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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Rainfall in Kenya is characterized by a bimodal distribution 
where the country experiences long rains between March and 
April and short rains between October and December.This bi­
modal rainfall distribution has highly unpredictable occurrence 
and intensity.The uneven distribution of rainfall exposes agri­
cultural enterprises to a range of mild to severe inter and intra- 
seasonal dry and wet spells.

Further it has been noted that considerable effort has been 
devoted to the collection of rainfall data,but little effort has 
been devoted to its analysis.This has contributed to the lack of 
knowledge regarding the trends of rainfall occurrence and hence 
constrained the possibility of solving perennial environmental 
and agricultural problems.

It is therefore necessary to understand as completely as pos­
sible the causes of precipitation variability as rainfall is of con­
siderable importance to a wide range of human activities.

1
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1.2 OBJECTIVES OF THE STUDY

The major objective of this study is to demonstrate an alterna­
tive method of analysing rainfall records,which produces results 
that are directly applicable in the day to day activities and that 
are readily comprehensible to the various users of rainfall infor­
mation.

The specific objectives include:

1. determination of an appropriate statistical distribution for 
the monthly occurrence and amounts of rainfall.

2. assessing the predictability of the characteristics of monthly 
rainfall.

1.3 SIGNIFICANCE OF THE STUDY

Understanding of the occurrence processes governing rainfall is 
of considerable importance to a wide range of human activities.

This study is aimed at enhancing our understanding of the 
spatial and temporal characteristics of wet and dry rainfall spells 
in order to develop tools that can reduce vulnerability of the 
agricultural and other rain-dependent sectors to the negative 
impacts of extreme rainfall events.

The inter-annul and intra-annual variability of rainfall is the 
key determinant of success in agriculture.This is however compli­
cated by the variability and unpredictability of the lengths and 
numbers of wet and dry spells in any month,season or year.This 
uneven distribution of rainfall exposes agricultural enterprises 
to a range of mild to severe inter and intra-seasonal dry and wet 
spells.The knowledge of dry -wet behavior will play as a guide to 
the type of crops that are viable in a particular locatien.lt will 
also be indispensable in determining the start of the growing 
season and the harvesting period.
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The knowledge of wet and dry spells is essential for defin­
ing appropriate domestic,industrial and urban water harvesting 
plans that maximize rainwater tapping and minimize rainwa­
ter losses while at the same time indicating potential for water 
storage.

Finally this will assist in improving the accessibility of weather 
information to users and thereby increase the probability of 
widening the scope of usage.

1.4 BRIEF LITERATURE REVIEW

One of the challenges researchers face while examining rainfall is 
its considerable variation from year to year.The other challenges 
encountered include the fact that rainfall is a somewhat skewed 
variable and that it is continuous at exact zero.Most models 
cannot cope with modelling a mixture of both discrete and con­
tinuous distributions concurrently.Therefore to minimize this 
problem,rainfall is typically modelled using a two-component 
model.The first component examines the occurrence of rain- 
falkthis is the probability of a ’wet’ or ’dry’ event occurring.The 
second component focuses on the actual rainfall amount once a 
rainfall event has occured.

1.4.1 Modelling the Occurrence of Rainfall

Rainfall occurrence can be viewed as a sequence of random vari­
ables X(t), t =  • • • , t j  where:

X (t)  = 1, if rainfall has occurred on a particular day or month 
0, if no rainfall has occurred on a particular day or month

The occurrence of rainfall is a discrete process,therefore Markov 
Chains and renewal processes are the most common methods 
used to model the probability of a ’wet’ rainfall event occurring.

3

t



Markov Chains

Markov Chains are commonly used to model the proportion of 
’wet’ rainfall events.This is due to the flexibility and ease at 
which parameters can be estimated using Markov Chains, as 
well as the ability and ease the final fitted model gives for ob­
taining results that do not require the use of simulations.Markov 
Chains are also popular because of their largely non-parametric 
nature,ease of interpretability,and their well developed litera­
ture.

Whereas first order models have been studied extensively,research 
has also focused on higher orders.Gabriel and Neumann( 1962),fitted 
a first order Markov Chain to Tel Aviv rainfall data.Katz(1981) 
studied zero,first,and second order models.A twelve order chain 
has also been fitted to hourly rainfall data.Hybrid Markov Chain 
models have also been developed,where wet spells are modelled 
as a first order but higher orders are used for dry spells.Other 
studies have also examined specific locations to test the use of 
Markov Chains of different orders at different locations.

There is a general consensus among researchers that a first 
order Markov Chain is adequate for most locations.This is be­
cause it is able to adequately model the data while keeping the 
number of parameters at a minimum.Higher order Markov Chain 
models often have a lack of parsimony.

Markov Chain Models are however limited in their ability 
to efficiently model the amounts of rainfall.One method used 
to overcome this limitation is the division of rainfall amounts 
into categories;no rain;less than 5mm of rain;between 5mm and 
20mm of rain(Lana and Burgueno, 1997).However this technique 
provides only limited information and is not efficient enough 
when dealing with extremely important management decisions 
such as crop growth.

4
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Alternating Renewal Process

This process considers a sequence of alternating wet and dry 
spells of varying length,with each spell having an assumed distri­
bution.The type of distributions used to model the length of wet 
and dry spells as alternating renewal processes include:logarithmic 
series,truncated negative binomial and the truncated geometric 
distribution.

Other methods developed to model the occurrence of rain­
fall include the following;a mixture of geometric and negative 
binomial distributions and an autoregressive conditional Pois­
son model which deals with issues of discreteness,over-dispersion 
and correlation within the data.Time series models have been 
used to model rainfall.These models ensure that temporal de­
pendence is included in the model.A type of time series model 
used to model occurrence of rainfall is the two-state discrete 
autoregressive moving average(DARMA).

1.4.2 Modelling the Amount of Rainfall

Rainfall amount(daily intensity)is a continuous distribution.This 
type of data is usually modelled using a parsimonious member of 
the exponential family that fits the given data best.As rainfall 
is skewed to the right,distributions that follow this same pat­
tern and are skewed to the right have proven to be the most 
useful,with the gamma disribution being the most commonly 
used.

Other distributions used to model the amount of rainfall in­
clude the exponential distribution which is a special form of 
the gamma distribution with [l =  1 and a mixed exponen­
tial distribution,which is a mixture of two different exponential 
distributions.Generalized Autoregressive Moving Average model 
(GARMA) have been used to model non-normal situations like 
rainfall.Chandler and Wheater(2002) suggest that the gamma
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distribution is the most appropriate to model rainfall intensity 
through the analysis of Anscombe residuals,which show a very 
satisfactory fit of the gamma model.

The methods described above only monitor either the amount 
of rainfall or the occurrence of rainfall and not both the oc­
currence and amount.A model incorporating both amount and 
occurrence of rainfall would be very desirable indeed.

1.4.3 Modelling the Amount and Occurrence of Rain­
fall

Several researchers have tried to model the occurrence and amount 
of rainfall simultaneously.Rajagopalan and Lall(1996) used a 
multi-state Markov Chain which treated rainfall as a mixed dis­
crete and continuous variable and the probabilities are used to 
model the dependence structure.

