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Abstract

The aim of this study is to understand the core or founding principles of the 
General Theory of Relativity in order to appreciate its sequential develop­
ment as well as its importance in explaining various astrophysical phenomena 

in our universe.

V



Contents

Declaration i

Dedication d

Acknowledgements id

Abstract v

1 Introduction 1

2 Brief Overviews of Classical/Newtonian Physics 4

2.1 Elementary Foundations of Newtonian
M echanics.........................................................................................  4

2.2 Newton’s Law of Universal Gravitation.......................................... 6

3 The Principle of Special Relativity 7

3.1 Preamble ................................................................................ '• • • 7
3.2 The Foundational Postulates.......................................................... 8

3.3 The Lorentz Transformations ......................................................  9
3.3.1 The Role of factor 7  in the Concept of M a s s ..................  11

3.4 Four-Vector Formalism and Space-Time Geom etry...................  12

4 The Path to General Relativity 15

4.1 The Heuristic P rin cip les.........................................................   16
4.2 Tensor A nalysis................................................................................  17

4.2.1 Different Tensors and their Transformation Laws . . .  17

4.2.2 The Metric T e n s o r ...........................................      18
4.2.3 Christoffel Sym bols................ ......................... <.................  18
4.2.4 Covariant Differentiation . .   19
4.2.5 The Riemann-Christoffel Tensor and Ricci

T en sor...................................................................................  19

vi



4.2.6 Energy-Momentum Stress T e n s o r ........................................ 20

4.3 G eo d e s ics .......................................................................................... 21
4.4 The Principle of Equivalence.......................................................... 22
4.5 Essence of the Theory: Einstein’s Field Equations....................... 25

5 Relativistic Astrophysics 28

5.1 Experimental Proofs of GR ..............................................................28
5.1.1 The Schwarzschild Solution and Black H o le s ......................29
5.1.2 The Kerr Solution and Frame Dragging..............................32

5.2 Techniques from G R ......................................................................  34
5.2.1 Gravitational Lensing.......................................................... 34
5.2.2 Gravitational Microlensing.................................................... 36

5.3 Does GR have all the A nsw ers?....................................................... 37
5.3.1 The Inclination of Planetary O rb its .................................... 37

5.3.2 Speed of Gravitational W a v e s ..............................................40
5.3.3 Dark Energy..............................................................................41

Further Research 44

Bibliography 46



Chapter 1 

Introduction

The Theory of General Relativity has for very long been considered a very 
formidable one to the extent that, nearly half a century after its inception, 
many thought that the only two people who fully understood it were the co 
founders: Albert Einstein and Marcel Grossmann. However, it is my belief 
that this theory is not significantly more difficult to grasp than any others 
such as electromagnetism or quantum mechanics.

The better we understand the process of scientific knowledge ac­
quisition, the better we will be able to create conditions in which 
young scientists can follow the lead of innovators like Albert Ein­

stein. Donald Salisbury[12]

Einstein’s theory of General Relativity (GR) is a theory of gravity which 
asserts that matter causes the four dimensional space-time in which we live 
to be curved, and that our perception of gravity is a consequence of this 
curvature. The central idea of this theory is summed up in an elegant-though 
extremely complicated-set of equations called the Einstein’s Field Equations 
(or EFE), appropriately. They can be written in a beautifully simple form

G — 8ttT (1.0.1)

The beauty of general relativity is that this simple formula explains gravity 
more accurately than Newtonian physics and is entirely consistent with large 
scale experiments.

“Only by a mixture of physical reasonableness, mathematical sim­
plicity and aesthetic sensibility can one arrive at Einstein’s field 
equations. The general theory of relativity is, in fact, an example 
of the power of speculative thought.” Prof S. Chandrasekhar
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Physical Theories

One of the central challenges of physics is-and has always been-to predict 
how things move. We embark on this study by examining the main physical 
theory regarding motion that existed in the early twentieth century, the 
commonly known laws of motion attributed to the 16th century scientist Sir 
Isaac Newton. Here, we realize that what is one of the founding principles of 
GR, the principle of equivalence, had its base as a curious secondary property 
of Newton’s laws. However Newton’s idea of complete separability of space

SPACE TIME ENERGY MATTER

Figure 1.1: This figure shows the time line of progression of theories from Newtonian 
absoluteness of space, time, matter and energy to the unification of all four in GR. (Source: 
http: / /abyss, uoregon.edu/js/21st_century-science/lectures/lec07.html) ■

and time and the concept of absoluteness of the same break down when they 
are subjected to critical analysis. Einstein was convinced that there was 
no absolute space or time but rather that space-time was one continuum. 
Moreover, another theory, the one of Maxwell’s electrodynamics was also 
conflicting with the idea of absoluteness. In 1905, Einstein presented his 
Special Theory of Relativity based on two postulates from which all results 
could be derived.

It soon became clear that while this theory could encompass mechanics 
and electromagnetism, gravity lay beyond its reach. The effort to reconcile

2



special relativity with Newtonian gravitation theory turned out to be excep­
tionally demanding, and it led to the General Theory which transcends both 
these starting points. The situation with GR, is it doesn’t overturn Newton’s 
laws, rather it extends them. It turns out that in the kinds of situations that 
Newton was looking at, general relativity reduces down to Newton’s laws.

Solutions of the Einstein’s Field Equations

We have mentioned that the EFE’s form the heart of GR. These equations 
are nonlinear partial differential equations and, as such, difficult to solve 
exactly. Nevertheless, a number of exact solutions are known, most of which 
have physical consequences such as the Schwarzschild solution, which implies 
the existence of black holes. The onslaught of GR brought with it numerous 
predictions about the universe we live in. An example par excellence of this 
was the prediction of the perihelion advance of Mercury, which solved an 
outstanding problem of Astronomy at the time.

Apart from this, GR’s predictions also provide techniques for astronomi­
cal exploration. The Doppler Shift, the bending of light rays as they pass a 
massive object and other predictions are the primary techniques astronomers 
use to ascertain presence of objects which cannot be seen.

With the advent of high resolution telescopes, including the Hubble Space 
Telescope, there is no end to the astrophysical observations which continue 
to prove that it is indeed relativistic gravity, and not classical gravity, that 
rules the motion of heavenly bodies.

The Great Scientists

We will Sprinkle throughout the pages of this write-up, names of some of 
the scientists whose contributions were vital in the build up of the General 
Theory. The aim of this is not to down-play the extraordinary brilliance of 
Albert Einstein, but rather to appreciate all the other great minds and to 
clarify the misconception that Einstein was an isolated genius who created 
his new world through sheer inspired imagination! [12]
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Chapter 2

Brief Overviews of 
Classical/Newtonian Physics

2.1 Elementary Foundations of Newtonian 
Mechanics

The basis of Newtonian mechanics is contained in three fundamental postu­

lates:

1. The Law of Inertia

‘A body in which no external force is acting will persevere in a state of 

rest or rectilinear motion.’
The concept of mass or inertia is simply the capacity which is inherent 
in every material object to resist a change of motion. The greater the 
mass of the object the greater will be the force required to produce 
a given change of motion or acceleration. The quantity of motion (or 
momentum) is defined by m(dxl/dt) =  mV — p, where rn is the mass 
and V the velocity. Thus the first law can also be stated that in the 
absence of external forces, the momentum is constant(or zero).

2. The Law of Motion
‘The change of motion of a body is proportional to the force which acts 

on it.’
It is this law which is regarded as the central hypothesis of Newtonian 
mechanics. Mathematically this may be expressed as: .

F =
d2xl

m
dt2

dP
dt

(2 .1.1)

The substance of this law is that force is that which is required to 
produce a change of motion.

4



3. The Law of Equality of Action and Reaction

When two bodies interact, for the force exerted by the first body on 
the second there is an equal and opposite force exerted on the second 

body by the first’

The foregoing laws together with the various theorems which are de- 
ducible from them constitute an instance of what philosophers of science call 
a physical model [1]. The most striking feature of this model is that all its hy­
potheses are in the form of vector equations.The vectorial character of these 
laws allow us to infer certain feature of the nature of the space in which they 

are maintained to hold.
In the first place, a vector is independent of position. Accordingly, 

whether a mechanical experiment is performed at P (X j) or at P(X,]), the 
outcome should be unaffected. The implication of this is that from a mechan­
ical point of view, space is homogeneous.i.e all points in space are equivalent. 
In the second place, a vector is independent of direction. This implies that 
the action of a force is independent of the direction in which it is acting. 
Hence from a mechanical standpoint, space is isotropic, i.e. the same in all 
directions. These two features of Newtonian space imply that the laws of 
Newtonian mechanics are covariant with respect to the inhomogeneous rota­
tion group, which maybe labelled Oi3. Further, the principal invariant of Oi3 

is length or distance. Therefore, Newtonian space contains a length concept 
which is invariant with respect to the transformations Oj3, which reflects its 
symmetry. Such an invariant definition of distance is called a metric. The 
metric of Newtonian space is given by:

(ds2) =  (d X 1)2 +  (dX 2)2 +  (dX 3)2 =  S ijd X ^ X ^ iJ  =  1,2,3) (2.1.2)

Just as Newton’s laws reveal their independence of location and direction, 
they also reveal their independence of temporal location. Thus just like space, 
time in Newton’s world, has the status of an absolute object or substance.

i
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2.2 Newton’s Law of Universal Gravitation

Newton determines that gravity controls the motion of objects in the Universe 
(i.e. Newton’s apple). Galileo was the first to notice that objects are “pulled” 
towards the center of the Earth, but Newton showed that this same force 
(gravity) was responsible for the orbits of the planets in the Solar System. 
This idea is very familiar to us now, but the idea that the planets ought to 
behave according to the same rules as objects down here on Earth was a 

whole new concept at the time.
According to Newton, Objects in the Universe attract each other with a 

force F that varies directly as the product of their masses and inversely as 
the square of their distances. This is mathematically written thus:

Gm1m2
R?

where

G =gravitational constant 

mi =mass of first object 

m2 =mass of second object 

R =the distance between the two objects.

