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Preamble

This project aims at getting the solution of Magnetohydrodynamic flow equation 

between channels by the Laplace Transform Method under the influence of an applied 

transverse magnetic field

In so doing, we shall use the boundary conditions of the (low to convert the 

boundary value problem into an initial value problem The initial conditions are then 

determined, and the problem is subsequently solved.

The solution found is then presented in a graphical manner, where the graph has 

been generated using the Matlab programme, and an interpretation of the results is 

discussed

In chapter one, we have introduced the Magnetohydrodynamic equations from the 

Navier Stoke's equation of fluid flow.

In chapter two, we have introduced the Laplace integrals and Laplace Transforms, 

as well as some of their properties. Finally in chapter three, we have solved the MUD 

steady flow problem under the influence of an applied transverse magnetic field by using 

the method of Laplace transform The results have then been presented in form of a

graph for some Hartmann numbers.
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CHAPTER I

MAGNETOHYDRODYNAMICS

1.1 INTRODUCTION

Magnetohydrodynamics (MI ID) is the study o f the macroscopic interaction o f electrically 

conducting fluids with a magnetic field. These fluids include liquid metals and highly ionized 

gas-like substances called plasmas. MHD has played a role in developing generators and 

propulsion systems that use conducting fluids. MHD also helps scientists understand electric and 

magnetic effects around the earth and on the sun. These effects include sunspots, magnetic storms 

in the earth's magnetic field, and auroras (northern and southern lights).

The principles of MHD have many applications. They are used in MHD generators, which 

produce electricity from a high-speed stream of plasma. The plasma shoots through a duct in a 

magnet ic field, where it generates current that is drawn off by electrodes. MHD generators 

provide a highly efficient power source, but they are still in the experimental stage. MHD 

propulsion systems use electricity from a plasma or another conducting fluid to produce thrust. 

Such propulsion systems may someday be used to power submarines and space vehicles.

Investigation o f steady rectilinear flow o f an electrically conducting liquid along a uniform 

channel and under the action o f uniform transverse magnetic field is o f importance since 

electromagnetic measuring devices such as flow meters have been extensively used in the 

determination o f rates o f flows of fluids like blood, sodium, and sea water by measuring the 

potential difference induced in these fluids by motions through transverse magnetic fields.

T he principles o f MHD are also important in designing experimental fusion reactors. The 

fuel used in fusion reactors consists o f plasma that has been heated many millions o f degrees.
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Such extremely hot plasma would expand very quickly and would hit the walls o f a container. The 

plasma would then be cooled and would lose energy too quickly for a fusion reaction to occur. 

Physicists are trying to produce controlled fusion in super-hot plasma with confinement achieved 

by externally imposed magnetic fields.

In the absence of a magnetic field, a highly ionized gas behaves in most respects like a 

classical gas, but this behavior is modified in a striking manner when a magnetic field is applied. 

For example, it is possible to generate waves in an ionized gas having features more in common 

with electromagnetic waves than with dynamical waves.

An ionized gas is called plasma, when the distance at which the electric field o f a charge is 

shielded by neighboring charges o f opposite sign . called Debye Shielding Length, A,, in the 

ionized gas is small compared with the representative length of interest.

When the electron mean free path for collisions, / ,  in the plasma is smaller than the 

Larmor radius, rc [that is the radius of the helical path followed by a free electron in the applied 

magnetic field B ], the statistical description o f a plasma is sufficiently simple that by suitable 

averaging process, it may be replaced by a continuum representation.

Mironer (1979) has explained that “The continuum model of matter ignores the 

microscopic molecular structure o f matter and smears the mass o f the discreet molecules over the 

entire volume o f material. It excludes the occurrence o f a hole or void without matter and ignores 

any interactions between individual molecules. Instead it considers only the statistical average 

effects on certain gross macroscopic properties o f the material.”

This is because when the electron Larmor radius is less than the electron mean free path 

for collisions, the magnetic effects become predominant in the equation describing electron
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behavior and cause anisotropic electrical conductivity in the plasma.

The anisotropy that occurs is due to the fact that an electric field acts such that it has a 

component perpendicular to the magnetic field B. As well as the helical particle motions 

produced by the magnetic field, there is also an appreciable general drift o f particles in a direction 

which is perpendicular to the plane determined by the magnetic field and the transverse electric 

field component.

This then produces the surprising effect that the current that is caused to flow is not as 

might be anticipated from Ohm’s law parallel to the applied field.

The current produced by this anisotropy in the electrical conductivity o f the plasma is 

called the I fall current. If rc>/, the I fall current is negligible and the electrical conductivity o f the 

plasma may be considered to be a scalar.

L2 MAGNETOHYDRODYNAMICS EQUATIONS

In a continuous fluid, we may attribute density, pressure, velocity (which may have three 

independent components), temperature, viscosity, and thermal conductivity at any point.

In this paper, we shall have the following assumptions:- we neglect viscosity and thermal 

conductivity. We take the fluid as incompressible thus density is constant. We assume a steady 

state of flow in which the velocity at any point does not change with time. Further, we shall 

assume irrotational motion so that the curl o f  velocity vector vanishes.

