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Abstract

Wildfires occurring in Kenya’s wildlife protected areas pose a significant risk to wildlife
conservation since they cause biodiversity loss and habitat degradation. There is a need
for the Kenya Wildlife Service (KWS) to identify the regions in the protected areas that
are prone to recurring wildfire outbreaks during the fire season.

This study identified regions that are fire hot spots in Kenya’s protected areas by
performing a density-based cluster analysis on the Moderate Resolution Imaging Spec-
troradiometer (MODIS) MCD14ML active fire data set for a 12 year period between 2003
and 2014. Feature subset selection was done using an AWK script written to extract the
latitude and longitude fields from the data set. QGIS was used to filter fire points falling
outside protected area boundaries. The Environment for Developing Knowledge Discov-
ery in Databases Applications Supported by Index Structures (ELKI) implementation of
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
was used for the clustering. A sorted k -dist graph estimated the initial DBSCAN param-
eters. 25 trial runs of DBSCAN with different parameters were used to select the final
values: MinPts = 7 fire points; Eps = 700 meters. A web application with a Google
Maps interface was developed to provide an interactive visualization of the fire hot spots.

4,968 fire incidents were observed in 73% of the protected areas. The initial DBSCAN
parameters yielded 29 insignificant fire hot spot clusters from these incidents, while the
final parameters yielded 43 significant clusters. The 43 clusters were identified in 31%
of the protected areas that recorded fire activity. 60% of these clusters occurred in four
protected areas.

The findings of this study indicate that density-based cluster analysis is a suitable
clustering method for identifying hot spots in geospatial data sets. For DBSCAN, the
performance of the sorted k -dist graph heuristic is influenced by the characteristics of a
data set. The results also indicate that Chyulu Hills, Dodori, Boni, and Ruma are the
protected areas most vulnerable to wildfires in Kenya.

This study recommends the use of density-based cluster analysis for identifying hot
spots in geospatial data sets. Experimentation with a wide range of DBSCAN parameters
values is advisable. KWS should focus fire management efforts on the identified fire hot
spot regions. In addition, it should investigate the impact of wildfire damage in the
ecological zones surrounding the hot spots.
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Chapter 1

Introduction

1.1 Background

The Kenya Wildlife Service (KWS) manages Kenya’s Wildlife Protected Areas (WPAs).
These include 23 National Parks (NPs), 31 National Reserves (NRs), 6 National Sanctuar-
ies, 4 Marine National Parks and 6 Marine National Reserves. They cover approximately
8% of Kenya’s total landmass (KWS, 2013c). Figure 1.1 is a map of the WPAs. There are
two types of fires that occur in the WPAs. Prescribed fires are controlled by KWS WPA
managers. They are applied for conservation purposes to reduce bush encroachment and
improve the browsing and grazing conditions in the WPAs. On the other hand, wildfires
pose a significant risk to wildlife conservation. They cause biodiversity loss and habitat
degradation. This study addresses the wildfires due to their negative effects. They have a
variety of causes including honey gathering, livestock grazing, and clearing of agricultural
land adjacent to the WPAs. Both types of fire are important for wildlife conservation
and are included in the KWS WPA management plans (KWS, 2012a,b,c,d, 2013a,b,d).

Satellite remote sensing technologies play a role in detecting, monitoring, and character-
izing fires that occur on the Earth’s surface. The Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument on board the National Aeronautics and Space Ad-
ministration (NASA) Earth Observing System (EOS) Terra and Aqua satellites is one
of the first to include fire monitoring in its design (Giglio, n.d.d). It provides at least
four daily observations of active fires detected across the entire globe (NASA Earthdata,
2015). The MODIS active fire data is disseminated by the NASA Fire Information for
Resource Management System (FIRMS) service (Davies et al., 2009).

Cluster analysis or clustering is the most common unsupervised machine learning
task. It groups a set of objects in such a way that objects in the same group are more
similar to each other than to those in other groups (Tan, Steinbach & Kumar, 2005).
Data clustering has been applied in a wide variety of fields such as data mining, image
analysis, bioinformatics, pattern recognition, and information retrieval. There are several
methods of data clustering that differ in the way they model the clusters. Density-based
clustering is a method that defines clusters as connected, dense areas in the data space
(Ester, 2014). Objects in low-density regions do not belong to any cluster and are usually
considered to be noise or outliers. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) is a classical density-based clustering algorithm.

Research studies have applied clustering algorithms such as K -Means (Vadrevu et al.,
2013) and DBSCAN (Usman, Sitanggang & Syaufina, 2015) to the problem of identifying
and analyzing hot spot distribution in spatial data. Clustering has also been used in crime
analysis to identify hot spots, where there are greater incidences of particular types of
crime, in order to manage law enforcement resources more effectively (Divya, Rejimol &
Selvan, 2014).
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Figure 1.1: Kenya’s Wildlife Protected Areas (WPAs)
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1.2 Problem Statement

KWS lacks access to accurate information on the regions in the WPAs that are prone
to recurring wildfire outbreaks, yet these are the regions where fire damage has the
largest impact on wildlife conservation. The usefulness of this information is noted in the
Mt. Kenya Ecosystem Management Plan which highlights the need to identify and map
all fire hot spots as a strategy for preventing and managing wildfires in the ecosystem
(KWS, 2013d). The limited understanding of the distribution pattern of fire incidents
in the WPAs prevents the identification of high priority areas where fire management
efforts need to be focused to reduce the negative impact of fire damage. This study seeks
to support the decision-making process of KWS WPA managers by filling the existing
information gap.

1.3 Research Objectives

This study defines the following overall research objective to address the above stated
problem:

To provide information on the spatial distribution pattern of fire incidents in Kenya’s
WPAs

The specific research objectives under this overall objective are:

1. To identify regions that are fire hot spots in Kenya’s WPAs by performing a density-
based cluster analysis on the MODIS active fire data set, for a 12 year period
(2003-2014)

2. To develop a web application that provides an interactive visualization of the fire
hot spots in Kenya’s WPAs

1.4 Significance

This study provides useful insights into patterns of wildfire occurrence in the WPAs
that will help KWS WPA managers to allocate fire management resources effectively.
The identified hot spot regions indicate the areas where fire monitoring efforts need to
be focused during the fire season. Ground and aerial patrols of these regions can be
intensified in an effort to reduce future incidents of wildfires. Further, this information
lends support to the decisions of where to locate new fire watchtowers and firebreaks. In
addition to the support for fire monitoring, the spatial patterns of fire hot spot clusters
are also useful to KWS research scientists in addressing questions relating to causative
factors and the ecological impact of the wildfires.

3



Chapter 2

Literature Review

2.1 Fire Activity in Kenya’s Wildlife Protected Areas

Fires occur in most ecosystems of the world affecting an area of about 3 million km2 every
year (Palumbo, 2013). Fire occurrence is important for the biodiversity of many habitats
with several positive effects such as the stimulation of new vegetation, the removal of
dead vegetation, and the release of nutrients back into the soil. However, fire can also
be detrimental and may compromise the survival of ecosystems. There are two types of
fires that occur in Kenya’s WPAs (KWS, 2012d, 2013d). Prescribed fires are controlled
by KWS WPA managers. They are applied for conservation purposes to reduce bush
encroachment and improve the browsing and grazing conditions for herbivores. On the
other hand, wildfires pose a significant risk to wildlife conservation through biodiversity
loss and habitat degradation.

Fire management is an important objective included in WPA management plans devel-
oped by KWS. The Mt. Kenya Ecosystem Management Plan (KWS, 2013d) reports that
since 1990, wildfires have been recurring annually during the dry seasons of January-
March and June-September. In this ecosystem, damage as a result of fire is highest in
plantation forests due to the high tree uniformity and presence of flammable vegetation.
Most wildfires are caused by arson and honey gathering. Other important causes are
lightning, illegal grazing, clearing of farmland adjacent to the ecosystem, and charcoal
burning.

An analysis of the fire outbreaks in the Aberdare ecosystem indicates that 96% of the
fires occur in January-March while 4% occur in September (KWS, 2013a). The causes
are diverse but the more common ones are honey gathering and clearing of neighbouring
farms in preparation for cultivation. Vegetation damage as a result of fire is highest in
the moorlands where the accumulated biomass provides the fuel to sustain burning. The
Aberdare ecosystem is prone to frequent devastating wildfires. Such fires can lead to
the loss of fire intolerant species while encouraging the invasion of fire resistant species.
This brings about imbalances in the ecosystem. Measures such as the establishment of
firebreaks and construction of fire watchtowers have been put in place to control wildfires.

In Tsavo Conservation Area (TCA), wildfires mainly originate from the surrounding com-
munity lands and along the Nairobi-Mombasa highway and railway line (KWS, 2012d).
Fires are also an annual feature in the Chyulu Hills where there has been some concern
that this may be having an impact on the forest fragments on the crests of the hills. The
fire activity in the Chyulu Hills landscape is largely caused by the local communities. The
two most important reasons for fire occurrence are honey gathering and livestock graz-
ing whereby burning is conducted to stimulate nutritious pasture for livestock (Kamau,
2013).
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The wildfires in TCA have a serious impact on the area’s ecology and also reduce the
effectiveness of prescribed fire as a management tool by undermining the ability of WPA
managers to assess the overall effectiveness of the prescribed fires. The TCA Management
Plan (KWS, 2012d) outlines fire management strategies such as raising the awareness of
the risk and impact of wildfires among users of the Nairobi-Mombasa highway and also
among communities living adjacent to TCA.

Kiunga Marine National Reserve (NR), Boni NR, and Dodori NR make up the Kiunga-
Boni-Dodori Conservation Area (KBDCA) which is a KWS management planning unit.
According to the KBDCA Management Plan (KWS, 2013b), the wildfires in this con-
servation area occur in the coastal forests. They are mainly caused by honey gatherers
who use inappropriate honey harvesting methods and herders who use fire as a means of
controlling pests and for pasture improvement. In addition, farmers also use fire to clear
forest areas for cultivation.

Ruma National Park (NP) is a relatively small park covering an area of 120 km2. The
Ruma National Park Management Plan (KWS, 2012c) notes that the wooded grasslands
covering 68% of the park increase its risk of wildfire outbreaks. The wildfires occuring
in the park are both intentional and accidental. Poachers start wildfires to stimulate
green flush, especially after the rains, to attract grazers. Accidental fires occur before
the planting season when farmers burn farm litter during preparation of land for planting
(KWS, 2012c).

Table 2.1 summarizes the common causes of wildfires in Kenya’s WPAs as identified in
the KWS WPA management plans (KWS, 2012a,b,c,d, 2013a,b,d; KWS & KFS, 2012).
Table 2.2 summarizes the wildfire management measures applied in the WPAs. These
measures were also identified from the KWS WPA management plans.