(2.2. 1)

All masses, regardless of size, attract other masses with gravity. You 
don’t notice the force from nearby objects because their mass is so small 
compared to the mass of the Earth.

The Newtonian law of gravitation incorporates a truly remarkable fea­
ture. In the law of motion F =  ma, the mass is that property of a body 
which is manifested by its resistance to change of motion. It is called the 
body’s Inertial mass . On the other hand the role of mass in (2.2.1) is 
quite different. It is associated with the body’s capacity to be a source of 
gravitational force. Accordingly it is called the gravitational mass. From a 
strictly logical standpoint, the inert mass and the gravitational mass might 
be independent quantities. Nevertheless, extremely accurate experiment has
shown a precise proportionality between them which amounts to numerical

*
equality. Within the context of Newtonian mechanics this ̂ equality is left as 
a remarkable coincidence. Einstein, however had a different view as we shall 
see in a subsequent chapter.
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Chapter 3

The Principle of Special 
Relativity

3.1 Preamble

The special theory of relativity describes how objects move through space 
and time. It shows that time is not a universal quantity which exists on its 
own, separate from space. Rather, future and past are just directions, like up 
and down, left and right, forward and back, in something called space-time. 
You can only go in the future direction in time, but you can go at a bit of 
an angle to it. That is why time can pass at different rates. [4]

In a Newtonian Universe, there should be no difference in space or time 
regardless of where you are or how fast you are moving. In all places, a meter
is a meter and a second is a second. You should be able to travel as fast as/
you want, with enough acceleration.

By the late 1800’s, it was becoming obvious that there were some seri­
ous problems for Newtonian physics concerning the need for absolute space 
and time when referring to events or interactions (frames of reference). In 
particular, the newly formulated theory of electromagnetic waves (theory 
of electrodynamics of James Clerk Maxwell)required that light propagation 
occur in a medium.

In the 1890’s, two physicists (Michelson and Morley) tried to measure the
Earth’s velocity around the Sun with respect to Newtonian absolute space
and time. This would also test how light waves propagated since all waves
must move through a medium. For light, this medium was called the aether.

‘ /
The experiment attempted to measure the movement of the earth through 

the aether by its effect on the motion of light. To their astonishment and 
everyone’s dismay they could not detect any change whatsoever. It was not
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that the null reading was disappointing, it was simply incomprehensible. If 
light and matter both move through space how is it possible for the earth 
to be hurtling through space at 18.5 miles per second and have no effect on 

light?
At this point, Newtonian physics was in a profound conceptual crisis. 

The Michelson-Morley result meant either of two conditions. Either light 
and matter have unrelated motions and move to different space references; 
or light and matter move through space alike as Newton assumed, and light’s 
velocity is always constant because changes in the physical state of bodies in 
motion prevent measuring any effect on the motion of light.

If the first supposition is correct, then there is a medium for light and 
we have to readjust the way we think of space. If the second supposition is 
correct, then space is an unreactive void and we have to change our thinking 
about the effect of motion on the physical conditions of matter. It was this 
latter supposition that Einstein followed in developing his theory of relativity.

Einstein kept Newton’s physics and his assumption that light and matter 
move alike through a space void. The difference is he dismissed Newton’s 
universal space as a background reference and made all motion relative. The 
consequences of this theory are what are known generally as “relativistic 
effects.” in which length contracts, mass increases, and time slows, as objects 

move faster.
Thus was released, in the paper of 1905, the theory of Special Relativity in 

which Einstein provided the method of reconciling mechanics and electrody­
namics, two largely disjoint disciplines, in both of which he was a self-taught 
master. As articulately put by the philosopher of science, Roger B. Angel 
[1], one is struck by the exquisite simplicity of this paper in that although 
the central ideas have rich physical implications, they are not based on new 
physical assumptions. In fact all of the physical hypotheses necessary for 
Einstein’s new theory had been available in the nineteenth century. What 
was essentially new was Einstein’s profound revision of the classical concepts 
of space and time.

3.2 The Foundational Postulates ,i

Some of the relativistic effects mentioned above are the Doppler Effect, Aber­
ration of light, Time Dilation and Length Contraction. All these effects have
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been successfully tested experimentally, the latter two having been tested 
extensively using different clocks and measuring rods. It is because of this 
that earlier generations of philosophers thought that the special theory had 
its basis in the hypotheses about the behaviour of clocks and measuring rods. 
However, as we shall see, this is incorrect. In actuality, to formulate his Spe­
cial theory of Relativity, Einstein presented two fundamental postulates from 

which all the results could be derived.

1. The laws of physical phenomena are same in all the inertial frames of 

reference,

2. The velocity of light (in free space) is the universal constant indepen­
dent of the motion of the source.

These two claims had until then been considered incompatible. Einstein’s 
standpoint was that in fact there was no formal logical incompatibility be­
tween them. There remained, however the task of finding an appropriate set 
of transformations between electromagnetic inertial frames i.e frames with 
respect to which Maxwell’s laws hold in their basic form.

3.3 The Lorentz Transformations

We use a simplified form [1] of Einsteins own procedure to derive these trans­
formation laws. We require that the optical wave front equation (x 1)2 +  
(x2)2 +  (x3)2 =  (?t2 be covariant when referred to a second frame which has 
a uniform velocity with respect to the original one.

For ease of interpretation we use the coordinate variables X,Y, Z. Con­
sider two inertial frames K  and K  whose corresponding axes are always 
parallel and the respective origins coincide at t =  0. The relative velocity in 
the x-direction between the two frames is v. With respect to K,  the law of 
interest is of the form

x2 +  y2 +  z2 =  c2t2 (3.3.1)

K  is also an inertial frame. Accordingly the form of the wave-front equa­
tion must, with respect to A' be

/I

x 2 +  y2 +  z2 =  c2t2 (3.3.2)
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To determine the appropriate group of transformations for (3.3.1), we 
first take into consideration the symmetry and relativity which require that 

in our restricted case, we must have the mappings

y —>y =  y ,z  -+ z  =  z. (3.3.3)

Secondly, considerations of relativity require that the uniformity of ex­
pansion of the wave-front in one inertial frame entail its uniformity in every 
inertial frame. The preservation of uniformity provides the valuable clue that 
the transformation be linear. Using this property and the fact that distances 
should be transformed into distances and times into times, it follows there 
cannot be relative acceleration between the two frames. From all these qual­
itative considerations which have some rigorous mathematics behind them, 
the required form of the general transformation can thus be written :

x  —> x = f { x )  — g(vt)

y ^ y = y

Z — ► 2  — Z

t —*t  —j(t )  +  h(x/v).

Applying the transformations (3.3.4) to (3.3.1) we get

(3.3.4)

f 2(x) -  2g(vt)f {x )  +  g2(vt) +  y2 +  z2 =  c2j 2{t) +  2c2j{t)h(x/v)  +  c2h2(x/v).

(3.3.5)

Choosing f , g , j  as follows

Six) =  x ; j ( t )  =  i; g(vt) =  vt 

and substituting into (3.3.5) yields

x2 — 2xvt +  v2t2 +  y2 +  z2 =  c2t2 +  2 c2th{x/v) +  c2h2(x/v). (3.3.6)

Setting h(x/v) — —vx/c2 in this equation gives
*

x2{\ -  v2/c2) +  y2 +  z2 =  c V (  1 -  v2/(?). (3.3.7)

Dividing this by the factor (1 — v2/#)^, we get the required multiplicative 
factor and our required mappings are:

10



X —> X ={x — Vt)/{\ — V2/(?)*
y  - * ■  y  = y
z —>z =z

t —*t  =(t  — vx/c2)/{ 1 — i ; 2 / c 2 ) 5 .

