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ABSTRACT 

 

The retirement benefits provided by annuity providers and pension plans imply are often 

guaranteed until the death of the pensioners. Trends in mortality/longevity have clearly emerged 

as a result of increase in life expectancy/ reduction in mortality rates at old age. This has 

necessitated academicians and actuaries to focus their interest in the field of mortality and 

longevity risks in particular. The new NSSF Act No. 45 of 2013established a pension fund that is 

mandatory for all workers in the formal economy as opposed to a provident fund. This exposes 

the annuity providers to longevity risk among other risks when the scheme members retire.   

Appropriate modelling tools or projected life tables are needed for pricing and reserving. In 

particular the use of stochastic models that allows for various risk causes and components and 

the relevant impact on portfolio results as opposed to the deterministic models that were only 

based on the expected present values. 

For the purpose of this project, I am using the Lee- Carter Model proposed by Lee and Carter in 

1992 to fit mortality rates, forecast mortality trends in an ARIMA framework and then obtain the 

life expectancy projections. As regards to the longevity risk, I consider the possibility of 

changing the annuity benefits or calculating the annuity benefits by relating the benefits to the 

experienced mortality, or to updated mortality forecasts therefore calculating the actuarial 

present value on annuity .  
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CHAPTER 1: INTRODUCTION 

 

1.1.  Background 

Ageing populations have been recognized as one of the risks in pension schemes in the world. 

The length in time people are expected to live have increased during the 20
th 

Century as well as 

the proportion of retired to working people has increased. As long as gains in the life expectancy 

are foreseeable and taken into account while planning for retirement, they would have a 

negligible effect on retirement finances or to annuity providers mainly the insurance companies. 

Regrettably, improvements in mortality and life expectancy are uncertain and therefore results to 

longevity risk. 

Longevity risk is the risk to which pension schemes or annuity providers are exposed to paying 

out higher amounts of benefits than expected in future. The risk exists due to increasing life 

expectancy trends among policy holders and pensioners. When Longevity risk is not catered for, 

it can cause insolvency and cause individuals to lose their hard earned retirement income. 

Therefore pension schemes and annuity providers need to effectively manage the longevity they 

are exposed to. 

Defined benefit pension plans and annuities which guarantee lifetime benefits for pensioners are 

the main types of plans exposed to longevity risk. Annuitants receiving income till death may 

live longer than expected or accounted for in the actuarial calculations to provision of the 

liabilities in cases of defined benefit pension plan and thus longevity risk. When annuities and 

insurance benefits are priced and reserved using period-based assumptions, the underestimation 

of liabilities because of mortality improvement is reduced. 
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Over the past few years, most companies have established a defined contribution (DC) scheme in 

order to reduce the risks that are associated with defined benefit (DB) schemes. Both DB and DC 

plans are meant to provide members with sufficient financial means to be able to retire and 

maintain a certain and adequate standard of living throughout retirement. Increase in life 

expectancy due to improved lifestyle and medical advances have meant that people are living 

longer. In a DB scheme, the risk of increasing longevity is borne by the scheme sponsor 

therefore companies with Defined Benefit pension plans have paid attention to rising longevity 

as the rising life expectancy affects the funding costs of DB pension plans. Some companies 

have specifically a reserve that is purely to take care of longevity risk (longevity reserve).  

Even though longevity has no direct effect on the funding costs of DC plans, longevity is much 

of an issue in DC plans. At retirement, the total fund credit in the DC scheme member‟s account 

is converted to a life annuity using an annuity factor. The estimated length of life of the 

pensioner is normally set by the annuity providers to be equal to the life expectancy of the 

member‟s birth cohort. The annuity factor is then divided into the total fund credits to get the 

total annual pension). Therefore if the life expectancy is underestimated, this will result to 

annuity providers paying out more than expected. 

As life expectancy rises/ mortality rates reduces, the regulators have so far used the increase in 

retirement age (RA) as a logical counter balance in providing a useful instrument to rebalance 

lifetime, consumption, saving and investing to derisk the DC pension plans. The retirement age 

was increased from 55 to 60 for the pension plans in Kenya. In addition, the minimum retirement 

ages for lecturers in Kenyan republic universities was increased from 60 years to 70 years to take 

into account longevity improvements, population ageing and the financing of pension.  
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Summarily, the longevity risk that insurance companies face can be categorized as follows: 

I. Risk of reduction in mortality rates beyond expected levels: 

In the past few years, mortality rates have decreased for all ages and gender. The rate of decline 

however has been unstable and therefore it is difficult to estimate what the decline in mortality 

rates over the next decades will be. 

II. Risk of experience assessment error: 

This is the risk related to the difference in mortality rates between the overall population and the 

pension fund-specific population. This is as a result of the fund having certain groups that 

experience higher or lower mortality than the general population. 

III. Risk of random fluctuation in plan experience: 

This is the risk that an individual outlives their predicted mortality range purely due to chance. 

This risk is more relevant if the plan lacks diversification. 

In many countries including Kenya, statistical evidence shows that adult mortality has declined 

and life expectancy increased over the 20
th

 Century and in particular over its last decades. This is 

the case in the 21
st
 Century. According to United Nations‟ Department of Economics and Social 

Affairs, in Kenya adult male mortality rate (per 1000 male adults) was measured at 369.54 in 

2011 decreasing from 473.07 in 2002. In addition, the adult female mortality rate (per 1000 

female adults) in Kenya was 348.35 as of 2011 decreasing from 441.45 in 2002. Life expectancy 

was estimated at 52.95 in 2002 and has risen to 60.37 in 2011. Such trend in reduction of 

mortality and increase in life expectancy exposes insurers and annuity providers to risks in case 
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they use tables that do not take the mortality trends into account. To mitigate this risk, it is 

important to use the life table or annuity values that include forecasts of the future mortality 

trends, the projected tables.  

As a result of this uncertainty surrounding future developments in mortality and life expectancy, 

individuals run the risk of outliving their resources and being forced to reduce their standard of 

living at old ages. Pension funds and annuity providers mainly the insurance companies on the 

other hand run the risk that the net present value of their annuity payments will turn out higher 

than expected as they will have to pay out periodic sum of income that will last for an uncertain 

life span. The private pension funds and national governments providing retirement benefits as 

well as financial institutions providing lifetime annuity payments face this longevity risk. 

Longevity can be hedged with reinsurance contracts and with longevity derivatives. For instance 

annuity providers and pension schemes can use a longevity bond which pays coupon that is 

proportional to the number of survivors in a selected birth cohort. Longevity risk is however not 

easy to transfer, as it is hard to understand, and therefore to manage. In particular, because of its 

long-term nature, accurate longevity projections are delicate and modelling the embedded 

interest rate risk remains a challenge.  As to better manage longevity risk, prospective life tables, 

containing longevity trend projections are used.  

Life tables are tables that are used to depict the mortality experience of a population. There are 

several summary statistics that can be derived using life tables; this includes life expectancy at 

birth which estimates longevity. There are two types of life tables‟ i.e.  Period and cohort life 

tables which can be distinguished by the methods used to calculate the age-specific probabilities 

of death. 
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Period life tables are life tables in which age-specific probabilities are calculated using the 

number of deaths and the population size in the current year. This table makes no allowance for 

later actual or projected changes in mortality. While Cohort life tables are life tables in which 

age-specific probabilities are calculated using mortality data from a group of individuals born in 

the same year and followed until all the cohort members are dead. The cohort effects refers to 

historical factors that are specific to a year of birth e.g. introduction of a new drug or vaccines or 

to a group of birth years e.g. smoking habits or women‟s professional activity level. 

In using the period life table, the actual longevity of a population is not measured. F. Pelletier et 

al (1997), investigated mortality in Quebec, Canada during 1800s. Quebec mortality data from 

1891 was used to construct a period life table where they estimated female life expectancy to be 

forty-five years. Contrary to the estimation, the cohort life table showed that the life expectancy 

of women in Quebec women born in 1891 was fifty one years.  

The study of longevity and mortality forecast even more crucial in the present context. Therefore 

this project assesses how pension schemes, annuity providers mainly the insurance companies 

and the regulatory framework can access future improvements in mortality and life expectancy. 

This is by examining and modelling the longevity risk by first fitting and forecast the mortality 

rates and ensure that the mortality tables used by pension schemes and annuity providers are 

appropriate or recommend actuarial values. The final section will identify the best practices and 

discuss the management of longevity risk, putting forward a set of policy options to encourage 

and facilitate the management of longevity risk. 
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1.2. Statement of Problem 

Longevity has not only increased, the trend has become more uncertain. This has exposed the 

insurance companies, governments and pension plans to the risk of longer and uncertain post 

retirement periods. With the decline in mortality rates and increase in life expectancy, national 

security systems, pension schemes and annuity providers of most developed countries have 

reconsidered their mortality tables taking into account longevity risks. In recent years, 

developing countries, including Kenya have experienced the decline in mortality rates and 

increase in life expectancy. Such trends in mortality reductions and increase in life expectancy 

especially at retirement age present risks to annuity providers and pension schemes that have 

priced annuities on the basis of mortality tables that do not take these trends into account and 

therefore developing countries opt to consider the longevity risk while pricing and reserving 

annuities. 

Earlier actuarial models of forecasting the trends disregarded the stochastic nature of mortality. 

Therefore, understanding how the future mortality trend using the stochastic models is likely to 

interest to the actuary in pricing and reserving of annuities. Later several stochastic approaches 

have been used by demographers and actuaries in forecasting mortality exploring the different 

ranges of stochastic models. Lee and Carter model is the first stochastic model to consider 

increased life expectancy has become widely used and several extensions and modifications have 

been proposed to arrest the main features of mortality intensity. 
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1.3. Objectives 

 

1.3.1. General Objective 

In this project, our main objective is to forecast the mortality rates and then quantifying the 

longevity risk. The first task is to check and confirm the decreasing trend in mortality rates and 

increase in life expectancy. We then try to quantify the longevity risk that the pension funds and 

the annuity providers face as a result of decreasing mortality rates using appropriate forecasting 

and longevity models keenly focusing on the Lee and Carter (1992) model. 