2.2 Satellite Remote Sensing Technologies for

Monitoring Fires

Satellite remote sensing technologies play a role in detecting, monitoring, and character-
izing fires that occur on the Earth’s surface. The MODIS Active Fire and Burned Area
Products website (Giglio, n.d.d) notes that there are several satellite systems currently in
orbit that provide information on different fire characteristics such as location and timing
of active fires, burned area, areas that are dry and susceptible to wildfire outbreaks, and
pyrogenic trace gas and aerosol emissions. Further, the satellite systems have different
capabilities in terms of spatial resolution, sensitivity, spectral bands, and times and fre-
quencies of overpasses. However, none of the sensing systems prior to MODIS included
fire monitoring in their design. The following satellite systems have applications for fire
monitoring.
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Table 2.1: Common causes of wildfires in Kenya’s WPAs

Type Cause Affected WPA

Illegal activity Inappropriate honey gathering meth-
ods

Aberdare NP, Chyulu Hills
NP, KBDCA, Mt. Kenya
Ecosystem

Herders start fires to improve pasture
for livestock grazing

Chyulu Hills NP, Kakamega
NR, KBDCA, MCA, Mt.
Kenya Ecosystem

Poachers start fires to improve pasture
which attracts grazers

Ruma NP, Kakamega NR

Charcoal burning Aberdare NP, Mt. Kenya
Ecosystem

Farmers start fires to clear forest areas
for cultivation

KBDCA

Highway and/or railway line users start
fires along the transport system

TCA

Arson Aberdare NP, Mt. Kenya
Ecosystem

Accidental Farmers start fires to clear farmland ad-
jacent to the WPAs in preparation for
cultivation

Aberdare NP, Kakamega
NR, MCA, Mt. Kenya
Ecosystem, Ruma NP

Fires originate from adjacent commu-
nity / pastoral lands

Hell’s Gate NP, Mount Lon-
gonot NP, TCA

Tourists start fires through inappropri-
ate disposal of cigarette butts

Aberdare NP, Mt. Kenya
Ecosystem

Natural Lightning Mt. Kenya Ecosystem

2.2.1 Advanced Very High Resolution Radiometer

The Advanced Very High Resolution Radiometer (AVHRR) is flown on National Oceanic
and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES).
It measures electromagnetic radiation (light reflected and heat emitted) from Earth. The
AVHRR was originally intended only as a meteorological satellite system but it does have
applications for fire monitoring. Its visible bands can detect smoke plumes from fires as
well as burn scars. The middle-infrared band can detect actual hot spots and active fires.
Its ability to detect fires is greater at night, since the system can confuse active fires with
heated ground surfaces, such as beach sand and asphalt (Giglio, n.d.a).
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Table 2.2: Wildfire management measures applied in Kenya’s WPAs

Measure WPA

Establishment and maintenance of firebreaks
e.g. roads, fire resistant plants

Aberdare NP, Arabuko Sokoke NP,
Hell’s Gate NP, Kakamega NR, KB-
DCA, MCA, Mt. Kenya Ecosystem,
Mt. Longonot NP, Ruma NP

Construction of fire watchtowers Aberdare NP, Arabuko Sokoke NP,
Kakamega NR, TCA

Establishment of a fire station / fire and res-
cue center / rapid response unit

Aberdare NP, TCA

Collection and analysis of information on
wildfire occurrences

Aberdare NP, Mt. Kenya Ecosystem

Procurement of fire-fighting equipment Aberdare NP, Kakamega NR, KB-
DCA, Mt. Kenya Ecosystem, Ruma
NP

Training of staff / community forest associa-
tions on fire fighting

Kakamega NR, KBDCA, Mt. Kenya
Ecosystem, Ruma NP

Raising awareness of the risk and impact of
wildfires among communities living adjacent
to the WPAs

Aberdare NP, Arabuko Sokoke NP,
Kakamega NR, Ruma NP, TCA

Raising awareness of the risk and impact
of wildfires among users of the Nairobi-
Mombasa highway

TCA

Raising awareness of the risk and impact of
wildfires among tourists e.g. campers

Mt. Kenya Ecosystem

Development and maintenance of communi-
cation systems to support fire management
activities e.g. radio, telephone

KBDCA, Mt. Kenya Ecosystem

Development / review of a fire management
plan

Kakamega NR, Mt. Kenya Ecosystem,
Ruma NP

Establishment of fire fighting operational
guidelines

Mt. Kenya Ecosystem, TCA

Establishment of an elaborate fire detection
and reporting system

Mt. Kenya Ecosystem

7



For Local Area Coverage (LAC), High Resolution Picture Transmission (HRPT), and
Full Resolution Area Coverage (FRAC) data, the instantaneous field-of-view of each
channel is approximately 1.4 milliradians leading to a resolution of 1.1 km at the satellite
subpoint for a nominal altitude of 833 km. Global Area Coverage (GAC) data has a 4
km resolution. POES satellite orbits are timed to allow complete global coverage twice
per day, per satellite, in swaths of about 2,600 km in width (NOAA, 2012).

The Fire Identification Mapping and Monitoring Algorithm (FIMMA) is an automated
algorithm used to detect fires from AVHRR data. The algorithm is only accurate over
forested regions. Fire pixels occurring within landcover types with some tree cover are
kept as possible fires. As a result, the algorithm may miss real fires over urban areas, as
well as agricultural burns (NOAA SSD, 2015).

2.2.2 Geostationary Operational Environmental Satellites

The Geostationary Operational Environmental Satellites (GOES) are operated by NOAA.
They house a 5-channel (1 visible, 4 infrared) imaging radiometer designed to sense
radiant and solar reflected energy from sample areas of the Earth. They are stationed
in orbits that remain fixed over one spot on the equator, providing continuous coverage
of the Western Hemisphere. GOES satellites acquire images every 15 minutes, at up to
1 km resolution in visible light, for the detection of smoke, and 4 km resolution in thermal
infrared to directly detect the heat of fires (Giglio, n.d.b).

The Wildfire Automated Biomass Burning Algorithm (WF-ABBA) is a contextual multi-
spectral thresholding algorithm which utilizes dynamic local thresholds derived from the
GOES satellite imagery and ancillary databases to locate fire pixels (NOAA SSD, 2014).
It also provides very rough estimates of the sub-pixel area and mean temperature of
fires. Fire locations represent the approximate location of the fire pixel and do not
represent the actual fire size. The minimum detectable fire size at the sub-satellite point,
and smoldering at 450 K, is approximately 0.5 to 1 acre in size in relatively non-cloudy
conditions. WF-ABBA is also able to identify hot spots through smoke.

2.2.3 Landsat

The Landsat series of Earth-observing satellites monitor characteristics and changes on
the surface of the Earth at high resolution (Giglio, n.d.c). The Landsat 7 satellite uses
the Enhanced Thematic Mapper Plus (ETM+) to acquire images of the Earth which
provide land surface information (USGS, 2015b). Landsat 8 carries two instruments: the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) (USGS, 2015a).
The 11 spectral bands on Landsat 8 (and 8 spectral bands on Landsat 7) monitor different
types of Earth resources over a wide area (81◦ North to 81◦ South). The thermal band
enables the system to detect “hot spots”. Landsat 8’s TIRS provides two thermal bands.
In both Landsat 7 and Landsat 8, all spectral bands except band 8 provide a spatial
resolution of 30 m. The panchromatic band 8 has a resolution of 15 m. Landsat 7 and 8
provide impressive high-resolution images but only infrequently, revisiting an area every
16 days.
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2.2.4 Total Ozone Mapping Spectrometer

The Total Ozone Mapping Spectrometer (TOMS) is a measuring device that provides data
regarding ozone levels. It produces a complete data set of daily ozone levels around the
world. This instrument is the first to show aerosols (airborne dust and smoke particles)
over land. It also provides the ability to distinguish aerosols that absorb light from
aerosols that reflect it. TOMS makes 35 measurements every 8 seconds, each covering an
area 50-200 km wide on the ground. Close to 200,000 daily measurements cover almost
every spot on the Earth except for areas near the poles. These data make it possible to
observe a variety of Earth events including forest fires, dust storms and biomass burning
(Giglio, n.d.e).

The Ozone Monitoring Instrument (OMI) on board the NASA Aura satellite records
total ozone and other atmospheric parameters related to ozone chemistry and climate
(Wilson, 2007). It employs hyperspectral imaging in a push-broom mode to observe
solar backscatter radiation in the visible and ultraviolet ranges of the electromagnetic
spectrum. The instrument views the Earth in 740 wavelength bands along the satellite
track with a swath large enough to provide global coverage in 14 orbits (1 day). The
nominal 13 × 24 km spatial resolution can be zoomed to 13 × 13 km for detecting and
tracking urban-scale pollution sources.

2.2.5 Meteosat Second Generation

The Meteosat Second Generation (MSG) geostationary weather satellites house the opti-
cal imaging radiometer called the Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI). The sensor features 12 spectral channels and provides cloud imaging and tracking,
fog detection, measurement of the Earth surface and cloud top temperatures, tracking
ozone patterns, as well as active fire monitoring (NASA Earthdata, 2015). The nominal
coverage of the satellites includes Europe, Africa, and adjacent seas. They provide full
disc imagery data every 15 minutes. The various channels provide measurements with a
resolution of 3 km at the sub-satellite point. The High Resolution Visible (HRV) channel
provides measurements with a resolution of 1 km (ESA, 2015).

The European Organisation for the Exploitation of Meteorological Satellites (EUMET-
SAT) provides the active fire monitoring product (FIR). FIR is a fire detection product
that indicates the presence of fire within a pixel. The underlying concept of the algorithm
takes advantage of the fact that SEVIRI channel IR 3.9 is very sensitive to fire hot spots.
The algorithm distinguishes between potential fires and active fires (EUMETSAT, 2015).

2.2.6 Moderate Resolution Imaging Spectroradiometer

The MODIS instrument on board the NASA EOS Terra and Aqua satellites detects
fires that are burning at the time of overpass, under relatively cloud-free conditions. It
acquires data continuously providing global coverage every 1-2 days. There are at least
4 daily MODIS observations for almost every area on the equator, with the number of
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overpasses increasing (due to overlapping satellite orbits) closer to the poles. A MODIS
active fire detection represents the center of a 1 km2 pixel flagged as containing one or
more actively burning fires (NASA Earthdata, 2015).

