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Abstract

In this paper multi-state modelling is used to determine the proba-
bility distribution of the different states of vertical transmission of HIV.
We start with a healthy-infected-dead three state model which we then
modify and extend to a four state healthy-infected-treated-Aids four
state model. Using the matrix approach we calculate their respection
transition probabilities and compare the two models using the basic re-
production number. In both models R0 < 1 suggesting that this mode
of transmission will eventually be contained.

Keywords: Multistate modelling, Markov process, transition intensities, tran-
sition probabilities, HIV, reproduction number, vertical transmission

1 Introduction

HIV model classifies the population into susceptibles (S) containing individu-
als who have not been infected with the virus, Exposed (E) individuals who
are infected but in the latent stage, Infectives (I) containing individuals who
are infected with the virus but have not yet developed AIDS symtoms and the
AIDS cases (A) who are those individuals that have developed the disease.
The progression is shown in Figure 1. All diseases are however subject to
stochasticity in terms of the chance nature of transmission, and so in princi-
ple, a stochastic model is always more realistic than a deterministic one but
since the relative magnitude of stochastic fluctuations reduces as the number
of cases increases, therefore in large populations with a high level of disease
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Figure 1: Progression of HIV infection

incidence a deterministic model may be a good approximation.
Stochastic models are to be preferred when their analysis is possible, otherwise
deterministic models should be used. Deterministic models can also serve as
introductory models when studying new phenomena. They can also be used
as introductory models when studying new phenomena. Both these two types
of models play an important role in better understanding the mechanisms of
disease spread.

The role played by chance in general is most important whenever the num-
ber of infectious individuals is relatively small which can be as a result of the
population size being small, when an infectious disease has just invaded or
when control measures are successfully applied.
In Mother-to-Child-Transmission (MTCT), also referred to as vertical trans-
mission, the various controls and intervention methods available have greatly
reduced HIV transmission in children and as such stochasticity is incorporated
in modelling this mode of transmission.

The ultimate outcome of interest in the study of diseases is recovery or
death. In addition a number of intermediate (transient) states exists. For
these reasons, multi-state models (MSM) are extremely useful in understand-
ing this process by considering the health condition and causes of death as
criteria for defining states.

A multi-state model is defined as a model for a (continuous time) stochas-
tic process (X(t), t∈ T) which at any time occupies a finite state space S =
{1, 2 · · ·N} and describe random movements of a subject among various states.
In multistate process T=[0, τ ] , τ < ∞ is a time interval and the value of the
process at time t, the state occupied at that time.
In epidemics the states can describe conditions like healthy, infected and dead.
The infected state can further be presented as a series of successively more
severe stages of the disease. A change of state is called a transition, or an
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event.

A mathematical model of two transient states was first proposed by Du
Pasquier (1913). However it was Fix and Neyman (1951) who introduced the
stochastic version and resolved many problems associated with the model.

Statistical model specifiction via transition intensities and likelihood infer-
ences is introduced in the two state model for survival analysis, the competing
risks and illness-death models and the models for bone marrow transplatation,
[1].
In [2] the Markov assumption was used to show that probabilities and actuar-
ial values can be calculated using a time-homogeneous Markov model and in
the event that the Markov assumption is found to be inappropriate, the state
space can be modified as an alternative to assuming a more general stochastic
process.

Several other studies have also been carried out, both theoretical and ex-
perimental applying multistate models to estimate transition intensities in dis-
eases (see, for example [6], [7], [10], [11], [12])
Most studies of diseases using multistate models have been restricted to non
parametric approach such as Kaplan Meier estimator and Cox proportional
hazard models. In this paper the emphasis is on birth death process and solv-
ing the Chapman-Kolmogorov differential equations using the generator matrix
approach to obtain the transition matrix. Maximum likelihood estimator is
used to estimate the transition intensities which are then used in calculating
R0.

