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ABSTRACT

This study is about scattering matrices in the framework of quantum graphs. Such matrices
describing equi-transmission are studied. The matrices are unitary Hermitian and therefore
are independent of the energies of the associated system. In the absence of reflection, such ma-
trices exist only in even dimensions. A complete description of reflectionless equi-transmitting
matrices up to order six is given. In dimension six, 60 five-parameter families are obtained.
The relation among the 60 matrices yield a combinatorial bipartite graph K2

6

.

When reflection is considered the standard matching condition matrix generates equi-
transmitting matrices in dimensions n � 3. These are essentially the only equi-transmitting
matrices when the order of the matrix is odd for n  5. However when the order is even and
the trace of the matrix is zero, there are other equi-transmitting matrices for n  6. A complete
description of these zero trace matrices up to order six is given.

Interplay between arbitrary phases appearing in vertex conditions and magnetic fluxes
through the cycles in quantum graphs is discussed. It is shown that varying the vertex phases,
one obtains at most g-dimensional family of unitary equivalent operators, where g is the genus
of the graph.
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INTRODUCTION

A quantum graph can be considered as one-dimensional simplical complex on which is defined
a differential operator. This means that the edges are viewed as one-dimensional segments
joining the vertices. The edges thus have a geometrical interpretation and could be regarded as
physical wires for instance. The genesis of the field is attributed to the work done by Rueden-
berg and Scherr [RS53] in 1953 in calculating the spectra of aromatic carbohydrate molecules
following the suggestions given by L. Pauling in 1936. The concepts in quantum graph have
been used to study and model propagation of waves at a nano-scale. In particular, they are
used to give approximations of behaviour and gain insight of objects in mesoscopic physics
and nanotechnology. This explains why the underlying mathematical concepts have become
an important and interesting field in mathematics.

In scattering experiments, when waves propagated through a channel encounter a node there is
a possibility of the occurrence of either their reflection or transition. The measure of transition
and reflection probabilities are described in quantum physics by the square of the absolute
values of the entries of the scattering matrix. This matrix was first introduced to quantum
mechanics by John Archibald Wheerler [JA37]. In the 1940’s Werner Heisenberg developed the
theory independently and also introduced a unitary scattering matrix.

Part of this work focuses on cases of equi-transmission of waves through a vertex. In such cases
it is assumed that the incoming waves are transmitted through a node into other channels with
equal probability. We consider two different scenarios; namely, when there is no reflection
(back scattering) of waves and when reflection is allowed. We will call the corresponding
matrices reflectionless equi-transmitting and
equi-transmitting matrices respectively.

We also study the spectral theory of quantum graphs with regard to the unitary equivalence
of the various operators acting on the functions defined on the metric graph. We analyse
the dependence of the spectrum on the vertex phases introduced in the construction of equi-
transmitting matrices as well as on the magnetic fluxes present in metric graphs with cycles.

The order of our discussion is as follows. Chapter one gives a brief survey of the field of quan-
tum graphs with emphasis on the concepts deemed necessary in the subsequent chapters. Here
we also give a literature review and state the problem. Chapter two is dedicated to the study of
reflectionless equi-transmitting matrices while chapter three focuses on equi-transmitting ma-
trices. The scattering matrices obtained contain several arbitrary phase parameters. The role
of the so-called free parameters is in chapter four. In the conclusion we give a summary of the
results obtained and suggestions for further research.
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Chapter 1

QUANTUM GRAPHS

1.1 Introduction

In this chapter we give a brief survey of concepts of quantum graphs that are relevant to our
study. The definition of a quantum graph is given in section 1.2. Discussion of parameterisation
of self-adjoint vertex conditions is covered in section 1.3. In section 1.4 we study the spectrum
of the Laplacian on the quantum graph. Here we consider both a compact graph and a star
graph defined by a finite number of half lines. A survey of the concepts of both the vertex and
edge scattering matrices are found in section 1.5. In section 1.6 we give a review of literature
informing our research area. We also enumerate the specific objectives we set out to achieve.

1.2 Definition of a quantum graph

A quantum graph is a metric graph on which a differential operator is defined. Appropriate
vertex conditions are introduced in order to make the differential operator self-adjoint. In what
follows we give a description of each of the three components of a quantum graph.

1.2.1 Metric graph

A discrete or combinatorial graph is an ordered pair (V,E) of the set V = {x
i

} of vertices
and the set E of edges connecting the vertices. The set of edges can be viewed as the set of 2-
element subsets of V. In combinatorial graphs, the focus is on the vertices with edges serving
the purpose of indicating connectivity. A metric graph is obtained by assigning positive length
to the edges and the attention shifts to the edges. Consider N compact and semi-infinite edges
E

n

, each considered as a subset of an individual copy of R

E
n

=

8

<

:

[x
2n�1

, x
2n

] , n = 1, . . . , N
c

[x
2n�1

,1) , n = N
c

+ 1, . . . , N
c

+N
i

= N,

3



Chapter 1. QUANTUM GRAPHS

where N
c

(respectively N
i

) denotes the number of compact (respectively semi-infinite) inter-
vals. Let V = {x

i

} be the set of all endpoints of the intervals E
n

. On this set we define an
equivalence relation as follows. Two end points x and y are equivalent if either of the follow-
ing conditions hold

1. they are the end points of a loop, or,

2. they belong to two different edges and the two edges are coupled at the end points x and
y.

It therefore follows that the set V = {x
i

} can be partitioned into M equivalence classes V
m

,
m = 1, . . . ,M which we call vertices.

Definition 1.2.1 A metric graph � is the union of the edges E
n

with the end points belonging to the
same vertex identified

� =

N

[

n=1

E
n

/
x⇠y

,

The number d
m

of elements in the class V
m

is called the valence of V
m

. Note that in a metric
graph, intermediate points in an edge are also considered as points on the graph. The distance
between any two points on the graph is therefore the shortest standard (usual) metric distance
between them. This means that for any two points belonging to the same edge , the distance
between them is the usual length of the corresponding interval induced.

Suppose the metric graph � has loops at some vertices and multiple edges joining some ver-
tices. By introducing additional vertices on the loops and the multiple edges, we get a graph
without the loops and multiple edges. But the new graph is completely equivalent to the orig-
inal one. Thus where necessary in our discussion we will remove from the metric graph loops
and multiple edges.

(a) (b)

FIGURE 1.1: Graph (b) is obtained from graph (a) by introducing additional vertices.
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1.2. Definition of a quantum graph

A finite graph is compact if N
i

= 0. Each compact edge has the length l
n

= x
2n

� x
2n�1

, and
the total length of a compact (finite) metric graph is given as

L =

N

X

n=1

l
n

.

The inclusion of intermediate points on the edges enables one to define the Lebesgue mea-
sure on the graph. One can therefore define functions on �. Some function spaces that
can be defined on metric graphs are the space of smooth functions with compact support
C1

0

(� \V) =

M

En2E

C1
0

(E
n

), the Hilbert space L
2

(�) =

M

En2E

L
2

(E
n

) and the Sobolev space

W 2

2

(�) =

M

En2E

W 2

2

(E
n

). The boundary values of functions defined at the edge end point are

given by

u (x
j

) = lim

x!xj

u (x).

The boundary values of the normal derivatives are given by

@
n

u (x
j

) =

8

>

>

<

>

>

:

lim

x!xj

d

dx
u (x) x

j

is the left endpoint

� lim

x!xj

d

dx
u (x) x

j

is the right endpoint,
(1.2.1)

while that of the extended normal derivatives are given by

@u (x
j

) =

8

>

>

<

>

>

:

lim

x!xj

✓

d

dx
u (x)� ia (x)u (x)

◆

x
j

is the left endpoint

� lim

x!xj

✓

d

dx
u (x)� ia (x)u (x)

◆

x
j

is the right endpoint,

where a (x) is the magnetic potential of the magnetic Schrödinger operator (see the discussion
on differential operators below). In all these limits, x approaches x

j

from inside the corre-
sponding edge. The normal and extended normal derivatives are independent of the direction
in which the edge is parameterized.

1.2.2 Differential operators

Differential operators play the role of describing the wave dynamics along the edges in a metric
graph. The differential operators usually used on quantum graphs are

5



Chapter 1. QUANTUM GRAPHS

• Laplace operator

L = � d2

dx2

;

• Schrödinger operator

L
q

= � d2

dx2

+ q (x) ;

• Magnetic Schrödinger operator

L
q,a

=

✓

i
d

dx
+ a (x)

◆

2

+ q (x) .

The functions a (x) and q (x) are the magnetic and electric potentials respectively both of which
are real-valued. In addition the magnetic potential is continuously differentiable and the elec-
tric potential is locally square integrable and decays on infinite edges. Note that the differential
operators described here are not self-adjoint unless appropriate vertex conditions at the vertices
are introduced.

1.2.3 Vertex conditions

Vertices of valence one are called boundary vertices while those with valency greater than one
are called internal vertices. Vertex conditions defined at boundary vertices are therefore called
boundary conditions while those defined on internal vertices are called matching conditions.

Vertex conditions serve two main purposes. Firstly, for internal vertices, they indicate how the
edges are coupled together thereby describing the topology of the metric graph. Secondly they
are necessary to ensure that the differential operator is self-adjoint. The most commonly used
matching/boundary conditions, called standard (Neumann, or Kirchhoff) matching condi-
tions (SMC) are

8

>

<

>

:

u is continuous at every vertex V
m

X

xj2Vm

@
n

u (x
j

) = 0, m = 1, 2, . . . ,M.

The derivatives are taken in the direction moving away from the vertex, i.e. they are normal
derivatives (see (1.2.1)). One observes that in the case of a boundary vertex, that is a vertex
with valence one, the conditions reduce to a single Neumann condition @

n

u (x
j

) = 0. For the
vertex of valence two, the standard conditions imply that both the function and its derivatives
are continuous at V

m

. Hence the vertex can be removed and the two edges substituted with a
single edge whose length is the sum of the of the lengths of the two original edges.

Some other examples of the matching conditions that appear in the literature are as follows.

1. ��interaction: This matching condition is described by the following equations

6



1.3. Parametrization of Self-adjoint Vertex Conditions

8

>

<

>

:

u is continuous at every vertex V
m

X

xj2Vm

@
n

u
j

(V ) = ↵
m

· u (V ), ↵
m

2 R.

If ↵
m

= 1 then u (V ) = 0 the vertex ceases to be a single vertex, but a collection of
independent vertices of degree one.

2. �0�interaction: This is viewed as the dual of the ��interaction vertex condition. It is
described by the following equations

8

>

<

>

:

@
n

u
i

(V ) = @
n

u
j

(V ) , i 6= j
X

xj2Vm

u
j

(V ) = �
m

· @
n

u (V ), �
m

2 R.

If �
m

= 1 then @
n

u (V ) = 0 and from the first condition this matching condition becomes
the Neumann condition.

Suppose vertex conditions at a vertex V can be partitioned into conditions connecting bound-
ary values belonging to vertices V 0 and V 00 such that V = V 0 [ V 00 and V 0 \ V 00

= ?, then
such vertex conditions are not properly connecting. If such a partitioning is not possible the
vertex conditions are properly connecting. This study deals with properly connecting vertex
conditions only.

We now give a formal definition of a quantum graph.

Definition 1.2.2 A quantum graph is a metric graph furnished with a differential operator which acts
on functions defined on the edges. The functions satisfy certain vertex conditions so as to make the
differential operator self adjoint.

1.3 Parametrization of Self-adjoint Vertex Conditions

In discussing various self-adjoint parametrization of vertex conditions we restrict ourselves
to a star graph � =

S

N

n=1

([0,1)) whose central vertex V has valence N . A number of such
parametrization have emerged in the development of the field of quantum graphs and below
we consider some of them. Suppose the domain of the Laplacian defined on � is the Hilbert
space L2

(�) =

M

En2E

L2

(E
n

). Then the solution of the differential equation �u00
(x) = �u (x),

� = k2 is given by

u (x) = aeikx + be�ikx, x 2 E
n

.

Since the differential operator is of second order, it follows from the theory of ODE that two
boundary conditions are necessary for each edge to obtain a solution.

7



Chapter 1. QUANTUM GRAPHS

In [KS99] Kostrykin and Schrader introduced the parameterization of vertex conditions at a
vertex V with valence N as

Au (V ) +B@u (V ) = 0, (1.3.1)

where u (V ) and @u (V ) are the vectors of the limiting values at the vertex of the function,
{u (x

j

)}
xj2V

, and its normal derivatives {@
n

u (x
j

)}
xj2V

while A and B are two N ⇥N matri-
ces. This parametrization results in a self-adjoint vertex conditions if and only if the N ⇥ 2N

matrix (A,B) has maximal rank and the matrix AB⇤ is Hermitian – see [PK14, BK10] for a
detailed account. However the parametrization fails to be unique, for suppose we multiply
the above equation from the left by an invertible N ⇥ N matrix C. Then we obtain the condi-
tion CAu (V ) +CBu0

(V ) = 0 where the matrix (CA,CB) has maximal rank and the matrix
CA (CB)

⇤ is Hermitian.

To address the problem of uniqueness, Harmer in [H00] defined another self-adjoint boundary
parametrization which can be formulated as follows. Consider the symmetric Laplace operator
L in the Hilbert space L2

(�) =

M

En2E

L2

(E
n

) whose domain is given by

Dom(L) =
M

En2E

C1
0

(E
n

) .

The self-adjoint extensions of L are the functions satisfying the boundary conditions

i (U⇤ � I)u (V ) + (U⇤
+ I) @u (V ) = 0 (1.3.2)

at the vertex V , where U is a unitary N ⇥ N matrix. Here u (V ) and @u (V ) are vectors of the
boundary values of a function and its normal derivatives respectively at V .

In [KN10] Kurasov and Nowaczyk gave an equivalent parameterization described as follows.
To the Laplace operator defined on � the corresponding maximal and minimal operators are
given by the same formal expression as L but their domains are defined as Dom(L

max

) =

N

M

j=1

W 2

2

((0,1)) and Dom(L
min

) =

N

M

j=1

C1
0

((0,1)) respectively. The following theorem gives

the associated self adjoint extension.

Theorem 1.3.1 The family of all self-adjoint extensions of the minimal operator L
min

can be uniquely
parameterized by an arbitrary N ⇥ N unitary matrix S, so that the operator LS is the restriction of
L
max

= L⇤
min

to the set of functions satisfying the matching conditions

i (S� I)u (V ) = (S+ I) @u (V ) . (1.3.3)

8



1.3. Parametrization of Self-adjoint Vertex Conditions

This parameterization is identical to (1.3.2) provided S = U⇤. As will be seen later, the param-
eterization (1.3.3) also has a clear physical interpretation, namely, for the value of the energy
k = 1 the matrix S coincides with the vertex scattering matrix1.

Now we establish the relation between the matching conditions (1.3.1) and (1.3.3). For matrices
A and B satisfying the conditions prescribed in (1.3.1), define the matrices A� iB and A+ iB.
We have that

(A� iB) (A� iB)

⇤
= AA⇤

+BB⇤

= (A+ iB) (A+ iB)

⇤
= (A,B) (A,B)

⇤
(1.3.4)

Next we observe that

rank (A� iB) = rank

�

(A� iB) (A� iB)

⇤�

= rank

�

(A,B) (A,B)

⇤�
= rank ((A,B)) = N.

Similarly rank (A+ iB) = N . Since the ranks are maximal, the matrices are invertible. Now
define

S = � (A� iB)

�1

(A+ iB) .

Then

SS⇤
=

⇣

(A� iB)

�1

(A+ iB)

⌘⇣

(A� iB)

�1

(A+ iB)

⌘⇤

= (A� iB)

�1

(A+ iB) (A+ iB)

⇤
⇣

(A� iB)

�1

⌘⇤

= (A� iB)

�1

(A� iB) (A� iB)

⇤ �
(A� iB)

⇤��1

= I.

Thus S is unitary. On the other hand if we choose A and B as

A = i (S� I) and B = S+ I,

we find that
rank (A,B) = rank (S� I,S+ I) = N

and

BA⇤
= (S+ I) (i (S� I))

⇤
= �i (S+ I) (S⇤ � I)

= i (S� S⇤
) = i (S� I+ S⇤S� S⇤

) = i (S� I) (S⇤
+ I) = AB⇤

showing that (A,B) is of maximal rank and BA⇤ is Hermitian.
1See definition 1.5.1

9



Chapter 1. QUANTUM GRAPHS

The parameterization (1.3.3) is equivalent to one involving a Hermitian matrix as shown in the
following theorem[PK14].

Theorem 1.3.2 The matching conditions (1.3.3) are equivalent to

8

<

:

P�1

u = 0

H (I�P�1

)u+ (I�P�1

) @u = 0,
(1.3.5)

where P�1

is the spectral projector for S corresponding to the eigenvalue �1,

H = (I�P�1

) i
I� S

I+ S
(I�P�1

)

is Hermitian. Note that the operator I+ S is invertible on the orthogonal complement to P�1

CN .

From the equivalence established it follows that the matching conditions (1.3.3) can be consid-
ered as certain combination of Dirichlet and Robin type boundary conditions. Thus it is the
most general vertex conditions for a star graph so that the associated Laplacian becomes self-
adjoint. It also unique since there is a one-to-one correspondence between the set of self-adjoint
extensions and the set of unitary matrices S.

1.4 Spectrum of the Laplacian on the Metric Graphs

Consider first the simple example of a metric graph- a single interval.. Suppose the Dirichlet
boundary conditions are imposed at each end point, then the eigenvalues of L are given by

�
n

=

n2⇡2

l2
, n = 1, 2, . . . ,

where l is the length of the interval. The corresponding eigenfunctions are

u
n

(x) = sin

⇣n⇡x

l

⌘

, n = 1, 2, . . . .