Grunwald and Jones(2000) used a first order Markov struc­
ture and a mixed transition density,with a discrete component 
at 0 and a continuous component for the positive sample space. 
Hyndman and Grunwald(2000) used the same method,but they 
combined it with a Generalized Additive Model (GAM) to relax 
the assumption that each year follows the same seasonal pat­
tern.
However,in this model,the functions and parameters' are esti­
mated separately.The occurrence distribution is estimated first 
followed by the estimation of the intensity distribution.

1.4.4 Generalized Linear Models

Generalized Linear Models have been used to compute data that 
has high levels of variability such as rainfall.Coe and Stern(1982) 
used GLMs to model rainfall data and found it superior to non- 
stationary Markov Chains.
Wheater(2002) used logistic regression model,a form of a GLM

6 •'
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to model the binary series of wet and dry days as they were easy 
to fit and interpret.Chandler and
Wheater(1998) fitted a gamma-based GLM to model rainfall on 
wet days.

GLMs also provide a flexible and rigorous framework that are 
able to deal with the high levels of variability such as in rainfall 
data.The GLM approach has also proven to be a very powerful 
tool for interpreting historical rainfall records.

1.4.5 Tweedie Distributions

As rainfall process involves both discrete(rainfall=Omm) and 
continuous(rainfall>Omm) parts,two separate models have pre­
viously been fitted and the information from the two models 
combined in order to provide a summary of the rainfall pro­
cess.The Tweedie distribution however is able to combine both 
aspects to provide one complete rainfall process.They thus have 
the potential to allow improved rainfall models to be devel­
oped.This will result in a more accurate,reliable and practical 
model that can be incorporated into other areas such as crop 
growth systems.

Tweedie distributions are based upon Generalized Linear Mod­
els and are classified according to their variance.The properties 
that make the tweedie distributions suitable for modelling rain­
fall include:

1. The tweedie distributions belong to the exponential fam­
ily of distributions and form a part of the larger group of 
Generalized Linear Models

2. Are simple and logical

3. The tweedie distributions provide a mechanism in which 
finer-scale structures can be understood through courser- 
scale data

7



Apart from modelling rainfall,Tweedie distributions have been 
used in Actuarial studies(B Jorgensen and Paes de Souza MC,1994 
and G K.Smyth and B Jorgensen, 1999),assay analysis,modelling 
time spent splicing telephone cables(J A.Nelder,1994),modelling 
money spent spent on hiring outside labour(B Jorgensen, 1987), 
ecological studies,analysis of medical data,analysis of alcohol 
consumption by british teenagers(Gilchrist,Robert and Drinkwa- 
ter,Denise,1999), among others.

8
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Chapter 2

DATA and METHODOLOGY

The methods that are adapted to investigate the various char­
acteristics of rainfall to achieve the objectives stated include;

2.1 Data and Climatology of the Study Area

Kenya lies approximately within the latitude l^OO'N and longi­
tude 38o,00'E covering 583,670 km2.

It is hot and humid at the coast,temperate in the inland and 
very hot and dry in the north and north eastern parts of the 
country.

Rainfall in Kenya is characterized by a bimodal distribution 
with the country receiving long rains from March to April and 
short rains from October to December.

The kenya rainfall data is used to fit a GLM with Tweedie 
Distribution.Rainfall data has been investigated using hourly, 
daily,monthly or even yearly time scales.Monthly rainfall data 
from 1961 to 2001 is used in this study.The rainfall data was 
collected from a network of twenty five rain stations situated 
in different parts of the country.The rainfall records have at 
least fourty(40)years duration which is adequate to assess the 
temporal and spatial characteristics of rainfall.

The software R has been used to demonstrate the application

9
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of modelling rainfall using Generalized Linear Models(GLMs) as 
it, has the necessary requirement of being able to produce a GLM 
with a Tweedie distribution.

2.2 Generalized Linear Models

To model a dataset using GLMs three decisions need to be made:
1. What is the distribution of the response variable?

2. What function of mean will be modelled as linear in the 
predictors?

3. What will the predictors be?
The answers to these three questions defines the components 
needed to create a GLM.First,is the existence of n x  1 random 
varibles

Yi r --,Y n
dependent on t, predictors.These random variables form the re­
sponse variables,which are assumed to share the same distribu­
tion and come from a specific family of distributions called the 
Exponential Dispersion Model(EDM) family.

The second component of a GLM is the link function which 
relates the parameters of the distribution to the various predic­
tors.The link function uses a set of p unknown parameters,/?,and 
a set of n x t known explanatory variables

X , „ t =  [X?, • ■ •, X j]

formed together so that X/3 is a linear structure.

2.2.1 Exponential Dispersion Models

GLMs are formulated within the framework of the set' of dis­
tributions which belong to the family of Exponential Disper­
sion Models(EDMs).An Exponential Dispersion Model(EDM)

10 , "
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is a two parameter family of distributions consisting of a linear 
exponential family with an additional dispersion parameter.An 
Exponential Dispersion Model(EDM) has a probability density 
function that can be written in either of the following forms

p{y\0,0) =  a(y, (p)exp{^[y9 -  k(9)]} (2.1)

or
p (y ;M )  =  K y ^ ) ^ p { — [—rf(y, m)]} (2.2)

where
cp > 1 is the dispersion parameter, p =  k'{9) is the position 

parameter, d(y,p) is the unit deviance, k(9) is the cumulant 
function, 9 is the canonical parameter and y is the variable of 
interest.

The family includes discrete and continuous densities as well 
as mixed densities.

The normal,binomial,poisson,inverse gaussian,exponential, 
gamma and the tweedie distributions all have distributions that 
form part of exponential dispersion model. The mean and vari­
ance of EDMs can be defined as follows:

Mean of y:

IIII'

(2.3)

Variance of y:
Var[y\ =  <pk"(9) (2.4)

9 is related to the mean \i through equatioii(2.3).The rela­
tionship between //, and 9 is often written as t (9) =  k'{9) and 
9 =  The function t (9) is often written as the mean -value
mapping and gives the functional relationship between p and 9.

11 , -
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2.2.2 Generalized Linear Models

Generalized Linear Models consist of two components

1. The response variable,yi,which follows an EDM with mean 
H and dispersion parameter such that

V~ED<J M,H(2.5)

where Wi are known prior weights (often one) and

2. The link function
g ( ^ i ) = x j p  (2.6)

which relates the expected values of the yi that is /q,to the 
covariates x.;.

x j (3,the linear component of the link function is called the linear 
predictor and is given by the symbol rj,so that,

9M  =  r) =  x{f3 (2.7)

2.3 Variance Functions

The variance function uniquely identifies a distribution within 
the class of EDMs(that is,an exponential dispersion model is 
characterized within the class of all exponential dispersion mod­
els by its variance function).Equation (2.3)shows that k'{6) is 
a function of the mean and thus k"(6) is also dependent on the 
mean.Thus k"(6) is often replaced by the variance function V(fi) 
so that

V(fJ-) =  k"(0) ■ ■ (2.8)
The role of the variance function is to describe the mean-variance 
relationship of a distribution when the dispersion parameter is



Table 2.1: The characteristics of some of the distributions of the exponential 
dispersion models(McCullagh and Nelder,1989)

Distribution m M =  E ( Y ) Variance Function

Normal
e2
2 9 1

Poisson e°

Binomial ln(l  +  e°) e°
(l+e») /i ( l  -M )

Gamma - l n ( - O ) 1
0 /d

Inverse Gaussian - ( - 2  9)l/2 - 2 9 /d

Tweedie % ^  for p / (1,2) k'{9) for v +  (0,1)

held constant.If Y follows an EDM with mean /i,variance func­
tion Y(//.),and dispersion parameter 0,then the variance of Y 
can be written as

VariY ) =  <l>V(fi) (2.9)

Table(2.1) provides information about several distributions that 
come from the EDM family,including their variance functions.

