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Abstract

In the Kenyan education system, progression in tertiary education is dependent on a standard-

ized national examination administered by the Kenya National Examinations Council (KNEC).

The ministry of education guidelines stipulates that the pass mark for the university entry exam-

ination is C plus and above. A student who scores C+ or higher is eligible for direct admittance

to university program. Publicly available data on Kenya Certificate of Secondary Education

(KCSE) performance in Kenya for the years 2006-2010 was analyzed. Differences between the

different school types (boys only, girls only, or mixed schools) as well as differences in perfor-

mance between boys and girls were assessed. A generalized estimating equations marginal model

was applied in order to account for association between scores within a school in the five year

period using the SAS procedure PROC GENMOD. Flexibility in the trend was captured by addi-

tional quadratic and cubic time effects. GEE goodness of fit statistics, the quasi-likelihood under

independence model criterion (QIC) was used to select best mean model as well as best working

correlation structure for the study. Finally contrasts of interest were performed. A model with

school, gender specific intercepts and common slopes was selected with exchangeable correlation

structure. Results indicated that there was a significant difference between the different school

types in their candidates probability of attaining the stipulated minimum university entry grade.

In particular, boys only schools had the highest probability, followed by girls only schools and

finally mixed schools. Moreover contrasts indicated that boys in boys only schools had a higher

success rate than boys in mixed schools. Girls in girls only schools had a higher success rate than

girls in mixed schools while boys in mixed schools performed better than girls in mixed schools.

The success rate in KCSE however did not depend on the year under review as was evident in

the linear, quadratic and cubic slope parameters which were not statistically significant.

Key words: Exchangeable correlation,Generalized estimating equations, KCSE, QIC,
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Chapter 1

INTRODUCTION

In the Kenyan education system, progression to tertiary education is dependent on a stan-

dardized examination administered by the Kenya National Examination Council (KNEC). The

examination administered leads to the award of the Kenya Certificate of Secondary Education

(KCSE). The ministry of education guidelines stipulates that the pass mark for KCSE is a mean

grade of C plus (commonly denoted C+) and above, which corresponds to a minimum of six

points on a twelve point grading scale, with the twelve points corresponding to the highest pos-

sible score. A student who scores C+ or higher is deemed eligible for direct admittance to a

university program.

1.1 Study Background

The performance in the KCSE examination varies across the country depending on many factors

including; the classification of the schools as either national, county, the number of candidates in

a school, whether the school is boys only, girls only or of mixed gender school, available facilities

for teaching, location of school in terms of political stability in the region amongst a myriad of

other factors.
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Until the year 2014, the release of KCSE results-which is usually done every year around

February-March through a ceremony headed by the minister of education- included ranking

of the students’ performance individually, (best 100 candidates in each province and nationally

by gender) as well as the ranking of schools based on the mean grade of the schools’ candidates.

This ranking mostly stimulated healthy competition amongst schools in a bid to outperform each

other in the subsequent examinations. Some schools were consistent over the years in terms of

their ranking while ‘one time wonders’ were also a common occurrence. However, there has

not been much reported analysis or comparison of schools performance taking into account the

potential effect of time. Moreover at face value, the ranking popularly reported by the ministry

of education does not form a good scientific basis for comparison of performance across boys

only, girls only or mixed schools.

1.2 Problem Statement.

The Kenyan government is committed to provision of equal access to secondary education to all

Kenyans. In line with this, the government launched free day secondary education in 2008 as was

stipulated in the Kenya Education Sector Support Programme (KESSP) which was launched in

2005. This led to 1.7 Million students benefitting from the programme in the year,(Njoroge and

Kerei, 2012). Several studies have been undertaken in establishing difference in performance

between males and females in the Kenya Certificate of Secondary Education (KCSE) with no

specific inference to the type of schools the students belong especially in Nakuru County. There

is need to further extend such studies to establish how secondary school performance in KCSE

in Nakuru county varies from different school types namely Boys only secondary schools, Girls

only secondary schools and Mixed secondary schools (Boys & Girls). This study will focus on

establishing if there exists difference in secondary school performance between the three school

types, as well as a study on difference in performance across similar genders between different

school types, in Nakuru County.
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1.3 Study Objectives

1.3.1 General Objective:

Gain insightful analysis on KCSE performances in Nakuru County while taking into account

different school types and gender over time, sufficient enough to warrant need for interventions

from Nakuru county government, ministry of education as well as other relevant stakeholders.

1.3.2 Specific Objectives:

1. Establish if there exists a significant difference in overall KCSE performance between

Mixed schools, Boys Schools & Girls schools in Nakuru County.

2. Establish if boys performance differs significantly between mixed schools and boys schools,

enough to warrant for interventions from relevant education bodies.

3. Establish if girls performance differs significantly between mixed schools and girls schools,

enough to warrant for interventions from relevant education stakeholders.

4. Establish if there exists a significant difference in overall KCSE performance between boys

& girls in mixed school.

1.4 Significance of the study.

This study will provide insights on KCSE performances in Nakuru County. It will focus on the

relationship between gender of the students as well as the type of school the students belong to

relative to their performance in KCSE over time. The insights gained from this study can be

adopted by relevant education stakeholders in Nakuru County as well as the national government

3



in formulating policies geared towards an improved performance in the national examinations

within the county.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Student performance in secondary education can vary widely due to several factors. The ap-

proach adopted for this paper is generalized estimating equations (GEE) of Zeger et al. (1988)

which is an extension of generalized linear models (GLM) to longitudinal data analysis and uses

quasi-likelihood estimation. With their approach, we do not only look at annual KCSE per-

formance independently, but try to account for potential correlation in the KCSE performance

indicators within one school over time.

2.2 Standard GEE theory

Various approaches exist for analyzing longitudinal data sets with the mixed effects models

which use full likelihood approaches and generalized estimating equations GEEs which use

quasi-likelihood approach as the most commonly used. GEE models population averaged pro-

files whereas the mixed effect models both the fixed effects, i.e. population averaged profiles

as well as the random effects (subject/individual) specific profiles. According to Molenberghs

and Verbeke (2005), whereas full likelihood models have the benefit of gaining efficiency, this
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comes at an extra cost of an increased rate of model misspecification due to the computational

complexity they entail. A full likelihood procedure can however be replaced by quasi-likelihood

especially if one is interested in the first order marginal mean parameters as well as the pair-

wise associations. This leads to the generalized estimating equations, usually denoted GEE as

proposed by Zeger et al. (1988).

Generalized estimating equation are an analysis method and not necessary a model. Instead,

as noted by Weaver (2009) , a model to be fitted using GEE approach is specified through a

link function that relates mean response to a regression equation while assuming distributional

assumptions for the response. A working correlation is also specified.