 

1.3.2. Specific Objectives 

In regards to the study, the specific objectives are: 

1. Stochastic forecasting of future mortality; 

2. Longevity risk measurement; and 

3. To highlight and discuss a few options available to manage the longevity risk. 
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1.4. Significance of the Study 

The new NSSF Act No. of  2013 assented to law by the president of the Republic of Kenya on 

24
th

 December 2013 established a pension fund that is mandatory and will cover all workers in 

the formal economy. Under the Act, the pension fund will pay workers monthly pension 

(annuities). It is therefore important for government and annuity providers in Kenya to properly 

allow for upward trend in life expectancy and decline in mortality rates and the so called 

longevity risk. 

The project would be important to practitioner and academicians both in the private and public 

sector by contributing to the existing body of knowledge in the area of mortality forecasting and 

accessing and quantifying longevity risk. The researcher will also be in a better position to 

identify a better solution to extreme mortality changes that could affect the financial position of 

the pension schemes and the annuity providers since omission or miscalculation of the risk could 

potentially lead to disastrous financial outcome. 

 The research will be important to practitioner who would like to come up with more reasonably 

priced products suited for the Kenyan population or any other developing country to enable them 

manage and transfer longevity risk as it provides the guidance on longevity modelling. This will 

result to the application of the risk transfer options: buy-out, buy-in and longevity swap used in 

other countries. Additionally securities such longevity bonds and indexes may be priced ensure 

that longevity risk is hedged. 
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CHAPTER 2: LITERATURE REVIEW 

Improvement in population longevity is a topic which has become increasingly important in the 

recent years especially in the 21
st
 Century. Various projects have been made and proposal on 

different models made to try and explain the causes of decrease in mortality and increase in life 

expectancy especially when individuals reach the retirement age. Topic on longevity has featured 

in various actuarial publications such as the British Actuarial Journal (2009). It has also been 

discussed in various publications such as International Monetary Fund (2012) and World 

Economic Forum (2010, 2012). 

Population projections are normally done with assumptions being factored in order to obtain a 

realistic projection of the future population projection. The assumptions considered include the 

expected future rate of fertility, mortality and migration. In this project, the main concern is in 

fitting and forecasting mortality rates and therefore estimating future life expectancy that is 

finding the average length of future life and thus models the longevity risks.  

Costa D.L. (2005) highlights some of the possible causes of improving longevity at older ages. 

This includes technological improvement, reduced infectious disease rates, reduced occupational 

stress as people no longer do manual works, life style changes, rising income. Brockmann et 

al..(2000) discussed improved lifestyle, medical care and individual economic resources factors 

as potential determinants of the decline in old age mortality. Increasing longevity has been 

recognized as a threat to pension funds and annuity providers. 

Booth and Tickle (2008) categorized the mortality models into extrapolative models, explanatory 

model and expectations model. The most successful approach to modelling mortality in recent 
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decades has been extrapolative model which relies heavily on data which has become more and 

more reliable in recent years. 

2.1. Early Actuarial Models 

As noted by Cramer and Wold (1935), the earliest attempt to project mortality is probably due to 

Swedish astronomer H. Gylden in 1875 where he fitted a straight line to the sequence of general 

death rates of the Swedish population during the years 1750 to 1870. Mortality trends and their 

effects on pension annuities were perceived at the beginning of the 20
th

 century. Nordenmark 

(1906), for example points out that, improvements in mortality must be carefully considered 

when pricing life annuities and, in particular, cohort mortality should be addressed to avoid 

underestimation of mortality related liabilities.  

 

The earliest formula was by a French Mathematician De Moivre (1725) who wrote the survival 

function as ( ) 1 xs x


   where   is the limiting age and deaths are assumed to be uniformly 

distributed. Later on, British actuary Gompertz (1825) suggested that a law of geometric 

progression pervades in mortality after a certain age. Even though the model overestimates death 

rates at ages greater than 80, he observed that for the age grouping of between 20 and 60 years, 

the force of mortality increased almost exponentially with age hence he proposed the following 

model: 

 ( ) exp( )x x     (2.1) 

  Where   and   are positive parameters.   

Makeham (1860) extended the Gompertz model by adding a constant to give: 
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 ( ) exp( )x x       (2.2) 

where all the  parameters used are positive real numbers. 

The right hand side has two terms, the mortality   which is independent of age and the mortality 

exp( )x   which depends on age. 

In order to correct the weakness of Gompertz model, several models were proposed. Thorvald 

Thiele in 1867 focused on the following model that represents the whole lifespan: 

 

 
2

1 1 2 2 3 3( ) exp( ) exp( ( ) ) exp( )x x x x               (2.3) 

 

The parameters are used positive real numbers. 

The first part of the right hand side represents the decreasing mortality at very young ages after 

the young ones have survived the risks at birth. The second part represents the mortality hump at 

young-adult ages as a result of accidents or drug abuse that is, it is at the young-adult age that 

mortality increases due to lifestyle and accidental effects such as excessive drinking, careless 

driving or drug abuse. The third part represents mortality at adult and old ages. Note that if 

1 1 2 0     , we obtain a special case of Thiele model know as Makeham law. 

 W.F. Perks (1932) logistic model is a linear generalization of Gompertz curve gives a relatively 

good fit to mortality rates over the entire adult range. The model is represented by:  

 

 
exp( )

( )
exp( ) exp( ) 1

x
x

x x

 


   

 


  
  (2.4) 
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All the parameters used are positive real numbers. If we let 0    we get Makehams law. 

 

Heligman and Pollad (1980) curve also provides a relatively good fit to mortality rates over all 

ages and the number of parameters is no longer an issue. He proposed the following model: 

 

 ( ) 2exp[ (ln ln ) ]
cx b xx

x

q
A D E x F GH

p

       (2.5) 

 

However, studies were conducted to prove practicability of the early actuarial models for 

instance (Stoto & Arthur, 1983) revealed many errors in the forecasts using the deterministic 

models. Also, they noted that decline in the old age mortality was also underestimated and 

increases in life expectancy under projected. Therefore the use of deterministic actuarial models 

in fitting and forecasting yields wrong forecasts and hence leads to wrong conclusions. Further 

reviews of earlier contributions to mortality forecasts were provided by Pitacco (2004), 

(Tuljapurkar & Boe, 1998) and (Wong-Fupuy and Haberman,2004). 

Recent advances in the actuarial practices especially in pensions and life mathematics have 

resulted in proposal of more models for describing and projecting mortality. (Pitacco, Denuit, 

Haberman, & Oliviera, 2009) carried out a convenient survey and exposition of the models. One 

of the most important features of the recent models is that they are stochastic as opposed to being 

deterministic. Stochastic models seem more appealing because they associate a confidence error 

to each estimate. In addition, the value of annuity or any similar pension product is a non linear 
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function of future mortality and thus calculations of annuity values should be based upon the 

entire distribution rather than the expected future mortality. 

 

2.2. Stochastic Mortality Models 

Fitting mortality rates and hence longevity risk quantification dynamically continues to be a 

challenge especially in the developing countries. Earlier development relied on one-factor model 

proposed by Lee and Carter (1992). However, the Lee and Carter model is widely applied since 

it has been found to provide fairly accurate estimations and population projections for both the 

academicians and practitioners. Later on, Renshaw and Haberman and Halzoupoiz (1996) and 

Renshaw and Heberma (2003) analysed the Lee-Carter model and proposed a new model.  

Recently two factor models were proposed and the cohort effect was considered in longevity 

modeling which Lee and Carter model lacked. For instance, Renshaw and Haberman (2003) 

applied a cohort effect and later Currie (2006) introduces an age-period-cohort (APC) model. In 

the most recent proposals Cairns, Blake and Dowd (2006b) allow not only for a cohort effect but 

also for a quadratic age effect in their CBD model that are found to solve all the problems Lee 

and Carter model had.  

 

2.2.1. The Lee- Carter Model (1992) 

Lee and Carter (1992) came up with a stochastic model where the log of a time series of age 

specific death rates is the sum of age specific component and a component that is a product of a 

time varying parameter, however deterministic projections are possible and it works in discrete 

age or time frame work. 
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Generally, Lee-Carter express the log of a time series of age-specific death rates mx,t as the sum 

of an age-specific component ∝x  that is independent on time and a component that is the product 

of a time- varying parameters kt  reflecting the general level of mortality, and an age specific 

component βx  that represents the rate of mortality changes at each age.   

 , , ,ln( ) exp )(x t x t x xx ttm          (2.6) 

Since the parameters in the model are not fully identified, Lee and Carter (1992) enforced the 

constraints    
1

1X
X






 ,     
1

0
n

t
t




 . 

Lists of approaches have been proposed on how the parameters in the Lee Carter model can be 

estimated. For instance, in the original paper of Lee and Carter (1992) he used the method of 

single value decomposition where he assumed that errors in the observed rates compared to those 

fitted by the model are independent and identically distributed normal variables. The values of 

tk  were then adjusted slightly to ensure that the total number of deaths that are predicted by the 

model across all ages are similar to the observed number of deaths across all ages. The Singular 

Value Decomposition approach has however been replaced by other formal statistical models 

proposed for example Brouhns et al., (2002) proposed a fitting procedure that takes advantage of 

the assumption that the death count can be assumed to be a Poisson variable and that the natural 

logarithms is the canonical link function for the Poisson distribution to use the maximum 

likelihood estimation in estimating the parameters. This means that in the maximum likelihood 

estimation method, the errors obtained between the fitted and the observed rates are allowed with 

varying age unlike that one proposed by Lee and Carter (1992) method.  
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Lee and Miller (2001) proposed a different method where he expressed that the goodness of fit in 

the final year in the data set should be looked into keenly. For Lee and Miller, they observed that 

they observed that modelling objective is to project the mortality rates. Nevertheless, in general 

the usual statistical procedures aim to fit the historical data so well over all past years.  