/
2.4 Power-Variance(Tweedie)Distributions

Within EDMs,there exists a class of distributions with power- 
mean variance relationships known as the Tweedie Family of 
Distributions.

The Tweedie family is a three parameter family of distri­
butions in /^(the mean),0 > 0(the dispersion) and p .Tweedie 
distributions with fixed k(.) and a(.,.) and variable-# and 0

13
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(2.10)

exists such that the variance is of the form

V(fi) =  pP

for some exponent p G ( - 00, 0]C/[1,00).1The parameter p is called 
the index parameter and determines the shape of the Tweedie 
Distributions.

Most of the important distributions commonly associated 
with GLMs are contained within the Tweedie Distributions frame­
work including the Normal(p=0),Poisson(p=l),Gamma(p=2),and 
Inverse Gaussian(p=3).

Tweedie models exist for all values of p outside the interval 
(0,1).Apart from the four distributions stated above,none of the 
Tweedie models have density functions which have explicit an­
alytic forms or which can be written in closed form.Instead,the 
densities can be represented as infinite summations derived from 
series expansions,evaluating infinite oscillating integrals,the method 
of interpolation,inversion of the cumulant generating function,by 
the saddlepoint approximation method or by evaluating the cor­
responding quasi-likelihood of the distribution.

Tweedie Distributions with p >  1 have strictly positive means, 
with p > 2 being continuous for positive Y,and a shape similar 
to the gamma,but more right skewed.Distributions with p > 0 
are continuous on the entire real axis.Finally,for 1 < p <  2 the 
distributions are supported on non-negative real numbers and 
the distributions are mixtures of the Poisson and Gamma dis­
tributions,with a mass at zero.Table (2.2) shows a summary of 
Tweedie EDMs and Figure (2.1) shows a plot of some of the 
Tweedie densities.

Due to their ability to model both discrete and continuous 
data simultaneously they are very useful in rainfall modelling.

The mean,/i,and the canonical parameter,0 can be found for 
a Tweedie Distributions by noting that k"(6) =  ^  =  pp and the

14



(2.11)

mean is given by ft =  k'(9).Hence

p _  62k _  8 / <5k . _
“  ^ 2) ~  W s e ’ ~  Jo

Taking the reciprocals on both sides and integrating with respect 
to n gives

« - ( £ ? •  (2.12)
{ logl i , p = l

By setting the arbitrary constant of integration to 0,and noting 
that /i =  k'(0),gives

m  =  \ f 4 ’ p ^ 2 (2.i3)
l logn, p=2

Thus the Tweedie densities can be written as

fPi,y,^(f>) =  ap(y ,0 )e a :p {i[y ^ -^  -  - ] }  (2.14)

for p 7̂  (1, 2).
Tweedie distributions are the only EDMs which are closed un­

der re-scaling of the response variable,thus if y ~  EDp(fi, 0),then 
cy ~  EDp(c/.i,c2~p(f)).This makes Tweedie EDMs an obvious 
choice for modelling data when the unit of measurement is ar­
bitrary.

The function ap(y , 0) cannot generally be written in closed 
form apart from some of the special cases given above.The fol­
lowing methods are used to evaluate that part of the distribu­
tion.

2.4.1 Series Evaluation

If Y  £ EDp(n , 0) with 1 < p < 2,then Y can be represented as 

Y =  X x +  X 2 +  X 3 +  • • • +  X N (2.15)

15
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Table 2.2: Summary of Tweedie EDMs.p is the index parameter of the
Tweedie distri jution and y is the variable of interest

Distribution P Range of y
Extreme stable p <  0 (0,oo)

Normal p =  0 R
Do not exist 0 <  p <  1

Poisson P =  1 (0, oo)
Compound Poisson 1 <  p <  2 (0, oo)

Gamma P =  2 ( 0 , oo)
Positive Stable p >  2 (0, oo)

Extreme Stable ► oo R

Tweedie density functions

y

Figure 2.1: Some Tweedie density functions.p=1.5 corresponds to Compound 
Poisson distribution,p=2 corresponds to a Gamma distribution and p = 3  cor­
responds to the Inverse Gaussian distribution.In each case 0  is fixed at 0.75 
,the mean and variance are fixed at unity.

16
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where N has a Poisson distribution

X, are independent gamma random variables

Let A be the mean of N and let a and 7 be the shape and scale 
parameters of the Xj,with 07 and cry2 the mean and variance 
of X, respectively.Then the parameters are related by

x /*2- p
0(2 -  p)

(2 - P )a =  ---------r
(1 - p )

7 =  V 1
From this or otherwise it follows that

p {Y  =  0) =  e:rp(-A) =  exp{ ^ } (2.16)

and for Y >  0 that

a(y,<fi) =  ±W(y,ct>,p)(2.17)

with W(y,<j),p) =  Wj and

y~)n(p -  i) ° j
1 <Al<1-")(2 -  p ) i jr ( - ja )

For p > 2

with

and

a{y\4>) =  -^V{y,(P,p)Try

v  = '5 !  Vk
k=i

F(1 +  ak)0k(Q_1)(P ~  l )ak,

(2.18)

T(1 +  k)(p — 2)kyak
( — l )Ksin(—A,'7tq;)

17
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Note that Wj are all positive while Vk are both positive and 
negative. The series method has been used in this project to 
evaluate the Tweedie distribution.

2.4.2 Inversion of the Cumulant Generating Function

Tweedie densities have cumulant generating function of the form

Given the cumulant generating function,one method of evaluat­
ing the distributions is by using the Fourier inversion to invert 
the cumulant generating function using

where i =  \/—T-In the case 1 < p < 2,the continuous conditional 
density Y/Y > 0 is used to obtain

In both cases,the infinite oscillating integral is evaluated by con­
verting it into a series by determining the zereos of the integrand 
and integrating between them.Analytical analysis of the inte­
grand assists in locating the required zeroes and ensuring that 
the algorithms are known to converge.The convergence is made 
faster and more reliable by using an acceleration technique called 
the W-transformation implemented using the W-algorithm 

The series and the inversion methods work best in different 
parts of the parameter space as shown in the table below.

k{t) =  [k{9 +  <f>t) -  k(d)\/<j> (2.19)

roo
p{y ; 0) =  7T /  exPik(it) -  ity}dt (2.20)27T j- oo

}exp(—ity)dt

small y large y
1 < p < 2 both work well both are OK
p > 2 inversion best series best
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2.4.3 Saddlepoint Approximation of Tweedie Densities

In this method,the part of the density that cannot be written in 
closed form is replaced by a simple analytic expression as follows

=  (2-<'ji/'M /2e i ' p { II)/(M) } {1 +0(<t>)}
(2.21)

as </> — > 0 for Tweedie densities.The ratio of this approximation 
to the form of the density in (1) is p =  bp(y, (t))y/27T(fry?.Thus

=  -bP{^,0exp{-d(y,p)/{2(p)} (2 .22)

where £ =  (j)yp~2,and so the ratio of the density to the saddle- 
point approximation can be expressed as p =  bp(l, ^)\Z2n .̂p is a 
function of p not /i,and is a function y and </> only through ^.The 
ratio p is for each p and is an increasing monotonic function of 
p =  (fryp~2 for p > 3 and a decreasing monotonic function of p 
for 1 < p < 3 provided p is not close to 1.

