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INTRODUCTION

Spectral theory owes part of its motivation to the theory of quadratic forms. In early 

studies of Hilbert spaces (by Hilbert, Hellinger, Toeplitz and others), the objects of 

chief interest were quadratic forms.

For a complex vector space X, let 6\ X x X  -»(Cbe a sesquilinear functional. Then the 

map 0 : X ->C  defined by 9{x) = 6{x,x) for all xe H is called the quadratic form 

associated with the given sesquilinear functionals. However, modern developments 

are naturally given in terms of bounded linear operators on a Hilbert space.

In the study of operator theory in Hilbert nowadays, spectrum is used as a powerful 

tool to achieve properties like normality, self-adjointness, similarity, uniticity, 

hyponormality, e.t.c on operators which at first glance do not seem to behave as 

such.

To begin with, the study of the spectrum involves majorly the study of eigenvalues of 

a given operator on a Hilbert space. Hence, as a pre-requisite to what is to be 

studied, we consider in the first chapter a look into the eigenvalues, eigenvectors and 

eigenspaces of a given operator, in the same chapter, we look at the spectrum, its 

several classes and look at how the eigenvalues are used in their definition.

Since the spectrum is related to the numerical range, which is an integral tool in 

operator theory, the first chapter also involves the basic definition of the numerical 

range and gives some of its several classes.

The second chapter is dedicated to the study of the spectrum of quasisimilar 

operator, the aspect of quasisimilarity as introduced by Sz. Nagy and Faios, being a 

weaker version of similarity of operators, helps in an in-depth study of some aspects 

of operators that are generalized in the ordinary similarity. The chapter still looks at 

quasiaffinity of operators as a basis for the definition of quasisimilarity.
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Chapter three, is on the study of operators that are consistently invertible, (Cl 

operators), this is a very challenging aspect of operators that has not been widely 

explored, in this chapter, we look at the definition of Cl operators, their spectrum 

and we give several cases under which an operator is considered to be consistently 

invertible.



NOTATION a n d  d e f in it io n s

In this thesis, H will represent a Hilbert space, the capital letters A,fl,C... will be as 

symbols for operators in the Hilbert space H , B(H) will denote the class of bounded 

operators in H .

Definition

An operator Ae B{H) is said to be: -

Self - adjoint if A = A*

Normal if A *A  = AA*

Unitary if A * A = AA* -  1 i.e. A*= A-1

Isometric if n*

Hyponormal if A *A >  AA*

p-hyponormal if (A * A /  > (AA*)P where 0 < p < 1

Semi-hyponormal if (A* a / 2 > (AA*/2
/

M - hyponormal if (A-rjI)(A - tjI)* < M (A -tjI ) * ( A - tjI)

II (A - 77/)* x II < M  II (A~ tjI)x IIfor all complex numbers rj,

and for all xe H and M some positive number (M > 0)

Quasinormal if A<-*A*Ai.e A commutes with A* A

Quasihyponormal if A*(A *A -AA*)A  > 0

tl
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Fredholm: - A bounded operator Aon a Hilbert space H is said to be Fredholm if the

nullspace of A and A*are finite dimensional and the range of A is closed.

By Atkinson’s theorem, a bounded operator A is Fredholm if and only if zero does not 

belong to the essential spectrum of A .

Weyl: - A bounded operator Ae B(H)is Weyl if Ae 0(//)and ind A = 0 

The list of notations used in the thesis is as follows: -

ker(A)- Kernel of A , which is a subspace of H containing all elements that have been

mapped to the identity by the operator A .

i.e. ker(A) = [xe H : Ax = 0}.

a(A) - Dimension of the kernel of A .

/3(A) - Co - dimension of the range of A .

ind A = a(A)-/3(A) - The index of a semi-Fredholm operator A .

</>+(H) = [Ae B(H ):a(A )<°°}- The class of upper semi-Fredholm operators.

</>„(H) = {A& B(H):/3(A)<°°}- The class of lower semi-Fredholm operators.

Ascent p = p( A) of A is the smallest non-negative integer /?such that ker Ap = ker ApM 

if such an integer does not exist, then P(A) ZZ  Q O  .

Descent q = q(A)of Ais the smallest non-negative integerq such that A"(H) = Aq+l(H) 

if such an integer does not exist, then q(A) = °°.



B+(H) = {Aefl+(H ):p (A )< °°}-  Upper semi-Fredholm operators. 

B {H) = {Ae </>_(H):q(A)<°°} - Lower semi-Fredholm operators. 

B JH ) = B+(H) n  B_(H) - The class of all Browder operators.
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fHAPTER ONE

FlfiENVALUES. EIGENVECTORS AND EIGENSPACES

The study of eigenvalues and eigenvectors is related to linear equations which arise 

from steady state problems. Eigenvalues have their greatest significance in dynamic 

problems, where the solution is changing with time - growing, decaying or oscillating; 

therefore we can’t find it by elimination.

It so happens that many of the problems which arise in modeling physical systems lead 

directly to eigenvalue problems: for example, in any vibrating system eigenvalues are 

closely linked with natural vibration frequencies; in control system analysis 

eigenvalues determine the stability and response of the system; and in quantum 

physics eigenvalues are connected with the attainable energy levels of the atom.