A charged particle in motion suffers forces o f three kinds.

I It is repelled by particles of charge similar to its own and attracted by other particles of

opposite charge. The force on the particle per unit o f its charge due to all the other
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charges present being the electrostatic field, Es.

From Coulombs Law, the force F on a charge Q due to a single point charge q 

which is at rest a distance r away is

F (iQ
4m: r

(Portis 1978)

where 6 is the permitivity o f free space, and r is the separation vector from the location 

of q to the location o f Q. If there are several point charges, then the fore F becomes

F FI + F2 Q ,  <7i *72

•I r :  ' C + " ' ) r

where.

= Q E ,

E. I
4 ns  r r  r,

I lere, F is the electric field of the source charges. In fluids in consideration, we assume 

that the charge is continuous, and thus
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and since the charge fills a volume, with charge density o f t|f, then

dq = i|tdv

and

Gauss law is an important law that relates the flux o f a surface with the net charge q 

enclosed by the surface.

Flux is a property o f any vector field, and it refers to hypothetical surface in an electric 

field which may be closed or open.

The law, which is proved rigorously, by Grant, I. S., and Phillips, W. R. (1975), for 

example, states that

where s is the surface enclosing a volume element dv

In the limit when dv becomes infinitesimally small, we have

<*■->() dv e
1.2.1

Take the volume element dv to be a rectangular box with sides parallel to the axes and of
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lengths dx,dy,  and dz

The flux of E out o f the sides o f the box normal to the x-axis is

( 6Ex \
E  + (/x dydz -  E dydz

dx J

dEx
dx

dxdydz

There are similar contributions from the sides normal to the y- and z- axes, and the total 

flux out of the box is

f E.ds  =•'.v

\8EX dE BE
-------£_ + ----- —  +  ---------

l dx dy dz
dxdydz

Thus

dxdydz—yO dxdydz
[E .ds  f dE BE BE

■ + — — +
V dx dy dz

1.2.2

Div E

Comparing equations 1.2.1 and 1.2.2 reveals that

Div E q 1.2.3
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The curl of Es may be found by calculating the line integral o f this filed from some

point a to some point b i.e.

I Es.dl

Since in spherical coordinates dl = d r f  + d0 0  + r sin G d(j)4> ,

we find

E,.dl = Es ( drr + d66 + r s in9d(f>(f) )

V AKS

r (] \ ~
\ —z - r d r  . ( d r r  + dOO + r  s\n Odtfxfi )

\

Anr, r

This is because f  ,9 , and (f) are perpendicular unit vectors.

Thus

il
I 1 J i

Ane r 2
dr
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4ns

1
( \  

(J <1
V n, ra

The integral around a closed path, where ra = rh is 

J Es.dl = 0.

Using Stokes' Theorem, ( which is E.da = j cur/E .ds  ), we get

Or

V x Es =- 0.

Curl Es = 0. 1.2.4

Tiiis means that Es is irrotational.

Because curl Es = 0, the line integral o f Es around any closed loop is independent o f the 

path, and we can define a function

V(r) = - f  Es-dl

where 0 is some reference point. Thus

V(b) - V(a) = - I ’ Es .d l+  J[ E , . dl

= - f  E , . dl - f° E , . dl•>() Ja
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= -f Es .d l
Ja

From the fundamental Theorem on gradients, we have 

V(b) - V(a) = f  (W ).d l.

So,

f  ( V V ) .d l .= - f  Es dl

thus,

Es = - VV

or

Es = - grad V

V is known as the electrostatic potential ( in volts).

1.2.5

Charged particles moving in a magnetic field produce an electric field, Ef. Let B 

represent an applied magnetic field in Weber/nr. If the particle is moving with velocity u 

m/s it produces an electric field equal to u x B . The induced electric field is perpendicular 

to u and B .

That is

Ej = u x B 1.2.6
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If the magnetic field is changing with time, then per unit o f its charge, a particle suffers a 

further force E„ the induced electric field.

From Faraday’s law, a changing magnetic field induces an electric field, and the induced 

electric filed is equal to the rate o f change o f the magnetic flux.

The flux rule is

Which is Faraday’s law.

Stoke's Theorem is an important theorem that relates the line integral around a closed 

path of any vector field B to the surface integral o f curl B over the surface defined by the path. It

e =
- d i p

where (p is the flux and C is the induced e.m.f.

If the e.m.f is equal to the rate o f change of flux, then

and so E, is related to the change in B by

states that
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E .dl = ( cur lit. ds

Applying this Theorem, we get

cj Et .d l = \cu rlE l .ds

V x E ,  = - —  B 1-2-7
dt

As long as E, is exclusively due to a changing B ( with q -  0), then

V .E ^O . that is

div Ej = 0. l-2-J

I lowever, in this study, there is no applied electric field nor is the magnetic field changing. 

The magnetic field B of a steady line current is given by the Biot - Savart law, which is

1
- j  r  )dr, 
r

where 1 is the current.