Saddlepoint approximation evaluates Tweedie densities as fol- 
lows:the density is evaluated on a grid of values given the roots 
of a Chebyshev polynomial and then form the ratio p .For any 
necessary evaluation,a two-dimensional Chebyshev interpolition 
scheme is used to interpolate any values of the parameters,and 
hence find p.From p the density can be reconstructed/

2.4.4 Tweedie Distributions and the Quasi-Likelihood

The Tweedie Distribution has the following Quasi-Likelihood 
distribution (when setting the arbitrary constant, of integration 
to zero)

=  I i j j t r Ld»  <2-23)
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(2.24)

- / $  - ^ P)df‘

f  = /  (yn -f-

y/*1-p /«2~p
1 -  p 2 -  p

This equation has the same likelihood function as equation (2.14) 
except now there is no need to estimate a(?/,0).This is useful 
since the term a(y, 0) cannot always be written in a closed form 
or is of a form which is extremely difficult to evaluate.

2.5 Estimation of Parameters

2.5.1 Estimation of 0

Estimates of the parameter values, ft,are needed to fit a model to 
a dataset.The maximum likelihood method is used to estimate 
the parameters for GLMs,with the parameters being estimated 
numerically using an iterative procedure.The likelihood function 
is defined as,

((£;</) =  n  f (y ,0  (2.25)
2=1

where

• n is the sample size of the data set, and

• £ is the parameter of interest 

The corresponding log-likelihood is given as

/(£; y) =  loglfc y) =  log f{y\0  =  E  logj{y\i)
i = 1 i = l

The log-likelihood of an EDM is given as

i(y\6,<t>) =  E  y) +  t [yO -  fc(0)]
1=1 0

(2.26)

(2.27)
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Taking the derivative of /(y ;0 ,0 ) with respect to (3j in order to 
find the maximum likelihood estimates of (3j.

dl dl d#j dr/i
d/dj d#j d//,; dry d/?j

Each of these derivatives can be found individually, 

dl n 1 n 1
do'i i=i 0 i=l 0

since fii =  E[y\ =  k'{61)

(2.28)

(2.29)

2. The second component uses the relationship fii =  E[y\ =
k\9i)

d//-i __ dk'(^) =  k„ ^  =  (2.30)
d6>i d0j 

Taking the inverse
dtfj 1
. \i(  ̂ (2 ‘31 )d/Xi V(/ij)

3. The third component differentiates the link function g{ni) =

dr?i g(/fi)

Taking the inverse
d/ii d//i 

d/Zj

=  g ' M

l

(2.32)

(2.33)
g'(/fi)

4. The fourth component uses

Vi — Pox iO +  +  02xi‘2 +  - • • +  ftjx ij +  ' ‘ ‘ +  &rxir (2.34)

Thus the derivative of ry with respect to (5j is xtJ 

Therefore
rll 1 n f'v: — l l A  Y ::

(2.35)
dl =  1. " (yi -  /ii) xy

d0j 0 i=l {Vfii) g'(/Xi)
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The maximum likelihood is found by setting the above equation 
to zero and solving for j= l ,2,- • •, r.

The set of equations (2.35) can only be solved through numer­
ical techniques involving iteration,such as the Newton-Raphson 
method or the Fisher Scoring iteration.

The maximum likelihood estimate of ft does not depend on 
the dispersion parameter 0 but depends on 0.

The scoring iteration for (3 can be written as

pk+i =  (.XTW X )~ lX TW z  (2.36)

where W  =  diag{[^^]~2^ ^ } with variance function V( h) =

/jP,Z is the working vector with components Zi =  (̂ - { y  -  Hi) +  
g(fii) and all the terms are evaluated at the previous iterate 
(3k.The iteration may be started at Hi — Vi and converges reliably 
to the maximum likelihood estimate f3 for most link functions.

2.5.2 Estimation of 0

The maximum likelihood estimate for parameter 0 in the normal 
and inverse gaussian cases,is the mean-deviance estimator

0 =  - J 2 wid(yi,Hi) (2-37)
n *=i

/
where d(yt, Hi) is the unit deviance.

In other cases,the unit deviances are not sufficient for 0 and 
the maximum likelihood estimate of 0 must be computed itera­
tively from the full data.

However,given the estimated values for (3 and #,an unbiased 
estimate of 0 can be obtained from



2.5.3 Estimation of p

To fit a Tweedie GLM,an appropriate value of the variance 
power,p,needs to be found.This is determined by using the pro­
file log-likelihood function,with the maximum likelihood value 
from this function corresponding to the most appropriate value 
for p.The Tweedie profile function finds the most suitable Tweedie 
distribution for the given dataset using maximum likelihood 
methods.

The choice of p determines which member of the Tweedie 
family of distributions will be used in the analysis.Confidence in­
tervals for p are also produced (95%) and any p value within the 
95% confidence interval produce very similar estimates,models 
and residual plots.A log-likelihood plot is shown in figure 2.2

2.6 Diagnostic Testing

Diagnostic testing is used to determine whether the model ade­
quately fits the data.There are various diagnostic tests available 
for GLMs including Q-Q plots;scatterplots of residuals and co- 
variates;comparison of residuals sizes;and residual deviance.These 
techniques allow the suitability of the link function and assumed 
distribution to be tested,as well as testing of the data for influ­
ential values,outliers or patterns.

2.6.1 Deviance

To measure the appropriateness of a fitted model the difference 
between the fitted values /i and the observed values y is ob­
served.This measure of difference is called the deviance,D{y\/i),and 
can be calculated as follows.

D {y-y) =  cf>D*{y-y) =  20[Z(y; y) -  /(£; y)\ (2.39)
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1.2 1.4 1.6 1.8

p index
(95% confidence interval)

Figure 2.2- A typical log-likelihood plot.This plot estimates the maximum 
likelihood value of p.The points represent the computed likelihood values 
for differing p estimates,the solid line is a cubic-spline smooth interpolation 
through these points and the dotted line represents a 95% confidence interval 
for p.The estimate for this graph is 1.53
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where D* is called the scaled deviance and has an approximate 
 ̂ distribution and 1 is the log-likelihood function.The deviance 

is used to compare models.

2.6.2 Residuals

Residuals are a measure of how different expected values of the 
responses emerge from the observed responses.

Pearson and Deviance Residuals

The Pearson residual is defined by

r p,i
Yi -  Aj

V (A )1/2
(2.40)

where y  is the fitted value for y.
The Pearson residuals have mean zero and variance 0,if the 

sampling variability in fa, is small.
The deviance residuals are defined in terms of the unit de- 

viances.Let
% ,M ) =  yd ~ k{9) (2.41)

The deviance residual is

rd,i =  d(yi, fa)x/2sign{yi  -  fa) (2.42)

Pearson and Residual deviances converge to normality as 0 —> 
0 relative to the /v,,:,the Pearson residuals at rate 0((j)1̂ 2) by the 
central limit theorem and the deviance residuals at 0 (0) by the 
saddlepoint approximation to f(y,6,(J)).

