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Abstract

The main objects in this thesis are meromorphic functions obtained as projections to a pencil
of lines through a point in P2. The general goal is to understand how a given a meromorphic
function f ∶ X → P1 can be induced from a composition X ⇢ C → P1, where C ⊂ P2 is
birationally equivalent to the smooth curve X. In particular, it is the desire to characterize
meromorphic functions on smooth curves which are obtained in such a way and enumerate
such functions.

It is shown in this thesis that any degree d meromorphic function on a smooth projective plane
curve C ⊂ P2 of degree d > 4 is isomorphic to a linear projection from a point p ∈ P2/C to
P1. Further, a planarity filtration of the small Hurwitz space using the minimal degree of a
plane curve is introduced such that a given meromorphic function admits such a composition
X ⇢ C → P1. Additionally, a notion of plane Hurwitz numbers is introduced.
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Introduction

The main objects of interest of this thesis are branched coverings of smooth projective algebraic
curves over complex numbers C. The study of branched coverings of curves contributes to
curve theory what representation theory of groups gives to abstract groups. More precisely,
before the 20th century groups were thought as subsets of the general linear group GL(n,C)
or the symmetric group Sn before much later they were defined as abstract objects. Then
by means of representation theory, we can concretely study and classify abstract groups on
the basis of which maps they admit into GL(n,C). Similarly, algebraic curves were earlier
defined as subsets of a n-dimensional projective space Pn before later they were introduced by
Riemann in his revolutionary paper [Rie57], as abstract varieties independent of any particular
embedding. Analogously to the study of abstract groups, the problem of studying algebraic
curves naturally splits into two directions:

• study of abstract curves, mainly in families called moduli spaces of curves;

• representation of abstract curves or study of maps between curves.

Indeed, an intuitive way to study an abstract curve X is to represent it as branched covering
over a fixed curve Y ; that is using a finite surjective morphism f ∶ X Ð→ Y . If the target
curve Y is well understood, a large amount of information is revealed about the source
curve X. As the simplest curve is the projective line P1, the most fundamental realization is
obtained when Y is fixed to be P1. In other words, this amounts to studying nonconstant
meromorphic functions on X, since a morphism f ∶ X Ð→ P1 to the complex projective
line P1 is called a meromorphic function. The degree of f is the degree of the morphism
f ∶ X Ð→ P1. Given a meromorphic function f of degree d and any point q ∈ P1, we have
a branch divisor f−1(q) = µ1p1 + . . . + µnpn, where p1, . . . , pn are distinct points on X and
µ1, . . . , µn are positive integers summing to d. In particular, possibly after reordering we can
assume µ1 ≥ . . . ≥ µn. The partition (µ1, . . . , µn) ⊢ d is called the branch type of f at a
point q. If the branch type of f at q equals to (1,1, . . . ,1), then we say f is not branched
over q and if the branch type corresponds to (2,1, . . . ,1) at q, we say that q is a simple
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branch point of f . The set of all branch points is called the branching locus of f . In this
way, every nonconstant meromorphic function on a curve X is a branched covering. This
set of branch types is called branch profile of f .

In the case of a plane curve C ⊂ P2, a geometrical method for constructing a branched covering
of P1 by C, is to consider a meromorphic functions arising from projections of C. To achieve
this, choose a point p ∈ P2 which may or may not be lying on C, identify P1 with the pencil
of lines at p and then project C onto P1. The finite morphism

πp ∶ C Ð→ P1, (1)

obtained by the above projection is the required branched covering of P1. Points of P1 where
several intersection points in C coincide are branch points of πp. If p ∈ P2/C, then generically a
point of P1 possesses the same number of distinct intersections points with C as the degree of
C. To motivate projections of plane curves from a point in P2, we will depict the construction
of the topological structure of a smooth curve C ⊂ P2 based on branch points of (5.1) as
given in [Rie57]. It involves cutting the sheets between the branch points and permuting i.e.
cross-joining them to obtain the topological picture for the curve.

Consider a smooth plane algebraic curve C ⊂ P2. Thus, C is the vanishing set of an irreducible
homogeneous polynomial

F (x, y, z) = ∑
i+j+k=d

aijkx
iyjzk, d ≥ 1, (2)

where x, y, z represents the standard homogeneous coordinate system in P2 and aijk ∈ C with
simultaneously non-vanishing partial derivatives at all points of C ⊂ P2. We shall illustrate by
way of examples, how conclusions can be drawn about the topological structure of C ⊂ P2.
We agree to keep the naive terminology of Riemann of referring to topological operations as
cutting and pasting. Naturally one can formulate all these in rigorous set-theoretic language,
for instance pasting of two spaces is equivalent to passing to the quotient space of disjoint
sum in the corresponding quotient topology. However, this standard set-theoretic language
helps little for an intuitive understanding of branched structure that we seek.
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Consider a conic C1 ⊂ P2 defined by y2 = xz. The branched covering πp ∶ C1 Ð→ P1 for
p = [0 ∶ 1 ∶ 0] has degree 2 with two simple branch points 0 ∶= [1,0] and ∞ ∶= [0,1]. Take
2 copies of P1(2 equals to degπp) and slit-cut them along [0,∞) and glue the opposite
sides of the sphere as illustrated in Figure 0.1. Observe that edges to be joined are labeled
by the same letters.

Example 0.1

∞

0

a b ∪
∞

0

b a = ∪ =

Figure 0.1: Branched structure for C1 ∶ y2 = xz over P1

Conversely, given a branched covering of P1 of degree 2 with two simple branch points 0,∞
in P1, one can reconstruct the curve by pasting together the spaces and conclude that it is a
projective line P1. Thus, the resulting topological structure for the curve C1 is a 2-sphere
and it is biholomorphic to the one given by y2 = xz in P2.

The projection of C2 ⊂ P2 defined by y2z = x(x+z)(x−z) from the point p = [0 ∶ 1 ∶ 0] ∈ C2

is a branched covering of degree 2 with 4 simple branch points 0 ∶= [1 , 0], α ∶=
[−1 , 1], β ∶= [1 ∶ 1] and ∞ ∶= [0 ∶ 1]. If we slit-cut the two sheets from 0 to α and from
β to ∞, the joining is like shown in Figure 0.2, thus C2 is topologically a torus.

Example 0.2

∞

0

β
α ∪

∞

0

β
α = ∪ =

Figure 0.2: Branched structure for C2 ∶ y2z = x(x + z)(x − z) over P1

In general, it is possible to construct such maps πp ∶ C Ð→ P1 with a given set of pre-
scribed branching points once we know the branch profile. The Riemann-Hurwitz formula
which we will state later, implies that the degree and genus determine the degree of the
branch divisor, so we only need to keep track of the degree, genus and branch profiles of
branched coverings. Therefore, if we fix the degree, genus and branch profile we are lead to
another interesting question of enumeration of branched coverings up to isomorphism which

3
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commute with the branched covering maps. We naturally restrict to connected branched cover-
ings as the disconnected ones can be obtained as disjoint union of lower degree connected ones.

To summarize, we are mainly interested in classification and enumeration of nonconstant
meromorphic functions f ∶ X Ð→ P1. Hurwitz [Hur91] began the systematic investigation
of such pairs (X,f) by constructing a moduli space Hg,d now called the Hurwitz space.
(Note that branch profile is simply suppressed to avoid notational clutter.) Each point in
Hg,d corresponds to an equivalence class of meromorphic functions of degree d on curves
of genus g with given branch profile of f , where one identifies two meromorphic functions
f1 ∶X1 Ð→ P1 and f2 ∶X2 Ð→ P1 as same if there is an isomorphism of curves h ∶X1 Ð→X2

such that f1 = f2 ○ h. Hurwitz observed that if we fix the degree d of the branched coverings
f ∶ X Ð→ P1, the genus g of X and the branch profile, the Hurwitz space Hd,g form a
covering space of the space of unordered configurations Conw(P1) of w points in P1. The
degree of the covering map

Hd,g Ð→ Conw(P1)

is called the Hurwitz number corresponding to the given branch profile. The fundamental
group of Conw(P1) acts on the fibers of the covering and the orbits of this action are known
to be in one-one correspondence with the connected components of Hd,g.

Generally, the geometry of Hurwitz spaces Hd,g is very complicated. An interesting class of
Hurwitz spaces are the so-called small Hurwitz spaces Hd,g which consists of meromorphic
functions on curves of genus g with only simple branch points. The small Hurwitz spaces
play a crucial role in the understanding of the more abstract moduli spaces of curvesMg,d

of curves of genus g with d marked points. In particular, in [Hur91] it is shown that the
natural map Hg,d Ð→ Symw P1/∆, where ∆ is the discriminant hypersurface, assigning a
meromorphic function f its branching locus, is a finite étale covering. In this case the degree
of map Hg,d Ð→ Symw P1/∆ is called a simple Hurwitz number. Furthermore, using a
calculation of Lüroth and Clebsch [Cle72], see also §21 of [ACG11] page 857, Hurwitz proved
that in this case there is only one orbit. In other words, Hg,d is a smooth and connected
hence irreducible quasi-projective variety. This result was later generalized to characteristic
p > g + 1 by Fulton [Ful69]. The natural forgetful map π ∶ Hg,d Ð→Mg,d relates the geometry
of the Hurwitz space Hg,d to that of the moduli spaceMg,d. A particularly interesting case is
when this map is surjective, which is at least happens as soon as d ≥ 2g − 1. An immediate
consequence is thatMg,d is also irreducible.

4



It follows that branched coverings of P1 offer a concrete way to investigate abstract algebraic
curves. Thus, one hopes to get an information about an abstract algebraic curve through
branched coverings of P1 or equivalently meromorphic functions on it. As indicated earlier, a
geometrically nice way to deduce such information is to consider projections of plane curves.
Recall that an abstract complex smooth curve X of genus g can always be embedded into
some n-dimensional projective space Pn, n ≥ 3. More precisely, as proved in Chapter IV
Corollary 3.6 of [Har77], every curve can be embedded in P3 as a smooth curve. In addition
to that, Corollary 3.11 of the same Chapter asserts that the image of this embedding in P3 is
birationally equivalent to a plane curve with at most a finite number nodes as singularities.
Consequently, we may approach the classification problem of all curves by studying families of
curves in P2 of a fixed degree d and with δ nodes. But this direction is very difficult, in fact
it was only rather recently in [Har86] that it was proved that the space parametrizing such
curves is an irreducible algebraic variety of dimension 1

2d(d + 3) − δ.

On the other hand, in view of projections we seek to know how a given meromorphic function
on a given smooth curve X of genus g can be realized through projection from a point in
P2. Indeed, we will see in Chapter 6, that every meromorphic function f ∶X Ð→ P1 can be
realized as a projection from a point in P2. Namely, given a meromorphic f ∶ X Ð→ P1 of
degree d and X a smooth curve of genus g, then curve X can be realized as a plane curve C
of degree d + l with an ordinary m-fold point at p and at most

δ = (d + l − 1
2

) − ( l
2
) − g

nodes as singularities. Here, the image plane curve C is birationally equivalent to X. Projecting
from the point p ∈ P2, we obtain that f can be induced from the pencil of lines through p on
C ⊂ P2.

X C

P1

ψ

f πp

Figure 0.3: Meromorphic functions as projections from a point in P2

This lead to problem formulation of my research and therefore its goal. More specifically, my
general aim is to study how a given meromorphic function f ∶X Ð→ P1 can be induced from

5
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a composition as in Figure 0.3 and enumeration of such functions which yields the notion of
plane Hurwitz numbers.

Outline of the thesis

This work is at the intersection of Algebraic Geometry and Combinatorics. For this reason,
the general background: where I describe informally the concepts I will use, is made of two
parts. I also give room to historical facts, general knowledge and I set up notations. I dedicate
chapters 1–3, to introduce and explain the main objects and relevant theory which will be used
in this thesis. My main aim is to provide a quick toolkit for results I use in my work. Thus, to
shorten the exposition, we will only state most results and indicate appropriate references for
details. In summary, the structure of this thesis is as follows:

Chapter 1

In this chapter, we review definitions and develop notation on results about partitions,
permutations and representation of the symmetric group.

Chapter 2

Here, we consider complex algebraic curves and we give a brief outline of the many generic
facts bordering the theorem of Riemann-Roch. The chapter finishes with a quick introduction
to the concept of moduli spaces of curves and moduli space of stable maps.

Chapter 3

Chapter 3 offers a quick review of some fundamental facts and prepare some terminology
about branched coverings of curves

Chapter 4

This chapter is dedicated to the survey of various known formulae used in calculating Hurwitz
numbers and thus contains little new informations. However, efforts have been made to collect
these formulae and present them in an, hopefully coherent manner. In particular, we give
a chronological list of most classical formula for counting branched coverings for arbitrary
branched types.

Chapter 5

The first step in this investigation will be to show that any degree d meromorphic function on a
smooth projective plane curve of degree d ≥ 5 is isomorphic to a projection from a point p ∈ P2

to the pencil of lines through p away from the curve. In addition, we exhibit a 3−dimensional
group which acts equivalently keeping the pencil fixed. Finally, we introduce a new notion of
plane Hurwitz numbers which has a straight analogy to a special Zeuthen-type problem for
calculating characteristic numbers for smooth plane curves.

6



Chapter 6

Finally, in the last chapter we put the pieces together and generalise some results in chapter
5. First, we easily show that any meromorphic function on a smooth projective curve can be
represented as a composition of a birational map of the curve to P2 and a projection of the
image curve from a point p ∈ P2 to the pencil of lines through p. Secondly, we introduce a
natural stratification of Hurwitz scheme according to the minimal degree of a plane curve
such that a given meromorphic function can be represented in this way. We also introduce
the corresponding notion of Hurwitz numbers for each strata.

7





Chapter 1

Combinatorics of the Symmetric
Group

Below we adopt notations as found in Chapter 1 of [Mac08]. All definitions and results on the
symmetric group represented below are classical, and can be found in most standard texts
such as [Sag01] and [GK81].

1.1 Partitions and permutations

The cardinality of a set S will be denoted by ∣S∣ unless otherwise specified.

Definition 1.1.1. A partition µ of a positive integer d, denoted µ ⊢ d, is a finite, weakly
decreasing sequence of positive integers µ = (µ1, µ2, . . . , µn) called parts of µ such that
µ1 + µ2 + . . . + µn = d.

We usually refer to d as the size of µ and denote it by ∣µ∣. The number n of parts of µ is
called length of µ and is denoted by `(µ).

There are 5 integer partitions of d = 4, namely

(4), (3 ,1), (2 ,2), (2 ,1 ,1), (1 ,1 ,1 ,1).

Example 1.1

Denote the set consisting of the first d positive integers {1,2, . . . , d} by [d]. Let i be an
integer in the set {1,2, . . . , d}, the multiplicity of i in µ which we shall denote by mi(µ)
is the number of parts µj equaling i. We often use exponents to indicate repeated parts,
whence a partition µ can be written multiplicatively as µ = 1m1(µ) ⋅ 2m2(µ) . . . kmk(µ) with
∣µ∣ = ∑ki=1 imi(µ). For instance, the partition (2 ,1 ,1) = 12 ⋅ 2. The number of permutations
of the parts of µ is the quantity

∣Aut(µ)∣ =
k

∏
i=1
mi(µ)! .

We can also represent partitions pictorially using Young diagrams.



1. Combinatorics of the Symmetric Group

Definition 1.1.2. A Young diagram is an array of left and top-justified boxes, such that the
row sizes are weakly decreasing. The Young diagram corresponding to µ = (µ1, µ2, . . . , µn) is
the one that has n rows, and µi boxes in the ith row.

For instance, the Young diagrams corresponding to the above mentioned partitions of 4 are
given below.

( 4 ) (3 ,1) (2 ,2) (2 ,1 ,1) (1 ,1 ,1 ,1)

A Young tableau of shape µ is obtained by filling the boxes of a Young diagram with
numbers [d] = {1,2, . . . , d}. A standard Young tableau is a Young tableaux whose entries
are increasing across each row and each column.

Consider µ = (3 ,1), the number of standard tableaux with this shape is 3.

1 2 3
4

1 3 4
2

1 2 4
3

Example 1.2

The conjugate of the Young tableau λ is the reflection of the tableau λ along the main
diagonal. This is also a standard Young tableau.

Conjugate of 1 2 3
4

= 1 4
2
3

We will write λt to denote the conjugate partition of λ.
Let Sd be the group of all permutations on [d], we make the convention that permutations
are multiplied from right to left. A permutation α ∈ Sd is a cycle of length k or a k−cycle if
there exist numbers i1, i2, . . . , ik ∈ [d] such that

α(i1) = i2, α(i2) = i3, . . . , α(ik) = i1.

Thus, we can write α in the form (i1, i2, . . . , ik). A cycle of length two is called a transposition.
If we fix σ ∈ Sd, then σ can be uniquely decomposed into a product of disjoint cycles. The
sum of the cycle lengths of σ is equal to d, so the lenghts form a partition of d. The cycle
type of σ is an expression of the form

1m1 ⋅ 2m2 . . . dmd ,

where the mi is the number of i−cycles in σ. We denote the set of all elements conjugate to
σ in the symmetric group Sd by Cσ, that is

Cσ = {πσπ−1 ∶ π ∈ Sd}.

Recall that two permutations are conjugate if and only if they have the same cycle type.

2



1.2 Representations of symmetric groups.

1.2 Representations of symmetric groups.

In this section, we review some relevant results on the representation theory of the symmetric
group Sd, largely following [FH91] and [Sag01].

There are several equivalent ways of defining representation of groups. Fix a group G and a
(finite) C−vector space V . Denote by GL(V ) the set of all invertible linear transformations
of V to itself, called the general linear group of V .

Definition 1.2.1. A representation of G over C, or simply a C-representation of G, is a
group homomorphism ρ ∶ GÐ→ GL(V ).

We call the dimension of V the degree of ρ. Building blocks of any representation of a group
are its irreducible representations. In case of a symmetric group Sd these are known to be as
many as there are conjugacy classes of the group. Furthermore, it turns out that for a group
G(whence Sd), all we need to understand representations are the (irreducible) characters, i.e.
encoding of the representation ρ ∶ GÐ→ GL(V ) by a complex-valued function χρ ∶ GÐ→ C
constant on conjugacy classes defined by

χρ(g) = tr(ρ(g)),

where tr denotes the trace of the matrix ρ(g) representing g ∈ G.

Each conjugacy class of Sd corresponds to a partition of d and we can use the combinatorial
properties of these partitions to explicitly construct the irreducible representations Sλ, from
which we can compute the irreducible characters.

Indeed, results in the theory of partitions, Young tableaux and symmetric functions [Mac08]
provide not only a straight-forward way of constructing irreducible representations of Sd, but
also an explicit formula for computing the corresponding characters. Namely, via the so-called
Murnaghan-Nakayama rule we have a recursive method to compute the characters. The
alternative method of calculating characters is the Frobenius Formula. Denote by χλ(C)
the character of Sλ on the conjugacy class C. Since a conjugacy class C of an element in Sd
consists of all permutations of the same cycle type, we use the notation χλµ to represent the
character of Sλ at the conjugacy class of the cycle type µ.

The degree of Sλ is the dimension of the representation Sλ and is denoted by fλ. There are
many methods of computing the degree fλ. Among them, is the use of the combinatorial
fact that fλ is the number of standard λ-tableaux. Formally, if (i, j) denotes the box in row
i and column j of the standard Young diagram corresponding to λ; the hooklength hij is the
number of boxes directly to the right and directly below (i, j) including the box (i, j). In
particular, hij = λi − j + λtj − i + 1. For instance, if λ = (3,1), the hook length h(2,1) is 2. It
can be shown that the dimension of the irreducible representation corresponding to λ is given
by the hook formula

fλ = d!
∏(i,j)∈λ hij

.

3



1. Combinatorics of the Symmetric Group

The degree of the irreducible representation of S4 corresponding to partition λ = (3 , 1) ⊢ 4
is the number of standard tableaux which can be calculated as

f = 4!
4 ⋅ 2 ⋅ 1 ⋅ 1 = 3.

Example 1.3

Let µ = (µ1, µ2, . . . , µn) ⊢ d and consider the independent formal variables x = (x1, x2, . . . , xm).
The power sum function pµ(x) is defined as

pµ(x) =
n

∏
i=1

(xµi1 + . . . + xµim).

Theorem 1.2.1 (Frobenius Character Formula). Let λ = (λ1, λ2, . . . , λm) and the partition
µ = (µ1, µ2, . . . , µn) ⊢ d. The character χλµ is equal to the coefficient of ∏ni=1 x

λi+m−i
i in

∆(x)pµ(x) where ∆(x) is the Vandermonde determinant

∏
i<j

(xi − xj) = det
⎛
⎜⎜⎜
⎝

xn−1
1 xn−1

2 . . . xn−1
m

⋮ ⋮ ⋱ ⋮
x1 x2 . . . xm
1 1 . . . 1

⎞
⎟⎟⎟
⎠
.

Of particular interest, are the irreducible characters evaluated at the conjugancy classes (1d)
and (1d−2 ⋅ 2). Indeed, the dimension of a representation is the value of the character at the
identity element 1 ∈ Sd, which has cycle type µ = (1d). the cycle type (1d−2 ⋅ 2) corresponds
to transpositions, which we will see later corresponds to simple branch points.

Let λ ⊢ d be a partition and denote by λt the conjugate of λ. Then l(λ) = λt1 is the length of
λ. If τ ∈ Sd is a transposition then as established by Frobenius, one can show that

(d
2
) ⋅
χλµ(τ)
χλµ(1)

=
l(λ)

∑
i=1

⎡⎢⎢⎢⎢⎣
(λi

2
) − (λ

t
i

2
)
⎤⎥⎥⎥⎥⎦
.

This leads to the following relation which we will need in the the computation of generalized
simple Hurwitz numbers below.

(d
2
) ⋅
χλµ(1d−22)
χλµ(1d)

= 1
2

n

∑
i=1
µi(µi + 1) −

n

∑
i=1
iµi. (1.1)
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Chapter 2

Toolbox on Algebraic Curves

In this chapter, we shall recall some definitions and some important results of the classical
theory of curves that are useful in this thesis. There are many excellent references for definitions,
results and proofs we mention herein, our favourites include [ACGH85, HM98, Mir95, Har77]
and a more accessible [Kir98, Gri89].

2.1 Notation, conventions and definitions

The realm of this work is complex algebraic geometry, we fix once and for all the base field to
be the field of complex numbers C. By Pn we denote the n−dimensional projective space over
C. We agree that by a variety we usually mean a reduced algebraic projective variety over C.

As routine, we will write OX for sheaf of global holomorphic sections on X. We shall make
the identification of invertible sheaves with line bundles and of locally free sheaves with vector
bundles. Suppose that F is a sheaf of vector spaces over a variety X, we set

hi(F ) ∶= dim Hi(X,F ) and χ(F ) ∶=
dimX

∑
i=0

(−1)ihi(F ),

where Hi(X,F ) is the ith-cohomology group and χ(F ) denotes the Euler characteristic of F .

In what follows, the term curve means a complete connected variety of dimension 1. We also
agree that by a smooth curve we implicitly mean that it is irreducible. A smooth curve is
equivalent with having a field extension of transcendence degree 1.

Denote by ωX the canonical sheaf on the curve X and by KX or K the canonical divisor
class associated to it. Given a curve X, we define its arithmetic genus to be

pa(X) ∶= 1 − χ(OX) = 1 − h0(OX) + h1(OX)

and its geometric genus pg(X) = h0(ωX) of X as the genus of the normalization of X. It
is a beautiful result that for a smooth curve X we have

g(X) ∶= pa(X) = pg(X).