(3.3.8)

Equations (3.3.8) constitute the homogeneous Lorentz Transformation, 
which is applicable not only to the wave-front equation but also to the more 
general basic equations of Maxwell’s electrodynamics. Further this trans­
formation proves that there is no contradiction between the universality of 
c and the principle of relativity. However, the compatibility requires that 

electrodynamics be Lorentz covariant.
The most startling aspect of the Lorentz transformation is that time is 

relative. That is to say in relativistic physics, given the time of an event in 
a frame K , it will not have the same value of time with respect to K.

In virtue of the ubiquity of the factor (7  =  -------— r )> it follows that
( 1—v 2 / c 2) 2

if v > c, lengths and durations would acquire imaginary values to which 
no physical interpretation can be given. In particular the equations become 
singular or indeterminate when v =  c. Thus according to Special Relativity, 
the velocity of light is not only a universal constant, but moreover is the upper 
bound for all physical velocities with respect to initial frames of reference.

3.3.1 The Role of factor 7 in the Concept of Mass

The factor 7  is the key thing, which tells you how relativistic things are.

• When v «  c, 7  =  1 and we have Newton’s laws.

• As v —* c, 7  =  00, and we have relativistic effects.

• In the intermediate case, we have the Post Newtonian Approximation.

Exam ple 1. The relativistic mass is related to the Newtonian mass by the 
following expression

m  =
1

---------------- fTTlo
(1 - U 2/ c2)5

(3.3.9)

1. When v «  c, 7  =  1 and m =  mo.

2. As v —+ c, 7  =  00, mass becomes infinite and this proves that c is the 
upper limit of velocity.

11



3. When v/c ^  0 but is «  1, we obtain a case of the mass-energy equiv­

alence (E =  me2).

Thus, it is seen that for velocities which are very small as compared to c, 
the velocities of everyday life, may be ignored and the Lorentz transformation 
becomes effectively identical with the Galilean Transformation (which was 
used for Newtonian Mechanics). This explains why relativistic effects went 

undetected for so long.

3.4 Four-Vector Formalism and Space-Time 
Geometry

Einstein did not drop the concepts of space and time but rather took their 
relativistic reinterpretation. The approach derives from the contributions of 
his older contemporary and teacher Hermann Minkowski. It was he who 
first clearly perceived that special relativity may be more adequately viewed 
against the background of four-dimensional spacetime. In short, he realized 
that the various relativistic phenomena should be coordinated with a new 

kind of geometry.
We have already seen that the wave-front equation is Lorentz covariant. 

A similar expression which also has the property of Lorentz covariance is

s2 =  x2 +  y2 +  z2 -  c2t2. ' (3.4.1)

This expression defines the space-time interval between two events. One 
may regard the Lorentz transformation as a rotation in four-dimensional 
spacetime. With respect to one set of coordinates there is more spatial 
separation between events and more temporal separation, with respect to 
another set there is less, but in all cases the total space-time separation is 
invariant. Such considerations occasioned the famous remark of Minkowski, 
in a paper written in 1908, in which special relativity was given its four 
dimensional formulation.

Henceforth space by itself, and time by itself, are doomed to fade 
away into mere shadows, and only a kind of union of the two will 
preserve an independent reality.

In the Minkowski formalism time is treated as a fourth independent co­
ordinate in addition to the X 1. Specifically he sets X 4 — i d , where i is the

12



imaginary number \Z—T, so that i2 =  —1. The differential form of (3.4.1) 

may be represented as

(ds)2 =  8tlvdXtldX v. (3.4.2)

This is the expression of the spacetime interval. It is the metric form  
of special relativity. If the norm of a four-vector, in this case ds2 imparts 
information about the causal structure of the spacetime. When ds2 < 0, 
the interval is time-like and the square root of the absolute value of ds2 is an 
incremental proper time. Only time-like intervals can be physically traversed 
by a massive object. When ds2 =  0, the interval is light-like, and can only be 
traversed by light. When ds2 > 0, the interval is space-like and the square 
root of ds2 acts as an incremental proper length. Space-like intervals cannot 
be traversed, since they connect events that are out of each other’s light 
cones. Events can be causally related only if they are within each other’s 

light cones.
In classical physics, it is natural to depict the trajectory or path of an 

object in terms of the distance s(t) expressed as a function of time. In 
relativistic physics the natural parameter for the trajectory of a particle is 

its proper- time r.
Spacetime is not merely a generalisation from three to four dimensions. 

Although space and spacetime are both flat and infinitely extended con­
tinuums, space is a manifold of points whereas spacetime is a manifold of 
events(which refers to a point in time). Their profound difference lies in the 
definitions of their metrics. The metric of space is given by

(ds)2 =  (dx1)2 +  (dx2)2 +  (dx3)2, (3.4.3)

whereas the metric for spacetime is

(ds)2 =  (dx1)2 +  (dx2)2 +  (dx3)2 — c2(dt)2. (3.4.4)

The important distinction here is not in the difference of dimensionality 
but the difference of signature. No matter what type of coordinate system 
happens to be chosen in which to express the metric of space, the metric 
coefficients will all have positive signs. Thus one of the invariant or intrinsic 
properties of Euclidean space is its signature, which is represented by (+ + + ) . 
A metric of this kind is said to be positive definite. In contrast, the invariant

L
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signature of Minkowski spacetime is (+  +  H— ). A signature of this kind is 
called indefinite. A pertinent difference between the two types of metric is 
that whereas the separation or interval between two non-coincident points is 
always positive in the first case, in the latter, it may be positive, negative 
or even zero. In fact, such a metric is often called a pseudo-metric, since it 
violates some of the basic properties which are normally imposed on metric 

functions.
In this chapter, we have seen that in order for the postulates of the special 

theory to hold, the laws of nature must be Lorentz covariant. It was also seen 
that the new concept of space and time (the continuum) could be modelled 
by Minkowski spacetime. This new formalism enabled the construction of 
various geometric objects on the spacetime manifold which saw space and 
time being expressed as a four-vector, momentum and energy combined to 
form another four-vector etc. These spacetime objects have been used to 
produce a relativistic analogue to classical mechanics which led to a series 
of truly remarkable physical consequences, all of which have been experi­
mentally confirmed. Although spacetime may be treated as a mere formal 
convenience in special relativity, it proves to be a conceptual necessity in the 
deeper context of general relativity.

/
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Chapter 4

The Path to General Relativity

General relativity is essentially a space-time theory of gravity. Its laws must 
be formulated in four-dimensional terms. That, in itself poses no great prob­
lem. However, whereas the four-dimensional manifold of special relativity 
was flat, that of general relativity is curved. Further, its curvature varies 
from region to region according to the distribution of matter. The basic task 
of experimental relativity is to determine the nature and degree of curvature 
in the various parts of the universe.

Figure 4.1: A depiction of matter curving space-time as asserted by GR.
(Source:http://abyss. uoregon.edu/js/21st_century-science/lectures/lec07.html)

Furthermore, Einstein’s standpoint on gravity is fundamentally different 
from the classical viewpoint. As concisely summarised by Stephen Hawking 
[4], the general theory of relativity explains that, “gravity was not just a 
force that operated in a fixed background of space-time. Instead, gravity 
was a distortion of space-time, caused by the mass and energy in it. Objects 
like cannonballs and planets try to move on a straight line through space- 
time, but because space-time is curved, warped, rather than flat, their paths 

appear to be bent.”
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4.1 The Heuristic Principles

Einstein utilised three heuristic principles in the torturous path to the field 

law of gravitation.

• Firstly, it should be generally covariant.

• Secondly, it should approximate the Newton-Poisson field law in the 
limit of low velocities and weak fields.

• Finally, it should admit the laws of special relativity in the restricted 
case of vanishing gravitation.

The first principle is known as The Principle of General Covariance and 
it simply means that the field laws should hold in all reference frames. Since 
the space-time of general relativity is curved and its curvature varies from 
region to region, forming field laws that are generally covariant was no easy 
task even for Einstein!

Let us define the curvature of a surface. Given a point P  on the surface, 
its Gaussian or intrinsic curvature can easily be measured. Thus, a scalar 
curvature field may be defined on any smooth, two-dimensional manifold. 
However, when one generalises from two to n dimensions, it is no longer 
possible to represent the curvature by a scalar field. What is now required is 
a tensor field called the curvature tensor. This important generalisation was 

provided by Riemann.
Since in the above-mentioned sense, there can be no pre-determined ge­

ometric structure to the universe, it follows that there can be no privileged 
coordinate system, either Cartesian or Minkowskian, for the description of 
the universe. Consequently, the laws of physics should be formulated in such 
a way that they reflect no particular property of one coordinate system or an­
other. The mathematical formalism that was employed to achieve complete 
independence of any given system of coordinates is called tensor analysis. 
General relativity is formulated completely in the language of tensors. Ein­
stein had learned about them, from the geometer Marcel Grossmann, who 
was his friend and later, his colleague. ; '

16



4.2 Tensor Analysis

Like vectors, tensors are geometric objects having a linear homogeneous law 
of transformation. Specifically, scalars and vectors axe just two (special) 
kinds of tensors. A scalar is said to be a tensor of rank zero while a vector 
is a tensor of rank one. The metric tensor is an example of a tensor of 

rank two.