Fire detection is performed using a contextual algorithm that exploits the strong emission
of mid-infrared radiation from fires (Giglio et al., 2003). Thresholds are first applied to
the observed mid-infrared and then the thermal infrared brightness temperature after
which false detections are rejected by examining the brightness temperature relative to
neighboring pixels. Validation of the Terra MODIS active fire product has primarily been
performed using coincident, high resolution fire masks derived from Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) imagery (Giglio, 2013).

The NASA FIRMS service distributes: (i) Near Real-Time MODIS active fire data
(MCD14DL) that is processed by Land, Atmosphere Near Real-Time Capability for EOS
(LANCE) using the standard MODIS MOD14/MYD14 Fire and Thermal Anomalies
product, and (ii) Standard MODIS active fire data (MCD14ML) that is processed by the
MODIS Fire Science Computing Facility (SCF) at the University of Maryland (NASA
FIRMS, n.d.). The Near Real-Time MODIS active fire data is available within 3 hours of
satellite overpass while the Standard MODIS active fire data is generally available after
3 months. The Standard data is quality checked and sometimes reprocessed at a later
date if some problems are found with specific granules (NASA Earthdata, 2015).

The MODIS active fire data includes 12 attribute fields labeled as follows: Latitude,
Longitude, Brightness, Scan, Track, Acquisition Date, Acquisition Time, Satellite, Confi-
dence, Version, Bright T31, and FRP. Each of these attributes is fully described in NASA
FIRMS (n.d.). FIRMS has developed a global fire e-mail alert system based on the Near
Real-Time data (Davies et al., 2009). The system notifies subscribed users when a fire is
detected in, or near, a specified area of interest, country or protected area. In addition
to this, active fire locations for the last 24 hours, 48 hours, and 7 days are available for
download in shapefile, Keyhole Markup Language (KML), Web Map Service (WMS),
or Comma Separated Values (CSV) formats. Older data can be obtained through the
Archive Download Tool (NASA FIRMS, 2015). The tool provides Near Real-Time data
and, as it becomes available (usually after 2 months), it is replaced with data extracted
from the Standard MODIS fire product. The tool allows download of archived data by
specifiying a region of interest and time period (NASA Earthdata, 2015).

2.2.6.1 Precision of the Active Fire Data

The precision of the Latitude and Longitude attribute fields in the MODIS active fire
data is 3 decimal places. Assuming a mean Earth radius of 6,371 km, 1◦ of longitude and
latitude at the equator represents a distance of about 111 km as per equation (2.1). This
is because the Earth’s circumference is about 40,030 km and there are 360◦ of longitude.

Distance of 1◦ of longitude (km) =
2× π × 6, 371

360
(2.1)
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The 3 decimal places used in the MODIS data set coordinates means that the smallest
possible value for latitude or longitude is 0.001◦. This represents a precision of about
111 m at the equator. The maximum rounding error is half this value (55.5 m). Equation
(2.2) illustrates this.

Maximum rounding error (m) =
Distance of 1◦ of longitude (km)× 0.001× 1000

2
(2.2)

The spatial resolution of the MODIS data set is approximately 1 km2 per pixel. Each
active fire detection represents the center of a pixel flagged as containing one or more
fires, or other thermal anomalies. The location is the center point of the pixel and
not necessarily the coordinates of the actual fire on the ground (NASA Earthdata, 2015).
Since a fire could have happened at any point inside the 1 km2 pixel, the farthest locations
from the center are at the corners of the pixel. This distance is 707.1 m. Equation (2.3)
shows how it is determined using the Pythagorean Theorem for a right triangle whose
short sides are 500 m long.

Farthest distance from pixel center (m) =
√

5002 + 5002 (2.3)

Taking into account the rounding error and the spatial resolution, the maximum possible
error for the location of a MODIS fire point is therefore 762.6 m (707.1 m + 55.5 m).
However, the flat-Earth distance of 707.1 m will differ slightly from the equivalent great-
circle distance of a spherical Earth, computed with the haversine formula.

2.2.7 Comparative Summary

Table 2.3 provides a comparative summary of the satellite systems that have applications
for fire monitoring. It shows that fire data from the GOES satellites cannot be used
for this study because their coverage is restricted to the Western Hemisphere. TOMS
provides data on smoke particles which is an indicator of fire activity. However, data
on active fires is more suitable for this study since it is the most direct indicator of fire
activity.

Although Landsat imagery data is exceptionally high-resolution, it is available very in-
frequently. The 16-day repeat-cycle will result in several active fires going unobserved.
MSG-SEVIRI data has a much higher temporal resolution than MODIS data. However,
it has a poorer spatial resolution. A higher spatial resolution is considered a better trade-
off for this study. In addition, the MODIS data provides fire locations extracted using
an algorithm whose results have been validated (Giglio, 2013).

The table shows that AVHRR data has both a lower spatial and temporal resolution than
the MODIS data. Based on this comparison of the various remote sensing fire products
available, MODIS appears to be the most appropriate for this study.
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Table 2.3: Comparison of fire monitoring satellite systems

System Coverage Spatial
Resolution

Temporal
Resolution

Data

AVHRR Global 1.1 km and 4 km Twice per day Fire locations

GOES Western
Hemisphere

4 km Every 15 minutes Fire locations

Landsat 81°N-81°S 15 m and 30 m Every 16 days Imagery on fires

TOMS Global 13 × 24 km Once per day Imagery on smoke
particles

SEVIRI Europe,
Africa

3 km Every 15 minutes Imagery on fires

MODIS Global 1 km 4 times per day Fire locations

2.3 Data Clustering Methods

According to Russell and Norvig (2010), the three main categories of machine learning
are determined by three types of feedback available to learn from. In supervised learning
an agent observes some example input-output pairs and learns a function that maps from
input to output. In unsupervised learning the agent learns patterns in the input without
any explicit feedback. In reinforcement learning the agent learns from a series of rewards
or punishments. The most common unsupervised learning task is data clustering.

Aggarwal (2014) has broadly defined the basic problem of clustering to be one in which,
given a set of data points, the objective is to partition them into a set of groups that are
as similar as possible. More specifically, data points in the same group are more similar
to each other than to those in other groups (Tan, Steinbach & Kumar, 2005). Data
clustering has been applied in a wide variety of data mining and machine learning tasks
such as image segmentation, pattern recognition, information retrieval, and also in the
field of bioinformatics. It is important due to its capabilities in determining the intrinsic
grouping in a set of unlabeled data. The increasing availability of large data sets has
rendered manual labeling difficult and expensive (Alelyani, Tang & Liu, 2014). This has
created a growing interest in the use of data clustering as a technique for automatic data
labeling in the data mining process.

Clustering can be seen as either an exploratory task or preprocessing step (Alelyani,
Tang & Liu, 2014). If the goal is to explore and reveal the hidden patterns in the data,
clustering becomes a stand-alone exploratory task by itself. On the other hand, if the
generated clusters are going to be used to facilitate another data mining or machine
learning task, clustering will be a preprocessing step. During preprocessing, clustering
can be used to handle noisy data by detecting and removing outliers. It can also be used
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at this stage to label the data for subsequent classification tasks.

There are several clustering methods described in the literature. Key methods are: hierar-
chical clustering, partitional clustering, probabilistic clustering, density-based clustering,
grid-based clustering, Nonnegative Matrix Factorization (NMF), and spectral cluster-
ing. The rest of this section presents a brief overview of the characteristics of each of
these methods while highlighting their strengths, weaknesses, and the type of clustering
problems for which they are suitable.

2.3.1 Hierarchical Clustering

Hierarchical clustering creates a hierarchy of clusters that are represented through a bi-
nary tree-based data structure called a dendrogram. Agglomerative algorithms implement
a bottom-up approach that begins with each data point as a singleton cluster and suc-
cessively merges them into larger clusters. A suitable distance metric is used to measure
similarity between data points and a linkage criterion based on this distance determines
the choice of clusters to merge at each step. Some popular choices are single-linkage clus-
tering, complete linkage clustering, and average linkage clustering. On the other hand,
divisive algorithms implement a top-down approach that begins with all the data points in
a huge macro-cluster and successively splits it into smaller clusters. Partitional clustering
algorithms can be used to perform this splitting (Reddy & Vinzamuri, 2014). Examples
of algorithms for this method of clustering are: Balanced Iterative Reducing and Clus-
tering using Hierarchies (BIRCH), CHAMELEON, AGglomerative NESting (AGNES),
and DIvisive ANAlysis (DIANA).

Hierarchical clustering is not very robust to outliers since it does not have a notion
of noise. Such data points appear as additional clusters and may cause other clusters
to merge, a phenomenon known as chaining. In addition, it is ineffective at capturing
arbitrarily shaped clusters. This method would therefore not be ideal for performing
density-based clustering in which outliers define low-density regions in the data space.
Further, the run-time complexity of hierarchical algorithms is quadratic hence making
them undesirable especially for large-scale problems (Reddy & Vinzamuri, 2014).

2.3.2 Partitional Clustering

Partitional clustering divides the data set into several clusters at once rather than hierar-
chically, using partitioning representatives. In each iteration, every data point is assigned
to the cluster whose partitioning representative is nearest, as determined by a distance
function, and then each representative is adjusted according to the data points assigned
to it. K -Means is a widely used algorithm where the partitioning representatives are clus-
ter centroids corresponding to the mean of all the data points in each cluster. It typically
uses the Euclidean distance metric. Variants such as K -Medians which uses the median
rather than the mean and K -Medoids which samples the partitioning representative from
the data, also exist. In addition, the Fuzzy C -Means algorithm considers each data point
as having a degree of membership to each cluster (Aggarwal, 2014; Reddy & Vinzamuri,
2014).
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As noted by Reddy and Vinzamuri (2014), K -Means has the advantage of simplicity
and computational efficiency. This allows it to be used on large data sets. However, it
does not yield the same clustering on different runs due to the initial random assignment
of centroids. The requirement to specify the number of clusters (K ) in advance also
proves to be a significant drawback in certain practical use cases where this can only be
determined experimentally. It is difficult for K -Means to detect non-spherical clusters or
clusters of different sizes and densities because it partitions the data space into Voronoi
cells which produces clusters of equal size and convex shape.

2.3.3 Probabilistic Clustering

Probabilistic clustering defines clusters as data points most likely belonging to the same
probability distribution. A generative model, such as a mixture of Gaussians, is often
assumed on the data set (Deng & Han, 2014). Here, the Expectation-Maximization
(EM) algorithm models the data set with a fixed number of Gaussian distributions that
are initialized randomly. It then iteratively optimizes the parameters of the model to
achieve a maximum likelihood fit to the data set (Aggarwal, 2014). This clustering
method is highly effective for clustering artificial data sets generated by sampling random
objects from a distribution. While it provides a strong statistical foundation for modeling
clusters, many real data sets might not be generated from the mathematical model that it
assumes. For instance, in data sets where clusters are density-based, assuming Gaussian
distributions on the data will yield ineffective results.