The advantages of the Lee and Carter (1992) include: 

1. Provides a good fit to historical data. Even though the shape of the mortality tables can be 

complex at the early ages, the x  age function in the lee-carter allows the model to be 

used across all ages. In addition, tk  term captures the dominant trend in the evolution of 

mortality. 

2. Simplicity in fitting and projecting. Use of the model provides an easy way of fitting and 

projecting since the parameters in the model are relatively few in comparison to the other 

models. The singular value decomposition and Poisson likelihood methods are likewise 

simple to put into practice. 

3. It is easy to project since the linear trend in the tk ‟s is common in most of the data used. 

The random walk with drift time series time structure is widely used to give estimates of 

future central mortality rates. 

However, the model has several drawbacks including: 

1. The model is a one-factor model which means that the mortality improvements at all ages 

in the datasets are perfectly correlated. Search results are unrealistic and pauses a 

problem when looking into how risky the liabilities are based on the central mortality. 

The 
x age effect in the model is measured as the average improvement at all age x 
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however 
x is also used in obtaining the level of uncertainty in future mortality rates age 

x therefore; 

,

2var log x n t x tm m Var         . 

Historically, the rates of improvement have been lower at the very old ages meaning that 

the projected future death rates uncertainty will be lower at old ages. 

2. Lee- Carter model does not contain any allowance for cohort effects depending on an 

individual‟s year of birth. In the recent years, models based on the Lee- Carter model 

incorporating cohort effects have since been introduced for instance Renshaw and 

Haberman (2006). 

 

2.2.2. Renshaw and Haberman (2003) Model 

Renshaw and Haberman(2003) proposed a multifactor age-period model expressed as: 

(1) (2) (2) (3) (3)

,log x t x x t x tm                 (2.7) 

Where (2)

t  and (3)

t  are dependent period effects (for example a bivariate random walk). 

The model offer significant advantages over the Lee- Carter model including the fact that it is a 

multi-factor age period. However both did not address the problem caused by the cohort effects. 

 

2.2.3. Renshaw and Haberman (2006) Cohort Model 

The Renshaw- Haberman (2006) is an extended version of the Lee- Carter model with an extra 

parameter that gives the cohort effect expressed as: 
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 (1) (0)
,log x x xx t t t xm          .       (2.8) 

where t  is the mortality is index in year t (random period effect) and t x  is a random cohort 

effect that is a function of the years of birth t-x. 

The parameters in the model are not fully identified and therefore Renshaw and Haberman 

enforced constraints are 
0

1

1x

X






 ,      
(1) 1x

x



  . 

 In their analysis of England and Wales data, Renshaw and Haberman found that there was a 

significant improvement over the Lee- Carter model. The most noticeable improvement was that 

an analysis of the standardized residuals revealed very little dependence on the year of birth. 

However, the model has several drawbacks:  

1. The model lucks robustness. For instance, CMI (2007) discovered that a change in the 

ranges of ages used to fit the model might result in a qualitatively different set of 

parameters estimates that are not expected. In his analysis, Cairns et al (2007,2008) found 

that there is luck or robustness when the range of years used to fit the model was 

changed. 

2. The fitted cohort effect, t x  in the model appears to be a deterministic linear or possibly 

quadratic trend in the year of birth which could mean that the age-cohort effect here is 

being used purposely to compensate for short of a second age-cohort effect as well as to 

try to capture the cohort effect in the data. With this drawback, an improvement on the 

model is to combine the second age –period effect in Renshaw and Haberman (2003) 

with a simple cohort effect. 
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2.2.4. Age-Period-Cohort Model 

Currie (2006) introduces the simple Age- Period- Cohort (APC) model. 

(1)
,log x t x t t xm                 (2.9) 

Without loss of generality in the model, the constraints 
1

0
n

t
t




  and 0t x    are 

imposed. 

 

2.2.5. P- Splines  

The P-splines was introduced in Currie et al (2004) in smoothing and projecting central mortality 

rates in a consistent manner. The model is based on the use of penalized B-splines introduced in 

Eilers and Marx (1996). Currie et al. (2004) used this approach in smoothing the mortality rates 

and extract „shocks‟ therefore it can be used to derive stress-based scenarios. In this model, the 

force of mortality is assumed that it can be modeled as a linear combination of smooth functions 

across age and time to give: 

 
, ,log ij ij

x t x t
ij

m             (2.10) 

The use of splines method can lean to functions that are over fitted, hence yielding to mortality 

surfaces that are unreasonably lumpy. Therefore, to avoid the problem of over-fitting functions 

P-splines penalizes the roughness in the 
ij by the use of linear and quadratic penalties. 
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CMI (2006) proved the P-splines approach to be very effective for it produced globally a good 

fit. Nevertheless, excessive smoothing can lead to systematic over or under estimation of 

mortality rates (Cairns et al., 2007).  

The advantages of the P-splines include: 

1. The model generates results for the central mortality rate that is smooth across all the 

ages and time. This means that it reduces the impact of the random noise from the crude 

data that is fitted. 

2. P-splines gives projections of mortality rates that allow central mortality rates at different 

ages to change independently based on the observed data. 

However, the model is infrequently used for projecting mortality due to its disadvantages. 

The disadvantages of the P-splines include: 

1. The method can lead to mortality rates that are over fitted resulting to mortality rates that 

are unreasonably lumpy. This means that the rates will not be a true representation of the 

true rates. 

2. The P-splines fits a deterministic surface to the data and extends this into the future rather 

than allowing future rates to be generated by a stochastic process. 

3. The model does not allow for cohort effects. However, P-splines can be reformulated 

from an age/period to an age/cohort model if desired but this removes the period effects 

which are usually felt to be dominant and give rise to problems as some cohorts have 

limited observations. 
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Cairns, Blake and Dowd (2006b) 

A range of models have been explored given the problems with the preceding model in order to 

find a model that includes a parsimonious, multifactor age-period structure with a cohort effect 

that lacked in the previous models. 

2.2.6. Cairns, Blake and Dowd Model -1 

The model was expressed as: 

  (1) (1) (2) (2)log , x t x tq t xit               (2.11) 

Simple parametric assumptions are 
 

(1)

(2)

1x

x x x







 
  

Therefore the method gives    (1) (2)
( )log , t t x xq t xit      

2.2.7. Cairns, Blake and Dowd Model -2 

This is the first generalization of the Cairns, Blake and Dowd that took the cohort effect into 

consideration and thus gives the formula to: 

   (3) (3)(1) (1) (2) (2)lo ,g x t xx xt tq ti xt              (2.12) 

We assume simple parametric forms as   

(1)

(2)

(3)

1

1

x

x

x

x x









 



  

Thereby giving the model   (3)(1) (2)
( )l g ,o t xt t x xitq t x      . 
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The drawback with CBD- 2 is that we can move from (3)
t x   to 

(3) (3
1

)
2( )t x t x t x x        and with corresponding adjustments to 

(1) (2)
,t t    and there 

is no impact on the fitted values of the ( , )q t x  . In this model, to avoid arbitrary use of  1  and 

2  constraints were introduced. The constraints are such that if least squares are used to fit a 

linear function of t-x to (3)
t x   then the fitted linear function is identically equal to zero. 

2.2.8. Cairns, Blake and Dowd Model -3 

CBD Model-3 adds a quadratic term into the age effect and still maintains the cohort effects. For 

constant cx which is to be estimated, the formula is expressed as: 

(2) 2 2 (4)(1) (2) ˆ) ((log ( , ) ( ) )t x tt xt x xitq xt x x               (2.13) 

Where the constant is expressed as  
2 2

1

1
ˆ ( )

n

x i

i

X X
n




   and is the mean of 
2( )x x  . 

The drawback with CBD-3 is that we can switch from (4)
t x   to

(4) (4) 2
1 2 3( ) ( )t x t x t x x t x x            and with corresponding adjustments to 

(1) (2) (3)
, ,t t t    and there is no impact on the fitted values of the ( , )q t x . To avoid the arbitrary 

use of 1 , 2 and 3 , constraints are used here which is such that if we use least squares to fit 

a linear function of t.-x to (4)
t x   then the fitted linear function is identically equal to zero therefore 

our estimates will be fluctuating around zero and thus no observable up or down systematic 

curvature. 
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2.2.9. Cairns, Blake and Dowd Model -4 

The impact of the cohort effect (3)

t x 
for any specific cohort was assumed to diminish overtime (

(3)
x =decreasing with x) instead of remaining constant ( (3)

x =constant). Thus the model gives; 

 
(1) (1) (2) (2) (3) (3)

,log x t x t x t x t xitq            (2.14) 

Where   

(1)

(2)

(3)

1

( )

x

x

x c

x

x x

x









 

 

 Thus this gives us  
(1) (2) (3)

, ( ( ))log cx t t t t xx xx xitq          

The constraint
(3)

,

0t x
x t

    is used to avoid the problem of identifiability introduced. 

 

2.3. Model Selection Criteria 

Comparison of the stochastic model is advised in order to know if the model is a good one or not. 

Cairns et al., (2007, 2008) proposed a list of qualities to check and evaluate the models and 

compare them with the other proposed models. 

1. Consistency with historical data 

According to Cairns et al., (2007)  a good model should be consistent with historical patterns 

of mortality. This will therefore give confidence in the use of the forecasted values as 

opposed to inconsistent one.  

Therefore Cairns et al., (2007) compared different models using the maximum likelihood and 

using the method that penalize over-parametised models. In their results, they suggested that 
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improvements in the Lee and Carter (1992) and Cairns, Blake and Dowd (2006b) models can 

be obtained by incorporating period and cohort effects.  

2. Ease of Implementation 

A good model should be the one that requires less computing time in that the model can 

easily be programmed using the available software. All the stochastic models discussed 

requires some programming in that codes that run should be devised, a good model therefore 

is the one that is easy to program. If a model will require excessive amounts of computing 

time, then it should only be used if the model yields an acceptable goodness of fit. 