2. Toolbox on Algebraic Curves

This number is simply called the genus of X. Let X be a smooth curve of genus g, we
recall that degKX = 2g − 2. Throughout, we exploit the equivalence between divisors and line
bundles on curves. Thus denote by h0(D) the dimension of the vector space of meromorphic
functions having poles only on D, or equivalently, we will write r(D) for the dimension of
the complete linear system ∣D∣ = PH0(X,O(D)) of effective divisors linearly equivalent to D.
The first result we present is the Riemann-Roch theorem.

2.2 Riemann-Roch Theorem

Theorem 2.2.1 (Riemann-Roch Theorem). Let D be any divisor on a smooth curve X of
genus g then

h0(D) − h0(K −D) = degD − g + 1. (2.1)

An effective divisor D on X such that h0(K −D) ≠ 0 is called special. If degD > 2g − 2,
or, in general, if D is nonspecial, we get H0(X,O(K −D)) = 0 so h0(D) is completely
determined in terms of the topological invariants of X and D. However, it is usually special
divisors which are relevant to specific geometric problems. Thus at times we may use the
geometric version of Riemann-Roch to calculate r(D) for the special divisor D = p1 + . . . pd.
See [ACGH85], page 12 for more details. For example for a general non-special effective divisor
D of degree d we can calculate,

r(D) =
⎧⎪⎪⎨⎪⎪⎩

0 if 0 ≤ d ≤ g
d − g if g ≤ d ≤ 2g − 2.

A projective subspace of a ∣D∣ is called a linear series or linear subsystem on X for a divisor
D. A point p ∈X common to all divisors in a linear series is called a base point and the set
of all base points is called the base locus of a linear series. Given a linear series there is a
simple criterion to check if a point p ∈X is its base point. Let’s recall this result:

Proposition 2.2.1. Let D be a divisor on a smooth curve X. Let r(D) be the dimension of
the linear series ∣D∣. Then the dimension r(D − p) of the linear series ∣D − p∣ for any point
p ∈X is such that

r(D) − r(D − p) =
⎧⎪⎪⎨⎪⎪⎩

0
1.

In particular, p is a base point of ∣D∣ if and only if r(D) − r(D − p) = 0.

For example for g ≥ 1, the canonical series ∣K ∣ = PH0(X,O(K)) on X is at least a pencil, i.e.
r(K) ≥ 1. By Riemann-Roch we have h0(K − p) = g − 1 for any p ∈X and thus the canonical
series is base point free by Proposition 2.2.1.

Definition 2.2.1. Let X be a smooth curve of genus g. If X admits a finite surjectve morphism
X Ð→ P1 of degree 2, we call X hyperelliptic .

Let f ∶X Ð→ Y be a nonconstant holomorphic mapping between two smooth curves. For any
point p ∈X and p = f(q) on Y we can choose coordinates centered at p and q such that we
may write f in the normal form

w = zvp(f),

6



2.2 Riemann-Roch Theorem

where vp(f) is the vanishing order of f at P . Each point q ∈ Y determines an effective
divisor on X of degree d (d is the degree of f) by the pullback, i.e the inverse image

f∗(q) = ∑
p∈f−1(q)

vp(f) ⋅ q,

whose support is the fiber f−1(q).

Consider a line bundle L on a curve X. Recall that the degree of L can be computed
by counting zeros and poles of any section of L not vanishing identically on connected
components of X. Moreover, if f ∶X Ð→ Y is a a holomorphic mapping of degree d and L
an invertible sheaf on Y then degX f∗L = d ⋅ degY L . This leads us to the following well
know consequence of Riemann-Roch theorem about holomorphic maps between two smooth
curves.

Theorem 2.2.2 (Riemann-Hurwitz formula). Let f ∶X Ð→ Y be a nonconstant holomorphic
map between two smooth curves. Then

KX ∼ f∗KY + ∑
p∈X

(vp(f) − 1),

where KX and KY are the canonical divisors on X and Y respectively. We shall need the
following numerical version of Riemann-Hurwitz formula.

Corollary 2.2.1. Let f ∶ X Ð→ Y be a nonconstant holomorphic map of degree d between
two smooth curves of genus g and h respectively. Then

2g − 2 = d(2h − 2) + ∑
p∈X

(vp(f) − 1).

Definition 2.2.2. A node is a singularity on a curve which is locally complex-analytically
isomorphic to a neighborhood of the origin in the zero locus xy = 0 ⊂ C2. A nodal curve is a
curve such that every one of its points is either smooth or a node.

Figure 2.1: A curve with four nodes

Generally, we prefer to work with arithmetic genus since it remains constant in continuous
families of curves. However in many other cases we will dwell on geometric genera of curves.
In case of a plane curve, its genus can usually be deduced from less complicated calculations
and/or explicit formulas.

7



2. Toolbox on Algebraic Curves

Genus of plane curves

In this section, we recall the formulas for computing geometric genus of plane curves. In fact,
we have the following result, see [Har77], page 393.

Theorem 2.2.3. Let C ⊂ P2 be an irreducible curve of degree d having only ordinary
singularities at p1, . . . , pN . Suppose the singularities are of multiplicities mi, at the point pi.
Then then the geometric genus of C is

pg(C) = (d − 1)(d − 2)
2

−
N

∑
i=1

(mi

2
). (2.2)

Assuming that the only singularities of an irreducible curve are δ ordinary double points, the
theorem yields the degree-genus formula for determining the genus g of the plane curve

pg(C) = (d − 1)(d − 2)
2

− δ. (2.3)

2.3 Moduli spaces of curves

A smooth curve of genus g is topologically a compact (orientable) surface with g handles.
Furthermore it is well-known (see for example [Mir95]), that for every genus g ≥ 0, there exists
precisely one such compact topological surface up to diffeomorphism.

g = 0 g = 1 g = 2 g = 3

Figure 2.2: Compact Riemann surfaces of genus g = 0,1,2 and 3.

However, the question about how many different algebraic structures can be introduced to
a compact surface with g handles is more complicated. For instance, the projective line
P1 is the only compact surface of genus g = 0. On the other hand, for g ≥ 1 there exist
continuous families of non-isomorphic compact Riemann surfaces. Geometrically, this means
that besides the discrete topological invariant, which is the genus, algebraic curves have
continuous invariants called their moduli.

A moduli space is usually a space which parametrizes equivalence classes of geometric objects.
So, points of a moduli space correspond to isomorphism classes of the geometric objects
of interest. In our case, we are interested in algebraic curves. The arithmetic genus has a
property of being constant in families, and therefore in this section (unless otherwise specified)
by a genus we will always mean the arithmetic genus.

Definition 2.3.1. Let n ≥ 0 be an integer. An n-pointed curve is an n+1-tuple (X,p1, . . . , pn),
where X is a smooth curve and pi are distinct points on X. The points pi’s are called the
marked points of X. The genus of (X,p1, . . . , pn) is defined to be the genus of X.

8



2.3 Moduli spaces of curves

By definition, a morphism (X,p1, . . . , pn) Ð→ (Y, q1, . . . , qn) of smooth pointed curves is a
morphism f ∶X Ð→ Y such that f(pi) = qi for all i. For non-negative integers (g, n) the set
of all smooth n−pointed curves of genus g (modulo isomorphism) is denoted byMg,n. In
other words,

Mg,n ∶= { (X,p1, . . . , pn) ∣ X is a smooth curve of genus g with
n distinct ordered points p1, . . . pn

}/ ∼ .

Here (X,p1, . . . , pn) ∼ (Y, q1, . . . , qn) if and only if there exists an isomorphism from X
to Y , preserving the marked points. A point in the moduli space Mg,n corresponds to a
connected, complete smooth curve X of arithmetic genus g with n marked points {p1, . . . , pn}.

It is a known fact [GH78], that the moduli spaceMg,n exists for each (g, n) ∈ N×N satisfying
the condition 2g − 2 + n > 0. The space Mg,n is not compact because smooth curves can
degenerate. For instance, a family of genus 1 curves given by the family of affine equations
y2 = x3 + x2 + t is smooth for t ≠ 0. At t = 0, the curve is singular and can be thought
as lying on the boundary of the corresponding moduli space. Thus, to compactify Mg,n

we need to allow degenerate curves but with as mild degeneracies as possible so that we
can still do meaningful geometry. There are several ways to get good compactifications ofMg,n.

One compactification ofMg,n is the Deligne-Mumford compactification. It was first described
in [DM69] and is obtained by adding curves with nodes toMg,n. Another compactification is
due to D. Schubert [Sch91] which allows cuspidal curves. Still another is the construction
of Hassett-Hyeon [Has08] which allows the inclusion of tacnodal curves. Observe that each
compactification allows different type of degeneration and therefore is useful in its own situa-
tion. However, the most fundamental compactification is due to Deligne-Mumford. Marked
points on stable curves are not allowed to come together or to approach nodal points. In this
compactification one uses a beautiful concept of bubbling when special points tend to collide.
Namely, if two smooth marked points approach each other, the curve sprouts off a copy of P1

with two marked points distributed on it.

2 3
1 z→ 2 1

3

Figure 2.3: Bubbling as the marked point 1 collides with the marked point 3

Similarly, if a marked point approaches a node, we let the limit to sprout another copy of P1

at the node with the marked point located on it.

1
2 3

z→
2

1
3

Figure 2.4: Bubbling when the marked point 1 approaches a nodal point
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2. Toolbox on Algebraic Curves

The Mumford-Deligne orbifoldMg,n is the space of pointed nodal stable curves of genus g
with n marked points together with certain stability condition. To describe points ofMg,n

formally, we need the following definitions.

Definition 2.3.2. Let n ≥ 0 be an integer. An n−pointed nodal curve is a tuple (X,p1, . . . , pn),
where X is a nodal curve and pi are distinct smooth points on X. A special point of the
n−pointed nodal curve means a node branch or a marked point pi on X.

The genus of (X,p1, . . . , pn) is defined to be the arithmetic genus of X.

Definition 2.3.3. A nodal n-pointed curve (X,p1 . . . , pn) is called stable if for each connected
component we have either:

i. 2g − 2 + n > 0; i.e each smooth connected component of X of genus 0 has at least 3
special points while any genus 1 smooth component of X has at least one special point,

ii. (X,p1 . . . , pn) has no infinitesimal automorphisms fixing the special points,

iii. ∣Aut(X,p1 . . . , pn)∣ < ∞.

Given a n−pointed nodal curve (X,p1, . . . , pn), we can construct its dual graph Γ (see
[YM99] for precise details) as follows:

• VΓ = the set of vertices, one for every irreducible component of the curve and labelled
by gv, where gv is the geometric genus of the corresponding component.

• EΓ = the set of edges are nodes, there corresponds an edge to each nodal point.

• TΓ = the set of half edges or tails, one for each marked point or points mapping to
nodes, with the same label as the point.

The genus g(Γ) of the dual graph Γ is determined by the equation

(g(Γ) − 1) = ∑
v∈VΓ

(gv − 1) + ∣EΓ∣.

Observe that the genus of the graph Γ of X equals the arithmetic genus of the curve X. We
call the pair (g(Γ), n) the type of the dual graph. The valence of a vertex v is the number of
edges or tails attached to it, and is denoted by deg(v). Using the corresponding dual graph
we can determine if the curve is stable or not. Namely, the dual graph is stable if and only if
for every vertex we have 2gv − 2 + deg(v) > 0.

3

4

1

2 2

1

4

0 1 2

3

Figure 2.5: Example of a pointed curve and its corresponding dual graph.

We define

10



2.3 Moduli spaces of curves

Mg,n = { (X,p1, . . . , pn) ∣ X is a stable curve of genus g with
n distinct ordered points p1, . . . pn

}/ ∼,

as a set. Let B be an algebraic variety, recall that a morphism π ∶ C Ð→ B is called flat if
there exists an embedding

C PN ×B

B

π

for some N ∈ N such that Cb = π−1(b) ⊆ PN × {b} has the same Hilbert polynomial for any
point b ∈ B ([Har77], page 261).

Definition 2.3.4. Let B be an algebraic variety, a family C of n−pointed genus g stable
curves over B is a flat morphism π ∶ C Ð→ B with n sections corresponding to each point
pi such that each geometric fiber (Cb ∶= π−1(b) ∶ p1(b), . . . , pn(b)) is an n−pointed genus g
stable curve.

Theorem 2.3.1 (Deligne-Mumford, [GH78]). For a pair (g, n) of non-negative integers such
that 2g − 2+n > 0, the set of stable n− pointed curves of genus g is parametrized by compact,
complex-analytic orbifoldMg,n. The spaceMg,n ⊂Mg,n is an open Zariski dense subvariety.
Moreover,Mg,n is connected, irreducible and is endowed with the universal stable curve

Cg,n Ð→Mg,n,

and the marked points form n pointwise disjoint sections σi ∶ Mg,n Ð→ Cg,n, for all i = 1, . . . , n.

LetMg,n be the Deligne-Mumford compactification ofMg,n. Notice that

dimMg,n = dimMg,n = 3g − 3 + n.

Every curve (X,p1 . . . , pn) in Mg,n is smooth; its dual graph is a corolla with n tails and
one vertex of genus g. The locusMg,n/Mg,n parameterizing singular curves is a sub-orbifold
ofMg,n of codimension 1 (a normal crossing divisor in the orbifold sense). It is called the
boundary ofMg,n and denoted by ∂Mg,n. A generic point of ∂Mg,n corresponds to a stable
curve with only one nodal point. Dual graphs also encode classes of the corresponding strata
in ∂Mg,n and thus give the stratification ofMg,n.

2.3.1 Morphisms of moduli spaces

There are some natural morphisms between various moduli spaces of stable pointed curves.
Among them we have:

i. The permutation morphism: The symmetric group Sn acts naturally on Mg,n by
permuting the markings of n-pointed curves. This induces an automorphism of Mg,n

called the permutation morphism.

11



2. Toolbox on Algebraic Curves

ii. The forgetful morphism π ∶ Mg,n+1 Ð→Mg,n that forgets the (n + 1)st marked point
on a given stable curve of genus g. If the stability of the curve is lost we contract rational
unstable components. The forgetful morphism π can be interpreted as the universal curve
overMg,n.

1
3

2 z→ 1 2

2
1 3

z→ 2
1

3
1 2 z→ 1 2

iii. The gluing morphisms

(a) The mapMg1,n1+1 ×Mg2,n2+1 Ð→Mg1+g2,n1+n2 obtained by gluing the n1 + 1-st
point with n2 + 1-st point of n1 + 1-pointed curve of genus g1 and n2 + 1-pointed
curve of genus g2 respectively. This operation gives a stable curve of genus g1 + g2
with n1 + n2 marked points.

2 3
1

1
2

z→ 1
2 3

(b) The mapMg,n+2 Ð→Mg+1,n, that glues the points labelled by n + 1 and n + 2 of
a stable genus g curve with n + 2 marked points giving rise to a stable n-pointed
curve of genus g + 1.

1
2

3 z→
1

Moduli space of genus zero curves

For arbitrary pairs (g, n) of nonnegative integers, the corresponding moduli spaces have very
big dimensions as well as a complicated geometric structure. However, for small values of g we
can explicitly describe the geometry of these spaces. The basic example is when g = 0. Recall
that dimMg,n = 3g − 3 + n. Therefore if g = 0 thenM0,n is well defined for n ≥ 3. Since P1

has no moduli, a point inM0,n corresponds to n distinct ordered points in P1 up to projective
equivalence induced by the action of PGL(2,C). The automorphism group PGL(2,C) is
transitive on triples of points. Fixing three of these points at (0,1,∞), we still have n − 3
points which are allowed to vary. Thus,

M0,n ≅ (P1/{0,1,∞})n−3/∆,

12



2.3 Moduli spaces of curves

where ∆ consists of all diagonals, and all point configurations include 0, 1 and ∞. In particular,
every smooth curve (X,p1, p2, p3) of genus zero is isomorphic to (P1, 0, 1,∞). Moreover, since
there is no stable 3-pointed nodal curve of genus 0, we conclude thatM0,3 =M0,3 = {pt}.
Similarly, every smooth curve (X,p1, p2, p3, p4) is uniquely identified with (X,0,1,∞, λ) for
λ ≠ 0, 1, or ∞. The number λ is determined by the position of the marked points on X. Thus
one can interpret λ as the cross-ratio of the four points (p1, p2, p3, p4) given by

λ = (p1 − p4)(p3 − p2)
(p1 − p2)(p3 − p4)

.

Therefore,M0,4 coincides with the set of admissible values of λ, i.e. M0,4 ≅ P1/{0,1,∞}.
The boundary ∂M0,4 consists of three smooth points corresponding to nodal curves for λ = 0, 1
and ∞ and thus we haveM0,4 = P1. Intuitively, we can interpret the limit of two colliding
points as another P1 with the two points on it. The corresponding strata inM0,4 described
by their dual graphs are given in Figure 2.6 and Figure 2.7.

0

1

3

2

4

Figure 2.6: Stratum of nonsingular curves inM0,4

0

1

2

0

3

4

0

1

4

0

2

3

0

1

3

0

2

4

Figure 2.7: Boundary strata

2.3.2 Cohomological classes on Mg,n

In this subsection, we introduce some cohomological classes on Deligne- Mumford space
Mg,n of pointed curves and describe various relations among these cohomology classes, top
intersection numbers and Hodge integrals. This will enable us to present the EKedahl-Lando-
Shapiro-Vainshtein (ELSV) formula which relates Hurwitz numbers to the intersection theory
on moduli spaces of curves.

To represent a point inMg,n we often write [X,p1, . . . , pn]. If ξ is a 0−cycle onMg,n then
we define its degree as ∫Mg,n

ξ . For general g and n, the cohomology ring of H●(Mg,n) or
its algebraic counterpart; the Chow ring A●(Mg,n) (where intersection theory happens) are
far from having a complete description. In 1983 D. Mumford defined the cohomological ring
H●(Mg,n) and the Chow ring A●(Mg,n) on moduli spaces of stable pointed curves but he
emphasized that the subring R●(Mg,n) ⊂ H2i(Mg,n,Q) of the cohomology ring called the
tautological ring, consists of more geometrically natural classes. In fact, the tautological
ring is all we need to get concrete information about the cohomology ofMg,n as at present
there is no known algebraic class which is not in the tautological ring. The spaceMg,n has a
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2. Toolbox on Algebraic Curves

fundamental class [Mg,n] ∈ H2(3g−3+n)(Mg,n,Q). So, if we have cohomological classes on
Mg,n denoted by α1, . . . , αm ∈ H●(Mg,n,Q) we can define their top intersection numbers
to be

∫
Mg,n

α1 . . . αm ∶= ⟨α1 . . . αm , [Mg,n]⟩ ∈ Q, (2.4)

where ⟨ , ⟩ denote the pairing between the cohomology H●(Mg,n,Q) and the homology
H●(Mg,n,Q). Now we need cohomology classes ofMg,n to proceed with intersections. A
fundamental way of producing cohomology classes onMg,n is to take the Chern classes of
some naturally defined vector bundles and then using the forgetful and gluing morphisms we
can pullback and push forward these classes. In addition to cohomological classes defined by
natural vector bundles, we do have other natural classes on Mg,n coming from the strata.
In fact, Keel [Kee92] has shown that in genus 0, the cohomology ring is generated by the
fundamental classes of the closure of the strata. All these cohomological classes live in
the tautological ring and are called tautological classes. The following definitions of the
tautological ring R●(Mg,n) is due to Faber-Pandharipande and Graber-Vakil.

Definition 2.3.5. The system of tautological rings R●(Mg,n) is the smallest system of

i. [FP05]: Q−algebras closed under push-forwards by the natural morphisms.

ii. [GV05]: Q−vector spaces closed under push-forwards by the natural morphisms, and which
includes all monomials in the ψ−classes.

Moreover, it is worth noting that the above two systems are shown to be equivalent in
[GV05]. A consequence of this equivalence is that any top intersection class in the tautological
ring can be determined only from the top intersections of the ψ−classes. The rational
cohomology H●(Mg,n,Q) ofMg,n is an algebra over Q, for any elements ξi ∈ Hi(Mg,n,Q)
and ξj ∈ Hj(Mg,n,Q) then the product ξiξj ∈ Hi+j(Mg,n,Q).

I. Boundary classes: The closure of each codimension 1 stratum D is a divisor inMg,n.
Denote by [D] ∈ H2(Mg,n,Q) its cohomology class. As was mentioned earlier, these
cohomology classes maybe be described using the corresponding dual graphs.

II. ψ− classes: (also called the Witten classes onMg,n). Recall, the forgetful morphism
π ∶ Mg,n+1 Ð→Mg,n can be identified with the universal curve π ∶ Cg,n Ð→Mg,n. This
is to each point [X,p1, . . . , pn] ofMg,n and to each point p ∈X we associate a stable
pointed curve [X̃, p̃1, . . . , p̃n, p̃n+1] ∈ Mg,n+1 in the following sense:

• If the point p ∈ X is not a marked or nodal point, then we set the element
[X,p1, . . . , pn, p] = [X̃, p̃1, . . . , p̃n] with the point p relabelled pn+1.

• If p = pi for some marked point pi, then let X̃ be X with a P1 where P1 is the
bubble at p marked pi and p ∶= pn+1. We will denote this (n + 1)-pointed stable
curve by σi([X,p1, . . . , pn]).

• Finally, if p is a nodal point, let X̃ be X with a P1-bubble at this node labelled by
p ∶= pn+1.

Now, there is a natural line bundle on Mg,n+1 =∶ Cg,n whose fiber at the point
[X,p1, . . . , pn] is the contagent line T ∗piX at the i−th marked point for pi nonsingular
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2.3 Moduli spaces of curves

points. We can extend this contagent bundle using the unique line bundle L Ð→Mg,n+1
called the relative dualizing sheaf of the universal curve. In particular,

L =KA ⊗ π∗K−1
B ,

where KA is the canonical line bundle on Mg,n+1, and KB denotes the canonical
line bundle on Mg,n. The sections on L along a non-singular fiber are exactly the
holomorphic 1−forms on the fiber. On the other hand, the sections along a singular fiber
are meromorphic 1−forms with at most simple poles allowed at the nodes and the two
residues at the preimages of each nodal point through normalization adding up to zero.
This way we obtain n holomorphic line bundles Li = σ∗i L , one for each of the marked
points for the sections σi ∶ Mg,n Ð→Mg,n+1. We take the first Chern class of the line
bundle Li Ð→Mg,n and define

ψi = c1(Li) ∈ H2(Mg,n,Q), i = 1, . . . , n.

The ψi-class on Mg,n is different from ψi on Mg,n+1. However, using the forgetful
morphism we have a relation:

ψi = π∗ψi +D0,{i,n+1}, (2.5)

where D0,{i,n+1} is the boundary divisor corresponding to reducible curves with one node,
where one component is of genus 0 and contains only the marked points pi and pn+1.

III. λ−classes: The Hodge bundle E is another natural vector bundle onMg,n. The Hodge
bundle is a rank g− vector bundle EÐ→Mg,n whose fiber over the point [X,p1, . . . , pn]
is H0(X,ωX), where ωX is the dualizing sheaf. More formally, we put E = π∗(L ) and
define the λ−classes as

λj = cj(E) ∈ H2j(Mg,n,Q), j = 1, . . . , g (2.6)

the j−th Chern class of the Hodge bundle EÐ→Mg,n.