2.3.4 Density-based Clustering

Density-based clustering defines clusters as connected, dense areas in the data space
separated from each other by sparser areas (Ester, 2014). Data points in the sparse
regions are considered to be noise or border points to more than one cluster and are
not assigned to any cluster. Mean-shift clustering is a related method which produces
density-based clusters but does not guarantee that clusters are connected.

DBSCAN and Ordering Points To Identify the Clustering Structure (OPTICS) are two
typical density-based clustering algorithms that can discover arbitrarily shaped clusters.
They both expect a density drop in the data space to effectively detect cluster borders
and will yield arbitrary results where the cluster density decreases continuously. Density-
based clustering methods also have the drawback of not being able to detect intrinsic
cluster structures such as the mixture of Gaussian distributions commonly found in arti-
ficially generated data sets. Another challenge of these methods is that they are naturally
defined on data points in a continuous space and therefore cannot be meaningfully used in
a discrete or non-Euclidean space without specialized transformations (Aggarwal, 2014).
In addition, processing high-dimensional data may pose a challenge since density is more
difficult to define for such data.

According to Ester (2014), clustering algorithms such as EM and K -Means produce spher-
ical clusters due to the assumption that data are generated from a probability distribution
of a given type. However, spatial data with a reference to a two or three-dimensional
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concrete space corresponding to our real world naturally contains non-spherical clus-
ters. These clusters may have arbitrary shapes due to constraints imposed by geographic
features such as mountains and rivers. Ester further notes that the paradigm of density-
based clustering has been proposed to not only meet the requirement to discover clusters
of arbitrary shape but also to scale to large databases and detect and remove noise and
outliers in the data. It can be considered a non-parametric method, since it makes no
assumptions about the number of clusters or their distribution.

2.3.5 Other Clustering Methods

Grid-based clustering algorithms partition the data space into a finite number of cells to
form a grid structure and then form clusters from these cells. The clusters correspond
to regions that are more dense in data points than their surroundings. Since, grid-
based clustering algorithms cluster cells rather than individual data points, they present
a significant reduction in time complexity and are efficient in mining large data sets
(Cheng, Wang & Batista, 2014).

NMF factorizes an input nonnegative matrix into two nonnegative matrices of lower
rank. It can be applied in solving data mining and machine learning problems such as
pattern recognition and text mining. NMF with the sum of squared error cost function
is equivalent to a relaxed K -Means clustering (Li & Ding, 2014).

Spectral clustering algorithms construct a similarity graph for all the data points after
which the data points are embedded in a space with the use of the eigenvectors of the
graph Laplacian. Finally, a classical clustering algorithm such as K -Means is applied to
partition the embedding. The name spectral denotes the fact that the clustering results
are obtained by analyzing the spectrum of the graph Laplacian. Spectral clustering has
been applied to the problems of image segmentation, text mining, and speech processing.
Studies have shown that it is theoretically closely related to kernel K -Means and NMF
(Liu & Han, 2014).

2.3.6 Common Clustering Algorithms

Table 2.4 presents a summary of common clustering algorithms grouped under the clus-
tering method they belong to.

2.4 Density-based Clustering Algorithms

2.4.1 Density-Based Spatial Clustering of Applications with Noise

DBSCAN is a classical density-based data clustering algorithm that was proposed by
Ester et al. (1996). It requires two parameters: Eps (ε) and MinPts. A point is called a
core point if its neighborhood of radius Eps contains at least MinPts points. A point q
is directly density-reachable from a core point p if q is within the Eps-neighborhood of p.
Density-reachability is given by the transitive closure of direct density-reachability. Two
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Table 2.4: Common clustering algorithms

Method Algorithm Comment

Hierarchical AGNES Agglomerative

DIANA Divisive

CURE

CHAMELEON

BIRCH

Partitional K -Means Most widely used partitional clustering algorithm

K -Medians Variants of K -Means

K -Medoids

K -Modes

Fuzzy C -Means Points have fuzzy membership to clusters

Mean shift

CLARANS Designed for large-scale data sets

Probabilistic EM

Density-based DBSCAN

GDBSCAN Generalized extension of DBSCAN

OPTICS Produces a cluster-ordering of points

DENCLUE Based on the concept of influence functions

Grid-based GRIDCLUS

STING

CLIQUE Performs subspace clustering of high-dimensional
data

points p and q are called density-connected if there is a third point o from which both
p and q are density-reachable. A cluster is then a set of density-connected points which
is maximal with respect to density-reachability. Noise is defined as the set of points in
the data set not belonging to any of its clusters. The definition of density-based clusters
assumes a distance function dist(p, q) for pairs of points. More formal definitions are
provided in Ester (2014).

DBSCAN performs one region query per data point to retrieve its Eps-neighborhood.
With the use of a spatial index such as an R-tree or X-tree, the runtime complexity for n
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data points is O(n log n). Without the use of an accelerating index structure, the runtime
complexity increases to O(n2).

DBSCAN provides several advantages over other clustering algorithms. Unlike K -Means,
it does not require the specification of the number of clusters beforehand. In addition,
it can find clusters of arbitrary shape and size. It also has a built-in notion of noise
which makes it robust to outliers. The major weakness of DBSCAN is that its global
parameters cannot effectively cluster data sets that have large differences in local densities
for different regions of the data space. The OPTICS algorithm addresses this challenge
but it only visualizes the cluster structure without actually determining explicit clusters.
Another weakness of DBSCAN is experienced in defining density for high-dimensional
data sets.

When DBSCAN is applied to the problem of identifying hot spots in spatial data sets,
its parameters directly influence the number and density of hot spot clusters. If the
chosen value of Eps is too small, a large part of the data will not be clustered. A large
cluster representing a single hot spot may be fragmented yielding two or more smaller
hot spots. On the other hand, a very large value of Eps will cause smaller clusters to
merge, resulting in fewer hot spots. Larger values of MinPts are usually better for data
sets with noise and will yield more significant clusters. If the chosen value of MinPts is
too small, closely spaced noise points will be incorrectly clustered while if it is too large,
small clusters are likely to be labeled as noise.

2.4.2 Ordering Points To Identify the Clustering Structure

While DBSCAN can find clusters of arbitrary shapes, it cannot handle data with clusters
of different densities, due to its use of a single density threshold. Many real-life data
sets have an intrinsic cluster structure that cannot be characterized by global density pa-
rameters, and very different local densities may be needed to reveal clusters in different
regions of the data space. The OPTICS algorithm addresses this challenge by producing
a cluster-ordering of a data set with respect to its density-based clustering structure.
This contains the information about every clustering level of the data set up to a gen-
erating distance Eps. OPTICS works in principle like an extended DBSCAN algorithm
for an infinite number of distance parameters Epsi which are smaller than the generating
distance Eps. However, it does not assign cluster memberships but stores the order in
which the points are processed. The clustering structure of a data set can be visualized
graphically by a reachability plot that shows the reachability-distance values for all points
sorted according to the clustering order (Ester, 2014).

2.4.3 Density-based Clustering

DENsity-based CLUstEring (DENCLUE) is another density-based clustering algorithm
which generalizes the basic idea of density-based clusters beyond the distance-based Eps-
neighborhood. It uses the concept of influence functions which mathematically model
the influence of a data point in its neighborhood. Typical examples of influence functions
are square wave functions or Gaussian functions. The density at some point is estimated
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by the sum of the influences of all data points. A point is said to be density-attracted
to a density-attractor if they are connected through a path of high-density points. The
efficient implementation of the DENCLUE algorithm is based on the observation that
most data points do not contribute to the density function at any given point of the
data space. This can be exploited by computing only a local density function, while
guaranteeing tight error bounds (Ester, 2014).

2.5 DBSCAN Implementations

There are a number of existing DBSCAN implementations provided by various software
packages and environments. This section reviews the most common implementations and
provides a comparative summary in table 2.5.

Table 2.5: Comparison of DBSCAN implementations

Geo Distance Function Language Index Structure

ELKI Yes Java R*-Tree, M-Tree, KD-Tree

R fpc package No R -

R dbscan package No R, C++ KD-Tree

Weka No Java -

SPMF No Java KD-Tree

scikit-learn No Python KD-Tree, Ball-Tree

The open-source Environment for DeveLoping KDD-Applications Supported by Index-
Structures (ELKI) software framework provides an efficient implementation of DBSCAN.
It has full native support for geographical distance functions (ELKI Development Team,
2014a) and the WGS 84 coordinate reference system (ELKI Development Team, 2014b).
Further, ELKI provides the R*-Tree, M-Tree (also known as Ball-Tree) and K-Dimensional
Tree (KD-Tree) index structures for accelerating geographical distance functions (ELKI
Development Team, 2014c), which significantly improves algorithm performance.

In contrast, none of the other available DBSCAN implementations provides geographical
distance functions and index structures to support them. The implementations in the
R statistical software ‘fpc’ package (Oehlschlaegel, 2015) and ‘dbscan’ package (Hahsler,
Arya & Mount, 2015) can only use either a pre-computed distance matrix or the Euclidean
distance function, which is unsuitable for geospatial data. While the distance matrix is
suitable and relatively fast, it requires pre-computation and is also expensive in memory
usage. The ‘fpc’ package implementation has a quadratic runtime complexity (O(n2))
since it does not use any index structures, while the ‘dbscan’ package implementation is
significantly faster and can work with larger data sets since it uses the KD-Tree index
structure for the nearest neighbor search. Both of the R implementations are less suitable
for geospatial data when compared to the ELKI implementation.
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Weka is an open-source machine learning and data mining toolkit which contains a basic
implementation of DBSCAN that is not intended to be used as a reference for runtime
benchmarks (Schubert, Melnikova-Albrecht & Holzmann, 2014). It does not support
geographical distance functions (Kibriya, 2014). Sequential Pattern Mining Framework
(SPMF) is an open-source data mining library that offers a minimalistic implementation
of DBSCAN for Euclidean distance only. It uses a KD-Tree to store points internally in
order to avoid having O(n2) runtime complexity (Fournier-Viger, 2015). The scikit-learn
open source machine learning library includes a Python implementation of DBSCAN
which also does not provide native support for geographical distance functions. However,
it has support for the KD-Tree and Ball-Tree index structures for computing pointwise
distances and finding nearest neighbors (scikit-learn developers, 2014).