The current density may be obtained by multiplying the current I with dl. If the charge 

density is .1 , then

B =
r

r  )dr./'
4 n
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Thus

V.B = J V.(J x \  r  )dr.
4 n r~

From the properties o f divergence, (see appendix) we know that 

V.(A x B) = B.(V x A) - A.(V x B),

which means that

1 1
V.( J  x —r- r  ) = —y r

r r

1
. ( V x J ) - J . ( V x  —j r  )

r~

But

1
J  x — r = V x J  = 0

This means that

V. B = 0.

That is

Div B = 0. 1.2.9

Again,

V x  B = —  ./ V x (J  x —y  f  )dv 
4 n r 2

And since V x ( A x B )  = (B.V) A - (A.V)B + A(V.B) - B(V.A),
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1 -  1 -  „  1 .
we get V x (J x 2 r  ) ~ J  (V. 2 r  ) - (J.V) 2 r .

r r r

We have dropped terms involving derivatives o f J  because we have assumed a steady 

fluid flow, thus the current density is constant..

Griffiths (1999) has shown that

V. - y  f  = 4 k 8 3 (r), 
r

where 6 is the Dirac symbol.

I’his means that

V x B = J L  J  4n J 83dv 
4n

-  pJ

Consider an elementary volume dv, with sides dx, dy, and dz, centered on the point (x, y, z). If 

the charge density varies with time, the charge within the volume element at time t is

p { x , y , z , t ) d v

and at time 1 + dt is

dP  up + — dt  
dt

dv

The charge flowing into the volume element during the time interval dt over the two sides
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of area dydz parallel to y-z plane is

J x( x - ^ d x , y , z , t ) -  J x( x + ^ ( d x , y , z , t ) j d y d z d t

ddA
dx

dxdydt

&u
dx

dvdt

Where ./  is the x-component o f the current density J  . The total charge flowing into the volume

element over all six sides during the time dt is

dJx ddv dJz
— -  + — -  + — - 

^ dx dy dz
dvdt

= -  divJdvdt

Since charge is conserved, then this charge must equal the change in the total charge 

withing the volume element. Hence

dp
—  dvdt = -d ivJdvd t 
dt

Hence
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Div.l
dp

J i

This is called the equation o f continuity.

The current density J  is related to the magnetic field B and electric field E by the Ampere 

- Maxwell law which is shown in equation 1.2.11.

In this equation, p is a constant equal to 4n  x 10'7.

p
curl B/p = J + e 0 —  E 1.2.11

It shows how the total electric field E affects the magnetic field B.

We can immediately see that the total electric field E suffered by a conducting fluid

in motion is

E -  Es + Ej

Equation 1.1.2 and 1.1.4 now become

d
Curl E = - —  B

dt

1.2.12

1.2.13

And

div E 1.2.14

•rom equations 1.2.4 and 1.2. 10, the total force acting on the charged particle therefore is
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F = E + u x B

This force is called the Lorenz force.

1.2.15

If the fluid were at rest, we get from Ohm’s law that the current density J is proportional 

to the force per unit charge, that is F

J = oF

From equation 1.1.13,

thus

F = E + u x B

J -  d(E  I u x B) 1.2.16

Where O is the electrical conductivity o f the fluid.

The equation o f motion for a viscous incompressible magnetofluid is given by a modification of 

the Navier-Stokes’ equation of fluid flow.

The modified equation become:

d
p( —  u + [u.V] u) = -Vp + (J X  B) +p l) V 2u + p g + qE 1.2.17

at

Where l) is the kinematic viscosity and p is the density of the fluid and g is the force due to

gravity.

In the absence o f an applied electric field, qE = 0 and the equation then becomes

d 1 1
—  u + |u.V]u = ---- (Vp) + — (J x B) + i) V gi + g
d t  p  p
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Let the flow be horizontal so that the effects due to the force o f gravity are neglected. The 

equation now becomes

d
~  '1 +fu.V] u 
at

1 1
— (Vp) -----(J x B) + i) V 2u
p  P

1.2.18

Because there is no external electric field. Es = 0 and so

V V = 0. 1.2.19

And J  = curl B 1.2.20

Since from equation 1.2.7 div B = 0, we have,

d
—  B = V x ( ii x B ) + K V^B 1.2.21
dt

Where K is the resistivity.

Experimentally, it is found that when a fluid flows over a solid surface, there is no relative 

motion between the fluid immediately adjacent to the surface and the surface.

The fluid at the surface sticks to the surface, but away from the surface, the fluid moves 

relative to the surface (Mironer, 1979).

Therefore this observation means that the liquid velocity at the walls o f the channel is

zero.

We shall measure the length (diameter) o f the channel from the middle, such tilt the walls
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are located at y = ± a .

Thus the velocity o f the liquid at these positions is zero.

We set out to get the solution o f equation 1.2.18 using the method o f Laplace Transforms.
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CIIAPTER TWO 

LAPLACE TRANSFORMS

2.1 INTRODUCTION

The Laplace transform operator L is very effective in the study of initial value problems 

involving linear differential equations with constant coefficients. T he equation we wish to solve 

involves boundary conditions that will be changed to initial conditions and solved by this method 

of Laplace transforms. In this chapter, we discuss the definition o f Laplace transform and its basic 

properties as well as deriving Laplace transforms o f some functions.