2 Formulation of Model

We modify the Susceptibe Exposed Infectious Recovery (SEIR) model into a
Suscptible Infected Treatment Aids (SITA) model. The modification involves
taking the exposed and infectious stages as one state and calling it the Infected
state and introducing a new state called the treatment stage. The Aids stage
is assumed to be the removal stage. We consider a population size N with con-
stant inflow of susceptible at rate bN and various categories of the population
designated as S(t), I(t), T (t) and A(t).
It is assumed that susceptible children gets infected by their HIV positive
mothers either in-utero, intrapartum or postpartum at the rate β. It is also
assumed that some of those infected move to the treatment class at a rate of φ
and then proceed to the AIDS class at a rate α. Those in the AIDS class also
join the treated class at the rate ω. The stages, rates and order of the process
is shown in the diagram below:
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This model enables us establish the key parameters in each stage.
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Figure 2: HIV Transition model where all parameters are defined in table 1

The three parameters γ, α and δ determine the lifespan of HIV positive chil-
dren (from acquisition of HIV to AIDS) and thus plays an important role on
their survival.
The differential equations describing this system as presented are given as:

dS

dt
= b− µS − βSI

dI

dt
= βSI − γI − µI − ΦI

dT

dt
= ΦI − αT − µT + ωA

dA

dt
= γI + αT − ωA− µA− δA

(1)

where S(t), I(t), T (t) and R(t) are the numbers in these classes, so that S(t) +
I(t) + T (t) +R(t) = N
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The Table 1 given below shows all the parameters used in the model.

Table 1: Parameters of the MTCT model
Symbol Description of Variable Estimate

b Natural birth rate 0.03

µ Natural mortality rate 0.09

β Rate of newborns infected with HIV 0.15

φ Fraction of infected who get treatment 0.31

γ Rate of movement from infected to AIDS 0.015

ω Rate at which AIDS group get treatment 0.105

α Rate at which treated group develops full blown AIDS 0.07

δ AIDS induced death 0.18

N That total number of children exposed to HIV positive mothers 1000

We use Figure 2 to form a four state model for MTCT given. Since there is still
no cure for HIV, treatment doesn’t lead to recovery and a treated individual
is still infected. An infected individual is however able to move from the more
severe State 3 to the less severe State 2 due to therapeutic interventions which
are able to drastically improve the health status of the individual. The four

State 1:
Healthy

State 2:
Infected

µ12 State 3:
Aids

µ23

µ32

µ34

State 4:
Death

µ14 µ24

Figure 3: A Summarized Multistate Model for MTCT

state model in Figure 3 forms the Chapman-Kolmogorov equations;

Pij(s, t+ h) =
4∑

k=1

Pik(s, t)Pkj(t, t+ h)
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from which we may derive the following transition probabilities

P11(s, t+ h) =
4∑

k=1

P1k(s, t)Pk1(t, t+ h)

= P11(s, t)P11(t, t+ h) + P12(s, t)P21(t, t+ h)

+P13(s, t)P31(t, t+ h) + P14(s, t)P41(t, t+ h)

= P11(s, t)((1− (µ12 + µ14))h+ o(h)) + P12(s, t) · 0
+P13(s, t) · 0 + P14(s, t) · 0

P
′

11(s, t) = −P11(s, t)(µ12 + µ14) (2)

This is the transition probability of not remaining in state 1.

P12(s, t+ h) =
4∑

k=1

P1k(s, t)Pk2(t, t+ h)

= P11(s, t)P12(t, t+ h) + P12(s, t)P22(t, t+ h)

+P13(s, t)P32(t, t+ h) + P14(s, t)P42(t, t+ h)

= P11(s, t)((µ12h+ o(h)) + P12(s, t)(1− (µ23 + µ24)h+ o(h))

+P13(s, t)(µ32h+ o(h)) + P14(s, t) · 0

P
′

12(s, t) = P11(s, t)µ12 − P12(s, t)(µ23 + µ24) + P13(s, t)µ32 (3)

This gives the transition probability of moving from state 1 to State 2.

P13(s, t+ h) =
4∑

k=1

P1k(s, t)Pk3(t, t+ h)

= P11(s, t)P13(t, t+ h) + P12(s, t)P23(t, t+ h)

+P13(s, t)P33(t, t+ h) + P14(s, t)P43(t, t+ h)

= P11(s, t) · 0 + P12(s, t)(µ23h+ o(h))

+P13(s, t)(1− (µ32 + µ34)h+ o(h)) + P14(s, t) · 0

P
′

13(s, t) = P12(s, t)µ23 − P13(s, t)(µ32 + µ34) (4)

Similarly (4) is the transition probability of moving from State 1 to State 3.