On the other hand when we impose Neumann boundary conditions at each end point, the
eigenvalues of L on the compact edge are

�
n

=

n2⇡2

l2
, n = 0, 1, 2, . . . ,

while the corresponding eigenfunctions are

10
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u
n

(x) = cos

⇣n⇡x

l

⌘

, n = 0, 1, 2, . . . .

If on the other hand the compact edge is replaced by the whole real line, then the operator L

will have the continuous spectrum [0,1). In this case the operator does not have eigenvalues
and eigenfunctions in the classical sense. The solutions of Lu = �u are linear combinations
of e±i

p
�x. These oscillate if � > 0, they are constant if � = 0 and grow in either direction if

� 2 C \ [0,1). Instead, the Laplacian has generalised eigenfunctions

u (x) = eikx, k 2 R

with generalized eigenvalues � = k2. Suppose the Laplacian is considered on the domain
�

u (x) 2 W 2

2

([0,1)) : u0
(0) = hu (0) , h 2 R

 

. The spectrum may have some negative eigen-
values besides the continuous spectrum (if h < 0).

We now discuss the spectrum of a star graph formed by N semi-infinite edges connected to one
vertex V . The Laplace operator L = � d

2

dx

2 is defined on the set of functions from W 2

2

(� \ V )

satisfying the matching conditions (1.3.3).

The spectrum of the Laplace operator consists of absolutely continuous spectrum [0,1) of
multiplicity N and may be a finite number of negative eigenvalues. The absolutely continuous
spectrum is the same for the Laplacian defined on the functions satisfying the Dirichlet and
Neumann conditions at the vertex, but the generalised eigenfunctions are different.

The Laplacian with the matching conditions determined by (1.3.3) is a finite rank perturba-
tion (in the resolvent sense) of the Dirichlet Laplacian and therefore the absolutely continuous
spectrum is preserved. This means that the difference between the resolvents (L

S

� �)�1 and
(L

D

� �)�1 is a finite rank operator. Here L
D

and L
S

are the Laplacian with Dirichlet and stan-
dard matching conditions described by (1.3.3) respectively. Moreover the Laplacian on a star
graph can have at most N negative eigenvalues.

The number of negative eigenvalues is determined as follows. Every eigenfunction is of the
form

u (x) = e��xa, � > 0,

where we use vector notations. The functions satisfy the equation

� d2

dx2

u = ��2u.

The corresponding possible eigenvalue is � = ��2. The function u is an eigenfucntion only if
it satisfies the matching conditions

11



Chapter 1. QUANTUM GRAPHS

i (S� I)a = �� (S+ I) @a. (1.4.1)

Recall that the map

z 7! i
1� z

1 + z

maps the unit disc on to the upper half-plane. The lower unit semicircle is mapped onto the
negative semi axis and the upper unit semicircle is mapped onto the positive semi axis. Let us
write the vector a using the eigenvalues of e

j

of the unitary matrix S; a =

X

a
j

e
j

. Then (1.4.1)
can be written as

i
�

ei✓j � 1

�

a
j

= ��
�

ei✓j + 1

�

a
j

.

It therefore follows that when ✓
j

= 0 and ✓
j

= ⇡, the corresponding a
j

are equal to zero. In all
cases we have

�
j

= i
1� ei✓j

1 + ei✓j
=

sin (✓
j

/2)

cos (✓
j

/2)
.

All such �
j

are real numbers, but only positive �
j

lead to eigenvalues; with the corresponding
eigenfunctions being square integrable. Therefore every ✓

j

2 (0,⇡) determines an eigenvalue
of the Laplace operator with matching conditions (1.3.3). This therefore means that the spec-
trum of the Laplacian on the star graph with N semi-infinite edges determined by the matching
conditions (1.3.3) is given by

1. the absolutely continuous spectrum [0,1) of multiplicity N .

2. finite number of negative eigenvalues �2
j

= �
⇣

sin(✓j/2)

cos(✓j/2)

⌘

2

, where ei✓j are the eigenvalues
of S lying on the upper unit semicircle.

The following theorem [PK14] characterises the spectrum of the Laplacian on a quantum graph
with the boundary conditions defined by the standard matching conditions.

Theorem 1.4.1 The spectrum of the standard Laplacian on the quantum graph � contains the branch
of absolutely continuous spectrum [0,1) with multiplicity equal to the number N

i

of infinite edges in
�. The negative spectrum consists of a finite number of eigenvalues. If � is compact, then the spectrum
is pure discrete with unique accumaltion point +1, satisfying the Weyl’s asymptotic law

�
n

⇠ ⇡2

L2

n2, n ! 1

where L is the total length of the compact graph.

12



1.5. Scattering Matrices

1.5 Scattering Matrices

1.5.1 Vertex Conditions and Vertex Scattering Matrix

Related to the study of coupling of edges at a vertex is the concept of scattering of waves. The
scattering of waves at a vertex is described by means of the vertex scattering matrix. The study
of scattering of waves in a quantum graph requires the analysis of scattering at a vertex. It thus
suffices in such studies to consider a star graph. For such a graph whose central vertex V has
valence N , consider arbitrary solution to the equation �u00

= k2u given by

u (x) = a
j

eik(x�xj)
+ b

j

e�ik(x�xj), x 2 E
j

. (1.5.1)

Let the amplitude of the incomming wave along edge E
j

be b
j

while that of the outgoing
wave along edge E

i

be a
i

with the corresponding vectors given by b and a respectively. The
amplitudes a

j

and b
j

are not independent since u in (1.5.1) should satisfy the vertex conditions.
The relation between a and b is described by the vertex scattering matrix.

Definition 1.5.1 The d
m

⇥ d
m

unitary matrix S
V

(k) such that

a = S
V

(k)b, (1.5.2)

is the vertex scattering matrix.

We now discuss the relation between the scattering matrix and the self-adjoint vertex condi-
tions parameterization (1.3.3). The vertex value of the solution (1.5.1) at the vertex V in the

star graph � =

dm
[

j=1

[0,1) is u (0) = a + b. The value of the normal derivatives at the vertex is

@
n

u (0) = ik (a� b). Substituting these values into equation (1.3.3) we obtain that

(S� I) (a+ b) = k (S+ I) (a� b) .

Substituting the value of a from (1.5.2) into this equation and simplifying one obtains

S
V

(k) =
(k + 1)S+ (k � 1) I

(k � 1)S+ (k + 1) I
, k 6= 0. (1.5.3)

It can be observed that for k = 1, the unitary matrix S parameterizing matching conditions
is precisely the vertex scattering matrix, that is S

V

(1) = S. This makes the parameterization
(1.3.3) special in that it has relevant interpretation, namely, the matrix S can be considered as
the scattering matrix.

13



Chapter 1. QUANTUM GRAPHS

Plugging the orthogonal decomposition of S given by

S =

dm
X

n=1

ei✓n h, e
n

i e
n

into (1.5.3) we obtain

S
V

(k) =
dm
X

n=1

k
�

ei✓n + 1

�

+

�

ei✓n � 1

�

k (ei✓n + 1)� (ei✓n � 1)

h·, e
n

ie
n

.

From this equation it can be seen that both S and S
V

(k) have the same eigenvectors. The
eigenvalues of S

V

(k) may depend on the energy k. For the eigenvalues ei✓n = 1 and ei✓n = �1

of S, the corresponding eigenvalues of S
V

(k) are also 1 and �1 respectively and for those

values of k, the quotient k

(

e

i✓n
+1

)

+

(

e

i✓n�1

)

k(e

i✓n
+1)�(e

i✓n�1)

is independent of k. All the other eigenvalues tend
to 1 as k ! 1. The high energy limit of S

V

(k) exists [PK14] and is given by

S
V

(1) = lim

k!1
S
V

(k) = �P�1

+ (I�P�1

) = I� 2P�1

.

It follows that if S is chosen such that the spectrum � (S) = {±1}, then the corresponding
vertex scattering matrix is independent of the energy. For this to happen it is necessary that S
should not only be unitary, but also Hermitian.

1.5.2 Edge Scattering Matrix

We now discuss the edge scattering matrix. Consider the edge E = [x
1

, x
2

] which is embedded
in the real line R. The solution of the differential equation

� d2u (x)

dx2

= �u (x) , � = k2, (1.5.4)

on R are generalized eigenfunctions which describe scattered waves along R and we write as
follows

u (x) =

8

>

<

>

:

a
1

e�ik|x�x1|
+ b

1

eik|x�x1| x < x
1

,

a
2

e�ik|x�x2|
+ b

2

eik|x�x2| x > x
2

.

In this representation, e�ik|x�xj |, j = 1, 2 are waves coming into the edge E through the vertices
x
1

and x
2

, while eik|x�xj | getting out of the edge through the same vertices. It follows that

@
n

u (x) =

8

>

<

>

:

a
1

ike�ik|x�x1| � b
1

ikeik|x�x1| x < x
1

,

�a
2

ike�ik|x�x2|
+ b

2

ikeik|x�x2| x > x
2

.

14
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At the vertices x
1

and x
2

, the solution and its derivative have the following data.

 

u (x
1

)

@
n

u (x
1

)

!

=

 

a
1

+ b
1

a
1

ik � b
1

ik

!

and

 

u (x
2

)

@
n

u (x
2

)

!

=

 

a
2

+ b
2

�a
2

ik + b
2

ik

!

.

We introduce a mapping of the data at x
1

to x
2

called a transfer matrix

T (k) :

 

u (x
1

)

@
n

u (x
1

)

!

!
 

u (x
2

)

@
n

u (x
2

)

!

leading to

T

 

a
1

+ b
1

a
1

ik � b
1

ik

!

=

 

a
2

+ b
2

�a
2

ik + b
2

ik

!

where u is any solution to the differential equation on the interval [x
1

, x
2

]. We then determine
a relation between the amplitudes of the incoming and outgoing waves given by

 

b
1

b
2

!

= S
E

 

a
1

a
2

!

.

The matrix S
E

is called the edge scattering matrix. It is clear that this matrix does not formally
come from scattering problems in the sense of Definition 1.5.1.
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Chapter 1. QUANTUM GRAPHS

Example 1.5.1 Consider the following metric graph consisting of the edges E
n

= [x
2n�1

, x
2n

], n =

1, 2, 3, 4, 5, 6 and vertices V
1

= {x
1

, x
6

, x
7

}, V
2

= {x
2

, x
3

, x
9

}, V
3

= {x
4

, x
5

, x
11

}, V
4

= {x
8

},
V
5

= {x
10

} and V
6

= {x
12

}.

E
1

E
2

E
3

E
4

E
5

E
6

V
4

V
1

V
2

V
5

V
3

V
6

FIGURE 1.2

Let the vertex conditions be defined by (1.3.3) where

S =

1

3

0

B

B

B

@

�1 2 2

2 �1 2

2 2 �1

1

C

C

C

A

.

for internal vertices. Observe that S is irreducible, hence properly connecting. Further � (S) = {±1}
so that S

Vn (k) is independent of k and in particular S
Vn (k) = S, n = 1, 2, 3. For external vertices

S = (1). Then S
Vn (k) = (1), n = 4, 5, 6. The global vertex scattering matrix can be written as

S
V

= diag (S,S,S, 1, 1, 1) .

We now determine the edge scattering matrix. Consider the edge E
1

= [x
1

, x
2

] and let the associated
transfer matrix be given by T1

(k) =
�

t1
ij

�

, i, j = 1, 2. By direct computations one obtains that

S
E1 (k) =

0

B

B

@

k

2
t

1
12+t

1
21�ik

(

t

1
11�t

1
22)

k

2
t

1
12�t

1
21+ik

(

t

1
11+t

1
22)

2ik

k

2
t

1
12�t

1
21+ik

(

t

1
11+t

1
22)

2ik

k

2
t

1
12�t

1
21+ik

(

t

1
11+t

1
22)

k

2
t

1
12+t

1
21+ik

(

t

1
11�t

1
22)

k

2
t

1
12�t

1
21+ik

(

t

1
11+t

1
22)

1

C

C

A

.

In the computations we have used the fact that det
�

T1

(k)
�

= 1 for all energies [PK14]. It has also been
shown [PK14] that k2t112+ t1

21

+ ik
�

t1
11

� t1
22

�

6= 0 for = (k) � 0 and < (k) 6= 0. When the potentials
are zero as in (1.5.4) then

t
11

= cos kl
1

, t
12

=

1

k
sin kl

1

, t
21

= �k sin kl
1

, t
22

= cos kl
1
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where l
1

= x
2

� x
1

. The above matrix then simplifies to

S
E1 =

0

@

0 eikl1

eikl1 0

1

A .

Consequently the global edge scattering matrix is

S
E

(k) = diag (S
E1 ,SE2 ,SE3 ,SE4 ,SE5 ,SE6) .

1.6 Literature Review and Statement of the Problem

1.6.1 Equi-transmitting matrices

The vertex scattering matrix can be seen as the unitary matrix which describes the probabilities
that the waves penetrate the vertex from one edge to another. In quantum mechanics such
probabilities are given by the squared absolute values of the corresponding matrix entries |s

ij

|2.
One may say that all edges are equivalent if and only if

8

<

:

|s
ij

|2 = |s
lm

|2 , for all i 6= j, l 6= m

|s
ii

|2 = |s
jj

|2 for all i, j.

Initial studies of equally transmitting scattering matrices are due to the work of Harrison et el
in 2007 in [HSW07]. They studied such matrices only in the case where back scattering is not
allowed. They defined such matrices to be unitary and whose off-diagonal entries have equal
amplitudes given by (d

m

� 1)

�1/2, where d
m

is the valency of the corresponding vertex.

Their construction of the matrices involved the use of the Hadamard matrices and Diriclet
characters. The Hadamard conjecture proposes that a Hadamard matrix of order 4k exists
for every positive integer k. However existence problem is an open question in the theory
of Hadamard matrices. This implies that the matrices constructed in [HSW07] only exist for
the cases where the associated Hadamard matrix exists. The construction using the Dirichlet
characters guarantees that this class of equally transmitting matrices exists when the order is
P + 1 where P is an odd prime number. They note that the only equally transmitting matrix
without reflection of odd order that they managed to construct is

1

2

0

B

B

B

B

B

B

@

0 1 1 1 1

1 0 1 w w2

1 1 0 w2 w

1 w w2

0 1

1 w2 w 1 0

1

C

C

C

C

C

C

A

, w = e
2
3⇡i.

17



Chapter 1. QUANTUM GRAPHS

They indicated that it is not known whether there exists any other such equally transmitting
matrix without reflection of odd order. Note that this matrix is not Hermitian and therefore the
vertex scattering matrix depends on the energy. Such a matrix is equi-transmitting just for one
value of the energy parameter.

Turek and Cheon [TC112] studied equally transmitting matrices where back scattering is al-
lowed. They gave various cases for which Hermitian unitary equally transmitting exist. The
cases are given in terms of the ratio d := |s

jj

| / |s
jk

| where S
V

2 Cdm,dm is unitary and
|s

lm

| = |s
jk

| for all l 6= m, j 6= k. Here d
m

is the order of the matrix S
V

. For some of the
cases they considered, the construction involved the use of Hadamard and conference matri-
ces.

In [TC11] they studied energy dependent equally transmitting matrices that incorporated the
� and �0 couplings.

In this thesis we study equally transmitting matrices that are independent of the energy. We
are going to call such matrices equi-transmitting. Below we give the definition of the equi-
transmitting matrices we have studied.

Definition 1.6.1 An d
m

⇥ d
m

matrix S
V

is equi-transmitting (ET-matrix) if the following hold

1. S
V

= S⇤
V

= S�1

V

,

2. |s
ii

| = r,

3. |s
ij

| = |s
lm

| , i 6= j, l 6= m.

Let us denote the moduli of the reflection and transmission coefficients respectively as follows

|s
ii

| = r for all i and |s
ij

| = t, for all i 6= j.

The ET-matrices can be represented as S
V

= D⇤
✓

ˆCD
✓

where

ˆC =

0

B

B

B

B

B

B

B

@

±r t t · · · t

t ±r ta
23

· · · ta
2dm

t ta
23

±r ta
3dm

...
...

. . .
...

t ta
2dm ta

3dm · · · ±r

1

C

C

C

C

C

C

C

A

,

D
✓

= diag

�

ei✓1 , ei✓2 , . . . , ei✓dm
�

, ✓
i

2 [�⇡,⇡) , i = 1, 2, . . . , d
m

,

a
ij

2 C such that |a
ij

| = 1 for all i = 2, . . . , d
m

� 1, j = 3, . . . , d
m

.

(1.6.1)

The matrices S
V

and ˆC are equal up to the phases defined by D
✓

and the equi-transmission
properties of S

V

are preserved in ˆC. We therefore narrow down our study of ET-matrices to
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1.6. Literature Review and Statement of the Problem

matrix ˆC and in particular describe the results in terms of matrix ˆC. When r = 0 in S
V

(or ˆC)
the corresponding matrix is a reflectionless equi-transmitting matrix (RET-matrix).

1.6.2 Magnetic fluxes and vertex phases

Kostrykin and Schrader in [KS03] have studied the dependence of the spectrum of the magnetic
Laplacian on the magnetic flux. They gave a complete description of the set of all magnetic
Laplacians on a metric graph which can be obtained from a given self-adjoint Laplacian by
perturbing it by magnetic fields.