Let / (I) be any function. The Laplace transform of /  (t)  denoted by L{ /  (t)  } is

defined by

L ( / ( 0  } =  f"  2.1.1

If / . ( / )  and f 2(t)  have Laplace transforms and if c, and c2 are any constants,

z.(c-,/,(r)+ cJAO)- } + 2.12

2.2 PROPERTIES OF LAPLACE INTEGRALS

These properties are presented here without proof. Their proofs may be found in Thomson 

(1957) and in most books dealing with differential equations.

1 If the integral 2. 1.1 is convergent at a point ,v(), it is convergent at all points .v for which

Re(.v -  ,v()) > 0 . There are three possible cases for the Laplace Integral



1.1 The integral is divergent everywhere

1.2 The integral is convergent everywhere

1.3 There exists a number a c such that the integral is convergent for R e s> a c and 

divergent for Re.S' < CX£. . The number g  c is called the abscissa o f convergence of 

integral 2.1. 1.

2 If integral 2.1.1 is absolutely convergent at the point ,s() = C70 + i z0 it is absolutely and

Page -26-

uniformly convergent in the half-plane s > ,V0 .

3 If 2. 1.1 is convergent at the point „s0 = <70 + /T0 and if Q > 0 and k > 1 are given

constants, the integral is uniformly convergent in the domain A given the inequalites

,v -  .vr < k{a  -  G{))eQ((a~'T") ,a  > g ( 2 .2 .

4 If Gc < oo integral 2. 1.1 represents an analytic function if the variable s at all points of the

halfplane Re.S > errand

2 .2.2

An analytic function is a function o f a complex variable which possesses a derivative at every 

point o f a region.

5 Let L { / , ( / ) ,  L { f 2(t)}  be the Laplace transforms o f functions / , ( 0  and f 2(t)  . If
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both Laplace integrals are convergent at the point ,v()and

£ { / , ( *  o + " 0 } = L { f M  + « /) } ,

where the constants />  Oand n = 0 , 1,2 , . . . ,  then f t ( t )=  f 2 (t)  almost everywhere.

6 If the integral 2.1.1 is convergent at the point

,V„ = <T0 + /T0,cr > 0 , then

lime <v f f\u)du  = 0f > no •'O'

that is = 0 as t —> co . 2.2.3

A necessary and sufficient condition for convergence of integral 2.1.1 is that for some <70 > 0 and

/ -» oo ,

. / , ( 0  = }o/(w ) f /w =  0(e,o° ')

that is lime f f (u)du=  0 2.2.4/ > '/i -ii'

Theorem 1: If the integral (2.1.1) has an abscissa of convergence (T < °o , we have the limit

ds =lim
i [71 w e 0,/ < 0

|  f (u )du , t  > 0

where y > Cc,y > 0 . Hence for almost all t,
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m d  1

dt 2 ni

„ v/f t /'/* e
LUX  0 } "  ds;</) c

2 .2.6

where the integral is understood in the sense of the principle value. 

It follows from property 6 that

L U XO)
s

2.2.7

where

f \ ( t )  = jJ ( u ) d u , o  > <7c ,cr > 0 , and ,v = a  + ir

A constant Q exists such that / , ( / )  < Qc < Q ea°'((7 > <JC) for all / .  Hence

< Q
<J -  CJ,

2.2.8

Thus if

L { f  ( / )} = /  {t)c sldt,G > a c ,and f ( /)= j^f(u)du, the Laplace

transform of f \  1 will be
L U \ t ) }

s
,the Laplace transform being absolutely convergent for

a > a c.
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2.3 THE CONVOLUTION THEOREM

Let a(t) and b(t)  be functions o f a real variable t. The convolution o f these functions is the 

function c(t) given by

c(t)  = | a(t  -  x )b(x)dx 2.3.1

symbolically written as

c(t )  = a(/)* b(t )  2.3.2

The operation o f obtaining the convolution is called the convolution.

Convolutions are:

1. commutative,

a(t)* b(t )  = b(t)* a( t )  . 2.3.3

(2) Associative,

(a* b)* c = a* (b* c ) . 2.3.4

(3) Distributive with respect to addition.

1/ 7(7 ) + b(t)]* c ( t ) = a (t )* c(t )  + b(t)* c ( t ) .  2.3.5

Theorem (Convolution Theorem): If the integrals



and H M D }  = l / A n e - ' c / t
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are absolutely convergent for Re .S' > (7 a , then

£ ( / ( ' ) (  = H M n ) L { f A O )

is the Laplace transform of

AO = [ / , ( / -  0 ./2( 0 <* >*0

and the integral

/ / ( 0 =

is absolutely convergent for Re.v> <ja .

f the convolution o f functions o ( /) a n d  h{1) , are continuous for 0 < t < +oo ,

2.3.6

2.3.7

2.3.8

is identically

-ero, at least one o f these functions is identically zero.
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2.4 COMPUTATIONS OF SOME LAPLACE TRANSFORMS

We may compute the Laplace transforms o f some functions as follows

For the function e p' , we have

L( e p,) =  f  e - s,e p'dtJo

J*co
e H*~pVclt

o

F7or ,v < k , the exponent on e is positive or zero, and the integral diverges. For 

s > k the integral converges, thus

L ( e pl)= f ° e - {*-p),cft•'O

Thus

-  c (s- p)' 
s -  p

0 +
,v -  p

s -  p
, .v> pL { e p l ) 2.4.1



P age-32-

for p = 0, we find that

L( l )  = —, for s>0.
s
1

2.4.2

A sufficient condition for the existence o f the Laplace transform of f(t) is evident from 2.4.1. 