P14(s, t+ h) =
4∑

k=1

P1k(s, t)Pk3(t, t+ h)

= P11(s, t)P14(t, t+ h) + P12(s, t)P24(t, t+ h)

+P13(s, t)P34(t, t+ h) + P14(s, t)P44(t, t+ h)

= P11(s, t)(µ14h+ o(h)) + P12(s, t)(µ24h+ o(h))

+P13(s, t)(µ34)h+ o(h)) + P14(s, t)(1 + o(h))



Multistate modelling vertical transmission 3947

P
′

14(s, t) = P11(s, t)µ14 + P12(s, t)µ24 + P13(s, t)µ34 (5)

where (5) is the transition probability of moving from State 1 to State 4 which
is an absorbing state.
From the transition probabilities given in equations (2),(3),(4) and (5) we are
able to get the transition matrix which is given by

Q =



−(µ12 + µ14) µ12 0 µ14

0 −(µ23 + µ24) µ23 µ24

0 µ32 −(µ32 + µ34) µ34

0 0 0 0


.

2.1 Calculation of transition intensities

Define

• Ei as the waiting time of the ith individual in the Healthy state

• Fi as the waiting time of the ith individual in the Infected state

• Gi as the waiting time of the ith individual in the Aids st0ate

For the three state model, for each individual we can record the entire obser-
vation via two random variables

U i =

1, if the ith individual transit from State 1

0, if the ith individual remains in State 1

V i =

1, if the ith individual transit from State 2

0, if ith individual remains in State 2

Let fi(ui, vi, ei, fi) be the joint distribution of (Ui, Vi, Ei, Fi). If (Ui, Vi = 0) no
transition has been observed. If (Ui, Vi = 1) then transition was observed at
time s+ t+ Φ where Φ = ei, fi
The joint density function is given by

fi(ui, vi, ei, fi) =


hPs+t Ui = 0

hPs+t Vi = 0

eiPs+t(µ12(s+ t+ ei) + µ14(s+ t+ ei)) Ui = 1

fiPs+t(µ23(s+ t+ fi) + µ24(s+ t+ fi)) Vi = 1
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where 0 < ei < h. 0 < fi < h.

=



exp
[
−
∫ h
0

(µ12(s+ t) + µ13(s+ t))
]

Ui = 0

exp
[
−
∫ h
0

(µ23(s+ t))
]

Vi = 0

exp
[
−
∫ ei
0

(µ12(s+ t) + µ13(s+ t))dt
]

(µ12(s+ t+ ei) + µ13(s+ t+ ei)) Ui = 1

exp
[
−
∫ fi
0

(µ23(s+ t))dt
]

(µ23(s+ t+ fi)) Vi = 1

=

exp
(
−
∫ ei
0

(µ12(s+ t) + µ13(s+ t))dt
)

(µ12(s+ t) + µ13(s+ t))ui

exp
(
−
∫ fi
0

(µ23(s+ t))dt
)

(µ23(s+ t))vi

Assuming µ12(s+ t), µ13(s+ t), µ23(s+ t) are constants µ12, µ13, µ23 respec-
tively, we get

f(ui, vi, ei, fi) =

{
e−(µ12+µ13)ei (µ12 + µ13)

ui

e−(µ23)fi (µ23)
vi

Getting the maximum likelihood estimators we have

Ln(µ12, µ13, µ23) =
n∏
i=1

f(ui, vi, ei, fi)

=
n∏
i=1

e−(µ12+µ13)ei(µ12 + µ13)
uie−(µ23)fi (µ23)

vi

= e−(µ12+µ13)
∑n

i=1 ei
(µ12 + µ13)

∑n
i=1 uie−(µ23)

∑n
i=1 fi

(µ23)
∑n

i=1 vi

Let e =
∑n

i=1 ei, u =
∑n

i=1 ui, f =
∑n

i=1 fi, v =
∑n

i=1 vi,

Therefore taking the natural logs we get

LogLn(µ12, µ13, µ23) = −(µ12+µ13)e+uLog(µ12+µ13)−(µ23)f+vLog(µ23) (6)

To estimate the transition intensities we defferentiate equation (6) with respect
the respective intensities µ12, µ13, µ23 which gives

µ̂12 =
u− µ13e

e

=

∑n
i=1 ui − µ13

∑n
i=1 ei∑n

i=1 ei
(7)
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µ̂13 =
u− µ12e

e

=

∑n
i=1 ui − µ13

∑n
i=1 ei∑n

i=1 ei
(8)

µ̂23 =
v

f

=

∑n
i=1 vi∑n
i=1 fi

(9)

In the extended four state model for each individual we can record the entire
observation via the six random variables as follows:

