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Abstract

In this thesis, we study unitary equivalence, similarity, quasisimilarity, almost similarity

and metric equivalence of operators acting on separable Hilbert spaces. We also study the

Murray-von Neumann relation of projections and other equivalence relation of operators

in Hilbert spaces. We study the relation between equivalence classes of bounded linear op-

erators with respect to different properties such as being self-adjoint, projections, normal,

unitary and having specific rank. We will investigate the spectral picture, norms, spectral

radii, numerical range, lattice of their invariant subspaces, hyperinvariant subspaces and

reducing subspaces of almost similar operators and metrically equivalent operators. Simi-

larly, we characterize near equivalence, Murray-von Neumann equivalence, stable unitary

equivalence and stable similarity of operators
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Index of Notations

H: Hilbert space over the complex numbers C.
B(H): Banach algebra of bounded linear operators on H.
T ∗ : the adjoint of T.

‖T‖: the operator norm of T.

‖x‖: the norm of a vector x.

< x, y >: the inner product of x and y on a Hilbert space H.
ρ(T ): the resolvent set of an operator T.

σ(T ): the spectrum of an operator T.

Ran(T ): the range of an operator T.

ω(T ): numerical radius of an operator T.

ker(T ): the kernel of an operator T.

W (T ): Numerical range of an operator T.

c.n.n: completely non-normal.

c.n.u: completely non-unitary.

M ⊕M⊥: the direct sum of the subspaces M and M⊥.

{T}′ :the commutator of T.

n.h.s : nontrivial hyperinvariant subspace.

a.s: almost similar.

n.n.d: non normal decomposition.
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Chapter 1

Preliminaries

1.1 Notations and Terminologies

In this thesis, Hilbert spaces or subspaces will be denoted by capital letters H,H1, H2,

K,K1, K2, and T, T1, T2, S, S1, A,B etc. denotes bounded linear operators where an oper-

ator means a bounded linear transformation. We use B(H) to denote the Banach algebra

of bounded linear operators on H. B(H, K) denotes the set of bounded linear transfor-

mations from H to K. We use G(H,K) to denote set of invertible operators from H to

K. For an operator T ∈ B(H), T ∗ denotes the adjoint while ker(T ), Ran(T ),M and M⊥

stands for the kernel of T, range of T , closure of M and orthogonal complement of a closed

subspace M of H respectively. We use σ(T ) to denote spectrum of T, ‖T‖, denotes the

norm of T, r(T ) denotes the spectral radius of T while W (T ) denotes the numerical range

of T.

In addition, an operator T ∈ B(H) is said to be:

Unitary if TT ∗ = T ∗T = I.

Normal if TT ∗ = T ∗T

Self adjoint (or Hermitian) if T ∗ = T.

Skew-adjoint if T ∗ = −T.
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Quasinormal if T (T ∗T ) = (T ∗T )T or equivalently if T commutes with T ∗T, that is

[T, T ∗T ] = 0.

Binormal if (T ∗T )(TT ∗) = (TT ∗)(T ∗T ).

Orthogonal projection if T 2 = T and T ∗ = T.

An involution if T 2 = I.

A symmetry if T = T ∗ = T−1 that is, T is a self-adjoint unitary operator.

Isometric if T ∗T = I.

Partial Isometry if TT ∗T = T (equivalently if T ∗T is a projection).

A-self-adjoint if T ∗ = A−1TA where A is self-adjoint invertible operator.

Normaloid if r(T ) = ‖T‖ (equivalently ‖T n‖ = ‖T‖n).

Hyponormal if T ∗T ≥ TT ∗, equivalently if T ∗T − TT ∗ ≥ 0 (is a positive operator).

Cohyponormal if its adjoint is hyponormal that is, if TT ∗ ≥ T ∗T.

Subnormal if there exists a Hilbert space K containing H, that is K ⊇ H and a normal

operator N acting on K such that H is N -invariant and T is the restriction of N onto

H, that is T = N/H. Thus T ∈ B(H) is subnormal if H is a subspace of a Hilbert space

K(H can be embedded into K) and with respect to the decomposition.

K = H ⊕H⊥, N =

(
T X

0 Y

)
in B(X) for some X : H⊥ → H and Y : H⊥ → H⊥ that

is T is a part of a normal operator. Note that a part of an operator T is a restriction of

it to an invariant subspace.

p-hyponormal if (T ∗T )p ≥ (TT ∗)p where 0 < p ≤ 1.
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m-hyponormal if ‖(zI − T )∗x‖ ≤ M‖(zI − T )‖ for all complex numbers z and for all

x ∈M ⊂ H and M a positive number.

Quasihyponormal if T ∗2T 2 − (T ∗T )2 ≥ 0 equivalently if T ∗(T ∗T − TT ∗)T ≥ 0.

Paranormal if ‖Tx‖2 ≤ ‖T 2x‖ for all unit vectors x ∈ H, equivalently if ‖Tx‖ ≤ ‖Tx‖‖x‖
for every x ∈ H.

k-quasihyponormal if T ∗K(T ∗T−TT ∗)TK ≥ 0 for K ≥ 1 is some integer and every x ∈ H.

p-quasihyponormal if T ∗(T ∗T )P − (TT ∗)PT ≥ 0.

(p.k)-quasihyponormal if T ∗K(T ∗T )P − (TT ∗)P )TK ≥ 0 where 0 < P ≤ 1 and K is a

positive integer.

Seminormal if it is either hyponormal, equivalently if either T or T ∗ is hyponormal. Every

hyponormal operator is seminormal but the converse is not true.

From the above definition, we have the following inclusions:

Unitary operators ⊂ Isometric operators ⊂ Partial Isometries.

Normal ( Quasinormal ( Subnormal ( Hyponormal ( Seminormal.

1.2 Introduction

The class of almost similar operators was first introduced by Jibril [12]. He defined the

class of almost similar operators as follows:

Two operators A and B are said to be almost similar if there exists an invertible operator

N such that the following conditions are satisfied:
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A∗A = N−1(B∗B)N

A∗ + A = N−1(B∗ +B)N

He proved various results that relate almost similarity and other classes of operators

including isometries, normal operators, unitary operators, compact operators and char-

acterization of θ−operators.

Two operators T ∈ B(H) and S ∈ B(H) are similar (denoted by T ≈ S) if there exists an

invertible operator X ∈ G(H,K) such that XT = SX(i.e.T = X−1SX or S = XTX−1).

Similarly T ∈ B(H) and S ∈ B(H) are unitarily equivalent (denoted by T ∼= S) if there

is a unitary operator U ∈ G(H,K) such that UT = SU (i.e. T = U∗SU or equivalently

S = USU∗).

An operator T ∈ B(H) is quasiunitary if T ∗T = TT ∗ = T + T ∗.

T. B. Hoover [8] studied hyperinvariant subspaces and proved that if S and T are qua-

sisimilar operators acting on the Hilbert spaces H and K respectively and if S has a

hyperinvariant subspace, then so does T. If in addition S is normal, then the lattice of

hyperinvariant subspaces for T contains a sub-lattice which is lattice isomorphic to the

lattice of spectral projections for S.

Hoover [8] has shown some properties of operators that are preserved by quasisimilarity

and those that are not. He gave a result to show that quasisimilar normal operators

are unitarily equivalent. He also gave an example to show that quasisimilarity preserves

neither spectra nor compactness.

Nzimbi et al. [21], have classified those operators where almost similarity implies similar-

ity. If two operators are almost similar and one of them is isometric, then so is the other.

Similar results hold true for hermitian, compact, partially isometric and θ−operators.

We also note that if A,B ∈ B(H) are such that A and B are unitarily equivalent, then

they are almost similar. Two quasisimilar operators having equivalent quasi-affinities on

a finite dimensional Hilbert space, which are unitary, are also almost similar.

Nzimbi et al. [22] introduced the concept of metric equivalence. They further proved

that metric equivalence is an equivalence relation. Two operators A,B ∈ B(H) are said
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to be metrically-equivalent if ‖Ax‖ = ‖Bx‖ for all x ∈ H, equivalently A∗A = B∗B.

Of great interest, Nzimbi et al.[22] concretely discussed the spectral picture of metrically

equivalent operators.

A contraction on H is an operator T ∈ B(H) satisfying T ∗T ≤ I or equivalently,

‖Tx‖ ≤ ‖x‖ for all x ∈ H and a strict contraction if T ∗T < I or ‖Tx‖ < ‖x‖ for

all x ∈ H.

An operator T ∈ B(H) is a left shift on `2(N) if Tx = y for all x = (x1, x2, . . .)

andy = (x2, x3, . . .) while it is a right shift operator if Tx = y where x = (x1, x2, . . .)

and y = (0, x1, x2, . . .).

By a subspace of a Hilbert space H we mean a closed linear manifold of H which is also

a Hilbert space. If M and N are orthogonal subspaces of a Hilbert space H, then their

(orthogonal) direct sum M ⊕N is a subspace of H.