Liu (2010) Showed that the first extension of GEE, usually denoted GEE1, requires only the

correct specification of the univariate marginal distributions and in estimating the main effect

parameters, the information of the association structure is not used. This yields consistent main

effect estimators even when the association structure is misspecified. Molenberghs and Verbeke

(2005) however noted that, severe misspecification of the association structure may affect the

efficiency of GEE1 estimators, and as a result are less adequate if the study interest is largely

based on the association of parameters. On the other hand the second order extension of GEEs,

denoted GEE2, includes both the marginal pairwise associations as well as the correlations.

GEE2 is as efficient as the full likelihood approach, but as Molenberghs and Verbeke (2005)

observed, bias is likely to occur in estimation of the main effect parameters when the association

structure is misspecified. In our study, we focus on GEE1.

The choice of association structure depends on the type of study being conducted since GEE

uses several correlation structures to model the correlation matrix among observations within

each cluster. Compound symmetry/exchangeable correlation structure assumes equal correla-

tions within subjects of interest at all the time points in the model. Under the assumption of

independence of observations within a cluster, the correlations are assumed to be zero which
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is the usual assumption in classical logistic regression. On the other hand, the first order auto

regressive correlation structure denoted AR (1) assumes that adjacent observations have higher

correlations than the no adjacent ones. Finally, the unstructured assumes different correlations

amongst observations, and is thus estimated independently from the data, (Lawal, 2003).

Lawal (2003) introduced two different time concepts in employing GEE method. He defined

a time stationery covariate as a between subject covariate that would be repeated in each of

the time point measures, for every subject. In our study, this time stationery covariate is the

variable gender which is repeated every year for every school. The time varying covariate on the

other hand, is a within subject variate and assumes different values for each of the time point

measure on each subject. In our study, this can be viewed as the KCSE grade which varies each

year for each school.

GEE has the property of yielding consistent main effect estimators even when the association

structure is misspecified implying that the point estimates as well as the standard errors are

asymptotically correct. These standard errors are popularly known as the robust standard errors

and the variance estimator is referred to as the sandwich estimator. Standard errors in GEE are

reported in the form of the empirically corrected standard errors and the model based standard

errors. As noted by Molenberghs and Verbeke (2005), its of no use to report on the model based

standard errors since they are generally incorrect, unless they would be of scientific interest on

the study where they can be looked at as an indication of the distance between the working as-

sumptions for the correlation and the true structure. The empirically corrected standard errors

are however of interest to the study in GEE analysis. Whereas a far apart distance between

both standard errors may be an indication of poor choice of working assumptions, we recall that

a poor working assumption is not wrong. Lawal (2003) further noted that a robust estimator is

deemed a good estimate if the number of clusters is large. Naive variance estimates are on the

other hand correct if the correlation has been correctly modelled.
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Longitudinal datasets are prone to missing observations especially due to incidences of drop outs

amongst other factors. Just like in any other analysis, the issue of missing data and how to han-

dle it is of key interest and deserves special treatment even in the context of GEE models. Data

is considered to be missing completely at random (MCAR) when the probability of missingness

is completely independent of the outcome, whether missing or observed. On the other hand,

data is considered missing at random (MAR) when the probability of missingness is indepen-

dent of the vector of missing outcomes, but may be dependent on observed outcomes.For GEE

estimator, valid inferences can be obtained from data which is MCAR or MAR,(Zorn, 2001).

In conclusion, some of the benefits obtained from GEE as observed by Weaver (2009) and

Ghisletta and Spini (2004) include but not limited to the fact that it accounts for within sub-

ject correlations, allows for time varying covariates as well as irregularly timed measurements,

allows for a range of correlations and can be applied to incomplete data as long as the individual

observations are missing completely at random. GEEs have no strict distribution assumptions

and instead assume the variance of the outcome variable to be expressed as a function of the

expectation. The GEE approach can also be easily implemented in several statistical softwares

especially in SAS using the PROC GENMOD procedure. On the other hand, GEE also has its

limitation just like any other statistical approach. As observed by Ghisletta and Spini (2004),

the technique is asymptotic and requires large sample sizes for unbiased and consistent estima-

tion.

2.3 Review of GEE applications.

GEE has widely been used in the context of Gaussian and non-Gaussian correlated datasets.

Ghisletta and Spini (2004) noted that this approach has widely been applied in biological, phar-

macological and closely related disciplines with its application in educational and social sciences

still being quite scarce despite longitudinal data in education and social sciences being a common
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occurrence.

Molenberghs and Verbeke (2005) presented several case studies where application of GEE in the

medical practice and epidemiological studies was illustrated. He used clustered data from the de-

velopmental toxicological area conducted under the U.S National Toxicology Programme (NTP)

to fit a model in standard GEE approach using the SAS procedure GENMOD. The study aim

was to model the effect of a five doses/chemicals in mice. In this analysis, the working assump-

tions of independence and exchangeable were considered since the other assumptions such as

AR (1) and unstructured were less sensible given the nature of the data. The analysis compared

model based and empirically corrected standard errors and there was a clear difference in the

case of independence working assumptions and much less in the case of exchangeable assumption.

Molenberghs and Verbeke (2005) noted that as long as the study interest was to assess the effect

of a dose, GEE1 would suffice but if there was additional interest in association, then GEE1

opt to be cautiously applied. Finally, the working assumption of exchangeability was deemed

reasonable both on biological grounds and also putting into consideration the design of the study.

Lawal (2003) applied GEE approach on a six cities longitudinal study whose interest was to

assess the health effects of pollution. In particular, the study centered on whether age has an

effect on childs wheezing status. He analyzed data from two of the cities namely the Kingston-

Harriman, which is considered a more polluted city, and Portage. Children between 7 years and

10 years were examined for wheezing/panting while also recording the mothers smoking habits

at the start of the study. In this study, the response at each age was a childs wheezing status

which was of binary nature of either zero if no wheeze and one if there was wheeze. Covariates

of interest were the city, childs city of residence, which was also binary with 1=if child lived

in Kingston-Harriman, and 0=if child lived in Portage. Other covariates of interest were the

smoke status measured as the maternal cigarettes smoking at that age in packs per day, and

the childs age in years. Age effect was assessed in linear, quadratic and cubic terms. The model

was implemented in SAS software using the PROC GENMOD procedure.
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Results from the study showed that the parameter estimates were similar for all the correlation

structures. Childs city of residence was significant with the more polluted city (Kingston-

Harriman) having a higher tendency to increase odds of wheezing by a factor of 1.65. Smoking

was also significant with the odds of a child wheezing increasing by a factor of 1.68 for every two

packs per day smoked by the mother. Contrasts were further performed to test for no age effect

in the model. Results indicated lack of significance in the contrasts using any of the correlation

models implying that there was no age effect.