4.2.1 Different Tensors and their Transformation Laws

The covariant components of a tensor are denoted by subscripts. For exam­
ple, Aij is a covariant tensor of rank two and its transformation law is given 

by:

___  Qx* dx^

A p q = d & d & Aij' (4'2-1)
Similarly, the contravariant components of a tensor are denoted by su­

perscripts, for example,Alj is a contravariant tensor of rank two. Its trans­

formation law is given by:

T  =  (4.2.2)
d x1 dx?

The transformation law for a tensor of a given rank and type follows 
directly from (4.2.1) and (4.2.2). For example, the mixed tensor A* would 
transform as follows:

Q d x1 d x*1 3
(4.2.3)

The profound significance of (4.2.3) is that the transformation is linear 
and homogeneous. Thus, if each component of a tensor has a particular value 
at a given point of the manifold as evaluated with respect to a given coor­
dinate system, the value of each component of the same tensor at the same 
point as evaluated with respect to a second arbitrary coordinate system, is 
obtained by pre-multiplying the component in the first system by a set of
numbers, the results of which are then summed. The important consequence

*
of this is that if a tensor vanishes in one coordinate system, i.e all its com­
ponents are zero, then it must vanish in every system. This, in turn, implies 
that a tensor equation which holds in one coordinate system must hold in ev­
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ery coordinate system. Thus, tensors are precisely the sort of mathematical 
entity needed for general relativity.

4.2.2 The Metric Tensor

Mathematically, spacetime is represented by a 4-dimensional differentiable 
manifold M and the metric is given as a covariant, second-rank, symmetric 
tensor on M, conventionally denoted by g. Moreover, the metric is required 

to be nondegenerate.
Physicists usually work in local coordinates (i.e. coordinates defined on some 
local patch of M ). In local coordinates x*1, the metric can be written in the 

form
g =  g^dx^dx” . (4.2.4)

The factors dx** are one-form gradients of the scalar coordinate fields x tL. 
The metric tensor is thus a linear combination of tensor products of one- 
form gradients of coordinates such that

d 8 
^  dx^ dxu (4.2.5)

The coefficients are a set of 16 real-valued functions (since the tensor 
g is actually a tensor field defined at all points of a spacetime manifold). In 
order for the metric to be symmetric, we must have

Qn v 9i>ii- (4.2.6)

With the quantity dx9l being an infinitesimal coordinate displacement, 
the metric acts as an infinitesimal invariant interval squared or line element. 
For this reason one often sees the notation ds2 for the metric:

ds2 =  g^dx^dx1' . (4.2.7)

4.2.3 Christoffel Symbols

The Christoffel symbols are nothing but functions of the first partial deriva­
tives of the metric tensor g^u. They are not tensors as they differ in their 
transformation properties from a tensor. The Christoffel symbol of the first

i
kind is defined as

[nv,
dg»a
dx11

@9/1 v \ 
dx° ) (4.2.8)
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and the Christoffel symbol of the second kind is defined as

/  ^ \ — 1. I 9̂_ va
\ pu j  2^ \ dxv dxv dxa )

From (4.2.8) and (4.2.9) it follows that

\fiu, a].

(4.2.9)

(4.2.10)

4.2.4 Covariant Differentiation

The covariant derivative is a derivative of tensors that takes into account 
the curvature of the manifold on which these tensors are defined, as well 
as dynamics of the coordinate basis vectors. In Cartesian coordinates, the 
covariant derivative is simply a partial derivative da. The covariant derivative 
is also known as the semi-colon derivative and is written as d ;a =  V aA =  

DaA.
The rule for covariant differentiation for a covariant tensor of rank two is

A — A  —* lp q \T  — s * p q ,r pr Asq qr ApS. (4.2.11)

The corresponding rule for the contravariant tensor is

Apq =  Apq —\t  ,r
V
rs | d S9- Q

rs
Aps. (4.2.12)

N ote : The covariant differentiation of tensors of higher rank is done in a 

similar manner.

4.2.5 The Riemann-Christoffel Tensor and Ricci 
Tensor

Of particular interest to us is the Riemann Christoffel Tensor also known 
as the Riemann Curvature Tensor. This tensor is a function of the metric 
tensor and of its first and second derivatives. Its significance is as a precise 
measure of the curvature of the manifold in the region where it is evaluated.

The Riemann curvature tensor is defined

dr> A _^  “ dx" 1 H<J
A d A

where

dx° [ pu

are the Christoffel symbols of the second kind.

A
aa  

(4.2.13)

19



In the four-dimensional space-time manifold, the Riemann curvature ten­
sor would have 256 distinct components. However, due to various symmetries 
there are, in fact, only 20 distinct components. To know the values of these 
is to know everything about the local geometry of the manifold. As we shall 
see in a following section, this tensor supplies the clue to the formulation of 
the law of gravitation of general relativity.

If we contract A and a in this tensor and using the identity

{ i j - % 5- « * “ >
we get,

a _  d2log^g d f a I f a j (  a I f  a ] dlog^/g Ml/ »va dx^dxv dxa \ nv J \ J \ ocu J \ fii/ j  dxa
(4.2.15)

a tensor called Ricci Tensor, which is a symmetric tensor.
The scalar curvature (R icci scalar) of a Riemannian manifold M

R =  g r R ^  (4.2.16)

is a map M —► R that characterizes the intrinsic curvature of the manifold 

at every x  G M.

4.2.6 Energy-Momentum Stress Tensor

In General Relativity, the energy-momentum stress tensor (or simply stress 

tensor),TfJ,u of a perfect fluid is given as:

=  (p +  p/<?)vPuv -  p g r  (4.2.17)

and the vanishing of its divergence is expressed as:

T^17; [M =  0. (4.2.18)

In relativity, energy and momentum are the temporal and spatial parts 
of a single 4-vector p*1. In the stress tensor this has been replaced by the 

4-momentum density pu^. \

The stress tensor is a symmetric tensor which represents the energy con­
tent of the fluid and which, when taken over to curved space-time, acts as 
the source to the gravitational field.
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Since in relativity, we lose the distinction between mass and energy, all 
forms of energy should produce a gravitational field. Moreover, energy is not 
a scalar but only the zeroth component of the 4-momentum.

As a result, the matter content of spacetime is concisely summarised in 
the stress tensor and with suitable definitions of T7*", (4.2.18) is valid 
for all fluids and fields (not just perfect fluids).

R em ark 1. In his arduous journey to the General Theory, Einstein (1915) 
had attempted to learn how to construct adequately covariant objects by study­

ing the first and second Beltrami operators acting on scalars. Incidentally, in 
the process he came remarkably close to developing an understanding of co­

variant derivatives that, as mil surprise most relativists, was first enunciated 
later by the Italian mathematician Tullio Levi-Civita in 1917 [12]. Later in 
that year, Levi-Civita initiated a correspondence with Einstein to correct mis­

takes Einstein had made in his use of tensor analysis. The correspondence 
lasted 1917-18, and was characterized with mutual respect, with Einstein at 

one point writing:

I admire the elegance of your method of computation; it must be 
nice to ride through these fields upon the horse of true mathe­
matics while the likes of us have to make our way laboriously on 
foot. Einstein, to Levi-Civita on tensor analysis.

This brief account on tensors gives us sufficient machinery to embark on 
the formulation of the relativistic field law of gravity. However, we need to 
understand why gravity is not a force, but the manifestation of the curvature 

of spacetime.

4.3 Geodesics

Objects move in a straight line, in the absence of an external force. This is 
Newton’s first law. What do you mean by going in a straight line if you’re in 
a curved space? In this case, a straight line is the shortest distance between 
two points.

Geodesics are the special intrinsic curves on the surface that are analo­
gous to the straight lines in the Euclidean space as they are curves of extreme 
length. A geodesic is also defined as the path of shortest distance on a surface 
between two given points on it.
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For a relevant example, imagine going between two points on the Earth’s 
surface. Suppose you want to take a flight from New York City to Rome, 
Italy. These two cities are at nearly the same latitude. However, when the 
plane takes off from New York, it won’t be headed due East. If the pilot chose 
this route, the plane would end up in Africa, or would have to be turning 
left for the whole trip. (See for yourself with a little toy car and a globe.) 
Instead, the pilot heads a little North of East-by 33 degrees, if we ignore 
winds. This way, the plane can go in a straight line, and end up in Rome. 
That is, the plane can follow a geodesic to make the flying easier.

Now we can visualize the trip. The whole time, the plane can just keep flying 
straight and level. The pilot does not need to be turning either left or right, 
but will end up in Rome nonetheless. It turns out that this is also the fastest 
route; a “straight line” is still the shortest distance between two points, even 
if it is a straight line that curves. This is, basically, the path that flights 
from New York to Rome actually follow. We have just described geodesics in 
space; the plane’s path follows a geodesic along the two-dimensional surface 

of the Earth.