To explain eigenvalues, I first explain eigenvectors. Almost all vectors when 

multiplied by an operator (matrix) change direction, there are some exceptions which 

are in the same direction after being acted upon by an operator and those ones are 

referred to as eigenvectors.

Let A be an operator in a complex Hilbert space H, suppose x is an arbitrary nonzero 

vector in the Hilbert space H, then if A acts on x as shown below:-

Ax = Ax
/

then the nonzero vector x is the eigenvector and the scalar A , is known as the 

eigenvalue of the operator A. Equivalently, As C is an eigenvalue of

A if ker(A -  AI) *  {0}.

The eigenvalue tells whether the nonzero vector x e H is stretched, shrunk, reversed 

or left unchanged when multiplied by the operator A.

Firstly, let us consider the case when H is of finite dimension. If A is the identity 

operator, then every nonzero vector multiplied by it is left unchanged, therefore all 

vectors are eigenvectors for A = I for the eigenvalue A = 1 with multiplicity 2.

/N/ ^ /V t



Consider the set M of all the eigenvectors of A together with the vector 0 (note that 0 

is not an eigenvector). M is the set of all vectors xe H satisfying the equation: -

(A -A l)x  =  0

It is a nonzero closed linear subspace of H. Thus M is the eigenspace  of A 

corresponding to the eigenvalue A. Alternatively, ker(A-XI) is the eigenspace of A 

corresponding to the eigenvalue A . Evidently M is invariant under A and the restriction 

of A to M is the operator ‘scalar multiplication by A’ . The dimension of the eigenspace 

is called the geometric multiplicity of A.

There exists some relationship between eigenvectors and the different eigenvalues as 

shown in the following theorem;

Theorem 1.1

Eigenvectors corresponding to distinct eigenvalues of A are linearly independent.

The eigenvalues of an arbitrary operator in a Hilbert space form a set in the complex 

plane, the theorem below shows the relationship between the eigenvalues and the 

dimension of the given Hilbert space;

Theorem 1.2

If A is an arbitrary operator on a Hilbert space H, then the eigenvalues of A constitute 

non-empty finite subsets of the complex plane. Furthermore, the number of points in 

this set does not exceed the dimension n of the space H.

When considering operators in a Hilbert space that are commuting, then theorem 1.4  

exhibits how their common eigenvectors are related;

~  2 ~
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Theorem 1.4

If A and B are commuting compact self-adjoint (that is AB = BA), then they have a 

complete orthogonal set of common eigenvectors (vectors which are eigenvectors of 

both A and B)

Proof

Let X be an eigenvalue of A and S the corresponding eigenspace. For any xe  S we 

have

ABx = BAx -  XBx

Thus Bx is an eigenvector of A with eigenvalue X , unless Bx= 0. In any case,

Bxe S, and B maps S into itself. Now B : S S is a compact self-adjoint operator on S, 

and the spectral theorem shows that S has a basis consisting of eigenvectors of B; 

these vectors are also eigenvectors of A because they belong to S. if we take such a 

basis for each eigenspace of A and put them together, the spectral theorem for A 

shows that the resulting set is complete.

After discussing the eigenvalues, eigenvectors and eigenspace of operators in the 

Hilbert space, we now give an example that will show how to find all the above in a 

given operator.

Example 1

Find the eigenvalues and the corresponding eigenvectors of

2 "

4,

~  3 ~
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Solution

7x =  Ax

(T -  AI)x =  0 <=>
( l - A 2  '  

A-A,
( 1 - A ) ( 4 - A ) - 4  =  0 

X1 -5A = 0<=>A = 0 o r A  = 5 
eigenvalues are /l, =  0 and A2 = 5

For X = 0, the eigenvector is given by

/

(T - 0 I ) x  =
1 2^1 f  v- \

2 4 / v x 2 y , 0 ,

x, +  2x2 =  0 

2x, +  4 x2 =  0

=> Xj =  - 2 x 2 therefore if x2 =  - 1 ,  then x, =  2

hence the eigenvector corresponding to /i, =  0 is
(  2 \

f



We now introduced the spectrum which is closely related to what has been previously 

discussed and its subclasses.

Let ^ be a bounded linear operator on a Hilbert space H. The spectrum of A , 

denoted by a  (A) is the set given by: -

cr(A) = {A s  C: A -A  is not invertible or is singular}

Alternatively,

If we consider the set of all As C , such that ( A - A ) is invertible and is bounded in H, 

it constitutes the regular values of A called the resolvent set of A denoted by /7(A ). 

The spectrum is defined as the compliment of /7(A) in H.

i.e. <t(A) = (/7(A))c

The spectrum of an operator A can be decomposed into the following subsets: - 

Continuous spectrum

Denoted by <r.(A), i.e. A e cr.(A) if R [A\ -  A) = H, and (AI -  A) ' exists as a map 

which but it is unbounded.

Residual spectrum

Denoted bycr(A ), i.e. A e <x (A) if R (Al -  A) * H, but [Al -  A) ' exists as a map 

which may or may not be bounded.