If M is a closed subspace of H then H = M ⊕M⊥ is the direct sum of decomposition

of H. A subspace M of H is invariant under T if T (M) ⊆ M that is for x ∈ M then

Tx ∈M.

A subspace M of H is said to reduce T if both M and M⊥ are invariant under T.

The following inclusions are proper:

Reducing subspaces ⊆ Invariant subspaces.

Hyperinvariant subspaces ⊆ Invariant subspaces.

A direct summand of an operator T is the restriction of T to a reducing subspace. An

operator is reducible if it is a nontrivial reducing subspace (equivalently, if it has a proper

nonzero direct summand). An operator is irreducible if it is not reducible.

An operator T is said to be normaloid if r(T ) = ‖T‖ (equivalently, ‖T n‖ = ‖T‖n). In

a complex Hilbert space H, every normal operator is normaloid and so is every pos-

itive operator. Let H be a Hilbert space and T ∈ B(H). The set ρ(T ) of all com-

plex numbers λ for which (λI − T ) is invertible is called the resolvent set of T, that is

ρ(T ) = {λ ∈ C : ker(λI − T ) = {0} and Ran(λI − T ) = H}. The complement of the

resolvent set ρ(T ) denoted by σ(T ) is called the spectrum of T.

A scalar λ ∈ C is an eigenvalue of an operator T ∈ B(H) if there exists a non-zero vector

x ∈ H such that Tx = λx, equivalently, if ker(λI − T ) 6= {0}.
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An operator A ∈ B(H) is called a θ− operator if A∗ + A commutes with A∗A, the class

of all θ−operators in B(H) is denoted by θ that is θ = {A ∈ B(H) : [A∗A,A∗ + A] = 0}.

An operator T ∈ B(H) is Fredholm if it has finite nullity and finite Corank.

Let A ∈ B(H). A subspace M of H is said to be hyperinvariant under A or A− hyperin-

variant if M is invariant under any operator S that commutes with A.

Adjoint in linear algebra refers to the conjugate transpose.

A lattice is a partially ordered set in which every two elements have a unique supremum

and a unique infimum.

In finite dimensional spaces quasisimililarity is the same thing as similarity but it is a

weaker relation in finite dimension spaces.

Let H and K be Hilbert spaces. An affinity from H to K is a linear one to one and

bicontinuous transformation X from H to K.

An operator A ∈ B(H) is said to be positive (in symbols A ≥ 0) if A is self adjoint and

< Ax, x >≥ 0 for all x ∈ H.

Let T and S ∈ B(H). Then S is said to be nearly equivalent to T denoted by S == T if

and only if there exist an invertible operator V ∈ B(H) such that S∗S = V −1T ∗TV. We

denote the set of operators S that are nearly equivalent to T by ξ(T ).

An operator X ∈ B(H,K) is called a quasiaffinity if it is injective with dense range. An

operator A is said to be a quasiaffine transform of another operator B if there exists a

quasiaffinity X ∈ B(H,K) intertwining A and B (that is XA = BX).

Two operators A ∈ B(H) and B ∈ B(K) are said to be quasisimilar if they are quasi-

affine transforms of each other, that is, if there exists quasiaffinities X ∈ B(H,K) and

Y ∈ B(K,H) such that XA = BX and AY = Y B.

Two operators A ∈ B(H) and B ∈ B(K) are said to be metrically equivalent if ‖Ax‖ =

‖Bx‖ (equivalently, | < Ax,Ax > | 12 = | < Bx,Bx > | 12 for all x ∈ H that is A∗A = B∗B.

Two projections P and Q in B(H) are said to be Murray-von Neumann equivalent denoted

by P
M − v −N

∼
Q if there exists a partial isometry V ∈ B(H) such that V ∗V = P and

V V ∗ = Q.
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Two operators A and B are said to be stably similar or power similar denoted by A
s.s

∼
B

if there is an invertible operator X such that An = X−1BnX for some positive integer n.

They are stably unitarily equivalent, denoted by A
s.u.e

∼
B if there is a unitary operator

U such that An = U∗BnU.
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Chapter 2

Unitary Equivalence, Similarity,

Almost Similarity and

Quasisimilarity of Operators

2.1 Unitary Equivalence of Operators

We start off by discussing the following result which shows that unitary equivalence is an

equivalence relation.

Theorem 2.1.1. Unitary equivalence is an equivalence relation.

Remark 2.1.2. Unitary equivalence preserves reducing subspaces. That is if A, B ∈
B(H) such that A is unitarily equivalent to B and there exists a subspace M of H which

reduces A, then M reduces B. If B ∼= C, for another operator C acting on a Hilbert space,

then M also reduces C.

The natural concept of equivalence between Hilbert-space operators infact is unitary

equivalence. However, the weaker form of equivalence will also play an important role

throughout this project. The following propositions and auxiliary results will be referred

frequently. They deal with parts and direct summands of unitarily equivalent operators.

The following are known results by [13].

Proposition 2.1.3. If an operator T ∈ B(H) is unitarily equivalent to a part of an

operator L ∈ B(K), then it is a part of an operator unitarily equivalent to L.
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Corollary 2.1.4. If an operator T ∈ B(H) is unitarily equivalent to a direct summand

of an operator L ∈ B(K), then it is a direct summand of an operator unitarily equivalent

to L.

Remark 2.1.5. Recall that a direct summand of an operator T is a part of it whose

adjoint also is a part of T ∗.

Corollary 2.1.6. If an operator T ∈ B(H) is unitarily equivalent to a direct sum L ∈
B(K) then it is a direct sum itself with direct summand unitarily equivalent to each direct

summand of L (i.e. if T ∼= ⊕kLk, then T = ⊕kLk, with TK ∼= ⊕kLk, for each K).

Corollary 2.1.7. Every operator unitarily equivalent to a reducible operator is reducible.

Theorem 2.1.8. ([28], Fuglede-Putnam Theorem) Let A,B, T ∈ B(H), where A and B

are normal and AT = TB then A∗T = TB∗ .

Remark 2.1.9. Note that the hypothesis of 2.1.8 does not imply that AT ∗ = T ∗B even

when A and B are self-adjoint and T is normal.

Example 2.1.10. Consider A =

(
1 0

0 −1

)
B =

(
0 1

1 0

)
T =

(
1 1

−1 1

)
.

Thus a simple computation shows that AT = TB but AT ∗ 6= T ∗B.

If T ∈ B(H) is invertible, then T has a unique polar decomposition T = UP, with U an

isometry (which is in fact a unitary) and P ≥ 0. If T ∈ B(H) is normal, then T has a

polar decomposition T = UP in which U and P commute with each other and T.

Theorem 2.1.11. If A,B ∈ B(H) are similar normal operators and there exists a unitary

operator U then A = U∗BU.

Theorem 2.1.12. An operator T ∈ B(H) is quasiunitary if and only if I −T is unitary.

Proof. Suppose T is quasi-unitary. Then (I−T )∗(I−T ) = (I−T )(I−T ∗) = I. Therefore

I − T is unitary.

Conversely, suppose I − T is unitary, then I − (T + T ∗) + T ∗T = I − (T ∗+ T ) + TT ∗ = I

Simplifying the equation, we have that T ∗T = TT ∗ = T + T ∗, this implies that

That is Ω = (I − T ) then, Ω∗Ω = ΩΩ∗ = I (that is Ω = (I − T ) ) is unitary.

Conversely suppose I − T is unitary that is
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(I − T )∗(I − T ) = (I − T )(I − T )∗ = I

I − T − T ∗ + T ∗T = I − T − T ∗ + TT ∗ = I

−(T + T ∗) + T ∗T = −(T + T ∗) + TT ∗ = 0, then

T ∗T = T + T ∗ and TT ∗ = T + T ∗.

Thus we have shown that T ∗T = TT ∗ = T + T ∗ hence T is quasi-unitary.

Theorem 2.1.13. [20] Let A and B be normal operators such that AX = XB where X

is a quasiaffinity. Then

(a) σ(A) = σ(B)

(b) σ(A∗A) = σ(B∗B)

(c) σ(AA∗) = σ(BB∗)

Proof. The proof follows from a repeated application of the Fuglede-Putnam Theorem on

three pairs of operators in (a), (b) and (c). For full details (see [20], Theorem 1).

Theorem 2.1.14. If S and T are unitarily equivalent, then they are unitarily quasi-

equivalent.

Proof. If S and T are unitarily equivalent that is, S = U∗TU then,

S∗S = U∗T ∗UU∗TU

= U∗T ∗TU.

The converse of 2.1.14 is not generally true. Consider the operators represented by the

matrices

S =

(
1 1

1 1

)
T =

(
−1 −1

−1 −1

)
A simple computation shows that S and T are unitarily quasi-equivalent with the equiv-

alence implemented by the unitary operator U = I. However, σ(S) = {0, 2} 6= {0,−2} =

σ(T ). This shows that S and T are not similar and hence cannot be unitarily equivalent.

Theorem 2.1.15. [13] If S and T are both self-adjoint and unitarily quasi-equivalent

operators, then T 2 and S2 are unitarily equivalent.