The forgetful morphism yields some recurrence relations between the intersection numbers.
Consider Mg,n where the pair (g, n) satisfies the stability condition 2g − 2 + n > 0. The
simplest integral is overM0,3 namely

∫
M0,3

ψ0
1ψ

0
2ψ

0
3 = 1. (2.7)

Indeed, sinceM0,3 is a point, (i.e. a unique genus 0 curve with 3 marked points and such a
curve has a trivial automorphism group) there is a unique class with nonzero integral which by
definition is equal to 1. (It is called the initial condition overM0,n). The other initial case
is the integral

∫
M1,1

ψ1 =
1
24
, (2.8)

which is the initial condition case forM1,n. We have the following intersection identities for
the ψ− classes:
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2. Toolbox on Algebraic Curves

1. The Dilaton Equation,

∫
Mg,n+1

ψm1
1 . . . ψmnn ψn+1 = (2g − 2 + n)∫

Mg,n

ψm1
1 . . . ψmnn , (2.9)

2. The String Equation,

∫
Mg,n+1

ψm1
1 . . . ψmnn =

n

∑
i=1
∫
Mg,n

ψm1
1 . . . ψmi−1 . . . ψmnn . (2.10)

In calculation of the intersection numbers it is convenient to adopt the Witten’s notation see
[Wit91, Ful98]. This notation basically encodes only the symmetry between the ψ−classes
and one writes

⟨τm1 . . . τmn⟩g ∶= ∫
Mg,n

ψm1
1 . . . ψmnn , (2.11)

for all intersections of the ψ−classes. Here τ0, τ1, τ2, . . . are commuting formal variables called
the correlation functions, so that we can write intersection numbers in the form

⟨τa0
0 τa1

1 τa2
2 . . .⟩,

with the convention that the product ⟨τm1 . . . τmn⟩ = 0 if n = 0 or m1 + . . .+mn ≠ 3g − 3+n =
dim(Mg,n). Essentially, we have a Q-linear functional

⟨●⟩ ∶ Q[τ0, τ1, τ2, . . .] Ð→ Q.

Using correlation functions in Witten’s notation the dilaton equation (2.9) and the string
equation (2.10) can be written as

Dilation Equation: ⟨τm1 . . . τmnτ1⟩g = (2g − 2 + n)⟨τm1 . . . τmn⟩g;

String Equation: ⟨τ0τm1 . . . τmn⟩g = ∑ni=1⟨τm1 . . . τmi−1 . . . τmn⟩g.

As observed by E. Witten due to symmetry the integral (2.11) depends only on the unordered
set {m1, . . . ,mn} of non-negative integers. The integral notwithstanding its rationality can
be thought as the intersection number of points of mi copies of the divisors ψi for all
i = 1, . . . , n. Moreover, for each set {m1, . . . ,mn} there is at most one g such that the value
of the integral is nonzero. It is also important to note that the indices on τi have nothing to
do with the marked point pi. It turns out that the value of integral (2.11) can be completely
determined using (2.7), and the string equation. Indeed, the symmetric group Sn acts naturally
on Mg,n and the dimension restriction on the indices we can determine a closed form for
g = 0 integrals as described in [OP01].

Starting with the simplest integral overM0,n, i.e. the initial condition obtained when n = 3

16



2.4 Moduli space of stable maps

and the string equation, we proceed by induction as follows:

n = 3 ∶ ⟨τ0τ0τ0⟩0 ∶= ⟨τ3
0 ⟩0 = ∫

M0,3
ψ0

1ψ
0
2ψ

0
3 = 1.

n = 4 ∶ ⟨τ3
0 τ1⟩0 = ⟨τ3

0 ⟩0 = 1.
n = 5 ∶ ⟨τ3

0 τ
2
1 ⟩0 = ⟨τ3

0 τ1⟩0 + ⟨τ3
0 τ1⟩0 = 2,

⟨τ4
0 τ2⟩0 = ⟨τ3

0 τ1⟩0 = 1.

In general, we have the following proposition( see [LZ04], p. 254)

Proposition 2.3.1. Let m1 + . . . +mn = n − 3. Then

⟨τ0τm1 . . . τmn⟩0 ∶= ∫
M0,n

ψm1
1 . . . ψmnn =( n

m1, . . . ,mn
)

= (n − 3)!
m1! . . .mn!

.

2.4 Moduli space of stable maps

A natural generalization of the moduli spaces of curves are the moduli spaces of maps of
curves. In the case of constant maps these spaces coincide with moduli spaces of curves. If
these maps are to P1, then the spaces coincide with those of meromorphic functions. Following
[FP97], we will give a brief account of this spaces.

Definition 2.4.1. Let X be a smooth projective variety. Let C = (C,p1, . . . , pn) be a n-
pointed smooth curve and let β ∈ H2(X,Z). We say a map f ∶ C Ð→ X represents a
homology class β if [C] ∈ H2(C,Z) is the fundamental class of C and that f∗[C] = β.

If X = Pm, since H2(Pm,Z) ≅ Z[line] it follows that β = d[line] is the class of a line, we say
that d is the degree of the map f and write d for d[line].

Definition 2.4.2. A pointed map of genus g is a morphism f ∶ (C,p1, . . . , pn) Ð→ X that
represents a class β of a n-pointed smooth curve C.

Two pointed maps f1 ∶ (C1, p1, . . . , pn) Ð→ X and f2 ∶ (C2, q1, . . . , qn) Ð→ X are called
isomorphic if there exists an isomorphism φ ∶ C1 Ð→ C2 of curves such that ψ(pi) = qi for all
i and φ admits the following commutative diagram:

C1 C2

X

φ

f1 f2

The space parametrizing isomorphism classes [f ∶ (C,p1, . . . , pn) Ð→ X] of pointed maps
representing a class β is denoted by

Mg,n(X,β) = { f ∶ C Ð→X ∣ C a smooth curve of genus g with n
distinct ordered points p1, . . . pn

}/ ∼ .

17



2. Toolbox on Algebraic Curves

We use the shorthand (C,p1, . . . , pn, f) for an element in Mg,n(X,β). The moduli space
Mg,n(X,β) of maps is not compact since such maps can degenerate in various ways, but it
has a natural compactification by allowing nodal domains. This compactification is credited
to M. Kontsevich.

p1

pn

p2
fz→ X

Definition 2.4.3. Let X be a smooth projective variety and C be a nodal curve with p1, . . . , pn
smooth distinct marked points. A pointed map f ∶ C Ð→X such that f∗[C] = β where C is
a connected nodal curve of arithmetic genus g is called stable if the automorphism group of
(C,p1, . . . , pn, f) is finite.
That is, the morphism φ ∶ C Ð→ C that satisfies f ○ φ = f and fixes the marked point has
a finite automorphism group. Equivalently, if f is constant on irreducible components of C
of arithmetic genus 0, then the component has at least 3 special points while all irreducible
components of arithmetic genus 1 on which f is constant contains at least 1 special point.
Definition 2.4.4. The Kontsevich moduli spaceMg,n(X,β) is the moduli space of stable
maps to X of arithmetic genus g of class β ∈ H2(X,Z) written as,

Mg,n(X,β) = { f ∶ C Ð→X ∣ C a n-pointed nodal curve of
genus g, Aut(f) < ∞ and f∗[C] = β }/ ∼ .

Kontsevich moduli spaceMg,n(X,β) is known to be a Deligne-Mumford stack. The expected
or the virtual dimension ofMg,n(X,β) denoted by vdimMg,n(X,β) is determined by

vdimMg,n(X,β) =β c1(TX) + (dimX − 3)(1 − g) + n,

where c1(TX) is the first Chern class of the tangent bundle to X.
Remark 2.4.1. If β = 0, the Kontsevich moduli spaceMg,n(X, 0) =Mg,n ×X. In particular,
if X is a point, thenMg,n(X,0) =Mg,n as earlier claimed.
However, for β ≠ 0, the spaceMg,n(X,β) is not always well-behaved even when X a smooth
projective variety as nice as P1. IndeedMg,n(X,β) is possibly reducible, non reduced and
may be of impure dimension. For instance, it may contain components whose dimensions
exceed the above virtual dimension.

The moduli spaceMg,0(P1, d) for d > 1 and g > 0 consists of two components of different
dimensions. In fact, one component consists of generic maps from smooth curves to P1

which coincides with the small Hurwitz space. Thus it has dimension 2g + 2d − 2. Another
component has dimension 2d + 3g − 3. The later component consists of generic maps
from nodal curves C0 ∪Cg where Ci has genus i, C0 Ð→ P1 maps with degree d, while
Cg Ð→ P1 is contraction map to a point in P1.

Example 2.1
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2.4 Moduli space of stable maps

On the other hand, the moduli space Mg,n(X,β) has also known to have well-behaved
geometrical properties, which include:

i. The spaceMg,n(X,β) is compact and contains a unique open componentMg,n(X,β)
as a substack (possibly empty), i.e. the coarse moduli of maps of smooth curves. For
instance, it follows from stability conditions on maps that M1,0(P2,0) = ∅, while the
moduli spaceM1,0(P2,3) has a open subset of dimension 9 that can be informally be
thought as parametrizing smooth cubics in P2.

ii. The moduli space comes with two natural classes of continuous maps:

• The stabilization map st ∶ Mg,n(X,β) Ð→ Mg,n which forgets the stable maps
onMg,n(X,β).

• For each i in 1 ≤ i ≤ n, there are n evaluation maps

evi ∶ Mg,n(X,β) Ð→ SymnX, given by (C,p1, . . . , pn, f) z→ f(pi),

iii. There is a universal map overMg,n(X,β). If n1 ≥ n2 andMg,n2(X,β) exists then there
is a forgetful morphism

Mg,n1(X,β) Ð→Mg,n2(X,β).

Using the forgetful morphism, we can make an identification of the moduli spaceMg,n+1(X,β)
with the universal curve overMg,n(X,β).

Cohomological classes on Mg,n(X,β)
The cohomology classes onMg,n can naturally be lifted toMg,n(X,β) via the stabilization
map. Also using the evaluation maps, cohomology classes can be constructed from that of
X. Namely, for the cohomology class γ ∈ H●(X,Q) we have its pullback by evaluation which
yields ev∗(γ) ∈ H●(Mg,n(X,β),Q). More importantly, the moduli spaceMg,n(X,β) admits
a canonical virtual fundamental class of expected dimension denoted by

[Mg,n(X,β)]
vir
,

which lies in H2vdim(Mg,n(X,β),Q) where all intersection invariants of cohomology classes
are evaluated. Of course, this is a highly nontrivial fact which follows from the result below.

Theorem 2.4.1 (Behrend-Fantechi). The Kontsevich moduli space Mg,n(X,β) carries a
natural homology class, i.e. [Mg,n(X,β)]

vir ∈ H2vdim(Mg,n(X,β),Q).

If D is a enumeratively relevant divisor over Mg,n(X,β), i.e. a divisor D of degree equal
to the vdim Mg,n(X,β), one can show that the virtual fundamental class behaves as the
ordinary fundamental class, so we write

[Mg,n(X,β)]
vir =D ∩ [Mg,n(X,β)],

for the degree of this divisor.
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Chapter 3

Branched Coverings of Curves

In this chapter, we give a brief account of branched coverings and Hurwitz enumeration
problem of branched coverings. Hurwitz enumeration problem is an old but still active research
question due to its connections to several modern areas of mathematics and physics.

3.1 Overview remarks

Let X and Y be two smooth curves. Given a covering map f ∶X Ð→ Y , for each point of
q ∈ Y , the number of preimages f−1(q) is the same for each point of Y . Branched coverings
relax this requirement, by allowing finitely many points in Y (called branch points) to have
less than expected number of distinct preimages. Thus, if we fix the generic number of
preimages called the degree of f and genus of X, we hope to obtain only finite number of
equivalence classes of such f up to isomorphism. This turns out to be the case, and the
number of equivalence classes is called the Hurwitz number corresponding to the branched
profile. Hurwitz numbers can be computed explicitly for non-complicated branched profiles
due to the nice combinatorial interpretations they possess as first observed by A. Hurwitz in
[Hur91, Hur02].

Hurwitz numbers connect geometry of curves to combinatorics of the symmetric groups.
Riemann-Hurwitz formula tells us that the degree and the genus determine the degree of
the branch divisor of f , so we only need to keep track of the degree and branch profiles.
Indeed, we can encode the local degrees in permutations called monodromy representations
whose cycle types correspond to the branch types. Furthermore, an isomorphisms of branched
coverings in terms of monodromy representations corresponds to global conjugations. Thus,
isomorphic coverings keep the branched profile fixed because conjugation is invariant on cycle
types of permutations. In other words, we can construct a one-one correspondence between
isomorphisms classes of branched coverings and branched profiles. In addition, Riemann
existence theorem ensures that the set of branched profiles determines this isomorphisms
class. Thus, we have a bijection between the isomorphisms classes of coverings and a class of
elements of the symmetric group on #(degree of f) letters.

The reason why branched coverings have received renewed interests recently, is the existence of
a rich geometric structure behind them. These has attracted attention of many mathematicians
and physicists alike to the study of branch coverings (alias Hurwitz theory). It turns out



3. Branched Coverings of Curves

that formulae for computing Hurwitz numbers arise in different branches of mathematics
including algebraic geometry, combinatorics, representation of symmetric groups, topology of
curves, moduli spaces of curves, tropical geometry, Gromov-Witten theory, matrix models and
topological string theory.

3.2 Preliminary definitions
In this section, we review branched coverings of curves. Although, branched coverings are
interesting more generally, we will later consider branched covering of the projective line P1

or, equivalently, meromorphic functions on curves. There is a number of books devoted to
branched coverings, our favorite being [LZ04].

In what follows, a curve, always means a smooth complex projective algebraic curve.

Definition 3.2.1. Let X and Y be curves. A surjective continuous map f ∶X Ð→ Y is called
a covering map (or simply a covering) of Y by X if for some discrete set S and for each
point y ∈ Y , there exists a neighborhood U ⊂ Y of y such that the preimage f−1(U) ⊂X is
homeomorphic to U × S.

The preimage f−1(y) is called the fiber of f over y and if f is a covering then each fiber
has the same cardinality. Given an open set U ⊂ Y , we call connected components of the
preimage f−1(U) sheets of the covering over U . If d = ∣f−1(y)∣ is finite, the covering map f
is called d− sheeted.

Definition 3.2.2. Given curves X and Y , a branched covering is a continuous surjective
map f ∶X Ð→ Y such that for some finite set B ⊂ Y the map

f0 ∶X/f−1(B) Ð→ Y /B

is a covering. The set B is called branch locus of f , the points yj in B are called branch
points of f .

While counting different coverings we will consider their appropriate equivalent classes. Namely,

Definition 3.2.3. Two (branched) coverings f1 ∶ X1 Ð→ Y, and f2 ∶ X2 Ð→ Y are called
equivalent if there exists an isomorphism h ∶X1 Ð→X2 such that

X1 X2

Y

h

f1 f2

is a commutative diagram. In particular, we are not allowed to act on the base curve by its
automorphisms.

Observe that every nonconstant holomorphic map f ∶ X Ð→ Y gives rise to a branched
covering. Recall that the local behavior of a branched covering at a branch point is well
understood. Namely, for appropriate local coordinates z and ω at p ∈ X and q = f(p) ∈ Y
respectively, f is locally of the form z ↦ ω = zµi for some integer µi ≥ 1. The integer µi > 1 is
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3.2 Preliminary definitions

called the ramification index of f at p. Additionally p ∈X is a ramification point if and only
if µi > 1.

C, z

C, ω

C, z

C, ω

C, z
ω = z3

ω = z ω = z2

f

X

Y

Figure 3.1: Local picture of a branched covering of degree 3.

The following statement about ramification indices is well known, see for example [Har77],
Chapter II, Prop. 6.9.

Proposition 3.2.1. Let f ∶ X Ð→ Y be a d−sheeted branched covering (or equivalently a
holomorphic map of degree d). Then,

deg f = ∑
p∈f−1(q)

µi = [C(Y ) ∶ C(X)] = dimC(Y )C(X),

where [C(Y ) ∶ C(X)] is the degree of the field extension C(Y ) ⊂ C(X).

Let f ∶ X Ð→ Y be a branched covering of degree d. For a branch point y ∈ Y of f, let
f−1(y) ∶= {x1, . . . , xn} be its fiber with ramification indices {µ1, . . . , µn} respectively. We
have, ∑ni=1 µi = d.We can also assume after some reordering of {x1, . . . , xn} that µ1 ≥ . . . ≥ µn.
The partition (µ1, . . . , µn) ⊢ d is called the branch type of f at a point y. Now, for each
branch point we have an associated branch type. We define the branch profile of f with
m branch points as a multipartition µ = (µ1, µ2, . . . , µm) consisting of partitions µk ⊢ d,
k = 1, . . . ,m, and we write µmd ⊧ d for the branch profile of f of degree d.

Any non-constant polynomial or rational function gives a branched covering from P1 to P1.
For instance, f ∶ P1 Ð→ P1 defined by the polynomial f(z) = zd, d > 0 gives a d−sheeted
branched covering of P1 which has two branch points 0 and ∞ of index d. Thus the
branch profile of f is

µ2
d = ((d), (d)) ⊧ d.

Example 4.1

Definition 3.2.4. A branched covering f ∶X Ð→ Y of degree d is called simple if for every
branch point q its branch type is of the form (2,1, . . . ,1) ⊢ d.
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3. Branched Coverings of Curves

In appropriate setting, simple branched coverings are generic among all branched coverings
f ∶X Ð→ Y . In other words, any branched coverings between curves can be approximated by
them; and any branch covering close to a simple branched covering is itself simple. Proofs
can be found in [BE79, BE84].

3.3 Monodromy Representations

Let f ∶X Ð→ Y be a branched covering of degree d and let B be the branch locus of f . Take
a base point y0 ∈ Y /B. The preimage f−1(y0) consists of d distinct points of X. Denote
this set by Rd. Let γ ∶ [0,1] Ð→ Y /B be a path with γ(0) = γ(1) = y0, i.e. a loop in Y /B
with a base point y0. Since f0 ∶X/f−1(B) Ð→ Y /B is a covering, then for any point x ∈ Rd,
the path-lifting property guarantees the existence of a path γx ∶ [0,1] Ð→ X/f−1(B) with
γx(0) = x. The end point γx(1) belongs to Rd; we denote the lifted path by γ♯(x). Moreover,
we have a bijection

γ♯ ∶ Rd Ð→ Rd

satisfying the following:

1. If γ1 and γ2 are homotopic as loops in Y /B with base point y0, then γ♯1 = γ♯2.

2. If γ1 ⋅ γ2 is the product of two loops γ1 and γ2, then (γ1 ⋅ γ2)♯ = γ♯2 ○ γ♯1.

In other words, we get a homomorphism

ρ ∶ π1(Y /B,y0) Ð→ S(Rd), (3.1)

where S(Rd) is the group of permutations of Rd with the product fg = g ○ f . This homomor-
phism is called the monodromy representation of π1(Y /B,y0) of the branched covering
map f , and the image ρ is called the monodromy group. We usually fix the identification
of Rd = f−1(y0) with the standard set {1, . . . , d}. Then (3.1) gives the homomorphism
ρ ∶ π1(Y /B,y0) Ð→ Sd, where Sd is the symmetric group on d letters. Since the homomor-
phism (3.1) depends on the identification of Rd with {1, . . . , d}, a monodromy representation
is just determined up to inner-automorphisms of Sd when such an identification is not specified.
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y0

Γyn

γn
R1

R2

y2

γ2

y1γ1

● ● ●

α1

β1

α−1
1

β−1
1

αh

βh

α−1
h

β−1
h

Figure 3.2: The standard representation of closed arcs based at a point y0.

Given a curve Y of genus h, a branch locus B = {y1, . . . , yn} ⊂ Y and a base point y0 ∈ Y /B,
we choose standard generators for the fundamental group π1(Y /B,y0) as follows. We fix
a counterclockwise orientation for the compact topological surface Y and cut Y along the
maximal family α1, β1, . . . , αh, βh of 2h simple closed arcs in Y such that αi ∩ βi is a single
point of the transverse intersection for each i, and αi∩αj = βi∩βj = αi∩βj = ∅ if i ≠ j and do
not contain any of yi . Orient each of these arcs so that the orientation of αi followed by that of
βi corresponds to the orientation of Y at αi∩βi, and so that the induced orientation on a path
representing the commutator [αi, βi] = αiβiα−1

i β
−1
i is the same as in our preceding convention.

For h ≥ 1 we obtain a standard 4h-polygon with sides α1, β1, α
−1
1 , β−1

1 , . . . , αh, βh, α
−1
h , β

−1
h

with a counterclockwise orientation induced by the orientation of the compact topological
surface.

Consider a simple closed arc Γ which begins at y0 and such that Γ/y0 is contained in the
interior of the standard 4h-polygon and which passes through each of the branch points yi
indexed cyclically in the counterclockwise direction. Then Γ divides the standard 4h-polygon
into two regions which are to the left of Γ we call R1 and R2 which stay to the right of
Γ with respect to the orientation on Y . We choose small nonintersecting disks Di around
yi with distinct radii. Now we choose a simple arc c1 which lies inside the region R1 and
which connects y0 to the boundary ∂D1. Next, we choose a second simple arc c2 which lies
inside the region R1 connecting y0 and boundary ∂D2 with c1 ∩ c2 = y0 and lies to the left of
c1. Proceeding this way, we obtain an ordered n−tuple (c1,⋯, cn) of simple arcs whose only
common point is y0. Let γi be a closed path beginning at y0 and traveling on ci and then on
∂Di then back to y0 along ci.
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3. Branched Coverings of Curves

In particular, we obtain a (2h + n)-tuple of closed arcs we call the standard system of
arcs. The associated homotopy classes yield a standard system of generators for the group
π1(Y /B,y0) which is a quotient group of the free group generated by

(γ1, . . . , γn, α1, β1, . . . , αh, βh), (3.2)

subject to the condition
n

∏
i=1
γi

h

∏
k=1

[αk, βk] = 1.

Given a branched covering f ∶ X Ð→ Y , with branch locus B and the monodromy rep-
resentation ρ ∶ π1(Y /B,y0) Ð→ Sd, the generators γi ∈ π1(Y /B,y0) correspond to some
permutations σi ∈ Sd. We write σi = ρ(γi), ak = ρ(αk) and bk = ah+k = ρ(βk).
Definition 3.3.1. An ordered sequence (σ1, . . . , σn;a1, b1, . . . , ah, bh) of permutations in Sd
with σi ≠ 1 for all i satisfying the condition

σ1 . . . σn ⋅ [a1, b1] ⋅ . . . ⋅ [ah, bh] = 1,

is called a Hurwitz system for f corresponding to the standard set of generators (3.2).
The Riemann-Hurwitz formula provides a necessarily condition but not sufficient for the
existence of branched coverings satisfying the branching data. It should be noted that, we
have many cases of the data satisfying the Riemann-Hurwitz formula but no corresponding
branched coverings. See [PP06, PP08] for details and the references therein.

By connectedness property imposed on X and Y the monodromy group generated by a Hurwitz
system is a transitive subgroup of Sd. This leads to the following existence and classification
results of branched coverings allowing one to reduce many questions about branched coverings
to combinatorial or purely group-theoretic problems.
Theorem 3.3.1 (Existence Theorem). Let X and Y be curves. Given a d-sheeted covering
f ∶X Ð→ Y with branch locus B = {y1, . . . , yn} ⊂ Y there is a homomorphism

ρ ∶ π1(Y /B,∗) Ð→ Sd,

determined up to an inner automorphism (i.e. two homomorphism ρ1, ρ2 are equivalent if
there exists σ ∈ Sd such that ρ2(g) = σρ1(g)σ−1 for all g ∈ π1(Y /B,∗)).

Conversely, given a monodromy representation

ρ ∶ π1(Y /B,∗) Ð→ Sd,

there is a unique branched covering X Ð→ Y with branched set contained in B.
Theorem 3.3.2 (Classification theorem). Two branched coverings of degree d over a given
curve Y ( equipped with a fixed standard system of arcs) are equivalent if and only if they
have Hurwitz systems which are conjugate by an element of Sd.
The above theorems on existence and classification of branched coverings are two fundamental
results proven by A. Hurwitz, see [BE79, Eze78] for modern proofs. The proofs of these results
where originally sketched in [Hur91] by using cut and join techniques.