Ui =

1, if the ith individual transit from State 1 to State 2

0, if the ith individual remains in State 1

Vi =

1, if the ith individual transit from State 1 to State 4

0, if ith individual remains in State 1

Wi =

1, if the ith individual transit from State 2 to State 3

0, if the ith individual remains in State 2

Xi =

1, if the ith individual transit from State 2 to State 4

0, if the ith individual remains in State 2

Yi =

1, if the ith individual transit from State 3 to State 2

0, if the ith individual remains in State 3

Zi =

1, if the ith individual transit from State 3 to State 4

0, if ith individual remains in State 3

Let f(ei, fi, gi, ui, vi, wi, xi, yi, zi) be the joint distribution of (Ei, Fi, Gi, Ui, Vi,WiXi, Yi, Zi).
If (Ui, Vi,Wi, Xi, Yi, Zi = 0), no transition has been observed and therefore
there is no change in the status of the different disease states. If however
(Ui, Vi,Wi, Xi, Yi, Zi = 1) then transition was observed at x + ai + Φ where
Φ = ei, fi, gi
The joint density function is given by
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f(Φ) =



Pij(x+ ai, x+ bi) i = j Ui = Vi = Wi = Xi = Yi = Zi = 0

P12(x+ ai, x+ ai + ei)µ12(x+ ai + ei) Ui = 1

P14(x+ ai, x+ ai + ei)µ14(x+ ai + ei) Vi = 1

P23(x+ ai, x+ ai + fi)µ23(x+ ai + fi) Wi = 1

P24(x+ ai, x+ ai + fi)µ24(x+ ai + fi) Xi = 1

P32(x+ ai, x+ ai + gi)µ32(x+ ai + gi) Yi = 1

P34(x+ ai, x+ ai + gi)µ34(x+ ai + g) Wi = 1

where 0 < ei ≤ h. 0 < fi ≤ h and 0 < gi ≤ h.

f(Φ) =



exp
[
−
∫ ei
0
µ12(x+ ai + t)dt

]
(µ12(x+ ai + ei))

ui ui = 0, 1

exp
[
−
∫ ei
0
µ14(x+ ai + t)dt

]
(µ14(x+ ai + ei))

vi vi = 0, 1

exp
[
−
∫ fi
0
µ23(x+ ai + t)dt

]
(µ23(x+ ai + fi))

wi wi = 0, 1

exp
[
−
∫ fi
0
µ24(x+ ai + t)dt

]
(µ24(x+ ai + fi))

xi xi = 0, 1

exp
[
−
∫ gi
0
µ32(x+ ai + t)dt

]
(µ32(x+ ai + gi))

yi yi = 0, 1

exp
[
−
∫ gi
0
µ34(x+ ai + t)dt

]
(µ34(x+ ai + gi))

zi zi = 0, 1

Assuming homogeneity, we get

f(ei, fi, giui, vi, wi, xi, yi, zi, ) =



e−µ12ei(µ12)
ui , ui = 0, 1

e−µ14ei(µ14)
vi , vi = 0, 1

e−µ23fi(µ23)
wi , wi = 0, 1

e−µ24fi(µ24)
xi , xi = 0, 1

e−µ32gi(µ32)
yi , yi = 0, 1

e−µ32gi(µ34)
zi , zi = 0, 1

In order to determine the maximum likelihood estimators we have

Ln(µ12, µ14, µ23, µ24, µ32, µ34) =
n∏
i=1

f(ui, vi, wi, zi, ei, fi, gi)
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=
n∏
i=1

e−(µ12+µ14)ei(µ12)
ui(µ14)

vie−(µ23+µ24)fi (µ23)
wi(µ24)

xie−(µ32+µ34)gi

×(µ32)
yi(µ34)

zi

= e−(µ12+µ14)
∑n

i=1 ei
µ12

∑n
i=1 uiµ14

∑n
i=1 vie−(µ23+µ24)

∑n
i=1 fi

µ23

∑n
i=1 wiµ24

∑n
i=1 xi

×e−(µ32+µ34)
∑n

i=1 gi
µ32

∑n
i=1 yiµ34

∑n
i=1 zi

Letting e =
∑n

i=1 ei, f =
∑n

i=1 fi, g =
∑n

i=1 gi, u =
∑n

i=1 ui, v =
∑n

i=1 vi,

w =
∑n

i=1wi, x =
∑n

i=1 xi, y =
∑n

i=1 yi, z =
∑n

i=1 zi

and taking the logs gives

logLn(µ12, µ14, µ23, µ24, µ32, µ34) = −(µ12 +µ14)e−(µ23 +µ24)f−(µ32 +µ34)g+
ulogµ12 + vlogµ14 + wlogµ23 + xlogµ24 + ylogµ32 + zlogµ34