Theorem 2.1.16. [13] If S and T are unitarily quasi-equivalent and T is skew-adjoint,

then S is normal.
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2.2 Similarity of Operators

We recall that two operators T ∈ B(H) and S ∈ B(H) are similar (denoted by T ≈ S) if

there exists an invertible operator X ∈ G(H,K) such that XT = SX (i.e. T = X−1SX

or S = XTX−1).

Similarly T ∈ B(H) and S ∈ B(H) are unitarily equivalent (denoted by T ∼= S) if there

is a unitary operator U ∈ G(H,K) such that UT = SU (i.e. T = U∗SU or equivalently

S = UTU∗ ).

Remark 2.2.1. It has been shown by [5] that similarity is an equivalence relation on

B(H). The natural concept of equivalence between Hilbert space operators is unitary equiv-

alence which is stronger than similarity.

Lemma 2.2.2. Suppose that A and B are similar operators on a Hilbert space H, then

A and B have the same

(a) Spectrum

(b) Point spectrum

(c) Approximate point spectrum

Corollary 2.2.3. If two operators are similar and if one of them has a nontrivial invariant

subspace, then so has the other.

Theorem 2.2.4. Every similarity transformation φ : B(H) → B(H) defined by φ(A) =

S−1BS is an automorphism. That is it maps sums into sums, products into products and

scalar multiples into scalar multiples.

Proof. φ(A1 + A2) = S−1(B1 +B2)S = S−1B1S + S−1B2S = φ(A1) + φ(A2).

φ(A1A2) = S−1(B1B2)S = S−1(B1SS
−1B2)S = (S−1B1S)(S−1B2S) = φ(A1)φ(A2).

φ(KA) == S−1(KB)S = KS−1BS = Kφ(A).

Corollary 2.2.5. The set of similarity operators forms a group.

Proof. It suffices to prove the composition of similarity operators is a similarity operator.

Suppose that ψS(A) = S−1BS and ψN(A) = N−1BN. Then:

(ψS(A))N = N−1(S−1BS)N = N−1S−1BSN = (SN)−1B(SN) = ψSN.

Theorem 2.2.6. Let A and B be similar operators. Then dim (ker(A)) = dim(ker(B))

and dim(ker(A∗)) = dim(ker(B∗)).
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Note that Theorem 2.2.6 does not necessarily imply equality of kernels. The operators

A =

(
0 0

0 1

)
B =

(
0 0

1 1

)
are similar but ker(A) 6= ker(B) however, a simple calculation shows that they have the

same nullity.

Proposition 2.2.7. If T is invertible then T ∗T and TT ∗ are similar.

Proof. This follows from TT ∗ = T (T ∗T )T−1.

Lemma 2.2.8. If T is invertible then T ∗T and TT ∗ have the same spectrum.

Proof. For any T ∈ B(H), σ(T ∗T )/{0} = σ(TT ∗)/{0}. Since T is invertible, {0} /∈ σ(T )

this implies that σ(T ∗T ) = σ(TT ∗).

Theorem 2.2.9. If T ∗T and TT ∗ are similar then, T and T ∗ are invertible.

Corollary 2.2.10. If T ∗T and TT ∗ are similar, then T is normal.

Proof. This follows from the fact that T and T ∗ are unitary equivalent.

Corollary 2.2.11. Every invertible operator T is nearly normal.

Theorem 2.2.12. Let A and B be invertible positive operators. Then A+B is invertible

if and only if A is similar to B.

Proof. Without loss of generality, suppose T is the inverse of A+B. Then

(A+B)T = T (A+B) = I. That is, AT +BT = TA+ TB = I.

Remark 2.2.13. Note that the positivity of both operators cannot be dropped. To see this

consider

A =

(
−1 0

0 1

)
B =

(
1 0

0 −1

)
. Clearly A+B = 0 and hence not invertible.

It is easy to check that both A and B are not positive operators.

Theorem 2.2.14. If T commutes with both A and B, then T commutes with A+B.
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2.3 Almost Similarity of Operators

Recall that in Jibril [12], two operators A and B are said to be almost similar if there

exists an invertible operator N such that the following two conditions are satisfied:

A∗A = N−1(B∗B)N

A∗ + A = N−1(B∗ +B)N

Theorem 2.3.1. [21] theorem 2.1 Almost similarity of operators is an equivalence rela-

tion.

Proposition 2.3.2. [17] If A ∈ B(H) and A
a.s

∼
I then A = I.

Proposition 2.3.3. [17] If A,B ∈ B(H) such that A
a.s

∼
B and if A is compact then so

is B.

Theorem 2.3.4. [2] An operator T ∈ B(H) is hermitian if and only if (T +T ∗)2 ≥ 4T ∗T.

Proposition 2.3.5. [17] If A,B ∈ B(H) such that θ ∈ B and A
a.s

∼
B, then θ ∈ A.

Proposition 2.3.6. [17] If A,B ∈ B(H) such that A
a.s

∼
B, and A is partially isometric

then so is B.

Proposition 2.3.7. [17] If A ∈ B(H) is normal then A
a.s

∼
A∗.

Remark 2.3.8. The converse to 2.3.7 is not true in general, for consider

A =

(
0 1

0 0

)
N =

(
0 1

1 0

)
.

By matrix computation A∗A = N−1(AA∗)N and A∗ + A = N−1(A + A∗)N. That is

A
a.s

∼
A∗ although A is not normal.

Proposition 2.3.9. [2] If A ∈ B(H) then A ∈ θ if and only if A
a.s

∼
B for some normal

operator B.
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Proposition 2.3.10. [2] If A,B ∈ B(H) such that A
a.s

∼
B and B is hermitian, then A

is hermitian.

Proposition 2.3.11. [2] If A,B ∈ B(H) such that A
a.s

∼
B and if A is hermitian then

A and B are unitarily equivalent.

Proof. By assumption there exists an invertible operator N such that A∗A = N−1B∗BN

and A∗ + A = N−1(B∗ + B)N. Since A is hermitian and A
a.s

∼
B it follows that B is

hermitian. Using this fact, the second equality above becomes A = N−1BN. This means

that A and B are similar. We have shown that these operators are both hermitian and

are therefore normal.

The following result is an immediate corollary to this result.

Corollary 2.3.12. If A,B ∈ B(H) such that A
a.s

∼
B and if either A or B is hermitian,

then A and B are unitarily equivalent.

Proof. The proof follows easily from 2.3.11.

Proposition 2.3.13. [9] (corollary 4.5) if A,B ∈ B(H) are projection operators such

that A
a.s

∼
B and (A+ λI)

a.s

∼
(B + λI) then σP (A) = σP (B).

Note that if A and B are quasisimilar, then A∗ and B∗ are quasisimilar. This may not be

true for other relations. For instance, metric equivalence of A and B does not in general

imply metric equivalence of A∗ and B∗. It is evident that two unitary operators need

not have equal spectra. But if they are quasiaffine or even quasisimilar, then they are

unitarily equivalent and hence have equal spectra.

Note that similarity of A and B need not imply similarity of A∗A and B∗B or metric

equivalence of A and B (unless both A and B are normal operators).

Let A =

 0 1 0

0 0 1

0 0 0

 B =

 0 1 0

0 0 2

0 0 0

. Then A and B are similar non-normal opera-

tors, with
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X =

 1 0 0

0 1 0

0 0 1
2

 implementing similarity. However a simple calculation shows that

A∗A =

 0 0 0

0 1 0

0 0 1

 6=
 0 0 0

0 1 0

0 0 4

 = B∗B.

Proposition 2.3.14. If A is a quasi-unitary operator then A and A∗ are almost similar.

Proof. A∗A = AA∗ = A∗ + A is equivalent to A∗A = I−1(AA∗)I = A∗ + A = I−1(A +

A∗)I.

These results can be relaxed to the class of normal operators.

Lemma 2.3.15. If T is a normal operator, then there exists a unitary operator U such

that T ∗ = UT.

Corollary 2.3.16. Every normal operator T is almost similar to its adjoint.

Proof. Since T is normal by 2.3.15 T ∗ = UT for some unitary operator U. Thus T ∗T =

U(TT ∗)U∗ and T ∗+T = UT +T ∗U∗ = UT ∗U∗+UTU∗ = U(T +T ∗)U∗. This shows that

T is almost unitarily equivalent and hence almost similar to T ∗.

Theorem 2.3.17. Let A,B ∈ B(H) and X be an invertible operator. If XA = BX and

XA∗ = B∗X, then A and B are almost similar.

Proof. A simple calculation shows that A∗A = X−1(B∗B)X and A∗ + A = X−1(B∗ +

B)X.

Corollary 2.3.18. If A and B are similar normal operators, then they are almost similar.

Proof. Suppose that XA = BX, where X is an invertible operator. Then by the Fuglede-

Putnam theorem XA∗ = B∗X, the rest of the proof follows from Theorem 2.3.17.

There exists non-normal similar operators that are almost similar.