2.6 Related Work

2.6.1 The Use of Cluster Analysis for Identifying Hot Spots in
Spatial Data Sets

A number of studies have focused on the application of cluster analysis to the problem of
identifying hot spots in spatial data sets. Recent research by Vadrevu et al. (2013) used
the K -Means algorithm to identify hot spot regions of fire clusters in diverse geographical
regions of India based on MODIS active fire data for the years 2010 and 2011. Their study
restricted the number of clusters (K ) to eight to depict major biomass burning regions
and used the standard deviation ellipses (with one standard deviation) to identify the
cluster locations. Although their findings indicate that K -Means was useful in identifying
fire hot spots in diverse geographical regions, the hot spots were not defined by density
of fire points. They covered geographically vast regions of the Indian subcontinent and
included widely varying fire point densities. The study is also limited in that the heuristic
applied in selecting the number of clusters a priori is not applicable to the general case
of identifying hot spots from data. This work provides the opportunity to use density-
based clustering as an alternative for identifying fire hot spots and to further evaluate its
performance in this task.

In their study on the suitability of clustering algorithms for crime hot spot analysis, Divya,
Rejimol and Selvan (2014) define a hot spot as a high concentration area of some activity.
They conducted an experiment to evaluate the suitability of hierarchical clustering, K -
Means, and DBSCAN in crime hot spot analysis. They ran the algorithms over a spatial
data set of about 300 crime incidents and compared them on criteria such as number
of clusters, average number of elements in the clusters, running time, and the Davies-
Bouldin index. Their results show that DBSCAN achieved the best performance which
they attribute to its density-based model. Further, they note its ability to identify noise
and automatically discover the number of clusters as attractive qualities. These results
provide an opportunity to investigate the suitability of DBSCAN in other application
domains. In particular, it appears that further investigation of the performance of the
algorithm on the MODIS active fire data set would be useful in assessing its effectiveness
as a tool for hot spot analysis of spatial data.
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Usman, Sitanggang and Syaufina (2015) applied the DBSCAN algorithm to determine
the areas that have a high density of hot spots in the peat land area of Sumatra, Indonesia
for the years 2002 and 2013. The study defined a hot spot as an area of pixels in satellite
imagery that had higher temperature than surrounding areas. In this sense, “hot spot”
refers to raw data rather than information derived from raw data analysis. The objective
of their study was therefore not to discover hot spots in the data, but to analyze the
pattern of distribution of these hot spots. This study analyzed the hot spot distribution
in the clustered regions based on the physical characteristics of the peat land. The R
statistical software was used for clustering the data. The Eps and MinPts parameters
were determined using the k-dist method. The clustering result was evaluated using the
Sum Square Error (SSE) method. The results report that the study found changes in the
pattern of distribution of hot spots in the peat land between the two years. This work
used fire data from the Ministry of Forestry of Indonesia. It also provides an opportunity
to apply DBSCAN to the MODIS active fire data set.

A study by Palumbo (2013) discussing the relation between fire activity and the change
of land cover in Kenya over 20 years used the MODIS active fire data for 2002 to 2012 to
determine the fire activity. This was indicated by fire density, defined as the number of fire
counts per area, on a scale from 0 to 1. The areas were plotted on a map as concentric
circular regions with incremental radii of 25 km. Unlike density-based clustering, this
definition of density does not take into account the connectedness of fire points and does
not have an explicit notion of noise based on a threshold measure. Further, the results
provide a summary of areas in Kenya with high fire activity over the 11 years under study
at a low spatial resolution. Since the focus of analysis was the whole of Kenya rather
than WPAs, the results are insufficient for identifying areas within WPAs that are fire
hot spots. This work therefore preserves the need for a study to identify fire hot spots
from MODIS data, within Kenya’s WPAs.

2.6.1.1 Definition of a Hot Spot

A common theme emerging from the review of related studies is the varying definition
of a “hot spot”. The two major concepts of a hot spot identified in the literature are:
(i) a raw data element representing a fire event that is observed in the environment, and
(ii) a region of high intensity of an activity that is discovered after analysis of raw data
concerning that activity. For the purposes of this study, we concretely define a fire hot
spot as: a connected, dense region in the data space that indicates a spatial concentration
of fire incidents. This definition is purposely aligned with the definition of clusters in
density-based clustering and therefore, a density-based cluster identified with appropriate
parameters indicates a fire hot spot.

2.6.2 Web Applications Providing Visualization of Fire Data

There are a number of web-based applications that provide visualization of MODIS active
fire data. The FIRMS service provides the Web Fire Mapper (NASA FIRMS, 2014) which

20



integrates global MODIS active fire locations with other geospatial layers and delivers
this combined information through web mapping services. It allows users to query active
fire locations derived from MODIS data approximately 2-4 hours after satellite overpass.
Davies et al. (2008) have also developed a web mapping service for South Africa, known
as Advanced Fire Information System (AFIS). It allows users to view and query fire
detections by time period.

The European Commission’s Joint Research Centre (JRC) developed a web application
for monitoring vegetation fires in the protected areas of the African, Caribbean, and
Pacific (ACP) countries, including Kenya (Palumbo et al., 2013). The tool provides
locations of active fires and burned area extent derived from MODIS data. It is designed
to produce graphs, tables, and maps of the fire activity for a selected protected area and
period of time. Sentinel (Geoscience Australia, 2015) is a national bushfire monitoring
system that provides timely information about hot spots to emergency service managers
across Australia. The mapping system allows users to identify fire locations with a
potential risk to communities and property. It extracts hot spot information from images
acquired by MODIS and other remote sensing satellites and provides visualization via a
Google Maps-driven web interface.

None of these web-based applications provides the visualization of fire hot spot clusters
generated using data clustering methods. They have all focused on the mapping of active
fire locations. The JRC application provides a fire density map for which the density is
defined as the number of fire counts per specified area. This method is different from
density-based clustering. It does not take into account the density-connectedness of fire
points. However, it provides a useful basis for comparison.

Oliveira and Souza Baptista (2013) implemented GeoSTAT (Geographic Spatio-Temporal
Analysis Tool), a web-based application for the analysis and visualization of spatio-
temporal data. The application uses the Google Maps Application Programming Interface
(API) to offer a dynamic map and accesses spatial or spatio-temporal data published in
servers that implement the Open Geospatial Consortium (OGC) WMS (Web Map Ser-
vice) and WFS (Web Feature Service) services. Spatial and temporal filters are used to
select and query the visualized data. In addition, a data mining component provides
access to seven clustering algorithms from the Weka toolkit. The DBSCAN algorithm
implemented in the system was used to cluster two data sets of power line failures and
fire hot spots. The visualization of the generated clusters could be used to confirm the
hypothesis that some of the fire hot spots are the cause of failures in power transmission
lines.

The application developed in this study focused on providing a general solution for spatio-
temporal analysis which was as flexible as possible with regards to application domain
independence, diverse data sources, and a wide array of data clustering algorithms. The
interactiveness of the application’s data mining component was impacted by the fact that
it takes a long time to cluster huge data sets in real-time.

GeoClustering is a geospatial clustering web service developed by Wang, Wang and Liang
(2011). It enables users to cluster online data sources using the DBSCAN algorithm.
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The clustering results can be visualized through a web mapping interface powered by the
Google Maps API. The clusters are represented by convex hull polygons. GeoClustering
emphasizes openness and interoperability by adopting the Extensible Markup Language
(XML) as the data interchange format. It also provides an API through which web
applications and services can access the geospatial clustering service. This is accomplished
using a Hypertext Transfer Protocol (HTTP) GET request specifying the XML data file
and DBSCAN parameters.

GeoClustering appears to meet the requirements for visualizing the MODIS fire hot spot
clusters. However, the developed prototype was not available for evaluation and use.
In addition, the study did not provide the implementation details of DBSCAN. The
study reports on an evaluation of GeoClustering that was conducted for two datasets.
A crime data set from the Calgary Police Online Crime Map had 414 data points. The
average clustering time in one test environment was 6.4 seconds. A second data set of
earthquake data from the USGS National Earthquake Information Center contained 204
data points. The average runtime was approximately 1.1 seconds. Both of these data
sets are relatively small in size. It remains unknown how the runtime complexity of the
DBSCAN implementation used in GeoClustering changes for larger data sets such as
MODIS.
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Chapter 3

Methodology

The system development methodology used in this study was Incremental with It-
erative Prototyping. This was conducted in two phases: (i) Preliminary Analysis
which covered Research Objective 1, and (ii) Web Application Development which cov-
ered Research Objective 2. The activities carried out in the first phase were: sourcing
of the MODIS active fire data, preprocessing the data, and performing the density-based
cluster analysis using the DBSCAN algorithm. The activities of the second phase were:
requirements definition for the application, design, coding, testing, and deployment of
the completed application. Figure 3.1 illustrates the methodology and figure 3.2 presents
a schematic diagram of the system architecture.

This methodology was selected because it combined linear and iterative system develop-
ment approaches. The first phase was linear while the second was iterative. In addition,
the iterative prototyping of the application facilitated a user-centered development pro-
cess while providing the flexibility to accommodate changes in the user requirements. By
improving user participation, it became easier to validate the requirements and identify
missing functionality at an early stage.

Figure 3.1: System development methodology

3.1 Preliminary Analysis

3.1.1 Data Sourcing

The study used the Standard MODIS active fire data (MCD14ML) for identifying the
fire hot spots in Kenya’s WPAs. This data set was selected because it is processed by
the MODIS Fire SCF at the University of Maryland to provide a higher quality suitable
for scientific publications as compared to the near real-time data (MCD14DL) (NASA
Earthdata, 2015).

23



Figure 3.2: Schematic diagram of the system architecture

The publicly accessible MCD14ML data set was downloaded from the NASA FIRMS
server using the Archive Download Tool available online (NASA FIRMS, 2015). A
NASA FIRMS Archive Download request was placed with a custom polygon around
Kenya’s borders indicating the area of interest, while the time period extended from
January 2003 to May 2015. The data format was selected as CSV text file to provide
the raw fire points in a form that was easy to process using scripting tools. The request
was processed in about 42 minutes after which an e-mail was sent from NASA FIRMS
with a Uniform Resource Locator (URL) providing the link from which to download
a ZIP file of the data. The text file containing the MCD14ML data set was named
firms2186714310171011 MCD14ML.csv.

Although MODIS data is available beginning in November 2000, data from 1st January
2003 to 31st December 2014 was used in the study so as to include only complete calendar
years during which high quality data from both the Aqua and Terra satellites is available.
Complete years were selected so as to reflect the full Kenya fire season (January-March
and June-September).
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3.1.2 Data Preprocessing

3.1.2.1 Feature Subset Selection

A number of tasks were carried out on the MODIS fire data set during the preprocessing
stage. The feature subset selection was done with the open-source GAWK software,
version 4.1.1. GAWK is the GNU implementation of the AWK programming language.
It was selected for this task because it excels at performing complicated text processing
tasks with short, single-line programs.