The first curvature vector P  of a parameterized curve C  on a Riemannian 

manifold M  is:
(fix* ax_

1 ds2
f A 1 dx 
\ in' J dt

dxp dxq
ds ds

(4.3.1)

A curve on M whose first curvature is zero is called a geodesic. Thus, 
a geodesic is a curve that satisfies the system of second order differential 
equations

(fix1 ( A 1 dxp dxq
ds2 \ pv ) ds ds

(4.3.2)

4.4 The Principle of Equivalence

In chapter one, we saw that classical mechanics requires that we distinguish 
between inertial and gravitational mass. The truly remarkable feature of this 
property is that their ratio is equal to one and the same universal constant 
for all bodies, regardless of their size or density. This allows us to ascribe the 
same number to the two types of mass of a given body i.e. to make this ratio
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equal to unity. However, this remained as an unexplained curious theoretical 
principle of Newtonian Mechanics.

Einstein was motivated by the conviction that nothing in nature is arbi­
trary. Accordingly, he took the position that the two kinds of mass could 
be equal only if they were, in fact, one and the same. This claim of numer­
ical identity for two seemingly independent properties of matter entailed a 
profound revision of the conceptual framework in which they occur.

Einstein accounts for the close link between inertia and gravitation in 
the following way [1]. Suppose that K is an inertial frame of reference with 
respect to which a certain body D is in uniform motion. Let K  be accelerating 
uniformly with respect to K. The body B, which is not influenced by external 
forces will, of course, accelerate with respect to K. However, it is obvious 
that the actual acceleration is wholly independent of the composition or state 
of B itself, since it is due solely to the acceleration of the system of reference 

K.

Now from a classical standpoint, the acceleration of the body would pro­
vide a basis for an observer at rest in K  to be able to detect the acceleration 
of his own reference frame. Einstein pointed out that such a viewpoint is 
incorrect. Although the acceleration of B is independent of its intrinsic na­
ture, one may not conclude that it is merely the kinematic consequence of 
choosing K  as a frame of reference. Specifically, this is because the same type 
of acceleration could have been imparted to the body by a suitably chosen 
gravitational field. Hence, the observer in K  could claim to be attached to an 
inertial frame by holding the body of interest to be under the influence of a 
gravitational field. In short, inertial effects, which are the result of the choice 
of reference frame, are of the same kind as those which are due to gravity. 
So an observer who occupies a frame of reference which is apparently inertial 
and who suddenly experiences a series of phenomena which might lead him 
to suspect that it has ceased to be inertial would always have at his disposal 
the possibility of postulating the existence of a suitable field of gravity as the 
cause of the phenomena.

The principle of equivalence is simply the claim that inertial fields and 
gravitational fields, together with their effects, are indistinguishable. The

t

same name also refers to the closely related principle of the equivalence of 
gravitational and inertial mass. Einstein took the position that if no ex­
periment can reveal a difference between the two kinds of mass, then it is
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redundant to postulate that two masses exist. Accordingly, the basis for the 
principle of equivalence is that gravitational and inertial mass are not merely 
equal but identical! Since gravitational mass is that property of a body which 
responds to the gravitational field while inertial mass may be thought of that 
property of the body which responds to an inertial field, it follows that if the 
two properties are really one, then the two fields are really one, in the sense 
that they must be of the same kind.

To further explain this, suppose that one is in a lift in which a weight is 
suspended from the ceiling by an extension spring. If the gravitational field 
acting on the weight were suddenly to increase, the spring would be observed 
to undergo an increase of length. This would be an indication that the weight 
has become heavier. However, precisely the same extension of the spring 
would be observed if the lift were to undergo a sudden upwards acceleration. 
But in this case, the lengthening of the spring would be accounted for by the 
action of a field of inertia instead of one of gravity.

A truly striking feature of the principle of equivalence is its heuristic sig­
nificance. This is almost certainly explicable by its being a factual principle 
of nature. Very simply, in order to ascertain, at least qualitatively, the effects 
of gravitation on a certain kind of phenomenon, one has merely to consider 
how that phenomenon would be described when referred to an appropri­
ately accelerating frame of reference. Then in virtue of the equivalence of 
inertial and gravitational descriptions, one immediately determines how that 
phenomenon will be affected by a gravitational field.

The most celebrated example of the application of this principle is prob­
ably Einstein’s prediction of the bending of light-rays by a sufficiently strong 
gravitational field. Imagine that a light-ray is beamed from one wall of a 
lift to the opposite one. Now if the lift is made to ascend very rapidly the 
effects which take place inside it are indistinguishable from the effects that 
would be produced by a sudden increase in the field of gravity. It is fairly 
clear that the beam of light will not hit the opposite wall at the point one 
would expect if the lift were stationary or moving uniformly, but at a some­
what lower point. In other words, the light ray is curved when referred to
the accelerating frame. It follows on the basis of the principle of equivalence

1
that light-rays must be curved or deflected from their straight path by a 
gravitational field. This consideration enabled Einstein, several years before 
he had formulated his general relativistic law of gravitation, to predict that
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starlight, will be deflected as it passes the massive sun.

Figure 4.2: T h e bending o f starlight as it passes the a m assive object e .g  the
sun. (Source:h t tp ://a b y s s .u oregon .ed u /js /21st-cen tu ry_scien ce/lectu res/lec07 .h tm l)

4.5 Essence of the Theory: Einstein’s Field 
Equations

The Einstein’s Field Equations (EFE)are the fundamental equations of Ein­
stein’s general theory of relativity. Einstein and Marcel Grossman had re­
alised that the metric tensor g)W describing the geometry of spacetime seemed 
to depend on the amount of gravitating matter in the region in question, (and 
so adopted the kernel letter g for gravity) [8].

The metric tensor contains two separate pieces of information:

1. The relatively unimportant information concerning the specific coordi­
nate system used(e.g. spherical, polar, cylindrical etc).

2. The important information regarding the existence of gravitational po­

tentials.

It is seen that in a nearly Cartesian coordinate system, goo was essentially 
the Newtonian potential. In a more general coordinate system, this Newto­
nian potential would be dispersed throughout the giLU so there is a sense in 
which all the components g can be regarded as gravitational potentials. 
Since the matter content of spacetime is concisely summarised in the stress 
tensor T if matter causes the geometry, then it might be tempting to put 

that
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=  k T-*, (4.5.1)

where k is some coupling constant.
This looks plausible because both and T>w are symmetric and gfW; p =  

0 is in agreement with /x =  0. However (4.5.1) does not reduce to 

Poisson’s equation in the Newtonian limit.
Since g ^  are the gravitational potentials, it is clear that what is needed 

in place of it in (4.5.1) is a symmetric tensor involving the second derivatives 

of g^v
Einstein, in 1915, published his belief in the equation for the relationship 

between metric tensor and matter as:

R T  =  kTiw, (4.5.2)

where is the contravariant Ricci Tensor. Again this looks plausible 
since R,lt' is symmetric and contains second derivatives of g,Ll/. However, R,w 
does not satisfy R^v] /x =  0 and later in the same year Einstein modified the 

equation to

G#M' =  kV w, (4.5.3)

where G ^  =  R ^  — \g^uR is the Einstein Tensor, and R =  g ^  R,n, is the 

Ricci scalar.
✓

The expression on the left of (4.5.3) represents the curvature of spacetime 
as determined by the metric and the expression on the right represents the 
matter/energy content of spacetime. The EFE can then be interpreted as a 
set of equations dictating how the curvature of spacetime is related to the 
matter/energy content of the universe. These equations form the core of the 
mathematical formulation of general relativity.

The Einstein field equations are a system of second order coupled non­
linear partial differential equations for a Rieinannian metric tensor on a Rie- 
mannian manifold. One possibility is that the tensor field Tfll/ is specified 
and that these equations are then solved to obtain g. A noteworthy case of 
this is the vacuum Einstein equations, in which T ^ = 0.

Another possibility is that Tfiu is given in terms of some other fields on 
the manifold and that the Einstein equations are augmented by differential
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equations which describe those fields. In that case, one speaks of Einstein- 
Maxwell equations, Einstein-Yang-Mills equations, and the like depending 

on what these other fields may happen to be.
It should be noted that, on account of the Bianchi identity, there is an 

integrability condition =  0 . (Here,V,,(4) denotes covariant dif­
ferentiation with respect to the Levi-Civita connection of the metric tensor 
9nv)- When choosing , these conditions must be taken into account in 

order to guarantee that a solution is possible.

/
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Chapter 5

Relativistic Astrophysics

Relativistic Astrophysics deals with those aspects of the physical explanation 
of astronomical phenomena which depend on the theory of Relativity. Since 
its inception, General Relativity has largely relied on astronomical evidence 
for its support. While there is no end to the need to test any theory, Relativity 
can be taken as satisfactorily established.