3. Parsimony 

Models that are excessively parameterised should be avoided. This is done by the use of the 

Bayes Information Criterion (BIC) in order to ensure that parameters in the model are only 

included if the improvement in the fit is significant. Therefore the less the number of 

parameters the better the model so long as the model has an acceptable goodness of fit.. 

Each of the models described has a large number of parameters, therefore all are non-

parsimonious .All the same, some models are parsimonious in that they have fewer effective 

parameters to estimate.  

4. Transparency 

Except for the P-splines, all the model‟s results are straight forward to analyse and thus 

deemed to be transparent. The P-splines model is less transparent because its output is 

smooth surface fitted to historical data and then projected. 

5. Sample paths and prediction intervals 
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According to Cairns et al.,(2008), except for P-splines models, most of the models generate 

sample paths. This means that an assessment of the uncertainty in future mortality-linked 

cash flows and pricing of the cash flows is allowed.  

6. Uncertainty 

The parameters fitted and projected will often be subject to estimation errors because 

normally, we will have limited data to estimate the parameters. With this in mind, it is wise 

to include parameter uncertainty into the programming so that we can be in a position to 

know the impact of the estimation errors. Therefore in their study Cairns et al. (2006b) and in 

CMI working paper 15(2005) demonstrated that parameter uncertainty forms significant 

element of the uncertainty in the fitting and forecasting of the future mortality. Any model 

that does not allow for parameter uncertainty is in danger of significantly underestimating 

uncertainty in its forecasts.  

An additional criterion is that the model is that it should be applicable for a full age range. The 

annuities providers and pension funds would want to model the mortality rates and their 

dependencies for the whole portfolio consistently, therefore the model should be applicable for 

the whole age range.   

Some authors have recently sought to identify the similarities amongst stochastic mortality 

models. For instance, Hunt and Blake (2014b) describe an Age-Period- Cohort model structure 

which encompasses the vast majority stochastic mortality models. Curie (2014) shows that many 

common mortality models can be expressed in the standard terminology of generalized linear or 

non-linear models. 
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In the previous research, the models are used to fit historical data. The resulting estimates of the 

time varying parameter is then modeled and forecast as stochastic time series using standard 

Box- Jenkins methods. From the forecast of the general level of mortality, the age specific rates 

are derived using the estimated age specific rates are derived using the estimated age effects. 

Brouhns et al., (2002) resorted to Poisson log-bilinear regression model to build projected life 

tables.  

Among the discussed models, the Lee and Carter model has been widely discussed and used to 

model the mortality rates and thus quantify the longevity risks involved. For instance Tuljapurkar 

(1998) and Tuljapurkar and Boe (1998) reviewed the Lee- Carter model and provided 

recommendations for forecasters.   Lee Carter has been found suitable for actuarial applications 

for several reasons including, the fact that the model has a relatively few parameters that are easy 

to interpret. In addition, future mortality trends can easily be generated using the stochastic 

components of the model hence the actuaries are in a position of quantifying the unanticipated 

mortality improvements using the relevant risks measures. Therefore, in this paper, we have used 

the Lee- Carter model to forecast the mortality rates and show that indeed the life expectancy has 

been increasing with time and it‟s expected to increase in time hence longevity risk. 
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CHAPTER 3: METHODOLOGY 

 

To model longevity risk, several scholars including suggested securization of the longevity risk 

and do a valuation methodology by building a mortality index. Cairns et al., (2008b) summarized 

using specific criterion of the various models that were proposed. Prospective life tables provide 

a view of the future evolution of the mortality rates.  In the past decades, longevity improvement 

and therefore using the standard life tables will lead to restrictions and underestimation of the 

real scenario of future mortality when it comes to annuity pricing and reserving. Therefore the 

use of prospective life tables especially in pricing and reserving annuities will offer a better view 

of mortality evolution. 

 Mortality Assumption 

These are projections of the expected death rates used to estimate pension obligations and price 

annuities. Mortality assumptions are based on the mortality tables. In most countries, the 

insurance and retirement benefits regulator provides a guideline on the mortality rates and 

assumptions to be used since the assumptions are crucial when it comes to pricing and reserving 

of annuities. 

In the estimation of the life expectancy at birth or at retirement age, one of the key factors 

considered is the mortality assumption. The life expectancy calculated will then be used to 

determine the long term obligations of the pension fund and the annuity providers. In event the 

mortality assumptions are low, the long term liability of the pension fund and the insurance 

company will be overestimated. On the other hand, if the assumptions are too high, the life 

expectancy of the pension plan will be underestimated and consequently underestimate the 

obligations of the pension plan and annuity providers. 
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Heterogeneity and inter-age dependence  

For a given population, the level of heterogeneity differs from any other population. 

Heterogeneity is as a result of a number of observable factors for example gender, age, 

occupation and physiological factors or due to features of the living environment such as climate, 

population and nutritional standards. Pensioners or policy holders that are of higher socio-

economic status (assessed by occupation, income or education) have higher life expectancy or 

tend to experience lower rates of mortality. However, significant difference also exists within the 

same socio-economic status since generally females experience lower mortality rates compared 

to males. Longevity patterns and improvements are different from one company to another and 

from different company to another 

Smoothing and closing tables 

Age profiles of empirical annual mortality rates are inconsistent at high ages. Therefore actuaries 

mostly close the mortality tables i.e. extrapolate the shape of the survival functions at high ages 

from the some exogenous assumptions. In the past, mortality after age 100 was not emphasized 

since it had a very small impact on residual life expectations (and so annuities) for pensioners. 

With the recent longevity improvements, this is no longer the case, and it becomes important to 

have a better view on mortality and longevity risk for high ages since mortality is now improving 

for those ages. 
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3.1. Basic Building Blocks 

3.1.1. Initial Rate of Mortality 

The initial rate of mortality q  measures the probability of death over the next year of age or, 

more generally, over the next rate interval. So the q -type rate applies to the age at the start of 

the interval. 

The rate of mortality xq is the probability of death over the next year of age for a person aged   

last birthday.    

 
x

x

x

d
q

l
   (3.1) 

 

Where; 

 𝑑𝑥  is the number of deaths over the next year 

 𝑙𝑥    is the number of people alive at the start of the year 

3.1.2. Central Rate of Mortality 

𝑚𝑥  is the probability of dying between exact ages   and   per person-year lived between 

exact ages  and  . Define, 

 
1

0

x x tL l dt         (3.2) 

   

𝐿𝑋 =   𝑙𝑥+𝑡 𝑑𝑡
1

0

 

 

𝐿𝑋 =  𝑙𝑦

𝑥+1

𝑥

𝑑𝑦 
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                                                                       =  𝑙𝑦
 ∞

𝑥
𝑑𝑦 −  𝑙𝑦

∞

𝑥+1
𝑑𝑦 

 

                                                                       = 𝑇𝑥 - 𝑇𝑥+1 

 

Central death rate at age x;  

 x
x

x

d
m

L
      (3.3) 

 

=
 𝑙𝑥+𝑡

1

0
µ

𝑥+𝑡
𝑑𝑡

 𝑙𝑥+𝑡
1

0
𝑑𝑡

 

 

= µ
𝑥+1/2

 

3.1.3. Instantaneous Force of Mortality  

This is the instantaneous death rate at exact time t for individuals aged x+t at time t. X  is the 

instantaneous rate of mortality. This is the continuous equivalent of the discrete quantity xq . 

 

                                                           
0

lim 1/ /X
h

h P T x h T X
 

        (3.3) 

 

The probability   /P T x h T X    is ( )X h xF h q   

 

 
0

lim /X h x
h

q h
 

   
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The small h, we can ignore the limit and write: 

 

 .h x Xq h   for small h   

   

3.1.4. Expected Future Lifetime 

This is a measure of the expected time remaining until death. 

 

The Complete Expectation of Life, 𝑒𝑥  

 

The expected future lifetime after age x is 𝐸 [𝑇𝑥] 

 

 
0

x

x t x x te t p dt






        (3.4) 

  

𝑒𝑥 =   𝑡. t xp  X t 

𝑤−𝑥

0

𝑑𝑡  

 

=  𝑡.  −
𝜕𝑦

𝜕𝑥
t xp  𝑑𝑡

𝑤−𝑥

0

 

 

     = −  𝑡 × t xp   
0

𝑤−𝑥

+  t xp
𝑤−𝑥

0
𝑑𝑡 

 

=  t xp
𝑤−𝑥

0

𝑑𝑡 
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Curtate Expectation of Life, xe   

The curtate future lifetime of a life aged x is, 

  

  x xK T   

 

where the square brackets denotes the integer part 

The curtate future lifetime xK  of a life aged exactly x is the whole number of years lived after 

age x. 

 

 

1

x X

w x

k x

k

e E K

p







  

 

3.1.5. Age Specific Death Rates 

Age specific death rates is the total number of deaths to residents of a specified age or age group 

in a specified geographical area divided by the population of the same age or age group in the 

same geographical area (for a specified time period, usually a calendar year) and multiplied by 

100, 000. 

 

=
𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑡𝑕𝑠 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑡𝑕𝑠𝑖𝑛 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝
× 100,000 
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3.2.  The Lee and Carter Model (1992) 

Lee and Carter initially developed their approach specifically for U.S.A mortality data.  

However, the method has become the leading statistical model of mortality (forecasting) in the 

demographic literature. 

Lee and Carter (1992) suggested a log-bilinear form of the force of mortality ,x t  as follows: 

 

, , ,ln( )

1,......,

1,.......,

x t x t x x t x tm

x

t n

    



   





  (3.5) 

Where; 

x  describes the age-specific pattern of mortality. 

t  represents a time-trend index of general mortality model levels, describing the general   

level of mortality at different times. It captures the most important trend in death rates at 

all ages. Since mortality is a decreasing function, we can expect this trend to decrease. 

x   shows the decline in mortality at a particular age x when t  is changing 

,x t   is a zero mean Gaussian error 
2(0, )N    

The coefficients x  are age specific constants that describe the general shape of the age 

mortality profile while the index t serves to capture the main temporal level of mortality. Since 

the parameterization in equation 3.5 is invariant in respect to the transformations: 
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, ) ( ,

( , ) ( , / )

( )t x

x t x t

x x t

c c

for c c c 

   

   



 
  (3.6) 

 

Then in order to ensure identifiability of equation 3.5 i.e. there are unique solutions to the model 

the parameters x  and t  should satisfy the constraints: 

                               
1

1X
X






   and  
1

0
n

t
t




          (3.7) 

The constraint 
1

0
n

t
t




  implies that by summing over the years t the estimates of parameters 

x are given by the averages of the force of mortality over the time period i.e. 