26



3.4 Hurwitz spaces and Hurwitz numbers

Remark 3.3.1. Motivated by the path multiplication in π1(Y /B,∗), we are adopting the
convention that permutations are multiplied from left to right, as opposed to the composition
product.

Obviously, a branched covering f ∶ X Ð→ Y is simple if and only if all the permutations
σ1, . . . , σn corresponding to branch points in a Hurwitz system are transpositions. Further, for
Y = P1 we have the uniqueness theorem of Lüroth and Clebsch [Eze78] for the normal form of
the Hurwitz system.

Theorem 3.3.3 (Lüroth and Clebsch). For any simple branched covering f ∶ X Ð→ P1 of
degree d, there exists a standard system of arcs such that its Hurwitz system is of the form

((1,2), (1,2), . . . , (1,2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2g+2

, (2,3), (2,3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2

, (3,4), (3,4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2

, . . . , (d − 1, d), (d − 1, d)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2

). (3.3)

Sketch of Proof. The idea of the proof is to consider the switching of the w simple branch
points two at a time say yi and yi+1 of the covering while others remain fixed and observe that
successful branch points preserve the product σiσi+1 in the monodromy group. This together
with a conjugation of the entire sequence by an element of Sd, gives the equivalence map:

(σ1, . . . , σw) Ð→ (σ1, . . . , σi−1, σi+1, σ
−1
i+1σiσi+1, σi+2, . . . , σw).

3.4 Hurwitz spaces and Hurwitz numbers
In this section, we recall geometric and combinatorial definitions and some basic facts about
Hurwitz spaces and numbers. Following §21 of [ACG11], we briefly describe the geometry of
Hurwitz spaces in special cases.

3.4.1 Hurwitz spaces

Hurwitz spaces are geometric spaces which parametrize the equivalence classes of branched cov-
erings with some fixed topological and combinatorial data. More specifically, they parametrize
branched coverings f ∶X Ð→ Y of degree d over a fixed curve Y with a fixed branch profile
µwd ⊧ d. These spaces were initially introduced by Clebsch [Cle72] and Hurwitz [Hur91] as a
tool to study moduli spaces of curves.

Fix a curve Y of genus h, positive integers d,w and a branch profile µwd ⊧ d. The set of all
equivalence classes of branched coverings of degree d with branch profile µwd ⊧ d can be given
a structure of a moduli space [HM98, Ful69, GHS02], which we denote by H h

g,d(µwd ) and
call the Hurwitz space associated to µwd . Hurwitz spaces are interesting to study in general
albeit their geometry is very complicated. On the other hand, we know that any branched
covering between curves can be approximated by simple branched coverings [BE79, BE84]
whose structure is easier to understand. Thus, an important special class of Hurwitz spaces
are the so-called small Hurwitz spaces which are moduli spaces of simple branched coverings

f ∶X Ð→ Y,
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3. Branched Coverings of Curves

of degree d, where Y is a fixed curve of genus h and X a curve of genus g.

Note that the symmetric group Sn acts naturally on the cartesian product Y n = Y × . . . × Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

by permuting the factors. The (smooth) quotient variety Symn Y = Y n/Sn is called the nth-
symmetric product of Y . Identifying points of Symn Y with the sets of unordered n-tuples
of points of Y with possible repetitions, we define the discriminant locus ∆n ⊂ Symn Y as
the set of all n−tuples which contain less than n distinct points. Fix non-negative integers
d, g, h,w related by w = 2g − 2 − d(2h − 2) and choose B ∈ Symw Y /∆w where w = ∣B∣. Now,
we define the spaces:

H h
g,d,B ∶= { f ∶X Ð→ Y ∣ X has genus g and f is a simple branched

covering of degree d whose branch locus is B
}/ ∼ (3.4)

and

H h
g,d ∶= { f ∶X Ð→ Y ∣ X has genus g and f is a simple branched

covering of degree d with w branch points
}/ ∼ , (3.5)

where ∼ denotes the equivalence classes of branched coverings of f ∶X Ð→ Y .

Let Φ ∶ H h
g,d Ð→ Symw Y /∆w be the map assigning to each branched covering its branch

locus. If B ∈ Symw Y /∆w, then Φ−1(B) = H h
g,d,B. Moreover, we can introduce a topology

on H h
g,d in such a way that Φ becomes a topological covering map. In this way, the space

H h
g,d has the structure of a complex variety induced from that on Symw(Y ) (and possibly

disconnected, if d > 2). We have a natural morphism

Φ ∶ H h
g,d Ð→Symw Y /∆w

(f ∶X Ð→ Y ) z→(Y ;branch locus of f),
(3.6)

which we call the branching morphism. The map Φ is finite and in fact ètale since H h
g,d

possesses the structure of a variety. This construction was first described in [Hur91], (see
also Fulton in [Ful69] for the modern interpretation of Hurwitz’s approach). The construction
naturally allows an extension to branched coverings which are simple in all but one special
point with branch type µ = (µ1, . . . , µn) ⊢ d if the monodromy group is the full symmetric
group Sd, see [GHS02].

Now, the existence and classification theorems allow us to reduce questions about the degree of
the branch morphism to a combinatorial problem. That is fixing the standard system of closed
arcs (3.2) above, the points in the fibers of Φ over B can be identified with the equivalence
classes [σ1, . . . , σn;a1, b1, . . . , ag, bg] of Hurwitz systems modulo inner automorphisms of Sd.
Two elements

(σ1, . . . , σn, a1, b1, . . . , ag, bg) and (σ′1, . . . , σ′n, a′1, b′1, . . . , a′g, b′g),

are considered equivalent if there exists an π ∈ Sd such that for all i, k we have σ′i = π−1σiπ,
a′k = π−1akπ and also b′k = π−1bkπ.
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3.4 Hurwitz spaces and Hurwitz numbers

An interesting subclass of small Hurwitz spaces is Hg,d ∶= H 0
g,d, i.e. by the moduli spaces

of simple branched covering of projective line. If we choose an affine coordinate in P1 we can
identify Hg,d with the space of meromorphic functions on curves of genus g with w = 2g+2d−2
simple branch points. Since branch points can be used as local coordinates on Hg,d this
implies that dimHg,d = w. Using calculations of Lüroth and Clebsch [Cle72], A. Hurwitz
in [Hur91] has proved that Hg,d is a connected variety see also §21.11 of [ACG11]. Fixing
d, g as above and choosing B in the unordered moduli space Symw P1/∆w, we get the ètale
branching morphism

Φ0 ∶ Hg,d Ð→Symw P1/∆w

(f ∶X Ð→ P1) Ð→(P1;branch locus of f).
(3.7)

The degree of the branching morphism Φ0 (which is a special case of the single Hurwitz
number, see Definition 3.4.1 below) counts the number of non-equivalent simple branched
coverings of P1 with a branch locus B. Recall, that to construct a branched covering of degree
d of P1 with branch locus B, it suffices to specify the monodromy of the d sheets of X Ð→ P1

around each of the branch points (we assume that we fix the system of paths). In other words,
we have to specify the Hurwitz system

Φ̃−1
0 (B) = { (σ1, . . . , σw) ∈ (Sd)w ∣ σi are transpositions such that

∏σi = 1 and ⟨σ1, . . . , σw⟩ = Sd
}/ ∼,

where ∼ represents all global conjugations. In this form the problem was for the first time
formulated by A. Hurwitz. In other words, we need to count sequences of w transpositions
which generate a transitive subgroup of Sd whose product equals identity.

For instance, it is immediate to enumerate all degree 3 simple branched coverings for all
g ≥ 0. All we need, is to count sequences of 2g + 4 transpositions with the above properties.
Notice that we are free to choose 2g + 3 elements of the sequence as the last transposition is
determined by the requirement that the product must be identity. Observe that the product
of 2g + 3 transpositions has the same parity as one transposition in S3. Also, to avoid
disconnected coverings we have to avoid choosing the same transpositions 2g + 3 times. Thus,
we immediately obtain that the number of simple branched coverings of degree 3 is 32g+3−3

6
for all g ≥ 0 as given on page 17 of [Hur91].

Compactification of Hurwitz spaces

It is clear that the small Hurwitz space H h
g,d is not compact. It is much easier to calculate

the degree of a map if we work with compact spaces. There are different natural ways to
compactify Hurwitz spaces. Among them, we can mention the Harris-Mumford compactifica-
tion [HM82a, HM98] which uses the concept of moduli spaces of admissible coverings. The
fundamental idea here, is to forbid branch points to collide; instead as two or more branch
points tend to collide, a new component of Y sprouts from the point of collision and these
points distribute on it. This way the base curve degenerates to a nodal curve and the covering
degenerates into a nodal covering.
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3. Branched Coverings of Curves

Another important compactification is constructed in the proof of ELSV-formula by T. Ekedahl
et al. see a rather new notes in [Du12]. The compactification uses an analogue for Hg,d as
the space of meromorphic function on X with exactly d ≥ 1 numbered simple poles and the
main feature here, is that the Hurwitz space Hg,d is closely related to the moduli spaceMg,d

of curves. Namely, for d ≥ 3 we can associate to a meromorphic function f ∶ X Ð→ P1 the
curve (X ∶ p1 . . . pd) ∈ Mg,d if we assume that f is not branched at infinity. Then we have a
forgetful morphism

π ∶ Hg,d Ð→Mg,d, (3.8)

determined by the labeling of the poles. The desired compactification Hg,d is determined
by the projection π ∶ Hg,d Ð→Mg,d and the geometry of the fiber. In particular, we define
the compactification of Hg,d as a bundle overMg,d whose sections are stable meromorphic
function on X, where “stable” means that a meromorphic function f ∶X Ð→ P1 defined on
a nodal curve X satisfies the following conditions:

i. f does not have poles at nodal points;

ii. f has a finite group of automorphisms.

3.4.2 Hurwitz Numbers

The number of non-equivalent branched coverings with a given set of branch points and
branched profile is called the Hurwitz number. The question of determining the Hurwitz
number for a given branch profile is called the Hurwitz enumeration problem. Hurwitz
numbers have both geometric and algebraic interpretations. Geometrically, Hurwitz numbers
count the number of holomorphic maps f ∶X Ð→ Y between curves with a fixed branch profile.
Using monodromy presentation of branched coverings, we get an equivalent combinatorial
descriptions for Hurwitz numbers as counting certain factorizations of permutations.

Definition 3.4.1. Fix positive integers d,w and a branch profile µwd ⊧ d. Let H h
g,d(µwd ) be

the corresponding Hurwitz space. The degree of the branching morphism

Φh ∶ H h
g,d Ð→Symw Y /∆w

(f ∶X Ð→ Y ) z→(Y ;branch locus of f)
(3.9)

divided by ∣Aut(µwd )∣ is called the Hurwitz number associated to the profile µwd ⊧ d.

We can reinterpret the Hurwitz number in terms of monodromy representations. Fix d, w
positive integers and a branch profile µwd ∶= (µ1, . . . , µw) ⊧ d for the w branch points. Then a
w− tuple (σ1, . . . , σw) is called Hurwitz factorization of type µwd if it satisfies the following

i. For every i the permutation σi ∈ Sd has cycle type µi,

ii. the product σ1⋯σw = 1 in Sd,

iii. σ1,⋯, σw generate a transitive subgroup of Sd.

Definition 3.4.2 (Hurwitz number). Hurwitz number associated to the branch profile µwd ⊧ d
is the number of Hurwitz factorizations of type µwd divided by d! .
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In general, explicit answers to the Hurwitz enumeration problem are usually difficult to
obtain. One important case when this problem has a rather explicit answer, is when at most
one branch point has an arbitrary branch type while all the others are simple. In case of
Y = P1, we usually suppose that the degenerate branch point is at ∞ ∈ P1. Thus, we are in the
situation where all the branch points in C correspond to transpositions while the permutation
at infinity can be described by some partition µ = (µ1, . . . , µn) ⊢ d. This leads to the following
class of Hurwitz numbers.

Single Hurwitz Numbers

Definition 3.4.3. The number of equivalence classes of the branched coverings in the above
form is called the single Hurwitz Number and is denoted by hg,µ.

Importantly, to every branched covering we can associate its monodromy data and we obtain
equivalent definitions of single Hurwitz numbers in terms of sequences of permutations.

Group theoretic definition

Fix σ ∈ Sd, a sequence (τ1, τ2, . . . , τn) such that the product τ1τ2 . . . τn = σ is called a transpo-
sition factorization of σ of length n. Obviously, such a factorization is not unique. However,
the number of transpositions in the factorization depends on the cycle type of the permutation
σ rather than the permutation itself. Namely, all such transpositions have the same parity as
that of σ and there is a minimal such n for which the factorization exists.

Let µ = (µ1, . . . , µn) ⊢ d for d ≥ 1. Consider an ordered sequence of permutations
(τ1, . . . , τw, σ) ∈ (Sd)w+1 such that:

i. (τ1, . . . , τw) are transpositions which generate Sd,

ii. the product τ1⋯τw = σ in Sd whose cycle type is µ.

Definition 3.4.4. The single Hurwitz number hg,µ equals the number of w−tuples of trans-
positions as above divided by ∣Aut(µ)∣ where Aut(µ) denotes the automorphism group of
partition that permutes equal parts of µ ⊢ d.

For instance, the number for non-isomorphic branched coverings of degree 3 over P1 with one
complicated branch point can easily be calculated.

Indeed, we establish that the single Hurwitz number hg,(3)⊢3 = 32g as follows. Notice that
for complicated branch point we can choose freely a 3-cycle in S3 giving a monodromy of
the triple point. The 3-cycle guarantee that we generate S3. Then we are free to choose
cycle for the next 2g + 1 simple branch points, the last is uniquely determined by the fact
that the multiplication is identity. So we get 2 ⋅ 32g+1 elements of S3. We divide by 3! to
account for relabelling of the sheets of the branched coverings.

Example 4.2
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Chapter 4

Formulae for Calculating
Hurwitz Numbers
In this chapter, we collect various known formulae in calculating Hurwitz numbers. In other
words, formulae for determining the number of connected branched coverings for fixed branched
profile over a given connected smooth curve. The chapter finishes with a discussion of the
Hurwitz monodromy groups.

4.1 The Hurwitz Formula
In several specific cases A. Hurwitz calculated hg,µ using purely combinatorial methods in
1891 and in terms of irreducible characters of Sn in 1902. In [Hur91] he sketched his solution
by using the Riemann existence theorem and also he observed that the calculation hg,µ is a
purely group-theoretic problem, but its solution is complicated for arbitrary g and d. On page
17 of [Hur91], Hurwitz found answers for calculating the degree of the map (3.7) for small
d ≤ 6 and any g ≥ 0. Namely,

hg,(12
) =1,

hg,(13
) =

1
3!

(32g+3 − 3),

hg,(14
) =

1
4!

(22g+4 − 4)(32g+5 − 3),

hg,(15
) =

102g+8

7200
− 62g+8

288
+ 52g+8

450
− 42g+8

72
+ 32g+8

18
+ 22g+8

12
− 5

9
,

hg,(16
) =

152g+10

2 ⋅ (360)2 −
102g+10

7200
+ 92g+10

2 ⋅ (72)2 −
72g+10

2 ⋅ (24)2 +
62g+10

2 ⋅ (36)2 −
52g+10

360
+

+ 42g+10

36
− 19

324
⋅ 32g+10 − 19

144
⋅ 22g+10 + 727

1152
.

(4.1)

Minimal Transposition Factorisation

For genus g = 0, the single Hurwitz number h0,µ is equivalent to counting factorisations of
a permutation σ ∈ Sd of cycle type µ ⊢ d into a product of transpositions of minimal length
divided by d!, a result known and published by Hurwitz.



4. Formulae for Calculating Hurwitz Numbers

Definition 4.1.1. Let σ ∈ Sd be a fixed permutation of length m. The sequence (τ1, . . . , τn)
is called a minimal transitive factorisation of σ into transpositions if the following 3 conditions
are satisfied:

i. Product cycle type condition: τ1 . . . τn = σ,

ii. Minimality condition: n ∶=m + d − 2,

iii. Transitivity condition: The graph Gσ is connected, where Gµ is the graph corresponding
to factorisation σ into a product of n transpositions.

Note that, one needs at least d−1 transpositions to build a cycle of length d. Then n ≥ d−1.

a. If µ = (2) ⊢ 2 andm = 1, the only transposition is (12) = (21). Thereforea h0,µ = 1
2 ⋅1 =

1
2 .

b. If µ = (3) ⊢ 3, m = 2 there exist 3 transposition factorizations of the three-cycle (123) =
(12)(13) ∶= (23)(21) ∶= (31)(32) and we have 3 ⋅ 2 three-cycles in S3 corresponding to
connected trees. Thus h0,(3) = 1

6(3 ⋅ 2) = 1.

c. If µ = (2, 1) ⊢ 3 and m = 3 we have 33 triples of transpositions but 3 of the triples consist
of coinciding transpositions and thus the corresponding graph Gµ is not connected. This
implies that the single Hurwitz number h0,(2,1) = 1

6(3
3 − 3) = 4.

aThis example also shows that Hurwitz numbers can be rational and not always a positive integer.

Example 4.1

Motivated by enumeration of branched covering of a sphere by a sphere, i.e. genus zero
branched coverings of P1, A. Hurwitz [Hur91] page 21 conjectured and sketched the recurrence
proof of the following formula. This conjecture was settled completely only a hundred years
later.

Theorem 4.1.1 (Hurwitz Formula). Let σ ∈ Sd be a permutation of cycle type µ =
(µ1, µ2, . . . , µm) ⊢ d. The number of distinct minimal transitive factorizations of σ into
transpositions equals

(d +m − 2)!
m

∏
i=1

µµii
µi!

dm−3. (4.2)

Many elegant and deep proofs of this formula have appeared in different branches of mathemat-
ics. For instance, Strehl [Str96] has reconstructed the proof of Hurwitz using Abelian identities.
This proof has been generalized by Golden-Jackson by using of generating functions and partial
differential equations combinatorial conditions see [GJ97]. Bousquet-Mélon and Schaffer,
[BS00] provided a bijective proof of Theorem 4.1.1 by inclusion-exclusion principle. Geometric
proofs include that of Lando-Zvonkine which calculates the degree of LL- (Lyashko-Looijenga)
mapping [LZ99] and the ELSV-formula which involves the geometry and cohomology of moduli
spaces [ELSV99].

The Hurwitz formula in special cases has been independently rediscovered by many authors.
First, for m = 1, i.e. µ = (d) we need to count minimal factorization of a d−cycle. Notice that
the product of transpositions τ1τ2 . . . τn is a d−cycle if and only if the associated graph of this
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4.1 The Hurwitz Formula

factorization is a tree. For example, consider the graph corresponding to the transposition
factorization

τ1­
(5,9)

τ2­
(2,3)

τ3­
(6,9)

τ4­
(1,5)

τ5­
(7,9)

τ6­
(8,9)

τ7­
(2,4)

τ8­
(2,5) =

σ∈S9³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1,2,3,4,5,6,7,8,9) .

1 5

2

4

3

9

6

7

84
8

7

2

1

3

5

6

Figure 4.1: The decorated graph of a factorisation 9-cycle σ ∈ S9

The core behind the derivation of this special case is the fact that multiplication of permutation
by a transposition can be easily understood; it either cuts or joins cycles of the permutation.
Namely, if σ ∈ Sd has m cycles then the product (a, b) ⋅ σ has either

1. Cut: m − 1 cycles if a and b are in different cycles of σ.

2. Join: m + 1 cycles if a and b are in same cycle of σ.

The multiplication of permutation (1, 2, 3, 4, 5) ∈ S5 on the left by (1, 4) gives (1, 5)(2, 3, 4).
In other words, cuts it into two cycles. On the other hand, multiplication of the permutation
(1,5)(2,3,4) on the left by (1,4) joins the two cycles together.

Example 4.2

Now, since for µ = (d) the graph Gµ is a tree, assuming bijective results [Mos89] the
corresponding Hurwitz number follows immediately from Cayley’s formula of 1860 for
enumeration of trees. (Observe, the Cayley formula in the language of transpositions, is
attributed to the Hungarian mathematician Dénes [Dén59]).

Theorem 4.1.2 (Dénes). There exist dd−2 transposition factorization of an d-cycle into d − 1
distinct transpositions.

In the case m = 2, V.I. Arnol’d [Arn96] found the corresponding Hurwitz number by using the
notion of complex trigonometric polynomials.

Theorem 4.1.3 (Arnol’d ). For a partition µ = (µ1, µ2) ⊢ d the number of distinct minimal
transitive transposition factorizations of σ whose cycle type equals µ is

µµ1
1 µµ2

2
(µ1 + µ2 − 1)!

(µ1 − 1)! (µ2 − 1)! . (4.3)
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Still another case was settled not that long ago by two physicists M. Crescimanno and W.
Taylor.
Theorem 4.1.4 (Crescimano-Taylor). If m = d means µ = (1d) i.e. the factorization of the
identity, then the number of distinct minimal transitive factorizations into transpositions

(2d − 2)! dd−3 (4.4)

was discovered in [CT95]. (Crescimano-Taylor apparently asked the combinatorialist Richard
Stanley who consulted Goulden-Jackson about the result).

Finally, Goulden-Jackson also independently [GJ97, GJ99a] discovered and proved the Hurwitz
formula in its complete generality.

4.2 The ELSV Formula
In this section, we formulate the remarkable ELSV formula [ELSV01] following a result of
Ekedahl-Lando-Shapiro-Vainshtein. It provides a strong connection between geometry of
moduli spaces and the Hurwitz numbers. In practice it is very difficult to use but it remains
one of the most striking results related to Hurwitz enumeration problem. Single Hurwitz
numbers turn out to be closely related to the intersection theory on the moduli space of stable
curves.

Recall that the Hurwitz number hg,µ is the number of branched coverings of degree d from
smooth curves of genus g to P1 with one branch point (usually taken to be ∞ ∈ P1) of
branched type µ ⊢ d and w = d + `(µ) + 2g − 2 other simple branch points.
Theorem 4.2.1 (The ELSV formula). Suppose that g, n are integers (g ≥ 0, n ≥ 1) such
that 2g − 2 + n > 0, where n ∶= `(µ). Let µ = (µ1, . . . , µn) ⊢ d and Aut(µ) denote the
automorphism group of the partition µ. Then,

hg,µ =
w!

∣Aut(µ)∣
n

∏
i=1

µµii
µi! ∫Mg,n

1 − λ1 + . . . + (−1)gλg
(1 − µ1ψ1) . . . (1 − µnψn)

(4.5)

where ψi = c1(Li) ∈ H2i(Mg,n,Q) is the first Chern class of the contagent line bundle
Li Ð→ Mg,n and λj = cj(E) ∈ H2j(Mg,n,Q) is the jth Chern class of the Hodge bundle
EÐ→Mg,n

1
1 − µiψi

= 1 + µ1ψ1 + . . . + . . . µiiψii + . . .

(Observe that the above expansion terminates because ψi ∈H2(Mg,n,Q) is nilpotent.)
Notice that the ELSV formula is a polynomial in the variables µ1, . . . , µn. This fact is stated
in the Golden-Jackson polynomiality conjecture [GJ99b] which this formula settles.
Remark 4.2.1. The ELSV formula is not applicable to coverings of genus 0 with 1 and 2
marked points since the stability condition 2g − 2 + n > 0 is violated. However, the ELSV
formula remains true for these two cases as well

∫
M0,1

1
(1 − µ1ψ1)

= 1
µ2

1
, and ∫

M0,2

1
(1 − µ1ψ1)(1 − µ2ψ2)

= 1
µ1 + µ2

. (4.6)
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4.2 The ELSV Formula

Apart from the easy combinatorial factor, the ELSV formula involves the integrals of the form

∫
Mg,n

ψm1
1 . . . ψmnλk1

1 . . . λ
kg
g , (4.7)

called the Hodge integrals which can be reduced to other integrals only involving the ψ-
classes. The latter integral are called descendant integrals [FP00]. The explicit evaluation
of these integrals or computation of the intersection numbers is a difficult task. On the
other hand, we can see that using the ELSV formula (4.5) makes it possible to calculate the
intersection numbers onMg,n once the single Hurwitz numbers are known.