5.1 Experimental Proofs of GR

The first and most exemplary observational proof for GR was the prediction 
of the perihelion advance of Mercury which solved an outstanding problem of 
astronomy at the time. It had long been known that the perihelion of Mer­
cury, the point at which Mercury is closest to the sun, is gradually advancing 
so that the planetary orbit is not quite closed. Newtonian Mechanics proved 
incapable of providing a satisfactory explanation.

However, when Einstein created his new theory of gravity, it gave in a 
most natural way, the prediction for Mercury’s orbit that is a little bit dif­
ferent from the Newtonian case in just the right way to explain this problem 
that people had been trying to solve for fifty years unsuccessfully. Thus, this 
was the first empirical verification, of general relativity.

Apart from this, there are predictions of black holes, gravitational waves 
and gravitational lensing among others. Strong evidence exists for each of 

these phenomena today.
In this chapter, we will examine three ways in which GR plays an impor­

tant role in the field of Astrophysics. ,l

1. Solutions of EFE give predictions of phenomena,

2. Techniques from GR, and
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3. GR as the main source of explanations.

5.1.1 The Schwarzschild Solution and Black Holes

In the past fifteen years or so black holes have been converted into a standard 
topic in observational astrophysics. There are dozens, probably hundreds of 
objects we can point to in the sky and say, “yes those things are black holes.”

But what is a black hole? A black hole is simply something in which 
the escape velocity is greater than or equal to the speed of light. If the 
escape velocity is greater than the speed of light, then light cannot escape 
this object, so one is not able to see it.

Now the escape velocity, Veac, i.e. the speed required to escape the grav­
itational field of an object; supposing that the object has mass equal to M  

and radius equal to r, is given as

(5.1.1)

If this is equated to c and r made the subject of the formula, we have

2 GM  
( c2

(5.1.2)

The s in the subscript is due to Karl Schwarzschild who discovered it and 
hence it is called the Schwarzschild radius.

Therefore, another definition of a black hole is something in which the 
radius of the object is less than the Schwarzschild radius-because if the radius 
is less, then the escape velocity will be even greater.

The Schwarzschild solution is the most general spherically symmetric, 
vacuum solution of the Einstein field equations. The Schwarzschild black hole 
or static black hole is a black hole that has no charge or angular momentum. 
The Schwarzschild black hole is characterized by a surrounding spherical sur­
face, called the event horizon, which is situated at the Schwarzschild radius, 
often called the radius of a black hole.

This is a a point in space where the escape velocity is equal to the speed 
of light. The reason it is called that is because, if nothing can' go faster than 
the speed of light, what it means is that any event that takes place inside this 
imaginary sphere can’t radiate any information about what’s going on to the 
outside, because the escape velocity is greater than the speed of light. Light
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can not escape it, and because nothing else can go faster than the speed of 
light, nothing else can escape. So, no information of any kind can come from 

inside the event horizon to the outside.
Any non-rotating and non-charged mass whose radius is smaller than the 

Schwarzschild radius forms a black hole. The solution of the Einstein field 
equations is valid for any mass M, so, according to GR, a Schwarzschild 
black hole of any mass could exist if nature is kind enough to form one.

A Schwarzschild black hole has a Schwarzschild metric, and cannot be 
distinguished from any other Schwarzschild black hole except by its mass. 

This metric is given as

ds2 = ------i -— dr2 +  r W  -  (1 -  2M/r)dt2, (5.1.3)
1 -  2M/r

where dil2 =  dO2 +  sin20dxj)2.

Here, for a mass M, the Schwarzschild radius ra =  2M. We see immedi­
ately that something strange happens when the radius of the star, r* =  2M, 

and we look at two cases.

Case 1. N ot-S o-D en se Stars.-Radius of the star, r, > 2M. If we recall 
that the Schwarzschild metric is only valid for outside a star; that is, r >  r*, 
we find that r >  2M as well, and so 1 - 2  M/r is positive, and never zero. 
(If r < 2A1, we are inside the star, and the Schwarzschild metric no longer 

applies).

Figure 5.1: A stable star whose radius is larger that its Schwarzschild radius r = 2M 
(Source: h ttp ://p eop le .h ofstra .ed u /stefan _w arn er/d iff_geom /)
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Case 2. Extrem ely D ense Stars: Radius of the star, r. < 2 M. Here, 
two things happen: First, as a consequence of the equations of motion, it 
can be shown that in fact the pressure inside the star is unable to hold up 
against the gravitational forces. In fact, if the star is so dense that its mass is 
greater than I.\ times the mass of the sun, ('the Chandrasekhar limit,), even 
the electron degeneracy pressure at the centre of the star is insufficient to 
hold the star up, and the star collapses. In fact, it collapses to a singularity, 
a point with infinite density and no physical dimension, a black hole. For 
such objects, we have two distinct regions, defined by r > 2M and r < 271/, 
separated by the event horizon, r =  271/, where the metric goes infinite.

E vent H or izon  
( r - 2M)

Gravitational Collapse 
------------- >

E vent H or izo n  ( r - 2M)

Figure 5.2: A star that has collapsed into a black hole surrounded by the event horizon. 
(Source: h ttp :/ /peop le .h ofstra .ed u /stefan _w arn er/d iff_geom /)

Since the Schwarzschild metric is only expected to be valid for radii larger 
than the radius R of the gravitating body, there is no problem as long as 
R > ra. For ordinary stars and planets this is always the case. For example, 
the radius of the Sun is approximately 700,000 km, while its Schwarzschild 
radius is only 3 km.

/  ‘
V

*
; #  •

’

Figure 5 .3 :  A n  artist’s sim ulated view o f a Black H ole’s Event Horizon.
(Source:http: / /e n . w ikip edia .org /w iki/black-holes)
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5.1.2 The Kerr Solution and Frame Dragging

The Kerr metric is an exact solution of the Einstein field equations. The Kerr 
metric is a generalization of the Schwarzschild metric, which describes the 
geometry of spacetime around an uncharged, perfectly spherical, and non­
rotating body. However, the exact solution for an uncharged, rotating body, 
the Kerr metric, remained unsolved until it was discovered by Roy Kerr.

According to this metric, such rotating bodies should exhibit frame drag­
ging. Roughly speaking, this effect predicts that objects coming close to a 
rotating mass will be entrained to participate in its rotation, not because of 
any applied force or torque that can be felt, but rather because the curvature 
of spacetime associated with rotating bodies. At close enough distances, all 
objects - even light itself - must rotate with the body; the region where this 

holds is called the ergosphere.
The Kerr metric describes the geometry of spacetime in the vicinity of a 

mass M  rotating with angular momentum J

,2d r 2 = (1 _ rJ L y d t2 _ L dr* _ p>d02 
fr A

, ,  9 rsra2 . 9 . 9 „ , (9 2rsrasin29
-  (r2 +  a2 H------ sin2 sin2 -̂-------------- 9-------

(5.1.4)
cdtdcf),

where the coordinates r, 9, <f) are standard spherical coordinate system, 

and rs is the Schwarzschild radius

2 GM

and where the length-scales a, p and A have been introduced for brevity

J
a ~ W c

p2 =  r2 +  a2 cos2 9 

A =  r2 — rsr +  a2.

The Kerr metric has two surfaces on which it appears to be singular. 
The inner surface corresponds to a spherical event horizon, similar to that 
observed in the Schwarzschild metric. This occurs where  ̂the purely radial 
component grr of the metric goes to infinity. Solving the quadratic equation 

1 / grT — 0 yields the solution
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Tinner
r, +  sjrl ~ 4a2

(5.1.5)

Another singularity occurs where the purely temporal component gti of 
the metric changes sign from positive to negative. Again solving a quadratic 

equation gtt =  0 yields the solution

f outer
rs +  yjrl -  4a2 cos2 9 

2
(5.1.6)

Due to the cos20 term in the square root, this outer surface resembles a 
flattened sphere that touches the inner surface at the poles of the rotation 
axis, where the colatitude 0 equals 0 or n. The ergosphere lies between 
these two surfaces. Within this volume, the purely temporal component gtt 
is negative, i.e., acts like a purely spatial metric component. Consequently, 
particles within this ergosphere must co-rotate with the inner mass, if they 

are to retain their time-like character.

Figure 5.4: T h e  ergosphere o f a rotating b ody is where fram e-dragging is experienced. 
(Source: h t t p //e n .w ikipedia.org/w iki/kerr_m etric)

An excerpt from the website Windows to the U niverse,[17] con­

firms existence of Frame-Dragging

November 6, 1997:
Satellite observations of Black Holes confirm frame-dragging effect 80 years 
after prediction. Einstein predicted the effect, called “frame dragging” , 80 
years ago. Like many other aspects of Einstein’s famous theories of relativity, 
it is so subtle that no conventional method could measure it:

Using recent observations by X-ray astronomy satellites,^including NASA’s
I

Rossi X-ray Timing Explorer,(NASA: 1997) a team of astronomers is an­
nouncing that they see evidence of frame dragging in disks of gas swirling 

around a black hole.
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Einstein also predicted that the rotation of an object would alter space 
and time, dragging a nearby object out of position compared to predictions 

by the simpler math of Sir Isaac Newton.