,

1

1 n

x t

t
x n






   where 
x



 is the average pattern of mortality at age x. An estimate of t  

is obtained by summing both sides of equation 3.5 over the ages and using 
1

1X
X






  to obtain

,
ˆ ˆ(ln( ) )t x t x

x

m   . 

An estimate for x  is obtained by differentiating both sides of equation 3.5 with respect to time t 

to obtain ,
ˆ ˆ( ln( ) / ) / ( / )x x tm t t      . Then the parameters x  captures the relative density 

of the logarithm of the central death rates to change in the mortality index t  . The function x  

moderates the time-dependant element t  by age. 

We note that all parameters on the right hand side of the equation 3.5 are unobservable. Since 

they are unobservable, fitting the model using simple methods like ordinary least squares will be 
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impossible. Lee and Carter (1992) proposed the method of singular value decomposition (SVD) 

in model fitting. Later on, the maximum likelihood estimation (MLE) was implemented by 

Wilmoth (1993) and Brouhns et al (2002) and the method of generalized linear models (GLM) 

was employed by Renshaw and Haberman (2006). 

 

3.3. Estimation Approaches 

3.3.1. The Singular Value Decomposition Approach 

Lee and Carter used Single Value Decomposition to estimate the parameters of the equation  

, ,ln( ) x xx t t x tm        in his first paper. 

First the parameter vector x is computed as the average overtime of the logarithm of the central 

death. That is: 

 ,

1

1
ˆ

n

x x t

tn
 



    (3.8) 

 

The Singular Value Decomposition is applied to matrix ˆln( )y m    . 

To obtain x and t , singular value decomposition is applied to the matrix , ,
ˆln( )x t x t xY m     . 

Theorem of Low Rank Approximation 

Low rank approximation problem involves the approximation of a matrix D with another matrix 

D̂ , said truncated which has a specific rank r. 
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If now the approximation is by minimizing Frobenius norm of the difference between D and D̂  

under the constraint rank D̂ r  i.e 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒐𝒗𝒆𝒓 𝑫   𝑫 − 𝑫  
𝑭

 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝒓𝒂𝒏𝒌 (𝑫 ) ≤ 𝒓 

We obtain the solution by Singular Value Decomposition of the data matrix to obtain the matrix 

approximation lemma or Eckart-Young Mirsky (1936). Proof of the low rank approximation 

theorem is found in appendix A. 

Let, 

 ,T m nD U V m n      (3.9) 

be the singular value decomposition of  and partition U ,  1( ,........ )mdiag     and V as 

follows: 

   1

1 2

2

0
,

0
U U U

 
    

 
 and  1 2V V V   

 

Where   is a r r  , U is m r  and 1V  is n r  . Then the rank-r matrix obtained from the 

trancated singular value decomposition is: 

 *

1 1 1D̂ U V    

Is such that 

 * 2 2

1ˆ( )

ˆ ˆmin .....r m
F Frank D r

D D D D  


        

 

The minimized *D̂  is unique if and only if 1r r     
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Singular Value Decomposition  

Denote A, a m×n matrix of rank h. Then there is an m×m orthogonal matrix U, an n×n 

orthogonal matrix V and a m×n diagonal matrix such that 𝑨 = 𝑼𝑺𝑽′. Where 𝑉 ′ = (𝑣𝑗𝑖 ) is the 

transpose of matrix 𝑣𝑖𝑗 . 

𝐴 =  

𝑈1,1 ⋯ 𝑈1,𝑚

⋮ ⋱ ⋮
𝑈𝑚,1 ⋯ 𝑈𝑚,𝑚

 ×  
𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

 ×  

𝑉1,1 ⋯ 𝑉1,𝑛

⋮ ⋱ ⋮
𝑉𝑚,1 ⋯ 𝑉𝑛,𝑛

  

        

Particularly for 𝐴 = [ln 𝑚𝑥,𝑡 −∝𝑥 , 𝑥 = 1, …… . 𝑋 𝑎𝑛𝑑 𝑡 = 1, …… . , 𝑇 the rank-1 

approximation 

𝑌 𝑥,𝑡
(1)

= 𝜌1𝑈𝑥,1𝑉1,𝑡 = 𝛽𝑥
(1)

𝐾𝑡
(1)

 

To give: 

𝛽 (1) = (𝑈1,1  𝑈2,1 …………………………  𝑈𝑥,1)′ 

𝐾 (1) = 𝜌1 × (𝑉1,1   𝑉2,1  …… . 𝑉𝑖,1) 

Thus for the Lee and Carter Model, By using the theorem of low rank approximation (first 

started and approved by Eckart and Young1936 )) in the singular value decomposition approach. 

The rank h least square approximation is given as: 
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( ) ( ) ( )
, , ,

1 1

ˆ
h h

h i i
xx t x t ti i t

i i

Y     
 

    , h r  (3.10) 

 

Where ( ) ( )
, ,

i i
x t i x i i t       

Then the rank h residuals are 

 , , ,
1

r

x t i x i i t
i h

   
 

    

The corresponding rank-h least square error is: 

 
2 2

1

r

n i
i h

 
 

    

 

This implies that the errors have similar variance. 

However, this assumption is violated for mortality data this is because the variance of the log-

central death rate is approximately ,

,

1
ln( )x t

x t

Var m
d

 
    . 

The proportion of variance explained by the i
th 

term , ,( , , )i x i i t    of the decomposition 

, ,ln( )x t x x t x tm       is given by 
2

2

1

i

r

j

j







 and total variance explained by a rank-h 

approximation is:  
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2

2 1

2

1

h

i

i
h r

j

j















   20 1h    

The closer the value is to 1 the better the approximation. 

 

3.3.2. Maximum Likelihood Estimation 

Wilmoth (1993) and Alho (2000) proposed using Maximum Likelihood Estimation to find the 

parameters in the Lee and Carter model (3.1).We use the Poisson approximation of deaths as 

follows 

Based on the Poisson approximation of the number of deaths ,x tD  : 

 , , ,( )x t x t x tD Poisson E m  where , exp( )x t x x tm       (3.11) 

 

The estimation of the parameters x  , x  and t  in equation 3.11 takes place using the 

maximum likelihood method i.e. maximizing the log likelihood of model given by: 

 ,
,

( , , , ) log ( ; , , )x t
x t

L D f D         

 

      

,
, ,

, ,
,

( )

!

,

log exp

Dx t
x t x t

x t x t
x t

E m
E m

D

x t



    

 , , , , ,
,

(ln ) exp( ) ln( !)x t x t x t x t x x t x t
x t

D E m E D   
       
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Where 

1 2

1 2

1 2

( , ,......, )

( , ,......, )

( , ,......., )

M

M

N

   

   

   







  and there are M data points for each calendar year and N calendar 

years of data. 

The maximum likelihood estimation allows non-additive heteroscedic (Renshaw and Haberman 

2003:255) and avoids the assumption of errors with constant variance present in the SVD 

approach (Lee and Carter 1992:660). The MLE formulation of the LC model is often referred to 

as the Poisson log-bilinear model from the paper Brouhns et al. (2002) which provides algorithm 

to minimize the equation. 

 

3.3.3. Weighted Least Squares 

Wilmoth (1993) proposed fitting the Lee Carter model using weighted least squares.  Basically 

we want to estimate the parameters ,x x tand   . 

The estimation  x  which minimizes the sum of least squares of errors 
2

,

,
x t

x t

s   is the 

average of ,x tm  i.e  

 ,
1

x x t
t

m
n

     (3.12) 

 

Where n in the total number of calendar years. The difference in matrix is formed  as

, ,x t x t xz m    and it satisfies 0t
t

   and 2( ) 1x
x

b    
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 2
,

,

( )t x x t
x t

Q z     

 

To find the values that minimize Q we introduce the Langrangers multiplier a and b that 

minimizes: 

 

2

,

,

2
,

2 ( )

2 ( ) 2

2

t x

x x t x t
xt

t x t x t
tx

t x x x t
x x

R Q a b

dR
z a

d

dR
z b

d

a
b z

 

  


  


 

  

  

  

 

 





 

  

 

If we add the sums with respect to t we get that 0   . We then solve for ,t x   from the systems 

of equation to get; 

 

,

,

2
,( )

t x x t
x

t x t
t

x

t x t
x t

z

z

z

 














 
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3.4. Forecasting 

After estimating the parameters, the second stage involves finding a modified  
(1)

t  which adjusts 

the total number of deaths ,x t
x

d  to the estimated number of deaths as follows: 

 
( ) ( )

, ,
ˆˆexp( )i i

x t x t x x t
x x i

d E         (3.13) 

 

Where ,x tE and ,x td  are exposure to risk and actual numbers of death at age x and time t. 

Predicting mortality with LC is reduced to forecasting the index t  using time series approaches 

(Brockwell and Davis 1996).  

In order to forecast future mortality rates, Lee and Carter assumes that x  and x  remains 

constant over time and the time trend t  is intrinsically viewed as a stochastic process . Lee and 

Carter (1992) suggested the following random walk with drift to model t  . 

 
1

ˆ ˆt tt C        

 

In which   is a constant drift term, C is a constant volatility and t  is a one dimensional i.i.d 

N(0,1) error. 

An appropriate ARIMA (p,d,q) model for the mortality index t  is found by carrying out the 

standard Box and Jenkins methodology (identification-estimation-diagnosis). In general an 
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ARIMA (0,1,0) with drift 1
1

ˆ ˆ
n

t t it
i

X  


     is found suitable , though other ARIMA forms 

provided better fit to some data (Brouhns et. al. 2002). 