Approximate Point spectrum

Denoted by 11(A); a number A belongs to the approximate point spectrum of A if and 

only if there exists a sequence of unit vectors {xjsuch thatII (A -  Al)xn ll-> 0 .

~  5 ~



Point spectrum

Denoted bycr,(A), i.e. A 6 <rp(A) if (Al -  A )"1 does not exist as a map on R (Al - A), 

this is an important subset of the approximate point spectrum; it has only the 

eigenvalues of the given operator. That is, a complex number A e <xp(A) if and only if

there exists a nonzero vector x such that Ax = Ax.

Compression spectrum

Denoted byT(A), this is the set of complex numbers A such that the closure of the 

range of (A -T /)is  a proper subset of H.

i.e. Ae T(A) if R(A -A I) c  H

Essential spectrum

Denoted by cr,(/4), this is the set of complex numbers such that (A -A )is  not 

Fredholm.

i.e. <r,(A) = {Ae C : A — A is not Fredholm}
/

Weyl spectrum

Denoted by crw(A ), this is the set of complex numbers such that {A -A ) is not Weyl. 

i.e. a J A )  =  {Ae A : A -A  is not Weyl}

— 6 ~
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Browder spectrum

Denoted by crb(A ), the set of complex numbers such that (A-A.) is not Browder, 

i.e. crh(A) = {A eC :A  — A is not Browder}

Upper semi - Fredholm spectrum

Denoted by a SF̂ (A), is the set of complex numbers such that (A — A)is not upper semi 

- Fredholm.

Lower semi - Fredholm spectrum

Denoted by a SF (A), is the set of complex numbers such that A -A  is not lower semi - 

Fredholm.

Upper semi - Browder spectrum

Denoted by <Jub(A ), the set of complex numbers such that the operator /t-Adoes not 

belong to the class of upper semi - Browder operators.

i.e. (7ub(A) =  {A e C :A -A e  B+(H)}

Lower semi - Browder spectrum

Denoted by crlb{A ), the set of complex numbers such that the operator A -A  does not 

belong to the class of lower semi - Browder operators.

i.e. a lb(A) =  {A eC\A -A<£B_{H )}

~  7 ~
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From the above classes one can come to the conclusion that the spectrum of an 

operator A is the union of the approximate point spectrum and the compression 

spectrum. Furthermore, if H is a finite dimensional space then<r(A) = (A).

Having discussed the various subclasses of the spectrum, we now give some results on 

the relationships between the various subclasses of the spectrum.

Proposition 1.3

For any operator Ae B(H), cr.(A)c n(A)

Lemma 1.4

The spectrum of any closed operator is closed and the spectrum of a bounded linear 

operator cannot be empty.

Lemma 1.5

For each operator A, the approximate point spectrum is closed.

~  8 ~~
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We show that the compliment of n(/t)isopen. Suppose n(A)then /4 -^ is  

bounded from below; say

IIAc-^jHfctfllxll

Since

IIA x-^x ll < \\ Ax-A,x\\ +\\Ax-AX)x\\ \/A.

It follows that

(S-\A-A^) IIjcII < II Ax-Ax\\

This implies that if \A-A^ I is sufficiently small, then A - A is bounded from below.

We now give a proof of the theorem 1.6 which shows that the spectrum of an 

arbitrary self-adjoint operator is contained in some interval of real numbers.

Theorem 1.6

Suppose A s B{H )is self adjoint. Then

0(A) c  [m,M ]

Proof

t



Suppose

and let d =  (A, [ra, A/]).

Let jcg // be any unit vector and write P=(Ax, x) . Then 

((A -  p i)x , x) =  (x, (A -p I)x )  =0  and

\\{A -M )x \\2=  \ \ { ( A - p i ) + p i - M } x t

= { { (A - p i )  +  p i  -A /}  jc,{ (A -/?/)+ /?/-A /}  x)

= U - ^ l 2llxll2 -K ^ -I)((A -^ /)jc ,x )+ (^ -/D (x ,(A -y 5 /)x )+ ll(A -/?/)x ll2

> U -y ^ l2

> d 2

it follows that \\(A—Al)x\\>d II x ll. Hence A—XI is one to one and has a closed range. 

Further, if 0 *  z _L ran{A -X I)

then0= ((A -/i/)x ,z )= ^ x ,(A -X /)z \ forall;candso(A-/i/)z = 0.

But this is impossible, since from above, noting that 

d = dist(A,[m,M]) =  dist(A,[m,M]) we have II (A - A l)z ll> d  II z II - 

Therefore, ran (.A -A I)=H , (being both dense and closed)

Therefore, for any ye  H, there is a unique xg  H  such that y =  (.A -A l)x .

Define (A - J / )~ 'y = x .  Then llvll>d II xll so \\{A-Al)~xy  INI xll< j/j\\y  I I ,

showing that (A-A,I)~' g B(H) (i.e. it is continuous).

Thus a{A), proving the theorem.

Proof

~  10 ~
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We give the definition of similar operators and show the relationship that exists 

between their spectra.

