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ABSTRACT: This paper studies steady laminar flow of viscous incompressible fluid between
two parallel infinite plates when a constant pressure gradient is imposed on the system and
upperplate is also moving with constant velocity and lower plate is held stationary under the
influence of inclined magnetic field. The Laplace transform method has been applied to solve
governing equation. The analytical expression for fluid velocity at different strengths of magnetic
field and at different inclinations has been shown graphically which shows that with the increase
of inclination of magnetic field there is a decrease in velocity profile.

INTRODUCTION

The interaction of two branches, namely electromagnetic theory and fluid mechanics produces
magnetohydrodynamics. The basic concept describing magnetohydrodynamic (MHD)
phenomena is as follows. Consider an electrically conducting fluid having a velocity vector V.
At right angles to this we apply a magnetic field, B. We assume that steady flow conditions have
been attained. Because of the interaction of two fields an electric field denoted by E is induced at
right angles to both V and B. This electric field is given by E = V x B. If we assume that the
conducting fluid is isotropic, we can denote its electrical conductivity by the scalar quantity cr.
By Ohms law, the density of the current J induced in the conducting fluid is given by J = crE,
i.e., for stationary condition. Simultaneously occurring with the induced current is the induced
electromotive force F = J x B sin a , where a is angle of inclination of magnetic field with the
horizontal.

The laminar flow of an electrically conducting fluid through a channel under uniform transverse
magnetic field is important because of the use of MHD generator, the MHD pump and the
electromagnetic flow meter. The general model that in normally considered in these studies
consists of an infinitely long channel of constant cross - section with a uniform static magnetic
field applied transverse to the axis of the channel. The walls of channel are either insulators,
conductors or a combination of insulators and conductors depending on the intended application.
For example, in the MHD generator and pump, the channel cross-section is normally circular
with conducting walls.
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Serclif (1956) has studied the steady motion of electrically conducting fluid in pipes under
transverse magnetic field. Drake (1965) has considered the flow in a channel due to periodic
pressure gradient and solved by the method of separation of variables. Singh and Ram (1977)
have considered the laminar flow of an electrically conducting fluid through a channel in the
presence of a transverse magnetic field under the influence of a periodic pressure gradient and
solved it by Laplace transform. Ram et al. (1984) have considered Hall effects on heat and mass
transfer flow through porous medium.

Simonura (1991) has considered magnetohydrodynamic turbulent channel flow under a uniform
transverse magnetic field. Kazuyuki (1992) has discussed inertia effects in two dimensional
MHD channel flow. Pop and Watanabe (1995) considered the Hall effects on
magnetohydrodynamic boundary layer flow over a continuous moving flat plate. Ram (1995)
discussed effects of Hall and ion slip currents on free convective heat generating flow in a
rotating fluid. Singh (1998) considered unsteady magneto hydrodynamic flow of liquid through a
channel under variable pressure gradient and solved it by method of Laplace transform. Singh
(2000)considered unsteady flow of liquid through a channel with pressure gradient changing
exponentially under the influence of inclined magnetic field and solved it by method of Laplace
transform.

In the present paper laminar hydromagnetic steady flow of liquid between two parallel infinite
channel is considered when upper plate is moving and lower plate is held stationary and also a
constant pressure gradient is imposed on the system.

Governing equations

The equation of continuity for the incompressible fluid flow is given as

au av aw
-+-+-=0
ax By az

(1)

where u, v, and ware the components of velocity of the fluid in the x, y, and z directions.

The equations of motion that describe fluid flow in each of the three directions are given as

(2)

(3)

and
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There is no component of body force in the y-direction, and F, = J x B sin a ,Fy = Fz = 0 as
v = w = 0 then equations of motion (9) and (10) become

(11)

O=-~ 8P
pay

(12)

Equation (12) implies that pressure does not depend on y.

We know that

- - 2 -JxB .' eYBU . 2--sma=---sm a
p p

(13)

and

E = UxBsina

where U is fluid velocity along x-axis, the direction of fluid flow. Thus

J x Bsina:::: 0-[(0 x Bsina)xBsina]

~ eY[(U.Bsin a)Bsin a - (Bsin a Bsin a)U].

Since U and B sin a are perpendicular vectors, we have

U ·Bsina = 0

grvmg

Thus

Using (13) the equation of motion (11) now reduces to
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(4)

where Fx' Fy' Fz are components of J x B sin a in the x , y ,z directions respectively.

For simplicity we shall consider a two-dimensional flow. In two dimensions, equation (1)
becomes

(5)

Since the plates are of infinite length, we assume that the flow is only along the x- axis and
depends on y. Thus,

au '-=0ax (6)

Since we have assumed a steady flow, the flow variables do not depend on time. Thus equations
(2) to (4) can now be written as

o = ..'. ap +v(a2u + a2uJ+ Fxpax ax2 ay2 p (7)

(8)

Using (5) and (6) and the fact that there is no flow in y-direction equations (7) and (8) may now
be written as

(9)

1 ap Fy
0=---+-pay p (10)
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1 op 02U (J 2 • 2 .
O=---+v---B usm a

pax f)y2 p
(14)

NON DIMENSIONLIZING

To simplify equation (13) further, we reduce the parameters in the equation by introducing the
following non-dimensional quantities Singh (1993);

2
, X , Y , pa a

x =-, y =-, p =--, u'=u-.
a a p v2

V

With these quantities, we see that,

au = au au' f)y'
f)y au' f)y' f)y

v au'
=--

a' f)y'
15)