In [KA15] Kurasov and Serio showed that if the matching conditions for the only vertex of the
eight shaped graph is parameterised by

S =

0

B

B

B

B

B

B

@

0 0 ↵ �

0 0 �� ↵

↵ �� 0 0

� ↵ 0 0

1

C

C

C

C

C

C

A

, ↵,� 2 R, ↵2

+ �2

= 1

then the spectrum of the magnetic operator is independent of the flux through one of the loops,
provided the flux through the other loop is zero. They also showed dependence of the spectrum
on magnetic fluxes may vanish.

Now consider the magnetic Schrödinger operator

L
q,a

=

✓

i
d

dx
+ a (x)

◆

2

+ q (x)

where a 2 C (�) and q 2 L
2

(x) are the magnetic and electric potentials respectively both of
which are real-valued. Consider the unitary transformation

U
a

: u (x) 7! ei✓n(x)u (x) , x 2 E
n

= [x
2n�1

, x
2n

] . (1.6.2)

If
✓
n

(x) =

Z

x

x2n�1

a (y) dy, x 2 E
n

then it follows that
U
a

L
q,a

U�1

a

= L
q,0

, (1.6.3)

that is, the magnetic potential has been eliminated.
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Suppose the vertex conditions are defined by (1.3.3) where

S = diag (S
1

,S
2

, . . . ,S
M

)

with S
m

being the corresponding unitary matrix parameterising the vertex condition at vertex
V
m

with valency d
m

. The spectral properties of L
q,a

(S) does not depend on the particular form
of the magnetic potential, since it can be eliminated. However the transformation (1.6.3) leads
to different matching condions as explained below.

Consider the diagonal unitary matrix U
m

given by

U
m

= diag

�

ei✓1 , ei✓2 , . . . , ei✓dm
�

,

where ✓
n

are real parameters in (1.6.2). Associated to each U
m

we define a unitary diagonal
matrix

D
m

= diag

�

ei'1 , ei'2 , . . . , ei'dm
�

, '
n

2 R,

where '
n

are chosen equal to the values of ✓
n

at the corresponding end points. Note that the
operator L

q,a

(S) is unitarily equivalent to L
q,0

�

D�1SD
�

, where D = diag (D
1

,D
2

, . . . ,D
M

).
Thus the new vertex conditions are defined by the matrix

˜S = D�1SD.

Now suppose that the magnetic and electric potentials are fixed for a magnetic Shrödinger
operator, while the vertex conditions are determined up to vertex phases. We seek to determine
the maximal number of independent parameters that describe such operators up to unitary
equivalence.

In summary our objectives are

1. give a simple criteria for determining the existence of both the RET and ET matrices.
Our construction and analysis depend only on the unitary and Hermitian properties of
matrices.

2. give a complete description of all RET and ET matrices up to order six.

3. determine the influence of the phases in the matrix D
✓

on the spectral properties of the
quantum graphs.
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Chapter 2

REFLECTIONLESS

EQUI-TRANSMITTING MATRICES

2.1 Introduction

This chapter is devoted to the discussion reflectionless equi-transmitting (RET) matrices. In
Section 2.2 we determine the order for which RET-matrices exist. It is shown that when reflec-
tion is prohibited, then such matrices exist only in even dimension. In Section 2.3 we give a
complete description of reflectionless equi-transmitting matrices of sizes 2, 4 and 6. We observe
that the parameter-free RET-matrices of order six form a combinatorial bipartite graph K2

6

.

2.2 Existence of Reflectionless Equi-transmitting Matrices

Assume that the d
m

⇥ d
m

matrix S
V

is reflectionless, unitary and Hermitian. Then its trace is
zero and is equal to the sum of eigenvalues, which are equal to ±1. Hence the dimension d

m

has
to be an even number. In fact it is enough to require that S

V

is unitary and reflectionless for all
energies. In the following theorem we show that RET-matrices only exist in even dimensions.

Theorem 2.2.1 Suppose S
V

is an d
m

⇥ d
m

unitary matrix and let (S
V

(k))
jj

= 0, j = 1, . . . , d
m

and
for any k. Then d

m

is even and S
V

is Hermitian.

Let the eigenvalues of S
V

be denoted by �
n

and the corresponding eigenvectors by ~e
n

=

(zn
1

, zn
2

, . . . , zn
dm

) which are chosen orthonormal, for for j = 1, . . . , d
m

, we have

(S
V

(k))
jj

=

dm
X

n=1

k (�
n

+ 1) + (�
n

� 1)

k (�
n

+ 1)� (�
n

� 1)

�

�zn
j

�

�

2

= 0.

This gives us an d
m

⇥ d
m

system of equations. For brevity let’s introduce the notation a
n

=

�
n

+ 1 and b
n

= �
n

� 1. Then for j = 1, . . . , d
m

the system of equations becomes
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dm
X

n=1

ka
n

+ b
n

ka
n

� b
n

�

�zn
j

�

�

2

= 0.

Since the eigenvectors {~e
n

} form an orthonormal basis, we have |zn
1

|2 + · · · +
�

�zn
dm

�

�

2

= 1, n =

1, . . . , d
m

. So summing all the equations in the system we end up with the single equation

dm
X

n=1

ka
n

+ b
n

ka
n

� b
n

= 0. (2.2.1)

It follows that

dm
X

n=1

8

>

>

<

>

>

:

(ka
n

+ b
n

)

N

Y

m = 1

m 6= n

(ka
m

� b
m

)

9

>

>

=

>

>

;

= 0.

Assume first that d
m

is odd. The function in the above equation can be seen as a polynomial in
k and it is identically zero only if all coefficients at different powers are zero. In particular, the
coefficient of kdm gives us

d
m

dm
Y

n=1

a
n

= 0.

Without loss of generality we take a
dm = 0 which yields �

dm = �1. Substituting this into
equation (2.2.1), the last term in that sum equals �1. Hence we obtain

dm�1

X

n=1

ka
n

+ b
n

ka
n

� b
n

= 1.

Simplifying this equation we have

dm�1

X

n=1

8

>

>

<

>

>

:

(ka
n

+ b
n

)

dm�1

Y

m = 1

m 6= n

(ka
m

� b
m

)

9

>

>

=

>

>

;

=

dm�1

Y

n=1

(ka
n

� b
n

).

Proceeding as before and comparing the coefficients of the highest power of k we see that

(d
m

� 1)

dm�1

Y

n=1

a
n

=

v�1

Y

n=1

a
n

) (d
m

� 2)

dm�1

Y

n=1

a
n

= 0. (2.2.2)
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2.3. RET-Matrices of Sizes 2, 4 and 6

Since d
m

is odd, it follows that d
m

� 2 6= 0 and so without loss of generality we assume, in
the second equation in (2.2.2), that a

dm�1

= 0. This implies that �
dm�1

= �1. Continuing in a
similar manner, we observe that at every step, the coefficient (d

m

� ↵) in the second equation in
(2.2.2) is such that ↵ 2 2m. Therefore d

m

� ↵ 6= 0 for all applicable ↵. This has the consequence
that a

n

= 0 for all n = 1, . . . , d
m

so that �
n

= �1 for all n = 1, . . . , d
m

. But that is impossible
since the trace of S is zero. Hence d

m

is even.

For convenience of manipulation, we set d
m

= 2�, � 2 m. By the preceding calculations we see
that a

2�

= a
2��1

= · · · = a
�+1

= 0 which implies that �
n

= �1, n = � + 1, . . . , 2�. Taking into
account that the trace of S

V

is zero we get:

TrS
V

=

2�

X

n=1

�
n

=

�

X

n=1

�
n

+ (�1)� = 0 )
�

X

n=1

�
n

= �.

Since |�
n

| = 1 for all n = 1, . . . , 2� we obtain that �
n

= 1, n = 1, . . . ,�. Therefore all the
eigenvalues of S

V

are not only on the unit circle but are also real and precisely are �1 and 1.
Hence S

V

is also Hermitian.

2.3 Reflectionless Equi-transmitting Matrices of Sizes
2, 4 and 6

In (1.6.1) when r = 0, t must be equal to 1p
dm�1

and can be can be factored out so that ˆC has
the representation

ˆC = t

0

B

B

B

B

B

B

B

@

0 1 1 · · · 1

1 0 a
23

· · · a
2dm

1 a
23

0 a
3dm

...
...

. . .
...

1 a
2dm a

3dm · · · 0

1

C

C

C

C

C

C

C

A

=

1p
d
m

� 1

C

In what follows we determine RET-matrices when d
m

= 2, d
m

= 4 and d
m

= 6.

When d
m

= 2 it is clear that the associated RET-matrices have the form

S
V

=

 

0 ei✓

e�i✓

0

!

= diag
�

1, e�i✓

�

 

0 1

1 0

!

diag
�

1, ei✓
�

,

where ✓ 2 [�⇡,⇡]. We have just a single one-parameter family.

Every RET-matrix in dimension four possesses the representation
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Chapter 2. REFLECTIONLESS EQUI-TRANSMITTING MATRICES

S
V

= diag
�

1, e�i✓1 , e�i✓2 , e�i✓3
�

1p
3

C diag
�

1, ei✓1 , ei✓2 , ei✓3
�

,

where ✓
n

2 [�⇡,⇡] and

C =

0

B

B

B

@

0 1 1 1

1 0 a b

1 ā 0 c

1

¯b c̄ 0

1

C

C

C

A

.

The numbers a, b, c 2 C have absolute value one and are chosen such that the rows (and
columns) are orthogonal. It should be observed that the rows (and columns) of C are already
normalized. Using the orthogonality conditions of the rows of C and solving for a, b and c

we obtain a = ±i, b = �a and c = �a. From these values of the parameters we obtain the
following two matrices, which are complex conjugate or transpose of each other:

C
1

=

0

B

B

B

@

0 1 1 1

1 0 i �i

1 �i 0 i

1 i �i 0

1

C

C

C

A

C
2

=

0

B

B

B

@

0 1 1 1

1 0 �i i

1 i 0 �i

1 �i i 0

1

C

C

C

A

.

Hence the set of all RET-matrices in dimension four consists of two 3�parameter nonintersect-
ing families.

In our discussion of RET-matrices as well as ET-matrices of order six we will need to use the
following lemma.

Lemma 1 The sum of four complex numbers z
1

, z
2

, z
3

, z
4

of equal magnitude equals zero if and only if
at least one of the following cases occur:

(z
3

= �z
1

^ z
4

= �z
2

) _ (z
4

= �z
1

^ z
3

= �z
2

) _ (z
2

= �z
1

^ z
4

= �z
3

) .

This is illustrated in the following figure.
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2.3. RET-Matrices of Sizes 2, 4 and 6

z
1

z
2

z
3

z
4

x

y

O

z
1

z
2

z
3

z
4

x

y

O

z
1

z
2

z
3

z
4

x

y

O

FIGURE 2.1: Illustration of Lemma 1

Remark 1 Basically the Lemma is used to reduce the number of parameters in a given system. It is
applied successively to subsequent systems until all the parameters are determined or some parameters
are expressed in terms of irreducible parameters.

Equi-transmitting matrices in dimension six take the form

S
V

= D�1

✓

1p
5

C D
✓

, (2.3.1)

where D
✓

= diag
�

1, ei✓1 , ei✓2 , ei✓3 , ei✓4 , ei✓5
�

, ✓
n

2 [�⇡,⇡) and

C =

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 a b c d

1 a 0 e f g

1 b e 0 h l

1 c f h 0 m

1 d g l m 0

1

C

C

C

C

C

C

C

C

A

.

The parameters a, b, c, d, e, f, g, h, l,m 2 C have absolute value one and are chosen so that the
rows (columns) of S

V

are orthogonal. The orthogonality conditions yield the following 15

equations in 10 unknowns:
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Chapter 2. REFLECTIONLESS EQUI-TRANSMITTING MATRICES

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a+ b+ c+ d = 0 (1)

a+ e+ f + g = 0 (2)

b+ e+ h+ l = 0 (3)

c+ f + h+m = 0 (4)

d+ g + l +m = 0 (5)

8

>

>

>

>

>

<

>

>

>

>

>

:

1 + be+ cf + dg = 0 (6)

1 + ae+ ch+ dl = 0 (7)

1 + af + bh+ dm = 0 (8)

1 + ag + bl + cm = 0 (9)

8

>

>

<

>

>

:

1 + ab+ fh+ gl = 0 (10)

1 + ac+ eh+ gm = 0 (11)

1 + ad+ el + fm = 0 (12)

8

<

:

1 + bc+ ef + lm = 0 (13)

1 + bd+ eg + hm = 0 (14)

n

1 + cd+ fg + hl = 0 (15).

(2.3.2)

Below we give two examples illustrating how all RET-matrices of size 6 can be obtained.

Example 2.3.1 (Case 1.1) We recall that the parameters in the matrix C are complex numbers of absolute value
one. Therefore for any of these parameters x we have that xx̄ = |x|2 = 1. Applying Lemma 1 to equation (1) in the
system (2.3.2) we end up with the following three cases:

Case 1 : b = �a, d = �c,

Case 2 : c = �a, d = �b, (2.3.3)

Case 3 : d = �a, c = �b.

Let us consider the first possibility (cases 2 and 3 can be treated in a similar way). Substituting the values of b and
d into (2.3.2), we obtain the following system:

8
>>>>><

>>>>>:

a+ e+ f + g = 0 (2)

�a+ e+ h+ l = 0 (3)

c+ f + h+m = 0 (4)

�c+ g + l +m = 0 (5)

8
>>>>><

>>>>>:

1� ae+ cf � cg = 0 (6)

1 + ae+ ch� cl = 0 (7)

1 + af � ah� cm = 0 (8)

1 + ag � al + cm = 0 (9)

8
>><

>>:

fh+ gl = 0 (10)

1 + ac+ eh+ gm = 0 (11)

1� ac+ el + fm = 0 (12)

8
<

:
1� ac+ ef + lm = 0 (13)

1 + ac+ eg + hm = 0 (14)n
fg + hl = 0 (15).

(2.3.4)

Equation (15) can be eliminated since it is a multiple of equation (10). Application of Lemma 1 to equation (2) in
(2.3.4) yields the following cases:
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2.3. RET-Matrices of Sizes 2, 4 and 6

Case 1.1 : e = �ā, g = �f,

Case 1.2 : f = �ā, g = �e,

Case 1.3 : g = �ā, f = �e.

We pick the first case again, and substitute the corresponding values of e and g into (2.3.4) and obtain the following
system:

8
>><

>>:

�a� a+ h+ l = 0 (3)

c+ f + h+m = 0 (4)

�c� f + l +m = 0 (5)

8
>>>>><

>>>>>:

1 + a

2 + cf + cf = 0 (6)

ch� cl = 0 (7)

1 + af � ah� cm = 0 (8)

1� af � al + cm = 0 (9)

8
>><

>>:

fh� fl = 0 (10)

1 + ac� ah� fm = 0 (11)

1� ac� al + fm = 0 (12)

8
<

:
1� ac� af + lm = 0 (13)

1 + ac+ af + hm = 0 (14)

From equation (7) in the above system we have that l = h. Substituting this value of l into equation (3) of the same
system, we have that < (a) = h. This means that h 2 R and since it has absolute value one it follows that h = ±1.
This in turn implies that l = ±1 and a = ±1. Adding equations (4) and (5) and then substituting the values of l
and h, we obtain m = ⌥1. Substituting a = ±1 into equation (6) yields cf̄ = �1 ) f = �c. The parameter c
can be chosen arbitrary leading to the following matrices:

C1.1 =

0

BBBBBBBB@

0 1 1 1 1 1

1 0 ±1 ⌥1 c �c

1 ±1 0 ⌥1 �c c

1 ⌥1 ⌥1 0 ±1 ±
1 c �c ±1 0 ⌥1

1 �c c ±1 ⌥1 0

1

CCCCCCCCA

.

Remark 2 The case we have considered will be numbered Case 1.1. This means that we have applied
Lemma 1 twice and that in each case we have chosen the first option. The first application is to equa-
tion (1) of the initial system which yields three possibilities. We choose the first option from the three
possibilities with the corresponding substitution giving us the second system. This system now has at
most fourteen equations, equation (1) having been eliminated by the above substitution. The second
application of Lemma 1 is now to equation (2) of the second system which also yields three possibilities.
The second index in the notation means that we have chosen the first option again from the second three
possibilities in order to determine the matrix.

Example 2.3.2 (Case 3.1.1) Suppose that now we consider the third case in (2.3.3). Substituting the values of
d = �a and c = �b into the system (2.3.2) we obtain the following system:
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8
>>>>><

>>>>>:

a+ e+ f + g = 0 (2)

b+ e+ h+ l = 0 (3)

�b+ f + h+m = 0 (4)

�a+ g + l +m = 0 (5)

8
>>>>><

>>>>>:

1 + be� bf � ag = 0 (6)

1 + ae� bh� al = 0 (7)

1 + af + bh� am = 0 (8)

1 + ag + bl � bm = 0 (9)

8
>><

>>:

1 + ab+ fh+ gl = 0 (10)

1� ab+ eh+ gm = 0 (11)

el + fm = 0 (12)

8
<

:
ef + lm = 0 (13)

1� ab+ eg + hm = 0 (14)
n
1 + ab+ fg + hl = 0 (15).

(2.3.5)

From this system, we see that equation (13) is a multiple of equation (12) and so can be discarded. Applying Lemma
1 to equation (2) of this system we obtain the following three cases:

Case 3.1 : e = �ā, g = �f,

Case 3.2 : f = �ā, g = �e,

Case 3.3 : g = �ā, f = �e.