Two operators A and B are said to be similar if there exists an invertible operator P 

such that

P~'AP=B

Lemma 1.7

Suppose A and B are similar operators on a Hilbert space H,.then A and B have the 

same

1. Spectrum

2. Point spectrum

3. Approximate point spectrum

Proof

1. If A -A  is invertible, then so is P \A -X )P  = P 'A P-A

2. If Ax = Ax, then p-'AP(P~'x) = MP~'x)
/

3. If Axn -Axn -> 0 where II x 11= 1, thenn n n 7

P~'AP(P~lxn)~M P~'xn)=  P"‘(Ax:n-Axn) ->0. The norms II P_ijcJI are bounded 

from below by consequently, division by II P~'xn II does not affect

convergence to 0. This implies that P 'AP f r 'x* ] 2 f P~'X" ]
{\\P-'xn\\j tllP-'.rJlJ

-> 0

~  11 ~
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Associated with the spectrum is a quantity known as the spectral radius defined as

r(/4) = sup{l X\: Xe a  (A)}

It is the radius of the smallest closed circular disc in C , with center at 0, which 

contains a(A ).

— 12 —
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The spectrum exists in relation to the numerical range of operators, infact the closure 

of the numerical range always contains the spectrum, and thus we give the definition 

of the numerical range below;

The numerical range of a linear operator A, on a Hilbert space H, denoted by W(A), is 

a subset of the complex field, and is defined by

W( A) = {< Ax, x >:ll x 11= 1}

It owes part of its motivation to the theory of quadratic forms. It is the range of the 

restriction to the unit sphere of the quadratic form associated with A.

The image of the unit ball is the union of all the closed segments that join the origin 

to .points of the numerical range; the entire range is the union of all the closed rays 

from the origin through points of the numerical range.

The numerical range can be divided into the following classes: -

Classical numerical range

This is just the ordinary numerical range of an operator A on a Hilbert space H. It is 

defined as:-

W(A) = {< Ax,jc>:II jcII= 1}

It is considered to be always convex according to the celebrated Toeplitz - Hausdorff 

theorem.

Toeplitz (1918) proved that the boundary of W(A) is a convex curve, but left open the 

possibility that it had interior holes. Hausdorff (1919) proved that it did not actually 

contain any holes.

Spatial numerical range

It is the union of the classical numerical ranges. Suppose A = {/!,, A,,...,AJ.

Then, the spatial numerical range of the given operator A is

~  13 ~
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W(A) = [JW(Ai)
i= 1

inint Numerical range

This refers to the set of the numerical range of a set of operator, that is, they can all 

be self-adjoint, normal etc.

Suppose A ={j4,, AJis a set °f self-adjoint operators, then, the joint numerical 

range is given as:-

W(A) = {W(A,),W(A2)...W(AJ}

Essential numerical range

Let A be a bounded linear operator on a Hilbert space H i.e. Ae B(H) and let K(H) be 

the set of compact operators on B(H).

Essential numerical range of an operator A is given as:- 

W (A)= P| {W(A + /0}
KeK(H)

the intersection being taken over all compact operators K.

/

Associated with the numerical range is a quantity known as the numerical radius 

which is defined as:-

w(A) = sup{l X\: As W(A)}

Since the spectrum of an operator A on a Hilbert space H is contained in the closure 

of the numerical range of A, then we observe that

r(A) < w(A)



CHAPTER TWO

SPECTRUM AND QUASISIMILARITY OF OPERATORS 

Introduction

A natural method for constructing an invariant subspace for an operator on a Hilbert 

space is to find a second, known operator which is similar in some weak sense to the 

given operator and then to use this second operator and the weak similarity to 

construct the desired subspace. One such weak similarity is the notion of quasi

similarity introduced by Sz. Nagy and Foias.

Definition 2.1

Let H be an infinite dimensional complex Hilbert space, and let B(H) denote the 

algebra of all bounded linear operators on H.

An operator X e B(H) is a quasi-affinity (or a quasi-invertible operator) if T is 

injective and has dense range.

An operator Ae H is a quasi-affine transform of an operator B if there exists a 

quasiaffinity A such thatBX = AX . A and B are quasi-similar if they are quasi-affine 

transforms of each other.

Having defined quasi-affinity we give a theorem showing a relation between the 

aspects of quasi-affinity and invertibility.

Theorem 2.2

Let A ,B ,X e B(H) satisfy the equation AXB = X . Then we have the following: -

i) If A is left invertible, then A is invertible.

ii) If B is right invertible, then B is invertible.

~  15 ~



Proof

Let A, be the left inverse of A . i.e. A,A = /.

Then we have\A X B  = A,X . i.e. XB = A,X .

Hence, AXB = AA,X = X i.e. X -A A xX =  0

=>(I-A A i)X =0or =>(/-AA,) = 0 , since X has dense range.

=> AA, = I

Hence A is invertible.

Similarly, let Brbe the right inverse of B . i.e. BB, = I

Then we have that:

AXBBr = XBr 
i.e AX = XBr
i.e AXB = XBB  = X or X -  XBrB = 0

i.e X ( I - B rB) = 0

i.e I -  BrB = 0, since X  is injective.

i.e BrB = I
Hence B is invertible.

/

Now consider an operator that is an isometry, we a theorem that indicates the 

existence of a quasi-affinity shows that the operator is necessarily unitary.

Theorem 2.3

Let A,B,X e B(H) satisfy AXB = X , then

i) If A is an isometry then A is unitary.

ii) If B is a co - isometry then B is unitary.