Therefore

02U _ a [au]
ay2-ay ay

_ a [ v au'] f)y'-----
f)y' a2 f)y' f)y

_ a [ v au'] I-----
f)y' a2 f)y' a

V 02U'
=---a3 f)y,2 . (16)

Again

Op = op op' ax'

ax op' ax' ax
pv' op'

=----
a3 ax' (17)
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Similarly,

ap = ap ap' ay'
ay ap' ay' ay

pv' ap' 1
=--.-.-

a2 ay' a

pv? ap'
=--.-

a3 ay'
(18)

Putting these values in (12) and (14), we get

ap'
-=0
ay'

(19)

and

1 2 a ,.'. a2, S2pv 1fJ v U 0:; V,. 20= ------ +v--- - ---u sm a
p a3 ax' a' ay'2 p a

(20)

For the convenience, we shall drop the primes and write

or

(21)

We may write above equation as

ap a2u 2· 2O=--+--M sin auax ay2
(22)

where
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M sin a ~Ba~Sina =M.

where f1 = pv and M. is known as the Hartmann number. It is directly proportional to the
magnetic field B.

We can differentiate equation (22) with respect to x and obtain

dp = -P (a constant)
dx

(25)

(23)

Sincep does not depend on y (23) may be put as a total derivative. Thus,

(24)

We can therefore see that

And we can take ordinary derivative of the equation of motion instead of partial derivative.
Therefore we have;

d 2U 2. 2
---M sm au =-Pd/

(26)- ,

We now solve this equation by using method of solution of ordinary differential equations with
constant coefficients.

Solution of the Equation

Theauxiliary equation of equation (26) is given as

or D =±Msina

andparticular integral
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-p P
P.I.= 2 2 =----

D - M 2 sin a M 2 sin 2 a

Giving solution for (26) as

u = c e-Msinay +c eMsmay + p
1 2 (M sina)2 (27)

which is to be solved subject to boundary conditions

u = 0 when y = -1 and

u = U when y = + 1

Now

u = 0 when y = - 1 then from (27) ,

M' M' p,O=ce smatce- smat'
1 2 (Msina)2 (28)

and

u = U when y = + 1 then from (27)

(29)

ue=: = c + c e2Msina + P eMsina

1 2 (Msin a)2
(31)

Multiplying equation (28) by e-Msina and (29) by e
Msina we get

0= c +c e-2Msina + P e-Msina

1 2 (M sina)2
(30)

Solving (30) and (31) we get
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TT Msina p [MSina -Msina 1ue e -e
C2 = e2Msina _e-2Msina - (M sin a)2 e2Msina _e-2Msina

or

UeM sin a p [ 1 1
C2 = e2Msina _e-2Msina - (Msina)2 eMsina +e-Msina

Again multiplying equation (30) by eM sin a and (31) bye -M sin a we get

(32)

U = c e-Msina + c eMsina + p
1 2 (M·)2sma

(33)

Solving (32) and (33) we get

c -1-

Ue-Msina P [ eMsina _e-Msina ]

e2Msina _e-2Msina (Msina)2 e2Msma _e-2Msma

or

UeMsina p [ 1 1
C1 = e2Msina _ e-2Msina - (M sin a)2 eMsina + e-Msina

Putting values of C1 and C2 from above in (27) we get

[
U -Msina p]

U = _ e _ e-M sin ay

e2Msina _e-2Msina (Msina)2(eMSina +e-MSina)

[

UeMsina P] CMsina)y p+. . - (-:- .) e +----2
e2Msma _e-2Msma (Msina)2\eMsma +e-Msma (Msina)

or

= [eCMSina)(I+Y) - e-CMSina)(I+Y)]_ p [eCMSina)y + e-CMsina)y 1 p
uU 2"" 2 M M + 2e Msma _e-2Msma (Msina) e sma +e sma (Msina)
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u = Usinh((Msin a)(1+ y)) + P [1- COSh(MSina)y] (34)
sinh(2M sina) (M sina)2 cosh(M sin a)

As velocity U of upper plate is constant and from (25) P is non-dimensional pressure which is
also constant we may take in (34)

U=P

and get from (34)

~ = sinh((M sina)(1 + y)) + 1 . [1- cosh(M Sina)y]
U sinh(2Msina) (Msina)2 cosh(M sin a)

(35)

The resulting figures drawn from equation (35), by using MATLAB, are shown below.
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Figure 1: M = 1.0
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Figure 2: M=1.5
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Figure 3: M = 2.0

DISCUSSION OF RESULTS AND APPLICATIONS

The problem has been solved by the method of solution of linear differential equations with
constant coefficients. An analytical expression for the velocity of fluid particle has been
obtained. It is evident from equation (34) that if we take applied pressure gradient P = 0 then we
get problem of Singh (2007) as a particular case of present problem. Figures 1 to fig 3 are drawn
for M = 1, M = 1.3, and M = 2 respectively at the inclinations of 30° ,45° ,60° and 90°with the
horizontal. It is clear from the figures that velocity decreases as the strength of magnetic field is
increased. Also evident is the fact that with the increase of inclination of magnetic field, there is
a decrease in the velocity profile. Again velocity profiles at 90° gives us the steady
hydromagnetic flow of viscous incompressible fluid under applied pressure gradient and when
upper plate is also moving with constant velocity under the influence of transverse magnetic field
as a particular case of present problem. It is evident from (34) that when U = 0 then the problem
of magnetohydrodynamic steady flow of liquid between parallel plates Singh (1993) can be
obtained as a particular case of this problem. The results obtained here can be applied to the
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designs and operations of MHD generator, MHD pump, electromagnetic flow meter, and to
crude oil purification.
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