R an d om ized  Quantile Residuals

Let F (y ; /i, 0) be the cumulative distribution function of f (y ,  0) .If 
F is continuous,then F(y; /i, 0) are uniformly distributed on the 
unit interval.In this case the quantile residuals are defined by

r q,i =  $ - l { F ( y i ] faj>)} (2.43)
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where <I>() is the cumulative distribution function of the standard 
normal distribution.In the discrete case,if a{ =  limy\yiF{yi\fo,#) 
and b, =  F (y*;/q ,0) the randomized quantile residual for yt is
defined by

rfll, =  ^ ( j i )  (2.44)

where /.q is a uniform random variable on the interval (a*, 6*].
In both cases the rq̂  are exactly standard normal,apart from 

sampling variability in fi and 0.This implies that the distribution 
of rq, converges to standard normal if (5 and 0 are consistently 
estimated.Quantile residuals have an exact standard normal dis- 
tribution(apart from sampling error)provided that the correct 
distribution is used.



Chapter 3

APPLICATION OF THE 
MODEL

3.1 Tweedie Rainfall Model

To model rainfall using the Tweedie distribution two assump­
tions need to be made.

• The amount of rainfall that occurs during any rain event 
follows a gamma distribution,with mean a'y and variance 
ary2 (Gam(a, 7)).

• The number of rainfall events during the time period (usu­
ally day or month) called N follows a Poisson distribution 
with mean A

Let i be a rainfall event and be the amount of rainfall that 
occurs during this event.Y represents the total daily or monthly 
rainfall,and is represented as the Poisson sum of gamma random 
variables,such that

Y =  Rl +  R2 +  --- +  RN (3.1)

This same setup can be applied to different timescales.For ex­
ample if Ri represents the amount of rainfall per month then Y
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is the total annual rainfall.Further it is assumed that Y follows 
a Tweedie distribution such that

p(y ; o, 0) =  a{y, <t>)exp{-[y9 -  fc(0)]}
0

with mean k’($) and variance 0V(/x) where V{p) =  pp-
Mathematically,the distributions are best analyzed using the 

parameterization;climatologically parameterization in 
terms of (A, a, 7) is more appropriate where:

• A is the mean number of rainfall events per month

• 7 is the shape of the rainfall distribution when rain occurs 
during the month

• a7 is the mean amount of rainfall per rainfall event 

The moment generating function of Y is

M (t) =  J exp {h y (9  +  t(f>) -  k(9)] +  a(y , 4>)}dy

=  exp{\[k{9 + 10) -  k{9)}} (3.2)
0

so the cumulant generating function is

K(t)  =  logM(t) =  — [k(9 +  t(j>) — k(9)\
0

=  i ^ K i  +  *0(i -  P) , r Y ~ r W ^  - 1] (3-3)02 - p
which is comparable to the cumulant generating function of

Z =  R\ +  /?2 T • • • T Rn (3-4)

,where N is Poisson(X) and,conditional on N,the Ri are inde­
pendent gamma(a, 7),which is

logM(t) = A[(l — 7t)~a -  1] (3.5)
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Note that Z is a Poisson mixture of gamma distributions since 
Z given N is gamma (Not, 7). It can be seen that by identifying 
terms in the cumulant generating functions Y has the same dis­
tribution as Z with

A =
2—P

0(2 -  p) 
(2 - p )

“  ( P - 1 )
7 =  0 ( p -  1)gp~1

A > 0 and 7 > 0 imply that g > 0 and 0 > 0 also.The density 
function can now be written as

(X)

/(y ;/a ,0 ) =  P (N  =  O)do(y) +  E  m  =  j)fz\N=j(y)
j=i

e / do(y) +  E
22, AJe ^y-?0 *e ŷ ‘

3=1
(3.6)

where do is the Dirac delta function at zero and fz\N is the 
conditional density of Z given N.Therefore

logfp(y\n,(f>)

where

—A, for y=0
7  -  A -  logy +  logWiy, X, a, o/), for y >  0.

(3.7)

W (y ,\ ,a ,y )  =  Y.
3= 1

A(y/7)jQ
j!r(jof)

As p —> 2 the distribution approaches a gamma(a, 7) distribu­
tion.As p -» 1 the distribution approaches Poisson(X)

The mean of the Poisson-gamma distribution is p.,and its vari­
ance is uar[Y] =  0/ip.The probability of obtaining 110 rainfall on 
any particular event is given by

Pr[Y =  0] =  exp(-X ) =  ](3.8)



3.2 Software

The software R has been used in analysis of rainfall data.In R 
there are only two(2) link functions that are available for use 
with the Tweedie distributions:the logarithm and the canoni­
cal link functions.The link function used in this study is the 
logarithm link function.Upon comparison of residual deviances 
produced by the two(2) link functions it was found that the log­
arithm link function produced the lowest residual deviances and 
thus is the most suitable link function to use.

3.3 Missing Data

One limitation of using GLMs to estimate parameters is that in­
complete datasets can complicate the analysis.If the data is miss­
ing completely at random(MCAR),consistent results can still be 
obtained.Approaches of dealing with missing climatic data in­
clude simple long-term averages,cross-correlation between near­
est rainfall stations,interpolation with surrounding stations, 
isoplepths or thiessen polygon methods.

The dataset contained a lot of missing values.However,the 
methods indicated were not used as some of these are not avail­
able in standard software. /

3.4 Diagnostic Testing

To assess the quality of the fitted distributions,quantile residu­
als have been used to infer the level of randomness of the de­
viances.Quantile residuals have an exact standard normal dis­
tribution (apart from sampling error) provided that the correct 
distribution is used.
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Chapter 4 

RESULTS

Rainfall records for twenty five stations spanning fourty one(41) 
years from 1961 to 2001 were analyzed and the following results 
were obtained.

There were 12300 months in total. A total of 961(7.8%) months 
either did not have any data or negligible amounts of rainfall 
were recorded.All the stations had some months with missing 
data.The station with the highest number of months with miss­
ing data was S8834098 which did not have data for 219(44.5%) 
months while the station with the least number of months with 
missing data was S9034025 which lacked data for only 3(0.6%) 
months.A total of 1,073(8.7%) months had recorded zero(0)mm 
rainfall.Only two stations did not have months with zero rain­
fall recorded,that is S9034025 and S9034088 but they also had/
three(3) and thirty eight(38) months of missing data respec- 
tively.The station with the highest number of months with zero 
rainfall was S8641000 which had 159(32.3%) months.There were 
10,266(83.5%) wet months,that is months that recorded rainfall 
amounts greater than 0mm.The maximum rainfall recorded in 
any month was 6.344.20mm in March 1978 in Station no.S9137089

Table (4.1) provides a statistical summary of the rainfall 
amounts for each month.From this analysis it can be seen that 
April is the wettest month,recording an average of 155.57mm of
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Table 4.1: A statistical summary of the monthly rainfall data for 
each month_____________________________ _________ _____________________
M ONTH Max Mean Median STD
January 480 41 14.10 68.85
February 486.8 37.02 12.10 54.92
March 6344.20 92 53.15 257.35
April 1299.10 155.57 136.90 106.18
May 1524.80 142.377 106.60 145.58
June 740.10 68.36 36.65 80.63
July 587.80 57.21 24.70 69.41
August 700.10 58.82 25.55 76.34
September 487 48.17 22.15 62.60
October 4656.60 78.57 49.40 167.62
November 622.60 133.35 92.60 96.71
December 3236.20 74.23 49.20 162.72

rainfall and February is the driest month,recording an average 
of 37.02mm of rainfall.