Using data from the Swiss Interdisciplinary Longitudinal study on the Oldest Old (SWILSO-

O), Ghisletta and Spini (2004) applied GEE approach in assessing predictors of drop out in

a longitudinal study of an old Swiss sample assessed five times. SWILSO-O is a multi-cohort

longitudinal study on psychological, health, social and sociological situation. Age, sex, living

context, living arrangement, depressive symptoms, physical troubles and social economic status

(SES) were the variables considered in the analysis. Results from the GEE showed that the time

varying covariate age was statistically significant. The unstructured and non-stationery GEE

models showed that the physical status was significant and thus meaningful to the participation

of the study. SES as well as the living context also had a strong effect. From the results obtained

after fitting different correlation structures, the study recommended the Logit GEE model with

unstructured specification. This was informed by the fact that the unstructured model implied

the drop out process between first and subsequent waves were different from successive drop out

processes. Further, the model confirmed a known drop out background in ageing studies that

older ages, lower SES as well as lower physical health status are strong predictors of drop out

in such researches.

Within the education sector however, while the academic performance of students has been eval-

uated mostly via standardized examinations such as the British General certificate of Secondary

Education (GCSE) and in the Kenyan context, the Kenya Certificate of Secondary Education
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(KCSE), literature on retrospective studies on the possible trends in performance over time is

limited. For instance, McManus et al. (2013) tackled the problem of continuity in performance

of students in the medical school based on their secondary school performance. In particular,

they compared data from five longitudinal studies of UK students and doctors between 1970

and early 2000s. Their meta- analysis however used correlation analysis and path diagrams.

Charnley (2008) in his report on accessing GCSE performance of independent pupils based on

gender and school type differences, used data from the MidYIS (Middle Years Information Sys-

tem) project which is operated by the Curriculum, Evaluation and Management (CEM) center

at Durham University to perform separate contrasts in performance between boys in boys school

and in mixed schools as well as girls in girls schools and in mixed schools. Contrasts were per-

formed on the basis of logarithmic regression equations which were separately computed for both

genders. He observed that pupils in single sex schools performed significantly better in most of

the subjects than pupils in mixed schools.

Eisenkopf et. al conducted an experiment in Switzerland to study the effects of random assign-

ment to co-educational and single sex classes on academic performance of female high school

students Eisenkopf et al. (2011). Estimation results showed that single sex improves perfor-

mance of female school students in mathematics and this effect is more positive if the single sex

class is taught by a male teacher.

In Kenya, Mburu (2013) conducted a study to investigate the influence of the type of school

attended on gender differences in KCSE performance in Kericho and Kipkelion districts. The

main objectives of the study was to establish if the social classroom interactions had an ef-

fect on male and female student academic performance, as well as the type of school attended.

Two questionnaires were administered to teachers and students to collect data while descriptive

statistics were used in data analysis. In particular Chi-square and correlations statistics were

used in analyzing data on the influence of the type of school attended on students academic
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performance and compared to the students results in KCSE.

Results from the study showed that the type of school attended was a determinant on gender

difference in academic performance. Girls from girls schools only had a better academic per-

formance compared to girls from mixed schools. The same case applied to boys where boys

from single sex schools had a better academic performance than those from a mixed school.

The study also revealed that majority of the students had a strong preference of joining single

sex schools over the mixed schools. One of the factors attributed to poor performance of both

genders from mixed schools compared to single sex schools was the number of distractions from

opposite genders especially for the females.

Challenges faced by girl child in academic performance have been of interest to most stake-

holders especially within the education sector as well as non-governmental organizations. For

instance, Makewa et al. (2014) employed descriptive-comparative, correlation and cross section

survey approach to study if there was any relationship in girl child challenges and academic

achievement in mixed secondary schools in Mbooni district. In particular the study adopted a

descriptive research design to identify the challenges faced by the girl child in mixed schools and

correlation predictions were made on the effects of these challenges on academic achievement.

Results from the study showed that there was a moderate negative correlation between girls

performance and female teachers as role models.

Yara and Catherine (2011) used multiple linear regressions to assess the determinants of perfor-

mance in mathematics during the KCSE within Nyamaiya division. A more advanced approach

to analyzing secondary school education data was presented by Bagaka’s (2011). Using mul-

tilevel data with data hierarchy at school- class-student level, he used a two-level hierarchical

linear mixed-effects model. In addition, his analysis included the students KCSE performance as

a predictor amongst other covariates of interest. The outcome of interest was the standardized

questionnaire outcomes for teachers and students.
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Chapter 3

METHODOLOGY

This chapter describes the data and variables that will be used to examine the objectives of the

study as well as any data clean up or manipulation techniques that will be necessary. We will

further describe the application of generalized estimating equations to this study given the data.

3.1 Data

Longitudinal data on Kenya Certificate of Secondary Education (KCSE) performance was ob-

tained from the Kenyan governments open data website for the period 2006-2010. 1. Longitudi-

nal data consists of repeated measures/observations of an outcome variable for each experimental

unit/subject, recorded over a period of time. For the purpose of this analysis, a unit/subject

refers to a school within Nakuru district, Nakuru County for which we have results for KCSE

for at least one year within the 5-year period under consideration. Each subject may have a set

of covariates associated with them. One of the characteristics of the outcomes in longitudinal

data is that outcomes from the same subject are usually correlated.

1https://www.opendata.go.ke/Education/KCSE-Exam-Results-2006-to-2010/ycfy-7tnf
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We then apply appropriate filters to extract data for Nakuru district in Nakuru County. The

success or failure in the exams is based on the grade attained in KCSE in each year.

3.2 Computing response variable.

The interest is to compute a binary response variable of either success or failure for each school

within a given period of time based on the grade attained. We define an indicator variable such

that, its a Pass if the KCSE mean grade is higher than or equal to C+ (C Plus) and Fail when

the a KCSE mean grade is less than C+. The choice of this categorical outcome is informed by

the fact that a minimum of C+ is the official Kenyan government’s pass mark to join a university.

We thus have a binary indicator for school i in year j for gender k defined as below;

Iijk =


1, if ≥ C+

0, if < C+

(3.1)

In order to obtain the response of interest, the data is aggregated based on the indicator variable

by calculating the total number of students of a particular gender in that school who passed

or failed in each of the years. The final response variable is thus binomially distributed as follows;

Yijk ∼ Binomial (nijk, πijk) (3.2)

Where, Yijk is the number of students from school i who passed (had C+ and above) in year j

for each gender k.

nijk is the total number of candidates of gender k in school i and year j obtained as the sum of

number candidates who passed and those that failed in that particular year.
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πijk is the probability of passing for a candidate of gender k in school i and year j.