Since the integral

foo
e (s- pVdt

J ( )

exists for s>a, the Laplace transform exists for all functions l(t) satisfying the inequality

e ' 7 (0 < Ce
^ ( s - a ) f

where C is a constant. This is to say that fft) does not grow more rapidly than Ce'" , or that f(t)

is of exponential order, and that

l i m e  '7 ( 0  = 0

From elementary calculus.

e c (sin /w x -  m co sm x)
e ta sin  m xdx  = ------------- 5 ~----------- + c . 2.4.3

a + nr

Therefore, the Laplace transform o f (sin pt) is
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/  ( s iw p t )  = (  e *' sin  p td t

which means that

L (sin  p t )
.vsin p i  -  p  cos p i )

2 2s  + p

CO

0

for positive s, e~st -> 0 at t °o . Since sin(pt) and cos(pt) are bounded as 1 -» <« ,

the above gives

/.(s in  p t )  -  0 -
1(0 ~ P)

1 2

P
= —— -—^  , for s>0.

.S' + p~

In a similar manner,

L(COS p t )  = -~l------- j  , s>0.
,s2 + p -

2.4.5

In partial differential equations, we may find the Laplace transform of

/.
' d U '
V (It 2
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(assuming suitable restrictions) as follows.

L
d l P

V dt j

, dU
v' - - ...dt

dt

d U
dt

dt

Integrating by parts, we have

lim it?  s,U ( x , t )
P->m (,

P
0

rp
+ s  I eJo

J*oo

e~slU ( x , t ) d t  -  U ( x , 0)
0

= su( x , s )  -  U(x ,0)  

= su -  U ( x , 0)

where u -  n (x , s )  = L{U(x , t ) }  .

\ d 2U I dU
To find L \ ---- f , we let V -  ——, such that

( d r  j  dt

L{
d 2U

becomes L{
dV_
dt

U ( x , t ) d t



Thus,
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where

= sL{V)  -  V(x,Q)

= s[ sL{U)  -  U(x,0)]  -  U, (x,0)

= s 2u — . sU(x ,0 ) -  U , ( x , 0)

U'(x.O)
dlJ
dt t=o

and

u = u(x,s) = L{U ( x, t )}

We can similarly get the Laplace transform o f cosh t in the following way 

L{coshc//} = e v'c o s h  tdt

, e " + e~a>
= e " --------------dt

s
i 2s -  a ~

2 .4 .6



Page-36-

It is not difficult to show that

a
L{sinha/} = j

S -  a

2.5 PROPERTIES OF LAPLACE TRANSFORMS

For brevity, we shall denote

■v f c " f { t ) d t  by C { / ( 0 }*()

I Property o f Linearity: - 

Let

n

k=i
2.5.2

where C-k are arbitrary constants. I hen

i [ / ( 0 1 =  L Z q / » ( o
k-\

I  C , i [ / ,  ( /) ]
* = 1

* = 1
2.5.3
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Thus

r d
= L

/ ( / , A  + d X ) -  f ( t , X )  
dX

s,X + dX)  -  / ( .s ',A )  

dX

d
dX L{f{s,X)) 2.5.4

Property o f  Similitude: - 

For any constant a , we have

r  /
t '

\ a J

J»oo

. f
( t \  

\ a )
e s'd1

= a  J* f ( z ) e  as'dr

=aL{ f { a s ) } 2.5.5
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= a A '|" . / ' ( T ) e aV r  2.5.6

Laplace Transformation o f derivatives:-

From integration by parts, we can obtain

4 f  (/)}  = ■ i " L { f ( t ) } - s " - ' f ( . 0 ) - s ’- * f ’( 0 ) - s ’ -2f " ( 0 ) -  

s f {>1~2) (0) -  ,s/ (0).

. . .v/ (" 2) (0 ) -  / ("_,)(0).

where n is a positive integer. 

Differentiation o f Laplace Transforms 

For a positive integer n,

d nL { f ( t ) }
ds" J»00

t n f  ( t)e~sl dt
0

= (~ \ ) L { t nf ( t )} 2.5.9

d “c U S l A  .  ( _ \ y c { r f ( t ) 2.5.10

Laplace Transforms o f integrals
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L \ [ dx  W "  f ’ / ( v . V v
i  { / ( ' ) ! 2.5.1 1

Where n is a positive integer. 