After having found an appropriate ARIMA model, the variables, the mortality index t  can be 

forecasted. Let ˆ
nt s   denote the s-period ahead forecast of the mortality index then in case of 

the poisson Lee- Carter model, the expected value of future death count is given by: 

 , , ,ˆ[ ]
n n nx t s x t s x t sE D E m     

 

Where , nx t sE   is the future exposure and ,
ˆ

nx t sm   forecasts of future death rates with: 

 , ,ˆ ˆˆ exp( )
n nx t s x x x t sm        

Using ,ˆ
nx t sm   we calculate life expectancies and life annuity premiums.  

 

3.5. Actuarial Present Value 

The symbol ( )m
xa  refer to the expected present value of an annuity of 1 per annum payable 

monthly in advance. 

 
( )

0

1 t
m m

x t x
t m

a v p
m





   (3.14)  

We can approximate formula ( )m
xa  in terms of xa   using either Euler-Maclaurin formula or 

Woolhouse‟s formula. 
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By use of Euler-Maclaurin formula 

 
00

1 1
( ) ( ) (0) '(0)

2 12t

f t dt f t f f

 



     (3.15) 

Woolhouse’s formula: 

 

2

2
0 0

1 1 1
( ) (0) '(0)

2 12t t

t m m
f f t f f

m m m m

 

 

     
      

     
    (3.16) 

 

Assuming that ( ) 0f t   and '( ) 0f t   as t    

Using equation 3.16 to fit .( ) t
t xf t v p  .  

 
0

. exp ( )( )
t

x r
t

t x drf t v p   

 
  
 

     then 
0

'( ) ( )exp ( )
t

x t x rf t dr    
 
 
 

       

Therefore (0) 1f   and '(0) ( )xf       

 

This gives  

 

2
( )

2

( )

1 1
( )

2 12

1

2

m
x x x

m
x x

m m
a a

m m

m
a a

m

 
  
    

   

 
 
 

 
  




 

 
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CHAPTER 4: DATA ANALYSIS AND RESULTS 

4.1. Source of Data 

One of the sources of data used in modelling longevity risk is from the mortality of individual or 

aggregate pension plans, annuity providers such as the insurance companies. UK‟s Continuous 

Mortality Investigation Bureau collects mortality data on insured lives from insurers and data on 

pensioners lives from pension plans. Even though the regulatory body in Kenya collects this 

data, it is not easily available as it is never put in public or published every year as in other 

countries. In addition, the use of this kind of data can result to sampling problems as the data 

may not be a true representation of the entire population. 

Mortality data is also collected and published by government agencies. National mortality data 

are published for a number of countries in the Human Mortality database (HMD). The Kenya 

Bureau of Statistics collates the data after every ten years (every census). The entire population 

data is the most appropriate data since it includes large number of individuals, has low sampling 

errors. 

Our analysis will be based on the U.S.A mortality data downloaded from the Human Mortality 

Databases (HMD) through demography package dedicated function. The Human Mortality 

Database began in the year 2000 and was launched in May 2002 after its first phase of 

development. The database provides a detailed mortality and population data according to sex 

and year to researchers, policy analysts, students and other stakeholders. Currently, it contains 

data from 37 countries. 

The information that can be obtained by sex, age and time in the HMD includes: 

 Birth counts; 
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 Death counts; 

 Population estimate; 

 Population exposed to risk of death(the period & cohort :period data are indexed by the 

year of deaths; whereas cohort data are indexed by year of births); and 

  Death rates (period and cohort). 

4.2. Description of software used 

In the analysis, we have used both the R-software and excel. In the R-software, demography and 

forecast package is used to fit and forecast Lee and Carter model. From the results, we then 

obtain the future life expectation of different cohorts and by the use of life contingencies package 

we project the cost of a pension annuity, 
( )m

xa  for specific cohorts. 

4.3. Assumptions 

In our analysis, we assumed the following: 

1. The retirement age (x) will be set to 65 regardless of the cohort 

2. The pensions are paid monthly. Therefore m, the fractional payments per year will be 

equal to 12. 

3. The present value of annuity of 1 monetary unit will be calculated using an interest rate 

of 4% and inflation rate of 2%. 

Since female mortality is lighter, three data sets were used regarding the male, female and total 

population. 
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4.4. General Analysis of the Data Used 

Figure 2 plots the log death rates against age from 0 to 110 of the U.S.A data. The codes used are 

in the appendix. The plot method is available on demogdata. 

Figure 1:  Log death rates against age from 0 to 110 

 

 

The data confirms that mortality decreases with age. However, the young mortality hump is 

visible in the age-range (20, 40) probably caused by accident, drug abuse etc. Therefore, even 

though we note that mortality declines with age, we observe that the decrease has been uneven 

between the ages of 20 to 40. However, individuals start receiving annuities from the age of 60.  
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Figure 2 : Log death rates against time from 1933 to 2010 

 

 

 

The data confirms that mortality rate has been decreasing with years. Therefore this means that 

mortality rate in 2010 is quite low compared to the mortality rate in 1933. However, even though 

we note that mortality declines overtime, we observe that the decrease has been uneven across 

different ages especially at the age of 20 to 40.  
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4.5. Fitting the Model  

We fit the lee carter model using the lca function with singular value decomposition method. The 

following are the steps in estimation of the parameters using the Singular Value Decomposition 

approach: 

1. 𝑎 𝑥 =
1

𝑇
 ln⁡(𝑚𝑥,𝑡)

𝑡𝑛
𝑡=𝑡1

 

2. A matrix 𝑍𝑥,𝑡  is created for estimating 𝑏𝑥  and 𝑘𝑡  

3. Singular Value Decomposition is applied to matrix  𝑍𝑥,𝑡  to decompose the matrix  𝑍𝑥,𝑡  

into product of three other matrices: 

𝑈𝐿𝑉 ′ = 𝑆𝐷𝑉  𝑍𝑥,𝑡 = 𝐿1𝑈𝑥1𝑉𝑡1 +  ……… . +𝐿1𝑈𝑥𝑋𝑉𝑡𝑋                                                (4.1) 

Where U represents the age component, L represents the singular values and V represents 

the time component. 

4. The first time –component matrix and the first singular values 𝑘 𝑡 = 𝐿1𝑈𝑥1 will give the 

estimated values of 𝑘 𝑡 . The first vector of the age components 𝑏 𝑥 = 𝑈𝑥1will give 

estimated values of  𝑏 𝑥 . 

5. Estimation of a new matrix 𝑍 𝑥,𝑡  using the product of the estimated parameters 𝑏 𝑥   and 𝑘 𝑡  

to get 𝑍 𝑥1,𝑡1 = 𝑏 𝑥1 𝑘 𝑡1 

 

 𝑍𝑥,𝑡 =  
𝑍 𝑥1𝑡1 ⋯ 𝑍 𝑥1𝑡𝑛

⋮ ⋱ ⋮
𝑍 𝑥𝐴𝑡1 ⋯ 𝑍 𝑥𝐴𝑡𝑛

  𝑏 𝑥                                                                                       (4.2) 

 

6. The natural logarithm of the central death rates is then estimated, 

ln 𝑚𝑥,𝑡 = 𝑎 𝑥 + 𝑍 𝑥,𝑡 = 𝑎 𝑥 + 𝑏 𝑥𝑘 𝑡
        (4.3) 
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Figure 3: Parameter Estimates ax, bx and kt of Lee-Carter Model 

 

 

From our observations, the average mortality rate grows as the age increases, indicated by the ax 

pattern except for the hump that is as a result of the accidental. t  captures the main trend on 

logarithmic scale in death rates at all ages and as expected, has a decreasing trend with increment 

with time. The bx describes the tendency of mortality at age x to change as the general level of 

mortality kt changes. This indicates that when bx is large for some x, the death rate at age x 

varies a lot than the general level of mortality and vice versa. 
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4.6. Model Evaluation 

We use the mean percentage error to examine goodness of fit: 

 
ˆ1

*100%
i i

i i

y y
MAPE

n y

      (4.4) 

Female 

Lee-Carter analysis 

 

Call: lca(data = usadata, series = "female", max.age = 100)  

 

Percentage variation explained: 96.9% 

 

ERROR MEASURES BASED ON LOG MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

-0.00007  0.00995  0.00042  0.01606  

 

Averages across years: 

      IE      ISE      IPE     IAPE  

-0.00717  0.98335  0.03723  1.55252 

 

Male 

Lee-Carter analysis 

 

Percentage variation explained: 94.3% 

 

ERROR MEASURES BASED ON LOG MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

 0.00501  0.01242 -0.00041  0.01952  

 

Averages across years: 

      IE      ISE      IPE     IAPE  

 0.50034  1.22565 -0.04948  1.87779  

 

For males the MAPE of the fitted log death rates is approximately equal to 2% while that for 

females is approximately equal to 1.6%. Therefore the model fits reasonably well. 
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Total 

Lee-Carter analysis 

 

 

Percentage variation explained: 96.1% 

 

 

ERROR MEASURES BASED ON LOG MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

 0.00276  0.00898 -0.00010  0.01633  

 

Averages across years: 

      IE      ISE      IPE     IAPE  

 0.27565  0.89149 -0.01477  1.58032 

 

For totals, the MAPE of the fitted log death rates is approximately equal to 1.6333% therefore 

the model fits reasonably well. Detail results of the analysis are found in Appendix C. 

4.7. Forecasting 

It is appropriate to have the maximum length of the projection period approximately equal to the 

length of the fitting period. We use the forecast package to project the future values of t .  

