On the complexification of Minkowski spacetime

G. O. Okeng'o^{1, 2, a*} and J. B. Awuor^{1, b}

¹Department of Physics University of Nairobi, P. O. Box 30197-00100, GPO Nairobi-Kenya ²Department of Physics University of the Western Cape, P. O. Box Private Bag X17, Bellville 7535-South Africa

^agokengo@uonbi.ac.ke*, ^bbuers@uonbi.ac.ke

ARTICLE INFO	ABSTRACT
Article History: Available online 31 July 2015	It is well known that any two arbitrary observers S and S' moving relative to each other with a speed $v < c$ in isotropic space see a 4- dimensional real spacetime. We demonstrate that the two observers should naturally see the spacetime as a complexified 4-dimensional manifold described by the Kähler manifold commonly studied in string theory. Such a complex spacetime has, on large scales, been demonstrated to be a natural consequence of special relativity when quantum effects are included in relativistic mechanics and are thus of much significance in quantum gravity, quantum super string theory, particle physics and cosmology ©2015 Africa Journal of Physical Sciences (AJPS). All rights reserved.
<i>Keywords:</i> Complex spacetime Minkowski spacetime Lorentz transformations	

1. Introduction

The dimensional structure of spacetime is as fundamental to cosmology as are dynamics of matter and radiation. In the standard model, spacetime is 3+1 real and becomes Minkowskian if time is imaginary. An infinite dimensional (Cantorian) spacetime E^{∞} with topological dimension n_t can be realized in a complex spacetime manifold class belonging to the Kähler manifold in string theory [1]. A formal definition of complex time T and its complex conjugate T^* was first proposed by El Naschier [2] where the imaginary time was interpreted as "past" time, the complex conjugate as "future" time and their intersection given by the modulus

$$t = \sqrt{TT^*}$$
. (1.1)

represents the time "now" where T^* denotes the complex conjugate. Further investigation of complex time by Mejias [2,3,5] proposed the two-dimensional time

$$T = t' + i(v/c)t$$
. (1.2)

which relates the times t and t' respectively in two inertial frames S and S' in relative motion with speed v < c such that putting (1.2) and its complex conjugate into (1.1) yields the well-known time dilation in special relativity

$$t = t' (1 - v^2 / c^2)^{1/2}$$
. (1.3)

In this paper we demonstrate that spacetime in one frame of reference necessarily becomes

complexified in a second inertial frame in a manner that preserves the well known Lorentz transformations in special relativity.

2. Complex spacetime

We consider a rocket fired with a speed v from a point A in a given direction such that after time t the rocket is at point R_{θ} as shown in figure 1. We suppose that a light signal is released simultaneously with the rocket and travels a distance ct_{AD} to reach a detector at some point D.

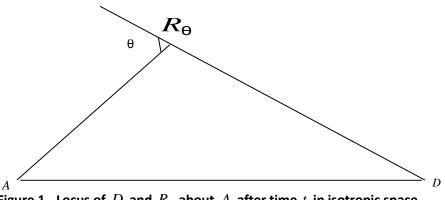


Figure 1. Locus of D and R_{θ} about A after time t in isotropic space.

Considering vectors measured from point A (in the S frame) as AD and AR_{θ} , and those from point R_{θ} (in the S' frame) as $R_{\theta}D$ and $R_{\theta}A$ then in general the three points A, R_{θ} and D form a triangle such that by cosine rule we have

$$AD^{2} = AR_{\theta}^{2} + DR_{\theta}^{2} + 2\tilde{A}R_{\theta}\tilde{R}_{\theta}D\cos\theta.$$
 (2.1)

or equivalently,

$$(c^{2}-v^{2})t_{A}^{2} = R_{\theta}D^{2} + 2c\tilde{R}_{\theta}D\cos\theta t_{\tilde{A}D}$$
. (2.2)

Considering that the distance

$$R_{\theta}D = ct_{R_{\theta}D}$$
. (2.3)

Where $t_{R_{\theta}D}$ is the time light takes to cover the distance $R_{\theta}D$ then by the rocket clock, (2.2) becomes

$$(c^2 - v^2)\gamma_{\theta}^2 = c^2 + 2c^2 \cos \theta \gamma_{\theta}$$
. (2.4)

Where $\gamma_{ heta}$ is defined by the relation

$$t_{\tilde{A}D} = \gamma_{\theta} t_{\tilde{R}_{\theta}D} .$$
 (2.5)

Setting the values of θ equal to 0, $\pi/2$ and π in (2.4) yields 74 | P age

$$\gamma_{\pi}\gamma_{0} = \gamma_{\pi/2} \equiv \gamma^{2}$$
. (2.6)

and, $\gamma_0 \gamma_{\theta}^2 = \gamma_0 \gamma^2 + (\gamma_0^2 - \gamma^2) \gamma_{\theta} \cos \theta$. (2.7)