Figure 5 .5 :  A n  artist’s concept o f frame dragging shows a black hole’s rotation twisting  
the fabric o f space and tim e. A s  m aterial crowds in through the accretion disk, som e gases 
are squeezed outward to becom e superlum inal jets. A lth ou gh  superlum inal jets have been  
observed, the rest o f the im age is speculative since no one has observed a black hole in 
such detail. (Source: Joe Bergeron o f Sky and Telescope m agazine).

5.2 Techniques from GR

General Relativity predicts how objects would behave around massive gravi­
tating bodies. Astronomers use these predictions as methods for ascertaining 
presence of various astronomical bodies as well as for calculating the dimen­
sions of such things. In this section we will look at two interesting techniques 

provided by GR.

5.2.1 Gravitational Lensing

A relatively new method used by astronomers is to look for a change in the
way light behaves, due to gravitational lensing. It is somewhat akin to how
you avoid running through sliding glass doors. If the glass is very clean and
you get no reflections, how can you tell the door is there? Your eyes perceive

» /
that the light from outside is bent, and infer that something is bending it, 
namely the door. Note that you did not see light FROM the door, but you 
saw the effect made by the door on light from objects behind it. Similarly,
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we can use telescopes to look at light from very distant objects behind the 
clusters of galaxies we are interested in to study the clusters.

The possibility that the path of light could be bent by the gravity of a 
large object was predicted by Einstein’s Theory of General Relativity, and 
this effect was observed soon after the theory was published. Because people 
normally think of glass or plastic lenses as bending light, we call any massive 
object that bends light rays a “gravitational lens.” Astronomers now use 
specialized electronic cameras on large telescopes to very carefully measure 
how much the light from background objects is bent. By analyzing the 
amount of bending, we can then determine the mass of whatever is doing the 

bending.
Scientists have proposed {2006: Windows to the Universe) the existence 

of “dark matter” halos around individual galaxies and clusters of galaxies. 
Dark matter is material which affects the objects around it through gravity, 
but which emits no light of any wavelength that we can detect. Astronomers 
suggest that we see only the “tip of the iceberg” when we use our large 
telescopes to look out into space. In the cluster Abell 2218, distant blue

Figure 5.6: G ravitational Lensing in the G alaxy Cluster A b ell 2218  (source: N A S A / A . 
Fruchter/ S T S cI h ttp ://w w w .w in d o w s.u ca r.e d u /to u r /lin k =  /  the_universe/ Lensing)

galaxies behind the large cluster of galaxies are “squished” into a circular 
shape around the middle of the foreground cluster. By measuring the amount 
of distortion in the more distant blue galaxies, we can determine that therei
is indeed “dark” matter in the cluster! In fact, we can even measure how 
much mass there is that we can not see -  this galaxy cluster happens to have 
nearly 400 trillion times the sun’s mass in “dark” matter.
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Astronomers have discovered an extrasolar planet only three times more mas­
sive than the Earth, the smallest yet observed orbiting a normal star. The 
star itself is not large, perhaps as little as one twentieth the mass of our Sun, 
suggesting to the research team that relatively common low-mass stars may 
present good candidates for hosting Earth-like planets.

Led by David Bennett of the University of Notre Dame, the international 
research team presented its findings in a press conference Monday, June 2, 
2008, at 11:30 a.m. CDT at the American Astronomical Society Meeting in 

St. Louis, Mo.
“Our discovery indicates that that even the lowest mass stars can host 

planets,” says Bennett. “No planets have previously been found to orbit 
stars with masses less than about 20 percent that of the Sun, but this finding 
indicates that even the smallest stars can host planets.”

The astronomers used a technique called gravitational microlensing to 
find the planet, a method that can potentially find planets one-tenth the 

mass of the Earth.
The gravitational microlensing technique, which comes from Einstein’s 

General Theory of Relativity, relies upon observations of stars that brighten 
when an object such as another star passes directly in front of them (relative 
to an observer, in this case on Earth). The gravity of the passing star acts as 
a lens, much like a giant magnifying glass. If a planet is orbiting the passing 
star, its presence is revealed in the way the background star brightens. “This 
discovery demonstrates the sensitivity of the microlensing method for finding 
low-mass planets, and we are hoping to discover the first Earth-mass planet 

in the near future,” said Bennett.
With support from the National Science Foundation (NSF), Bennett has 

been one of the pioneers in using gravitational microlensing for detecting low 
mass planets. He has been working with collaborators around the world to 
find a number of planets that are ever closer in size to the Earth.

For the most recent discovery, the research collaborators took advantage 
of two international telescope collaborations: Microlensing Observations in 
Astrophysics (MOA), which includes Bennett, and the Optical Gravitational 
Lensing Experiment (OGLE).

5.2.2 Gravitational Microlensing
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Figure 5 .7 :  A rtist ’s conception o f the newly discovered planet orbiting a brown dwarf 
‘star’ (Source: N A S A ’s Exoplanet Exploration Program )

5.3 Does GR have all the Answers?

It is well known and documented that the theory of General Relativity is the 
most popular fall-back for explaining most astronomical phenomena. In this 
section, we recount some studies involving three different phenomena to see 
whether indeed GR has stood up to the tests.

5.3.1 The Inclination of Planetary Orbits

A. Qadir and H. Rizvi (1988) in their paper: A Relativistic Explanation of 
the Inclination of Planetary Orbits [11], explored whether Relativity could 
provide an explanation for the fact that the planetary orbits are nearly, but 
not exactly in the same plane and they all nearly coincide with the solar 

equatorial plane.
The standard model for planetary formation was taken; that initially 

there was a large, roughly spherical cloud of gas and dust in which there 
was a high intrinsic angular momentum. Then a collapse of the cloud was 
initiated. The high angular momentum caused the shrunken cloud to collapse 
to a disc. As the collapse proceeded some matter stayed out in a thin disc 
while the rest continued to collapse. Sometime after the sun was ignited, 
accretion occurred and the planets formed from the rings in a short period. 
The total age of the solar system is taken to be about 4.5 billion years and 
the actual process of planetary formation only about 0.1 billion years!

The solar equatorial plane was taken as the reference jfoint. Putting the 
solar thickness as the limit, eliminates the possibility of the present inclina­
tions being the original ones. As such the argument was that the planets
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must have been driven out of their initial orbits (which were very nearly in 
the solar equatorial plane) and a relativistic explanation was sought for this.

One suggestion is that the inclination arose due to the effect of the Kerr 
nature of the gravitational field of the sun. This was largely because the 
Kerr metric does not have coplanar geodesics except in the equatorial plane. 
Since it would be impossible to try out all possible initial conditions over the 
4.5 billion years for the solar system in full general relativistic detail, what 
was done was to appeal to the •i/W-formalism to provide the Kerr correction 
to the Newtonian gravity.

Using the ^  TV-formalism, the potential for a gravitational source was 

given as:

4> =
—G(mr — Q2/2c2) (5.3.1)
(r2 +  a2 cos2 9/c 2)

where a =  s/m, s being the total intrinsic angular momentum of the gravi­
tating source and m its mass.

Taking the derivative of the potential given by (5.3.1) with respect to 9 
having set Q — 0, we get

n Gmra2 sin 29 n , c 0
/ o i 2 02 / 2\ 5(r2 +  a2 cos 9Z/cz)

where n is the planetary mass. Here F is the covariant polar component 
of the force vector. This force would act out of the plane of the orbit towards 
the rotation axis. Of course the polar angle of the planet goes on altering 
as it moves in its orbit. When the planet crosses the equatorial plane this 
force is zero. However, when it goes to the maximum or minimum value of 
9, at either end, the force acts in the same way. The total force acting on 
the orbital plane is the average of this force over the entire orbit, which after 
some approximations is calculated to be:

2Gma29n
F  =

c?r2
(5.3.3)

where 9, the angle of inclination of the planet’s orbital plane to the solar
equatorial plane, is taken to be small.

Since F  is the covariant component of the force, it has units of mass
*

times length squared per unit time squared. Thus, the second derivative of 
the angle of inclination at any instant is given by

c2r5
(5.3.4)
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Solar 
Equatorial 
Plane

Figure 5 .8 :  A  presentation o f the orbital geom etry; X O Y  is the solar equatorial plane 
and x O y  is the orbital plane o f the planet. T h e  polar angle o f the planet lies between p 
and 7r — 7]. T h e  inclination o f the orbital plane is 0.

having divided out by the extra length squared. Writing a in terms of 
the total angular momentum of the sun, S, we get

o e c 2
0  =  =  K 2e .  (5.3.5)

mc2r5

It has been previously discovered that K  depends linearly on the solar 
angular momentum.