Table(4.2) shows the minimum rainfall,the median rainfall,mean 
rainfall,maximum rainfall,interquartile range,standard deviation 
and number of months with missing values per station.As the 
median is consistently lower than the mean,this suggests that the 
rainfall data is skewed. A plot of the individual rainfall amounts 
for each month from 1961-2001 is shown in Fig 4.2.The graph 
shows that the following 7 months recorded abnormally high 
rainfall amounts;October 1962,March 1963,March 1967,May 1967 
,March 1978,March 1981 and December 1985.With the removal 
of these high values,the mean and standard deviation do not 
change significantly.

This analysis indicates that the use of the Tweedie distribu­
tion to model rainfall is reasonable because the data has a dis­
crete component when rainfall amount recorded is zero(0)mm in 
a month and a continuous component when the rainfall amount 
recorded is greater than zero(0)mm.

The maximum likelihood values of p and 0 for each month
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Table 4.2: A statistical summary of the monthly rainfall data for 
each station

STATION MIN MEDIAN MEAN MAX IQR STD N/A
S8635000 0 2.60 22.86 3104.80 19.30 144.18 12
38639000 0 27 63.21 1425.70 69.30 100.56 11
S8641000 0 1.70 23.82 621.70 24.60 51.50 14
S8834001 0 103.80 112.50 1524.80 116.50 103.64 22
S8831098 0 100.20 104.60 341 110.35 71.81 219
S8840000 0 5.60 27.55 621.60 32.70 55.50 14
S8934096 0 158.20 164.60 551.40 120.15 90.57 9
S8935104 0 71 90 442.90 97.65 79.96 48
S8937022 0 46.40 58.70 301.40 60.70 48.97 50
S8937035 0 7.95 31.14 418.20 43.70 51.06 49
S9034025 0.30 93.95 114.63 517.90 92.98 78.62 3
S9034088 5.9 159.50 179.60 1299.10 111.80 116.17 38
S9036025 0 85.05 97.04 735.60 83.20 71.10 11
S9039000 0 7.15 32.82 700.10 35.50 62 21
S9134009 0 57.80 80.03 570.90 83 80.11 86
S9135001 0 41.70 74.20 4656.60 73 221.37 18
S9136130 0 40.60 82.74 2836.50 96.55 158.46 28
S9136164 0 47.3 87.80 622.60 1Q5.60 100.48 22
S9137089 0 25 82.95 6344.20 90.20 341.12 25
S9237000 0 12.45 56.86 2191.50 79.38 128.47 21
S9240001 0 39.60 85.07 917.10 106.55 121.80 27
S9338001 0 18.20 49.50 384.80 65.10 67.86 27
S9339036 0 70.60 109.50 742.10 123.20 117.60 38
S9340007 0 57.70 97.87 656.10. 124 109.50 38
S9340009 0 48.60 89.28 600.60 116.80 105.20 72
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Figure 4.1: Typical histograms for some of the rainfall stations.The his­
tograms shows that rainfall is skewed to the right.
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and the parameters expressed in terms of A (the mean number 
of rainfall events per month),7 (the shape of the rainfall distri­
bution when rain occurs during the month) and (17 (the amount 
of rainfall per rainfall event) are as shown below

Table 4.3: January results

STATION P <P A Cl 7 a-y
S8635000 1.679 6.363 8.224 0.962 0.474 18.038 8.545
S8639000 1.671 5.339 20.739 1.544 0.49 27.452 13.434
S8641000 1.536 7.545 1.958 0.39 0.867 5.793 5.02
S8834001 1.536 7.833 27.688 1.285 0.867 24.86 21.545
S8834098 2.199 0.809 29.108 -3.191 -0.166 55.081 -9.122
S8840000 1.603 8.789 11.508 0.756 0.658 23.127 15.223
S8934096 1.536 4.787 80.964 3.460 0.867 26.997 23.397
S8935104 1.637 6.804 33.415 1.447 0.571 40.467 23.086
S8937022 1.761 2.54 27.086 3.624 0.314 23.826 7.473
S8937035 1.614 6.665 16.861 1.156 0.628 23.219 14.58
S9034025 1.839 1.348 79.6 9.322 0.192 44.424 8.539
S9034088 1.476 4.126 112.96 5.51 1.102 18.606 20.502
S9036025 1.491 7.923 46.433 1.75 1.037 25.582 26.539
S9039000 1.723 6.101 17.725 1.312 0.384 35.179 13.515
S9134009 1.838 1.407 59.86 8.51 0.194 36.322 7.034
S9135001 2.363 0.208 89.748 -2.581 -0.267 130.49 -34.771
S9136130 1.743 5.449 69.408 2.123 0.346 94.428 32.687
S9136164 1.771 4.058 72.385 2.869 0.296' 85.148 25.229
S9137089 1.715 4.008 61.683 2.834 0.398 54.686 21.765
S9237000 1.783 4.229 44.567 2.483 0.278 64.626 17.947
S9240001 1.754 10.241 15.014 0.773 0.326 59.61 19.418
S9338001 2.316 0.754 46.572 -1.244 -0.240 155.794 -37.439
S9339036 1.747 3.719 25.972 2.422 0.339 31.645 10.721
S9340007 1.715 5.451 16.577 1.433 . 0.398 29.059 11.566
S9340009 1.691 4.176 9.134 1.535 0.448 13.298 5.952

The results for January indicate that 3 months had p val­
ues greater than 2 thus yielding negative values of cry,the mean 
amount of rainfall.S8834098 had 18(44%) missing observations
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for the month of january.Therefore data was not adequate to 
find the correct estimates of p.Figure(4.4)and figure(4.5) show 
that most of the residuals for S9135001 and S9338001 lie away 
from the line indicating normality,showing that the distribution 
is not appropriate for modelling rainfall in these 2 stations for 
the month of January.

Normal probability plot 
for S8635000

Standard Normal Quantiles

Figure 4.3: The Normal probability plot of the quantile residuals for S8635000 
which suggests that the fit is appropriate as the residuals lie close to .the line 
of Normality

It can be observed that in the quantile residual plots,some 
large values deviate from the normality line,indicating that a 
Tweedie distribution does not fit extreme values very well.Most 
of these deviations are observed in the rainy months of April,May,

37
1



Normal probability plot 
for S9135001

Standard Normal Quantiles

Figure 4.4: The Normal probability plot of the quantile residuals for S9135001 
which suggests that the fit is inappropriate as some of the residuals lie away 
from the line of Normality

Normal probability plot 
for S9338001

Standard Normal Quantiles

Figure 4.5: The Normal probability plot of the quantile residuals for
S89338001 which suggests that the fit is inappropriate as some of the resid­
uals lie away from the line of Normality
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November and december when high amounts of rainfall are ex­
pected.