Where γ is the Lorentz factor of special relativity. We hence have the solution to (2.7) as

$$\gamma_0 = \frac{(\gamma_0^2 - \gamma^2)\cos\theta \pm \sqrt{(\gamma_0^2 - \gamma^2)^2 + 4\gamma_0^2\gamma^2}}{2\gamma_0} .$$
(2.8)

and consequently

$$\gamma_0 = \frac{(\gamma_0^2 - \gamma^2) \pm (\gamma_0^2 + \gamma^2)}{2\gamma_0}.$$
 (2.9)

whose nontrivial solution is given by

$$\gamma_0^{\ 2} = -\gamma^2$$
. (2.10)

Substituting (2.10) into (2.8) yields

 $t_{\tilde{A}D} = Z_c t_{\tilde{R}_{\theta}D}$. (2.11) Where Z_c is a complex number given by

$$Z_{c} = i\gamma e^{\pm i\theta} \equiv i\gamma(\cos\theta \pm i\sin\theta).$$
 (2.12)

This then implies that t is complex time.

Similarly, it can be shown that the distance $R_{\theta}D$ takes the complex form,

$$|R_{\theta}D| = \frac{e^{\pm i\theta}}{i\gamma} ct.$$
 (2.13)

and as such the 4-dimensional spacetime is fully complex.

3. The boost parameter

From Fif.1, it is clear that both the observers *S* and *S'* agree that $|\tilde{A}R_{\theta}|^2 = |\tilde{R}_{\theta}A|^2$ but would not agree on the modulus $|R_{\theta}D|^2$ since from point *A* it follows that

$$R_{\theta}D = AD - AR_{\theta}.$$
 (3.1)

yet we have

 $|\tilde{R}_{\theta}D| \geq |\tilde{A}D| - |\tilde{A}R_{\theta}|$. (3.2)

Now, we can define a scaling factor γ such that (3.2) transforms to

$$|\tilde{R}_{\theta}D| = \gamma(|\tilde{A}D| - |\tilde{A}R_{\theta}|). (3.3)$$

The scaling factor γ can be interpreted as the Lorentz factor with the Lorentz transformations given by the usual expressions

$$|\tilde{R}_{\theta}D| = \gamma(|\tilde{A}D - vt_{A}|). \quad (3.4)$$

$$|\tilde{A}D| = \gamma(|\tilde{R}_{\theta}D| + vt_{R_{\theta}D}). \quad (3.5)$$

$$t_{\tilde{R}_{\theta}D} = \gamma(-v/c^{2} |\tilde{A}D| + t_{\tilde{A}D}). \quad (3.6)$$

$$t_{\tilde{A}D} = \gamma(v/c^{2} |R_{\theta}D| + t_{R_{\theta}D}). \quad (3.7)$$

Combining (2.5), (3.6) and (3.7) it becomes apparent that

$$v/c = [i e^{\pm i\theta} - 1]$$
. (3.8)

which is the boost parameter $\beta = v/c$ in complex form.

4. Discussion and conclusion

In this paper, we have shown that complex spacetime arises naturally from a generalized transformation and derived the complex boost parameter in isotropic space. Our results are in agreement with earlier studies by [4, 5] and display a straight-forward approach to understanding the widely studied complexification of space and time, important in the unification of the four fundamental forces of nature [4, 6].

5. Acknowledgment

GO acknowledges support from the South African SKA Project for financial support. GO and JB acknowledge an anonymous referee for useful comments on the first draft.

References

- [1] El Naschie, M. S. (2005) On a fuzzy Kahler-like manifold which is consistent with the two-slit experiment. *International J. Nonlinear Sci. Numer Simulat.* **6**: 95-98.
- [2] El Naschie, M. S. (2000) On the unification of the fundamental forces and complex time in the space. *Chaos Solitons and Fractals* **11**: 1149-1162.
- [3] El Naschie, M. S. (1995) On the nature of complex time, diffusion and the two-slit experiments. *Chaos Solitons and Fractals* **5**: 1031-1032.
- [4] Ciann-Dong, Y. (2008) On the existence of complex spacetime in relativistic quantum mechanics. *Elsevier: Chaos, Solitons and Fractals*, **38**: 316-331.
- [5] Davidson, M. (2012) A study of the Lorentz-Dirac equation in complex spacetime for clues to emergent spacetime. *Journal of Physics: Conference series*, **361**: 012005.
- [6] Torretti, R. (1983) Relativity and Geometry. Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW, England.