Example 2.3.19. The operators A =

(
0 0

1 0

)
and B =

(
0 1

0 0

)
are almost similar

with N =

(
0 1

1 0

)
implementing the almost similarity.
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2.3.1 Almost Similarity and Completely Non-Unitary Opera-

tors

The following results are well known.

Lemma 2.3.20. [15] An operator is a unilateral shift if it is a completely non-unitary

isometry.

Proposition 2.3.21. Let A ∈ B(H) be such that A
a.s

∼
T , where T is an isometry.

Then the direct summands of A are isometric.

Theorem 2.3.22. [13] (Nagy-Foias-Langer Decomposition Theorem). Let T be a con-

traction on a Hilbert space H and let M = ker(I − A) ∩ ker(I − A),M is a reducing

subspace for T. Moreover, the decomposition T = C ⊕ U on H = M⊥ ⊕M is such that

C = T |M⊥ is a c.n.u contraction and U = T |M is unitary.

Proposition 2.3.23. If A,B ∈ B(H) are contractions such that A
a.s

∼
B and B is c.n.u,

then A is c.n.u.

Theorem 2.3.24. Let P and Q be orthogonal projection operators on a Hilbert space H.

Then the following statements are equivalent.

(a) P and Q are almost similar.

(b) P and Q are similar.

Proof. (a)⇒(b). Suppose that N is an invertible operator such that P ∗P = N−1(Q∗Q)N

and P ∗ + P = N−1(Q∗ + Q)N. Since P and Q are orthogonal projections, a simple

computation shows that these two equalities both collapse to the equality P = N−1QN.

(b)⇒(a). Suppose P = N−1QN for some invertible operator N and orthogonal projec-

tions P and Q in B(H.) By the idempotence of P and Q we have that P 2 = N−1Q2N.

By the self-adjointness of P and Q, we also have P ∗P = N−1(Q∗Q)N. The other equality

follows from the fact that P ∗ + P = 2P = 2N−1(Q∗ + Q)N which upon simplification

becomes P ∗ + P = N−1(Q∗ +Q)N.

Remark 2.3.25. Theorem 2.3.24 says that for orthogonal projection operators of the

same rank on a Hilbert space H, the notion of almost similarity coincides with that of

similarity. This result may fail for other classes of operators.
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Theorem 2.3.26. Every almost similarity transformation φ : B(H) → B(H) defined by

φ(A∗A) = S−1(B∗B)S, φ(A∗ +A) = S−1(B∗ +B)S is an automorphism. That is it maps

sums into sums, products into products and scalar multiples into scalar multiples.

Proof. Suppose that φ(A∗A) = S−1(B∗B)S and φ(C∗C) = S−1(D∗D)S. Then

φ(A∗A+ C∗C) = S−1(B∗B +D∗D)S = S−1(B∗B)S + S−1(D∗D)S = φ(A∗A) + φ(C∗C).

φ((A∗A)(C∗C)) = S−1((B∗B)(D∗D))S = S−1((B∗B)SS−1(D∗D))S = (S−1(B∗B)S)(S−1(D∗D)S) =

φ(A∗A)φ(C∗C).

φ(kA∗A) = S−1(kB∗B)S = kS−1B∗BS = kφ(A∗A).

Proposition 2.3.27. If A and B are self adjoint operators which are almost similar then

σ(A) = σ(B).

Proof. Suppose A∗ = A,B∗ = B and A∗A = N−1(B∗B)N and A∗+A = N−1(B∗+B)N .

A simple calculation shows that A = N−1BN. That is A and B are similar and therefore

have equal spectrum.

Remark 2.3.28. Note that Proposition 2.3.27 is not true in general. Note also that

equality of spectra as a set does not generally imply similarity of operators. This is true

if and only if the two operators have the same multiplicity.

Example 2.3.29. Let A =

(
1 0

0 −1

)
and B =

(
0 1

1 0

)
. Both operators are self-

adjoint and a simple computation shows that A and B are almost similar, with N =(
−1 1

−1 −1

)
.

Now if we let A =

(
1 0

0 0

)
and B =

(
−1 0

0 0

)
then A and B are self-adjoint operators

but a simple computation shows that they are not almost similar (and hence, not similar).

Clearly σ(A) = {0, 1} 6= {0,−1} = σ(B).

It is also evident that almost similarity does not preserve the spectra of operators.

Proposition 2.3.30. An operator A ∈ B(H) is isometric if and only if A
a.s

∼
U for some

unitary operator U.
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Example 2.3.31. Consider the operator T =

(
0 2
1
2

0

)
on the two dimensional space

C2. Then: T 2 =

(
0 2
1
2

0

) (
0 2
1
2

0

)
=

(
1 0

0 1

)
= I (is an involution) which implies

that T−1 = T.

Thus T
a.s

∼
T−1. However ‖T‖ ≥1 which means that T is not unitary.

Proposition 2.3.32. Let A,B ∈ B(H). Then

(i) If A
a.s

∼
0 then A = 0.

(ii) If A
a.s

∼
B and B is isometric, then A is isometric.

2.3.2 Almost Similarity and Lattice of Invariant and Hyperin-

variant Subspaces of Operators

Theorem 2.3.33. If A and B are similar operators then they have isomorphic lattice of

invariant and hyperinvariant subspace. That is, Lat(A) ≡ Lat(B) and Hyperlat(A) ≡
Hyperlat(B).

Lemma 2.3.34. Let A ∈ B(H), B ∈ B(K) and X ∈ B(H,K) be such that XA =

BX. Suppose M ⊂ K is a nontrivial invariant subspace for B. If Ran(X) = K and

ker(X) ∩M 6= {0} is the inverse image of M under X,X−1(M) is a nontrivial invariant

subspace of A.

If the intertwining operator X is surjective i.e. XA = BX and Ran(X) = K, then

X−1(M) is a nontrivial subspace for A, thus we have the following corollary:

Corollary 2.3.35. Take T ∈ B(H), L ∈ B(K) and X ∈ B(H,K) such that XT = LX.

Let M ⊂ K be a nontrivial finite-dimensional reducing subspace for L. If R(X) = K, then

X−1(M⊥) is a nontrivial invariant subspace for T.

Theorem 2.3.36. Let A ∈ B(H) and B ∈ B(K) be self-adjoint operators. Let X ∈
B(H,K) be a quasiaffinity that intertwines A and B (equivalently XA = BX). Then A

and B are unitarily equivalent.
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Theorem 2.3.37. Let H be an n-dimensional Hilbert space T ∈ B(H) and ψ : B(H)→
B(H) be a linear map. Then the following statements are equivalent.

(a)Lat(T ) ≡ Lat(ψ(T )) for every T ∈ B(H).

(b)Hyperlat(T ) ≡ Hyperlat(ψ(T )) for every T ∈ B(H).

(c) Ran(T ) ≡ Ran(ψ(T )) for every T ∈ B(H).

2.4 Quasisimilarity of Operators

The following results are well known.

Theorem 2.4.1. If X is a quasi-affinity from H to K and Y is a quasi-affinity from K

to L then:

(a) Y X is a quasi-affinity from H to K and XY is a quasi-affinity from K to L.

(i) Y X is a quasi-affinity from H to L and XY is a quasi-affinity from L to H
(ii) If X ∈ B(H) is a quasi-affinity, then X∗ is a quasi-affinity.

Theorem 2.4.2. If A is a quasi-affine transform of B and B is a quasi-affine transform

of C, then:

a) A is a quasi-affine transform of C.

b) B∗ is a quasi-affine transform of A∗.

Theorem 2.4.3. If X is a quasi-affinity from H to K then |X| =
√
X∗X is a quasi-

affinity on H (from K to H). Moreover, X|X|−1 extends by continuity to a unitary

transformation U from H to K.

Theorem 2.4.4. Quasi-similarity is an equivalence relation on the class of operators.

Theorem 2.4.5. If T ∈ B(H) and S ∈ B(K) are similar operators, then they are quasi-

similar.

Proof. There exists quasi-invertible operator X ∈ B(H,K) such that XT = SX. This

implies that X−1S = TX−1, where X−1 ∈ B(K,H) which implies that S ≈ T.

Theorem 2.4.6. Quasi-similar hyponormal operators have equal spectra.
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Proof. If S and T are quasi-similar hyponormal operators, then for any complex number

λ, S − λI and T − λI are also quasi-similar and hyponormal, they are both invertible or

both non- invertible. Thus σ(S) = σ(T ).

Remark 2.4.7. From the proper inclusion relation, Normal ⊂ Hyponormal ⊂ Quasi-

hyponormal and if hyponormal operators are replaced by quasi-hyponormal operators, we

obtain a similar result, that is σ(S) = σ(T ).
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Chapter 3

Metric Equivalence of Operators

Recall that two operators A ∈ B(H) and B ∈ B(H) are said to metrically equivalent,

denoted by A ∼M B, if ‖ Ax ‖=‖ Bx ‖, equivalently | < Ax,Ax > | 12 = | < Bx,Bx > | 12
for all x ∈ H, that is A∗A = B∗B.

The numerical radius of T is defined by r(T ) = limn→∞ ‖ T n ‖ 1
n = sup{|λ| : λ ∈ σ(T )}.