Table 4.4: February results

STATION P 0 A a 7 a y
S8635000 1.614 5.177 8.611 1.15 0.628 11.934 7.5
S8639000 1.626 4.589 19.356 1.765 0 .6 18.32 10.968
S8641000 1.757 12.058 4.581 0.494 0.321 28.91 9.374
S8834001 1.626 5.25 48.62 2.152 0.573 39.43 22.593
S8834098 1.62 4.624 44.168 2.4 0.612 30.082 18.466
S8840000 1.605 5.719 7.745 0.994 0.653 11.942 7.794
S8934096 1.452 6.637 104.481 3.512 1.212 24.539 29.75
S8935104 1.571 6.089 35.84 1.795 0.75 26.632 19.974
S8937022 1.598 5.235 22.2 1.652 0.672 19.981 13.434
S8937035 1.625 13.552 13.791 0.526 0.601 43.57 26.2
S9034025 1.805 1.716 83.013 7.0732 1.242 48.481 60.318
S9034088 1.870 0.838 116.164 17.044 1.149 45.778 52.6
S9036025 1.376 8.438 51.162 2.216 1.663 13.886 23.1
S9039000 1.648 5.459 4.641 0.89 0.543 9.563 5.196
S9134009 1.614 4.768 64.457 2.712 0.628 37.85 23.762
S9135001 1.558 4.408 72.603 3.41 0.792 26.9 21.29
S9136130 1.678 5.741 41.846 1.8 0.476 48.827 23.257
S9136164 1.611 5.63 48.667 2.069 0.636 37 23.522
S9137089 1.575 7.972 37.114 1.3722 0.741 36.52 27.048
S9237000 1.666 6.742 29.79 1.379 0.5 43.114 21.589
S9240001 1.611 7.507 4.5 0.62 0.636 11.5 7.314
S9338001 1.729 4.451 24.17 1.965 0.373 33.015 12.3
S9339036 1.741 6.897 17.236 1.17 0.35 42.103 14.73
S9340007 1.738 6.837 10.237 1.026 0.356 28.056 9.973
S9340009 1.79 6.767 10.45 1.15 0.267 34.114 9.08

Table 4.4 shows that the mean amount of rainfall expected in 
the month of February ranges between 4.5mm and 116.164mm 
with most observations in the range 20mm-75mm.Mean number 
of rainfall events falls between 0.62-17.44 events.The correspond­
ing expected amount of rainfall in February is between 5.2mm
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and 60mm of rainfall.Results of the other months follow along 
similar lines

Table 4.5: September results

STATION P <t> A a: 7 <27
S8635000 1.703 12.197 5.213 0.451 0.422 27.378 11.563
S8639000 1.691 2.78 20.8 2.954 0.448 15.733 7.042
S8641000 1.654 6.465 1.561 0.522 0.529 5.658 2.993
S8834001 1.261 10.688 103.028 3.894 2.836 9.329 26.456
S8834098 1.456 3.471 98.692 6.103 1.102 14.677 16.172
S8840000 1.679 5.674 3.82 0.8434 0.474 9.559 4.528
S8934096 1.166 10.1 171.4 8.677 5.04 3.919 19.752
S8935104 1.166 11.188 45.331 2.582 5.040 3.483 17.555
S8937022 1.847 0.88 49.452 13.5 0.181 20.274 3.664
S8937035 1.51 5.82 2.646 0.565 0.962 4.871 4.686
S9034025 1.418 3.533 90.19735 6.684 1.393 9.686 13.495
S9034088 1.501 2.205 161.58 11.5 0.996 14.122 14.062
S9036025 1.572 1.356 104.794 12.601 0.747 11.136 8.316
S9039000 1.679 2.703 7.426 2.192 0.474 7.151 3.388
S9134009 1.378 5.033 32.852 2.806 1.649 7.102 11.709
S9135001 1.525 3.324 25.053 2.926 0.907 9.444 8.562
S9136130 1.679 2.749 18.597 2.895 0.474 13.559 6.423
S9136164 1.679 2.467 26.338 3.61 0.474 15.404 7.297
S9137089 1.593 5.073 5.714 0.985 0.687 8.452 5.804
S9237000 1.63 3.904 2.773 1.01 0.588 4.671 2.748
S9240001 2.426 0.242 53.038 -1.794 -0.3 99.026 -29.56
S9338001 1.74 3.457 13.585 2.192 0.352 17.621 6.198
S9339036 2.4 0.108 66.287 -6.342 -223 46.777 -10.453
S9340007 3 0.0242 53.678 -0.767 -0.5 139.865 -69.897
S9340009 1.893 1.122 40.246 12.365 0.12 27.124 3.255

Note that as predictors have not been included,//,has been es­
timated using sample mean.Maximum likelihood estimates for /r 
can be found based on the first 2 moments,even in the full gen­
eralized linear model case.This implies that only the first 2 mo­
ments of the distribution are necessary for maximum likelihood
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estimation of the linear predictor based on the distributional 
assumptions.

Table 4.6 to Table 4.10 show the results of some of the sta­
tions.In addition to the mean number of rainfall events and mean 
amount of rainfall per month,the tables also show the probabil­
ity of obtaining no rainfall in any particular month(Pr(Y=0))

Table 4.6 shows the results for station S8635000.The max­
imum rainfall expected is 96.4mm in March with 49mm ex­
pected in April.Three(3) rainfall events of 43.6mm of rainfall 
each are expected in March with the probability of no rainfall 
being ll%.Two(2) rainfall events each with about 31.5mm are 
expected in April with the probability of obtaining no rainfall 
in April being 21.1%.The driest month is September when ex­
pected rainfall is 5.2mm with about 1 rainfall event with 11.6mm 
of rainfall.The probability of obtaining no rainfall in September 
is 63.7%.Table 4.6 shows that expected rainfall is low in Jan­
uary and February(8.5mm).It increases to 96.4mm in April and 
decreases gradually to about 5.2mm in September and increases 
during the shorts rains to 27mm in November.On average about 
1 or 2 rainfall events can be expected in each month.However 
high amounts of rainfall are received in each rain event.The prob­
abilities of not receiving any rainfall are highest in June and 
September at 50.2% and 63.7% respectively.

Table 4.7 shows that the highest rainfall expected in station 
S8641000 is 91.6mm in April.High rainfall is also expected in 
October and November.The maximum number of rain events 
expected in this station are 4 in April and November.Two(2) rain 
events are expected in March.In all other months just one rainfall 
event is expected.January and February are most unlikely to 
receive any rainfall with the probability of receiving no rainfall 
being 67.7% and 61.1% respectively.

Table 4.8 shows that expected rainfall in station S8840000
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Table 4.6: S8635000 results

S8635000 P 0 M A Q 7 ay P (Y = 0 )
January 1.G79 6.363 8.224 0.962 0.474 18.038 8.545 38.2%
February 1.614 5.177 8.611 1.15 0.628 11.934 7.5 31.7%
March 1.877 6.437 96.351 2.2115 0.141 309.3 43.6113 11%
April 1.941 1.275 48.96 1.555 0.805 39.125 31.488 21.1%
May 1.648 4.895 21.56 1.17 0.543 23.206 12.6 31%
June 1.554 8.177 7.917 0.69 0.805 14.257 11.474 50.2%
July 1.7 6.487 19.144 1.246 0.429 35.36 15.384 28.3%
August 1.654 8.024 8.662 0.76 0.53 21.543 11.418 46.8%
September 1.703 12.197 5.213 0.451 0.422 27.378 11.563 63.7%
October 1.691 5.786 9.539 2.288 0.448 93.167 41.7 10.2%
November 1.752 5.544 27.059 1.648 1.33 49.8 66.214 19.2%
December 1.74 8.386 13.092 0.895 0.352 41.592 14.629 40.9%