Before preprocessing, the downloaded MODIS MCD14ML active fire data set had 12
attribute fields (features) and 107,848 fire points. Some of the fire data in the CSV text
file named firms2186714310171011 MCD14ML.csv is presented in listing A.1.

Only the latitude and longitude were needed for the cluster analysis in this study. These
geographic coordinates were used by the DBSCAN algorithm to identify the fire hot
spot clusters. The following GAWK command was executed on a Debian GNU/Linux
system to extract the latitude and longitude from the input CSV file. In the output file
(MCD14ML.txt), the longitude was saved first followed by the latitude in order for the
axes to appear correctly in the ELKI visualization graph. In addition, fire data for the
year 2015 was excluded from the output file since it did not yet contain a complete fire
season.

Note: The ‘$’ character in the following and subsequent commands indicates a command
prompt in a Linux terminal program.

$ echo "longitude latitude" > MCD14ML.txt

$ awk -F, -v 'OFS= ' 'NR > 1 && $6 !~ /^2015/ { print $2, $1 }' \

firms2186714310171011_MCD14ML.csv >> MCD14ML.txt

After the feature subset selection was performed, the MODIS MCD14ML active fire data
set was reduced to 2 relevant attribute fields (features) and 104,239 fire points. The data
in the text file named MCD14ML.txt was in the format shown in listing A.2.

3.1.2.2 Geoprocessing

The open-source QGIS software, version 2.8.2, was used to create a map with a vector
layer of Kenya’s WPAs. The data for this layer was acquired from the KWS GIS Section in
Environmental Systems Research Institute (ESRI) shapefile format. This WPA shapefile
was produced in November 2008. The WPAs layer had the WPA NAME and WPA ID
as the fields in its attribute table. After this layer was added, the MCD14ML.txt file
produced by GAWK was also added to the map as a delimited text layer. World Geodetic
System (WGS) 84 (European Petroleum Survey Group (EPSG):4326) was selected as the
coordinate reference system for the two layers.
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MODIS fire points falling outside the WPAs layer were clipped using the Intersect geo-
processing tool under the Vector menu in QGIS. For this operation, the MCD14ML.txt
layer was selected as the input vector layer while the WPAs layer was selected as the
intersect layer. The resulting shapefile layer, named ‘fire’, had 4,968 fire points. It had
the longitude, latitude, WPA NAME, and WPA ID as the fields in its attribute table.
These fields resulted from the intersection of the fields in the two contributing layers. The
WPA ID field was not useful since it was not a unique key. It was therefore deleted using
the ‘Delete Column’ feature in the attribute table. Figure 3.3 shows the three fields and
some of the records in the attribute table. Figure 3.4 shows the map of the fire points
overlaid on the WPAs.

Figure 3.3: Fire layer attribute table in QGIS

All the data in the attribute table was copied to a temporary text file named tmp.
This tab-separated file had an additional first field called wkt geom which indicated
the longitude and latitude as being of the POINT shape. Since it was unnecessary, it
was removed with the following GAWK command to produce a CSV text file, named
MCD14ML WPA.csv, which contained only the 4,968 MODIS fire points falling within
Kenya’s WPAs. The names of the WPAs in this file were edited to standardize acronyms
and correct spelling mistakes. Listing A.3 shows some of the records in this file.

$ awk -F '\t' -v 'OFS=,' '{ print $2, $3, $4 }' tmp > MCD14ML_WPA.csv

$ rm tmp
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Figure 3.4: MODIS active fire points falling within Kenya’s WPAs (2003-2014)
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3.1.2.3 Computing the Frequency Distribution of MODIS Fire Points

After the MCD14ML WPA.csv text file had been created, Structured Query Language
(SQL) statements were used to process it to create an output CSV text file containing a
frequency distribution of the preprocessed MODIS fire points. This included the number
of fire points (absolute frequency) and the corresponding percentage of fire points (relative
frequency) in each WPA. The WPA was used as a categorical variable in the frequency
distribution.

The SQL statements used to perform this task were written in a text file named fdist.sql.
Its entire contents are reproduced in listing A.4. The SQL statements were then executed
by the MySQL open-source Relational Database Management System (RDBMS), version
5.6.25-4, under the Debian GNU/Linux environment. They imported the 4,968 fire points
from the input CSV text file into a database table, computed the frequencies for each
WPA that recorded fire activity, and stored them in descending order in an output CSV
text file named fdist.csv. The /tmp/ directory was used to temporarily store both the
input and output CSV files in order to prevent permission errors resulting from the use
of other directories.

The command used to invoke the MySQL command-line tool to execute the SQL state-
ments in the fdist.sql script file is shown below. After this execution, two GAWK com-
mands were used to verify the total values of the frequencies. The result of each command
appears below it.

$ mysql -u root -p < fdist.sql

Enter password:

@n := COUNT(lat)

4968

$ awk -F, '{ sum += $2 } END {print sum }' fdist.csv

4968

$ awk -F, '{ sum += $3 } END { print sum }' fdist.csv

99.98

The fdist.csv file contained 45 lines of data, one for each of the 45 WPAs that had
fire points falling within it. Each line had three fields: the WPA Name, the Absolute
Frequency, and the Relative Frequency (as a percentage). The data was sorted in de-
scending order, from the largest to the smallest frequency. Some of the records in the file
are presented in listing A.5.

Octave was used to plot a horizontal bar graph of the frequency distribution using the
data in the fdist.csv text file. An Octave script file named fdist.m contained the code
shown in listing A.6, which created a Portable Network Graphics (PNG) image file of the
plot. The following command line was used to execute the code in the Octave script file:

$ octave fdist.m
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Octave was also used to produce a scatterplot diagram of the preprocessed MODIS fire
points contained in the MCD14ML WPA.csv text file. An Octave script file named
scatterplot.m contained the code shown in listing A.7, which created a PNG image file of
the scatterplot. The following command line was used to execute the code in the Octave
script file:

$ octave scatterplot.m

3.1.3 Estimation of DBSCAN Parameters with a Sorted k-dist
Graph

The density-based cluster analysis of the MODIS fire data was performed using the
DBSCAN clustering algorithm as implemented in the ELKI software framework, version
0.6.5∼20141030 (Achtert et al., 2013). DBSCAN was selected because it did not require
the specification of the number of clusters beforehand. In addition, it could find clusters
of arbitrary shape and size and had a built-in notion of noise which made it robust to
outliers. Unlike DENCLUE, it uses a straight-forward distance-based notion of the range
parameter Eps. The algorithm was also preferred over OPTICS because it could create
a hard clustering of the data. Since the data for this study consisted of 2-dimensional
geographic coordinates, DBSCAN was suitable because the definition of density and
distance was straightforward.

The ELKI software framework was selected because its DBSCAN implementation pro-
vided a number of advantages over other existing implementations. It had full native
support for geographical distance functions and the WGS 84 coordinate reference system.
Further, it provided the R*-Tree, M-Tree, and KD-Tree index structures for accelerating
geographical distance functions to achieve improved algorithm performance.

Before the cluster analysis could be performed, it was necessary to determine the initial
values of the two parameters of the DBSCAN algorithm: Eps and MinPts. The range
parameter Eps was initially estimated using the sorted k-dist graph heuristic, with k = 4,
as proposed by Ester et al. (1996) in the original DBSCAN paper. This graph provided a
plot of the sorted distances of each point in a data set to its k-th (4-th) nearest neighbor
in order to indicate the density distribution in the data set. This method of estimating
Eps specified setting it to the k -dist value for the threshold point p in the first “valley”
(at the bend or “knee”) of the graph.

The paper proposed setting k to 4 for 2-dimensional data since their experiments indi-
cated that the k -dist graphs for k > 4 did not significantly differ from the 4-dist graph
but required considerably more computation. This was considered appropriate for the
preprocessed MODIS fire data set in which the two geospatial dimensions were latitude
and longitude. As a result, MinPts was set to 5 (k + 1) for the ELKI implementation.
This is because the version of ELKI used in this study defined MinPts as the minimum
number of points in the Eps-neighborhood of a point. This included the point itself and
its neighbors, hence the smallest possible cluster contained 5 fire points.
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ELKI was used to produce the sorted k -dist values for the graph because it provided the
necessary geographical distance function. Its “KNNDistancesSampler” algorithm was
run on the MCD14ML WPA.csv input text file with the parameters specified as follows:
the “LngLatDistanceFunction” distance function was selected because the input file had
the longitude and latitude as the first and second columns respectively; WGS 84 was
selected as the spheroid earth model; k was set to 4; and the output was saved in a
text file named knn-distances.txt within the k dist directory. Figure 3.5 shows the ELKI
MiniGUI window running the algorithm. The following Linux command line achieves the
same effect:

$ java -cp /usr/share/java/elki.jar \

de.lmu.ifi.dbs.elki.application.KDDCLIApplication \

-dbc.in MCD14ML_WPA.csv \

-algorithm KNNDistancesSampler \

-algorithm.distancefunction geo.LngLatDistanceFunction \

-geo.model WGS84SpheroidEarthModel \

-knndistanceorder.k 4 \

-resulthandler ResultWriter \

-out k_dist

Figure 3.5: Computing the sorted k -dist values in ELKI
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The file knn-distances.txt contained a list of the distances of each of the 4,968 MODIS
fire points to its k -th (4-th) nearest neighbor sorted in ascending order from smallest to
largest. The distances ranged from 111.28 m to 387.47 km. Some of the smallest and
largest distances are provided in listing A.8 as they appear in the file, in meters.

GNU Octave, version 4.0.0, was used to plot the sorted k -dist graph with the k -Nearest
Neighbor (KNN) distances listed in the knn-distances.txt text file. The series of Linux
and Octave commands used to achieve this is provided below:

$ octave

>> x = load('-ascii', 'knn-distances.txt');

>> size(x)

ans =

4968 1

>> plot(x)

>> xlabel("MODIS Fire Points");

>> ylabel("Distance to 4-th Nearest Neighbor (m)");

>> title("Sorted KNN-Distance Graph (k = 4)");

>> grid("on");

The following Octave commands were appended to those shown above to produce a plot
of the threshold point with annotations showing the point itself, the noise region, and
the clusters region.