Clearly r(T ) = r(T ∗). Recall that an operator T is said to be normaloid if r(T ) =‖ T ‖
(equivalently ‖ T n ‖=‖ T ‖n). In a complex Hilbert space H, every normal operator is

normaloid and so is every positive operator.

The following results have been proved in [22].

Theorem 3.0.8. (Theorem 2.2) A necessary and sufficient condition that an operator

T ∈ B(H) be normal is that ‖Tx‖ = ‖T ∗x‖ for every x ∈ H.

Corollary 3.0.9. (Corollary 2.6) If S and T are metrically equivalent normal operators,

then there exists a unitary operator U such that S = UT.

Lemma 3.0.10. Lemma [2.7] Let S and T be linear operators on a Hilbert space H. If

S ∼M T, then

(i) If T is isometric, then S is also isometric.

(ii)If T is a contraction, then S is also a contraction.

(iii) If T is a partial isometry, then S is also a partial isometry.

(iv) If S and T are positive, then S = T.

(v) If S is bounded below, then T is also bounded below. Moreover, S is injective and so

is T. If in addition, S has a dense range, then both S and T are invertible.
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Example 3.0.11. Suppose A and B are metrically equivalent contractions with unitary

extensions U and V, respectively. Without loss of generality, we let A and B be unitaries.

Then A∗A = B∗B and U∗U =

(
A∗A 0

0 AA∗

)
=

(
B∗B 0

0 BB∗

)
= V ∗V, which proves

that U and V are metrically equivalent.

Clearly, if an operator has a unitary extension, then so does every operator unitarily

equivalent to it. This is because a unitary operator always has a unitary extension to

every larger Hilbert space. This is also true for metrically equivalent operators.

Corollary 3.0.12 ([16], Corollary 2.12). If S ∈ B(H) and T ∈ B(H) are unitarily

equivalent then S and T are similar.

Proposition 3.0.13 ([16], Proposition 2.13). If S and T are normal operators in a Hilbert

space H, then S is unitarily equivalent to T if and only if S is similar to T.

3.1 Metric Equivalence and Spectral Picture of Op-

erators

We recall that the numerical range W (T ) of an operator T ∈ B(H) is defined as W (T ) =

{λ ∈ C : λ =< Tx, x >, ‖x‖ = 1} and the numerical radius w(T ) of T is defined as

w(T ) = Sup{|λ| : λ ∈ W (T )}.
The following results were stated and proved in [22].

Theorem 3.1.1. [Theorem 2.14] If T and S are metrically equivalent operators on H,

then ‖S‖ = ‖T‖.

The converse of 3.1.1 is not always true; there exists operators with the same norm which

are not metrically equivalent.

Theorem 3.1.2 (Theorem 2.15). If T and S are metrically equivalent, then W (|T |) =

W (|S|).

Proof. If ‖S‖ = ‖T‖ then T ∗T is self-adjoint, it is normal and thus W (T ∗T ) = ‖T‖2,
also, W (T ∗T ) = W (S∗S), hence W (|T |) = W (|S|).
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Remark 3.1.3. Unlike unitarily equivalent operators, metrically equivalent operators S

and T need not have equal numerical range. Note that the spectrum of S may be equal to

the spectrum of T yet S and T are not metrically equivalent.

For instance, the operators represented by the matrices

S =

(
0 1

0 0

)
and T =

(
0 0

1 0

)
in C2 have the property that σ(S∗S) = σ(T ∗T ) and

σ(S) = σ(T ) but S and T are not metrically equivalent operators. For example, the

unilateral shift and the identity operator on H = `2 are metrically equivalent but have

unequal spectra.

Theorem 3.1.4. If S and T are metrically equivalent normaloid operators, then r(S) =

r(T ).

Remark 3.1.5. The converse of Theorem 3.1.4 is not generally true. The operators rep-

resented by the matrices

S =

(
0 1

0 0

)
and T =

(
0 0

1 0

)
in C2 have the property that r(S) = r(T ) = 0 but a

simple computation shows that S and T are not metrically equivalent. This is because S

and T are not normal and hence not normaloid. However, we note that S and T have the

same numerical range, which is in a closed disk centered at 0 and of radius 1
2
. Hence, it

will be essential to also confirm whether for two almost similarity normaloid operators S

and T, r(S) = r(T ).

The following are basic results due to [22].

Proposition 3.1.6. (Proposition 2.16) Metrically equivalent operators S and T need not

have equal spectra.

Remark 3.1.7. It is also true that metrically equivalent normal operators S and T need

not have equal spectral. Consider, for instance, the operators represented by the matrices

S =

(
0 1

1 0

)
and T =

(
1 0

0 1

)
in C2.

A simple computation shows that σ(S) = {−1, 1} and σ(T ) = {1}. It is also clear that

W (S) 6= W (T ). Thus, the metric equivalence does not preserve numerical range.
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Theorem 3.1.8. (Theorem 2.18) If S and T are metrically equivalent normal operators

on H, with polar decomposition S = U |S| and T = V |T |, then |S| = |T |.

Theorem 3.1.9. If S and T are metrically equivalent operators then ker(S) = ker(T ).

Proof. S∗S = T ∗T implies that ker(S∗S) = ker(T ∗T ), which in turn implies that ker(S) =

ker(T ).

Theorem 3.1.10. (Theorem 2.19) Direct summands of metrically equivalent operators

are metrically equivalent.

Theorem 3.1.11 (Theorem 2.20). Let T ∈ B(H). If N ∈ B(H) is normal and NT = TN,

then N∗T = TN∗

Theorem 3.1.12 (Theorem 2.21). Let S and T be metrically equivalent operators on a

Hilbert space H and ST = TS. If T is normal, then S is quasinormal.

Theorem 3.1.13. If S and T are metrically equivalent operators and S is self-adjoint,

then S = |T |.

Proof. S∗S = T ∗T and S∗ = S implies that S2 = T ∗T and since T ∗T is positive it has a

positive square root |T |. Therefore S =
√
T ∗T = |T |.

Theorem 3.1.14. Two positive operators S and T are metrically equivalent if and only

if S = T.

Proof. We need to show that if ‖Sx‖ = ‖Tx‖ for all x ∈ H, then S = T. This follows

from Theorem 3.1.13.

Theorem 3.1.15. If S and T are metrically equivalent self-adjoint operators then S = T

if and only if |S| = |T |.

Example 3.1.16. The operators

A =

(
1 1

0 0

)
and B =

(
1 0

0 −1

)
show that if A and B are not both positive, then
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although ‖Ax‖ = ‖Bx‖ = ‖A∗x‖ = ‖B∗x‖, for all x ∈ H(that is A and B and A∗ and

B∗ are pairwise metrically equivalent), A and B are not even similar. In this example,

B is not positive although it is self-adjoint. Note that B ≤ A. This shows that metric

equivalence does not preserve positivity of operators.

Theorem 3.1.17. Let A,B ∈ B(H). Suppose A∗A = B∗B,AA∗ = BB∗ and XB =

AX,X∗B = AX∗, for some quasiaafinity X, then

(a) A and B are unitarily equivalent.

(b) If X is an injective positive operator, then A = B.

Proof. (a) Suppose that A∗A = B∗B,AA∗ = BB∗ and XB = AX,X∗B = AX∗ For some

quasi affinity X. Suppose X = U |X| is the polar decomposition of X, where U is a partial

isometry and |X| =
√
X∗X is positive.

Define W =

(
X 0

0 X

)
and S =

(
0 A

B 0

)
on H ⊕H, sinceX is quassiaffinity, so is W.

A simple calculation, using XB = AX and X∗B = AX∗ we have that

S∗S =

(
BB∗ 0

0 A∗A

)
=

(
AA∗ 0

0 B∗B

)
= SS∗

and SW = WS∗ which means that S and S∗ are quasiaffine/quasisimilar normal opera-

tors. So by the Fudglede Putnam Theorem, S and S∗ are unitarily equivalent. That is

there exists unitary operator U such that S = U∗S∗U, where U is as in the polar decom-

position of X that is(
0 A

B∗ 0

)
= U∗

(
0 B

A 0

)
= U, which shows that A = U∗BU.

(b) If X is injective and positive, so is W. Thus, S and S∗ are unitarily equivalent positive

normal operators. Thus S = S∗, which in turn implies that A = B.

3.2 Relationship Between Metric Equivalence of Op-

erators and Other Equivalence Relation

Theorem 3.2.1 ([22] Theorem 2.25). Let S and T be in B(H). If S and T are unitarily

equivalent, then they are metrically equivalent.
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Remark 3.2.2. The converse of Theorem 3.2.1 is not generally true. Consider the op-

erators in C2 represented by the matrices

S =

(
1 1

1 1

)
and T =

(
−1 −1

−1 −1

)
.

A simple computation shows that S∗S = T ∗T =

(
2 2

2 2

)
which means that S and T are

metrically equivalent.

However, σ(S) = {0, 2} 6= {0,−2} = σ{T}. This shows that S and T are not similar and

hence cannot be unitarily equivalent.

