative periodogram of the HIV/AIDS data

prediction of the observed time series data from the di�erenced data of the �tted model

of this study for the next 5 years from year 2013 is given in the Table (4.4).

4.3.1 Forecast accuracy measures

Calculating the forecast accuracy measures using test data is mandatory and it is

recommended to use mean absolute error measures for the same scale forecasting and

when comparing forecast methods on a single data set, the mean absolute error

accuracy measure is popular and mostly used as it is easy to understand and compute.

Forecast accuracy can only be determined from the original data portion which is not
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Figure 4.9: The trend of the observed HIV/AIDS data points

Table 4.4: The predicted value of HIV/AIDS infected people for the next 5 years since

2013 from the di�erenced data of the �tted model

Year Predicted value Standard error

2014 −18415.53 83025.78

2015 −17235.55 82934.56

2016 −25266.90 109693.37

2017 −36943.16 124587.15

2018 −41271.42 137773.34
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Figure 4.10: The prediction of the observed time series HIV/AIDS data in Ethiopia

used for �tting the model [17]. The mean absolute error based on equation (3.25) of the

actual predicted value of the next 5 years is given in the Table (4.5). Since the

calculated mean absolute error accuracy measures for this study is based on a single

time series data observation, it is a bit intractable to compare its size whether it is big

or not. The mean absolute error accuracy indicates that the mean magnitude of the

errors in set of forecasts without taking in to consideration their direction.
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Table 4.5: The mean absolute error accuracy measure of the HIV/AIDS infected people

for the next 5 years since 2013

Year Actual Predicted value Forecasted value Mean absolute error (MAE)

(Actual Value -Forecasted Value)

2014 771584.47 18415.53 733168.94

2015 754348.92 17235.55 737113.37

2016 729082.02 25266.90 703815.12

2017 692138.86 36943.16 655195.7

2018 650867.44 41271.42 609596.02

Total MAE 687777.83

4.4 Discussion

The gross data on the HIV/AIDS infected people in Ethiopia was analyzed using a time

series, ARIMA model through achieving its stationarity after making the data three

times di�erencing. The forecasting graph of the di�erenced data is given in Figure

(4.10) indicating that the disease is in the prospect of declining for the next 5-10 years.

The prediction of the actual values is based on the di�erenced data and trend values.

But, in non-seasonal and non-stationary ARIMA model, the trend component of the

time series will be removed with changing the non-stationary to stationary in the

transformation mechanism like di�erencing and is left with irregular component.

Figure (4.10) showed that the di�erenced time series and the forecasted value for the

next 10 years from 2013. As the predicted value considered the standard error (Table

(4.4)), the actual predicted value for such a data set is given as the sum of the original

data and the predicted value. The negative sign in the predicted value indicates that it

decreases as it can be seen from the forecasted graph (4.10). For example, the actual

predicted value for year 2014 becomes the original data in 2013 plus the predicted value

for 2014. The actual predicted value for 2015 is given by the actual predicted value for

2014 plus the predicted value for year 2015 and it goes on like this till year 2018.

The actual predicted value from year 2014�2018 is given in Table (4.6). The actual

predicted value in Table (4.6) is calculated taking in to account Figure (4.10) and the
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Table 4.6: The actual predicted value of HIV/AIDS infected people for the next 5 years

since 2013

Year Actual predicted value

2014 771584.47

2015 754348.92

2016 729082.02

2017 692138.86

2018 650867.44

original HIV/AIDS infected people data of which time series plot is given in Figure

(4.1).
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Chapter 5

Conclusions and Recommendations

5.1 Conclusion

From this study, ARIMA(2, 3, 2) appeared to be providing the best �t for HIV/AIDS

epidemic in Ethiopia. The trend shows that the HIV/AIDS prevalence was increasing in

alarming rate from approximately mid 1990s and reach its climax in the year 2002 to

2004 and decreases onward. The prediction shows that the prevalence of HIV/AIDS will

decrease in Ethiopia for next 5 years.

5.2 Recommendation

ARIMA does not deal non linear relationships e�ciently, it would be more practical and

accurate if a combined model is used to capture di�erent patterns equally. So, using a

hybrid of uni�ed model is highly recommendable. To come up with a comprehensive

and perfect conclusion on prevalence of HIV/AIDS in Ethiopia, further investigation

including research on signi�cant contributing factors as a predictors of the disease will

be necessary. Moreover, it would be recommendable if this model can be compared with

other model that are developed for HIV/AIDs epidemics. It is also recommended if the

time series analysis will be done on HIV/AIDS infected people categorized with age

groups. It seems that it has been found out from this study a seminal result which is

very much di�erent from the previous similar studies leading to further work to be done

or improving the model.
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Appendix

R-code

>getwd()

>setwd("C:/Users/Demissew/Documents/Biometry/HIV Project/Data")

>HIV<-read.table("HIVdata.txt", header=TRUE)

>HIVtimeseries<-ts(HIV, start=c(1990))

>HIVtimeseries

>plot.ts(HIVtimeseries, ylab="Number of people infected", main="HIV/AIDS in

Ethiopia")

>par(mfrow=c(1,2))

>acf(HIVtimeseries)

>pacf(HIVtimeseries)

# The resulting time series of �rst di�erences (above) does not appear to be stationary

in mean. Therefore, we can di�erence the time series twice, to see if that gives us a

stationary time series:

>HIVtimeseriesdi�2<- di�(HIVtimeseries, di�erences=2)