>> line([4906, 4906], [0, 13564]);

>> annotation("textarrow", [0, 0], [0, 0], "position", [0.75, \

0.45, -0.1, 0.1], "headstyle", "vback3", "string", "threshold \

point", "fontsize", 11);

>> annotation("textbox", [0.73, 0.2, 0.1, 0.1], "string", "noise", \

"fontsize", 11, "edgecolor", "white");

>> annotation("textbox", [0.4, 0.2, 0.1, 0.1], "string", \

"clusters", "fontsize", 11, "edgecolor", "white");

3.1.4 Initial Clustering with Estimated DBSCAN Parameters

The ELKI DBSCAN implementation was executed under the Debian GNU/Linux envi-
ronment on a computer with a first generation Intel Core i5 processor and 4 GB of main
memory. The initial parameters were as estimated from the sorted k -dist graph. Eps was
set to 13,564 m (13.564 km) while MinPts was set to 5. The algorithm was run without
any index structure and with the R*-Tree, M-Tree, and KD-Tree index structures for
performance comparison. The parameters used for each case are outlined below.

1. No index structure:
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-dbc.in MCD14ML_WPA.csv

-algorithm clustering.DBSCAN

-algorithm.distancefunction geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-dbscan.epsilon 13564.0

-dbscan.minpts 5

2. R*-Tree index structure (shown in figure 3.6):

-dbc.in MCD14ML_WPA.csv

-db.index tree.spatial.rstarvariants.rstar.RStarTreeFactory

-pagefile.pagesize 4096

-rtree.reinsertion-distancce geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-spatial.bulkstrategy SortTileRecursiveBulkSplit

-algorithm clustering.DBSCAN

-algorithm.distancefunction geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-dbscan.epsilon 13564.0

-dbscan.minpts 5

3. M-Tree index structure:

-dbc.in MCD14ML_WPA.csv

-db.index tree.metrical.mtreevariants.mtree.MTreeFactory

-pagefile.pagesize 4096

-mtree.distancefunction geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-algorithm clustering.DBSCAN

-algorithm.distancefunction geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-dbscan.epsilon 13564.0

-dbscan.minpts 5

4. KD-Tree index structure:

-dbc.in MCD14ML_WPA.csv

-db.index tree.spatial.kd.MinimalisticMemoryKDTree$Factory

-algorithm clustering.DBSCAN

-algorithm.distancefunction geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-dbscan.epsilon 13564.0

-dbscan.minpts 5
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Figure 3.6: Running ELKI DBSCAN with the R*-Tree index and initial parameters

Each of the above cases was executed three times and the time taken for each run was
recorded. The three runtimes for each case were then averaged to produce the mean
runtime. The scatterplot diagram of the fire points produced by ELKI for the initial DB-
SCAN parameters was exported from the ELKI visualization window in Scalable Vector
Graphics (SVG) format after which it was edited for presentation with the open-source
Inkscape vector graphics editor software, version 0.91.

3.1.5 Trial Runs with Different DBSCAN Parameters

After DBSCAN had been executed with the initial parameters, 25 trial runs with different
values were performed to determine the pair of parameters (Eps and MinPts) that gave
a clustering result that was suitable for the MODIS fire data in Kenya’s WPAs. All the
trial runs were conducted with the R*-Tree index structure for efficiency reasons. The
values used for MinPts were: 5, 7, 8, 10, and 12. Each of these values was paired with
the following values for Eps : 500 m, 600 m, 700 m, 800 m, and 900 m. Since Eps is a
radius, the area of the Eps-neighborhood was calculated (in square kilometers) as the
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area of the circle with the radius Eps (in meters) as shown in equation (3.1).

Eps-neighborhood = π ×
(
Eps

1000

)2

(3.1)

The clustering result of each pair of DBSCAN parameter values used in the trial runs
was evaluated by examining its ELKI scatterplot diagram and the number of clusters
produced. The most suitable parameter values were selected based on their ability to
produce significant clusters in the presence of noise. In addition, the clusters had to be
small enough in size to be identified within WPAs.

3.1.6 Final Clustering with the Most Suitable DBSCAN Pa-
rameters

The trial run parameters selected as the most suitable for the MODIS fire data in Kenya’s
WPAs were MinPts = 7 and Eps = 700 m. DBSCAN was executed with the selected pa-
rameter values and two different ELKI result handler parameters. The first result handler
parameter was set to the default “ResultVisualizer” class which produced a Graphical
User Interface (GUI) visualization for the scatterplot diagram. The parameters for this
case are presented below.

-dbc.in MCD14ML_WPA.csv

-db.index tree.spatial.rstarvariants.rstar.RStarTreeFactory

-pagefile.pagesize 4096

-rtree.reinsertion-distancce geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-spatial.bulkstrategy SortTileRecursiveBulkSplit

-algorithm clustering.DBSCAN

-algorithm.distancefunction geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-dbscan.epsilon 700.0

-dbscan.minpts 7

The second result handler parameter was set to the “ResultWriter” class which created
an output text file for each identified cluster, plus noise, in a specified directory named
cluster. There were no visualized results for this case. The parameters used are pre-
sented below. Figure 3.7 shows the ELKI MiniGUI window running DBSCAN with these
parameters.

-dbc.in MCD14ML_WPA.csv

-db.index tree.spatial.rstarvariants.rstar.RStarTreeFactory

-pagefile.pagesize 4096

-rtree.reinsertion-distancce geo.LngLatDistanceFunction
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-geo.model WGS84SpheroidEarthModel

-spatial.bulkstrategy SortTileRecursiveBulkSplit

-algorithm clustering.DBSCAN

-algorithm.distancefunction geo.LngLatDistanceFunction

-geo.model WGS84SpheroidEarthModel

-dbscan.epsilon 700.0

-dbscan.minpts 7

-resulthandler ResultWriter

-out cluster

Figure 3.7: Running ELKI DBSCAN with MinPts = 7 and Eps = 700 m

The cluster directory created by executing DBSCAN with the ELKI result handler pa-
rameter set to the “ResultWriter” class had a total of 46 text files. 43 of these files were
for each identified fire hot spot cluster. They were named cluster id.txt where ‘id’ ranged
from 0 to 42. For example, the text file for the first cluster was named cluster 0.txt. A
text file named noise.txt contained the list of noise points. Statistical indices evaluating
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the clustering result were written to a text file named cluster-evaluation.txt. Finally, a
text file named settings.txt contained the ELKI parameters used to acquire the result.
Figure 3.8 shows the list of the text files in the cluster directory.

Figure 3.8: List of text files in the cluster directory

The text files containing the clusters and noise data all followed a standard format. The
first four lines contained metadata describing the contents of the file. They began with
a ‘#’ character to mark them as comments. The metadata lines included: the cluster
identifier (e.g. Cluster 0), cluster name (Noise or Cluster), cluster noise flag (a true or
false value indicating whether the file contained noise or cluster data), and cluster size
(number of fire points in the cluster).

The rest of the lines listed the fire points contained in the cluster, in four fields. ELKI
prepended an identifier (ID) field to the three original fields that were present in the input
file. This field showed the unique integer ID ELKI assigned to each fire point. It was an
integer value ranging from 1 to 4,968 (the total number of fire points). The four fields
were separated by a single space. Some of the data in the noise.txt and cluster 0.txt text
files is shown in listings A.9 and A.10 respectively.
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3.1.7 Computing the Frequency Distribution and Sizes of Iden-
tified Fire Hot Spot Clusters

A number of SQL queries were prepared and executed in the Microsoft SQL Server 2008
R2 database implemented for the web application developed in this study. The SQL
query shown in listing A.11 was executed to produce a frequency distribution table of the
fire hot spot clusters. This included the absolute and relative frequencies of the hot spot
clusters that were identified in the WPAs.

The SQL query in listing A.12 was executed to produce a table of the number of fire
points in each fire hot spot cluster. The result of the query was sorted from largest to
smallest. Another SQL query shown in listing A.13 was executed to produce a table
which showed the average number of fire points per km2 for each WPA that had recorded
fire activity.

3.2 Web Application Development

3.2.1 Requirements Definition

The functional requirements for the web application were gathered through unstructured
interviews with the Head of the Geographic Information System (GIS) Section at KWS.
After the initial requirements had been gathered, they were be used to build the first
prototype which was tested by the KWS GIS Section for requirements validation. Subse-
quent iterations of development were used to refine the requirements specification. Table
3.1 summarizes the functional requirements. It lists four software attributes and the
functional requirements identified under each of these attributes.

The primary requirement on accessibility resulted in the application being developed as
a module of the KWS Integrated Database System (KWSIDS). KWSIDS is a web-based
database system running on the Apache web server in a server computer hosted at the
KWS headquarters. It is accessible to KWS staff both at the headquarters and in the
field stations via the KWS Intranet.

3.2.2 Design

The web application was designed using a three-tier model. The bottom tier contained
the relational database storing the application’s data. The middle tier contained the
application logic for handling queries on the data. The top tier contained the user in-
terface through which the users provided input and received processed output from the
application. Figure 3.9 shows the web application’s three-tier model.

The database of fire hot spot clusters was modeled using an entity relationship diagram
during this stage of development. Two tables containing data on the WPAs and the
MODIS fire points and clusters were identified. Figure 3.10 shows the entity relationship
model of the database.
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Table 3.1: Web application functional requirements

Attribute Functional Requirement

Accessibility The application shall be developed as a module of the KWSIDS
system to enable wide access by KWS staff via the KWS Intranet.

The application shall be accessible to KWS staff both at the KWS
headquarters and in the field stations connected to the KWS wide
area network.

The application shall be publicly accessible to all KWS staff without
requirement for a log-in account on the KWSIDS system.

User Interface The application shall display the location of each MODIS fire point
on the map.

The application shall display each fire hot spot cluster on the map.

The application shall display all the WPA boundaries on the map.

Users shall be able to query the fire points and hot spots by WPA.

The application shall display summary statistics on the number of
fire points and hot spot clusters, in all WPAs and in each selected
WPA.

The application should enable the user to print the map.

The application should display fire points against satellite imagery
for comparison with background vegetation.

Usability The application shall enable the user to interact with the map
through panning and zooming actions.

The application shall provide a consistent user interface across all
the major desktop web browsers used at KWS (these are Mozilla
Firefox, Microsoft Internet Explorer, Google Chrome, and Opera).

Interoperability The application shall enable the MODIS fire data set to be exported
in CSV format for advanced spatial analysis with the ArcGIS soft-
ware used by the KWS GIS Section.
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Figure 3.9: The three-tier model of the web application

Figure 3.10: The entity relationship model of the database showing the WPA and Fire
tables
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The application modules for visualizing the fire points and hot spots were designed af-
ter the database design since this was a data-driven application. Seven modules were
identified for the web application. A component diagram was used to highlight the de-
pendencies between these modules. Figure 3.11 is the component diagram for the web
application. It shows the seven application modules and their dependencies.