~  16 ~



Theorem 2.4

Quasisimilar hyponormal operators have equal spectra.

Proof

If A and B are quasisimilar hyponormal operators; then for any complex number A,

A-XI and B - X l  are also quasisimilar and hyponormal, so they are both invertible or 

both noninvertible. Thus the spectrum of A is equal to that of B. i.ecr(A) = cr(fl)

Corollary 2.5

Let T{ e B{Hx)andT2&B(H2) be injective p - quasihyponormal. If Tx andT2 are 

quasisimilar then they have same spectra and essential spectra.

Proof

Let Tt = Nt © V: on Hi = Ha ® Ha where Nt and y  are the normal and pure parts of 

7J(i = 1,2). Since and N2 are unitarily equivalent, we have

a(N ]) = er(N2) and (7e(Nx) = (7e(N1)

Also, since there exists operators X. e L(//22,//12)and Y, e L(Hr ,H 22) having dense
/

ranges such that

V,X. =  X.V2 and Yyx=V2Y, ,

We have

cr(y) = <j (V2) and cr (y ) = a  (V2)

Hence we have

ff(Tx) = (7(T2) and cre{T{) = cre(T2)

~  17 ~
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i pmma 2.6

Let T e B (H {) be a p - quasihyponormal operator and N e B (H 2) be a normal operator. 

If X e  B (H i,H 2) has a dense range and satisfies TX = XN  , then T is also a normal 

operator.

Proof

( T\ tY (N. O']L and N -
1° oj [o oj

With respect to H { = R(T) © ker(T*) and H 2 = R(N)®ker(N*)  respectively. Since 

TX = XN  and X  has a dense range, we have X (R {N ))  = (R(T))X

If we denote the restriction of X  to R(N) by X , , then X , : R{N) —> R{T) has a dense 

range and for every *e R(N)

X iN lx =  XNx — TXx = 7JX, x

So thatX,yv, = T]X i . Since 7]is p - hyponormal, there exists a hyponormal operator 

7] corresponding to 7; and a quasiaffinity Y such that

TXY = YTX.

Thus

TxYXx=YT]X ] = Y X xN x

Since TX,has a dense range, Tx is normal and so t; is normal.

Thus the inequality

(7j *TX)P > {TXTX *+T2T2*)p > {TXT * ) P =(T]*T[Y

~  18 —
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Implies that72 =0 . Hence Tis normal.

Quasisimilarity of log - hvponormal operators

Let 7e B(H) and let T = U\T\be  the polar decomposition of 7. Then R=\T\^2 U\T\^2 

the Aluthge transform of 7. If 7 is log - hyponormal and semi - hyponormal, then R is 

semi - hyponormal and hyponormal respectively.

Let R -  V I R I be the polar decomposition of R and 7 =1R Z2 V I R \/2. Hence 7 is log - 

hyponormal and then 7 is hyponormal.

Given the definition of log - hyponormal operators, we now give a theorem illustrates 

the equality of the various subclasses of the spectra for quasi-similar log - hyponormal 

operators.

Theorem 2.7

If 7 is a log - hyponormal operator, then<x,(7) = <x„(7), where a, denotes each of the

following; the spectrum, the point spectrum, the approximate point spectrum, the 

essential spectrum and the Weyl spectrum.

Proof
/

It is enough to observe that there exists an invertible operator X =\R V2\T such 

that 7 = X~lTX (i.e. 7 is similar to 7).

But similar operators have isomorphic lattices of invariant subspaces and similarity 

preserves the spectral picture. Hence the proof follows.

An operator T on a Hilbert space H is spectral, if it has a resolution of the identity 

much like that of a normal operator. Let E be a a-homomorphism of the a-algebra of

~  19 ~



Borel subsets of the complex plane onto a a-algebra of uniformly bounded (in norm) 

idempotents in B{H) which contains the zero and the identity operators. The map 

£is a resolution of the identity for the operator T if for every Borel set B in the 

plane, E(B)T = TE(B) , and <r(TI E(B )(H ))e  B (the closure of B )

where(TI E(B)(H))denotes the restriction of T to the range of E(B) . The operator T 

is called a spectral operator if it has a resolution of the identity.

Spectral operators can be canonically decomposed as follows; if T is spectral then,

T = N + S where N , the scalar part is similar to a normal operator, 5 is quasi- 

nilpotent (cr(5) = {0}), and N commutes with S, this decomposition is unique. The

invertible operator A for which ANA~' is normal transforms the resolution of the 

identity E of T onto the spectral measure of ANA~'. The spectrum of T is the spectrum 

of N, and if R is an operator which commutes with T then for every Borel set B, R 

commutes with E(B) and hence R commutes with N.

Lemma 2.8

Let N, and N2 be normal operators acting of the spaces H and K respectively, and let X 

be an operator from H to K satisfying XN{ = N2X . If M denotes the orthogonal 

compliment in H of the kernel of X, and if L denotes the closure in K of the range of 

X, then M and L reduce N, and N2 respectively, and N] IM is unitarily equivalent to 

N21L via the unitary operator U IM  where X = UP is the polar decomposition of

X{P = {X 'X '/l) ) . In particular, if X is quasi-invertible, theN, and Â2are unitarily 

equivalent.
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Williams lemma

Let Nt e /?(//,.)be normal for each i = l,2. If X e  B(H2,Hl) and Ye /?(//,,//2) are 

injective such that NxX = m ,  and Y7V, = W2K , if either X or Y is compact then 

Nx and N2 are unitarily equivalent.