Applications of the ELSV formula

Although, the ELSV formula (4.5) is hard to use, there is a couple of very well-known cases.
These cases are related to Witten’s conjecture [Wit91] now known as Kontsevich’s theorem
[Kon92] which gives a recursive relation for Hodge integrals involving ψ-classes only. In return
some of Hodge integrals can be evaluated recursively through string equation and the KdV
hierarchy. In particular, we can recover the following well-known cases.

Theorem 4.2.2 (Hurwitz Formula[Hur91]). The single Hurwitz Number formula h0,µ is
given by

h0,µ =
(n + d − 2)!
∣Aut(µ)∣

n

∏
i=1

µµii
µi!

dn−3 (4.8)

where n + d − 2 is the number of simple branch points , cf. Theorem 4.1.1.

Proof. By the ELSV formula and string equation,

h0,µ =
(d + n − 2)!
∣Aut(µ)∣

n

∏
i=1

µµii
µi! ∫M0,n

1
(1 − µ1ψ1) . . . (1 − µnψn)

=(d + n − 2)!
∣Aut(µ)∣

n

∏
i=1

µµii
µi!

∑
m1+...+mn=n−3

⟨τm1 . . . τmn⟩0 ⋅ µm1
1 . . . µmnn by equation (2.11)

=(d + n − 2)!
∣Aut(µ)∣

n

∏
i=1

µµii
µi!

∑
m1+...+mn=n−3

(n − 3)!
m1! . . .mn!

⋅ µm1
1 . . . µmnn by Proposition 2.3.1.

=(d + n − 2)!
∣Aut(µ)∣

n

∏
i=1

µµii
µi!

dn−3.

Moreover, we can recover the classical formulas of Denes, Arnol’d and Crescimano-Taylor, cf.
(4.1.2), (4.3) and (4.4) respectively:

Corollary 4.2.1 (Polynomial/Hurwitz’s case). If µ = (d) then

h0,µ = (d − 1)!d
d

d!
d−2 = dd−3.
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4. Formulae for Calculating Hurwitz Numbers

Corollary 4.2.2 (Rational/Dénes’ case). If g = 0 and µ = (1d) then

h0,µ =
(2d − 2)!

d!
dd−3.

Corollary 4.2.3 (Arnol’d’s case). If g = 0 and µ = (µ1, µ2) ⊢ d then

h0,µ2,µ2 =
µµ1

1
µ1!

⋅ µ
µ2
2
µ2!

⋅ (µ1 + µ2 − 1)! .

Another well-known case with an explicit generating formula occurs in the computation of
genus 1 Hurwitz numbers h1,µ. The details can be found in [GJV00]. There has been some
progress in calculation of more generalized Hurwitz numbers. For example, there is the ELSV
formula for double Hurwitz numbers hg,α,β which are the Hurwitz numbers for meromorphic
functions with two complicated branch points, see [KS03, GJV05].

4.3 The Mednykh Formula

In this section, we consider the general form of Hurwitz enumeration problem. In [Med84],
using the original idea of Hurwitz [Hur02] of interpreting branched coverings as irreducible
representations of symmetric groups, A. Mednykh has obtained a formula for counting the
number of non-equivalent branched coverings with any prescribed branched types and branching
data. This result in principle solves the general Hurwitz enumeration problem completely, but
the largely untractable sums of irreducible characters of the symmetric group in it results in
the fact that this remarkable formula is not very practical for use. However, the formula can
be used for prescribed branching data in some very specific cases.

Generalized Hurwitz Enumeration Problem

The generalized Hurwitz enumeration problem has been formulated and solved in [Med84]
albeit with a highly intractable for many practical applications generating function. However,
the main result in [Med90] shows that for specific cases we can still get explicit information.
The main ingredient in Mednykh’s solution, is that Hurwitz’s original result that the calculation
of Hurwitz numbers is reduced by Riemann existence theorem to purely algebraic problem,
can be lifted to higher genera target curves.

As above, let f ∶X Ð→ Y be a branched covering of degree d of a fixed curve Y of genus h
by a curve X of genus g whose branch locus has w branch points. The branch type of f at
each of the w branch points is specified by µp ⊢ d, p = 1, . . . ,w. Following Mednykh [Med84],
we alternatively use multiplicative notation for partitions and denote by µp = (1t

p
1⋯dt

p
d) ⊢ d,

p = 1, . . . ,w where tpk is the number of branch points of index k for k = 1, . . . , d to avoid
notational clutter. The multipartition µwd ⊧ d for the branch profile of f is here denoted by a
matrix σ = (µpk), k = 1, . . . d of size w × d.

The problem of counting equivalence classes of degree d branched covering f ∶X Ð→ Y with
the branched profile σ is called the generalized Hurwitz enumeration problem.
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4.3 The Mednykh Formula

Let B = {y1, . . . , yw} ⊂ Y be a fixed branching locus. Fixing a standard system of arcs we get
from (3.2) the monodromy representation (presentation of the fundamental group π1(Y /B)
to the symmetric group Sd). Recall that the presentation of the fundamental group π1(Y /B)
is given by

(γ1, . . . , γw, α1, β1, . . . , αh, βh). (4.9)

subject to the condition
w

∏
i=1
γi

h

∏
k=1

[αk, βk] = 1. (4.10)

The Hurwitz system of f corresponding to the standard set of generators (4.9) is an ordered
sequence

(σ1, . . . , σw;a1, b1, . . . , ah, bh)

of permutations in Sd with σi ≠ 1 for all i = 1, . . . ,w satisfying the condition

σ1 . . . σw ⋅ [a1, b1] ⋅ . . . ⋅ [ah, bh] = 1.

Denote by (1tk1 . . . dtkd) the cycle type of a permutation σi ∈ Sd. It has tk cycles of length k,
k = 1, . . . , d. Then each branched covering f is uniquely determined by the transitive tuples of
the Hurwitz system

Bh,d,σ = ((1t11 . . . dt1d), . . . , (1tw1 . . . dtwd ); a1, b1, . . . , bh, bh) ∈ (Sd)2h+w (4.11)

satisfying the condition
w

∏
p=1

(1t
p
1 . . . dt

p
d)

h

∏
i=1

[ai, bi] = 1.

Let Th,d,σ ⊂ Bh,d,σ be the subset of those free generators that generate transitive subgroups of
Sd. The existence theorem 3.3.1 guarantees a bijection between irreducible branched coverings
and transitive representations Th,d,σ. Moreover, the classification theorem 3.3.2 implies
that two coverings are equivalent if only if their corresponding (transitive) Hurwitz systems
are conjugate via a permutation of Sd. Hence, the general Hurwitz enumeration problem is
reduced to counting the number of orbits in Td,g,σ under the conjugation action of Sd.

Again for simplicity of notation, we write Bd,h,σ = ∣Bd,h,σ ∣ and Td,h,σ = ∣Td,h,σ ∣. Recall the
classical Burnside’s orbit-counting formula for the number of orbits under the action of a finite
group.

Lemma 4.3.1 (Burnside). The number of orbits under the action of a finite group on a set
X is given by

N = 1
∣G∣ ∑g∈G

∣Xg ∣, (4.12)

where Xg = {x ∈ X ∶ gx = x} In other words, Xg denotes the set of elements in X that are
fixed by g ∈ G.

The following result about the number Bh,d,σ is obtained in [Med84].
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4. Formulae for Calculating Hurwitz Numbers

Theorem 4.3.1. The number of elements in Bd,h,σ (i.e. the number of irreducible branched
coverings) is given by the expression

Bh,d,σ = d! ∑
λ∈Bd

⎡⎢⎢⎢⎢⎣

w

∏
p=1

χλ
tp1...t

p
d

1t
p
1 tp1! ⋅ 2tp2 tp2! . . . dt

p
dtpd!

⎤⎥⎥⎥⎥⎦
( d!
fλ

)
2h+w−2

, (4.13)

where Bd is the set of all irreducible representations of the symmetric group Sd , the symbol
χλ
tp1...t

p
d
is the character of the permutation (1t1 . . . dtd) of the representation λ and fλ = degλ.

Theorem 4.3.2. The number Th,d,σ of elements in Th,d,σ, (i.e. the number of reducible
branched coverings) is given by

Td,h,σ =
d

∑
k=1

(−1)k+1

k
∑

d1+...+dk=d
σ1+...+σk=σ

( d

d1, . . . , dk
)Bh,d1,σ1 ⋅Bh,d2,σ2 . . .Bh,dk,σk . (4.14)

A key ingredient in the Mednykh Formula is the number-theoretic function Φ(x, d) called von
Sterneck function. The function Φ(x, d) defined by the von Sterneck in 1902 is given by
the relation

Φ(x, d) = ϕ(d)
ϕ(d/(x, d))µ(d/(x, d)),

where ϕ(d) is the Euler’s phi function and µ(d) is the Möbius function. Here (x, d)
denotes the greatest common divisor (GCD) of x and d are such that x ≥ 0 and d > 0.

Theorem 4.3.3 (The Mednykh Formula). The number of degree d nonequivalent branched
covers of the branched type σ = (tps), for p = 1, . . . ,w and s = 1, . . . , d is given by

Nh,d,σ =
1
d
∑
l∣v
ml=d

∑
l

(t ,l) ∣n∣l

µ( ln)n
(2h−2+w)m+1

(m − 1)!

⎡⎢⎢⎢⎢⎣
∑
js
k,p

Th,m,(sp
k
) ×

×
n

∑
x=1
∏
s,k,p

[Φ(x, s/k)
n

]
jsk,p∏

k,p

( spk
j1
k,p, . . . , j

mn
k,p

)
⎤⎥⎥⎥⎥⎦
,

(4.15)

where t ∶= GCD{tps, p = 1, . . . ,w, s = 1, . . . , d}, v ∶= GCD{stps, p = 1, . . . ,w, s = 1, . . . , d},
spk = ∑

mn
s=1 j

s
k,p and the sum ∑js

k,p
is taken over all collections jsk,p satisfying the condition

∑
1≤k≤stps/l
s/(s,n)∣k∣s

kjsk,p =
stps
l
, p = 1, . . . ,w, s = 1, . . . , d ,

where jsk,p is nonzero if and only if 1 ≤ k ≤ stps/l and (s/(s, n))∣k∣s. Note that the products
∏
s,k,p

and∏
k,p

range over s = 1, . . . ,mn, p = 1, . . . ,w and with k = 1, . . . ,m.

Applications of the Mednykh Formula

Clearly, formula (4.15) involves complicated conditional sums and products which makes the
above answer to the generalized Hurwitz enumeration problem not very insightful. It is not
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4.3 The Mednykh Formula

even immediately clear how to obtain a numerical answer for a given branching data. On the
other hand, graph-theoretic techniques [HP73], combinatorics, as well as tools from theoretical
physics have enabled mathematicians to rediscover the old formulas and obtain new nice closed-
form answers for Hurwitz numbers, see [SSV96, Arn96, GJ97, GJ99a, GJ99b, GJV00, CT95].
Recently, these Hurwitz numbers interpreted as Gromov-Witten invariants for coverings of P1

with specified branched data in [ELSV99, ELSV01, OP01]. Remarkably, it is possible to obtain
some nontrivial results from the Mednykh Formula. In particular, we get generalized simple
Hurwitz numbers which are the number of simple branched coverings for small degree in
generalized case, [MSY04].

Generalized Simple Hurwitz Numbers

In [Med90], using equation (4.15) Mednykh establishes a closed form for the generalized
Hurwitz number in the case of branched profile with each of the branched types being (d) ⊢ d.
And in fact, simple Hurwitz numbers for small degrees can be computed in closed forms
involving only the genera and the number of branch points of a covering by the expression in
(4.15). Below we deduce closed-form formulas for the simple Hurwitz numbers for arbitrary
source and target curves for degrees d = 1,2,3,4 and 5.

Let f ∶X Ð→ Y be a degree d simple branched covering of a fixed genus h curve by genus g
curve. A simple branch point has the branch type (1d−2,2), and thus the branch profile is
described by the matrix σ = (tps), for p = 1, . . . ,w, and p = 1, . . . , d, where

tps = (d − 2)δs,1 + δs,2, where δm,n is the Kronecker symbol.

It follows that for the case of simple Hurwitz numbers, the quantities t = GCD{tps} and
v = GCD{stps} in the formula (4.15) are given by:

t = 1 and v =
⎧⎪⎪⎨⎪⎪⎩

2 d even
1 d odd

.

Furthermore, to find the range of the parameters in the first sum (which depends on v) in
formula (4.15), we need to determine separately the required conditions for the cases when
degree d is odd or even.

Case I: Degree d is odd

Suppose degree d is odd, then l = n = (t, l) = 1 and m = d. The conditions (s/(s, n))∣k∣s and

∑
1≤k≤stps/l

kjsk,p =
stps
l

which determines the collection {jsk,p} as

jsk,p = tpsδk,s.
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4. Formulae for Calculating Hurwitz Numbers

Since now Φ(1,1) = 1, the equation (4.15) simplifies to

Nh,d,σ =
Th,d,(sp

k
)

d!
(for d odd), (4.16)

where
spk =

d

∑
s=1

jsk,p = t
p
k = (d − 2)δk,1 + δk,2. (4.17)

Case II: Degree d is even

Suppose that d is even. Then v = 2 and thus the value of l is either 1 or 2. But if l = 1 then
all the parameters are just as in the case of d odd. Thus, for l = 1 and d even the first sum of
Nh,d,σ is determined by equation (4.16). If l = 2 we note that the ranges of the summation
are m = d/2 and n = l = 2. Furthermore, we can see that in this case

jsk,p =
tp1
2
δs,1δk,1 + tp2δs,2δk,1,

and it then follows that 1

spk =∶ s̄
p
k =

d

2
δk,1. (4.18)

Since the number of simple branch points w is even, and the corresponding von Sterneck
numbers are given by

Φ(2,1) = −Φ(1,2) = Φ(2,2) = 1.

Therefore, we easily see that for l = 2 the contribution to Nh,d,σ is given by

2(h−1)d+1

(d2 − 1)!
(d

2
)
w−1

Th, d2 ,(s̄
p
k
)
. (4.19)

Adding up the contributions in both (4.16) and (4.19), we get for all even d the formula

Nh,d,σ =
Th,d,(sp

k
)

d!
+ 2(h−1)d+1

(d2 − 1)!
(d

2
)
w−1

Th, d2 ,(s̄
p
k
)
. (4.20)

Thus, the difficulty of the problem of computing simple Hurwitz numbers for a given degree
d reduces to the calculation of two numbers Th, d2 ,(s̄pk) and Th,d,(s

p
k
), with the latter being

relevant if the degree d is odd. Using (4.16) and (4.20) we can compute these numbers for
low degrees and arbitrary genera g and h. First note, that combining equations (4.13) and
(4.14), for s̄pk = dδk,1 we have

Th,d,(s̄p
k
) = d!

d

∑
k=1

(−1)k+1

k
∑

d1+...+dk=d

k

∏
i=1

⎡⎢⎢⎢⎢⎣
∑

λ∈Bdi

(di!
fλ

)
2h−2⎤⎥⎥⎥⎥⎦

, (4.21)

where Bdi is the set of all irreducible representations of the symmetric group Sdi fλ denotes
the degree of the representation λ. In particular, if h = 0 then using the fact that the cardinality

1Note we are writing a bar in (4.17) distinguish spk from the one we have in (4.18).
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4.3 The Mednykh Formula

of a finite group is equal to the sum of squares of the degrees of its irreducible representations,
we get

T0,d,(s̄p
k
) =

d

∑
k=1

(−1)k+1

k
∑

d1+...+dk=d

( d

d1, . . . , dk
) =

⎧⎪⎪⎨⎪⎪⎩

1, for d = 1
0, for d > 1.

(4.22)

Therefore, the computation of generalized simple Hurwitz numbers reduces to the evaluation
of characters of the identity and the transposition elements in the symmetric group Sd.
(For details refer to subsection 1.2 containing relevant information on representations of the
symmetric group).

In what follows, we denote by Th,d,w the number Th,d,σ for simple branched types σ = (tps),
where tps = (d − 2)δk,1 + δk,2 for p = 1, . . . ,w and k = 1, . . . , d. Using this notation, let σ be a
simple branched type of a covering f . Then, the formula for the number of reducible branched
coverings Th,d,σ is (4.14) but with the number of irreducible branched coverings simplifies to
the form

Bh,d,w = (d!)2h−1( d
2
)
w ⎡⎢⎢⎢⎢⎣
∑
λ∈Bd

(χλ2)w
(fλ)2h+w−2

⎤⎥⎥⎥⎥⎦
. (4.23)

Generalized simple Hurwitz numbers of degree 1

For d = 1, σ = (1) which implies

Nh,d,1 = δg,h. where δg,h is the Kronecker symbol.

Hence, degree 1 simple Hurwitz numbers are equal to δg,h for all genera g, h.

Generalized simple Hurwitz numbers of degree 2

In computing the degree 2 simple Hurwitz numbers, we will employ the following lemma.

Lemma 4.3.2. Let f ∶ X Ð→ Y be a branched covering of a prime degree p, with w ≥ 1
branch points of order p. As before denoting by g and h the genera of curves X and Y
respectively, we get that the number Nh,p,w of nonequivalent branched coverings is given by
the formula

Nh,p,w = 1
p!
Th,p,w + p2h−2[(p − 1)w + (−1)w(p − 1)], (4.24)

where

Th,p,w = p! ∑
λ∈Bp

(
χλp

p
)
w
( p!
fλ

)
2h−2+w

.

Here Bp is the set of all irreducible representations of the symmetric group Sp, fλ = degλ
and χλp is the character of the cycle of length p corresponding to the irreducible representation
λ of the group Sp.

Proof. See Corollary 1 on page 1528 of [Med90].

For p = 2, the symmetric group S2 has two irreducible representation each of degree 1. The
character values of the transposition for both irreducible representations are ±1. The number
of branch points equals w = 4(1 − h) + 2(g − 1) by the Riemann-Hurwitz formula. Implying

43



4. Formulae for Calculating Hurwitz Numbers

formula (4.24), is useful in the case w ≥ 1 or, in other words, for g ≥ 2h − 3. Thus, it follows
that if g ≥ 2h − 3 then

Nh,2,w = Th,2,w =
⎧⎪⎪⎨⎪⎪⎩

22h for w is even
0, for w odd.

(4.25)

On the other hand, if w = 2(g − 1) + 4(1−h) = 0 then either h = g = 1 or h = 1 and g > 1. It is
easy to see that in the former case we have 3 equivalence classes of branched coverings and in
the latter we get 4.

Generalized simple Hurwitz numbers of degree 3

First note that if tpk = 2δk,1∑ji=1 δp,i + δk,2∑
w
i=j+1 δp,i, then similarly to p = 2 we have

Bh,2,(tp
k
) =

⎧⎪⎪⎨⎪⎪⎩

22h for j is even
0, for j odd.

(4.26)

Proposition 4.3.1. Simple Hurwitz numbers of degree 3 are given by

Nh,3,w = 22h−1(32h−2+w − 1) = 22h−1(32g−4h+2 − 1),

where w = 6(1 − h) + 2(g − 1) is the number of branch points.

Proof. There are three partitions of 3 namely, (3), (2,1) and (1,1,1) and consequently
there are three irreducible representations of S3, whose dimensions are 1, 2 and 1 respectively.
The corresponding values of their characters on a transposition χλτ are −1, 0 and 1. Therefore,
the quantity Th,3,w receives nonzero contributions only from the partitions (3) and (13). The
formula follows from easy combinatorial computations.

Generalized simple Hurwitz numbers of degree 4

Proposition 4.3.2. The simple Hurwitz numbers of degree 4 are given by

Nh,4,w =22h−1 [(32h−2+w + 1)24h−4+w − 32h−2+w − 22h−3+w + 1]+
+ 24h−4+w(22h − 1),

(4.27)

where w = 2(g − 1) + 8(1 − h).

Proof. There are 5 partitions of 4 namely, (4), (3,1), (22), (2,12) and (14) and thus are 5
irreducible representations of S4, whose dimensions are 1, 3, 3, 2 and 1. To evaluate Th,4,w,
observe that nonzero contributions come from four partitions of 4 namely (4), (3, 1), (2, 2), and
(2, 12) whose characters evaluated on transpositions are −1, 1, −1 and 1. The corresponding
non-trivial sum involving σ is

∑
σ1+σ2=σ

= Bh,2,σ1Bh,2,σ2 = 24h+w−1,

by using equation (4.25). The last term in (4.28) comes from the second term in (4.20) by
equation (4.21).
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Generalized simple Hurwitz numbers of degree 5

Proposition 4.3.3. The simple Hurwitz numbers of degree 5 are given by

Nh,5,w =22h−1 [22h−2+w − 24h−4+w − 1] − 22h−1 ⋅ 32h−2 [1 + 22h−2+w + 22h−2+2w]+

+ 22h−1 ⋅ 32h−2+w [1 − 24h−4+w + 22h−2+w] + 26h−5+w ⋅ 32h−2+

+ 22h−1 ⋅ 33h−2 ⋅ 52h−2+w [1 + 24h−4+w + 22h−2+w] ,

(4.28)

where w = 2(g − 1) + 10(1 − h).

Proof. Here there are 7 partitions of 5: (5), (4, 1, (3, 2), (3, 12), (22, 1), (2, 13), and (14).
So there are exactly 7 irreducible representations of S5, whose dimensions are 1, 4, 5,6, 5, 4
and 1 by the hook length formula. Moreover, the value of its and characters on transpositions
are 1, −1, 2,−2, 1, −1 and 0 respectively. It follows that for tpk = 3δk,1∑ji=1 δp,i + (δk,1 +
δk,2)∑wi=j+1 δp,i. Then, we obtain

Bh,3,(tp
k
) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

22h ⋅ 32h−1+w−j for j < w is even
0, for j odd
2 ⋅ 32h−1 [22h−1 + 1] for j = w.

(4.29)

Applying formula (4.24) for prime degree for p = 5, the proposition is established.

4.4 Generating functions of Hurwitz Numbers

In this section, we want to describe the generating series for the single Hurwitz numbers,
giving a recursion for a single Hurwitz number hg,µ in terms of single Hurwitz numbers hg′,µ
of lower genera. So far we have restricted ourselves to connected branched coverings since dis-
connected branched coverings can be recovered as a disjoint union of lower degree connected
branched coverings. In the generating function, we consider both connected and discon-
nected coverings. Observe that we can easily define disconnected single Hurwitz numbers h●g,µ
combinatorially by dropping the condition of transitivity of the action of the monodromy group.

Let p1, p2, p3, . . . be formal commuting variables and set p = (p1, p2, p3, . . .) for µ = (µ1, . . . , µn) ⊢
d and also pµ = pµ1⋯pµn . Now we introduce the generating functions for connected and
disconnected single Hurwitz numbers as

H(t,p) = ∑
g≥0
d,n≥1

∑
l(µ)=n

µ⊢d

hg,µpµ
tw

w!
(4.30)

H●(t,p) = ∑
g≥0
d,n≥1

∑
l(µ)=n

µ⊢d

h●g,µpµ
tw

w!
, (4.31)

where in each case the summation is over all partitions of length n and w = 2g − 2 + d + n is
the number of simple branch points. Here p = p1, p2, p3,⋯ are parameters that encodes the
cycle type of σ. The parameter t counts the number of simple branch points. Since w and µ
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recover the genus g, t is thus a topological parameter.