The following result gives a condition when metric equivalence of operators implies unitary

equivalence.

Theorem 3.2.3 ([22], Theorem 2.26). If S and T are metrically equivalent projections,

then they are unitary equivalent.

Remark 3.2.4. Note that unitary and metric equivalence are norm-preserving while sim-

ilarity is not norm-preserving.

Definition 3.2.5. Recall that, linear operators S and T acting on a Hilbert space H
are said to be nearly equivalent if there exists a unitary operator U such that S∗S =

U∗T ∗TU or equivalently if S∗S and T ∗T are unitarily equivalent. That is, near equivalence

of operators need not imply unitary equivalence of operators and also need not imply

similarity of operators.

Let T ∈ B(H). We denote by ne(T ) and me(T ) the classes of operators nearly equivalent

to T and metrically equivalent to T, respectively. That is,

ne(T ) = {S ∈ B(H) : S∗S = U∗T ∗TU} and me(T ) = {S ∈ B(H) : S∗S = T ∗T}. Clearly

me(T ) ( ne(T ).

Theorem 3.2.6 ([22], Theorem 2.30). Let S and T be metrically equivalent operators in

B(H). Then S and T are nearly equivalent if and only if ‖S‖ = ‖T‖.

Theorem 3.2.7. [22]if S ∈ ne(T ), then for some unitary operator U, Sx = TUx for all

x ∈ H.

Corollary 3.2.8. If S ∈ ne(T ), then ‖S‖ = ‖T‖.
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Theorem 3.2.9. If P is a projection then P ∗P is a projection.

Note that the converse of this result is not true in general. The operator with matrix

representation

P =

(
0 0

1 0

)
is not a projection although P ∗P =

(
1 0

0 0

)
is a projection.

Theorem 3.2.10. Two projections on a Hilbert space H are metrically equivalent if and

only if they are equal.

Proof. Let P and Q be projections on a Hilbert space H. If P ∗P = Q∗Q, then P = Q.

The converse is trivial.

Remark 3.2.11. This result says that two projections on the same Hilbert space H can

only be metrically equivalent if they are equal. The above result is not true in general

linear operators. There exists bounded operators which are metrically equivalent but are

not equal. Note that two unequal projection operations may be similar. The projections

P =

(
1
2

1
2

1
2

1
2

)
and Q =

(
1 0

0 0

)
are unequal but similar projections. Now consider

the projections P =

(
1 0

0 0

)
and Q =

(
0 0

0 1

)
. A simple calculation shows that P

and Q are unitarily equivalent (with the unitary operator U =

(
0 1

1 0

)
implementing

the equivalence), but are not metrically equivalent.

Theorem 3.2.12. Two projections P and Q on a Hilbert space H are metrically equivalent

if and only if PQ = QP = P = Q.

Proof. By Theorem 3.2.10, P = Q. The claim also follows by the fact that every operator

commutes with itself.

Theorem 3.2.13. If U and V are unitary operators on a Hilbert space H, then they are

metrically equivalent.

Proof. U∗U = I = V ∗V.

Theorem 3.2.14. If two operators T and S are metrically equivalent and one is a partial

isometry then the other is an isometry.
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Proof. Without loss of generality suppose T is a partial isometry and metrically equivalent

to S. Then TT ∗T = T and T ∗T = S∗S imply that T (S∗S − I) = 0. Thus S∗S = I. Note

that, T is injective if an only if T ∗T is injective. This says that if two operators are

metrically equivalent and one is injective, then so is the other.

Proposition 3.2.15. If A and B are Q−partial isometric equivalent, then they are met-

rically equivalent.

Proof. By definition there exists an isometryQ such thatA = QB. ThusA∗A = B∗Q∗QB =

B∗B, which establishes the claim. Note that every operator T is U−Partial equivalent to

|T |. This follows easily from the polar decomposition of T = V |T | where V is a partial

isometry.

Question: Does Q−equivalence preserve self-adjointness, invertibility, norm, numerical

range, etc of operators? How is it is related to other operator equivalence relations?

It is clear that this equivalence preserves invertibility but it does not preserve norm, spec-

trum, self-adjointness of operators and numerical range of operators.

Let A =

(
0 1

1 0

)
and B =

(
1 0

0 1

)
. A simple calculation shows that A

Q

∼
B.

but W (A) = [−1, 1] 6= {1} = W (B). This example also reveals that Q− equivalent

operators need not have equal spectra, even if Q is unitary.

Theorem 3.2.16. If S and T are metrically equivalent operators on a Hilbert space H

then |S| = |T |.

Proof. The proof follows from the fact that S∗S = T ∗T is the same as |S|2 = |T |2 and the

fact that |S|2 and |T |2 are positive self-adjoined operators and hence have unique square

roots.

Remark 3.2.17. We remark that metric equivalence need not preserve positivity of op-

erators. To see this, let A =

(
−1 0

0 1

)
and B =

(
1 0

0 1

)
. Clearly A and B are

metrically equivalent, B is positive but A is not. It is also true that metric equivalence

does not preserve self-adjointness.

Note that similarity does not preserve self-adjointness of operators. The operators with

matrices A =

(
1 1

0 1

)
and B =

(
1 0

0 1

)
are similar but A is not self-adjoint although
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B is. We note that similar and even unitarily equivalent projections need not be metrically

equivalent. The projections P =

(
1 0

0 0

)
and Q =

(
0 0

0 1

)
are similar, with similarity

operator N =

(
0 1

1 0

)
. Since P 6= Q these operators are not metrically equivalent. We

note also that for projection operators on a Hilbert space H, near equivalence coincides

with unitary equivalence. This follows from the fact that if P and Q are projection

operators on a Hilbert space H then P = P ∗P = U∗Q∗QU = U∗QU. This result is not

true for general linear operators. To see this, consider the operators U =

 1 0 0

0 1 0

0 0 1


and V =

 −1 0 0

0 −1 0

0 0 1

 .

These operators are metrically equivalent, nearly equivalent but are not similar and hence

are not unitarily equivalent. This example shows also that two unitary operators need

not be unitarily equivalent, but are metrically equivalent. Let A be similar to B, then

A = X−1BX or B = XAX−1, so that ‖A‖ ≤ ‖B‖‖X−1‖‖X‖ and ‖B‖ ≤ ‖A‖‖X−1‖‖X‖.
Thus 1

‖X‖−1‖X‖ ≤
‖A‖
‖B‖ ≤ ‖X

−1‖‖X‖.

Lemma 3.2.18. Metrically equivalent positive operators have equal point spectra.

Proof. Suppose A and B are metrically equivalent positive operators acting on a Hilbert

space H. Suppose that Ax = λx, and By = βy, x, y ∈ H. Since A and B are positive then

λ, β ≥ 0 and real.

Therefore A∗A = B∗B ⇔< Ax,Ax >=< Bx,Bx >

⇔ λλ < x, x >= ββ < x, x >

⇔ λ2 < x, x >= β2 < x, x >

⇔ λ2 = β2

⇔ λ = β

σp(A) = σp(B).
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We note that the positivity condition cannot be dropped. Self-adjointness alone is not

enough in the conclusion of the above result. In general, metrically equivalent operators

may have disjoint spectra.

Corollary 3.2.19. If A and B are positive metrically equivalent, then A = B.
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Chapter 4

Other Equivalence Relations of

Operators

4.1 Near Equivalence of Operators

Recall that two bounded linear operators T and S, on a Hilbert space are said to be nearly

equivalent if T ∗T and S∗S are similar.

Remark 4.1.1. .

1. For any T in ξ(T ), then the positive operator |S| = (S∗S)
1
2 also belongs to ξ(T ).

2. For any T and any isometries P and Q (i.e. P ∗P = Q∗Q = I), S ∈ ξ(T ) if and

only if PS ∈ ξ(QT ) = ξ(T ).

3. S is nearly equivalent to T if and only if there exists a unitary operator U such that

S∗S = U∗T ∗TU. For a similar normal operators are actually unitarily equivalent.

4. If S is unitarily equivalent to T i.e. S = U∗TU for a unitary operator to U, then

S is nearly equivalent to T, but if S is nearly equivalent to T, then S need not even

be similar to T. (Recall that S is similar to T if S = V −1TV for an invertible op-

erator V ). The first part of the remark is easy to prove. For the second part, consider
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T =

(
0 0

1 0

)
and S =

(
1√
2

1√
2

0 0

)
.

Then S∗S = U∗T ∗TU if U =

(
− 1√

2
− 1√

2
1√
2
− 1√

2

)
.

Hence S is nearly equivalent to T but is not similar (and hence not unitarily equiv-

alent) to T.

As another example (now in the infinite dimensional space ι2) consider the unilateral

shift operator T. Then T ∗T = I and hence T is nearly equivalent to I but surely T

is not unitarily equivalent to I.

5. If T is compact, all operators S in ξ(T ) are compact.

6. S ∈ ξ(T ) if and only if for some unitary operator U, ‖Sx‖ = ‖TUx‖ for all x ∈ H.
Consequently, if S ∈ ξ(T ), then ‖S‖ = ‖T‖.