Theorem 2.9

Suppose for / = 1,2, 7] = A/ + 5, are spectral operators written in their canonical 

decomposition. If there is a quasi-invertible operator X such that XTx = T2X , then

i. XSx = S2X\ XNx =  N2X

ii. /V, is similar to N2

iii. (t(Tx) =  ct(T2)

Proof

There are invertible operators At such that for i = l,2, A“‘Â .A,.is normal. Thus, 

replacing T( by /4~l7’Ai , it suffices to assume that the operators ALare normal. 

Consider the following operators acting on the Hilbert space// © A ':

'0 o'
, T =

~TX o ' _ 0 "
+

1
yi o __

i

X 0 0 T J 0 N 0 s 2

Since XT} -  T2X , these two operators commute. But T is a spectral operator so Y 

commutes with the scalar (normal) part of T. It follows

thatXTV, = N2X and thus XS} = S 2X . By lemma 2.4, A/, and A/, are unitarily equivalent 

and since cr(7’) = <r(AL), cr(7]) = <t(T2 ).

t
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Suppose 7; and T2 are spectral operators with resolutions of the identity

E, and E2 respectively. We say T2 is weakly similar to TJ if there is a densely defined

closed linear transformation A on H with densely defined inverse such that: -

i) (ATv A~l)x =  T2x for every X in the domain of A~x and

ii) For every Borel set B, there is a constant MB such that

ll(A£'1(fl)A-1)jcll<Ma ll;cll 

for each x in the domain of A~'.

We now state and prove the following theorem on weakly similar spectral operators.

Theorem 2.10

If 7] and T2 are spectral operators with resolutions of the identity £, and E2 

respectively, and if X is a quasi-invertible operator such that

XT̂  = T2X , then T2 is weakly similar to 7̂ .

Proof

It is enough to show that for every Borel set B, X£,(fi)X-1is bounded on the domain of

X~[, since the operator shall satisfy all the conditions of weak similarity. Let 

T = A7 + 5. be the canonical decomposition of T for i = 1,2, assume /V, is normal and its

spectral measure is E.. Write X in its polar decomposition, X =UP  where P = (X’*X)^  

and U is unitary. By theorem 2.5, XNt = N 2X and lemma 2.4, U is unitarily equivalence 

between W, and N2.

As a consequence, UE:(B)U‘ = E2(B)for every Borel set B. it follows by the Putnam- 

Fuglede theorem that
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n xx '  =  x ' n 2

and therefore

NxX'X = X 'N2X = X'XNx

or X 'X  commutes with Nx. Thus P commutes with iV, and hence with EX(B). If xis in 

the domain of X "1, then

(.XEx(B )X -1)x = (UPEx(B)P-1U ')x 

= (UEx(B)U")x 

= E2(B) x

We now show the relation between the spectra of quasi - similar log - hyponormal and 

an isometry.

Theorem 2.11

Let Tx e B{HX) be log-hyponormal operator and le tTe  B(H2) be an isometry. If 7, and 

T2 are quasisimilar, then Tx and T2 are unitarily equivalent unitary operators.

Proof

There exists quasi-affinities X and Y such that TxX = XT2and YTX = T2Y . Since Txis
/

invertible and YTX = T2Y , T2has a dense range. Hence T2is unitary. Thus Txand Tare  

unitarily equivalent unitary operators.

Definition

An operator A s B(H) belongs to class A if I A21 > IA  I2. Class A was first introduced by 

Furuta - Ito - Yamazaki as a subclass of paranormal operators which includes the 

classes of p-hyponormal and log-hyponormal operators.
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Having defined class A operators, we introduce a quasi - affinity and show that, quasi 

- similar class A operators have equal spectra.

Theorem 2.12

Let T* e B{H) and S e B(H) be of class A. If X e B(H, K) and XT = SX , then

cr(r’ ) = a (S *)

Proof

Let A =
T' 0

0 s and B =
0 0 

X 0
on H © K . Then A is p-hyponormal (log-hyponormal)

operator on H © K that satisfies BA' = A B .

Hence BA= A'fland therefore S ’ X = XT' which implies 7* = X lS'X . Thus X'and 

5* are similar, hence cr(7*) = <j(5*).

Below we illustrate results on the several aspects on quasi - similarity among the 

several classes of operators.

Theorem 2.13

Let Te B(H) be p-hyponormal or co-hyponormal or log-hyponormal and X e B(H) be a 

quasi-invertible self-adjoint operator satisfying the operator equationT'X = XT .