Recall that single Hurwitz numbers, coresponds to the case when the simple branch points
correspond to transpositions, while the branch point at ∞ corresponds to a permutation with
cycle type µ = (µ1, . . . , µn) ⊢ d. If we consider the process of merging of the last simple
branch point say yw to ∞ then it means multiplication τw ⋅σ ∈ Sd and the result decreases the
number of simple branch points w by 1. Equivalently we differentiate the generating function
with respect to t. The result of this differentiation is the cut-and -join linear partial differential
equation of Goulden-Jackson.

The Cut-and-Join Equation

Hurwitz numbers satisfy combinatorial conditions of partial differential equations (PDEs) called
the cut-and-join equation. These PDEs are only useful for very specific branched covering with
a given branch profile. In particular, single Hurwitz numbers satisfy a cut-and-join equation of
Goulden-Jackson in [GJ97].

The key point for this result is the cut and join recursion for the multiplication of a transposition
corresponding to τw by a permutation σ ∈ Sd described §4.1. The cut cases can result in
disconnected branched covering explaining why the generating functions must involve both
connected and disconnected branched coverings of P1. There is a simple relation [Hur91]
between the generating functions in (4.30) and (4.31). Namely,

H● = exp(H), (4.32)

where the exponential generating function for single Hurwitz numbers is defined to be

exp (H(t,p)) = 1 +H(t,p) + H(t,p)2

2!
+ H(t,p)3

3!
+⋯

and counts disconnected single branched coverings and the power of H(t,p) is the number of
connected components. Then the cut and join recursion takes the following form:

Lemma 4.4.1.

[ ∂
∂t

− 1
2 ∑i,j≥1

(pi+j ⋅ (i ⋅ j) ⋅
∂

∂pi
⋅ ∂

∂pj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τw joins

+pi ⋅ pj ⋅ (i + j) ⋅
∂

∂pi+j
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τw cuts

)]H● = 0.

We immediately deduce the cut-and-join equation of Goulden-Jackson for the generating
function H(t,p) of the number of connected single Hurwitz numbers.

Theorem 4.4.1 (Cut and Join equation, [GJ97]). The generating function H satisfies the
following partial differential equation

∂H
∂t

= 1
2∑i,j

pi+j ⋅ (i ⋅ j) ⋅
∂H
∂pi

⋅ ∂H
∂pj

+ (i ⋅ j)pi+j ⋅
∂2H
∂pi∂pj

+ pi ⋅ pj ⋅ (i + j) ⋅
∂H
∂pi+j

.

In other words, H is the unique formal power series solution of the cut and join partial
differential equation above.

46



4.5 The Hurwitz Monodromy Group

The fact that H satisfies a second order partial equation, is not surprising as more is known
to hold. Namely there exists the KP (Kadomtsev-Petviashvili) Hierarchy for Hurwitz numbers.
The KP Hierarchy is a completely integrable system of partial differential equations originating
from mathematical physics.

4.5 The Hurwitz Monodromy Group
Recall an observation of A. Hurwitz, that if we fix the degree d of the branched coverings
f ∶ C Ð→ P1, the number w of branch points and branch types for all the w branch points,
the Hurwitz space Hd,g form a covering space of the configuration space Covw(P1) of w
points in P1. The degree of the covering map

Hd,g Ð→ Covw(P1), (4.33)

is called the Hurwitz number corresponding to the branching data. The fundamental group
of Covw(P1) acts on the fibers of the covering and the orbits of this action are in one-one
correspondence with the connected components of Hd,g. In general, it is an unsolved problem
to determine the image or in other words the monodromy group for branching morphism as
described in (4.33) called the Hurwitz monodromy group. However, in special cases see
[EEHS91] a good description can be obtained. This includes the case of small Hurwitz space
Hg,d.

The small Hurwitz space Hg,d is an irreducible quasiprojective variety, which comes with a
finite śtale covering of Symw P1/∆w, where w = 2g + 2d − 2. The image of the fundamental
group π1(Symw P1/∆w) to the symmetric group Shd , where hd =simple hurwitz number is the
Hurwitz monodromy group. Directly from the simple Hurwitz formulae, we have an intuitive
indication, that the Hurwitz monodromy groups are less than the full symmetric group at
least for the first nontrivial cases d = 3 and 4, but nothing much we can say for d > 4 from the
shape of the formulae seen earlier. Indeed, the simple Hurwitz numbers for degree 3 and 4
consists of the factors 3n−1

2 and 2n − 1. Recall that 3n−1
2 is the number of points in the n − 1

dimensional projective space over a field with 3 elements and 2n − 1 is the number of points
in a n dimensional projective space over a field with 2 elements. In fact, one way to compute
the simple Hurwitz number for degree 3 branched coverings is to establish a bijection between
transpositions t1 . . . , tw in S3 specifying a branched covering curve X with w = 2g + 4 branch
points and the projective space of dimension w − 3 over F3. This is easily obtained. Namely,
up to conjugation we can assume t1 = (1,2) and consider the assignment

η ∶ (1,2) ↦ 0 (1,3) ↦ 1, (2,3) ↦ 2.

Let f∗((1, 2))t2 . . . tw) = (η(t2), . . . , η(tw−1)) we define the map f from the projective points
via

f(X) = f∗((t2), . . . , η(tw−1)).

As an example, if (1,2)(1,3)(1,2)(2,3)(1,3)) represent X, f(X) = (1,0,2,1). One then
can easily show the map f is well defined from the requirement that the product of the
transpositions must be identity, moreover its a bijection. Thus, we can compute the number of
degree 3 covering branched over w simple branch points to be 1

2(3
w−2−1) which is the number
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4. Formulae for Calculating Hurwitz Numbers

of points in the projective space of dimension w − 1 a field F3 with three elements. Thus for
d = 3 or 4, the Hurwitz monodromy groups can be anticipated to have a structure which heavily
reflects the geometrical structure of F2 and F2 vector spaces. Although, the formulation of the
problem is purely of topological nature, interesting results comes algebraically. In that view,
one considers the finite extension of function field of Hg,d by that Symw P1/∆w by regarding
the spaces as irreducible quasiprojective varieties. Then if we denote this image by G, it has
been calculated in [Coh74] and confirmed in [EEHS91] that

Theorem 4.5.1. Let g ≥ 0, then the Hurwitz monodromy group of Hg,3 Ð→ Symw P1/∆w is
the simple group PSp(2g + 2,F3).

Theorem 4.5.2. The Hurwitz monodromy group G of Hg,4 Ð→ Symw P1/∆w fits into the
into the following split exact sequence for g > 1

1Ð→∏
Ω

Sp(2g + 2,F2) Ð→ GÐ→ PSp(2g + 4,F3) Ð→ 0, (4.34)

where Ω denotes the 2g + 3-dimensional projective space over F3 and the group Sp(2g + 2,F2)
permutes the factors of the product in the obvious way.

If g = 0, then the factor ∏Ω Sp(2g + 2,F2) in the sequence (4.34) is the deck 340 ∶ 216 instead
of (S3)40 and the sequence is non split. Similarly for g = 1, the term Sp(2g +2,F2) is (A6)168

i.e. the direct product of copies of the alternating group instead of (S6)364 and it has not
been determined whether the sequence is split or not.
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Chapter 5

Functions on Smooth Plane
Curves

In this chapter, we show that every degree function on a smooth connected projective curve
C ⊂ P2 of degree d > 4 is isomorphic to a linear projection from a point p ∈ P2 /C to P1. We
will then pose a Zeuthen-type problem for calculating the plane Hurwitz numbers.

5.1 Meromorphic functions on smooth plane curves

Consider C ⊂ P2 a plane curve of degree d. A surjective morphism f ∶ C Ð→ P1 is called a
meromorphic function. More precisely, a meromorphic function f gives a finite morphism to
the complex projective line P1 whose degree d by definition is the degree of the morphism
f ∶ C Ð→ P1. Thus for a meromorphic function f and any fixed point q ∈ P1 we have the
divisor f−1(q) = µ1p1 + . . . + µnpn, where p1, . . . , pn are pairwise distinct points on C and
µ1, . . . , µn are positive integers summing up to d. In particular, the morphism f is a branched
covering of P1 of branch type µ ∶= (µ1, . . . , µn) ⊢ d at a point q.

Let C ⊂ P2 be a plane curve of degree d. An important geometric method for studying C,
involves meromorphic functions arising from linear projections of C from a point p ∈ P2. For
instance, B. Riemann established in his famous work [Rie57], that the topological structure
of a smooth curve C ⊂ P2 depends entirely on the nature of branch types of the branched
covering πp arising from a linear projection. To construct πp, we choose a point p ∈ P2 which
may or may not be lying on C and then identify P1 with the pencil of lines passing through
p ∈ P2. If p ∈ P2 /C, then a generic line through p meets the curve C in d distinct points.

Definition 5.1.1. Let C ⊂ P2 be a plane curve of degree d. A linear projection or simply a
projection from a point p ∈ P2 /C is a meromorphic function

πp ∶ C Ð→ P1. (5.1)

Notice that the morphism πp has degree d. In particular, πp is a branched covering of P1 and
the points of P1 where several intersection points of the corresponding line with C coincide
are the branch points of πp.



5. Functions on Smooth Plane Curves

Therefore, it is a basic problem to characterize and enumerate those meromorphic functions f
on C which can be realized as linear projections. First, note that in general not all meromorphic
functions on a curve C ⊂ P2 can be realized as such. However, for d > 4 we have the following
result which we will prove.

Theorem 5.1.1. Suppose that C ⊂ P2 is a smooth projective plane curve of degree d > 4.
Then any meromorphic function f ∶ C Ð→ P1 of degree d can be realized as a linear projection
πp ∶ C Ð→ P1.

Recall that, given a smooth curve C, specifying a meromorphic function f ∶ C Ð→ P1 of degree
d on C corresponds to identifying an effective degree d divisor D of f such that the linear
system ∣D∣ has no base points and dim ∣D∣ ≥ 1. (See for example Arbarello et. al. [ACGH85]).

Definition 5.1.2. Let D = p1 + . . . + pd be a divisor on a smooth curve C. If ∣D∣ has no base
point and dim ∣D∣ = 1, we say that D moves in a linear pencil ∣D∣. Equivalently, we have a
meromorphic function of degree d

f ∶ C Ð→ P1

such that f∗OP1(1) = L , where L ≅ OC(D) for OC(D) the invertible sheaf over C
determined by the divisor D and h0(L ) = 2, so that we may choose a basis say {f0, f1} for
H0(C,L ) such that f = [f0 ∶ f1].

Remark 5.1.1. The assertion of Theorem 5.1.1 fails if d = 3 and d = 4. For instance, we
have a meromorphic functions of degree 4 on a smooth projective quartic which are never
isomorphic to linear projections.

If C ⊂ P2 is a smooth projective quartic, then there is a meromorphic function on C of
degree 4 which is not isomorphic to a linear projection πp.

Example 5.1

Indeed let D = p1 + . . . + p4 be a divisor given by any 4 points on C such that no three of
them are collinear. The Riemann-Roch’s theorem gives

h0(L ) = h0(D) + 1 − g + h0(K −D) = 4 + 1 − 3 + h0(K −D) = 2,

since h0(K−D) = 0, (otherwise we will have K ∼D, which implies p1+ . . .+p4 ∈ ∣K ∣ all lie in a
line). Next, recall that an invertible sheaf L on C is base point free if h0(L )−h0(L (−p)) = 1
for all p ∈ C. By Riemann-Roch, we have

h0(L (−p)) = deg(L (−p)) − g + 1
= deg(D − p) − g + 1 + h0(K −D + p)
= 3 + 1 − 3 + h0(K −D + p)
= 1 + h0(K −D + p).

The fact that

h0( a degree 1 divisor) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0
1
2 which happens only on P1,
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5.1 Meromorphic functions on smooth plane curves

enables us to deduce that deg(K −D+p) = 0. Indeed, the complete linear system ∣D−p∣ ⊂ ∣D∣.
To see this, assume ∣D − p∣ ⊆ ∣D∣. Then we have an injection E ↦ E + p. So p = pi for some i.
We can assume p = p4

h0(L (−p)) = h0(p1 + p2 + p3)
= deg(p1 + p2 + p3) − g + 1 + h0(K − p1 − p2 − p3)
= 1 + h0(K − p1 − p2 − p3).

Since K −p1−p2−p3 is a degree 1 divisor, then there exists a point q such that K −p1−p2−p3
is linearly equivalent to q. In other words, K ∼ q + p1 + p2 + p3, not possible since p1, p2, p3 do
not lie on a line. So we obtain h0(L (−p)) = 1 = h0(L ) − 1 and we conclude that the linear
system ∣p1 + p2 + p3 + p4∣ has no base points. Hence, the four points move in a linear pencil
but a meromorphic function specified by this divisor on a smooth quartic cannot be realised
as a linear projection as this 4 points are not in a line.

Similarly, a configuration of 3 points p1, p2, p3 not all of them in a line, for the divisor p1+p2+p3
on a smooth cubic, provides a counterexample for the case of d = 3.

Definition 5.1.3. The finite set Γ = {p1, . . . , pd} ⊂ P2 of distinct points imposes linear
independent conditions on plane curves of degree m if for every point P ∈ Γ there exist plane
curves of degree m that contains Γ /P and does not contain the point P ∈ Γ.

Consider the subset Γ ⊂ P2 as a closed zero-dimensional subscheme of P2. Then we have the
standard exact sequence of sheaves

0Ð→ IΓ ⊗OP2(m) Ð→ OP2(m) Ð→ OΓ(m) Ð→ 0, (5.2)

where IΓ ⊂ OP2 is the ideal sheaf of the zero dimensional variety Γ. Note that OΓ(m) ≅
⊕di=1Opi ≅ Cd, and that surjectivity of

α ∶ H0(P2,OP2(m)) Ð→H0(Γ,OΓ(m))

exactly means that there is for each pi, i = 1, . . . , d a plane curve of degree m that contains
Γ /{pi} but not pi. Hence Γ ⊂ P2 fails to impose independent conditions on curves of degree
m if and only if α is not surjective. Namely if and only if

h0(IΓ ⊗OP2(m)) > h0(OP2(m)) − d = (m + 1)(m + 2)
2

− d.

Equivalently since H1(P2,OP2(m)) = 0, we see that Γ fails to impose independent conditions
on ∣OP2(m)∣ if we have h1(IΓ ⊗OP2(m)) > 0.

The proof of Theorem 5.1.1 will be derived from the following result.

Theorem 5.1.2. Let Γ = {p1, . . . , pd} ⊂ P2, be any collection of d ≥ 5 distinct points. If Γ
fails to impose independent linear conditions on ∣OP2(d − 3)∣ then at least d − 1 of the points
are collinear.

To see why the proof of Theorem 5.1.1 follows from that of Theorem 5.1.2, note that we need
to specify an effective divisor D of degree d on C such that the linear system ∣D∣ has no base
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5. Functions on Smooth Plane Curves

points and dim ∣D∣ ≥ 1, where
dim ∣D∣ ∶= h0(D) − 1. (5.3)

In the case the divisor D on C has a linear system as above, we say that D moves.

Now let D = p1 + . . . + pd be a divisor of degree d on a smooth curve C ⊂ P2. A criterion for
determining when D moves is given by the Riemann-Roch theorem for curves. Denote by
H the divisor of a general linear section: i.e. H is a pullback of OP2(1) along the inclusion
C Ð→ P2. The adjunction formula tells us that,

KC ∼ (d − 3)H.

By the Bézout theorem the degree of the divisor (d − 3)H is equal to d(d − 3). So we obtain
that,

2g − 2 = (d − 3)d or g = (d − 1)(d − 2)
2

.

The Riemann-Roch formula implies that

h0(D) = d − g + 1 + h0(KC −D),

and hence dim ∣D∣ ≥ 1 if and only if

dim ∣KC −D∣ ≥ (d − 1)(d − 2)
2

− d. (5.4)

Now the ideal sheaf IC of C in P2 is isomorphic to OP2(−C), and so

H0(P2,IC ⊗OP2(d − 3)) ≅ H1(P2,IC ⊗OP2(d − 3)) = 0

since H0(P2,OP2(−3)) ≅ H1(P2,OP2(−3)) = 0. Twisting the exact sequence

0Ð→ IC Ð→ OP2 Ð→ OC Ð→ 0

by OP2(d − 3), we find that H0(P2,OP2(d − 3)) ≅ H0(C,OC(d − 3)). Furthermore we have
that

H0(P2,IΓ ⊗OP2(d − 3)) = ker (H0(P2,OP2(d − 3)) Ð→H0(Γ,OΓ(d − 3))).

On the other hand, KC ∼ (d − 3)H and OC(D) is the ideal of D in C which implies that

H0(C,OC(KC −D)) = ker (H0(C,OC(d − 3)) Ð→H0(Γ,OΓ(d − 3))),

so we find that h0(OC(KC −D)) = h0(ID ⊗OP2(d − 3)). Hence (5.4) is equivalent to the
inequality

h0(ID ⊗OP2(d − 3)) > (d − 1)(d − 2)
2

− d. (5.5)

In other words, the divisor D = p1 + . . . + pd satisfies dim ∣D∣ ≥ 1 if and only if the set
Γ = {p1, . . . , pd} fails to impose independent conditions on the canonical linear system ∣KC ∣.
We will now see that we may use this to derive Theorem 5.1.1 from Theorem 5.1.2.
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5.1 Meromorphic functions on smooth plane curves

Proof of Theorem 5.1.1. Now observe that to complete the proof, it suffices to show
that either all the d points of D are collinear, or if only the d − 1 points of D lie on a line
then the d-th point is a base point of the linear system ∣D∣. In the first case D ∼H and we
are done. In the second case, suppose that D = p1, . . . , pd−1 + q, where the points p1, . . . , pd−1
lie on a line ` and q ∉ `. We must show that q is a base point of the linear system ∣D∣ or
equivalently that we have

dim ∣p1 + . . . + pd−1∣ = dim ∣p1 + . . . + pd−1 + q∣.

But as the degree of the divisor p1 + . . . + pd−1 is equal to degD − 1, the Riemann-Roch then
implies that it is enough to show that the following equality:

dim ∣KC − p1 − . . . − pd−1 − q∣ = dim ∣KC − p1 − . . . − pd−1∣ − 1 (5.6)

holds. Since degC = d, we can write the divisor cut by C on ` as C ⋅ ` = p1 + . . . + pd−1 + b,
where b ≠ q because q ∉ `. If a curve C1 of degree d − 3 passes through d − 1 collinear points
p1, . . . , pd−1, it must contain ` as a component. Thus, the linear system in equation (5.6) on
left-hand side

∣KC − p1 − . . . − pd−1 − q∣ ≅ ∣Iq ⊗OP2(d − 4)∣,

whereas the linear system on right-hand side in (5.6)

∣KC − p1 − . . . − pd−1∣ ≅ ∣OP2(d − 4)∣

which follows from the fact that dim ∣Iq⊗OP2(d−4)∣ = dim ∣OP2(d−4)∣−1. And this implies
(5.6), which completes the proof.

It is worthy to note that if p1, . . . , pd−1 are distinct points in P2, then they will always impose
independent conditions on curves of degree d ≥ 4. In particular, the divisor D = p1 + . . . + pd−1
moves in a linear pencil if and only if the points p1, . . . , pd−1 lie on a line. It follows that for
a smooth plane curve C ⊂ P2 of degree d, there is no nonconstant meromorphic function of
degree less than d − 1.

Proof of Theorem 5.1.2

To shorten the proof of theorem 5.1.2, we first reformulate it below in a slightly different but
equivalent form.

Theorem 5.1.3. Let Γ = {p0, . . . , pd} ⊂ P2, be any collection of d + 1 ≥ 5 distinct points. If Γ
fails to impose independent linear conditions on ∣OP2(d− 2)∣ then at least d of the points in Γ
are collinear.

Proof. By assumption there exists at least one point (without loss of generality) say p0 ∈ Γ
such that any curve of degree d − 2 passing through the points in Γ ∖ p0 also passes through
p0. Note that if we have a curve C of degree n ≤ d − 2 that passes through Γ ∖ p0, then it
follows by assumption that C also must pass through p0.

Let p0, p1 . . . , pj be the minimal number of points in Γ lying on a line ` containing the point
p0. Rename the remaining points as q1, . . . qd−j . By construction, any line through a point
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pi ≠ p0 and a point qi, will not pass through p0. We now construct a curve C being a product
of such lines. We let `i be the line through pi and qi if 1 ≤ i ≤ min{j, d − j}. For the possible
remaining points, we either let `i denote the lines through pi and q1 (if d − j < i ≤ j) or the
line through qi and p1 (if j < i ≤ d − j). The curve

C = `1 . . . `n (where n = max{j, d − j})

passes through all the points of Γ ∖ p0, but not though p0.

If we have 2 ≤ j ≤ d − 2 then we get that the degree n ≤ d − 2, which is a contradiction to our
assumption.

If we have j = 1, then any line `′ through two points Γ ∖ p0 would not contain p0. Observe
that, to cover Γ ∖ p0, we need at most n ≤ d/2 lines `′1, . . . , `′n if d is even, and at most
n ≤ (d+1)/2 lines to cover Γ∖p0, if d is odd. Note that d ≥ 5 is equivalent to (d+1)/2 ≤ d−2,
and if d = 4 then we have that d/2 ≤ d − 2. Hence for any d, in our range, we have the curve

C ′ = `′1 . . . `′n

of degree n ≤ d − 2 that passes through all points of Γ ∖ p0, but not through p0. This is
impossible by assumption.

Finally, we are left with the only possibility that j > d − 2. However if j ≥ d − 1, then we have
at least j + 1 ≤ d point p0, . . . , pj aligned on the line `. This completes the proof.

Plane Hurwitz numbers and Zeuthen numbers

Hurwitz numbers [Hur91, OP01] count non-isomorphic meromorphic functions on curves
with fixed genus g having a fixed branched profile. On the other hand, Zeuthen numbers
[Zeu73] count nodal plane curves of a fixed degree d and geometric genus g passing through
a general points and tangent to b general lines in P2, where a + b = 3d + g − 1. There is a
class of Zeuthen numbers corresponding to what we call plane Hurwitz numbers. Zeuthen
numbers have been interpreted by R.Vakil in the context of stable maps as positive degree
Gromov-Witten invariants of P2. Below, following [Vak99], we will sketch a derivation of a
class of characteristic numbers of smooth plane curves which correspond to calculating plane
Hurwitz numbers.

5.2 Plane Hurwitz Numbers

Generally in calculating Hurwitz numbers, we make no reference to the embedding of curves.
For example, one can not expect for instance a branched covering of P1 whose domain is genus
2 to be planar and smooth, since a smooth plane curve of degree d, has g = (d−1

2 ). Additionally,
we expect that not all curves of genus g = (d−1

2 ) can be embedded in P2 as smooth curves.
For instance, among all smooth curves of genus 3 (for d = 4), there are hyperelliptic curves,
which are not planar.
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5.2 Plane Hurwitz Numbers

Fix d > 0; the space parametrizing all degree d algebraic curves in P2 is a complete system
∣OP2(d)∣, which forms a projective space

P(H0(P2,OP2(d))) ≅ PN,

where N = (d+2
2 ) − 1 = d(d + 3)/2. In particular, the set of all smooth plane curves of a given

degree d is an open subset of PN. The group PGL(3,C) of all projective automorphisms of
P2 acts on PN in a natural way. Of particular interest is the subgroup Gp ⊂ PGL(3,C) fixing
p and preserving the pencil of lines through p. Given a smooth curve C ⊂ P2, for instance if
p = [0 ∶ 1 ∶ 0] ∈ P2 /C for some choice of coordinate system of P2 an element of the group Gp
has the form

g =
⎡⎢⎢⎢⎢⎢⎣

g0 0 0
g1 g2 g3
0 0 g0

⎤⎥⎥⎥⎥⎥⎦
with g0g2 ≠ 0.