The following results are well known.

Proposition 4.1.2. Let A,B ∈ B(H). Then:

(i) If A
n.e

≈
0 then A = 0.

(ii)If A
n.e

≈
B and B is isometric, then A is isometric.

Theorem 4.1.3. If A and B are nearly equivalent projections, then they are unitarily

equivalent.

Proposition 4.1.4. If A and B are nearly equivalent projections, then A2 ∼= B2.

Proposition 4.1.5. If A,B ∈ B(H) such that A
n.e

∼
B and A is partially isometric then

so is B.

Theorem 4.1.6. For a densely defined closed operator from H into H, the following are

equivalent.

(i) T = US unitary and S positive self-adjoint.

(ii) T = UN,U unitary and N normal.

(iii) TT ∗ = UT ∗TU∗, U unitary. (iv) dim(N(T )) = dim(N(T ∗)).
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Definition 4.1.7. T is said to be nearly normal if and only if T ∗ ∈ ξ(T ), S is said to

be nearly hyponormal if there exists a unitary operator U such that ‖Sx‖ ≥ ‖S∗Ux‖ for

every x ∈ H.

Remark 4.1.8. .

(i) T is nearly normal if and only if there exists a normal operator N such that T = UN

for a unitary operator U.

(ii) An operator S is hyponormal if and only if S∗S ≥ SS∗. Then it is easily seen that an

operator T is nearly hyponormal if and only if there exists a hyponormal operator S such

that T = US for a unitary operator U.

(iii) Clearly every normal operator is nearly normal and every hyponormal operator is

nearly hyponormal; also every nearly normal operator is nearly hyponormal.

Example 4.1.9. Nearly normal operator that is not normal.

Let H be of dimension 2 and let T : H → H be defined by the corresponding matrix

T =

(
1 1

0 0

)
.

Then TT ∗ =

(
2 0

0 0

)
and T ∗T =

(
1 1

1 1

)
. T is not normal, but TT ∗ = U∗T ∗TU if

we take

U =

(
− 1√

2
1√
2

− 1√
2
− 1√

2

)
.

Proposition 4.1.10. [24] For an operator T ∈ B(H) its polar decomposition is a n.n.d

if and only if T ∗ is injective.

Example 4.1.11. Nearly normal operator is not hyponormal.

Remark 4.1.12. In Example 4.1.11 we have an operator that is nearly quasinormal but

not quasinormal.

Choose any non hyponormal operator A. Let λ /∈ σ(A). Take T = A − λI. Then T ∗T =

A∗A− AA∗. Hence T is not hyponormal but T being invertible, T is nearly normal.

Definition 4.1.13. An operator T ∈ B(H) is said to be nearly quasinormal if and only

if T ∗T commutes with UT for a unitary operator U.
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Proposition 4.1.14. [24] For an operator T ∈ B(H) the following are equivalent:

(i) T is nearly quasinormal.

(ii)UT is a quasinormal for a unitary operator U.

(iii)T is of the form T = V Q where V is unitary and Q is quasinormal.

Proposition 4.1.15. [24] The following relations hold: nearly normal ⊂ nearly quasi-

normal ⊂ nearly hyponormal.

Definition 4.1.16. An operator T ∈ B(H) is said to be nearly subnormal if T = US

where U is unitary and S is subnormal.

Corollary 4.1.17. If T is a partial isometry then all operators in ξ(T ) are partial isome-

tries.

4.2 Murray-von Neumann Relation of Projections

A partial isometry on a Hilbert space H is an operator V such that

‖V x‖ =

‖x‖ x ∈ (ker(V ))⊥

0 x ∈ Ran(V )

(ker(V ))⊥ is called the initial space of V and Ran(V ) is called the final space V.

Definition 4.2.1. We recall that, two projections P and Q in B(H) are said to be Murray-

von Neumann equivalent, denoted by P
M − v −N

∼
Q if there exists an operator V ∈

B(H) such that V ∗V = P and V V ∗ = Q.

We note that such a V is automatically a partial isometry. That is V V ∗V = V. Thus two

projections are Murray-von Neumann equivalent exactly when there is a partial isometry

with one projection as the initial space and the other as the final space.

The following results were proved in [19].

Theorem 4.2.2. Let V be a partial isometry and let P and Q be Murray-von Neumann

equivalent projections with respect to V. Then V P = QV.
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Proof. Suppose P = V ∗V and Q = V V ∗ for a partial isometry V. Then from the definition

and the above remark, we have V = V V ∗V = V P = QV = QV P. Theorem 4.2.2 also

says that if P and Q are Murray-von Neumann equivalent projections with respect to V,

then V ∗ = PV ∗ = V ∗Q. A consequence of this result is that P = V ∗QV. Using Theorem

4.2.2 we have that two projections P and Q are Murray-von Neumann equivalent if there

exists a partial isometry V such that P = V ∗QV.

Proposition 4.2.3. The Murray-von Neumann relation is an equivalence relation on the

family P (B(H)) of projections in B(H).

Proof. Suppose that P and Q are projections such that P = V ∗V and Q = V V ∗, for some

partial isometry V. Reflexivity follows easily from Definition 4.2.1, because a projection

is also a partial isometry.

Symmetry follows from Definition 4.2.1 since V ∗ is a partial isometry (with the initial

and final spaces interchanged) whenever V is. Now suppose P,QandR are projections

and that P
M − v −N

∼
Q and Q

M − v −N
∼

R. Then there exists partial isometries V

and W such that P = V ∗V,Q = V V ∗ = W ∗W and R = WW ∗. Now let Z = WV.

Then using the proof of Theorem 4.2.2, Z is also a partial isometry and that Z∗Z =

V ∗W ∗WV = V ∗QV = V ∗V = P, and ZZ∗ = WV V ∗W ∗ = WQW ∗ = WW ∗ = R which

proves transitivity.

Theorem 4.2.4. Let P and Q be projections such that P
M − v −N

∼
Q with an imple-

menting partial isometry V. If V is invertible then P and Q are similar projections.

Proof. Suppose P = V ∗V and Q = V V ∗. Invertibility of V implies that V ∗ = PV −1 =

V −1Q. Thus Q = V V ∗ = V PV −1.

The result above also says that P and Q are invertible and hence P = Q = I, since the

only invertible projection is the identity operator. In addition, we conclude that V is

unitary.

Corollary 4.2.5. Let P and Q be invertible projections. If P
M − v −N

∼
Q with an

implementing partial isometry V then P = Q.
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Corollary 4.2.5 says that for invertible projections in a Hilbert spaceH, the notions of uni-

tary equivalence, similarity, quasisimilarity, metric equivalence and Murray-von Neumann

equivalence coincide with equality.

The statement is also valid if we assume that V is a normal partial isometry. Note that a

normal partial isometry need not be unitary. The operator V =

 0 1 0

1 0 0

0 0 0

 is a normal

partial isometry which is a direct sum of a unitary and zero but it is not unitary.

Corollary 4.2.6. Let P and Q be projections such that P = V ∗V and Q = V V ∗ for some

partial isometry V. If V is normal then P = Q.

Remark 4.2.7. We note that for any orthogonal projections P,Q ∈ B(H), if P = V ∗V

and Q = V V ∗ for some isometry V , the condition of V being either normal, unitary, or

invertible and the condition of invertibility of both P and Q all coincide. If any of these

conditions is satisfied, then P = Q.

Proof. This follows from 0 = V ∗V − V V ∗ = P −Q.

Corollary 4.2.8. Let P and Q be invertible projections. If P
M − v −N

∼
Q with an

implementing isometry V then P ≈ Q where ≈ is any of the equivalence relations: unitary

equivalence, metric equivalence, almost similarity etc.

Proposition 4.2.9. If P and Q are unitarily equivalent projections, they are Murray-von

Neumann equivalent.

Proof. Suppose that P = UQU∗ for some unitary operator U. Since a unitary operator is

a partial isometry, the result follows from the proof of Theorem 4.2.4.

We remark that Murray-von Neumann equivalence does not in general imply unitary

equivalence or metric equivalence of projection operators. Let S be a non-unitary isome-

try, for instance, the unilateral shift on `2. Then P = S∗S and SS∗ = Q are projections.

Clearly P
M − v −N

∼
Q but P and Q are not unitarily equivalent.

A simple calculation also shows that these projection operators are not metrically equiv-

alent. In finite dimensions, it is clear that Murray-von Neumann equivalence implies

similarity. However, this is not true in infinite dimensions. To see this, let P = S∗S
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and SS∗ = Q, where S is the unilateral shift operator on ι2. This example also shows

that Murray-von Neumann equivalence does not in general imply metric equivalence of

projection operators.

If A1, A2, . . . , An are elements in B(H), then diag(A1, A2, ..., An) denotes the n × n ma-

trix whose main diagonal consists of the elements A1, A2, . . . , An. The following result

gives a condition when Murray-von Neumann equivalence implies unitary equivalence of

operators.