To compute the relativistic effect of the change of the angle of inclination 
of the orbital plane we take the general solution of (5.3.5)

Q{t) =  A cosh K(t  — T) +  B  sinh K(t  -  T).  (5.3.6)

Thus, we would have

0 (T ) =  AG(T) =  B/K.  (5.3.7)

Thus for the relativistic effect to act, to move the angle of inclination, 
there must be either an initial perturbation A at some time T, or an initial 
angular velocity B /K , or both. Thus the relativistic explanation postulates 
that the planet stays in its original orbit, in the equatorial plane of the sun, 
for t < T  and is then perturbed out of this plane by some mechanism. At 
this stage the relativistic driving mechanism takes over and pushes the planet 
increasingly out of the solar equatorial plane so that at the present time the 
angle of inclination is the observed value.

The study was restricted to the inner planets, namely N̂ ars, Earth, Venus
i

and Mercury, largely because of the larger angular momentum of the outer 
planets in comparison to that of the sun. Lengthy calculations of the value 
of the planetary constant K , showed a remarkable uniformity in the value
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of K  multiplied by the period over which the planet has been driven into 
its present inclination. The results continued to be stable under change of 
initial conditions. There remains a variation in K (t — T ) such that for the 
same perturbation it is larger for the ‘outer’ inner planets, Mars and Earth. 
It may be that this difference is due to the influence of the outer planets.

The conclusion of the study was that it is apparent from the general 
behaviour of things, that relativistic gravity and not classical gravity, rules 

the motion of the heavenly bodies.

5.3.2 Speed of Gravitational Waves

In his paper: The Confrontation between General Relativity and Experiment, 
Clifford M. Will (2003) questions whether Einstein was right to guess that 
the speed of gravity was equal to the speed of light, in his theory of GR. He 

writes:
According to GR, in the limit in which the wavelength of gravitational 

waves is small compared to the radius of curvature of the background space- 
time, the waves propagate along null geodesics of the background spacetime, 
i.e. they have the same speed, c, as light. In other theories, the speed could 
differ from c because of coupling of gravitation to background gravitational 
fields. For example, in some theories with a flat background metric r/, gravi­
tational waves follow null geodesics of 77, while light follows null geodesics of 
g (Will, 1993). Another way in which the speed of gravitational waves could 
differ from c is if gravitation were propagated by a massive field (a massive 
graviton), in which case vg would be given by, in a local inertial frame,

i  =  i - ~  I _  1 
ci 2 E2 ~  2 / 2A2’

(5.3.8)

where mg, E  and /  are the graviton rest mass, energy and frequency, re­
spectively, and Xg =  h/mgc is the graviton Compton wavelength (Ag » c / f  
assumed). An example of a theory with this property is the two-tensor mas­
sive graviton theory of Visser (Visser, 1998).

This clip from Windows to the Universe, [17] proves that Einstein 
was right!

To make his most well-know theory, the General Theory of Relativity, 
physicist Albert Einstein had to guess that the speed of gravity was equal to 
the speed of light. Now, scientists have found that he was likely right!
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His theory assumes that the force of gravity acts at the same speed as the 
speed of light. Until recently this assumption had not been tested thoroughly. 
While the speed of light has been measured as 299,800 km/sec, scientists 
found that it is very difficult to accurately measure the speed of gravity. 
Einstein’s assumption appeared to be true, based on indirect evidence, but 
it had never been comprehensively tested before now.

Scientists had the opportunity to test this assumption of Einstein’s theory 
when, on September 8, 2002, Jupiter passed in front of a distant quasar 
called J0842. They released their findings at the meeting of the American 
Astronomical Society in Seattle, WA in January 2003. They reported that 
the planets gravity bent the quasars radio waves, making the quasar appear 
to move in an elliptical shape through the sky according to the observations 
of many radio telescopes in the United States and Germany. From the shape 
of the quasars motion, the scientists calculated that the speed of gravity is 
nearly the same as the speed of light!

5.3.3 Dark Energy

In the early 1990’s, one thing was fairly certain about the expansion of the 
Universe. Theoretically, it continues to expand but gravity was certain to 
slow the expansion as time went on. Then came 1998 and the Hubble Space 
Telescope (HST) observations of very distant supernovae that showed that, 
a long time ago, the Universe was actually expanding more slowly than it is 
today. So the expansion of the Universe has not been slowing due to gravity, 
as everyone thought, it has been accelerating. No one expected this, no one 
knew how to explain it. But something was causing it.

Theorists still do not know what is causing this, but they have given it 
a name. It is called dark energy. We know how much dark energy there is 
because we know how it affects the Universe’s expansion. Other than that, it 
is a complete mystery. It turns out that roughly 70 percent of the Universe is 
dark energy. Dark matter makes up about 25 percent. The rest - everything 
on Earth, everything ever observed with all of our instruments, all normal 
matter, adds up to less than 5 percent of the Universe.

One explanation for dark energy is that it is a property of space. Albert 
Einstein was the first person to realize that empty space is not nothing. The 
first property that Einstein discovered is that it is possible for more space
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Expanding universe

Figure 5.9: Th is diagram  shows changes in the rate o f expansion since the Universe’s 
birth 14 billion years ago. T h e  more shallow the curve, the faster the rate o f expansion. 
T h e curve changes noticeably about 7 .5  billion years ago, when objects in the Universe 
began flying apart at a faster rate. Astronom ers theorize that the faster expansion rate is 
due to  a m ysterious, dark energy that is pulling galaxies apart. Credit: N A S A /S T S c i /A n n  
Feild

to come into existence. Then one version of Einstein’s gravity theory, the 
version that contains a cosmological constant, makes a second prediction: 
‘empty space’ can possess its own energy. Because this energy is a property 
of space itself, it would not be diluted as space expands. As more space 
comes into existence, more of this energy-of-space would appear. As a result, 
this form of energy would cause the Universe to expand faster and faster. 
Unfortunately, no one understands why the cosmological constant should 
even be there, much less why it would have exactly the right value to cause 
the observed acceleration of the Universe.

Another explanation for how space acquires energy comes from the quan­
tum theory of matter. In this theory, ‘empty space’ is actually full of tempo­
rary (‘virtual’) particles that continually form and then disappear. But when 
physicists tried to calculate how much energy this would give empty space, 
the answer came out wrong by a lot. The number came out 10120 times too 
big. It’s hard to get an answer that bad.

Another explanation for dark energy is that it is a new kind of dynamical 
energy fluid or field, something that fills all of space but something whose 
effect on the expansion of the Universe is the opposite of'that of matter 
and normal energy. Some theorists have narped this antimatter. But, if 
antimatter is the answer, we still do not know what it is like, what it interacts 
with, or why it exists.
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A last possibility is that Einstein’s theory of gravity is not correct. That 
would not only affect the expansion of the Universe, but it would also affect 
the way that normal matter in galaxies and clusters of galaxies behaved. 
But if it does turn out that a new theory of gravity is needed, what kind of 
theory would it be? How could it correctly describe the motion of the bodies 
in the Solar System, as Einstein’s theory is known to do, and still give us 
the different prediction for the Universe that we need? There are candidate 
theories, but none are compelling. So the mystery continues [7].

I
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Further Research

We have seen in the preceding chapter, that Dark Energy remains an unsolved 
phenomenon in the docket of the relativistic astrophysicist. Likewise, there 
are other open areas for research in this field:

• Applying New Curvature Tensors in Solutions to the EFE

In his papers, Relativistic Significance of Curvature Tensors (1982) and 
Physical Properties of some Curvature Tensors (2007), Pokhariyal has 
defined several new curvature tensors on the pattern of Weyl’s pro­
jective curvature tensor and has studied the physical and geometrical 
properties of some. These tensors have, as yet, not been used in solv­
ing the Einstein’s field equations and thus present a lucrative area for 

research.

• Looking for Relativistic Explanations of Astrophysical 
Phenomena

As in the previously outlined study of A. Qadir and H. Rizvi[ll], there 
is need to look for other relativistic effects in astrophysics which do 
not merely make a detectable difference but are fundamental to the 
phenomenon observed. Further, they need not only be for exotic astro­
nomical objects but also for some ignored aspect of the more common 
objects.

• Delving Deeper into the Genesis of GR

D. Salisbury in his review (2009) of the book: Jurgen Renn(ed): The 
genesis of general relativity[12], writes:
These volumes are the result of over two decades of effort, by most of 
the leading scholars in the field, to understand the process that culmi­
nated in Einsteins publication of the general theory o( relativity. There 
is an obvious utilitarian reason why this study should be of interest to 
us, the better we understand the process of scientific knowledge acqui­

sition, the better we will be able to create conditions in which young
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scientists can follow the lead of innovators like Albert Einstein. 
Further, how many of us know of the work of, for example, Max Abra­
ham, Gustav Mie, Gustav Herglotz, and Gunnar Nordstrom, just to 
name a few of the significant scientists who feature in these volumes? 
A study of this book would undoubtedly provide the stimulus for per­
ceiving the universe in the manner of our predecessors.
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