This binomial response is measured repeatedly for each school. The available data however has

gaps in some years whereby performance of some schools is not reported. The missingness pat-

tern is assumed to be missing completely at random (MCAR) and therefore the analysis does

not try to accommodate it.

Some of the assumptions on this variable are;

1. Yijk are not necessarily normal. Infact, they follow a binomial distribution.

2. Yijk are not necessarily independent. Measurements from the same school are correlated.

Let N be the number of subjects and ni be the number of repeated measurements of the ith

subject. We can therefore group the response for the ith subject into an ni × 1 vector as below;

yi =



yi1

yi2

.

.

yini


; i = 1, 2, . . . . . . N (3.3)

3.3 Computing covariates.

The covariates of interest in this study are gender, year and school type where school type is

either single sex, i.e. Boys only or Girls only, or mixed school which comprises of both genders.

However, the data obtained did not explicitly categorize schools into the three school types of
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interest for this study. Instead the data only provides the performance for each gender in every

school in each year.

Using this information, we define a dummy variable for the covariates for each gender in school

i in year j as below;

Xij1 =


1, if boys from boys only school

0, otherwise

Xij2 =


1, if girls from girls only school

0, otherwise

Xij3 =


1, if boys from mixed school

0, otherwise

Xij4 =


1, if girls from mixed school

0, otherwise

(3.4)

We can similarly group the vector of covariates into an ni × p matrix of covariates as below;

Xi =



x′i1

x′i2

...

x′ini


=



xi11 xi12 · · · xi1p

xi21 xi22 · · · xi2p

...
... · · ·

...

xini1 xini2 · · · xinip


(3.5)

16



3.4 Marginal Model: Generalized Estimating Equations (GEE).

Generalized estimating equations, usually denoted GEE, are basically an extension of gener-

alized linear models (GLMs) to accommodate correlation in outcomes. One of the properties

of longitudinal data is that the outcomes of a single subject are usually correlated. GEE is a

Population-Averaged models, usually denoted (PA), where the aggregate response for the pop-

ulation is modeled rather than modeling a subject specific profile like in the generalized linear

mixed-effects models (random-effects models).

In this study, we apply the methodology for generalized estimating equations, (GEE) in order

to account for the correlation between outcomes of the same school. We adopt GEE1 where one

does not use information of the association structure to estimate the main effects parameter.

GEE1 only requires the correct specification of the univariate marginal distribution.

As such, GEE1 yields consistent main-effect estimators, regardless of whether the association

structure is mis-specified or not.

3.4.1 Model Specification.

One of the model assumptions in fitting GEE is that the covariates can be nonlinear transforma-

tions of the original independent variables, and can also have interaction terms. In this study,

we perform transformations on the variable Year by centering it (subtracting 2006 from each

year) so as to ease model convergence and to ensure that the model intercepts are meaningful.

In this case, the model intercept corresponds to probability of success in the year 2006. More-

over, transformation of the centred year variable to account for quadratic and cubic effect on

the outcome probability is performed. We also introduce an interaction term of gender with the

school type (boys only, girls only or mixed school) to allow for contrasts between performances

of similar genders in different school types.
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Based on this information, we define a mean structure that comprises of intercepts specific

for the school type, gender, interaction term as well as linear, quadratic and cubic time effects.

We also incorporate the school specific slopes or common slopes and assess their appropriateness.

Yijk = βok + β1kY earij + β2kY ear
2
ij + β2kY ear

3
ij (3.6)

We therefore formulate a general model whose response Yi is associated with a p × 1 vector of

covariates Xij as below;

Yij =



β01 + β11 Y earij + β21 Y ear
2
ij + β31 Y ear

3
ij , if Boys from boys Only schools

β02 + β12 Y earij + β22 Y ear
2
ij + β32 Y ear

3
ij , if Girls from girls Only schools

β03 + β13 Y earij + β23 Y ear
2
ij + β33 Y ear

3
ij , if Boys from Mixed Schools

β04 + β14 Y earij + β24 Y ear
2
ij + β34 Y ear

3
ij , if Girls from Mixed Schools

(3.7)

Where,

β0k = Intercepts for different school types and gender combinations.

β1k= Linear slope parameters for each of the school type and gender combinations.

β2k = Quadratic slope parameters for each of the school type and gender combinations.

β3k = Cubic slope parameters for each of the school type and gender combinations.

3.4.2 The Marginal Mean Model

One of the key features in GEEs for analyzing longitudinal data is in ensuring we correctly

specify how the mean of the outcome variable Yij is related to the covariates of our interest. We
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define the mean structure of the outcome variable as,

µij = πij (xij) = P [Yij = 1—xij ] = E [Yij—xij ] (3.8)

µij is the marginal expectation of the response which depends on the covariates xij through a

known link function given by,

g (µij) = x′ijβ = log itij (3.9)

3.4.3 Specification of Working Covariance and Correlation Matrix.

Let the variance of the binary response variable Yij be denoted as var(Yij). The variance of

each of Yij given the effects of the covariates, depends on the mean response.

V ar (Yij) = µij (1− µij) = f (µij) (3.10)

We specify a correlation matrix Ri(α) such that it is close to the true correlation of the response.

Ri(α) is a working correlation matrix and models the dependence between the within cluster

observations.

The variance covariance matrix can be written as,

Vi = (A
1
2 iRi(α)A

1
2 i)φ (3.11)

where

φ is an overdispersion parameter

α is a vector of parameters describing the within-subject correlation

Ai is the diagonal matrix with marginal variances on the main diagonal.
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Ai =



var
(
yij1|xij1

)
0 0 0 0

0 var
(
yij2|xij2

)
0 0 0

0 0 var
(
yij3|xij3

)
0 0

0 0 0 var
(
yij4|xij4

)
0

0 0 0 0 var
(
yij5|xij5

)


(3.12)

Vi is known as the working covariance matrix of Yi.

GEE models the correlation matrix by use of several correlation structures such as the inde-

pendent correlation structure, exchangeable/compound symmetry correlation structure, AR (1)

correlation structure and unstructured correlation structure.

This study utilizes exchangeable correlation structure which assumes constant correlations be-

tween any two measurements within a subject for all time periods.