The group of automorphisms Gp acts equivalently on PN keeping the branching points of
the projection πp ∶ C Ð→ P1 fixed. Recall from Definition 3.2.3, that two branched coverings
π1
p ∶ C1 Ð→ P1 and π2

p ∶ C2 Ð→ P1 are called equivalent if there exists an isomorphism
g ∶ C1 Ð→ C2 such that π2

p ○ g = π1
p. Then we have:

Proposition 5.2.1. Let C1,C2 ⊂ P2 be two smooth projective plane curves of the same degree
d > 1 and not passing through p ∈ P2. Two projections π1

p ∶ C1 Ð→ P1 and π2
p ∶ C2 Ð→ P1 are

equivalent if and only if there exists an automorphism g ∈ Gp such that g(C1) = C2.

Proof. Let C1,C2 ⊂ P2 be smooth projective curves not passing through p ∈ P2. If there
exists an automorphism g ∈ Gp such that C2 = g(C1), then the morphisms πp and π′p are
equivalent by an isomorphism given by g. For the ‘only if ’ direction, suppose that π1

p and π2
p

are equivalent and that this equivalence is determined by an isomorphism g ∶ C1 Ð→ C2. For
each line ` ∋ p the isomorphism g maps C1 ∩ ` to C2 ∩ `; thus, g maps hyperplane sections
of C1 to hyperplane sections of C2. Since both C1 and C2 are embedded in P2 by complete
linear system of hyperplane sections H0(P2,OCi(1)), for i = 1, 2, this implies that g is induced
by projective automorphism PGL(3,C). To complete the proof, it only remains to check
that g ∈ Gp; to that end, consider a generic line ` ∋ p; this line intersects Ci for i = 1,2 at
d = degCi > 1 points and this points are mapped by g to d distinct points on `. So g(`) = `
for the generic line and thus for any ` ∋ p. If `1, `2 containing p then

g(p) = g(`1 ∩ `2) = g(`1 ∩ `2) = g(`1) ∩ g(`2) = `1 ∩ `2 = p.

Hence g ∈ Gp as expected and this completes the proof.

By a generic projection of smooth curve C ⊂ P2 from a point p ∈ P2 which is not on a bitangent
line or a flex line we obtain a linear projection πp ∶ C Ð→ P1 with only simple branch points.
This leads us to the orbit space parametrizing all generic linear projections. Denote this space
of generic linear projections of the set of smooth curves C of degree d by:

PHd = { πp ∶ C Ð→ P1 ∣ πp is a simple linear projection from
p ∈ P2 /C of a smooth curve C ⊂ P2 }/ ∼ . (5.7)

where ∼ is the equivalence of projections from a point p ∈ P2 up to the Gp-action.
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Note that for g = (d−1
2 ), we have a natural inclusion PHd ⊆ Hd,g of small Hurwitz spaces for

d > 1. The information about the dimension of PHd is a direct consequence of proposition
5.2.1.

Corollary 5.2.1. The dimension of the space PHd is equal to N − 3 = d(d+3)
2 − 3.

The number of branch points of a generic projection πp ∶ C Ð→ P1 of a smooth curve of
degree d from p ∈ P2 /C is determined by the Riemann-Hurwitz formula as w = d(d − 1). We
refer to the number of 3-dimensional G-orbits with the same set of w tangents lines as the
d-th plane Hurwitz number and denote it by hd. Thus, to compute hd as indicated in (3.7),
we need to calculate the degree of the branch morphism

PHd Ð→Symw P1/∆, (5.8)

restricted to its image. Notice that by Corollary 5.2.1 the dimPHd < d(d− 1) for d ≥ 4. Next
we will give two examples of known plane Hurwitz numbers.

Degree 3-plane Hurwitz Numbers

The first nontrivial case involves projections of smooth plane cubics. The remark following
Theorem 5.1.1 asserts that if d = 3 not all meromorphic function of degree 3 on smooth plane
cubics are realizable as projections. However, degree 3 simple plane Hurwitz numbers coincides
with the usually Hurwitz number. Namely, over w = 6 pairwise distinct points on the projective
line P1 there are exactly 40 three-dimensional orbits of smooth cubics branched over them, see
[Hur91]. To see this, recall that Hurwitz numbers count branched covering up to equivalence,
the equivalence of plane Hurwitz with the usual Hurwitz number is a consequence of the fact
that every meromorphic function of degree 3 on a smooth cubic is a composition of a group
shift of C followed by a linear projection from p ∈ P2 /C. This is a well-known consequence of
the fact that any smooth plane cubic curve is an abelian group. We give the details below.

Proposition 5.2.2. Every meromorphic function of degree 3 on a smooth cubic curve C ∈ P2

can be represented as a composition of a group shift on C by a fixed point on C with a linear
projection from a point p ∈ P2.

Proof. Let C be a smooth projective cubic and let f ∶ C Ð→ P1 be a meromorphic function
of degree 3. If we write f−1(0) = z1 + z2 + z3, f−1(∞) = p1 + p2 + p3 for the zero divisor and
polar divisor of f respectively (where zi and pi for all i = 1,2,3 are not necessarily distinct).
The linear equivalence of divisors f−1(0) ∼ f−1(∞) implies the equality

p1 + p2 + p3 = z1 + z2 + z3,

where “+” denotes the addition from group law on the cubic curve. Fix a point P0 ∈ C such
that p1 + p2 + p3 + 3P0 = 0 and define

Qi = pi + P0, and Ri = zi + P0 for all i = 1,2,3.

Then we have

Q1 +Q2 +Q3 = p1 + p2 + p3 + 3P0 = 0
R1 +R2 +R3 = z1 + z2 + z3 + 3P0 = 0.
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In particular, {Q1,Q2,Q3} and {R1,R2,R3} lie on distinct lines in P2, since otherwise these
sets would be equal and so f−1(0) = f−1(∞), which is impossible. Denote the lines given
by the translates {Q1,Q2,Q3} and {R1,R2,R3} by `1 ⊂ P2 and `2 ⊂ P2 respectively. If
l1(x, y, z) and l2(x, y, z) are equations for the lines `1 and `2, the meromorphic function given
by composition of the group shift and projection is the quotient l1/l2: f(P −P0) = `1(P )

`2(P )
⇐⇒

f(P ) = `1(P+P0)
`2(P+P0)

, (where P = (x, y, x)) after possibly multiplying with a constant using the
fact that a meromorphic function without poles will be constant.

Degree 4-plane Hurwitz Numbers

The case d = 4 is more exciting. Note that the space parametrizing projections PH4 has
dimension 4(4+3)

2 − 3 = 11. As branched coverings, this 11-dimensional family PH4 admits
a natural inclusion into the small Hurwitz space H4,3 defined in (6.1.2) which is a smooth
irreducible variety of dimension 12. The inclusion PH4 ⊂ H4,3 implies that the branch locus
defines an hypersurface B ⊂ Sym12 P1. R. Vakil in [Vak01] has computed its degree to be
equal to 3762. Moreover, he establishes that there are essentially 120 smooth plane quartic
branched over admissible 12 points in P1. Thus, it follows that the plane Hurwitz number of
degree 4 is

h4 = 120 × (310 − 1)
2

. (5.9)

The corresponding Hurwitz number is known to be equal to h3,4 = 255 × (3
10−1)
2 .

5.3 Zeuthen numbers

This notion of plane Hurwitz numbers has a strong analogy to the special case of Zeuthen’s
classical problem which asks to calculate the number of irreducible plane curves of degree
d > 0 and geometric genus g ≥ 0 passing through a general points and b tangent lines in P2,
where a + b = 3d + g − 1. More precisely, assuming that the only singularities of an irreducible
curve C ⊂ P2 are δ nodes, since each node reduces the freedom of the curve by 1, we expect
that the set of irreducible degree d curves with δ nodes depends on

dim ∣OP2(d)∣ − δ = d(d + 3)
2

− δ = 3d + g − 1

parameters. Indeed, for all fixed integers d > 0 and g ≥ 0 as first observed by F. Severi [Sev21]
and proved by J. Harris [Har86], the Severi variety Vg,δ parametrizing irreducible plane curves
of degree d with δ nodes is a quasiprojective variety of dimension 3d + g − 1. It follows that
for a fixed d > 0, g ≥ 0, the numbers Nd(g) of curves passing through 3d+ g − 1 general points
is finite and does not depend on the generic configuration of points chosen. This Nd(g)
number is commonly referred to as Severi degree of plane curves. The number Nd(g) can be
calculated classically by hand for small d. For instance, if g = 0, Euclid postulated that there is
1 curve of degree 1 through 2 points, Apollonius showed that there is a unique conic passing
though 5 points in general position and a result of M. Chasles gives 12 rational cubics through
8 points in general position. H. Schubert established that there are 620 rational quartics
passing through 11 general points in P2. In general, Kontsevich [FP97] proved a recursive
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formula for computing Nd ∶= Nd(0) for all d.

Nd = ∑
di+d2=d
d1 , d2>0

Nd1Nd2

⎛
⎝
d2

1 d
2
2(

3d − 4
3d1 − 2

) − d3
1 d2(

3d − 1
3d1 − 2

)
⎞
⎠
. (5.10)

Indeed starting from the Euclid’s result N1 = 1, from the formula (5.10) we can easily calculate

N2 =N2
1 = 1,

N3 =N1N2
⎛
⎝

4(5
1
) − 8(5

0
)
⎞
⎠
+N2N1

⎛
⎝

4(5
1
) − 2(5

3
)
⎞
⎠
= (20 − 8) + 0 = 12

N4 =620, N5 = 87304, N6 = 26312976, . . . and so on.

In general, fix integers d > 0 and a, b, g ≥ 0. The number of irreducible curves of geometric
genus g and degree d passing through a general points and tangent to b general lines in P2 is
finite provided a + b = 3d + g − 1. These numbers are called characteristic numbers of plane
curves and we denote them by Ng(a, b). The question of calculating characteristic numbers
is the classical problem of Zeuthen and thus we usually refer to the numbers Ng(a, b) as
Zeuthen Numbers. In [Zeu73], H.G. Zeuthen calculated the characteristic numbers of smooth
curves in P2 of degree at most 4 and [Vak99] has verified Zeuthen’s results by using modern
methods on moduli spaces of stable maps, for an exposé see e.g. [FP97].

5.3.1 Homological interpretation of Zeuthen numbers

Let Mg,0(P2, d) be the Kontsevich moduli space of maps to P2 of fixed degree d > 0 and
arithmetic genus g ≥ 0. Consider the open substack of maps of smooth curvesMg,0(P2, d).
The closure ofMg,0(P2, d) is a unique component ofMg,0(P2, d) of dimension 3d+ g − 1 we
denote byMg,0(P2, d)†. The Zeuthen number Ng(a, b) can be interpreted in the language of
stable maps.

Let α and β denote the divisors in Mg,0(P2, d)† representing classes of a point and a line
respectively. The characteristic number Ng(a, b) is given by the degree of αaβb and is denoted
by αaβb ∩ [Mg,0(P2, d)†]. For example, it is known there is a unique smooth cubic through 9
general points, then we will write α9 ∩ [M1,0(P2,3)†] = 1.

The following existence result is the key point for this interpretation.

Proposition 5.3.1. There exist two divisors α and β such that the number Ng(a, d) is
αaβb ∩ [Mg,0(P2, d)†].

Proof. See [Vak98], Theorem 3.15.

We finish with an open problem. As above, let Mg,0(P2, d)† be the closure of the open
substackMg,0(P2, d) of maps of smooth curves of degree d. Among the boundary divisors
representing the closure of loci of maps (see [Vak98] for precise descriptions) ofMg,0(P2, d)†,
we have a divisor Id which is the closure of the locus of degree d ∶ 1 maps of smooth curves of
degree d into a line in P2. Such generic maps are necessarily branched at d(d − 1) points by
Riemann-Hurwitz formula. Thus the divisor Id enumerates a special class of Zeuthen numbers
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whose calculation is related to that of Hurwitz numbers. Namely, the Zeuthen numbers
β3d+g−2[Id] for g = (d−1

2 ). For instance, R. Vakil in [Vak99] calculates that β8[I3] = 40 × 210
and β13[I4] = 120 ⋅ 2535. It makes sense to consider the divisor Id up to the Gp-action.

Open problem: Consider the orbit spaceMg,0(P2, d)†/Gp. Is there a natural homology class

β ∈ H2(3d+g−4)(Mg,0(P2, d)†/Gp,Q)

such that hd = β3d+g−5 ∩ [Id/Gp]?
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Chapter 6

Planarity Stratification of
Hurwitz Spaces

In this chapter, we show that every nonconstant meromorphic function on a nonsingular
complex projective algebraic curve can be represented as a composition of a birational map
of this curve to P2 and a projection of the image curve from an appropriate point p ∈ P2 to
the pencil of lines through p. Then we introduce a natural stratification of Hurwitz spaces
according to the minimal degree of a plane curve such that a given meromorphic function can
be represented in the above way and calculate the dimensions of these strata. We observe
that they are closely related to a family of Severi varieties studied earlier by J. Harris [Har86],
Z. Ran [Ra89] and I. Tyomkin [Tyo07].

6.1 Basic definitions and facts

In what follows by a genus pg(C) of a (singular) curve C we mean its geometric genus, i.e.
the genus of its normalization. We start with the following statement.

Proposition 6.1.1. Every nonconstant meromorphic function f ∶ C Ð→ P1 on a smooth
complex projective curve C can be represented as f = πp ○ ν where ν ∶ C Ð→ P2 is a birational
mapping of C to its image and πp ∶ ν(C) Ð→ P1 is the projection of the image curve ν(C)
from a point p ∈ P2 to the pencil of lines through p.

Proof. Let M(C) be the field of meromorphic functions on C. Consider its subfield
C(f) ⊂M(C) of rational expressions in f . Let [M(C) ∶ C(f)] the dimension ofM(C) over
C(f). Since C is one-dimensional the field extension [M(C) ∶ C(f)] is finite. Choose any
meromorphic function g ∶ C Ð→ P1 generating this extension. Removing a point from P1 and
its inverse images under f and g, we get a birational mapping C / {finite set} Ð→ C2 given by
the pair (f, g). Its compactification gives a birational mapping ν ∶ C Ð→ P2. Projection “along
the second coordinate" gives a presentation of the original meromorphic function f ∶ C Ð→ P1

as f = πp ○ ν.

Obviously if ν maps C birationally on its image and f = πp ○ ν for some point p ∈ P2, then
deg(ν(C)) = deg f if and only if p ∉ ν(C) and deg(ν(C)) > deg f if p ∈ ν(C).



6. Planarity Stratification of Hurwitz Spaces

Definition 6.1.1. The planarity defect pdef(f) of a meromorphic function f ∶ C Ð→ P1

equals
pdef(f) ∶= min

ν
(deg(ν(C)) − deg(f)

such that f = πp ○ ν as above.

We have the following simple observation.

Lemma 6.1.1. Given f ∶ C Ð→ P1, then pdef(f) = 0 if and only if h0(f∗OP1(1)) ≥ 3, and
for almost any point p ∈ C and any other point q ≠ p,

h0(f∗OP1(1) − p − q) = h0(f∗OP1(1)) − 2.

Proof. Indeed, observe that f determines a linear subsystem in the complete linear system
f∗OP1(1). Moreover, if rf = h0(f∗OP1(1)) ≥ 3 then this linear system defines a map
φf ∶ C Ð→ Prf−1, with rf − 1 ≥ 2. If additionally, sections of f∗OP1(1) separate each generic
point on C from all other points then φf is birational on the image. The latter condition is
made explicit above. Choosing an appropriate 3-dimensional subsystem of f∗OP1(1) including
f , we get the required statement.

Unfortunately, the second condition is not easy to check in concrete situations, see Remark
below. We say that a linear system L on a curve C is birationally very ample if the image
of C in the projectivized space of its sections is birationally equivalent to C, cf. [Ohb97].

The following sufficient condition of the birational very ampleness of f∗OP1(1) is valid.

Lemma 6.1.2. If f ∶ C Ð→ P1 has at most one complicated branching point, then pdef(f) = 0 if
and only if h0(f∗OP1(1)) ≥ 3. In particular, under the above assumptions, if deg(f) = d ≥ g+2
where g is the genus of C then pdef(f) = 0.

Proof. As in Lemma 6.1.1, the necessary condition for pdef(f) = 0 is that we have
rf = h0(f∗OP1(1)) ≥ 3. By Riemann-Roch’s formula

rf ∶= h0(f∗OP1(1)) = d − g + 1 + h0(K − (f)∞), (6.1)

where (f)∞ is the pole divisor of f . The linear system f∗OP1(1) determines the mapping
φf ∶ C Ð→ Prf−1. Moreover if rf ≥ 3 and f has at most one complicated branching point,
then φf defines a birational mapping of C on its image φf(C). Indeed, since rf ≥ 3 the only
thing that we have to exclude is that φf ∶ C Ð→ φf(C) is a non-trivial covering. Assume that
φf ∶ C Ð→ φf(C) is a non-trivial covering. Notice that independently of the fact whether φf
is birational on the image or not, f = πp ○ φf where πp is a projection of P2 /pÐ→ P1 from
some point p ∈ P2. Also the map f can be lifted in the standard way to f = π̃p ○ φ̃f where
φ̃f ∶ C Ð→ φ̃f(C) is the standard lift of φf to the normalization φ̃f(C) of the image φf(C),
and π̃p is the composition of the standard map from the normalization φ̃f(C) to the image
curve φf(C) with the projection πp. Branching points of f are either the images under π̃p of
the branching points of φ̃f or the branching points of π̃p itself. But each branching point of
π̃p is a non-simple branching point of f . Contradiction. The case when φf(C) is a line in P2

is obviously impossible due to the dimension of the linear system f∗OP1(1). Finally observe
that if d ≥ g + 2 then rf is at least 3 by Riemann-Roch’s formula (6.1).
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Remark 6.1.1. Observe that for d ≥ g + 1, any curve C of genus g admits a meromorphic
function of degree d with all simple branching points, i.e. the natural map Hg,d Ð→ Mg

where Mg is the moduli space of curves of genus g is surjective, see [Sev21]. Also for
d ≥ 2g + 1, no genericity assumptions whatsoever on f are required for birational ampleness
since f∗(OP1(1)) becomes very ample and defines an embedding C Ð→ Prf−1. However in the
interval g + 2 ≤ d ≤ 2g this linear system might define a non-trivial covering on the image as
shown by the next classical example, see Proposition 5.3 in [Har77]. This circumstance shows
that one needs some additional assumption on the branching points to avoid such coverings.

Let C be a hyperelliptic curve of genus g > 2 and let ∣L∣ ∶ C Ð→ P1 be the hyperelliptic
map. Let s0 and s1 be a basis for H0(C,OC(L)). Riemann-Roch’s formula gives that
h0(gL) = g + 1 < 2g. Note that there are precisely (d+n−1

n−1 ) monomials of degree d in n
variables. Therefore there are precisely d+ 1 monomials of degree d in s0 and s1. The map
∣L ∣ ∶ C Ð→ P1 is given by C ∋ p ↦ [s0(p) ∶ s1(p)] ∈ P1, while the map ∣mL∣ ∶ C Ð→ Pg is
given by

p↦ [s0(p)g ∶ s0(p)g−1s1(p) ∶ ⋅ ⋅ ⋅ ∶ s1(p)g].

But it is now clear that ∣mL∣ ∶ C Ð→ Pg can be factored as ∣L∣ ∶ C Ð→ P1 followed by
the Veronese embedding V ∶ P1 Ð→ Pg. Hence, the image of C under the map ∣mL∣ is
a rational normal curve. Now suppose that m > g. Then Riemann-Roch’s formula gives
h0(mL) = 2m1 > m + 1. Thus, s0 and s1 only generate a subspace of H0(C,O(mL))
and the above argument no longer works (which is good since ∣mL∣ determines a closed
embedding).

Example 6.1

We now characterize the vanishing of the planarity defect in different terms. Consider the
push-forward sheaf f∗OC on P1. Since f is a finite map of compact curves, f∗OC is a
vectorbundle on P1 whose dimension equals deg(f). By the well-known result of Grothendieck,
f∗OC = OP1 ⊕∑iOP1(ai), where ai are integers see e.g. [HM82b]. Observe that all ai must
be negative since h0(OC) = h0(f∗OC) = 1.

Proposition 6.1.2. For any meromorphic function f ∶ C Ð→ P1 with at most one complicated
branching point, its planarity defect pdef(f) vanishes if and only if amax = −1, where amax is
the maximal of all ai’s in the above notation.

Proof. Let us show that under our assumptions pdef(f) = 0 ↔ amax = −1. We need to
check that h0(f∗OP1(1)) ≥ 3 if and only if amax = −1. Consider f∗(f∗OP1(1)). Observe
that, h0(f∗(f∗OP1(1)) = h0(f∗OP2(1)) since f is a finite map of compact algebraic curves.
Now by projection formula, see Ex. 8.3 in [Har77]

f∗(f∗OP2(1)) = OP1(1) ⊗ f∗(OC) = OP1(1) ⊕∑
i

OP1(ai + 1).

Since amax = −1 then at least one of the terms OP1(ai + 1) equals O. Therefore

h0(f∗(f∗OP1(1)) = h0(f∗OP1(1)) +∑
i

h0(OP1(ai + 1)) ≥ 2 + 1.

In fact, h0(f∗(f∗OP1(1)) = 2 + the number of indices i such thatai = −1.
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Proposition 6.1.2 shows that there is a connection of the planarity defect with the slope
invariants of meromorphic functions and with the Maroni strata, cf. [DP14] and [Pat13]. In
fact, the following statement is true.

Proposition 6.1.3. Given a meromorphic function f ∶ C Ð→ P1 of degree d, its planarity
defect pdef(f) equals d′ − d where d′ is the minimal degree of a linear system L such that

(i) L is birationally very ample;

(ii) the (effective) divisor of f∗OP1(1) is contained in the (effective) divisor of L.

Proof. If f∗OP1(1) can serve as L then there is nothing to prove. Otherwise the divisor
of L must be strictly larger than that of f∗OP1(1). In the latter case one can choose a
1-dimensional linear subsystem of L defining a meromorphic function g ∶ C Ð→ P1 which is
not proportional to f . Consider the map ψ ∶ C Ð→ C2 given by (f, g) and extending it to the
map ψ̃ ∶ C Ð→ P2 we get the required planarity defect.

6.1.1 Planarity stratification of small Hurwitz spaces

Recall that the small Hurwitz space of degree d functions of genus g curves is defined as:

Hg,d = { f ∶ C Ð→ P1 ∣ C has genus g ≥ 0 and f is a branched covering
of degree d ≥ 2 with only simple branch points } .

Also recall that dimHg,d equals the number of branching points of a function from Hg,d and
is given by the formula

dimHg,d = 2d + 2g − 2.

Proposition 6.1.1 allows us to introduce the planarity stratification of Hg,d:

Hm(g,d)g,d ⊂ Hm(g,d)+1
g,d ⊂ ⋅ ⋅ ⋅ ⊂ HM(g,d)g,d = Hg,d, (6.2)

where Hlg,d consists of all meromorphic functions in Hg,d whose planarity defect does not
exceed l. We present some information about this stratification.

Proposition 6.1.4. For any pair (g, d) where g ≥ 0 and d ≥ 2,

m(g, d) = min
l≥0

(d + l − 1
2

) − ( l
2
) ≥ g. (6.3)

which gives

m(g, d) = max
⎛
⎝

0,
⎡⎢⎢⎢⎢⎢

g − (d−1
2 )

d − 1

⎤⎥⎥⎥⎥⎥

⎞
⎠
. (6.4)

Moreover the following result holds.