We pick the case 3.1 and substitute the corresponding values of e and g into the system (2.3.5) and thus obtain the
following system:

8
>><

>>:

b� a+ h+ l = 0 (3)

�b+ f + h+m = 0 (4)

�a� f + l +m = 0 (5)

8
>>>>><

>>>>>:

1� ab� bf + af = 0 (6)

�bh� al = 0 (7)

1 + af + bh� am = 0 (8)

1� af + bl � bm = 0 (9)

8
>><

>>:

1 + ab+ fh� fl = 0 (10)

1� ab� ah� fm = 0 (11)

�al + fm = 0 (12)

n
1� ab+ af + hm = 0 (14)n
ab+ hl = 0 (15).

(2.3.6)

We discard equation (15) because it is a multiple of equation(7). Here we need to apply Lemma 1 once more, this
time to equation (3) of the system (2.3.6).

Case 3.1.1 : b = ā, l = �h

Case 3.1.2 : h = a, l = �b̄

Case 3.1.3 : l = a, h = �b̄.

We then pick the first case. Substituting the corresponding values of b and l into the system (2.3.6) gives us the
following system:
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8
<

:
�a+ f + h+m = 0 (4)

�a� f � h+m = 0 (5)

8
>>>>><

>>>>>:

�af + af = 0 (6)

�ah+ ah = 0 (7)

1 + af + ah� am = 0 (8)

1� af � ah� am = 0 (9)

8
>><

>>:

1 + a

2 + fh+ fh = 0 (10)

1� a

2 � ah� fm = 0 (11)

ah+ fm = 0 (12)

n
1� a

2 + af + hm = 0 (14).

From equation (7) we see that a 2 R, ) a = ±1. Adding equations (4) and (5) and then substituting the values of
a we have that < (m) = ±1 ) m = ±1. Substituting the values of a into equation (10) we obtain that fh = �1,
which implies that h = �f . From these we see that the corresponding matrix is

C3.1.1 =

0

BBBBBBBB@

0 1 1 1 1 1

1 0 ±1 ± ⌥1 ⌥1

1 ±1 0 ⌥1 f �f

1 ±1 ⌥1 0 �f f

1 ⌥1 f �f 0 ±1

1 ⌥1 �f f ±1 0

1

CCCCCCCCA

.

Continuing as in the above examples in all cases we obtain 30 (different) one-parameter fam-
ilies of matrices. A summary of all the cases can be seen in Table 2.1. Below we list all the
30 different parameter dependent matrices where the subscript denotes the row (and column)
which does not contain a parameter.

A
2

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ±1 ⌥1 ⌥1

1 ±1 0 ⌥1 ↵ �↵
1 ±1 ⌥1 0 �↵ ↵

1 ⌥1 ↵ �↵ 0 ±1

1 ⌥1 �↵ ↵ ±1 0

1

C

C

C

C

C

C

C

C

A

,B
2

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ±1 ⌥1

1 ±1 0 � ⌥1 ��
1 ⌥1 � 0 �� ±1

1 ±1 ⌥1 �� 0 �

1 ⌥1 �� ±1 � 0

1

C

C

C

C

C

C

C

C

A

,

C
2

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ⌥1 ±1

1 ±1 0 � �� ⌥1

1 ⌥1 � 0 ±1 ��
1 ⌥1 �� ±1 0 �

1 ±1 ⌥1 �� � 0

1

C

C

C

C

C

C

C

C

A

,
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A
3

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ↵ �↵
1 ±1 0 ±1 ⌥1 ⌥1

1 ⌥1 ±1 0 �↵ ↵

1 ↵ ⌥1 �↵ 0 ±1

1 �↵ ⌥1 ↵ ±1 0

1

C

C

C

C

C

C

C

C

A

,B
3

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 � ⌥1 ��
1 ±1 0 ⌥1 ±1 ⌥1

1 � ⌥1 0 �� ±1

1 ⌥1 ±1 �� 0 �

1 �� ⌥1 ±1 � 0

1

C

C

C

C

C

C

C

C

A

,

C
3

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 � �� ⌥1

1 ±1 0 ⌥1 ⌥1 ±1

1 � ⌥1 0 ±1 ��
1 �� ⌥1 ±1 0 �

1 ⌥ ±1 �� � 0

1

C

C

C

C

C

C

C

C

A

,

A
4

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ↵ �↵
1 ±1 0 ⌥1 �↵ ↵

1 ⌥1 ⌥1 0 ±1 ±1

1 ↵ �↵ ⌥1 0 ⌥1

1 �↵ ↵ ±1 ⌥1 0

1

C

C

C

C

C

C

C

C

A

,B
4

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 � ±1 ⌥1 ��
1 � 0 ⌥1 �� ±1

1 ±1 ⌥1 0 ±1 ⌥1

1 ⌥1 �� ±1 0 �

1 �� ±1 ⌥1 � 0

1

C

C

C

C

C

C

C

C

A

,

C
4

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 � ±1 �� ⌥1

1 � 0 ⌥1 ±1 ��
1 ±1 ⌥1 0 ⌥1 ±1

1 �� ±1 ⌥1 0 �

1 ⌥1 �� ±1 � 0

1

C

C

C

C

C

C

C

C

A

,

A
5

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ↵ �↵ ±1 ⌥1

1 ↵ 0 ± ⌥1 �↵
1 �↵ ±1 0 ⌥1 ↵

1 ±1 ⌥1 ⌥1 0 ±1

1 ⌥1 ↵ ↵ ±1 0

1

C

C

C

C

C

C

C

C

A

,B
5

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 � ⌥1 ��
1 ±1 0 �� ⌥1 �

1 � �� 0 ±1 ⌥1

1 ⌥1 ⌥1 ±1 0 ±1

1 �� � ⌥1 ±1 0

1

C

C

C

C

C

C

C

C

A

,
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C
5

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 � ±1 ⌥1 ��
1 � 0 �� ±1 ⌥1

1 ±1 �� 0 ⌥1 �

1 ⌥1 ±1 ⌥1 0 ±1

1 �� ⌥1 � ±1 0

1

C

C

C

C

C

C

C

C

A

,

A
6

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ↵ �↵ ±1 ⌥1

1 ↵ 0 ⌥1 �↵ ±1

1 �↵ ⌥1 0 ↵ ±1

1 ±1 �↵ ↵ 0 ⌥1

1 ⌥1 ±1 ±1 ⌥1 0

1

C

C

C

C

C

C

C

C

A

,B
6

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 � ±1 �� ⌥1

1 � 0 �� ⌥1 ±1

1 ±1 �� 0 � ⌥1

1 �� ⌥ � 0 ±1

1 ⌥1 ±1 ⌥1 ±1 0

1

C

C

C

C

C

C

C

C

A

,

C
6

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 � �� ⌥1

1 ±1 0 �� � ⌥1

1 � �� 0 ⌥1 ±1

1 �� � ⌥1 0 ±1

1 ⌥1 ⌥1 ±1 ±1 0

1

C

C

C

C

C

C

C

C

A

.

The parameter dependent matrices are such that one row and one column with the same index-
ing are without the parameter. The parameter occurs twice in each of the remaining four rows
and columns. Since the first row and column are fixed, there remains only four possibilities
for taking up the two positions to be occupied by the parameter. This gives 6 matrices. Since
there are five different ways in which the parameter free row (and column) can be taken up,
we obtain the 6⇥ 5 = 30 matrices in agreement with the results obtained.

It is natural to classify the above one-parameter matrices according to which row (and column)
is parameter free. This gives us five families of one-parameter matrices which we denote as
follows:

{A
i

,B
i

,C
i

} i = 2, 3, 4, 5, 6. (2.3.7)

It is possible to obtain one matrix from another within a given family by matrix permutations.

Assigning the values ±1 to the parameters yields 60 parameter free matrices. We observe that
there are only 12 distinct such matrices obtained from the 60. Each of these 12 is an inter-
section of certain five (out of the 60) families of matrices. Equation (2.3.8) illustrates how the
intersections are obtained. Below we also list the parameter free matrices.
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D
1

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ±1 ⌥1 ⌥1

1 ±1 0 ⌥1 ±1 ⌥1

1 ±1 ⌥1 0 ⌥1 ±1

1 ⌥1 ±1 ⌥1 0 ±1

1 ⌥1 ⌥1 ±1 ±1 0

1

C

C

C

C

C

C

C

C

A

,D
2

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ±1 ⌥1 ⌥1

1 ±1 0 ⌥1 ⌥1 ±1

1 ±1 ⌥1 0 ±1 ⌥1

1 ⌥1 ⌥1 ±1 0 ±1

1 ⌥1 ±1 ⌥1 ±1 0

1

C

C

C

C

C

C

C

C

A

,

D
3

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ±1 ⌥1

1 ±1 0 ±1 ⌥1 ⌥1

1 ⌥1 ±1 0 ⌥1 ±1

1 ±1 ⌥1 ⌥1 0 ±1

1 ⌥1 ⌥1 ±1 ±1 0

1

C

C

C

C

C

C

C

C

A

,

D
4

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ⌥1 ±1

1 ±1 0 ⌥1 ±1 ⌥1

1 ⌥1 ⌥1 0 ±1 ±1

1 ⌥1 ±1 ±1 0 ⌥1

1 ±1 ⌥1 ±1 ⌥1 0

1

C

C

C

C

C

C

C

C

A

,D
5

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ⌥1 ±1

1 ±1 0 ±1 ⌥1 ⌥1

1 ⌥1 ±1 0 ±1 ⌥1

1 ⌥1 ⌥1 ±1 0 ±1

1 ±1 ⌥1 ⌥1 ±1 0

1

C

C

C

C

C

C

C

C

A

,

D
6

=

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 ±1 ⌥1 ±1 ⌥1

1 ±1 0 ⌥1 ⌥1 ±1

1 ⌥1 ⌥1 0 ±1 ±1

1 ±1 ⌥1 ±1 0 ⌥1

1 ⌥1 ±1 ±1 ⌥1 0

1

C

C

C

C

C

C

C

C

A

.
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n1 n2 n3 n4 Matrix

1 b = �a, d = �c

1 e = �a, g = �f A4

2 f = �a, g = �e

1 e = a, l = �h A3

2 h = a, l = �e A6

3 l = a, h = �e B2

3 g = �a, f = �e

1 e = a, l = �h A3

2 h = a, l = �e C2

3 l = a, h = �e A5

2 c = �a, d = �b

1 e = �a, g = �f

1 b = a, l = �h A2

2 h = a, l = �b B6

3 l = a, h = �b B3

2 f = �a, g = �e B5

3 g = �a, f = �e

1 e = �b, l = �h C4

2 h = �b, l = �e D1

3 l = �b, h = �e D4

3 d = �a, c = �b

1 e = �a, g = �f

1 b = a, l = �h A2

2 h = a, l = �b C3

3 l = a, h = �b C5

2 f = �a, g = �e

1 e = �b, l = �h B4

2 h = �b, l = �e D6

3 l = �b, h = �e

1 b = �a,m = e B2

2 e = �a,m = b C3

3 m = a, e = �b B4

3 g = �a, f = �e C6

TABLE 2.1: Summary of substitutions made to obtain various cases.

The 12 parameter free matrices are in fact integer conference matrices.1 There exist complex
conference matrices as well. The intersections are formed by picking one and only one matrix
from each family. We list below the twelve intersections. In the notation used to denote the
intersections, the superscript indicates the choice made. For instance, Du

1

means that we have
chosen the matrix corresponding to the upper sign in matrix D

1

. In a similar manner, Dl

1

means
that we have chosen the matrix in D

1

corresponding to the lower sign.

1A conference matrix is an n ⇥ n matrix C with diagonal entries 0 and off diagonal entries ±1 which satisfies
CCt = (n� 1) I .
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Du

1

= Au

2

(1) = Bu

3

(1) = Cu

4

(1) = Cu

5

(1) = Cu

6

(1) ,

Dl

1

= Al

2

(�1) = Bl

3

(�1) = Cl

4

(�1) = Cl

5

(�1) = Cl

6

(�1) ,

Dl

2

= Al

2

(1) = Cl

3

(�1) = Bl

4

(�1) = Bl

5

(�1) = Bl

6

(�1) ,

Du

2

= Au

2

(�1) = Cu

3

(1) = Bu

4

(1) = Bu

5

(1) = Bu

6

(1) ,

Dl

3

= Bl

2

(�1) = Al

3

(�1) = Bu

4

(�1) = Al

5

(�1) = Cl

6

(1) ,

Du

3

= Bu

2

(1) = Au

3

(1) = Bl

4

(1) = Au

5

(1) = Cu

6

(�1) ,

Dl

4

= Cl

2

(1) = Bl

3

(1) = Al

4

(1) = Au

5

(�1) = Bu

6

(�1) ,

Du

4

= Cu

2

(�1) = Bu

3

(�1) = Au

4

(�1) = Al

5

(1) = Bl

6

(1) ,

Du

5

= Cu

2

(1) = Au

3

(�1) = Cl

4

(1) = Bu

5

(�1) = Al

6

(1) ,

Dl

5

= Cl

2

(�1) = Al

3

(1) = Cu

4

(�1) = Bl

5

(1) = Au

6

(�1) ,

Du

6

= Bu

2

(�1) = Cu

3

(�1) = Au

4

(1) = Cl

5

(1) = Au

6

(1) ,

Dl

6

= B1

2

(1) = Cl

3

(1) = Al

4

(�1) = Cu

5

(�1) = Al

6

(�1) .

(2.3.8)

Combinatorial bipartite regular graph K2

6

We now discuss the observations made from the twelve intersections. If we consider these
intersections as vertices of a discrete graph then graph obtained is bipartite and 5-regular. In
the figure below each edge represents a one-parameter family (a loop). In fact each family is
described by 6 parameters if one take into account the parameters ✓

1

, . . . , ✓
5

appearing in equa-
tion (2.3.1). The corresponding intersection are therefore 5-parameter families corresponding
to six-dimensional conference matrices.
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Du

1

Dl

2

Dl

3

Dl

4

Du

5

Du

6

Dl

1

Du

2

Du

3

Du

4

Dl

5

Dl

6

FIGURE 2.2: Five- and six-parameter families of 6⇥ 6 RET-matrices

An edge connecting any of the vertices is one and only one of the thirty one-parameter family
of matrices where one vertex corresponds to the matrix obtained by assigning the value +1 to
the parameter, while the other vertex is obtained by assigning the value �1 to the parameter.
For example the edge connecting the vertices Du

1

and Du

2

is a loop determined by the matrix
A

2

(↵), where ↵ is a complex number on the unit circle. In particular Du

1

= Cu

5

(1) and Du

2

=

Cu

5

(�1). Figure 2.2 is the graph obtained where we have assigned a distinct colour to each
family according to the classification in the notation (2.3.7).

Du

1

= Cu

5

(1)

Du

2

= Cu

5

(�1)

FIGURE 2.3: Edge connecting the vertices Du
1 and Du

2
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Chapter 3

EQUI-TRANSMITTING MATRICES

3.1 Introduction

The gist of this chapter is the study of equi-transmitting (ET) matrices. In section 3.2 we de-
scribe the various transformations by which other ET-matrices can be generated from a given
ET-matrix. Certain bounds on r are covered in section 3.3 where we also introduce the notation
used to represent various cases discussed in subsequent sections. In section 3.4 we give exam-
ples of general ET-matrices. In section 3.5 we discuss cases in which no ET-matrix of order five
exists. A complete description of ET-matrices of even orders up to order six when the trace is
zero is given in section 3.6.

3.2 Transformations

Recall that ET-matrices have the representation given by

S
V

= D⇤
✓

ˆCD
✓

, (3.2.1)

where

ˆC =

0

B

B

B

B

B

B

B

@

±r t t · · · t

t ±r ta
23

· · · ta
2dm

t ta
23

±r ta
3dm

...
...

. . .
...

t ta
2dm ta

3dm · · · ±r

1

C

C

C

C

C

C

C

A

,

D
✓

= diag

�

ei✓1 , . . . , ei✓dm
�

, ✓
i

2 [�⇡,⇡) , i = 1, 2, . . . , d
m

,

a
ij

2 C such that |a
ij

| = 1 for all i = 2, . . . , d
m

� 1, j = 3, . . . , d
m

, i < j.

37



Chapter 3. EQUI-TRANSMITTING MATRICES

As pointed out in Section 1.6, the focus is on matrix ˆC since |ĉ
ij

| = |s
ij

|, i, j = 1, 2, . . . , d
m

. Note
that for a given ˆC the family S is described by adding just d

m

�1 independent parameters, since
the transformation ✓

1

7! 0, ✓
2

7! ✓
2

� ✓
1

, · · · , ✓
dm 7! ✓

dm � ✓
1

does not change the matrix S
V

.

Having an ET-matrix S one can obtain another ET-matrix by means of appropriate matrix trans-
formation. Below we discuss such transformations

1. Let D be a diagonal matrix whose diagonal entries comprise ±1. The transformation

(S
V

)D = D�1S
V

D

has the effect that certain entries of S
V

have their signs reversed. However signs
of the diagonal entries remain unchanged because the reversal of their signs is done
twice. Such a transformation yields yet another ET-matrix since

�

�

�

((S
V

)D)

ij

�

�

�

=

�

�

�

(S
V

)

ij

�

�

�

,
i, j = 1, 2, . . . , N .

2. The transformation S
V

7! �S
V

has the effect of reversing the signs of all the entries of S.
It is clear that the resulting matrix is again an ET-matrix.

3. Let P
lm

be a permutation matrix. The matrix

(S
V

)P = P
lm

S
V

P
lm

is obtained by interchanging in S
V

rows (and columns) l and m. Therefore
�

�

�

((S
V

)P)
ij

�

�

�

=

�

�

�

(S
V

)

ij

�

�

�

, i, j = 1, 2, . . . , d
m

meaning that (S
V

)P is also an ET-matrix.

From the foregoing it follows that the study of ET-matrices can be done up to the above trans-
formations.