Corr (Yij , Yir) = α, 0 < α < 1 (3.13)

α̂ =
1

N

N∑
i=1

1

ni(ni − 1)

∑
j 6=r

eijeir (3.14)

In this case, the exchangeable correlation between two observations is given by

Corr (Yij , Yir)



1 ∝ ∝ ∝ ∝

∝ 1 ∝ ∝ ∝

∝ ∝ 1 ∝ ∝

∝ ∝ ∝ 1 ∝

∝ ∝ ∝ ∝ 1


(3.15)

Important to note though is that GEE has the property of being a consistent estimator of the

covariance matrix of β, even if the working correlation is mis-specified. (Lawal, 2003).
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3.5 Parameter Estimation in GEE

The GEE estimator for for marginal models while accounting for correlation in longitudinal

data arises from minimizing an objective function and solving a set of score equations iteratively

until convergence is achieved.

3.5.1 Objective Function

Liu (2010) shows that the GEE estimator for β arises from minimizing the objective function

shown below with respect to β to obtain a score equation.

N∑
i=1

[yi − µi(β)]TV −1i [yi − µi(β)] (3.16)

where µi is a vector of mean responses with the elements µij = µij (β) = g−1(xij ′β).

3.5.2 Score Equations/Estimating Function

The score function is obtained as a result of minimizing the above objective function , denoted

as S(β) and is of the form,

S (β) =
N∑
i=1

∂µi
∂βj

(
A

1/2
i Ri(α)A

1/2
i

)−1
φ (yi − µi) = 0 (3.17)

Substituting Vi =
(
A

1/2
i Ri(α)A

1/2
i

)
φ and DT = ∂µi

∂βj
, we have the estimating equation whose

solution is the GEE estimator of β;

S (β) =

N∑
i=1

DT (Vi)
−1 (yi − µi) = 0 (3.18)
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DT is a Jacobian ni ∗ p matrix given by;

DT =
∂µi
∂βj

=



∂µi1/∂β1 ∂µi1/∂β2 . . . . . . .∂µi1/∂βp

∂µi2/∂β1 ∂µi2/∂β2 . . . . . . .∂µi2/∂βp

.

.

∂µini/∂β1 ∂µini/∂β2 . . . . . . .∂µini/∂βp


(3.19)

Where (yi − µi) is a residual vector which measures deviations of observed responses of the ith

subject (school) from its mean.

This estimating equation is unbiased regardless of which covariance matrix Vi we use as long as

we correctly defined the mean structure i.e E[S(β)] = 0.

3.6 Standard iterative procedure for GEE Parameter Estima-

tion.

Parameter estimation in GEE is based on an algorithm for an iterative procedure in solving the

score equation S(β) = 0, until the estimates obtained from the score equation converge.

3.6.1 Fisher Scoring.

The Fisher scoring method uses the expected derivative of the score, otherwise known as the

Fishers information matrix. The procedure is as follows,

1. Compute initial estimates of for β; say β̂(0), using univariate GLM i.e. assuming indepen-

dence or rather using conventional logistics regression.

2. Given β̂(0), compute method of moments estimates for α (if its unknown). With the

obtained estimates for α, we compute Ri(α) and consequently the estimate of covariance
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of Vi = (A
1/2
i Ri(∝)A

1/2
i )φ

3. After t iterations we have say β̂(t) and update the estimator for β̂ by solving the estimating

equation using the fishers scoring algorithm to obtain improved estimates:

β̂(t+1) = β̂(t) +

(
N∑
i=1

DT
i Vi
−1Di

)−1
×

N∑
i=1

DTVi
−1 (yi − µi) (3.20)

4. Evaluate convergence using changes in ||β̂(t+1) − β̂(t)|| .

We iterate the above procedure until convergence criterion is satisfied. Convergence occurs

when there is no much improvement in the quasi likelihood value, or if the set threshold

for the change in quasi likelihood is reached. Usually when the change is less than 0.0001

(SAS convergence tolerance).

3.6.2 Estimating α using method of moments

We recall that,

V ar (Yij) = µij (1− µij) = f (µij) (3.21)

and obtain the Pearson residuals εij using the moment based estimate as follows;

eij(β) =
Yij − µ̂ij(β̂)

[var(Yij)]
1/2

(3.22)

The correlation parameter α is estimated as a simple function of εij depending on the choice of

correlation structure.

For exchangeable correlation structure, moment based estimator for α is given by,

∝̂ =
1

N

N∑
i=1

1

ni(ni − 1)

∑
j 6=r

eijeir;Corr(Yij , Yir) =∝ (3.23)
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For AR(1) correlation structure,

∝̂ =
1

N

N∑
i=1

1

ni − 1

∑
j≤ni−1

eijei,j+1 ; Corr(Yij , Yir) = ∝|j−r| (3.24)

For the unstructured correlation,

∝̂jr =
1

N

N∑
i=1

eijeir ; Corr (Yij , Yir) = ∝jr (3.25)

3.7 Goodness of Fit Statistics-QIC.

GEE method is based on the quasi likelihood theory and therefore the Akaikes Information

Criterion (AIC), which is a widely used method for model selection in GLM, is not applicable to

GEE directly. AIC computation requires a full conditional likelihood which is not obtained under

GEE. However, a model-based selection method for GEE known as Quasi-likelihood under the

Independence model Criterion, denoted (QIC) is largely used. QIC statistics allow for marginal

model selection as well as selection of correlation structures through comparisons of fitted GEE

models.

3.7.1 Quasi-likelihood under the Independence model Criterion-QIC.

QIC is basically an appropriate modification of the widely used Akaikes Information Criterion

(AIC) to allow for model selection in GEE. The mathematical theory of QIC thus originates

from the general formulation of AIC given by,

AIC = −2LL+ 2p (3.26)

where LL is the log likelihood and p is the number of parameters in the model.
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QIC is derived by modifying the above formula and adjusting for the penalty term 2p as follows,

QIC = −2
∑
i

∑
j

Qij (µ̂ij ; I) + 2trace(Ω̂−1I V̂R) (3.27)

Where,

• I is the independent covariance structure used to calculate the quasi-likelihood.

• µ̂ij = g−1(x′ijβ) and g−1(.) is the inverse link function.

• V̂R is the robust variance estimator obtained from a general working covariance structure

R.

• Ω̂I is another variance estimator obtained under the assumption of an independence cor-

relation structure Ω̂I =
N∑
i=1

DT
i V
−1
i Di.

Trace here refers to the sum of the diagonal elements of the matrix.

The quasi-likelihood in this model is of the general form;

Qij = yijln

(
µij

1− µij

)
+ ln(1− µij) (3.28)

A model with the smallest QIC value for a given correlation matrix is chosen as the preferred

correlation structure.

A subset of covariates with the smallest QIC value is the preferred model.

Model selection and correlation structure will therefore be done in two stages.

1. First fix the mean structure and compare models with different covariance structures. The

covariance structure with lowest QIC value is the best.

2. Subsequently, fix the covariance structure obtained in step 1 above and compare models

with different mean structure. The model that yields the smallest QIC value is chosen as

the best model.
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3.8 Inference on β

3.8.1 Variance of β

GEE yields two versions of V ar
(
β̂
)

: the robust or empirical and model-based standard errors.