>plot.ts(HIVtimeseriesdi�2, main="HIV/AIDS in Ethiopia")

>HIVtimeseriesdi�3<-di�(HIVtimeseries, di�erences=3)

>plot.ts(HIVtimeseriesdi�3,main="HIV/AIDS in Ethiopia")

# To extract the trend component of a non-seasonal time series that can be described

using an additive model, it is common to use a smoothing method, such as calculating

the simple moving average of the time series. The SMA() function in the "TTR" R

package can be used to smooth time series data using a simple moving average. To use

this function, we �rst need to install the "TTR" R package:

>install.packages("TTR")

>library("TTR")
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>HIVtimeseriesSMA3<-SMA(HIVtimeseries, n=3)

>plot.ts(HIVtimeseriesSMA3)

>HIVtimeseriesSMA8<-SMA(HIVtimeseries,n=8)

>plot.ts(HIVtimeseriesSMA8, main="HIV/AIDS Trend")

# Install "forecast" package

>install.packages("forecast")

>library("forecast")

# ARIMA models

>HIVtimeseriesdi�1<- di�(HIVtimeseries, di�erences=1)

>plot.ts(HIVtimeseriesdi�1, ylab="Number of people infected", main="HIV/AIDS in

Ethiopia")

# To test stationarity, Dickey-Fuller test for variable will be used:

>library(tseries)

>adf.test(HIVtimeseriesdi�2, alternative="stationary")

>adf.test(HIVtimeseriesdi�2, alternative="explosive", k=0)

>adf.test(HIVtimeseriesdi�3, alternative="stationary")

# DF and ADF tests for di�erenced variable

>adf.test(HIVtimeseriesdi�2, k=0)

>adf.test(HIVtimeseriesdi�2)

# Selecting appropraite ARIMA models involves examining the correlogram and partial

correlogram of the stationary time series and plotting autocorrelation correlogram

>acf(HIVtimeseriesdi�2, lag.max=20) # plot a correlogram

>acf(HIVtimeseriesdi�2, lag.max=20, plot=FALSE) # get the autocorrelaton values

>acf(HIVtimeseriesdi�2, lag.max=20,main="Autocorrelation Plot")

>acf(HIVtimeseriesdi�2, lag.max=20, plot=FALSE)

>acf(HIVtimeseriesdi�3, lag.max=20,main="Autocorrelation Plot")

>acf(HIVtimeseriesdi�3, lag.max=20, plot=FALSE)

# Plotting partialautocorrelation correlogram

>pacf(HIVtimeseriesdi�2, lag.max=20) # plot a partial correlogram

>pacf(HIVtimeseriesdi�2, lag.max=20, plot=FALSE) # get the partial autocorrelation

values

>pacf(HIVtimeseriesdi�2, lag.max=20, main="Partial autocorrelation Correlogram")
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>pacf(HIVtimeseriesdi�2, lag.max=20, plot=FALSE)

>pacf(HIVtimeseriesdi�3, lag.max=20, main="Partial autocorrelation Correlogram")

>pacf(HIVtimeseriesdi�3, lag.max=20, plot=FALSE)

>par(mfrow=c(1,2))

>plot(acf,data=HIVtimeseriesdi�3)

>plot(pacf, data=HIVtimeseriesdi�3)

>library("forecast")

>�t1<-Arima(HIV, order=c(0,0,2))

>�t1

>�t2<-Arima(HIVtimeseriesdi�2, order=c(0,0,2))

>�t2

>�t3<-Arima(HIV, order=c(0,0,1))

>�t3

>�t4<-Arima(HIVtimeseriesdi�3, order =c(2,3,1))

>�t4

>�t6<-Arima(HIVtimeseriesdi�3, order =c(2,3,0))

>�t6

>�t7<-Arima(HIVtimeseriesdi�3, order =c(1,3,0))

>�t7

>�t8<-Arima(HIVtimeseriesdi�3, order=c(0,3,1))

>�t8

>�t9<-Arima(HIVtimeseriesdi�3, order=c(2,3,2))

>�t9

>�t10<-Arima(HIVtimeseriesdi�3, order=c(0,3,0))

>�t10

>�t11<-Arima(HIVtimeseriesdi�3, order=c(3,2,2))

>�t11

>�t12<-Arima(HIVtimeseries,order=c(3,2,2))

>�t12

# The ACF plot of the residuals from the ARIMA(2,3,2) model shows all correlations

within the threshold limits indicating that the residuals are behaving like white noise.

# A portmanteau test returns a large p-value, also suggesting the residuals are white
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noise.

>par(mfrow c=(1,2))

>acf(residuals(�t9))

>pacf(residuals(�t9))

# Portmaneau test if the residuals are independent (Diagnostic checking)

>Box.test(residuals(�t9), lag=20, �tdf=4, type="Ljung")

# Forecasting: the code for forecasting

>library("forecast")

>plot(forecast(�t4), xlab="Year")

>plot(forecast(�t9), xlab="Year")

# Plot of residuals

>�tmodel<-arima(HIVtimeseriesdi�3, order=c(2,3,2))

>�tmodel

>tsdiag(�tmodel)

# Normality of residuals

>qqnorm(residuals(�tmodel))

>qqline(residuals(�tmodel))

>qqnorm(residuals(�tmodel1))

>qqline(residuals(�tmodel1))

# Prediction of the �tted model

>predict (�t9,n.ahead=10)
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