The random walk drift model (RWD) for t has been used and the model is as shown below: 

 1
ˆ ˆ
t t tk k       (4.5) 

t  is the error term and   is the drift parameter where: 

 

1
ˆ ˆ

1

Tk k

T





   (4.6) 

To forecast two periods in time ahead, we substitute 1
ˆ
tk   moved back in time one period: 

 1
ˆ ˆ ˆ
t t tk k       
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2 1

2 1

ˆ ˆ ˆ( )

ˆ ˆ2 ( )

t t t

t t t

k

k

   

  

 

 

    

   

  (4.7) 

 

In order to forecast ˆ
t  at time ( )T t   where the data available is up to period T, we follow the 

same procedure and iterate ( )t  times and obtain:  

 
( )

( ) 1
ˆ ˆ ˆ( )

t

T t T T n

n

k k t  


         

 

 ˆ ˆ( ) ( )T tk t t        (4.8) 

 

Figure 4: Projected values of kt 
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We have projected the values of kt, the mortality changes as shown in Figure 4. The Lee- Carter 

model forecast shows an improvement in mortality rates. This implies that the cost of pension 

annuities and life insurance is expected to be higher in future as a result of people living longer 

than expected. 

 

4.8. Performing Actuarial Projections 

 

We use the following to obtain the life expectancy and the actuarial present values: 

 
,

, ,

ˆ ˆˆ ˆln

ˆ ˆexp( )

x t x x t

x t x t

a b

p

 



 

 
  (4.9) 

 

We calculate the actuarial present value of 
(12)

65a  for the selected cohorts. We have derived values 

separately for males and females and finally for the total population. See Appendix D for a 

detailed breakdown of the results. The actuarial present value for the total population is as below: 

Total 

 

 } 

 For cohort 1930 of total the e0 is   55.62   and the APV is  :    6.10 

 For cohort 1940 of total the e0 is   65.03   and the APV is  :    6.53 

 For cohort 1950 of total the e0 is   72.49   and the APV is  :    6.98 

 For cohort 1960 of total the e0 is   77.68   and the APV is  :    7.48 

 For cohort 1970 of total the e0 is   80.01   and the APV is  :    7.60 

 For cohort 1980 of total the e0 is   82.88   and the APV is  :    8.20 

 For cohort 1990 of total the e0 is   84.39   and the APV is  :    8.58 

 For cohort 2000 of total the e0 is  86.02  and the  APV is  :     8.78 

 For cohort 2010 of total the e0 is   89.99   and the APV is  :    9.20 
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From the actuarial present value results, we see that the annuities have been increasing with time 

as a result of the reduction mortality rates and the increase in life expectancy. Therefore the 

amount that annuity providers should pay to individual should decrease so as to avoid 

overpaying the annuitants. Longevity risk is arising due to the fact that the general level of 

mortality change unknown at the time of buying annuities.  
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

We have identified a common trend of mortality changes with age using the standard Lee-Carter 

model to the U.S. data. In addition, we have estimated the parameters using the Singular Value 

Decomposition approach and forecasted the values of ˆ
t  using the ARIMA method. Finally we 

have forecasted the life expectancies at birth. From the results, we‟ve noted that there is indeed a 

decrease in mortality rates with age and time. Further, the life expectancy has increased with 

time which has resulted to an increase in the actuarial present values that are supposed to be used 

in calculating annuities. We can therefore conclude that the risk that a pensioner will live longer 

than expected is evident from the results thus longevity risk exists. If the insurance companies 

and the pension funds do not take the changes in mortality rates into consideration by still using 

the usual life tables year in year out, they will end up paying more annuities to annuitants than 

they are supposed to. Therefore insurance companies and annuity providers should reserve for 

these risks in order to avoid going into liquidation. 

We have used US data to fit the Lee-Carter model since the Kenyan Mortality data was not 

readily available and not up to date. However, according to the World population 2300 published 

by the United Nations, life expectancy at birth for both developed and developing countries is 

projected to increase in future the only difference being the rate of increment. We therefore 

conclude by indicating some directions for future research especially focusing on the Kenyan 

mortality trend.  

The Lee-Carter model has received significant attention in the effort to model mortality rates 

since 1992. The model has proved to be robust and reaches to good accuracy in its predictions 
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for forecasts. In addition, for a precise value of the time index 
t , we can define a complete set 

of probabilities of death that allows us to find the values of the entire life table. However, we 

have assumed constant assumption of the parameters which mostly is not the case in practice. In 

addition the model does not include the cohort effects.  

 

5.2.Recommendations 

Based on the conclusion, we have observed clearly that longevity risks exist in pension schemes 

and for annuity providers. In this regard, we recommend that longevity risk management ideas 

should be implemented. Governments have responded by reforming the pension systems by 

encouraging individuals to work for a longer period of time and therefore save more for 

retirement after the shift from the defined benefit to the defined contribution schemes. Today, the 

annuities have also evolved into different forms. This includes, commencing the payment 

immediately or at a later date, the annuities can be fixed or varying with certain underlying 

factors e.g. inflation or the annuity can be a joint or for a single annuitant depending on the 

individual preference.  

However detailed longevity risk management is as outlined below: 

5.2.1. Longevity Risk Management 

5.2.1.1.Longevity- Linked Instruments 

The annuity providers (insurers) and pension plans may use the different products in place such 

as longevity bonds and longevity indices in hedging longevity risk. For most of the developing 

countries, the market for longevity risk is still at the embryonic stage.  

Longevity Indices 
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Longevity index will show the probability of increase of life expectancy for the individuals of a 

certain age over a period of time. This will enable the transfer of the longevity risk as well as 

improve the visibility, transparency of the risks. Currently, the existing indices are: 

I. Credit Suisse Longevity Index launched in 2005 based on the US data. 

II. JP Morgan Lifemetrics index launched in 2007 for the US, England & Wales, Germany 

and the Netherlands national population data. 

III. Goldman Sachs Mortality Index launched in 2007 based on a sample of the US insured 

population data who are over 65. 

IV. Deutsche Borse Xpect Age and Cohort Index launched in 2008 for Germany, Netherlands 

and England & Wales data. 

Longevity Bonds 

Longevity bond pays a coupon based on the survivorship of a selected birth cohort. If a higher 

than expected proportion of the cohort survives, the coupon rate increases in order to offset the 

provider‟s cost and so as to hedge against longevity risk. 

Longevity Swaps 

This is an instrument that offsets the annuity provider risks of their policyholders living longer 

than expected. The annuity provider makes regular payments to an investment bank based on 

agreed mortality assumptions and in return, the investment bank will pay out amounts based on 

the actual pension fund mortality rates. This idea is similar to the one used in interest or inflation 

swap. There are two types of longevity swaps, namely:- 
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1) Named lives swaps 

The trustees pay fixed cash flows to the swap provider and in return the swap provider 

will pay cash flows to the pension scheme based on the actual longevity of the pensioners 

in the scheme. The trustees will pay a once of cash flow while the swap provider will be 

paying the cash flows periodically. 

2) Population index swaps 

Under the index-based longevity swap, the national population data is used rather than a 

specific scheme mortality experience. Since the swaps are typically set according to the 

general population‟s experience, the index swaps aim to protect the scheme against 

improvements in longevity assumptions. 

 

5.2.1.2.Re-insurance 

The annuity providers and pension plan may re-insure in order to reduce or mitigate the 

longevity risk therefore the reinsurer will meet part or wholes of the liability due. Cairns et al., 

(2008b) discussed the possibility of reinsuring in more detail. 

 

5.2.1.3.  Asset-Liability Modelling 

If the life insurers and the pension plans retain longevity risk as part of their business, then asset 

liability modelling should be done to ensure that the assets that they hold are sufficient to meet 

the liability requirements. They may for instance come up with solvency buffers; by this they 

will reduce the probability of underfunding.   
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To avoid applying the results of a developed country to a developing country, Kenya, we 

recommend that annuity providers and the pension plans use the Kenyan mortality data in fitting 

and forecasting the mortality rates and draw their conclusion with the relevant data Kenyan data. 

Since longevity risk is a major concern to annuity providers and pension plans, we recommend 

that other models to be used by future academicians to fit and forecast the mortality rates and 

hence measure longevity risks instead of the Lee and Carter model that we have used in this 

project in order to take care of the limitations of the Lee and Carter model for instance the fact 

that cohort effects is not taken care of in the Lee and Carter Model. The most appreciated and 

recommended model is the Cairns-Blake-Dowd (2008) Model (CBD-4). 
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APPENDICES 

APPENDIX A: Proof of Low Rank Approximation 

 

Proof of low rank approximation 

T

n n nA U V    

Where nU  and 
T

nV  are orthogonal matrix, and n  is a diagonal matrix with entries 1 2( ..... )n     

Such that 1 1( ...... )n n       

The best approximation for A is given by 

1

kk

i ii i
A u v


   

To prove kA  is indeed the best approximation i.e. kA A  is minimum. 

Proof by Contradiction: 

Let us suppose B   s.t. 
22 2

12 2

k

kA B A A        

rank (B)k (Assuming in Low Rank Approximation through dim(null(B)+ rank(B)=N  

dim(null (B))  n-k. 