The solution β̂ is consistent and asymptotically normal.

Model based or Nave estimate.

The model based estimate for the variance of β̂ assumes that the correlation model is correct

and is obtained by,

ΣM = M−10 =

N∑
i=1

DT
i V
−1
i Di (3.29)

This is usually a GEE equivalent of the inverse of the Fisher information matrix which is often

used in GLMs as an estimator of covariance estimate of the MLE of β.

Robust /Sandwich estimator.

The sandwich estimator, also known as robust or empirical accounts for a correlation model that

is not correct and is obtained by ΣR = M−10 CM−10 where ,

C =
N∑
i=1

DT
i V
−1
i (y − µ̂)(y − µ̂)TV −1i Di

C =
N∑
i=1

DT
i V
−1
i Ĉov(Yi)V

−1
i Di

(3.30)

ΣR is called the empirical, robust or sandwich variance estimate.

If C = (y− µ̂)(y − µ̂)T , then the model based estimate is equal to the sandwich estimator since

C ≈M0. This will occur only if the true correlation structure is correctly modelled. Otherwise

ΣR 6= ΣM .

One of the properties of this estimator is that it provides a consistent estimator of V
(
β̂
)

even

if the working correlation structure is not the true correlation of Y .
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Generalized Score Statistics

In GEE, score tests are used in testing the hypothesis  Lβ = 0, where L is usually a user-specified

c ∗ d matrix or a contrast for Type 3 test of hypothesis.

Given β̃ is a regression parameter obtained from solving GEE under the restricted model  Lβ = 0,

and S(β) as the generalized estimating equation values at β̃, the generalized score statistic is

given by;

T = S
(
β̃
)′

ΣML
′(LΣRL

′)−1LΣMS(β̃) (3.31)

Where,

ΣM is the Model-Based covariance estimate,

ΣR , is the Robust/Empirical covariance estimate.

The p-values for the generalized score statistic are computed based on the chi-square distribution

with c degrees of freedom.
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Chapter 4

DATA ANALYSIS AND FINDINGS

4.1 Introduction

In our analysis, we utilize two statistical softwares namely SAS and R 3.1.2 in combination with

R-Studio. We use R statistical software in performing necessary data manipulations as well as

performing exploratory data analysis. We further use SAS software in performing GEE analysis

as well as performing contrasts of interest. In this study, we analyze the data at a significance

level α = 0.05.

Some of the key packages we use in R-Gui include ggplot2, gridextra, plyr, reshape, and xtable.

We further use the SAS procedure PROC GENMOD in fitting the model and present the GEE

results.

4.2 Exploratory data analysis (EDA).

Exploratory data analysis, denoted EDA, usually focuses on exploring the data so that one

understands the variables and data structure, and thus develops an intuition about the data set.

It provides a summary of the data under study. In this section we perform EDA in R statistical

software and present necessary summaries that provide basic information about the data.
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4.2.1 Data summary

The study covered 237 unique schools within Nakuru district for the 5 year period. It was noted

that the number of schools have been declining over the years. Caution should be taken however

in making such a conclusion as it is possible that the actual number of schools did not reduce,

but the reporting of results on the Kenya open data website was the one that was not efficiently

done. Below is a summary of the number of schools under study within the 5 year period, for

different school types.

Table 4.1: Data summary

Year

School type 2006 2007 2008 2009 2010

Girls Only 26 28 7 5 5

Boys Only 14 14 6 7 4

Mixed 157 176 55 60 34

Total 197 218 68 72 43

Subject specific profiles

Below is a graphical representation for the subject specific profiles of the proportion of students

that passed over the five year period. The left column panels are for girls while the right column

panels represent the boys. From the plots, it is clear that there are fewer schools whose results

are available in later years. This missingness pattern is however not analyzed in this thesis and

data is assumed to be missing at random.

>nakuru.wide$School.type.Gender <- nakuru.wide$School.type:nakuru.wide$Gender

#Interaction between school type and gender

>ggplot(data=nakuru.wide, aes(x=Year,y=prop.pass ,group=KNEC.Code:Gender))

+ylab(’Proportion passed’)+geom_line()+facet_wrap(~School.type.Gender)+

theme(legend.position=c(0.75,0.75),panel.background=element_rect(fill=’white’,

colour=’black’),axis.text.x=element_text(face=’bold’,colour=’black’)
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,axis.text.y=element_text(face=’bold’,colour=’black’))

Figure 4.1: Subject specific profiles for proportion of students that passed over 5 year period.

Average profiles

Figure 2 below is a visual of the average profiles for the proportion of students that passed over

the five year period. Its observed that on average, boys from boys schools have a higher pass rate

over the years. Girls from mixed schools have a lower pass rate compared to boys from mixed

schools. Moreover, for a given school type and gender, the pass-rate seems relatively constant

over the years.

>ggplot(data=avg.nakuru.wide,aes(x= (Year),y=prop.pass ,group=School.type.Gender,

shape=School.type.Gender,linetype=School.type.Gender))+geom_point(size=3)

+ylim(0,1) +ylab(’Proportion of students who passed’)+geom_line(size=1)

+theme(panel.background=element_rect(fill=’white’,colour=’black’),

axis.text.x=element_text(face=’bold’,colour=’black’),

axis.text.y=element_text(face=’bold’,colour=’black’))
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Figure 4.2: Average profiles for proportion of students that passed over 5 year period.

4.3 GEE analysis

GEE analysis was performed using the SAS procedure PROC GENMOD. We fitted various mean

models and incorporated different working correlation matrices for the covariance structure until

we identified the best fit based on QIC values. For ease of model convergence, we centered the

years with 2006 as the base year.

4.3.1 Model Fitting

In fitting the models, we did not include the usual common intercept as we were not interested

in its interpretation. We fitted two different mean models as below and the best fitting model

was the one corresponding to smallest QIC value.

Model with school, gender specific intercepts but shared slopes

Model1 : Yi = β0kschoolsex+ β1kyearri + β2kyear
2
i + β3kyear

3
i (4.1)

Model with school, gender specific intercepts and school/gender specific slopes.

Model2 : Yi = β0kschoolsex+β1kschoolsex∗yeari+β2kschoolsex∗year2i +β3kschoolsex∗year3i

(4.2)
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4.3.2 Selection of working covariance structure

The selection of a covariance structure for this study was based on the four working correla-

tion matrices, i.e. Independent, Exchangeable/Compound symmetry, Unstructured and Auto-

Regressive (AR1). We first fixed Model 1 as the mean structure and adjusted for the working

correlation matrix while comparing the QIC values from model output.