6 Integration o f Laplace Transforms 

If

/•coJ L { f ( z  ) }dx
Jp

is convergent, it is the Laplace transform of m
t

that is we have

/•ooJ L { f ( r ) } d z 2.5.12

7 Given any positive r , assuming that f  ( t — T ) = 0 for t < r  , we obtain

J*oo
j \ t  -  z ) e : s,d t

r

J*O0
f  {u )e~ s{"+,) d u

0

that is L { f { t - T ) }  = e~stL { f { t ) } 2.5.13
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2.6 INVERSE LAPLACE TRANSFORMS

If the Laplace transform of a function F( t )  is / ( a) , then F{t)  is called the inverse Laplace 

transform of /  ( a) and is symbolically written as

F ( t ) =  L ' { / ( a)}

Where L ' is called the inverse Laplace transform operator.

2.7 PROPERTIES OF INVERSE LAPLACE TRANSFORMS

1 Linearity Property.

If c, and c2 are any constants while / ,  ( a) and f 2 ( a) are the Laplace transforms

of

F\ ( / )  and F2 ( 1) respectively, then

L '  ! c , / , ( ■ ' )  +  c 2j \ ( S) \  =  c , r '  { / , ( . * ) }  +  c 2 L - '  ! / 2 ( . s) )

= + t 2F 2( o

2 First Shifting Property 

If

r ' { / ( A ) } =  F ( f ) ,

then

L ' { f ( s - a ) }  = e a,F ( t )



Second Shifting Property 

If

L ~ ' { f { s ) ) =  F ( t ) ,

then

** / ;  ' {e~a\ f \ s ) }  = [ F(l-a),l>0 
( 0,/<0

Change o f scale property 

Given that

then

k
F

Inverse Laplace Transforms of derivatives
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= ( - i  y t " F ( t )

6 Inverse Laplace Transform o f Integrals 

If

then.

Multiplication by s"

Let

L~ ' { f { s ) }  = F ( t )  and F ( 0 )  = 0 ,

(hen,

L~ '{ s f ( s ) }= F'{1).

I his is to say that multiplication by s has the effect o f differentiating F( t )  

If

^ ( 0 )  * 0,

Then

L  F{ 0 )} =  F \ t )

Division by s
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ir

Then

L ' { f { s ) } =  F\ t ) ,

That is division by s (or multiplication by
1 has the effect of integrating F{t)  from 0 to t.

9 The convolution property

If

L ' { ./,( s) } = F\{t)  and L 1 {./2(>v)} = F2(t)  ,

then,

/ : / . ( M / . e o i  [ F ^ F ^ t  -  «)du

= F , ( t ) * F 2(t)

With this background knowledge, we are now ready to tackle our problem of solving the 

magnetohydrodynamic equation by this method o f Laplace transform.



CHAPTER THREE

SOLUTION OE MACNETOII YDRODYNAMIC EQUATION

There are several people who have looked at solutions of various types of flows of MUD 

equation.

Sherclif | 11>5f>| has studied the steady motion of electrically conducting fluid in pipes 

under transverse magnetic field. Singh and Ram 119781 have considered the laminar flow of an 

electrically conducting fluid through a channel in the presence of a transverse magnetic field, 

under the influence of a periodic pressure gradient. Simonura 119911 has considered MI ID 

turbulent channel flow under a uniform transverse magnetic field. Kayuzuki 119921 has discussed 

inertia effects in two dimensional Ml ID channel flow. Singh | 1993| discussed the flow of fluid 

in a channel under the influence of inclined magnetic field and solved the resulting differential 

equation by the method for solution of linear differential equations with constant coefficients. 

Again Singh | I996| considered the Ml ID unsteady flow of a dusty liquid through a channel under 

the influence of inclined magnetic field and solved the resulting equation using the Laplace 

transform method Singh 119981 discussed the unsteady MUD flow of liquid through a channel 

under variable pressure gradient, and again solved it using the Laplace transform method.

In the present analysis, we solve the Ml ID problem for a flow under constant pressure 

gradient and under the influence of transverse magnetic field using the Laplace transform method. 3

3 I TWO DIMENSIONAL MAC NETOII YDRODYNAMIC ELOW

For simplicity, we shall assume that (he flow is fully developed and thus has achieved a 

steady state of flow. The equation of continuity for the incompressible flow is
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Where u, v, and w are the components o f velocity o f the fluid in the x, y, and z directions.

We take the flow to be in the x-direction, and the applied magnetic field B to be in the y 

direction as shown in the figure below.

Where U is the velocity o f the liquid, Ejnd is the induced electric current, Fjnd the induced force and 

Bapp is the applied magnetic field.

We break down Equation 1.2.18 ,and write it in a form that describes flow in each o f the 

three directions as:-

du du du du 1 dp ( z 2- d u d 2u \d u Fx
— + u + v —  + w—  = ------------ + V n + 1 “f" +dt dx d y dz p dx l  dx d y 1 dz7) P

dv dv dv dv 1 dp ( 3 2 d v d 2v n 2 \d v K
—  + U----+ V---- + w  —  = ----------+ V + 3.1.3
dt dx dy dz p dy l  dx2 dy1 dz1 J p

And
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dw dw dw dw
—  + u —  + v —  + w —  = 
dt dx dy dz

1 dp 
p dw

d 2w d 2w
■+ v +

dx dy
+

d 2w ' 

dz2 i
F.