Proposition 4.2.10. Let P and Q be projections. If P
M − v −N

∼
Q then diag(P, 0) is

unitarily equivalent to diag(Q, 0).

Proof. Suppose there is a partial isometry V such that P = V ∗V and Q = V V ∗. Then by

Theorem 4.2.4, we have that V = V P = QV = QV P. Using this fact, the operators

U =

(
V 1−Q

1− P V ∗

)
and W =

(
Q 1−Q

1−Q Q

)
are unitary and hence WU is also

unitary. Clearly WU

(
P 0

0 0

)
U∗W ∗ = W

(
UPU∗ 0

0 0

)
W ∗ = W

(
Q 0

0 0

)
W ∗ =(

Q 0

0 0

)
.

The following two results are a consequence of Proposition 4.2.9.

Corollary 4.2.11. Let P and Q be projections. If P
M − v −N

∼
Q then σ(P )/{0} =

σ(Q)/{0}.

This result can be improved as follows.

Corollary 4.2.12. Let P and Q be Murray-von Neumann equivalent projections. If P

and Q are invertible, then σ(P ) = σ(Q).

Proof. There are several ways to prove this result. One of them is to use the fact that

0 is not contained in the spectra of P and Q. The other is to use Corollary 4.2.5 that is

P = Q.
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Recall that the range of a projection P on a Hilbert space H is the set Ran(P ) = {x ∈
H : Px = x} and the null space or kernel of P is ker(P ) = {x ∈ H : Px = 0}. Note

that these two sets are algebraic complements of each other: Ran(P ) +Ker(P ) = H and

Ran(P ) ∩ ker(P ) = {0}. Two orthogonal projections P1 and P2 on a Hilbert space H
are said to be orthogonal to each other (or mutually orthogonal) if Ran(P1) ⊥ Ran(P2)

(which is equivalent to saying that P1P2 = P2P1 = 0).

Theorem 4.2.13. Two projections P and Q on a Hilbert space H are Murray-von Neu-

mann equivalent if and only if dim(Ran(P )) = dim(Ran(Q)).

This says that two projections are Murray-von Neumann equivalent if and only if they

have the same rank.

Example 4.2.14. Consider the projections P =

 1 0 0

0 1 0

0 0 0

 , Q =

 0 0 0

0 1 0

0 0 1

 , R =

 1 0 0

0 0 0

0 0 1

 and S =

 1 0 0

0 0 0

0 0 0


acting on the Hilbert space H = R3. A simple calculation shows that P and Q are Murray-

von Neumann equivalent, with the equivalence being implemented by the partial isometry

V =

 0 0 0

1 0 0

0 1 0

 .

A simple calculation also shows that P and R are Murray-von Neumann equivalent, with

the equivalence being implemented by the partial isometry W =

 0 1 0

0 0 0

1 0 0

 . Also Q

and R are Murray-von Neumann equivalent, with the equivalence being implemented by

the partial isometry Z =

 0 0 0

1 0 0

0 0 1

 .

By Theorem 4.2.13, S is not Murray-von Neumann equivalent to either P,Q or R. A

simple calculation also shows that P,Q and R are pairwise similar and also pairwise
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almost similar. In particular X =

 1 0 1

−2 3 0

−1 1 0

 implements the similarity and also

the almost similarity between P and Q. A closer look also reveals that P,Q and R are

pairwise unitarily equivalent. The operator S is Murray-von Neumann equivalent to, for

instance, the operator T =

 0 0 0

0 1 0

0 0 0

 , with the equivalence being implemented by the

partial isometry Y =

 0 1 0

0 0 0

0 0 0

 .

Remark 4.2.15. We note that the partial isometry implementing the Murray-von Neu-

mann equivalence need not be unique. For example in the example above, the partial

isometry X =

 1 0 0

0 0 0

0 1 0

 also implements the Murray-von Neumann equivalence be-

tween P and R.

The next result gives the relation between the partial isometries implementing a Murray-

von Neumann equivalence of P and Q.

Theorem 4.2.16. Two projections P and Q are unitarily equivalent if and only if they

are Murray von-Neumann equivalent and I − P and I − Q are Murray-von Neumann

equivalent

Proof. Suppose Q = UPU∗ , for some unitary operator U. Put V = UP and W = U(I −
P ). Then V ∗V = PU∗UP = P 2 = P, V V ∗ = UP 2U∗ = UPU∗ = Q and similarly W ∗W =

I−P,WW ∗ = I−Q. Thus P and Q are Murray-von Neumann equivalent and I−P and

I−Q are Murray-von Neumann equivalent. Conversely suppose P and Q are Murray-von

Neumann equivalent and I − P and I − Q are Murray-von Neumann equivalent. Then

there exists partial isometries V : Ran(P )→ Ran(Q) and W : Ran(I−P )→ Ran(I−Q)

satisfying the above conditions. Now, let Z = V +W. Direct calculation shows that Z is

unitary with Z∗ = U∗ and therefore ZPZ∗ = UPU∗ = Q, which proves the claim.
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4.3 Stable Similarity and Stable Unitary Equivalence

We recall that, two operators A and B are said to be stably similar or power similar

denoted by A
s.s

∼
B if there is an invertible operators X such that An = X−1BnX, for

some positive integer n (that is, Bn is similar to An). They are stably unitarily equivalent,

denoted by A
s.u.e

∼
B if there is a unitary operator U such that An = U∗BnU.

We note that operators are stably similar / unitary equivalent if they exhibit the same

long term behavior.

Theorem 4.3.1. Stable similarity is an equivalence relation.

Proof. Reflexivity and symmetry follow easily from the definition: IfA
s.s

∼
B andB

s.s

∼
C

then there exists positive integers m,n and invertible operators X and Y such that An =

X−1BnX and Bm = Y −1CmY.

Let s = lcm(n,m). Then s = nr = mt, for some integer r and t. Hence that is As =

Anr = X−1BnrX = X−1BmtX = X−1(Y −1CmtY )X = (Y X)−1Cs(Y X). This proves that

A
s.s

∼
C. Therefore this relation is transitive.

We note also that unitarily equivalent operators are stably unitarily equivalent. The

converse of Theorem 4.3.1 is not generally true. The operators A =

(
0 1

0 0

)
and

B =

(
0 0

0 0

)
are stably similar but not similar. This follows from the fact that A2 =

B2 = 0.

Theorem 4.3.2. If T is normal then T ∗T and TT ∗ are stably similar.

Proof. Since T is normal we have (T ∗T )n = T ∗nT n = T nT ∗n = (TT ∗)n.

Theorem 4.3.3. If A and B are stably similar then Ran(An) is isomorphic to Ran(Bn).

Theorem 4.3.4. Let P and Q be projections. The following statements are equivalent:
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(a) P and Q are similar.

(b) P and Q are stably similar.

(c) P and Q are almost similar.

We observe that stable similarity need not preserve spectra, norms and spectra radii of

operators. Let S be the unilateral shift on ι2 and T = 0. Then Sn → 0 as n→∞. Thus

S and T are stably similar. But ‖S‖ = 1 6= 0 = ‖T‖.

Theorem 4.3.5. If S and T are similar then Sn and T n are similar (in fact using the

same inter-twiner operator).

Question: Is the converse true?

Not true. Example S =

(
0 1

0 0

)
and T =

(
0 0

0 0

)
. Let n = 2, S2 =

(
0 0

0 0

)
,

S2 = T 2 hence S2 is similar to T 2 but S is not similar to T.
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Chapter 5

Conclusion

In this project we have seen that almost similarity is an equivalence relation. As a result

showing that if A,B,∈, B(H) such that A
a.s

∼
B and B is hermitian then A is hermitian,

has been discussed. It has also been shown that if A,B,∈ B(H) such that A
a.s

∼
B and

A is partially isometric then so is B.

In chapter three, it has been observed that if S and T are metrically equivalent operators

on a Hilbert space H and ST = TS and if T is normal, then S is quasinormal. It has also

been shown that if T and S are metrically equivalent operators on H, then ‖S‖ = ‖T‖
but the converse is not always true, there exists operators with the same norm which are

not metrically equivalent.

In chapter four it has been observed that if A and B are nearly equivalent projections

then they are unitarily equivalent also if A and B are nearly equivalent projections where

A and B are self adjoint then A2 ∼= B2.

In this thesis we have managed to show for the first time, that two orthogonal projections

P and Q acting on a Hilbert space H are Murray-von Neumman equivalent if and only if

there exists a partial isometry V ∈ B(H) such that P = V ∗QV.

Finally, it has been shown that if T is normal then T ∗T and TT ∗ are stably similar. We

note also that unitarily equivalent operators are stably unitarily equivalent. The converse

of the above results is not generally true.
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Future research

In our research we were able to establish that similar orthogonal projection operators

are Murray-von Neumman equivalent. It is a conjecture that there may be orthogonal

projections which are not similar but are Murray-von Neumman equvalent. This evidently

happens if 0 < ‖Q −XPX−1‖ < 1
2
. This is an open problem that we suggest for future

research.
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