3.3 Possible Values of r and t

It should be observed that the ET-matrix is defined in such a way that r � 0 and t � 0. Let the
order of the matrix be d

m

. Since the matrix ˆC is unitary, the rows are normalised and so row 1
of matrix C yields the equation

r2 + (d
m

� 1) t2 = 1 (3.3.1)

From the equation and the constraints on r and t, it follows that r, t 2 [0, 1].

When r = 1, then t = 0 and the corresponding matrix C (see equation (3.2.1)) is a diagonal
matrix whose diagonal entries comprises ±1. This is a trivial class of ET-matrices. It is the case
where there is total reflection, i.e. no waves are transmitted. On the other hand when r = 0
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3.3. Possible Values of r and t

then t = 1p
dm�1

and one obtains an RET-matrix. These have been discussed up to order six in
Chapter 2. We exclude these two cases, r = 1 and r = 0, from our further investigations.

Since S
V

is Hermitian and unitary its spectrum consists of ±1. Let n+ be the multiplicity of
+1 in the spectrum of S

V

. Let ⌫+ be the number of positive diagonal entries of the matrix
S
V

. If the order of S
V

is N , then the numbers n+ and ⌫+ can assume any value in the set
{0, 1, . . . , d

m

}. Determining the trace of S
V

from its eigenvalues one obtains Tr (S
V

) = n+

+

(�1) (d
m

� n+

) = 2n+ � d
m

. On the other hand if it is determined from the diagonal entries
then Tr (S

V

) = r⌫++(�r) (d
m

� ⌫+) = r (2⌫+ � d
m

). From these two equations possible value
of r is determined by

r =

2n+ � d
m

2⌫+ � d
m

. (3.3.2)

This formula is applicable only when 2⌫+ � d
m

6= 0. Therefore r = 1 only if n+

= ⌫+, while
r = 0 only if n+

=

1

2

d
m

.

It should be noted that when n is even and n+

= ⌫+ =

1

2

n, formula (3.3.2) does not determine
r. To determine r in this case we need to carry out further study. This case has turned out
to be significant despite our initial skepticism of what could be obtained from it. It is only in
this case that an ET-matrix other than those generated by the SMC-matrix can be constructed
for n  6. ET-matrices for r, t 2 (0, 1) will be referred to as nontrivial ET-matrices while those
corresponding to r = 1 will be called trivial ET-matrices.

The diagrams in Figure 3.1 give a graphical depiction of the possible values of r. The first figure
is for the case when n is odd, while the second figure is for the case when n is even.

n

n

n+

⌫+

n�1

2

n�1

2

(a)

n

n

n+

⌫+

(b)

n

2

n

2

n

+ = ⌫

+ = N
2

r indeterminate
r = 1

r = 0

r < 0

r > 1

r 2 (0, 1)

FIGURE 3.1: Possible values of r; (a) when n is odd and (b) when n is even

The diagonal white cells represent the trivial cases where r = 1 and for which the correspond-
ing ET-matrix is a diagonal matrix. The orange cells represent cases where r > 1 while the blue
cells represent cases where r < 0. Both of these cases are excluded since applicable values of r
should be in the interval (0, 1) . The lime cells represent cases where r 2 (0, 1) and where there
is a possibility of obtaining an ET-matrix. We have the following additional cases in figure
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Chapter 3. EQUI-TRANSMITTING MATRICES

(b). The light gray cells represent cases where r = 0 and where the corresponding ET-matrices
are reflectionless. The red cells represent cases where r is infinite so that no ET-matrix can be
constructed. The middle violet cell represent the cases where r is indeterminate from formula
(3.3.2) but where it might be possible to construct ET-matrices from the definition of S

V

.

The various cases to be considered when investigating the existence of ET-matrices will
be denoted by the ordered pair (n+, ⌫+). It should be noted that the cases (n+, ⌫+) and
(d

m

� n+, d
m

� ⌫+) yield the same values of r and t.

We now discuss the viable cases for the existence of an ET-matrix when r, t 2 (0, 1). The cases
where n+

= ⌫+ are excluded since they give rise to r = 1. The exception to this is the case
(n+, ⌫+) =

�

dm
2

, dm
2

�

with n even, when (3.3.2) does not determine r. In the description below,
we note that n+ > ⌫+.

When d
m

is odd then cases for which r, t 2 (0, 1) are given by

(n+, ⌫+) and (d
m

� n+, d
m

� ⌫+) , where

8

>

<

>

:

n+ 2
�

1, 2, . . . , dm�1

2

 

⌫+ 2
�

0, 1 . . . , dm�3

2

 

.
(3.3.3)

On the other hand when d
m

is even then such cases are given by

(n+, ⌫+) , (d
m

� n+, d
m

� ⌫+) and
�

dm
2

, dm
2

�

, where

8

>

<

>

:

n+ 2
�

1, 2, . . . , dm
2

� 1

 

⌫+ 2
�

0, 1 . . . , dm
2

� 2

 

.
(3.3.4)

3.4 General Examples

3.4.1 Diagonal matrices

For all n, whenever r = 1, there exists an equi-transmitting diagonal matrix. This matrix is
not interesting in the framework of quantum graphs since it describes completely independent
(not connected) edges.

3.4.2 Reflectionless equi-transmitting matrices

These are obtained when r = 0. We have discussed these matrices in Chapter 2 where it has
been proved that such matrices exist only when n is even.
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3.4.3 Standard matching conditions equi-transmitting matrices

For every incoming wave along a given edge, say E
j

, in a star graph with n infinite edges there
are both reflected waves along the same edge and transmitted waves along the other d

m

� 1

edges E
l

. This condition is described by the equation

u (x) =

8

>

<

>

:

e�ikx

+R
j

eikx, x 2 E
j

T
lj

eikx, x 2 E
l

(3.4.1)

where R
j

is the reflection coefficient along edge E
j

and T
lj

is the transmission coefficient of
waves transmitted from edge E

j

into edge E
l

. Recall that under standard matching conditions
(SMC) coupling, a function defined on a quantum graph � satisfies the following conditions at
a vertex

8

<

:

u is continuous
X

u0
(x) = 0.

(3.4.2)

Suppose the coupling of edges at the central vertex V with valency d
m

is given by the SMC.
Suppose also that the edges are parameterised as E

j

= [0,1), j = 1, . . . , n. Conditions (3.4.2)
are obviously invariant under edge permutation. Therefore the corresponding scattering ma-
trix is not only equitransmiiting but all reflection (R

j

) and all transition (T
lj

) coefficients are
identical. Continuity at x = 0 is therefore described by

1 +R = T. (3.4.3)

The normal derivative is given by

u0
(x) =

8

>

<

>

:

�ike�ikx

+ ikR
i

eikx, x 2 E
j

ikT
lj

eikx, x 2 E
l

Applying the conditions on normal derivatives for SMC we have that

� (1�R) + (d
m

� 1)T = 0. (3.4.4)

Solving for R and T in (3.4.3) and (3.4.4) we obtain that

T =

2

d
m

and R = �1 +

2

d
m

.
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Thus the matrix S arising from the SMC is given by

s
jl

=

8

>

<

>

:

�1 +

2

dm
, j = l

2

dm
, j 6= l.

(3.4.5)

It is easy to see that this matrix is Hermitian (symmetric in this case since all the entries are
real). It is also easy to see that St

V

S
V

= S
V

St

V

= I, i.e. S is orthogonal. Thus S is Hermitian,
unitary and equi-transmitting for all n � 2. Using the notations introduced in section 1.6, we
see that

|s
jl

| =

8

>

<

>

:

r =

dm�2

dm
, j = l

t = 2

dm
, j 6= l

, d
m

� 2. (3.4.6)

Note that r 2 (0, 1), and when d
m

= 2, the matrix is RET. We will refer to this matrix as the
SMC-matrix.

3.4.4 Cases (1, 0) and (dm � 1, dm)

For any given d
m

the case (n+, ⌫+)=(1, 0) yields the equation �d
m

r = � (d
m

� 2) which implies
that r = 1 � 2

dm
. When this value of r is substituted into the equation r2 + (d

m

� 1) t2 = 1 the
positive value of t is obtained as t = 2

dm
. Since in this case all the diagonal entries are negative,

the associated matrix ˆC has the representation

ˆC
1,0

=

0

B

B

B

B

B

B

B

B

@

�1 +

2

dm

2

dm

2

dm
· · · 2

dm

2

dm
�1 +

2

dm

2

dm
a
23

· · · 2

dm
a
2dm

2

dm

2

dm
a
23

�1 +

2

dm

2

dm
a
3dm

...
...

. . .
2

dm

2

dm
a
2dm

2

dm
a
3dm · · · �1 +

2

dm

1

C

C

C

C

C

C

C

C

A

,

where a
ij

2 {z 2 C : |z| = 1} i = 2, . . . , d
m

� 1, j = 3, . . . , d
m

, i < j. Thus there are 1

2

(d
m

� 1)

(d
m

� 2) such parameters. The inner products of the rows yield certain 1

2

d
m

(d
m

� 1) equa-
tions. The orthogonality between the first row and all the other rows give the following d

m

� 1

equations
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�↵+ a
23

+ a
24

+ · · ·+ a
2,dm�1

+ a
2dm = 0

�↵+ a
23

+ a
34

+ · · ·+ a
3,dm�1

+ a
3dm = 0

...

�↵+ a
2,dm�1

+ a
3,dm�1

+ · · ·+ a
dm�2,dm�1

+ a
dm�1,dm = 0

�↵+ a
2dm + a

3dm + · · ·+ a
dm�2,dm + a

dm�1,dm = 0

(3.4.7)

where ↵ =

2r

t

= 2

⇣

1� 2

dm

⌘

dm
2

= (d
m

� 2). On the other hand, each of the above equations
contain d

m

� 2 unknowns. Since each parameter is unimodular, all the equations are satisfied
if and only if each of the unknowns is unity, i.e. a

ij

= 1, i = 2, . . . , d
m

� 1, j = 3, . . . , d
m

, i < j.
All the other 1

2

(d
m

� 2) (d
m

� 1) equations are of the form

�↵a
ij

+ 1 +

P

dm

l=3

a
il

a
jl

= 0,

for all i = 2, . . . , d
m

� 1, j = 3, . . . , d
m

, i 6= l 6= j, i < j.
(3.4.8)

All these equations are also satisfied when all the parameters are unity. It follows that the
matrix determined has the same transition probabilities as the SMC matrix and is given as
follows

C
1,0

=

0

B

B

B

B

B

B

B

B

@

�1 +

2

dm

2

dm

2

dm
· · · 2

dm

2

dm
�1 +

2

dm

2

dm
· · · 2

dm

2

dm

2

dm
�1 +

2

dm

2

dm

...
...

. . .
...

2

dm

2

dm

2

dm
· · · �1 +

2

dm

1

C

C

C

C

C

C

C

C

A

. (3.4.9)

The case (n+, ⌫+) = (d
m

� 1, d
m

) can be analysed in a similar way leading to the matrix

ˆC
dm�1,dm =

0

B

B

B

B

B

B

B

B

@

1� 2

dm

2

dm

2

dm
· · · 2

dm

2

dm
1� 2

dm
� 2

dm
· · · � 2

dm

2

dm
� 2

dm
1� 2

dm
� 2

dm

...
...

. . .
...

2

dm
� 2

dm
� 2

dm
· · · 1� 2

dm

1

C

C

C

C

C

C

C

C

A

. (3.4.10)

The relation between the two matrices is given by

ˆ

ˆC
dm�1,dm = �D ˆC

1,0

D
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where D is an d
m

⇥ d
m

diagonal matrix given by D = diag (�1, 1, . . . , 1). This means that for
all d

m

� 2, the cases (1, 0) and (d
m

� 1, d
m

) give the same transition probabilities as the SMC.

Observation 1 From the above discussion we observe that ET-matrices which have the same transition
probabilities as (generated by) SMC-matrix and their various transformations exist for all n � 2. In our
notation they correspond to (n+, ⌫+) = (1, 0) and (n+, ⌫+) = (d

m

� 1, d
m

). The associated matrices
are (3.4.9) and (3.4.10) respectively. We point out that the cases (1, 0) and (d

m

� 1, d
m

) determine the
non trivial ET-matrices for n � 3.

3.5 Nonzero trace, no ET-matrix

In this section we discuss cases (n+, ⌫+) for which there is a possibility of obtaining an ET-
matrix according to equations (3.3.3) and (3.3.4) but for which no ET-matrix exists. We consider
n = 5 since the described set is empty when n = 3, 4. Thus the cases to be discussed are (2, 0),
(2, 1), (3, 4) and (3, 5). In what follows we give the details of the analysis of the case (2, 0). The
other cases are covered in the Appendix.

Case (2, 0). In this case all diagonal entries are negative and two eigenvalues are positive. The
values of r and t are 1

5

and
p
6

5

respectively. The corresponding matrix ˆC is represented as
follows

ˆC =

0

B

B

B

B

B

B

@

�r t t t t

t �r at bt ct

t at �r dt et

t bt dt �r ft

t ct et ft �r

1

C

C

C

C

C

C

A

,

where a, . . . , f 2 {z 2 C : |z| = 1}. Since the rows of C are orthogonal, their inner products
yield the following system of equations

8

>

>

>

>

>

<

>

>

>

>

>

:

�2r + t (a+ b+ c) = 0 (1)

�2r + t (a+ d+ e) = 0 (2)

�2r + t
�

b+ d+ f
�

= 0 (3)

�2r + t
�

c+ e+ f
�

= 0 (4)

8

>

>

<

>

>

:

�2ar + t
�

1 + bd+ ce
�

= 0 (5)

�2br + t
�

1 + ad+ cf
�

= 0 (6)

�2cr + t
�

1 + ae+ bf
�

= 0 (7)

8

<

:

�2dr + t
�

1 + ab+ ef
�

= 0 (8)

�2er + t
�

1 + ac+ df
�

= 0 (9)

n

�2fr + t (1 + bc+ de) = 0 (10).

(3.5.1)
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3.6. Trace zero; characterization of ET-matrices.

In what follows we determine the characteristic polynomial of matrix ˆC from its spectrum and
by direct computation from the entries of C. Since �

⇣

ˆC
⌘

= {1, 1,�1,�1,�1} we have

�

ˆC (�) = � (�� 1)

2

(�+ 1)

3

= �
�

�5 + �4 � 2�3 � 2�2 + �+ 1

�

. (3.5.2)

On the other hand by direct computation

�

ˆC (�) = ��5 � 5r�4 + 10

�

t2 � r2
�

�3+ (3.5.3)

where ↵ = 2

r

t

=

p
6

3

. Thus we rewrite the polynomial as

�

ˆC (�) = ��5 � 5r�4 + 10

�

t2 � r2
�

�3 +
�

30rt2 � 10r3 + t3 [6↵+ a+ a]
�

�2 + · · · (3.5.4)

Substituting the values of r and t and comparing the corresponding coefficients in (3.5.2) and
(3.5.4) we readily see that the coefficients of �5 and �4 are equal. Simplifying the coefficient of
�3 in (3.5.4) we obtain that

10

✓

6

25

� 1

25

◆

= 2

in agreement with the value in (3.5.2). Equating the coefficients of �2 we obtain

30rt2 � 10r3 + t3 (6↵+ a+ a) = 2

which when simplified we obtain
< (a) =

↵

3

.

By making appropriate combinations in the coefficient of t3 in (3.5.3) one can show that

< (a) = < (b) = < (c) =
↵

3

.

Consequently imaginary parts of a, b and c may coincide or differ by a sign. Hence it is impos-
sible that (eq(1))

a+ b+ c = ↵.

This contradiction implies that no ET-matrix can be obtained in this case.

3.6 Trace zero; characterization of ET-matrices.

As already discussed in Section 3.4 there are ET-matrices generated by the SMC-matrix for all
n � 3. In Section 3.5 we have shown that for all n

2

6= n+ 6= ⌫+, n = 5 no ET-matrix can
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be obtained. When n = 2 and n = 3, the only case viable for the existence of an ET-matrix
according to equations (3.3.3) and (3.3.4) is (n+, ⌫+) = (2, 1). When n = 2 this case yields an
RET-matrix. When n = 3 the corresponding matrix has the same transition probabilities as
the SMC-matrix. It therefore follows that when n  5 is odd, the only ET-matrices that can
be constructed are those generated by the SMC-matrix. In this section we have constructed
ET-matrices up to order six when the trace of the matrix is zero.

3.6.1 Order 2

The case leading to the trace of the matrix equal to zero is given by (n+, ⌫+) = (1, 1). The
corresponding representation of matrix ˆC is

ˆC =

 

r t

t �r

!

.

Normalisation of the rows yield the relation t =
p
1� r2 where r 2 (0, 1). The corresponding

ET-matrices ˆC are a one-parameter family given as follows

ˆC
1,1

=

 

r
p
1� r2p

1� r2 �r

!

, r 2 (0, 1) .

3.6.2 Order 4

The case represented by n+

=

n

2

= ⌫+ for n = 4 is (2, 2). Below we give a theorem characteris-
ing nontrivial zero trace ET-matrices of order 4.

Theorem 3.6.1 All zero trace ET-matrices ˆC of order 4 for which
�

�

�

⇣

ˆC
⌘

ii

�

�

�

6= 1 and
�

�

�

⇣

ˆC
⌘

ii

�

�

�

6= 0 are

ˆC =

1

q

3 + < (#)2

0

B

B

B

@

�< (#) 1 1 1

1 �< (#) # #

1 # < (#) �#
1 # �# < (#)

1

C

C

C

A

, # 2 {z 2 C : |z| = 1} .

or any matrix obtained from ˆC by the permutation D⇤
✓

ˆCD
✓

, where
D

✓

= diag

�

ei✓1 , ei✓2 , ei✓3 , ei✓4
�

, ✓
i

2 [�⇡,⇡), i = 1, 2, 3, 4.