To estimate µ12,

∂

∂µ12

logLn(µ12, µ14, µ23, µ24, µ32, µ34) = −e+
u

µ12

= 0

u

µ12

= e

µ̂12 =

∑n
i=1 ui∑n
i=1 ei

(10)

To estimate µ14,

∂

∂µ14

logLn(µ12, µ14, µ23, µ24, µ32, µ34) = −e+
v

µ14

= 0

v

µ14

= e

µ̂14 =

∑n
i=1 vi∑n
i=1 ei

(11)

To estimate µ23,

∂

∂µ23

logLn(µ23, µ14, µ23, µ24, µ32, µ34) = −e+
w

µ23

= 0

w

µ23

= f

µ̂23 =

∑n
i=1wi∑n
i=1 fi

(12)
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To estimate µ24,

∂

∂µ24

logLn(µ12, µ14, µ23, µ24, µ32, µ34) = −e+
x

µ12

= 0

x

µ24

= f

µ̂24 =

∑n
i=1 xi∑n
i=1 fi

(13)

To estimate µ32,

∂

∂µ32

logLn(µ12, µ14, µ23, µ24, µ32, µ34) = −g +
y

µ32

= 0

y

µ32

= g

µ̂32 =

∑n
i=1 yi∑n
i=1 gi

(14)

To estimate µ34,

∂

∂µ34

log

n(µ12, µ14, µ23, µ24, µ32, µ34) = −g +
z

µ34

= 0

z

µ34

= g

µ̂34 =

∑n
i=1 zi∑n
i=1 gi

(15)

To make sure that the solutions represents a maximum and not a minimum, the
second derivative of the log-likelihood is calculated and evaluated at µij = µ̂ij.
Getting the second derivatives of (10),(11),(12),(13),(14) and (15) confirms
that these estimates are indeed maximums.

2.1.1 Reproduction Number

We first consider the three state model with states in Figure 3 given as Healthy
Infected and Dead. Individuals move from healthy to infected to dead. Indi-
viduals can also move from healthy to dead. The transition matrix Q is given
below

Q =


−(µ12 + µ13) µ12 µ13

0 −µ23 µ23

0 0 0

 (16)
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In calcutating R0 we only used the infected states and therefore from matrix
(16) we form the matrix

J =

(
µ12 µ13

−µ23 µ23

)

In calculating R0 we use the Next Generation Matrix method which involves
partitioning matrix J into submatrices F and V where F is non negative new
infection matrix abd V is composed of death, improved status and other tran-
sition.

J = F − V (17)

and
K = FV −1 (18)

K =


µ12µ23

µ13

0

0 0

 (19)

Since the basic reproduction number is the dominant eigen value of matrix
(19) then

Ro =
µ12µ23

µ13

(20)

Similarly for the extented four state model represented in Figure 3, matrix (2)
is used to calculating R0. The matrix of the infected states is given as

J =


µ12 0 µ14

−(µ23 + µ24) µ23 µ24

µ32 −(µ32 + µ34) µ34

 .

Calculating using equation (18) gives

K =


µ12(µ23µ34 + µ24(µ32 + µ34)) −µ12µ14(µ32 + µ34) µ12µ14µ23

0 0 0

0 0 0



Ro = µ12(µ23µ34 + µ24(µ32 + µ34)) (21)
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3 Application of Model

We use table 1 to get the estimates for the three state model and four state
model as follows Sustituting the values from parameter table 2 into the three

Table 2: Parameters estimates for three state model
Symbol
µ12 µ13 µ23

Estimate 0.15 0.09 0.18

Table 3: Parameters estimates for four state model
Symbol
µ12 µ23 µ24 µ32 µ34

Estimate 0.15 0.015 0.09 0.00467 0.18

state model gives R0 = 0.3
Using (21) and table (3) and substituting into the four state model gives
R0 = 0.003

4 Conclusion

In this paper we have considered a three state and four state multistate model
and obtained the estimates of the transition intensities by the use of maximum
likelihood method. We established that we can use the Next Generation Matrix
Method to determine the R0 in models of different stateswhich and use this in
comparing transitions.
Since both the R0 for the models are less than one it indicates that vertical
transmission will eventually not contribute to transmission of HIV. This could
be due to the fact that a lot of emphasis is being but to eradicate this mode
of transmission.
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