Let ( )null B   

12 2

( )

( ) k

Let null B

A B A



   



  
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We know that ( 1)k   dimension space 
1 2( , ,..... )nv v v   

s.t. 
1 2( , ,......, )nV span v v v  and 12 kAV     

since 1n k k n      

Therefore by contradiction we get that kA  is the best approximation. 
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APPENDIX B:  R CODES 

 

 library(demography) 

 library(forecast) 

 library(life contingencies) 

 usadata<-

hmd.mx(country="USA",username="ngugiwairimu@gmail.com",password="ngugi",labe

l="U.S.A") 

 summary(usadata) 

 par(mfrow=c(1,3)) 

 plot(usadata,series="male",datatype="rate",main="male rates") 

 plot(usadata,series="female",datatype="rate",main="female rates") 

 plot(usadata,"total",datatype="rate",main="Total rates") 

 par(mfrow=c(1,3)) 

 plot(usadata,series="male",datatype="rate",plot.type="time",main="Male 

rates",xlab="Years") 

 plot(usadata,series="female",datatype="rate",plot.type="time",main="Female 

rates",xlab="Years") 

 plot(usadata,series="total",datatype="rate",plot.type="time",main="Total 

rates",xlab="Years") 

 usLcaM<-lca(usadata,series="male",max.age=100) 

 usLcaF<-lca(usadata,series="female",max.age=100) 

 usLcaT<-lca(usadata,series="total",max.age=100) 

 usLcaM 

 usLcaF 

 usLcaT 

 par(mfrow=c(1,3)) 

 plot(usLcaT$ax,main="ax",xlab="Age",ylab="ax",type="l") 

 lines(x=usLcaF$age,y=usLcaF$ax,main="ax",col="red") 

 lines(x=usLcaM$age,y=usLcaM$ax,main="ax",col="blue") 

 legend("topleft",c("Male","Female","Total"), 

 cex=0.8,col=c("blue","red","black"),lty=1) 

 plot(usLcaT$bx,main="bx",xlab="Age",ylab="bx",type="l") 

 lines(x=usLcaF$age,y=usLcaF$bx,main="bx",col="red") 

 lines(x=usLcaM$age,y=usLcaM$bx,main="bx",col="blue") 

 legend("topright",c("Male","Female","Total"), 

 cex=0.8,col=c("blue","red","black"),lty=1) 

 plot(usLcaT$kt,main="kt",xlab="Year",ylab="kt",type="l") 
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 lines(x=usLcaF$year,y=usLcaF$kt,main="kt",col="red") 

 lines(x=usLcaM$year,y=usLcaM$kt,main="kt",col="blue") 

 legend("topright",c("Male","Female","Total"), 

 cex=0.8,col=c("blue","red","black"),lty=1) 

 summary(usLcaF) 

 summary(usLcaM) 

 summary(usLcaT) 

 plot(residuals(usLcaF)) 

 plot(residuals(usLcaM)) 

 plot(residuals(usLcaT))      

 fM<-forecast(usLcaM,h=120) 

 fF<-forecast(usLcaF,h=120) 

 fT<-forecast(usLcaT,h=120) 

 summary(fM) 

 summary(fF) 

 summary(fT) 

 par(mfrow=c(1,3)) 

 plot(fM$kt.f,main="Male") 

 plot(fF$kt.f,main="Female") 

 plot(fT$kt.f,main="Total") 

 ratesM<-cbind(usadata$rate$male[1:100,],fM$rate$male[1:100,]) 

 ratesF<-cbind(usadata$rate$female[1:100,],fF$rate$female[1:100,]) 

 ratesT<-cbind(usadata$rate$Total[1:100,],fT$rate$total[1:100,]) 

 par(mfrow=c(1,1)) 

 plot(seq(min(usadata$year),max(usadata$year)+120),ratesF[65,],col="red",xlab="Years",

ylab="Death Rates",type="l") 

 lines(seq(min(usadata$year),max(usadata$year)+120),ratesM[65,],col="blue",xlab="Year

s",ylab="Death Rates") 

 lines(seq(min(usadata$year),max(usadata$year)+120),ratesT[65,],col="black",xlab="Yea

rs",ylab="Death Rates") 

 lengend("topright",c("Male","Female","Total"),cex=0.8,col=c("blue","red","black"),lty=1

) 

 

 createActuarialTable<-function(yearOfBirth,rate){ 

 mxcoh<-rate[1:nrow(rate),(yearOfBirth-min(usadata$year)+1):ncol(rate)] 

 cohort.mx<-diag(mxcoh) 

 cohort.px=exp(-cohort.mx) 
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 #we get projected Px 

 fittedPx=cohort.px #add px to table 

 px4Completion=seq(from=cohort.px[length(fittedPx)], to=0,length=20) 

 totalPx=c(fittedPx,px4Completion[2:length(px4Completion)]) 

 #create life table 

 irate=1.04/1.02-1 

 

 cohortLt=probs2lifetable(probs=totalPx,radix=100000,type="px", 

 name=paste("Cohort",yearOfBirth)) 

 cohortAct=new("actuarialtable",x=cohortLt@x,lx=cohortLt@x, 

o interest=irate,name=cohortLt@name) 

 return(cohortAct) 

 } 

 

 getAnnuityAPV<-function(yearOfBirth,rate){ 

 actuarialTable<-createdActuarialTable(yearOfBirth,rate) 

 out=axn(actuarialTable,x=65,m=12) 

 return(out) 

 } 

 

 rate<-ratesM 

 for(i in seq(1930,2010,by=10)){ 

 cat("For cohort",i,"of males e0 at birth is", 

 round(exn(createActuarialTable(i,rate)),2), 

 "and the APV is : ",round(getAnnuityAPV(i,rate),2),"\n") 

 } 

 

 rate<-ratesF 

 for(i in seq(1930,2010,by=10)){ 

 cat("For cohort",i,"of females e0 at birth is", 

 round(exn(createActuarialTable(i,rate)),2), 

 "and the APV is : ",round(getAnnuityAPV(i,rate),2),"\n") 

 } 
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 rate<-ratesT 

 for(i in seq(1930,2010,by=10)){ 

 cat("For cohort",i,"of males e0 is", 

 round(exn(createActuarialTable(i,rate)),2), 

 "and the APV is : ",round(getAnnuityAPV(i,rate),2),"\n") 

 } 
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APPENDIX C: Residual Analysis 

 

Female 

 

Lee-Carter analysis 

 

Call: lca(data = usadata, series = "female", max.age = 100)  

 

Adjustment method: dt 

Region: U.S.A 

Years in fit: 1933 - 2010 

Ages in fit: 0 - 100  

 

Percentage variation explained: 96.9% 

 

ERROR MEASURES BASED ON MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

-0.00006  0.00005  0.00494  0.07025  

 

Averages across years: 

      IE      ISE      IPE     IAPE  

-0.00530  0.00390  0.49530  6.96561  

 

 

ERROR MEASURES BASED ON LOG MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

-0.00007  0.00995  0.00042  0.01606  

 

Averages across years: 

      IE      ISE      IPE     IAPE  

-0.00717  0.98335  0.03723  1.55252 

 

Male 

 

Lee-Carter analysis 

 

Call: lca(data = usadata, series = "male", max.age = 100)  

 

Adjustment method: dt 

Region: U.S.A 
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Years in fit: 1933 - 2010 

Ages in fit: 0 - 100  

 

Percentage variation explained: 94.3% 

 

ERROR MEASURES BASED ON MORTALITY RATES 

 

Averages across ages: 

     ME     MSE     MPE    MAPE  

0.00000 0.00006 0.01120 0.08008  

 

Averages across years: 

     IE     ISE     IPE    IAPE  

0.00195 0.00501 1.11846 7.93905  

 

 

ERROR MEASURES BASED ON LOG MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

 0.00501  0.01242 -0.00041  0.01952  

 

Averages across years: 

      IE      ISE      IPE     IAPE  

 0.50034  1.22565 -0.04948  1.87779  

 

Total 

Lee-Carter analysis 

 

Call: lca(data = usadata, series = "total", max.age = 100)  

 

Adjustment method: dt 

Region: U.S.A 

Years in fit: 1933 - 2010 

Ages in fit: 0 - 100  

 

Percentage variation explained: 96.1% 

 

ERROR MEASURES BASED ON MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

-0.00002  0.00005  0.00728  0.06803  
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Averages across years: 

      IE      ISE      IPE     IAPE  

-0.00106  0.00384  0.72981  6.75980  

 

 

ERROR MEASURES BASED ON LOG MORTALITY RATES 

 

Averages across ages: 

      ME      MSE      MPE     MAPE  

 0.00276  0.00898 -0.00010  0.01633  

 

Averages across years: 

      IE      ISE      IPE     IAPE  

 0.27565  0.89149 -0.01477  1.58032 
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APPENDIX D: Actuarial Projections 

 

For Males: 

 } 

 For cohort 1930 of males the e0 is   59.52   and the APV is  :    4.92 

 For cohort 1940 of males the e0 is   62.36   and the APV is  :    5.48 

 For cohort 1950 of males the e0 is   66.32   and the APV is  :    6.02 

 For cohort 1960 of males the e0 is   76.25   and the APV is  :    7.18 

 For cohort 1970 of males the e0 is   79.52   and the APV is  :    7.52 

 For cohort 1980 of males the e0 is   80.21   and the APV is  :    7.92 

 For cohort 1990 of males the e0 is   82.68   and the APV is  :    8.01 

 For cohort  2000 of males the e0 is  84.86   and the APV is  :    8.46 

 For cohort 2010 of males the e0 is   85.98   and the APV is  :    8.82 

 

For Females 

 } 

 For cohort 1930 of females the e0 is   65.72   and the APV is  :   6.89 

 For cohort 1940 of females the e0 is   69.31   and the APV is  :   7.56 

 For cohort 1950 of females the e0 is   73.01   and the APV is  :   8.03 

 For cohort 1960 of females the e0 is   79.83   and the APV is  :   8.38 

 For cohort 1970 of females the e0 is   83.36   and the APV is  :   8.79 

 For cohort 1980 of females the e0 is   85.85   and the APV is  :   9.11 

 For cohort 1990 of females the e0 is   87.38   and the APV is  :   9.43 

 For cohort  2000 of females the e0 is  89.27   and the APV is  :   9.66 

 For cohort 2010 of females the e0 is   89.99   and the APV is  :   9.84 

 

Total 

 } 

 For cohort 1930 of total the e0 is   55.62   and the APV is  :    6.10 

 For cohort 1940 of total the e0 is   65.03   and the APV is  :    6.53 

 For cohort 1950 of total the e0 is   72.49   and the APV is  :    6.98 

 For cohort 1960 of total the e0 is   77.68   and the APV is  :    7.48 

 For cohort 1970 of total the e0 is   80.01   and the APV is  :    7.60 

 For cohort 1980 of total the e0 is   82.88   and the APV is  :    8.20 

 For cohort 1990 of total the e0 is   84.39   and the APV is  :    8.58 

 For cohort 2000 of total the e0 is  86.02    and the  APV is  :   8.78 

 For cohort 2010 of total the e0 is   89.99   and the  APV is  :   9.20 