The number of positive and negative diagonal entries are equal and the corresponding matrix
ˆC can be represented by
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3.6. Trace zero; characterization of ET-matrices.

ˆC =

0

B

B

B

@

r t t t

t r at bt

t at �r ct

t bt ct �r

1

C

C

C

A

,

where a, b, c 2 {z 2 C : |z| = 1}. Using the orthogonality of the rows we have the following
system of equations

2r + t (a+ b) = 0 (1)

a+ c = 0 (2)

b+ c = 0 (3)

1 + bc = 0 (4)

1 + ac = 0 (5)

�2rc+ t
�

1 + ab
�

= 0 (6).

Solving for the parameters a, b, c, it is obtained that a can be chosen arbitrary, in which case
b = a and c = �a. A relation between r and t based on the system is obtained as r+ t< (a) = 0.
Using this relation between r and t and that in (3.3.1) one obtains that t = 1p

3+<(a)

2
and r =

�<(a)p
3+<(a)

2
. The parameter a is chosen such that < (a) < 0 because r > 0. Therefore the matrix

ˆC is given by

ˆC
2,2

=

1

q

3 + < (a)2

0

B

B

B

@

�< (a) 1 1 1

1 �< (a) a a

1 a < (a) �a

1 a �a < (a)

1

C

C

C

A

, |a| = 1,< (a) < 0.

For example, suppose a = �ei✓, then the appropriate values of ✓ are in the interval
�

�⇡

2

, ⇡

2

�

.
The corresponding matrix ˆC is given as follows

ˆC
2,2

=

1p
3 + cos

2 ✓

0

B

B

B

@

cos ✓ 1 1 1

1 cos ✓ �ei✓ �e�i✓

1 �e�i✓ � cos ✓ e�i✓

1 �ei✓ ei✓ � cos ✓

1

C

C

C

A

, ✓ 2
⇣

�⇡
2

,
⇡

2

⌘

.

It is therefore observed that when N = 4, all nontrivial ET-matrices (that are not reflectionless)
obtained can be put into the following two categories

1. Matrices generated by the SMC-matrix.

2. One-parameter family matrices ˆC
2,2

with zero trace.
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3.6.3 Order 6

Now we characterise nontrivial zero trace matrices of order 6. The case n+

=

n

2

= ⌫+ when
n = 6 is denoted by (3, 3).

Theorem 3.6.2 Let D
✓

= diag

�

ei✓1 , . . . , ei✓6
�

, ✓
i

2 [�⇡,⇡) , i = 1, 2, . . . , 6. All zero trace
ET-matrices ˆC of order 6 for which

�

�

�

⇣

ˆC
⌘

ii

�

�

�

6= 1 and
�

�

�

⇣

ˆC
⌘

ii

�

�

�

6= 0 exist as stated below or any matrix

obtained from ˆC by the permutation D⇤
✓

ˆCD
✓

.

(a) ˆC is a two-parameters family of matrices given by

ˆC =

1p
20+⇠

2

0

B

B

B

B

B

B

B

B

@

�⇠ 2 2 2 2 2

2 �⇠ 2a 2b 2c 2d

2 2a �⇠ �2c 2b �2d

2 2b �2c ⇠ �2b 2c

2 2c 2b �2b ⇠ �2c

2 2d �2d 2c �2c ⇠

1

C

C

C

C

C

C

C

C

A

, b, c 2 {z 2 C : |z| = 1}

⇠ = �< (b+ c)±
q

(< (b+ c))2 � 4= (b)= (c), a =

bc(�⇠�b�c)

1+bc

, d =

�⇠�b�c

1+bc

.

(b) ˆC is a one-parameter family of matrices given by

ˆC =

1

q

5 + (1�< (b))2

0

B

B

B

B

B

B

B

B

@

1�< (b) 1 1 1 1 1

1 1�< (b) �1 b b �1

1 �1 1�< (b) �1 b b

1 b �1 �1 + < (b) �b 1

1 b b �b �1 + < (b) �b

1 �1 b 1 �b �1 + < (b)

1

C

C

C

C

C

C

C

C

A

,

b 2 {z 2 C : |z| = 1} , b 6= 1

(c) ˆC is a unique real matrix given by

ˆC =

1

3

0

B

B

B

B

B

B

B

B

@

2 1 1 1 1 1

1 2 �1 �1 �1 �1

1 �1 2 �1 �1 �1

1 �1 �1 �2 1 1

1 �1 �1 1 �2 1

1 �1 �1 1 1 �2

1

C

C

C

C

C

C

C

C

A

The number of positive and negative diagonal entries are equal, and so the corresponding
matrix ˆC can be represented as
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3.6. Trace zero; characterization of ET-matrices.

ˆC =

0

B

B

B

B

B

B

B

B

@

r t t t t t

t r at bt ct dt

t at r et ft gt

t bt et �r ht lt

t ct ft ht �r mt

t dt gt lt mt �r

1

C

C

C

C

C

C

C

C

A

,

where

a, b, c, d, e, f, g, h, l,m 2 {z 2 C : |z| = 1} .

From the orthogonality of the rows of ˆC we obtain the following system of equations

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

2r + t (a+ b+ c+ d) = 0 (1)

2r + t (a+ e+ f + g) = 0 (2)

b+ e+ h+ l = 0 (3)

c+ f + h+m = 0 (4)

d+ g + l +m = 0 (5)

8

>

>

>

>

>

<

>

>

>

>

>

:

2ar + t
�

1 + be+ cf + dg
�

= 0 (6)

1 + ae+ ch+ dl = 0 (7)

1 + af + bh+ dm = 0 (8)

1 + ag + bl + cm = 0 (9)

8

>

>

<

>

>

:

1 + ab+ fh+ gl = 0 (10)

1 + ac+ eh+ gm = 0 (11)

1 + ad+ el + fm = 0 (12)

8

<

:

�2hr + t
�

1 + bc+ ef + lm
�

= 0 (13)

�2lr + t
�

1 + bd+ eg + hm
�

= 0 (14)

n

�2mr + t
�

1 + cd+ fg + hl
�

= 0 (15).

(3.6.1)

In this system there are nine equations to which Lemma 1 can be applied directly: equations
(3), (4), (5), (7), (8), (9), (10), (11) and (12) (refer to Remark 1).

(a) Two-parameters family of matrices.

Here the choices made when Lemma 1 is applied to equation (3), (4) and (5) respectively
of the system (3.6.1) are

8

<

:

h = �b

l = �e
,

8

<

:

f = �h

m = �c
and

8

<

:

g = �m

l = �d
.

The following relations immediately emerge; e = d, f = b and g = c. With these relations
the system (3.6.1) reduces to the following

8

<

:

2r + t (a+ b+ c+ d) = 0

ad� bc = 0.
(3.6.2)
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From the first equation in (3.6.2) and from equation (3.3.1), the values of r and t in terms
of a, b, c, d are

r =

⇠
p

20 + ⇠2
, t =

2

p

20 + ⇠2
,

where ⇠ = � (a+ b+ c+ d). Since r and t are real and nonnegative, ⇠ has to be chosen real
and positive, that is, a+ b+ c+ d < 0. Remembering that the parameters are unimodular,
the system (3.6.2) can now be written as

8

<

:

a+ b+ c+ d = �⇠ 2 R
+

a = bcd,

where R
+

= (0,1). These equations can be written as a linear system on a and d as
follows

8

<

:

a+ d = �⇠ � b� c

a� bcd = 0.
(3.6.3)

The system yields values of a and d if and only if the determinant of the coefficients
matrix does not vanish. Thus we require that bc 6= �1. It follows that obtained as

a =

bc (�⇠ � b� c)

1 + bc
, d =

�⇠ � b� c

1 + bc
. (3.6.4)

So far the solution depends on the parameters b, c and ⇠. But the parameters are not free
since a and d obtained in (3.6.4) should be unimodular. This requirement allows us to
determine ⇠ from b and c. Substituting the value of d above into the equation dd = 1 and
simplifying one obtains that

⇠2 + 2⇠< (b+ c) + 4= (b)= (c) = 0

from which it follows that

⇠ = �< (b+ c)±
q

(< (b+ c))2 � 4= (b)= (c). (3.6.5)

The value ⇠ 2 R
+

is obtained in any of the following cases

1. (< (b+ c))2 � 4= (b)= (c) > 0 and = (b)= (c) < 0. Here there exists a unique ⇠ 2 R
+

.

2. (< (b+ c))2 � 4= (b)= (c) > 0, = (b)= (c) > 0 and < (b+ c) < 0. There exists two
⇠ 2 R

+

.

3. (< (b+ c))2�4= (b)= (c) = 0, = (b)= (c) > 0 and < (b+ c) < 0. There exists a unique
⇠ 2 R

+

.

4. = (b)= (c) = 0 and < (b+ c) < 0. There exists a unique ⇠ 2 R
+

since ⇠ = 0 is
excluded.
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3.6. Trace zero; characterization of ET-matrices.

The corresponding matrix ˆC can now be written as follows

ˆC =

1

p

20 + ⇠2

0

B

B

B

B

B

B

B

B

@

�⇠ 2 2 2 2 2

2 �⇠ 2a 2b 2c 2d

2 2a �⇠ �2c 2b �2d

2 2b �2c ⇠ �2b 2c

2 2c 2b �2b ⇠ �2c

2 2d �2d 2c �2c ⇠

1

C

C

C

C

C

C

C

C

A

.

Here b and c are arbitrary parameters subject to bc 6= �1, (3.6.5) gives the value of ⇠ in
terms of b and c, while a and d by the equations (3.6.4), again in terms of b and c.

Now suppose that bc = �1 is allowed. Then c = �b and the system (3.6.3) now becomes

8

<

:

a+ d = �⇠ � b+ b

a+ d = 0.

This implies that ⇠ = �b + b. This is a contradiction since ⇠ 2 R
+

while �b + b is pure
imaginary.

(b) One-parameter family of matrices

This result is obtained by making the following choices when Lemma 1 is applied to
equations (3), (4) and (5) respectively of the system (3.6.1).

8

<

:

h = �b

l = �e
,

8

<

:

c = �h

m = �f
and

8

<

:

l = �d

m = �g.

With these substitutions, the equations (3), (4), and (5) are satisfied and can be deleted
from the system. It can also be seen that c = b, e = d and g = f . Equation (7) can now be
written as ad� 1 = 0 which implies that d = a. Consequently we have e = a and l = �a.
Equations (1) and (2) of the system (3.6.1) now become

2r + t
�

2a+ b+ b
�

= 0 (1) 2r + t
�

2a+ f + f
�

= 0 (2).

Evaluating the difference of equation (1) and the conjugate of equation (2) yields that
< (f) = < (b) which means that either f = b or f = b

Choosing f = b 1, one obtains that a and b are arbitrary and equations (1), (13) and (15) of
the system (3.6.1) can be written as follows

2r + t
�

2a+ b+ b
�

= 0 (1)

2br + t
�

1 + b2 + 2ab
�

= 0 (13)

2br + t
⇣

1 + 2ab+ b
2

⌘

= 0 (15).

1Of course the possibility f = b should also be considered when obtaining all possible matrices C (see Part (b))
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Equation (1) then takes the form r + t (a+ < (b)) = 0. Since r and t are real, a is also real
meaning that a = ±1. The resulting relation between r and t and equation (3.3.1) yield
that

t =
1

p

5 + �2

and r =

��
p

5 + �2

,

where � = a+ < (b) = ±1 + < (b).

Since r > 0, � should be chosen negative and this is obtained when a = �1. The sign of
< (b) does not determine the sign of � because |< (b)|  1. In particular the value b = 1 is
not allowed because it leads to r = 0 which is excluded. Thus � = �1 + < (b), b 6= 1. The
ET-matrix ˆC is fully determined and is given in terms of b as seen below

ˆC =

1

q

5 + (1�< (b))2

0

B

B

B

B

B

B

B

B

@

1�< (b) 1 1 1 1 1

1 1�< (b) �1 b b �1

1 �1 1�< (b) �1 b b

1 b �1 �1 + < (b) �b 1

1 b b �b �1 + < (b) �b

1 �1 b 1 �b �1 + < (b)

1

C

C

C

C

C

C

C

C

A

,

|b| = 1, b 6= 1.

This family is described by one real parameter.

(c) Unique real matrix

Suppose in part (b) the relation f = b is chosen instead of f = b, while other relations are
retained, then equations (6) and (13) of the system (3.6.1) now become

2ar + t
�

1 + 2ab+ b2
�

= 0 (6) 2br + t
�

1 + b2 + 2ab
�

= 0 (13).

The difference of these two equations shows that b = a. With this value of b, equation
(1) can now be written as r + t (a+ < (a)) = 0. This is a relation between r and t which
together with equation (3.3.1) give us

t =
1

q

5 + (a+ < (a))2
and r =

� (a+ < (a))
q

5 + (a+ < (a))2
.

Since r is real, a is also necessarily real implying that a = ±1. The appropriate choice of
a so that r is nonnegative is a = �1. Thus the matrix C is fully determined and is real

ˆC =

1

3

0

B

B

B

B

B

B

B

B

@

2 1 1 1 1 1

1 2 �1 �1 �1 �1

1 �1 2 �1 �1 �1

1 �1 �1 �2 1 1

1 �1 �1 1 �2 1

1 �1 �1 1 1 �2

1

C

C

C

C

C

C

C

C

A

.
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The obtained matrix gives the same transition probabilities as the SMC-matrix.
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Chapter 4

MAGNETIC FIELDS, VERTEX

CONDITIONS AND UNITARY

EQUIVALENCE

In this chapter we discuss the unitary equivalence of the spectrum of quantum graphs. The
layout of the chapter is as follows: In Section 4.1 we describe in details unitary multiplication
transformations and their effect on quantum graphs. The subsequent section is devoted to ver-
tex phases and their connection to equi-transmitting matrices. Section 4.3 entails the analysis
where we determine the maximal number of parameters that describe the Shrödinger opera-
tors that are unitarily equivalent when vertex phases are varied. The last section is devoted to
an explicit example.

4.1 Unitary transformations and magnetic Schrödinger opera-
tors

Models leading to unitary equivalent operators are usually identified in quantum mechanics
since the corresponding processes are identical. An important class of unitary transformations
is that of multiplication factors that are unimodular. This is because they preserve the proba-
bility density determined by the absolute value of the wave function. They also preserve the
class of magnetic Schrödinger differential expressions.

Consider the magnetic Schrödinger equation formally given by the differential expression

L
q,a

=

✓

i
d

dx
+ a(x)

◆

2

+ q(x), (4.1.1)

where a 2 C(�), q 2 L
2

(�) are real magnetic and electric potentials respectively. Suppose the
vertex conditions are defined by

i (S
m

� I) ~ 
m

= (S
m

+ I) @ ~ 
m

, (4.1.2)
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where ~ 
m

and @ ~ 
m

are the respective vectors of the limiting values of the function ~ and its
extended normal derivative at V

m

. Note that

@ (x
j

) = (�1)

j+1

( 0
(x)� ia(x) (x)) |

x=xj . (4.1.3)

Each vector in (4.1.2) has dimension equal to d
m

- the number of end-points joined at V
m

. The
d
m

⇥ d
m

matrix S
m

should be unitary and irreducible.

Since the probability density is given by the absolute value of the wave function squared ⇢(x) =
| (x)|2, if the phase space is fixed, then it is natural to identify operators ˜H and H . They are
connected by the unitary transformation via multiplication by a unimodular function U(x) =

exp i⇥(x), ⇥(x) 2 R:
˜H = U�1HU = e�i⇥(x)Hei⇥(x). (4.1.4)

Let us consider two special cases.

Special case 1. If the function ⇥(x) is chosen to be equal to a real constant ⇥
0

(x) ⌘ ✓, ✓ 2 R,
then the operator of multiplication U commutes with any H and therefore ˜H = H.

Special case 2. Another example of the function ⇥ is when it is chosen equal to a constant on
each edge of �

⇥

e

(x) = ✓
n

, x 2 E
n

, (4.1.5)

where ✓
n

are certain real parameters. With this choice of ⇥ the differential operators ˜H and H

coincide on every edge E
n

, but they may be different, since the vertex conditions at a vertex
V
m

are affected if the phases associated with the edges joined at V
m

are different.

More precisely, assume without loss of generality that the edges joined together at the vertex
V
m

are enumerated as E
1

, E
2

, . . . , E
dm and that the functions from the domain of H satisfy

vertex conditions (4.1.2). Consider the diagonal unitary matrix U
m

given by

U
m

= diag

�

ei✓1 , ei✓2 , . . . , ei✓dm
�

,

where ✓
n

were used in (4.1.5) to define ⇥

e

. Then the unitary matrices ˜S
m

and S
m

associated
with the operators ˜H and H respectively are connected via

˜S
m

= U�1

m

S
m

U
m

. (4.1.6)

To prove this assume that  2 Dom(

˜H). Every such function after the transformation U is
mapped to a function from the domain of H and therefore satisfies condition (4.1.2)

i(S
m

� I)U
m

~ 
m

= (S
m

+ I)U
m

@ ~ . (4.1.7)
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Multiplying both sides by U�1

m

we arrive at

i(˜S
m

� I)~ 
m

= (

˜S
m

+ I)@ ~ . (4.1.8)

Considering transformations given by functions ⇥

e

(4.1.5) we obtain self-adjoint operators ˜H

given by the same differential expression as H , but where vertex conditions are defined by
matrices ˜S

m

instead of S
m

. The relation between these matrices is described by (4.1.6).