Table 4.7: S 8 6 4 1 0 0 0  results

S8641000 P <t> V A a 7 ay P r(Y =0)
January 1.536 7.545 1.958 0.39 0.867 5.793 5.02 67.7%
February 1.757 12.058 4.581 0.494 0.321 28.91 9.374 61.1%
March 1.66 5.043 18.302 1.567 0.517 22.587 11.678 20.9%
April 1.421 6.93 91.561 3.403 1.373 19.595 26.902 3.3%
May 2.214 0.842 43.21 -2.474 -0.176 98.97 -17.419 -
June 1.539 3.136 0.593 0.566 0.805 1.3 1.046 56.8%
July 1.617 4.246 1.863 0.781 0.62 3.85 2.386 45.8%
August 1.421 1.812 0.468 0.615 1.373 0.554 0.761 54.1%
September 1.654 6.465 1.561 0.522 0.529 5.658 2.993 59.3%
October 2.444 0.28 57.455 -1.330 -0.307 140.485 -43.188 -
November 1.721 2.925 49.503 3.639 0.473 35.228 16.672 2.6%
December 1.679 7 11.034 0.962 0.474 24.218 11.472 38.2%

ranges between 86.5mm in November to about 3.8mm in Septem­
ber.The highest number of rain events is 4 in November with all 
other months expecting 1 or 2 rain events.August is the dri­
est month with the probability of receiving no rainfall being
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53.6%.November is the wettest month with the probability of 
not receiving any rainfall being 1.6%

Table 4.8: S 8 8 4 0 0 0 0  results

S8840000 P 4> V A a 7 P r(Y =0)
January 1.603 8.789 11.508 0.756 0.658 23.127 15.223 47%

February 1.605 5.719 7.745 0.994 0.653 11.942 7.794 37%
March 1.66 4.522 35.8 2.2 0.52 31.52 16.390 11.1%
April 2.336 0.122 86.401 -5.465 -0.251 62.904 -15.81 -
May 1.611 4.91 33.988 2.064 0.636 25.892 16.467 12.7%
June 1.613 4.443 3.034 0.894 0.631 5.382 3.394 40.9%

July 1.568 3.082 2.308 1.078 0.759 2.818 2.14 34%
August 1.482 4.244 1.837 0.623 1.074 2.743 2.946 53.6%
September 1.679 5.674 3.82 0.843 0.474 9.559 4.528 43%
October 1.666 5.338 34.501 1.83 0.501 37.653 18.855 16%
November 1.797 2.956 86.488 4.12 0.255 82.381 20.991 1.6%
December 1.581 6.07 26.311 1.548 0.722 23.528 16.995 21.3%

Table 4.9: S 8 9 3 5 1 0 4  results

S8935104 P <t> A a 7 a7 P r(Y =0)
January 1.637 6.804 33.415 1.447 0.571 40.467 23.086 23.52%
February 1.571 6.089 35.84 1.795 0.75 26.632 19.974 16.6%
March 1.62 3.802 78.41 3.629 0.612 35.32 21.616 2.65%
April 1.203 20.5 166.1681 3.602 3.923 11.761 46.132 2.73%
May 1.417 5.994 139.35 5.097 1.4 19.52 27.328 0.6%
June 2.188 0.423 78.335 -222.9 -0.011 31.233 -0.351 -
July 1.356 7.956 106.272 3.942 1.81 26.951 48.781 1.94%
August 1.1 24 116.87 3.361 9 3.863 34.767 3.47%
September 1.166 11.188 45.331 2.582 5.040 3.483 17.555 7.58%
October 1.428061 6.994 95.392 3.39 1.336 21.067 28.148 3.38%
November 2.524 0.053 135.233 -2.769 -0.344 142.155 -48.845 -
December 1.159 11.795 41.554 2.314 5.278 3.402 17.955 9.9%

Interpretation of results for other stations follow along similar 
lines.
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Table 4.10: S8937035 results

S8937035 P <$> i1 A a 7 c*7 P r(Y =0)
January 1.614 6.665 16.861 1.156 0.628 23.219 14.58 31.5%
February 1.625 13.552 13.791 0.526 0.601 43.57 26.2 51.9%
March 1.498 7.068 30.33 1.563 1 19.25 19.25 21%
April 1.648 1.568 82.930 8.576 0.542 17.83 9.67 1%
May 1.575 3.694 34.85 2.883 0.74 16.32 12.077 5.6%
June 1.62 10.547 4.581 0.445 0.612 16.822 10.293 64%
July 1.328 10.078 3.85 0.365 2.048 5.145 10.538 69%
August 1.65 9.468 3.428 0.464 0.54 13.71 7.403 62.9%
September 1.51 5.82 2.646 0.565 0.962 4.871 4.686 56.8%
October 1.642 4.305 39.686 2.424 0.558 29.343 16.374 8.9%
November 2.0745 0.681 99.286 -14 -0.07 102.327 -7.094 -
December 1.591 5.163 46.293 2.274 0.693 29.399 20.361 10.3%

The tables show that wet(dry) months are likely to be fol­
lowed by wet (dry) months which is indicative of the high degree 
of persistence in the prevailing weather conditions during the 
wet or dry months.
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Chapter 5

CONCLUSION

A rainfall model in which a GLM which follows a Tweedie dis­
tribution has been proposed.lt has been demonstrated that it is 
possible to model occurrence and amount of rainfall simultane- 
ously.The results show that it is possible to obtain a description 
of the behaviour of rainfall for a large number of stations some 
of which present data that are not of the highest quality.The 
results also provide valuable information regarding the length of 
rain events,the number of wet events and the amount of rainfall 
when rain occurs.They also establish clear differences among the 
wet and dry months.Further several extensions and refinements 
of the model are possible.

The use of a GLM to model rainfall,combined with the use 
of a Tweedie distribution,simplifies rainfall modelling by us­
ing only one model for the occurrence and amount of rainfall 
and provides an extension and advancement in modelling rain­
fall.Further there is a theoretical justification of using these dis­
tributions,since for 1 < p < 2,they can be seen as poisson sum 
of gamma distributions.The number of precipitation events has 
been modelled as a poisson distribution and the rainfall amounts 
with a gamma distribution.

An intercept only model was used enabling the predicted 
amount of rainfall for a particular month to be determined from
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the sample mean.It is however possible to include covariates in 
the model unlike in Markov chains or in the Exponential and 
Gamma distributions.

The Tweedie GLM model has a few shortcomings though.First 
the distribution is not able to model extreme events accurately 
as shown in the normal probability plots.Then GLMs assume 
that the responses are independent,but there is a consensus 
amongst researchers that rainfall is correlated and any rainfall 
model must take into consideration previous days’ or months’ 
rainfall into account,a phenomenon known as temporal depen­
dence. Further research into this area of modelling may include:

• Examining of different timescales for example daily or yearly.
The Tweedie family of distributions is not only applicable 
to the monthly but can easily be applied to yearly or daily 
timescales.

• Modelling rainfall taking into consideration that rainfall oc­
currences are not independent but rather are correlated.Generalized 
Additive Models(GAM)and Generalized Estimating Equa- 
tions(GEEs)are some of the techniques that may be appro­
priate.

• Each site has been modelled separately.Further research 
should be carried out on the likelihood of modelling var­
ious sites simultaneously. •

• Rainfall models that include predictors of rainfall should 
also be investigated.
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