4.3.3 Goodness of fit statistics.

We used the quasi-likelihood under independence model criterion statistics (QIC) to select the

best fitting model as well as the working correlation for the covariance structure. Table 2 is

a summary for the QIC values obtained from fitting the 2 models above and different working

correlation matrices as earlier defined. Model 1 with the school specific intercepts and shared

Table 4.2: Goodness of fit statistics

SAS GEE Fit Criteria-QIC Values

Label Independence Exchangeable Auto-regressive (AR1) Unstructured

Model 1 172.1338 142.427 142.8863 0.0000a

Model 2 192.343 146.8489 149.6195 0.0000a

a: Model did not converge hence no reported value

slopes was selected for this study as it had the smallest QIC values. None of the models converged

under the unstructured working correlation.

Based on the QIC statistics above, we further selected a covariance structure per school with an

exchangeable/compound symmetry working correlation matrix. This implies that the correlation

is shared between boys and girls over the 5 years regardless of the school type. We fitted this

model and performed further inference from the results of this model.
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4.3.4 GEE Results

In this section we present GEE results based on model1 and a covariance structure with an

exchangeable correlation matrix. The correlation between measurements of the same school was

obtained as 0.837 which is very high an indication that the measurements were highly correlated

hence the need to account for clustering.

Table 4.3: Working correlation for fitted model

Exchangeable Working Correlation

Correlation 0.837

Score Statistics

The overall significance test based on a score test is presented in Table 4. The score chi-square

statistic is computed based on the generalized score function. In GEE, type 3 analysis uses the

Table 4.4: Score Statistics

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr ≥ ChiSq

School sex 4 87.82 ≤ .0001

Y ear 1 1.18 0.2783

Y ear2 1 3.04 0.0811

Y ear3 1 4.03 0.0447

likelihood ratios instead of the usual sum of squares by defining an estimable function for an

effect of interest. The score statistics indicate that there is a significant difference between the

intercepts. Thus, the hypothesis for equal pass rates for different school types and gender in

2006 is rejected, implying that the performance of the schools differed with 2006 as the base

year.

H0 : β01 = β02 = β03 = β04

H1 : β0i 6= β0j

(4.3)
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On the other hand, there is no significant effect of the time. This means that the pass-rate

in KCSE does not depend on the number of years elapsed since 2006. This is consistent with

our intuition in the exploratory average plot where we concluded that there were no significant

changes in the slopes over time.

Parameter Estimates

Parameter estimates for the model coefficients are as presented in Table 5. Both model-based

and empirical standard errors are shown. Empirical standard errors are observed to be generally

larger than model based standard errors. This can generally be attributed to the fact that with

highly correlated data, there are fewer observations contributing to independent information as

compared to the case of model-based estimation which assumes the dataset is truly independent.

Thus the effective sample size resulting from GEE with exchangeable correlation is given by

Neff =
N∑
i=1

ñi =
N∑
i=1

ni
1+ρ(ni−1) where Neff is the effective sample size corresponding to the truly

independent samples in this correlated data, ni is the number of repeated measurements per

subject and ρ is the correlation coefficient as estimated from the GEE estimation. It is easy to

see that if the correlation is zero, then GEE analysis provides information using a sample size

similar to that from independent data.

Table 4.5: Parameter estimates

SAS Analysis Of GEE Parameter Estimates

Estimate Model based SE 95% CI Empirical based SE 95% CI

Boys in Boys only school 0.146 0.1758 (-0.199,0.491) 0.3951 (-0.628,0.92)

Girls in Girls only school -0.7746 0.1555 (-1.079,-0.47) 0.3421 (-1.445,-0.104)

Boys in Mixed schools -1.2728 0.0872 (-1.444,-1.102) 0.1217 (-1.511,-1.034)

Girls in Mixed schools -2.1455 0.1347 (-2.41,-1.882) 0.172 (-2.483,-1.808)

Y ear 0.102 0.0874 (-0.069,0.273) 0.0967 (-0.088,0.292)

Y ear2 -0.1284 0.0628 (-0.252,-0.005) 0.0723 (-0.27,0.013)

Y ear3 0.0265 0.0112 (0.005,0.049) 0.0124 (0.002,0.051)

34



Contrast Estimate Results.

The test of hypothesis of interest now reduces to the test of whether there were differences in

performance across different gender between mixed schools and single sex schools. Thus we

perform contrasts tests for the intercepts only. To achieve this, the ’ESTIMATE’ statement was

used in SAS. Results are presented in the Table 6.

Table 4.6: Contrast estimates

Contrast Estimate Results

Contrast Label Mean Estimate 95% CI L’Beta Estimate 95% CI Chi-Square Pr ≥ ChiSq

Boys only vs Boys mixed 0.8052 (0.6444,0.904) 1.4188 (0.5947, 2.243) 11.38 0.0007

Girls only vs Girls mixed 0.7975 (0.654,0.8914) 1.3709 (0.6365,2.1053) 13.38 0.0003

Boys mixed vs Girls mixed 0.7053 (0.6773,0.7318) 0.8726 (0.7413,1.004) 169.6 ¡.0001

The LBeta column represents the difference in parameter estimates (log (OR)) that were shown

in (Table 5: Parameter estimates). For instance, for the hypothesis on the difference between

boys in boys only school versus boys in mixed schools, the LBeta estimate is given by;

L′Beta = (βi1 − βi3) = {0.146− (−1.2728)} = 1.4188 (4.4)

The mean estimate column denotes the probability of success for the contrast under review.

Thus for the above case on boys in boys school only versus boys in mixed schools, the mean

estimate is given by;

MeanEstimate = exp{log(OR)}
1+exp{log(OR)} = exp(βi1−βi3)

1+exp(βi1−βi3) = exp(1.4188)
1+exp(1.4188)

= 4.1322
1+4.1322 = 0.8052

(4.5)

The results indicate that there was a significant difference between performances of boys in boys

only schools versus boys in mixed schools. Boys in boys schools only had an 80.52% probability

of passing compared to boys in mixed schools.

Similarly, there was a significant difference between performances of girls in girls school only

versus girls in mixed schools. Girls in a girls only school had a 79.75% probability of passing
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KCSE compared to girls in a mixed school.

Finally, there was a significant difference in KCSE performance for boys in mixed schools com-

pared to girls in mixed schools. Boys in mixed schools had a 70.53% probability of passing

compared to girls in mixed schools.

To conclude, a graphical presentation of the observed and predicted values of the average pass

rate is presented in Figure 3. The model fits nicely data for mixed schools although for boys

only and girls only schools, there is some variability in the slope components.