The general case. We now discuss the relation between ˜H and H in the case of general ⇥(x),
and as can be seen below, we require that this function is continuously differentiable. More-
over we assume that the operator H is a magnetic Schrödinger operator given by (4.1.1). Our
assumption on ⇥ implies that ˜H is again a magnetic Schrödinger operator. It will be convenient
to denote by ˜ the parameters corresponding to ˜H. Applying formula

✓

i
d

dx
+ a(x)

◆

ei⇥(x) (x) = ei⇥(x)

✓

i
d

dx
+ a(x)�⇥

0
(x)

◆

 (x)

twice we obtain the following formula for the transformed operator

˜H = e�i⇥(x)

"

✓

i
d

dx
+ a(x)

◆

2

+ q(x)

#

ei⇥(x) 

=

✓

i
d

dx
+ a(x)�⇥

0
(x)

◆

2

 + q(x) .

(4.1.9)

It follows that
q̃(x) = q(x), and ã(x) = a(x)�⇥

0
(x), (4.1.10)

i.e. the electric potential q is invariant under the similarity transformation (4.1.4), while the
magnetic potential changes.

The transformation of the vertex conditions is the same as the one discussed in the second
special case. The only difference is that the values ✓

n

are the limiting values of the function
⇥(x) at the end points x

n

joined in the vertex V
m

. Note that the extended normal derivatives
given by (4.1.3) are changed accordingly, since their definition depends on the value of the
magnetic potential.

In particular, the magnetic potential on every edge can be eliminated if one choses:

⇥(x) =

Z

x

x0

a(y)dy.

Observe that eliminating magnetic potential one introduces new phases in vertex conditions as
given by (4.1.6). Hence in order to study spectral properties of magnetic Schrödinger operators
on metric graphs it is enough to consider Schrödinger operators with zero magnetic potentials,
but with different extra phases in vertex conditions. We are going to call these phases vertex
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Chapter 4. Magnetic Fields, Vertex Conditions, Unitary Equivalence

phases and will in particular study the dependence of the spectrum upon these phases.

Special case 3. If the graph � is a tree, then the function ⇥ eliminating magnetic potential can
be chosen as

⇥(x) =

Z

x

x0

a(y)dy, (4.1.11)

where the point x
0

2 � is arbitrary and integration is along the shortest path on � connecting
x
0

and x. Note that the function ⇥ is continuous. Also observe that integration along the edges
forming the path should be carried out respecting their orientation: if the path goes along an
edge in the positive direction, then the corresponding contribution should be taken with +ve
sign, otherwise with �ve sign. It follows that magnetic potential on a tree can be eliminated
without changing the vertex conditions, i.e. the spectrum of a magnetic Schrödinger operator
on a tree coincides with the spectrum of the operator with zero magnetic potential and precisely
the same electric potential and the same vertex conditions.

Assume now that � is not a tree, but contains cycles. Consider then any spanning tree T on
� obtained by chopping precisely g = N � M + 1 vertices - one on each independent cycle
in � where N is the number of edges while M is the number of vertices in �. Then magnetic
potential on T can be eliminated as described above. Using the same function ⇥ to eliminate
magnetic potential on � leads to introducing at most g vertex phases, since the values of ⇥ at
different parts of the chopped vertices may be different. Assume that a vertex V

m

was divided
into two vertices V 0

m

and V 00
m

. If ⇥(V 0
m

) 6= ⇥(V 00
m

) then the matrix S
m

describing vertex condi-
tions on � is transformed by (4.1.6). The matrix U

m

contains factors ei⇥(V

0
m) and ei⇥(V

00
m), but

one common factor in the similarity transformation can be cancelled. Hence the matrix ˜S
m

depends on the difference ⇥(V 0
m

)�⇥(V 00
m

) which is in fact equal to the integral of the magnetic
potential over the independent cycle to which V

m

belongs. We conclude that elimination of the
magnetic potential on a graph with g cycles leads to an operator with zero magnetic potential,
the same electric potential and new vertex conditions containing at most g phases equal to

�

j

=

Z

Cj

a(y)dy, j = 1, 2, . . . , g. (4.1.12)

These phases can be interpreted as the fluxes of the magnetic field through the independent
cycles C

j

.

4.2 Vertex phases and transition probabilities

The vertex phases described above appear not only as a result of the elimination of the mag-
netic potential on a metric graph. Such phases appear naturally when one tries to reconstruct a
unitary matrix from the absolute values of the entries. The transition probabilities correspond-
ing to such unitary scattering matrix S

m

are given by ⇢
ij

= |(S
m

)

ij

|2. Therefore matrices with
the same absolute values of entries describe essentially the same physics.
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4.3. The main result

Consider the similarity transformation

S
m

7! ˆS
m

= D�1

m

S
m

D
m

, (4.2.1)

where D
m

is a diagonal unitary matrix

D
m

= diag

�

ei'1 , ei'2 , . . . , ei'dm
�

, '
j

2 R. (4.2.2)

Note that this transformation coincides with (4.1.6) if all phases '
j

are chosen equal to the
values of ⇥(x) at the corresponding end points.

The transformation (4.2.1) does not change the transition probabilities, hence knowing the tran-
sition probabilities ⇢

ij

the matrix S
m

can be determined up to the vertex phases '
j

only. The
transformation can be used to make one of the rows or one of the columns in S

m

real, or if
S
m

in addition is Hermitian then one may make real simultaneously one row and one column
with the same number. The difference between the matrices S

m

and ˜S
m

lies in phase factors
that the waves acquire while penetrating through the vertex. These phases can be completely
ignored if the graph � has no cycles (tree), but should be taken into account when the cycles are
present. For every vertex V

m

in � and any S
m

there is a d
m

� 1 – parameter family of unitary
matrices D�1S

m

D leading to the same scattering amplitudes. Any two members from such a
family are connected via transformation (4.2.1), which contains d

m

� 1 vertex phases.

It is natural to ask the following question: is it possible to reconstruct the scattering matrix
from the scattering amplitudes up to the vertex phases? It appears that the answer in general
is negative, in particular if several of the entries in S have the same absolute value. Here is one
example of a one parameter family of reflectionless equitransmitting matrices of order 6 [?]

ˆC
1,1,1

=

1p
5

0

B

B

B

B

B

B

B

B

@

0 1 1 1 1 1

1 0 1 1 �1 �1

1 1 0 �1 f �f

1 1 �1 0 �f f

1 �1 f �f 0 1

1 �1 �f f 1 0

1

C

C

C

C

C

C

C

C

A

,

where f is any unimodular complex number. All matrices from this family have the same
reflection probability | (S

V

)

jj

|2 = 0 (reflectionless) and the same transition probabilities (eq-
uitransmitting) | (S

V

)

ij

|2 =

1

5

, i 6= j. Of course, the considered example is very special, since
many of the entries in ˆC

1,1,1

have the same absolute value. Applying the similarity transforma-
tion (4.2.1) one obtains a 6-parameter family of matrices with the same transition probabilities.

4.3 The main result

Note that the total number of arbitrary vertex phases is equal to
P

M

m=1

(d
m

� 1) =

P

M

m=1

d
m

�
P

M

m=1

1 = 2N � M and could be rather large. On the other hand the transformation (4.1.5)
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leaves the differential operator unchanged. This transformation contains N�1 independent pa-
rameters, since one common factor can be removed from the similarity transformation. Hence
it seems that the family of different operators (not unitary equivalent) can be described by at
most

2N �M � (N � 1) = N �M + 1 = g

independent parameters. Our goal is to prove this result. Our previous discussions imply that
it is enough to prove the result of the case of zero magnetic potential. On the other hand despite
the magnetic potential being eliminated from our discussion, the easiest way to describe the
independent parameters is via fluxes introduced in (4.1.12).

Theorem 4.3.1 The spectrum of the Schrödinger operator L
q,a

(S) on a metric graph � with zero mag-
netic potential a(x) ⌘ 0, fixed electric potential q and vertex conditions given by (4.1.2) with the unitary
matrices ˆS

m

= D�1

m

S
m

D
m

containing arbitrary vertex phases is described by at most g = N �M +1

parameters, where g is the genus of �.

Let U be the unitarily transformation defined by (4.1.5). Let us denote by ˜L the transformed
Schrödinger operator

˜L = U�1LU. (4.3.1)

The operators ˜L and L are unitarily equivalent. Moreover the corresponding differential ex-
pressions coincide, since on every edge U acts as a multiplication by a constant; ã(x) ⌘
0, q̃(x) = q(x). The difference lies in the vertex conditions, since generally ˜S

m

6= S
m

(see (4.1.6)).

Formula (4.1.6) shows that the transformation U can be chosen so that all free phases in any
particular S

m

disappear. More precisely, let the vertex conditions be described by the vertex
scattering matrix D�1

m

S
m

D
m

, where the diagonal matrix D
m

is the diagonal matrix containing
free phases at V

m

. We see that the vertex conditions for ˜L are described by S
m

alone if and
only if the matrix U

m

is chosen so that D
m

U
m

is a scalar, i.e. proportional to the unit matrix.
This can always be done if the phases ✓

n

can be chosen freely. Moreover this can always be
done if just one of the phases ✓

n

is fixed. This observation will be important for our future
considerations.

Note that we considered just one particular vertex. If the graph � contains cycles, then there
appear certain restrictions on how the phases on any cycle can be chosen. Therefore assume
first that � contains no cycles, i.e. it is a tree and that vertex conditions are given by the matrices
D�1

m

SD
m

. Let us show that the unitary transformation U can be chosen so that all phases
are eliminated, i.e. the vertex conditions are given by S

m

alone at all vertices V
m

. Obviously
such transformation U can be defined up to a general phase factor, since if U is the desired
transformation, then ei✓U, ✓ 2 R solves the problem as well. Consider any root edge denoted
without loss of generality by E

1

and define ✓
1

= 0. , i.e. U restricted to E
1

is the identity
transformation. The root edge connects two vertices: one of degree one and one of arbitrary
degree. Let us denote these vertices by V

1

and V
2

respectively. Then define U on all edges
joined together at V

2

so that the matrix ˜S
2

contains zero free phases. This can always be done,
since only one of the phases associated with V

2

- the phase ✓
1

, - is fixed. This process can be
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4.3. The main result

continued to define U on the whole tree, since moving from the root to the periphery of � on
each step we need to define U on all except one edges joined at a vertex (U is already defined
on the edge nearest to the root). Hence for trees the unitary transformation U can be defined
so that all vertex phases are eliminated. It follows that the spectrum of a Schrödinger operator
on a tree does not depend on the free phases in vertex conditions. This statement is similar to
the fact that the spectrum of a magnetic Schrödinger operator on a tree is independent of the
magnetic potential.

Consider now any connected graph � and choose an arbitrary spanning tree T obtained from
� by chopping precisely g = M � N + 1 edges in the middle. These edges can be chosen so
that every independent cycle contains just one of the chosen edges. Let us denote the chopped
edges by E

1

, E
2

, . . . , E
g

and by E±
n

the corresponding smaller edges obtained after chopping.

E1 E4

E3E2

E5
E6

E1 E4

E�
3

E+
3

E2

E+
5

E�
5

E6

(a) (b)

FIGURE 4.1: (a) Graph � with cycles and (b) graph T obtained from � by chop-
ping edges corresponding to independent cycles

In what follows we are going to identify the Hilbert spaces L
2

(E
n

) and L
2

(E�
n

) � L
2

(E+

n

).

As before all vertex phases on T can be eliminated by a unitary transformation U. If  is an
eigenfunction on the original graph �, then U�1 is not necessarily an eigenfunction on T ,
since the transformation U restricted to E�

n

and E+

n

may be different - the function U�1 

may be discontinuous as a function on E
n

. It follows that the operator ˜L = U�1LU can be
considered as a Schrödinger operator on the original graph � (without any additional matching
conditions at the middle points of E

n

, n = 1, 2, . . . , g) only if all the phases ✓±
n

coincide pairwise

✓�
n

= ✓+
n

, n = 1, 2, . . . , g. (4.3.2)

One may always achieve (4.3.2) by choosing appropriately one of the two free phases associ-
ated with the edge E

n

on the cycle. Since the edges E
n

belong to different independent cycles,
identifying unitary equivalent operators gives a g-parameter family. In other words the spec-
trum of L depends not on all free phases, but on the g phases described above. Each of these
phases is associated with one of the independent cycles in �.

The parameters describing not unitary equivalent operators will be interpreted as fluxes of the
magnetic field through the independent cycles.

Theorem 4.3.2 For any Schrödinger operator on a graph � with electric potential q and defined on
functions satisfying (4.1.2) with d

m

� 1 arbitrary vertex phases at each vertex V
m

there exists a unitary
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equivalent magnetic Schrödinger operator on � with the same electric potential and zero phases in vertex
conditions.

For our purposes it will be enough to consider magnetic Schrödinger operators with magnetic
potential supported by the left subedges of chopped edges:

supp a ⇢ [g

n=1

E�
n

.

Consider the spanning tree T constructed during the proof of the previous theorem as well as
the unitary transformation U on T leading to may be different phases ✓�

n

and ✓+
n

. If all ✓±
n

are
pairwise equal then the Schrödinger operator with zero magnetic potential U�1L

q

U solves the
task. If some of ✓±

n

are pairwise different, let us choose magnetic potential a so that

Z

(x2n+x2n�1)/2

x2n�1

a(x)dx = ✓�
n

� ✓+
n

. (4.3.3)

Remember that the edge E
n

= [x
2n�1

, x
2n

] has been divided into two edges: E�
n

=

[x
2n�1

, (x
2n

+ x
2n�1

)/2] and E+

n

= [(x
2n

+ x
2n�1

)/2, x
2n

], so that (x
2n

+ x
2n�1

)/2 is noth-
ing else than the middle point of E

n

. Then the unitary transformation V
a

of multiplication by
the function V

a

(x)

V
a

(x) =

8

>

>

>

<

>

>

>

:

e
i

Z

x

x2n�1

a(y)dy
, x 2 E�

n

= [x
2n�1

, x2n+x2n�1

2

], n = 1, 2, . . . , g,

1, otherwise,

(4.3.4)

determines the magnetic Schrödinger operator on � with vertex conditions including zero free
phases

ˆL = V
a

U�1L
q

UV�1

a

. (4.3.5)

We first note that the operator V
a

U�1L
q

UV
a

is defined by a magnetic Schrödinger differential
expression on each interval E

n

. This follows directly from formula (4.1.9). Moreover the func-
tion V

a

is identically equal to one in a neighborhood of every vertex, since supp a is separated
from the end points of the interval. Therefore if the functions from the domain of U�1L

q

U

satisfy vertex conditions with zero free phases, then the same property holds for the functions
from the domain of V

a

U�1L
q

UV
a

. It remains to show that the functions from the domain of
this operator are continuous and have continuous derivatives at the middle points of chopped
edges E

n

, n = 1, 2, . . . , g, i.e. that the defect introduced by tranformation U is ”repaired”.

The functions from the domain of U�1L
q

U as well as their first derivatives satisfy the following
conditions at the middle points of chopped edges:

ei'
�
n f

✓

x
2n

+ x
2n�1

2

� 0

◆

= ei'
+
n f

✓

x
2n

+ x
2n�1

2

+ 0

◆

. (4.3.6)

The function V
a

is constant close to the middle points in E
n

V
a

✓

x
2n

+ x
2n�1

2

� 0

◆

= ei('
�
n �'

+
n ), V

a

✓

x
2n

+ x
2n�1

2

+ 0

◆

= 1.
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4.4. Clarifying example

Hence the functions from the domain of V
a

U�1L
q

UV�1

a

satisfy

e�i('

�
n �'

+
n )ei'

�
n f

✓

x
2n

+ x
2n�1

2

� 0

◆

= ei'
+
n f

✓

x
2n

+ x
2n�1

2

+ 0

◆

) f

✓

x
2n

+ x
2n�1

2

� 0

◆

= f

✓

x
2n

+ x
2n�1

2

+ 0

◆

. (4.3.7)

The first derivatives are continuous as well.

It follows that the operator V
a

U�1L
q

UV�1

a

is the magnetic Schrödinger operator on � defined
on the functions satisfying vertex conditions with zero free phases.

4.4 Clarifying example

Consider the following quantum graph �1 obtained by joining two loops at a single vertex.
The end points joined in the vertex V

1

are x
1

, x
2

, x
3

, x
4

.

x
2

x
1

x
3

x
4

FIGURE 4.2: The �1 graph.

Define the Laplace operator on �1 by the differential expression

L (x) = � 00
(x)

on the functions from the Sobolev space W 2

2

([x
1

, x
2

] [ [x
3

, x
4

]) satisfying vertex conditions
(4.1.2)

i(ˆS
1

� I)~ 
1

= (

ˆS
1

+ I)@ ~ 
1

where ˆS
1

is the unitary matrix given by ˆS
1

= D⇤
1

S
1

D
1

with

S
1

=

1

p

3 + cos

2 �

0

B

B

B

@

cos� 1 1 1

1 cos� �ei� �e�i�

1 �e�i� � cos� e�i�

1 �ei� ei� � cos�

1

C

C

C

A

,� 2
⇣

�⇡
2

,
⇡

2

⌘

(4.4.1)
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and D
1

= diag

�

1, ei'1 , ei'2 , ei'3
�

, '
j

2 [�⇡,⇡). For a = �ei� , t = 1p
3+cos

2
�

and r =

cos �p
3+cos

2
�

we write the above matrix as

S
1

=

0

B

B

B

@

r t t t

t r at at

t at �r �at

t at �at �r

1

C

C

C

A

.