Then cr(7) = <7(T*).
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Theorem 2.14

Let Te B{H) be co-hyponormal. If X e B(H) and T'X = XT , then <j {T') =  a{T)

Proof

Let X = L + i R b e  the Cartesian decomposition of X, we have that T L = LT and 

T'V = VT by hypothesis. By theorem 2.10 we have that TL = LT and TV -  VT‘ which 

implies TX = XT*andr = XT‘X _1. Hence a{T) =  a {Tm) .
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CHAPTER THREE

Cl OPERATORS

Let H be an infinite-dimensional complex Hilbert space, B{H) be the algebra of all 

bounded operators on H and K(H) be the compact operator ideal in B(H). For 

Ae B(H),cj(B) and a e(B) denote the spectrum and essential spectrum respectively.

For an operator A e B(H), we say A is consistent in invertibility (with respect to 

multiplication) or briefly, a Cl operator if, for each Be B(H), AB and BA are invertible 

or noninvertible together. By Jacobson’s Theorem (for A, Be B(H) , the nonzero 

elements of <r(Afi)and cr(BA) are the same), A is a Cl operator if and only if 

<y{AB) = cy(BA) for every operator Be B(H). Thus If A and B are Cl operators, then so is 

AB. The problem is: which elements in B (H) are Cl operators?

Fundamental theorem

Every Ae B{H)must be included in one of the following five cases, and in each of 

them the problem is definitely answered.

/

Case 1

If A is invertible, then A is a Cl operator.

Proof

It is sufficient to note that for every A in B (H), AB = B~\BA)B

Case 2

If ran A is not closed, then A is a Cl operator.
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Proof

It follows from ran BA c  ran B a  ran B c H  for every operator Ain B(H) that BA is not 

invertible.

It is now to be proved that, for every A in B(H), AB is also not invertible. If, for 

some As B{H), AB were invertible, the expression (AB)~l AB = (AB)~{ (AB) =  I indicates 

that B is bounded from below. Then ran B is closed, which contradicts the 

assumption.

Case 3

If ker A *  0 and ran Ac: H , then A is a Cl operator.

Proof

For each B in B(H), ker BA □ ker A *  0 implies that BA is not invertible and 

ran A B c r a n A a H  implies that AB is not invertible.

Case 4

If ker A = 0 and ran A = ran A c //.then A* A is invertible while AA* is not invertible, 

and so A is not a Cl operator.

Proof

It follows from ran AA* ci ran AczH that A * A is not invertible.

Since A has closed range if and only if 0 is not an accumulation point of the spectrum 

<t(A* A) of A*A, this together with the fact that A*A is one-to-one and has a dense 

range implies that A*A is invertible.
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Case 5

If ker A *  0 and ranA = ranA = H , then A*A is not invertible while AA* is invertible, and 

so A is not a Cl operator.

Proof

It follows from ker A *  0 and ran A = ran A = H , that

ker A* = 0 and ran A* = ran A* a  H. Therefore, by replacing A by A* in the proof of case 

4, we obtain that A* A is not invertible and AA* is invertible.

From the above cases, theorem 3.1 below exhibits the different conditions under 

which an operator is consistent in invertibility.

Theorem 3.1
&

Be B (H )is a Cl operator if and only if one of the following disjoint cases occurs: -

i. B is invertible

ii. ran B is not closed

iii. ker A* = 0 and ran A* = ran A * c  H.

Corollary 3.2

B e B {H )is a Cl operator if and only if B*B and BB* are invertible or non-invertible 

together.

i.e. a ( B *B )  =  er(BB*)

~  28 ~
1



Corollary 3.3

Let fle R (H ). If ker B = 0 =ker B*, then B is a Cl operator.

Remark

- From the proofs above we can also see that the Cl operators can be classified 

into two parts: -

1. There is B e  B {H )such that AB and BA are invertible together (in this 

case if and only if A is invertible)

2. For all B e B (H ), AB and BA are always noninvertible (if and only if

either ran A is non-closed or ker A 0 and ran A = ranA c  H ).

- B is a Cl operator if and only if so is B*

By the preceding results, normal, compact and invertible operators are immediate 

examples of Cl operators and so are their products.

By the above remark, we can now state and prove theorem 3.4, which indicates the 

Cartesian decomposition of normal operators being a Cl operator.

Theorem 3.4

If A and B are normal operators and AB* = B*A, then A + iB is a Cl operator.

Proof

AB* = B*A implies that (AB*)* = (B*A)* i.e. BA* = A*B

It is enough to show that A + iB is normal.
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(A +  iB)* =  A * +TB* = A *  -iB  *
(A + iB )*(A + iB )  = (A* -iB*)(A  + iB)

=  A * A +  iA* B - iB *  A +  B *  B 
= A * A +  i ( A * B - B *  A )+ B *  B

(A + iB)(A + iB) *  = (A + iB)(A *  -iB *)
=  AA* -iAB * +iBA *+ B B *
= A A *+i(B A *-A B *) +  BB*
=  AA *  + i(A * B -  B *  A) + BB *
=  A * A +  i(A * B - B *  A) +  BB *

By use of the fact that both A and B are normal. Hence

(A + iB)(A +  iB)* =  (A +  iB) *  (A +iB)

Thus, the operator A + z'Bis a Cl operator.

Having discussed in the previous chapter aspects of quasi - similarity, we use theorem

3.5 to give another example of Cl operators.