+ 3.1.4

Where Fx , F  , and Fz are the component o f J  x B in the x, y and z directions respectively.

For simplicity we shall consider a two dimensional flow.

In two dimension, equation 3.1.1 becomes

du dv
—  + —  = 0  3.1.5
dx dy

Since the plates are o f infinite length, we assume that the flow is only along the x-axis and depend

tn y.

fhus

du
—  = 0  3.1.6
OX

iince we have assumed a steady flow, the flow variables do not depend on time. 

Thus equations 3 .1.2 to 3.1.4 can now be written as

0
dp (  32

+ V
d u d u 

+
\

p dx V dx~ d y
+

/ P
3.1.7
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I dp
$y +

d~v d 2v
dy2 j

+ 3.1.8

Now. the flow is in the direction o f x only and from the fact that the plates making the channel is

dllof infinite length (hence —  = 0), we have
dx

so that the equations o f motion may now be written as

1 dp
0 =  + V

( d 2i ^

p dx v dy
Id

+ 3.1.9

1 dp Fy
d y + p

3.1.10

There is no component o f body force in the y-direction, and Fx = J x B  thus the equations above

become
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0 =  -
1 dp f d2u)

--------+ V ----- r-p dx \dy J
JxB

+ — —  
P

3.1.11

0 =  -
1 dp

p  f y
3.1.12

Equation 3.1.12 implies that the pressure does not depend on y. 

We have shown in chapter one that

J  = g E

and from equation 1.2.4, we find

E= f/x  B

Thus

.7 x 5  = a[{JJ x B) x B]

= a[(U.B)B - (B. B)U]

Since U and B are perpendicular ,

0 . B = 0

giving

. 7 x 5  = - B 7U

Thus
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.7 x B o B 2U
P P

3.1.13

The equation of motion now reduces to

1 dp d 2ii
+ v T T  p ox dy

3.1.14

and

0 =
1 dp

p
3.1.15

U  NON DIMENSIONALIZING

To simplify equation 3.1.13 further, we reduce the parameters in the equation by introducing the

following non-dimensional quantities

a

a
u' -  u ~

V
3.2.1

With these quantities, we see that,

du du du' dy'
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v du' 1 
a dy' a

v du' 
a 2 dy'

3.2.2

Therefore,

d 2u d du
dy2 dy dy

d v du'
dy' a 2

JL
dy '

v du' 
a 2 dy' a

V

=  ^  2
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Again,

Similarly,

dp'
dy'

dp dp' dx'
dp' dx' dx

7pv~ dp'
aCl dx'

dp dp' dy'
dp' dy' dy

p v 2 dp' 1
7a~ dy' a

p v 2 dp'
?>a dy'

13 and 3. 1.14, we get

0

3.2.4

3.2.5

3.2.6

and
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1 p v 2 dp' v d 2u' o B 2 v
_ -f V V ~~Z T" ~ W .

p  a 3 c/ p  a

For convenience, we shall drop the primes and write

dp d 2u oB2a 2
dx dy2 pv

or

0 =
dp d 2u 
dx dy2

cjB2a2
------- — ll

p v
3.2.7

We may write the above equation as

0 =
dp d 2 u 
dx + dy2

M 2u

Where

M = Ba and here, p = p V

3.2.8

M is known as the Hartmann number. It is directly proportional to 13, the magnetic field. 

We can differentiate equation 3.2.8 with respect to x and obtain
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0 = 3.2.9

Since p does not depend on y, we may write 3.1.15 as a total derivative thus,

0 = 3.2.10

We can therefore see that

d p
d x

-  constant. 3.2.11

And we can therefore take the total derivatives o f equation 3.2.8 instead o f partial derivatives. 

Let the constant in equation 3.2.1 1 be P. Equation 3.2.8 may now be written as

d  U ,
0  = P  +  M u

dy

d  u ,
— T -  M 2u = - P
d y

3.2.12

We solve this equation using the Laplace transform method .



Page-54-

3.3 SOLUTION OF THE EQUATION

d 2U .
From equation 2.4.6, the Laplace transform of — is

L = s2u -  su(0) -  7/'(0) (2.4.6)

-  P
while the Laplace transform of -  P is

Thus equation 3.2.12 becomes

S2U -  .S'?v(0) -  77'(0) -  M 2u
- P
s

or s2u -  M 2u =
p
- + .S'7/(0) + ?/'(())s

3.3.1

Since we do not know the values of u(O) and 7 / ( 0 ) .  we let

7/(0) = c, and ?/'(0) = c2 3.3.2

Expiation 3.3.1 now becomes
, , -  P + c ,s2 + C^S

s2u -  M 2u = ----------- 1--------- 3.3.3
S
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which gives

It
CyS~  +  C2S  - P 
s(s2 - M 2)