Figure 4.3: Average pass rate for observed vs predicted.
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Chapter 5

DISCUSSION, CONCLUSIONS

AND RECOMMENDATIONS

5.1 Discussion.

The study aim was to gain insights on KCSE performance in Nakuru County while focusing on

the relationship between students gender as well as school type relative to their performance

over time. A generalized estimating equations analysis was performed on longitudinal data for

KCSE performance for the period 2006-2010 to account for possible correlations in performance

of a school over time. Results from the analysis exhibited constant correlations (Exchangeable)

in performance of schools over time.

The analysis further revealed significant differences in KCSE performance for single sex schools

and mixed schools. Contrasts were performed to access one gender student performance in

single sex schools against same gender in mixed schools. Results showed significant differences

in performance with student from single sex schools having a higher pass rate than those in

mixed schools. This is consistent with previous studies conducted by Mburu (2013) in Kericho

and Kipkelion districts where he tried to establish if social classroom interaction had an effect on

male and female student academic performance. The results are also consistent with those from
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a report by Charnley (2008) in accessing GCSE performance of independent pupils based on

gender and school type differences, where he showed that pupils from single sex schools performed

significantly better in most subjects compared to their counterparts in mixed schools.

5.2 Conclusion.

In conclusion, there is evidence that students of a particular gender in one gender school perform

better than they would in mixed schools. Moreover, girls in mixed schools are more disadvan-

taged as is evident from the low pass rate compared to boys in mixed schools. These conclusions

are independent of the year under review since the slope components were not significant. Thus

regardless of the year under review, male/female students in one-gender school perform better

than males/females respectively in mixed gender schools.

5.3 Recommendations.

Having established that significant differences exist between student performance in KCSE

amongst the single sex schools and mixed schools, its imperative that the ministry of education

as well as other relevant education stakeholders formulate education policies geared towards an

improved performance especially in mixed schools. The study especially strongly recommends

keeping a closer look at the girl child in mixed schools by addressing arising distractions that

are a hindrance to better performance.

5.4 Suggestion for further studies.

Further studies should focus on establishing factors associated with differences in KCSE perfor-

mance in different school types as well as students gender.
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Chapter 7

APPENDICES.

7.1 R Codes for data manipulations

>Nakuru <- kcse [which(kcse$County==’Nakuru’),]

>schoolmix <- ddply(Nakuru,.(KNEC.Code,Year),transform,

School.type=sum(as.numeric(unique(Gender))))

>schoolmix <- schoolmix [order(schoolmix$KNEC.Code),] #To sort by KNEC.Code

>schoolmix$School.type <- factor (schoolmix$School.type, levels=c (1:3),

labels= c (’Girls Only, Boys Only’,’Mixed’)) #Label the different school types

>save (schoolmix, file=’kcse.Rda’) #Save data in R data file for further analysis

> kcse <- get(load(’kcse.Rda’)) #Load previously saved data

>kcse$school.gender <- as.factor(kcse$School.type:kcse$Gender)

#Interaction between school type and gender

>unique(kcse$school.gender) #Check if results are ok

> as.character(unique(kcse$District.Name))
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>nakuru <- kcse[which(kcse$District.Name==’NAKURU’),] #Confirm only Nakuru data in use

>unique.schooltype <- nakuru[!duplicated(nakuru[,c(’KNEC.Code’, ’School.type’)]),]

# Subset unique records per school

>(all.duplicates <- unique.schooltype[duplicated(unique.schooltype[,’KNEC.Code’]),])

#Identify schools which have multiple school types

>(with.duplicates <- (as.character(unique.schooltype[duplicated(unique.schooltype

[,’KNEC.Code’]),’KNEC.Code’])))

##Get unique KNEC>Code identifiers for schools with duplicate school types

>nakuru <- nakuru[which(!as.character(nakuru$KNEC.Code)%in%with.duplicates),]

#Remove duplicate school type records from the Nakuru data

>nakuru$pass <- ifelse((as.character(nakuru$Grade.attained)==’A’

|as.character(nakuru$Grade.attained)==’A-’|as.character(nakuru$Grade.attained)==’B+’

|as.character(nakuru$Grade.attained)==’B’|as.character(nakuru$Grade.attained)==’B-’

|as.character(nakuru$Grade.attained)==’C+’),1,0)

>nakuru <- ddply(nakuru,.(Year,KNEC.Code, District.Name,

School.Code,School.Name,pass,School.type,Gender)

,summarize,no.pass=sum(Frequency))

#Count the number of students who passed/failed per school, gender and year

>nakuru.wide <- data.frame(reshape(nakuru,timevar = "pass",idvar = c("Year", "KNEC.Code",

"Gender", "School.type","District.Name", "School.Code", "School.Name"),

direction = "wide"))
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>names(nakuru.wide)[names(nakuru.wide)%in%c(’no.pass.0’,’no.pass.1’)]

<- c(’failed’,’passed’)

7.2 SAS codes for GEE analysis

PROC IMPORT OUT= WORK.nakuru

DATAFILE= "E:\Documents\Project Data\Analysis\nakuru_knec_wide.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

proc format;

value schoolsex 1=’Boys only:M’ 2=’Girls only:F’ 3=’Mixed:F’ 4=’Mixed: M’;

run;

data nakuru;set nakuru;

yearcen=year-2006;

yearcensq=yearcen*yearcen;

yearcencube=yearcensq*yearcen;

total=passed+failed;

schoolsex=5;

if school_type=’Boys Only’ and gender=’M’ then schoolsex=1;

if school_type=’Girls Only’ and gender=’F’ then schoolsex=2;

if school_type=’Mixed’ and gender=’F’ then schoolsex=3;

if school_type=’Mixed’ and gender=’M’ then schoolsex=4;

format schoolsex schoolsex.;

run;
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*Final GEE model: compound symmetry/exchangeable;

proc genmod data=nakuru ;

class school_type gender knec_code schoolsex year subjectid;

model passed/total=schoolsex yearcen yearcensq yearcencube

/ dist=bin link=logit noint p type3 ;

repeated subject=knec_code/ type=cs corrw modelse ;

ods output obstats=predmodel;

*Test the hypotheses:;

*performance was the same in the beginning (2006)-

test if intercepts are equal between schooltype/gender;

estimate ’Int: Boys only vs Boys mixed’ schoolsex 1 0 -1 0/e;

estimate ’Int: Girls only vs Girls mixed’ schoolsex 0 1 0 -1/e;

estimate ’Int: Boys mixed vs Girls mixed’ schoolsex 0 0 1 -1/e;

run;quit;

goptions reset=all ;

proc gplot data=predmean;

plot pred*year=schoolsex;

plot2 obsprop*year=schoolsex;

symbol i=join;

symbol2 i=dot;

run;quit;
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