Theorem 6.1.1. In the above notation, given g, d and l ≥ m(g, d), the stratum Hlg,d is
irreducible and its dimension is given by:

dimHlg,d = min (3d + g + 2l − 4,2d + 2g − 2). (6.5)
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The substantial part of the proof of Theorem 6.1.1 consists of the following generalization
of the famous result by J. Harris [Har77] showing that the space of plane curves of genus g
and degree d where g ≤ (d−1

2 ) is an irreducible variety whose dense subset consists of nodal
curves of genus g (irreducibility of Severi’s varieties). Fixing as above a point p ∈ P2, denote
by Sg,d,l the variety of reduced irreducible plane curves of degree d having genus g and order l
at p, where g ≤ (d+l−1

2 ) − ( l2). (The order of a plane curve at a given point is the multiplciity
of its local intersection at p with a generic line passing through p.) Denote by Wg,d,l ⊂ Sg,d,l
its subset consisting of curves having an ordinary singularity of order l at p (i.e. transversal
intersection of l smooth local branches) and only usual nodes outside p.

Theorem 6.1.2.
(i) Wg,d,l is a smooth manifold of dimensional 3d + g + 2l − 1;

(ii) Wg,d,l is dense in Sg,d,l;

(iii) Sg,d,l is irreducible.

The main result of [Har77] is the proof of the same statement in the basic case l = 0.
Theorem 6.1.2 follows from already known results of Z. Ran [Ra89] and I. Tyomkin [Tyo07].
We first prove Proposition 6.1.4 and Theorem 6.1.2 and then Theorem 6.1.1.

Lemma 6.1.3. The genus of a plane curve decreases by at least ( l2) by a singularity of order
l. Moreover the ordinary singularity of order l decreases the genus by exactly ( l2).

Proof. The following algorithm describes by which number the genus of a plane curve of
degree d is decreased due to a singularity of order l.

Step 1. Subtract ( l2) from (d−1
2 ).

Step 2. Blow up the singularity in the plane. The strict transform of the curve will intersect
the exceptional divisor at l points (counting multiplicities). If each of these (geometrically
distinct) points is smooth on the strict transform then the genus drops by exactly ( l2).

Step 3. If among the latter points there exist singular we have to repeat the previous step,
i.e. if the order of singularity is s then we decrease the genus by (s2), then we blow
up this point etc. After finitely many such steps the curve becomes smooth. (Further
blow-ups will not change the genus). Thus the minimal decrease of genus equals ( l2).

Proof of Proposition 6.1.4. The necessity of (6.3) is obvious. Indeed we need to
construct a plane curve of degree d + l such that it has a singularity of order l at p (so that
projection from p will be a covering of degree d) and has a genus of normalization equal to g.
Having a singularity of order l at p decreases the genus by at least ( l2) compared to (d+l−1

2 )
which is the genus of a smooth curve of degree d + l, see Lemma 6.1.3 above. Thus the
inequality (6.3) must be satisfied. To show that the least value of l satisfying (6.3) is enough
consider first a configuration of l generic lines through p and additionally d lines in P2 in
general position. This curve has genus 0. A slight deformation of this curve by a polynomial
vanishing up to order l+1 at p will resolve all nodes outside p and given g = minl≥0 (d+l−1

2 )−( l2).
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A more careful deformation will resolve any number of nodes between 0 and (d2), see the proof
of Theorem 6.1.2 below. The classical case g ≤ (d−1

2 ) is well presented in [HM98], Appendix E
and the general case in [Ra89].

We will need some information about the Hirzebruch surfaces and Severi varieties on them.
For a given non-negative integer n, let Σn = Proj(OP1 ⊕ OP1(n)) be the nth-Hirzebruch
surface and let κ ∶ Σn Ð→ P1 be the natural projection. Consider two non-zero sections
(1,0), (0, σ) ∈ H0(P1,OP1 ⊕OP1(n)). They define the maps

P1 /V(σ) Ð→ Σn,

where V(σ) is the zero locus of σ. We denote the closures of the images of these maps by
L0 and L∞, respectively. (It is clear that the homological class of L∞ is independent of the
choice of σ.) The following facts are standard.

Proposition 6.1.5.

(i) The Picard group Pic(Σn) = H2(Σn,Z) is a free abelian group Z × Z generated by
the classes F and L∞, where F denotes the fiber of projection κ. (Observe that
L0 = nF +L∞.)

(ii) The intersection form on Pic(Σn) is given by F 2 = 0, L2
∞ = −n and F ⋅L∞ = 1.

(iii) Every effective divisor M ∈ Div(Σn) is linearly equivalent to a linear combination of F
and L∞ with non-negative coefficients. Moreover, if M does not contain L∞, then it is
linearly equivalent to a combination of F and L0 with non-negative coefficients.

(iv) The canonical class is given by:

KΣn = −(2L∞ + (2 + n)F ) = −(L0 +L∞ + 2F ).

(v) Every smooth curve C with the class dL0 + kF has genus g(C) = (d−1)(dn+2k−2)
2 .

Let g, d, k be non-negative integers. We define the Severi variety Vg,d,k ⊆ ∣OΣn(dL0 + kF )∣ to
be the closure of the locus of reduced nodal curves of genus g which do not contain L∞, and
we define V irr

g,d,k ⊂ Vg,d,k to be the union of the irreducible components whose generic points
correspond to irreducible curves.

The main result of [Tyo07] (see Theorem 3.1 there) is as follows.

Theorem 6.1.3. For any triple g, d, k of non-negative integers, the variety V irr
g,d,k ⊂ Vg,d,k (if

non-empty) is irreducible and of expected dimension.

Proof of Theorem 6.1.2. Let us first naively count the expected dimension of Sg,d,l.
Indeed, the dimension of the space Sg,d,l of plane curves of degree d + l with a singularity
at p of order l equals (d+l)(d+l+3)

2 − (l+1
2 ). The number of nodes on such a curve under the

assumptions that it has genus g equals

δ = (d + l − 1
2

) − ( l
2
) − g. (6.6)
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Assuming that each node decreases the dimension by 1 we get

exp dimSg,d,l = 3d + g + 2l − 1.

We finish our proof with a reference to Theorem 6.1.3. Indeed, if one blows up the projective
plane at a point p ∈ P2 then one gets the first Hirzebruch surface Σ1. Observe that plane
curves of degree d + l having a singularity of order l at p will after the blow-up lie in the
class (d + l)L0 − lL∞ = dL0 + lF . Therefore the above set Wg,d,l of irreducible plane curves
having the singularity of order l at the point p after this blow-up will transform into the space
V irr
g,d,l in the above notation. (We consider only the strict transform of each curve disregarding

the exceptional divisor.) Thus by the latter Theorem Sg,d,l is irreducible and of expected
dimension. Another proof of essentially the same result directly in the plane P2 can be found
in [Ra89], see Irreducibility Theorem on p. 122.

Proof of Theorem 6.1.1. To settle Theorem 6.1.1 we need to prove an analog of Propo-
sition 5.2.1 or a weaker statement that such curves equivalent as coverings do not appear
in families of Gp-orbits. If this is true then dimHlg,d = dimSd,l,g − 3. We need the following
Proposition.

Let S(d, l, g) be the Severi variety of all plane curves of degree d + l, genus g and ordinary
singularity of order l at point p. Let H(g, d) be the Hurwitz space of all branched coverings of
degree d and genus g. Let br ∶ S(d, l, g) Ð→H(g, d) be the branching morphism sending each
plane curve from S(d, l, g) to the branched covering from its normalization to P1 obtained by
projection from the point p.

Proposition 6.1.6. The dimension of the fiber of the above map at the curve N obtained
by normalization of a generic curve C from S(d, l, g) equals h0(N,ON(E)) where E is the
divisor of degree d+ 2l on N obtained as the pull-back of projection point p together with the
pull-back of the general line section of C. (For an arbitrary curve C ∈ S(d, l, g) the dimension
of the fiber is at most h0(N,ON(E)).)

Proof. Let π ∶ Σ1 Ð→ P2 be the standard projection of the first Hirzebruch surface Σ1
obtained by the blow-up of the point p to P2. We have natural maps

N
h //

f

  

Σ1

��
P1

and exact sequences

0 // TN // h∗TΣ1
//

��

Nh
//

��

0

0 // TN // f∗TP1 // Nf
// 0.

(6.7)

It is known that Def1(N,h) = H0(N,Nh) and Def1(N,f) = H0(N,Nf) are the tangent
spaces to the space of deformations of the pairs (N,h) and (N,f) resp. The first one is
the tangent space to the Severi variety if h is an immersion; the second one is the tangent
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6. Planarity Stratification of Hurwitz Spaces

space to the Hurwitz space. The sequence (6.7) implies that the kernels α ∶ h∗TΣ1 Ð→ f∗TP1

and Nh Ð→ Nf coincide since h∗TΣ1 ↠ f∗TP1 . Since the P1-bundle Σ1 Ð→ P1 admits
two non-intersecting sections (the line L and the inverse image of p in Σ1) then kerα =
h∗OΣ1(L + π−1(p)).

For small number of nodes compared to the degree of the irreducible plane curve Theorem 6.1.1
is immediate from the following fact, see Exercise 20 (iii) of § 1, Appendix A, Chapter 1
of [ACGH85]. (Moreover a stronger statement is valid.) It claims that if the number δ of
nodes of an irreducible plane nodal curve Γ ⊂ P2 of degree d satisfies the inequality δ < d − 3
then the linear system g2

d cut out on Γ by lines is complete and unique on the normalization
C of Γ. This fact immediately implies that under the above assumptions two plane curves
whose normalizations are isomorphic will be projectively equivalent. Then for degree at least
4 it will be straight-forward that if the isomorphism of their normalizations is induced by
the equivalence of the meromorphic functions obtained by projection from the same point
p, then the projective transformation realizing this equivalence belongs to Gp, see the proof
of Proposition 5.2.1. In general, one should show that for a generic curve in S(d, l, g), one
has h0(N,ON(E)) = 3. This fact is also valid and will appear in a forth-coming publication
[ST14].

Corollary 6.1.1. Given g, d as above,

M(g, d) = max (0, ⌈g − d + 2
2

⌉). (6.8)

In particular, m(g, d) =M(g, d) = 0 if and only if d ≥ g + 2.

Proof. From Theorem 6.1.1 is follows that M(g, d) equals the minimal non-negative integer
l for which

3d + g + 2l − 4 ≥ 2d + 2g − 2 ⇐⇒ 2l ≥ g − d + 2.

The latter inequality implies that M(g, d) = max (0, ⌈g−d+2
2 ⌉). This formula for M(g, d) gives

that M(g, d) = 0 if and only if d ≥ g + 2.

Corollary 6.1.2. The planarity stratification of Hg,d consists of one term in the following two
cases. Either d ≥ g + 2 in which case the planarity defect vanishes, or d = 3 in which case the
planarity defect equals ⌈g−1

2 ⌉.

Proof. We have that Hg,d consists of one term if and only if m(g, d) = M(g, d). By
Proposition 6.1.4 and Theorem 6.1.1 (unless M(g, d) vanishes which happens if and only if
d ≥ g + 2) this corresponds to the case when

⎡⎢⎢⎢⎢⎢

g − (d−1
2 )

d − 1

⎤⎥⎥⎥⎥⎥
= ⌈g − d + 2

2
⌉ .

If d > 3 then the denominator of the left-hand side is smaller than that of the right-hand side
and the numerator of the left-hand side is bigger than that of the right-hand side which means
that the equality never holds. For d = 3 the left-hand side and the right-hand side coincide
giving the planarity defect equal to ⌈g−1

2 ⌉.
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6.1.2 Stratification of Hurwitz spaces with one complicated branching point

Analogously to the above, given a partition µ = (µ1 ≥ µ2 ≥ ⋅ ⋅ ⋅ ≥ µn) ⊢ d of positive integer d,
denote by

Hg,µ = { f ∶ C Ð→ P1 ∣ C has genus g ≥ 0 and f has all simple branched points
except at ∞ whose profile is given by µ ⊢ deg f = d ≥ 2 }

the Hurwitz space of all degree d functions on genus g curves with one complicated branching
point at ∞ having a given branch type µ. Recall that dimHg,µ equals the number of simple
branching points of a function from Hg,µ and is given by the formula

dimHg,µ = 2d + 2g − 2 −
n

∑
i=1

(µi − 1).

Proposition 6.1.1 allows us to introduce the planarity stratification of Hg,µ:

Hm(g,µ)g,µ ⊂ Hm(g,µ)+1
g,µ ⊂ ⋅ ⋅ ⋅ ⊂ HM(g,µ)g,µ = Hg,µ. (6.9)

Here Hlg,µ consists of all meromorphic functions in Hg,µ whose defect does not exceed l.

By Lemma 6.1.2, M(g, µ) ≤ d + 2.

Proposition 6.1.7. For any pair (g, µ ⊢ d) where g ≥ 0 and d ≥ 2,

m(g, µ) = min
l≥0

(d + l − 1
2

) − ( l
2
) ≥ g. (6.10)

which gives

m(g, µ) =
⎡⎢⎢⎢⎢⎢

g − (d−1
2 )

d − 1

⎤⎥⎥⎥⎥⎥
.

(Observe that m(g, µ) =m(g, d) given by (6.3).)

Proof. Since the stratum Hm(g,µ)g, u should lie at least in Hm(g,d)g,d or, possibly in the higher
strata of the planarity stratification of Hg,d. Therefore m(g, µ) is at least equal to the minimal
l given by the right-hand side of (6.10). The fact that m(g, µ) is exactly equal to the minimal
l satisfying the latter condition is explained in the proof of Theorem 6.1.4.

We have the following result above the dimensions of the strata of (6.9).

Theorem 6.1.4. In the above notation, given g, d and l ≥ m(g, µ), the stratum Hlg,µ is
equidimensional and its dimension is given by:

dimHlg,µ = min (3d + g + 2l − 4 −
n

∑
i=1

(µi − 1),2d + 2g − 2 −
n

∑
i=1

(µi − 1)). (6.11)

Proof. Theorem 6.1.4 follows directly from Lemmas 6.1.4 and 6.1.5.

Fix a flag p ∈ L0 ⊂ P2, positive integers g, d, l, and a partition µ ⊢ d. Consider the locus
V ⊂ ∣OP2(d + l)∣ of plane curves C such that:
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6. Planarity Stratification of Hurwitz Spaces

(i) deg C = d + l;

(ii) C is reduced and irreducible;

(iii) multpC = l;

(iv) pg(C) = g;

(v) κ−1L0 = ∑i µiqi where κ ∶ C̃ Ð→ C is the normalization map.
Again let Σ1 = BlpP2 be the first Hirzebruch surface obtained by the blow-up of P2 at p. Let
F0 ⊂ Σ1 be the strict transform of L0, and let F be the class of F0. Denote by L ⊂ Σ1 the
class of the preimage of a general line in P2, and denote by E ⊂ Σ1 the exceptional divisor.
Then V can be identified with the locus of curves C ∈ ∣OΣ1((d + l)L − lE∣ = ∣OΣ1(dL + lF )∣
such that i). C is reduced and irreducible; ii). pg(C) = g; iii). κ−1F0 = ∑i µiqi. Let V1 ⊂ V
be an irreducible component of V .
Lemma 6.1.4. dimV1 ≥ exp dim ∶= −KΣ1 ⋅ C + g − 1 −∑ni=1(µi − 1).
Proof. Let o ∈ V1 be a general point, Co be the corresponding curve. By [KS12] Lemma A.3
there exists a neighborhood W of o ∈ V1 over which the family CW Ð→W is equinormalizable,
i.e. if C̃W Ð→ CW is the normalization then ∀a ∈W, (C̃W )a Ð→ (CW )a = Ca is the normaliza-
tion. Thus dimV1 is equal to the dimension of (a component of) the deformation space of f ∶
C̃0 Ð→ Σ1 satisfying condition (iii). Notice that condition (iii) has codimension ≤ ∑ni=1(µi − 1)
in the space of all deformations of the pair (C̃0, f0). Thus, it suffices to show that (any com-
ponent of) Def(C̃0, f0) has dimension at least −KΣ1 ⋅ C + g − 1. By the standard deformation
theory any component of the latter space has dimension ≥ dimDef ′(C̃0, f0)−dimOb(C̃0, f0).
In our case Def ′(C̃0, f0) = H0(C̃0,Nf0) and Ob(C̃0, f0) = H1(C̃0,Nf0) where Nf0 is the
normal sheaf of f0, i.e. Nf0 = Coker(T

C̃0
Ð→ f∗0 TΣ1). This implies the statement since

h0(C̃0,Nf0) − h1(C̃0,Nf0) = χ(C̃0,Nf0) = −KΣ1 ⋅ C + g − 1 by Riemann-Roch’s theorem.

Lemma 6.1.5. dimV1 ≤ expdimV1.

Proof. If dimV1 > expdim then there exists a configuration of r points on F0 such that
{C ∈ V1∣C ∩F0 = given configuration} has dimension greater than −KΣ1 ⋅ C + g − 1−∑ni=1(µi −
1) − n = −KΣ1 ⋅ C + g − 1 − F0 ⋅ C, which is a contradiction with [Tyo07], Lemma 2.9.

Corollary 6.1.3. Given g, µ as above,

Mg,µ = max (0, ⌈g − d + 2
2

⌉). (6.12)

In particular, mg,µ =Mg,µ = 0 if and only if d = ∑i=1 µi ≥ g + 2.

Proof. See the proof of Corollary 6.1.1.

Stratification (6.2) is (almost) the special case of (6.9) the difference being that one simple
branching point is placed at ∞.
Remark. According to the information the authors obtained from I. Tyomkin one can prove
that each stratum Hlg,µ is irreducible for g = 0 and g = 1, and hopefully for other genera if
µ ⊢ d is not very complicated. Whether Hlg,µ is irreducible for an arbitrary partition µ is
unknown at present and might be a difficult problem.
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6.2 Hurwitz numbers of the planarity stratification and Zeuthen-type problems

6.2 Hurwitz numbers of the planarity stratification and Zeuthen-
type problems

Due to irreducibility of strata of (6.2) and equidimensionality of strata of (6.9) we can
introduce the corresponding notion of Hurwitz numbers related to these strata. Recall that
the branching morphism

δg,d ∶ Hg,d Ð→ Sym2d+2g−2 P1 /∆ (6.13)

is by definition, the map sending a meromorphic function f to the unordered set of its branching
points (which are distinct by definition). Here ∆ ⊂ Sym2d+2g−2 P1 is the hypersurface of
unordered (2d + 2g − 2)-tuples of points in P1 where not all of them are pairwise distinct. It
is well-known that δg,d is a finite covering and its degree hg,d is called the simple Hurwitz
number. In particular, for g = 0 the corresponding Hurwitz number h0,d equals (2d − 2)!dd−3.
In general, however closed formulas for hg,d (as well as for many other Hurwitz numbers) are
unknown. Analogously, the branching morphism

δg,µ ∶ Hg,µ Ð→ Symwµ P1 /∆ (6.14)

is, by definition, the map sending a meromorphic function f ∈ Hg,µ to the unordered set of
its simple branching points (which are distinct by definition). Here ∆ ⊂ Symwµ P1 is the
hypersurface of unordered wµ-tuples of points in C where not all of them are pairwise distinct,
where wµ = 2d + 2g − 2 −∑ni=1(µi − 1). It is well-known that δg,µ is a finite covering and its
degree hg,µ is called the single Hurwitz number. In particular, for g = 0 the corresponding
Hurwitz number h0,µ equals

(d + n − 2)!
n

∏
i=1

µµii
µi!

dn−3.

Stratifications (6.2) – (6.9) allow to introduce Hurwitz numbers which take into account these
filtrations. Before we introduce this notion in general, let us start with a motivating example.

Fixing a point p ∈ P2, consider the space Sd,p of all smooth plane curves of degree d not
passing through p. Each such curve defines a branched covering of P1 of degree d. There
exists a three-dimensional group Gp ⊂ PGL(3,C) of projective transformations preserving p
as well as the pencil of lines through p. In other words, each line through p will be mapped
to itself. Since Gp acts (locally) freely on Sd,p for d > 1 and curves from the same orbit
define equivalent branched coverings of P1.

Example 6.2

Denote by hd the number of different 3-dimensional orbits of the above action on the space
Sd,p with the same set of d(d − 1) tangent lines (e.g. branching points of the projection).
For instance, we established in §5.2 that the numbers h2 = 1, h3 = 40 are the usual Hurwitz
numbers for degree d and genus (d−1

2 ). But starting with d = 4 the situation changes. In the
same section, we noticed that so far the only calculated non-trivial example is d = 4 found
in [Vak01], [Vak99] for which h4 = 120 × (3

10−1)
2 . The numbers hd for d > 4 are unknown at

present.

Observe a straight-forward analogy of the calculation of hd with (a special case) of the classical
Zeuthen’s problem, see [Zeu73], [Alu92]. Namely, given integers d ≥ 2 and a, b, g ≥ 0 such
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that a + b = 3d + g − 1 define the number Ng(a, b) as the number of smooth curves of degree
d passing through a points in general position and tangent to b lines in general position. In
[Zeu73] H. G. Zeuthen predicted these numbers for d up to 4. His predictions were rigorously
proven only in the 90’s, see [Alu92] and references therein. The above problem of calculation
of hd is similar to Zeuthen’s problem for b = 3d+ g − 1. But instead of taking 3d+ g − 1 generic
lines we should take (3d + g − 1) − 3 generic lines through a given point p and count the
number of 3-dimensional orbits under the action of Gp.

Introduce the Hurwitz number hlg,µ as the degree of the restriction of the morphism δg,µ to
the (irreducible component of the) stratum Hlg,µ where m(g, µ) ≤ l ≤M(g, µ).

Definition 6.2.1 (Generalised plane Hurwitz numbers). Define the plane Hurwitz numbers
as Hurwitz numbers restricted to irreducible components of the stratum Hlg,µ.

Notice that by definition, h
M(g,µ)
g,µ = hg,µ. Also the number hd introduced above equals

h0
(d−1)(d−2)/2,1d . In our notation we can rewrite the plane Hurwitz numbers for d ≤ 4 as follows:

d Stratification of Hg,d Plane Hurwitz Numbers
2 H0

0,2 = H0,2 h0
2,12 = h2,12 = 1,

3 H0
1,3 = H1,3 h0

3,13 = h3,12 = 40,

4 H0
3,4 ⊂ H1

3,4 = H3,4 h0
3,14 = 120 × 310−1

2 , h1
3,14 = 255 × 310−1

2 .

6.3 Final Remarks

I. It would be very interesting to prove/disprove the irreducibility of the strata Hlg,µ.

II. It is important to develop tools helping for calculation of the Hurwitz numbers of Hlg,d
and/or Hlg,µ due to the fact that they are naturally related to Zeuthen-type problems. In
the case of the usual single Hurwitz numbers there exists a standard combinatorial approach
to the calculation of those which is not always very useful for practical computations but
is very important theoretically. Other standard tools for the usual Hurwitz numbers are the
cut-and-join equation, see e.g. [GJV09] and the ELSV-formula. It might be possible to find
analogs of the latter tools by using an appropriate compactification of the above strata similar
to those already existing in the literature.
III. Another approach to the calculation of the Hurwitz strata of the planarity filtration
might come from the correspondence theorem in tropical algebraic geometry. Recently in
[BBM04] the authors developed some tropical tools for finding the answers to a similar class
of Zeuthen-type problems.
IV. Finally, we want to mention a recent preprint [BL13] which gives a criterion when
meromorphic functions of degree d on a certain class of plane curves of degree d with only
nodes and some additional non-degeneracy assumptions might be realized by a projection
from a point outside the curve.
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