We may write the equation above as a sum of partial fractions, thus

cvs2 + c2s -  P A B D
+ ----- TT +

,v(.v2 -  M 2) .v s+ M s M
3.3.4

When this equation is simplified, it yields

6-.V2 + c2s -  P =( A  + B+ D)s2 + ( D -  B)Ms-  A M :

which gives the values of A, 13, and D as

A =
P

r 2

B

D

M '
c< c ̂

2 2 M  2 M J
c * c ̂ p

2 2 M  2 M ‘

3.3.5

When we insert the values above into equation 3.3.4, we obtain
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_  ------ _|_---------------- _ ---------------------- __ 4-
s M 2 2 ( s+  M ) 2 M ( s +  M) 2 M \ s +  M)

___ c \___________ ^2_____ ________^ ______
2(s  -  M ) 2 M( s  -  M ) 2 M 2 (s -  M )

P c, s c2 M

.sA/’ + ,v’ A/ + A/(.v2 A1 ’ )

/2s______

A /2(.S'2 -  A/2)
3.3.6

We now get tlie inverse Laplace transform of the equation above, remembering that

L 3.3.7

I v  1
1 .v3 -  M |

c, L c, cosh My 3.3.8

, 1 J C2 M  I _ _£2_ j \ |  M  |
| M(.v2 -  M 2)}  ” M " U 2 -  M 2 J

C“
sin h  My 3.3.9 

M

Similarly.

IP' j _
1 M 21

p
M 2

L
s 2 -  M 2 M :

cosh My 3.3.10
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and L 'u = u
■i

3.3.11

Thus.

P
u = — 7 - + c, cosh My + 

, M  1

v- 2
— sinh My 
M

cosh My 3.3.12

From the boundary conditions, we know that

1 1 -  0 When y = 1 or -  1

Inserting these conditions in equation 3.3.13 consecutively gives.

for y= I . ct cosh M + —  sinh M -  — y cosh M 
M M 2

3.3.13

and

The

for y=-1, we have

P

definition of cosh M is

■f 6*, cosh(- M)  + 2 sinh(- M) 
M

— yx o sh (-  M) 3.3.14

cosh M =
. M + e M

2

and sinh M
. M -  e- M

2
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We can therefore see that

co sh( - M)
M , Me + e

e M + e~M
2

co sh  M

similarly we can easily verify that

sin h (- M)  = -  sinh M

Thus equation 3.3.14 may now be written as

P P
0  = — y + c, cosh M  -  —”  sinh M  -  — y cosh M  

M  M  M 2

The simultaneous equations 3.3.13 and 3.3.14 now may be written as

P c P
0  = --..; + c. cosh M  + 2 sinh M  -  — 7 -cosh M

M 2 ' M  M 2

and
p  c P

0  = y + c. cosh M  -  2~ sinh M  -  — 7- cosh M
M  ' M  M~

Adding the two equations together gives



p
M 2
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0 =
P

M 2
f c, coslt M cosh M 3.3.15

which means that

P P

M 2 M 2 cosh M

Substituting this equation in 3.3.13 gives

Thus we find that

P P
u = — 7  + — ; cosh My 

M “ M
P cosh My 
M 2 cosh M

P
M 2

cosh My

or

P P cosh My
M 2 M 2 cosh M

P ( | cosh My  ̂

M 2 V cosh M )
3.3.17

This is the solution we were looking for.

It is clear from the equation that the velocity of the magnetofluid depends on the Hartmann 

number. The velocity decreases as the Hartmann number increases.

The velocity profile for different Hartman numbers is shown in the diagram below.





P A G E ..61

DISCUSSION Ol RESULTS AND CONCLUSION

We have successfully managed to use the boundary conditions to find the initial 

values that we had assumed to be c, and c2

These initial values have been used to solve the initial value problem that was found. 

Thus the boundary value problem was successfully converted to an initial value problem. 

I his initial value problem has been solved using the Laplace Transform method, and the 

solution found is similar to the solutions found using other conventional methods (see for 

example Singh [ 1993 ]).

It is clear from the figure on the previous page that as the value of the Hartmann 

number increases, the velocity of the fluid decreases.
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APPENDIXk—:-----------

IKEY VECTOR IDENTITIES.

Dendy (1993),

|Let A . I? and C be vectors. Then the following identities hold.

a i b b i a

AH I1A

A X B -B X A

A (B X C) -  C (A X B)= B (C X A)

A X (B X C) = B(A.C) - C(A.B)

(A X B) (C X D) = (A C)(B.I))-(A .D )(B.C) 

Key Results from Vector calculus

d d d
Operator: - V  =  — ~ +  — “ +  —

OX ov o z

~C(j) * d(b ~ d(f)
Gradient: V  (f) = i y — +  /  ^ -I- k

ox ' oy oz

For a vector field A ( x , y , z ) ,

dA v dAv dAz
divergence: V • A = — ~  + ——1 + - —

ox oy oz
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curl: V x A =

i i k
d 0 0
Ox dy Oz
< Ay

Where A = i A . + iA + kA•' •' V 2

V (V X  A) = 0

V X (V X A) = V(V ■ A ) -  V 2A 

For two vector fields, A( x , y , z )  and B( x , y , z )

V ( A x  B ) =  /i.(V x A) -  A (V x B)

V x ( A x  B) =  A(V ■ B)  -  B(V ■ A) +  ( B V ) A  -  ( A V ) B
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