This is a zero-trace equi-transmitting unitary Hermitian matrix in the proof of Theorem 3.6.1.
The transition probabilities are determined by the real parameter � or the unitary parameter a.

The defined operator L is determined by 4 real parameters: one in the matrix S
1

and three
in D

1

. The parameter included in S
1

determine different transition probabilities through the
central vertex, while not all phases included in D

1

are important leading to unitary equivalent
operators. Let us calculate the spectrum explicitly in order to see this phenomena.

The solution to the Laplace equation L = k2 is given by

 (x) =

8

>

<

>

:

a
1

eik|x�x1|
+ a

2

eik|x�x2|, x 2 [x
1

, x
2

] ,

a
3

eik|x�x3|
+ a

4

eik|x�x4|, x 2 [x
3

, x
4

] .

Let l
1

= x
2

�x
1

and l
2

= x
4

�x
3

. Since the unitary matrix ˆS
1

is also Hermitian, it plays the role
of the vertex scattering matrix connecting the amplitudes of the incoming and outgoing waves
at the vertex. In other words, vertex conditions (4.1.2) imposed on  imply that

ˆS
1

0

B

B

B

@

eikl1a
2

eikl1a
1

eikl2a
4

eikl2a
3

1

C

C

C

A

=

0

B

B

B

@

a
1

a
2

a
3

a
4

1

C

C

C

A

. (4.4.2)

This equation can be written as

(S
1

S
E

� I)

0

B

B

B

@

a
1

a
2

a
3

a
4

1

C

C

C

A

= 0, (4.4.3)

where

S
1

=

0

B

B

B

B

B

B

@

0 eikl1 0 0

eikl1 0 0 0

0 0 0 eikl2

0 0 eikl2 0

1

C

C

C

C

C

C

A

.

Hence the spectrum of L is determined by the secular equation det (S
1

S
E

� I) = 0 which
shows that the spectrum depends on �, the phase '

1

and the difference '
3

� '
2

, i.e. one of the
phase parameters can be eliminated as far as the spectrum is concerned. The original equations
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4.4. Clarifying example

is

1 +

n

7t4 + 2r2t2 + rt3
�

4e�i�

+ ei�
�

+ cos (2�) + rt3ei(��'1)

o

e2ik(l1+l2)

+ 2t
n

�

r2 � 3t2
�

eik(2l1+l2)
+ 2teik(l1+l2) � eikl2

o

cos (� � '
3

+ '
2

)

� 2teikl1
�

t2e2ikl2 + 1

�

cos'
1

� 2t
�

2t2 � r2 + rt cos�
�

eik(l1+2l2)
cos'

1

� 2rt2eik(2l1+l2)
(cos'

1

+ cos (2� � '
3

+ '
2

)) = 0.

Introducing �
1

= '
1

,�
2

= '
3

� '
2

we rewrite the secular equation as follows

1 +

n

7t4 + 2r2t2 + rt3
�

4e�i�

+ ei�
�

+ cos (2�) + rt3ei(���1)

o

e2ik(l1+l2)

+ 2t
n

�

r2 � 3t2
�

eik(2l1+l2)
+ 2teik(l1+l2) � eikl2

o

cos (� � �
2

)

� 2teikl1
�

t2e2ikl2 + 1

�

cos�
1

� 2t
�

2t2 � r2 + rt cos�
�

eik(l1+2l2)
cos�

1

� 2rt2eik(2l1+l2)
(cos�

1

+ cos (2� � �
2

)) = 0.

Thus the spectrum depends only on three of the parameters; �, �
1

= '
1

, �
2

= '
3

� '
2

. This
can be explained using the following transformation U on  2 L

2

(�1);

U (x) =

8

>

<

>

:

 (x) , x 2 E
1

= [x
1

, x
2

]

e�i'2 (x) , x 2 E
2

= [x
3

, x
4

] .

This unitary transformation does not change the differential operator, but amends the vertex
scattering matrix as follows

˜S
1

= U�1

1

ˆS
1

U
1

= diag

�

1, e�i�1 , 1, e�i�2
�

S
1

diag

�

1, ei�1 , 1, ei�2
�

(4.4.4)

where U
1

= diag

�

1, 1, e�i'2 , e�i'2
�

. Since U
1

S
E

= S
E

U
1

we have

det

⇣

˜S
1

S
E

� I
⌘

= det

⇣

U�1

1

ˆS
1

U
1

S
E

�U�1

1

U
1

⌘

= · · · = det

⇣

ˆS
1

S
E

� I
⌘

.

Thus the secular equation remains unchanged despite one of the parameters having been elim-
inated.

The parameters �
1,2

are associated with the the two loops forming �1 and can be interpreted
as fluxes of the magnetic filed through the loops, since these phases disappear if the magnetic
potential on the edges is chosen appropriately as described in the previous section.
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CONCLUSION

We have studied scattering matrices used for vertex conditions in quantum graphs where there
is uniform transition probabilities as well as uniform reflection probabilities. We have shown
that RET-matrices exist only in even orders. We have determined all such matrices up to order
six. Matrices of order two comprises one-parameter family of matrices. RET-matrices of order
four comprises two three-parameter family of matrices.

In order six we obtained 30 six-parameter families of matrices. Five of these parameters are
called phase parameters and do not play a central role. Getting rid of these five parameters
we arrived at one-parameter families of matrices C. The families intersect at 12 very special
real-valued matrices. Indeed each of the twelve is an intersection of five of the 60 parameter
free matrices. It turned out that these twelve matrices are also conference matrices of order six.
They determine the vertices of a bipartite 5�regular combinatorial graph (see Figure 2.2) where
the edges correspond to the 30 six-parameter families of matrices. A complete description of
RET-matrices of orders greater than six remains an open problem.

We have shown that the SMC-matrix determines ET-matrices for all n � 3 and these are the
only ET-matrices when the order of the matrix in question is odd and n  5. We have de-
termined all ET-matrices of even order up to order five. We observed that when the order is
even then there exist ET-matrices not equivalent to SMC-matrix but all such matrices have zero
trace. The cases of nonzero trace matrices which are not equivalent to SMC-matrices remains
open for investigations.

The number of parameter dependent ET-matrices when n is even grows with the order of the
matrix. When n = 2 there is only one one-parameter family of ET-matrices ˆC. When n = 4 then
the family of ET-matrices ˆC have at most one parameter. When n = 6 the ET-matrices ˆC have
at most two parameters. As in the case of RET-matrices complete determination of ET-matrices
of orders greater six still remains an open problem. Also the existence of ET-matrices in the
cases (2, 0), (2, 1), (3, 4) and (3, 5) when n = 6 is yet to be determined.

We have shown that there are no ET-matrices for the cases (n+, ⌫+) and (n� n+, n� ⌫+) when
⌫+ 2 {0, 1} for all n. We conjecture that ET-matrices exist only in the following two cases

1. When the transition probabilities are the same as those of the SMC-matrix and this is true
for all n � 3.

2. When n is even and the trace of the matrix is zero.
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CONCLUSION

It remains to verify our conjecture and construct a proof. It will also be of interest to determine
any relationship among the ET-matrices of order 6.

We have shown that the phase parameters in vertex conditions play a secondary role. The
spectrum of a quantum graph does not depend on all such parameters but just a certain g =

N � M + 1 of them. We have also shown that for any Schrödinger operator on a graph �

with electric potential q and defined on functions satisfying (4.1.2) with d
m

� 1 arbitrary vertex
phases at each vertex V

m

there exists a unitary equivalent magnetic Schrödinger operator on �

with the same electric potential and zero phases in vertex conditions.
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Computations for non-zero trace
matrices when n = 5

Case (2, 1). In this case only one diagonal entry is positive while two eigenvalues are positive.
The values r and t are 1

3

and
p
2

3

respectively. The corresponding matrix C is represented as
follows

C =

0

B

B

B

B

B

B

@

r t t t t

t �r at bt ct

t at �r dt et

t bt dt �r ft

t ct et ft �r

1

C

C

C

C

C

C

A

,

where a, . . . , f 2 {z 2 C : |z| = 1}. Since the rows of C are orthogonal, their inner products
yield the following system of equations

8

>

>

>

>

>

<

>

>

>

>

>

:

a+ b+ c = 0 (1)

a+ d+ e = 0 (2)

b+ d+ f = 0 (3)

c+ e+ f = 0 (4)

8

>

>

<

>

>

:

�2ar + t
�

1 + bd+ ce
�

= 0 (5)

�2br + t
�

1 + ad+ cf
�

= 0 (6)

�2cr + t
�

1 + ae+ bf
�

= 0 (7)

8

<

:

�2dr + t
�

1 + ab+ ef
�

= 0 (8)

�2er + t
�

1 + ac+ df
�

= 0 (9)

n

�2fr + t (1 + bc+ de) = 0 (10).

(.0.5)

In what follows we determine the characteristic polynomial of matrix C from its spectrum and
by direct computation from the entries of C. Now � (C) = {1, 1,�1,�1,�1} so that

�

C

(�) = � (�� 1)

2

(�+ 1)

3

= �
�

�5 + �4 � 2�3 � 2�2 + �+ 1

�

. (.0.6)

69



Computations for non-zero trace matrices when n = 5

On the other hand by direct computation

�

C

(�) = ��5 � 3r�4 +
�

10t2 � 2r2
�

�3 +
�

18rt2 + 2r3

+ t3

2

6

4

a+ abd+ ace
| {z }

eq 5=↵

+ b+ abd+ bcf
| {z }

eq 6=↵

+ c+ ace+ bcf
| {z }

eq 7=↵

+ a+ d+ e
| {z }

eq 2=0

+ b+ d+ f
| {z }

eq 3=0

+ c+ e+ f
| {z }

eq 4=0

+ def
|{z}

eq 8=↵�d�abd

+ def
|{z}

eq 9=↵�d�ace

3

7

5

9

>

=

>

;

�2 + · · ·

(.0.7)

Thus we rewrite the polynomial as

�

C

(�) = ��5 � 3r�4 +
�

10t2 � 2r2
�

�3 +
�

18rt2 + 2r3 + t3 [5↵+ a+ a]
�

�2 + · · · (.0.8)

Substituting the values of r and t and comparing the corresponding coefficients in (.0.6) and
(.0.8) we readily see that the coefficients of �5 and �4 are equal. Simplifying the coefficient of
�3 in (.0.8) we obtain that

10 · 2
9

� 2 · 1
9

= 2

in agreement with the value in (.0.6). Equating the coefficients of �2 we obtain

18rt2 + 2r3 + t3 (5↵+ a+ a) = 2

which when simplified we obtain
< (a) =

↵

2

.

By making appropriate combinations in the coefficient of t3 in (.0.7) we have

< (a) = < (b) = < (c) =
↵

2

.

The imaginary parts of a, b and c may coincide or differ by a sign. Hence it is impossible that
(eq(1))

a+ b+ c = 0.

This contradiction implies that no ET-matrix can be obtained in this case.

Case (3, 4). In this case only one diagonal entry is negative while three eigenvalues are positive.
The values r and t are 1

3

and
p
2

3

respectively. The corresponding matrix C is represented as
follows
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Computations for non-zero trace matrices when n = 5

C =

0

B

B

B

B

B

B

@

r t t t t

t r at bt ct

t at r dt et

t bt dt r ft

t ct et ft �r

1

C

C

C

C

C

C

A

,

where a, . . . , f 2 {z 2 C : |z| = 1}. Since the rows of C are orthogonal, their inner products
yield the following system of equations

8

>

>

>

>

>

<

>

>

>

>

>

:

2r + t (a+ b+ c) = 0 (1)

2r + t (a+ d+ e) = 0 (2)

2r + t
�

b+ d+ f
�

= 0 (3)

c+ e+ f = 0 (4)

8

>

>

<

>

>

:

2ar + t
�

1 + bd+ ce
�

= 0 (5)

2br + t
�

1 + ad+ cf
�

= 0 (6)

1 + ae+ bf = 0 (7)

8

<

:

2dr + t
�

1 + ab+ ef
�

= 0 (8)

1 + ac+ df = 0 (9)

n

1 + bc+ de = 0 (10).

(.0.9)

In what follows we determine the characteristic polynomial of matrix C from its spectrum and
by direct computation from the entries of C. Now � (C) = {1, 1, 1,�1,�1} so that

�

C

(�) = � (�� 1)

3

(�+ 1)

2

= �
�

�5 � �4 � 2�3 + 2�2 + �� 1

�

. (.0.10)

On the other hand by direct computation

�

C

(�) = ��5 + 3r�4 +
�

10t2 � 2r2
�

�3 +
�

�24rt2 � 2r3

+ t3

2

6

4

a+ abd+ ace
| {z }

eq 5=�↵

+ b+ abd+ bcf
| {z }

eq 6=�↵

+ c+ ace+ bcf
| {z }

eq 7=0

+ a+ d+ e
| {z }

eq 2=�↵

+ b+ d+ f
| {z }

eq 3=�↵

+ c+ e+ f
| {z }

eq 4=0

+ def
|{z}

eq 8=�↵�d�abd

+ def
|{z}

eq 9=�d�ace

3

7

5

9

>

=

>

;

�2 + · · ·

(.0.11)

Thus we rewrite the polynomial as

�

C

(�) = ��5 + 3r�4 +
�

10t2 � 2r2
�

�3 +
�

�24rt2 � 2r3 + t3 [�2↵+ a+ a]
�

�2 + · · · (.0.12)

Substituting the values of r and t and comparing the corresponding coefficients in (.0.10) and
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Computations for non-zero trace matrices when n = 5

(.0.12) we readily see that the coefficients of �5 and �4 are equal. Simplifying the coefficient of
�3 in (.0.12) we obtain that

10 · 2
9

� 2 · 1
9

= 2

in agreement with the value in (.0.10). Equating the coefficients of �2 we obtain

�24rt2 � 2r3 + t3 (�2↵+ a+ a) = �2

which when simplified we obtain
< (a) =

↵

2

.

By making appropriate combinations in the coefficient of t3 in (.0.11) we have

< (a) = < (b) = < (c) =
↵

2

.

The imaginary parts of a, b and c may coincide or differ by a sign. Hence it is impossible that
(eq(1))

a+ b+ c = �↵.

This contradiction implies that no ET-matrix can be obtained in this case.

Case (3, 5). In this case all diagonal entries are positive while two eigenvalues are negative.
The values r and t are 1

5

and
p
6

5

respectively. The corresponding matrix C is represented as
follows

C =

0

B

B

B

B

B

B

@

r t t t t

t r at bt ct

t at r dt et

t bt dt r ft

t ct et ft r

1

C

C

C

C

C

C

A

,

where a, . . . , f 2 {z 2 C : |z| = 1}. Since the rows of C are orthogonal, their inner products
yield the following system of equations
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Computations for non-zero trace matrices when n = 5

8

>

>

>

>

>

<

>

>

>

>

>

:

2r + t (a+ b+ c) = 0 (1)

2r + t (a+ d+ e) = 0 (2)

2r + t
�

b+ d+ f
�

= 0 (3)

2r + t
�

c+ e+ f
�

= 0 (4)

8

>

>

<

>

>

:

2ar + t
�

1 + bd+ ce
�

= 0 (5)

2br + t
�

1 + ad+ cf
�

= 0 (6)

2cr + t
�

1 + ae+ bf
�

= 0 (7)

8

<

:

2dr + t
�

1 + ab+ ef
�

= 0 (8)

2er + t
�

1 + ac+ df
�

= 0 (9)

n

2fr + t (1 + bc+ de) = 0 (10).

(.0.13)

In what follows we determine the characteristic polynomial of matrix C from its spectrum and
by direct computation from the entries of C. Now � (C) = {1, 1, 1,�1,�1} so that

�

C

(�) = � (�� 1)

3

(�+ 1)

2

= �
�

�5 � �4 � 2�3 + 2�2 + �� 1

�

. (.0.14)

On the other hand by direct computation

�

C

(�) = ��5 + 5r�4 + 10

�

t2 � r2
�

�3 +
�

10r3 � 30rt2

+ t3

2

6

4

a+ abd+ ace
| {z }

eq 5=�↵

+ b+ abd+ bcf
| {z }

eq 6=�↵

+ c+ ace+ bcf
| {z }

eq 7=�↵

+ a+ d+ e
| {z }

eq 2=�↵

+ b+ d+ f
| {z }

eq 3=�↵

+ c+ e+ f
| {z }

eq 4=�↵

+ def
|{z}

eq 8=�↵�d�abd

+ def
|{z}

eq 9=�↵�d�ace

3

7

5

9

>

=

>

;

�2 + · · ·

(.0.15)

Thus we rewrite the polynomial as

�

C

(�) = ��5 + 5r�4 + 10

�

t2 � r2
�

�3 +
�

10r3 � 30rt2 � t3 [�6↵+ a+ a]
�

�2 + · · · (.0.16)

Substituting the values of r and t and comparing the corresponding coefficients in (.0.14) and
(.0.16) we readily see that the coefficients of �5 and �4 are equal. Simplifying the coefficient of
�3 in (.0.16) we obtain that

10

✓

6

25

� 1

25

◆

= 2

in agreement with the value in (.0.14). Equating the coefficients of �2 we obtain

10r3 � 30rt2 � t3 (�6↵+ a+ a) = �2
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Computations for non-zero trace matrices when n = 5

which when simplified we obtain
< (a) = �↵

3

.

By making appropriate combinations in the coefficient of t3 in (.0.15) we have

< (a) = < (b) = < (c) = �↵
3

.

The imaginary parts of a, b and c may coincide or differ by a sign. Hence it is impossible that
(eq(1))

a+ b+ c = �↵.

This contradiction implies that no ET-matrix can be obtained in this case.
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