Theorem 3.5

Let A,B,X e B(H) satisfying the operator equation AXB = X , where X is a quasi- 

invertible operator. Further, let A and B be quasi-normal operators, then A and B* are 

Cl operators.

Proof

Since A is quasi-normal, [A*A,A] = 0

By hypothesis, AXB = X from which

AA*AXB = AA*X 
A * AAXB = AA*X  
A*AX = AA*X  
A * A X - A A * X =0 

(A* A-AA*)X  =0
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Thus A* A-AA* = 0since the operator X has dense range

i.e A *  A = AA *

Hence A is a Cl operator.

Further if B is quasi-normal, then [fl/?*,B] = 0and therefore BB* B = BBB*

By hypothesis, AXB = X , from which

A X B B *B = X B *B  
AXBBB* = X B *B  
XBB* = X B*B
X (B B *- B *B )=  0 i.e .B B *-B *B  = 0 

=> B B *= B *B

Hence B*  is a Cl operator.

An operatorSe B(H), such that II flxll>ll ^*xllfor each jce H is called hyponormal. 

Obviously, ker f i c  kerfi*.

Alternatively, an operator B e  B{H) is hyponormal if B * B > B B * .

An operator Be B(H) is p-hyponormal if (T *T )P >(TT*)P where 0< p <  1.

The below theorem gives conditions which make an hyponormal operator Cl. 

Theorem 3.6

If Be B(H )is hyponormal and ranB is closed, then B is a Cl operator if and only if

a. kerfl^Oor

b. ker/J* =  0

Note that if ranB is not closed, then, from theorem 3.1, B is a Cl operator.
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Proof

The conclusion can be obtained, when ker B *  0 , from ker B* 2  ker B *  0 and theorem 

3.1 (3), and, when ker/?* = 0 , from ker B c  ker B* = 0 and corollary 3.3.

If B is a Cl operator, then one of the two cases (1) and (3) in theorem 3.1 must 

occur. Case (1) implies kerfl* = 0 and case (3) implies kerB^O.

Theorem 3.7

If Be B{H )is hyponormal, then B is a Cl operator if and only if either: -

• i. BB* is invertible, or 

ii. B * B is non-invertible.

Proof

If BB* is invertible, then it follows from

ranB □ ranB * B = H and ker B c  ker B* = ker BB* = 0 that B is invertible, hence B *B  is 

invertible. This also leads to that, if B *B  is non-invertible, then so is B B * .

Remark

Let B e B(H) , then B is M-hyponormal if there exists an M > 0 such that 

—/l)*jtll<MII(S-/l)jcll

for all xe  H and all complex numbers X . The theorems 3.4 and 3.5 remain true for M- 

hyponormal operator B with the proof unchanged.

If B g B(H)is an isometry, then B is a Cl operator if and only if B is unitary.
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Theorem 3.8

Let 7 = U\T\  be p-hyponormal, y i , < p <  land U be unitary. Then, the Aluthge 

transform given by 7 =1Tfe  U I7 V2 is a Cl operator.

Proof

First note that any p-hyponormal operator for j/^-hyponormal by Aluthge,

Hence (7*7)^  > (7 7 */2, but 

7 =  U \ T\
t * m t * \ u * = u * u \t \u *  = u * \ t *\

Thus

(7*7)^ >(7T*)^is equal to

U *\T \U > 1 T & U \T \U *

f ‘ =\T\& U *\ t / 2

f ' f = \ T \ % U *\ t / 2\t / 2 U \ t / 2

f t *  =\t / 2 u \t / 2\t \̂ 2 u * \ t \'/2

\ '/ l \AiriA7 7 -7 7  =17 V2 U* I7 \/2\T\/2 U \ T V2 —\T V2 U \ T\/2\T V2 U*\TV2\A - I T I ^ \A\t \A

=171^ {T7*17 1C7 — J717 1 f/*} 17I^> 0

Since U*\T\U > U \ T \ U * a n d  I7I^>0. 

i.e. 7 is hyponormal, hence a Cl operator.
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Corollary 3.9

Let Be B (H )be a quasi-invertible operator. Then B is a Cl operator.

Corollary 3.10

Let B *e B {H )be such that 0<2 W(/?*).then B * is a Cl operator.

Proof

If Oe W(/?*).Then B *  and B are quasi-invertible. Hence by the above corollary both 

B *  and B are Cl operators.

The next theorem gives the equality of the spectrum of commuting operators. 

Theorem 3.11

Let A and B be operators on a Hilbert space// , let B be positive and P =  + 4 b  be a 

projection. Then cr{AB) =  cr(BA) = cr(P2AP2)

Proof

By Jacobson’s lemma, the nonzero points of the spectrum of two products AB and 

BA coincide. If BA is invertible and 0 *  rano-(S*)then B~' exists and

AB = B~lB(AB) = B~'(BA)B i.e AB is similar to BA and <7{AB) = cr(BA).

AB = AP2 = AP = (AP)P2 = (AP)B 

Thus AB = (AP)B = (AP)BB~XB = B~'B(AP)B 
= B~'(BAP)B= B~l(PAP)B

i.e. AB is similar to PAP and hence (r(AB) = <j(PAP). Moreover, cr(AB) = <r(P2AP2) 

since P is a projection.
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