Figure 3.11: Component diagram for the web application

3.2.3 Coding

3.2.3.1 Database Implementation

In this stage of development, the database design was implemented using the Microsoft
SQL Server 2008 R2 database that is used by the KWSIDS system. The two tables
identified during the design stage were the WPA table and the Fire table. Listing A.14
and A.15 show the SQL scripts that were used to create the two tables. Figure 3.12 shows
the SQL Server database diagram based on the entity relationship model in figure 3.10.

After the database tables had been created, the GAWK script shown in listing A.16 was
written to extract the data for the Fire database table from the cluster and noise text
files produced by ELKI. The following GAWK command was executed to produce a CSV
text file named fire.csv using the script. This file had data for the Latitude, Longitude,
WPA Name, and Cluster ID fields of the database table. The Fire ID field was generated
automatically by SQL Server during the data import process.
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Figure 3.12: The SQL Server database diagram showing the database implementation

$ awk -v OFS=, -f fire.awk cluster_*.txt noise.txt > fire.csv

The unique set of WPA names in the fire.csv file were extracted with the following GAWK
command. The size of each WPA was entered manually from KWS GIS shapefiles. This
was the data to be imported into the WPA database table. It was saved in a CSV text
file named wpa.csv. The WPA ID field was also generated automatically by SQL Server
during the data import process.

$ awk -F, '{ a[$3] } END { for (k in a) print k }' fire.csv | sort \

> wpa.csv

After this, the GAWK script in listing A.17 was written to replace the WPA names
in fire.csv with their respective WPA IDs. The WPA IDs were the serial numbers of
the WPA records in wpa.csv. These records had already been sorted alphabetically by
WPA name. The following commands were executed to replace the WPA names with
the respective WPA IDs.

$ awk -F, -v OFS=, -f wpa.awk wpa.csv fire.csv > fire.new.csv

$ mv fire.new.csv fire.csv

The data in wpa.csv and fire.csv was then imported into the SQL Server WPA and Fire
database tables respectively using the SQL Server Import and Export Wizard. Some of
the records in the wpa.csv and fire.csv CSV text files are presented in listings A.18 and
A.19. Figures 3.13 and 3.14 show some of the records in the WPA and Fire tables in the
KWSIDS SQL Server database.

3.2.3.2 User Interface and Application Logic Implementation

The seven modules implementing the user interface and application logic layers were
programmed using the PHP, JavaScript, and HTML languages. These modules were
responsible for responding to user queries with the requested data.
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Figure 3.13: Records in the WPA table in the KWSIDS SQL Server database

Figure 3.14: Records in the Fire table in the KWSIDS SQL Server database

The two main features of the web application were the visualization of the fire hot spot
clusters on the Google Maps interface and the facility for exporting the MODIS fire data
in CSV format. Each feature was accessible through a link in the KWSIDS navigation
panel. Both links were provided under a parent link for the application.

Mapping Feature

The mapping feature provided a toolbar, the Google Maps interface, and a sidebar. The
toolbar contained a select box allowing users to select a specific WPA or all the WPAs
(the default option). The toolbar also provided three controls for showing or hiding
the sidebar, resetting the map to its default state, and printing the map. The sidebar
contained the map legend, including the fire point symbols and WPA boundaries layer.
It also provided fire summary statistics for the selected WPA. Figure 3.15 shows the
mapping web page.
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Figure 3.15: Mapping feature showing the Google Maps interface, toolbar, and sidebar

Each fire point in the selected WPA was plotted on the Google Maps interface. Clustered
fire points were plotted with a red flame symbol while unclustered (noise) fire points were
plotted with a blue flame symbol. In addition, the fire hot spot clusters identified in that
WPA were also displayed as convex hull polygons around the fire points constituting
that hot spot cluster, as shown in figure 3.16. Clicking on each fire point opened an
information window displaying its coordinates, WPA, and cluster ID. Clicking on a fire
hot spot cluster also opened an information window displaying its ID, WPA, and the
number of fire points contained in the cluster. Figure 3.17 shows this feature.

Upon initial loading, the Google Maps interface displayed the fire points and hot spot
clusters in all the WPAs. When the user selected a particular WPA in the toolbar, the
application hid the fire points and clusters that did not fall in that WPA in order to allow
the user to focus on visualizing the selected WPA. In addition to this, the application
also updated the fire summary statistics displayed in the sidebar to correspond to the
selected WPA.

The interactive features of Google Maps such as panning, zooming, and switching between
different map types were all available to the user. The map loaded with the Satellite map
type and a zoom level and map center that displayed the whole of Kenya. In addition,
the WPA boundaries layer was also displayed. As a result, the user would initially get
an overview of all the fire points against the WPA boundaries.

Data Export Feature

The data export feature enabled users to export the MODIS fire data set from the
database in CSV format. The export data set could then be imported into the Ar-
cGIS software, used at KWS, for advanced spatial analysis. As shown in figure 3.19,
the export interface provided a form for selecting the WPA and specifying whether noise
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Figure 3.16: The largest fire hot spot cluster in Boni National Reserve

Figure 3.17: Information window of a fire hot spot cluster with 7 fire points in Chyulu
Hills National Park

points should be included in the export data set. The application would then generate
the export data set and prompt the user to download the CSV file containing the data.

3.2.4 Testing

The software quality attributes and software quality metrics to be used as performance
indicators during testing of the web application were identified at this stage. The software
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Figure 3.18: Information window of an unclustered (noise) fire point in Mount Kenya
National Park

Figure 3.19: Form for exporting the MODIS fire data set

quality attributes were based on the International Organization for Standardization/In-
ternational Electrotechnical Commission (ISO/IEC) 25010:2011 Software Quality Model
(ISO, 2011). The attributes and metrics are presented in table 3.2.

The results of the web application testing were as follows:

� 100% of the user input was validated correctly.

� There were no errors logged by the KWSIDS system during execution of the database
queries.
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Table 3.2: Software quality attributes and metrics

Requirement Software Quality
Attribute

Software Quality Metric

Functional Correctness % of user input validated correctly.

No. of errors logged during execution of all
database queries

Completeness % of specified functional requirements met
by the application

Interoperability The application exports fire data in the CSV
format suitable for processing by the ArcGIS
software used at KWS

Non-functional Efficiency Average web page load time for each
database query

Usability The application provides a consistent user in-
terface across all web browsers used by KWS
staff

Reliability No. of system failures logged by the web and
database servers

� 100% of the specified functional requirements were met by the application.

� The application exported fire data in the CSV format suitable for processing by the
ArcGIS software used at KWS.

� The average initial web page load time for the mapping query was 4 seconds. After
the initial map had loaded, zooming and panning actions took an average of 2
seconds to complete loading the Google Maps tiles. The selection of specific WPAs
took less than 1 second to reflect on the map.

� It took less than 1 second to generate the export data set.

� The application provided a consistent user interface across all the web browsers
used by KWS staff.

� There were no system failures logged by the Apache web server and SQL Server
database server during the testing period.

3.2.5 Deployment

The web application was deployed on the KWS Intranet as a module of the KWSIDS
system. It was made available for access by all KWS staff connected to the KWS wide
area network.
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Chapter 4

Results and Discussion

4.1 Frequency Distribution of MODIS fire points

Table 4.1 shows the frequency distribution table of the MODIS fire points. The 4,968
MODIS fire points occurred in 45 WPAs out of a total of 62. Therefore, fire activity was
present in 73% of the WPAs during the 12 years under study (2003-2014). There was no
fire activity observed in 17 WPAs (27%) during the same period. The average number of
fire points observed per WPA was 110 (4,968 fire points / 45 WPAs) while the standard
deviation of the number of fire points per WPA was 171.09.

These statistics indicate a relatively high level of fire activity in the WPAs. The number
of fire points observed per WPA had a high standard deviation indicating large differences
in the amount of fire activity occurring in the various WPAs. More than half of this fire
activity (51.24%) was recorded in only 5 WPAs (Tsavo West NP, Chyulu Hills NP, Boni
NR, Masai Mara NR, and Dodori NR).

Table 4.1: Frequency distribution table of the MODIS fire points

No. WPA Name No. of Fire Points Relative Frequency

1. Tsavo West NP2 693 13.95%

2. Chyulu Hills NP 581 11.69%

3. Boni NR3 443 8.92%

4. Masai Mara NR 415 8.35%

5. Dodori NR 414 8.33%

6. Mount Kenya NP 340 6.84%

7. South Turkana NR 328 6.60%

8. Aberdare NP 264 5.31%

9. Mount Kenya NR 229 4.61%

10. North Kitui NR 204 4.11%

11. Chepkitale NR 198 3.99%

12. Ruma NP 166 3.34%

2 NP - National Park
3 NR - National Reserve
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No. WPA Name Absolute Frequency Relative Frequency

13. Tsavo East NP 119 2.40%

14. Meru NP 118 2.38%

15. Mount Elgon NP 118 2.38%

16. Kiunga Marine NR 75 1.51%

17. Nyambene NR 53 1.07%

18. Bisanadi NR 34 0.68%

19. South Kitui NR 27 0.54%

20. Shimba Hills NR 21 0.42%

21. Kora NP 18 0.36%

22. Lake Nakuru NP 18 0.36%

23. Nairobi NP 17 0.34%

24. Marsabit NP 13 0.26%

25. Mount Longonot NP 11 0.22%

26. Arawale NR 11 0.22%

27. Tana River Primate NR 6 0.12%

28. Shaba NR 6 0.12%

29. Hell’s Gate NP 4 0.08%

30. Malka Mari NP 4 0.08%

31. Ngai Ndethya NR 3 0.06%

32. Kamnarok NR 2 0.04%

33. Rahole NR 2 0.04%

34. Mwea NR 2 0.04%

35. Saiwa NP 1 0.02%

36. Losai NR 1 0.02%

37. Diani Chale Marine NR 1 0.02%

38. Sibiloi NP 1 0.02%

39. Nasolot NR 1 0.02%

40. Marsabit NR 1 0.02%

48



No. WPA Name Absolute Frequency Relative Frequency

41. Malindi Marine NR 1 0.02%

42. Laikipia NR 1 0.02%

43. South Island NP 1 0.02%

44. Ol Donyo Sabuk NP 1 0.02%

45. Mombasa Marine NR 1 0.02%

Total 4,968 99.98%1

Figure 4.1 shows the frequency distribution bar graph for the absolute frequencies pre-
sented in table 4.1.

Figure 4.1: Frequency distribution bar graph

1 The Relative Frequency total is slightly less than the expected 100% due to rounding errors introduced
by the MySQL RDBMS.
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Figure 4.2 shows the scatterplot diagram of the preprocessed MODIS fire points. Each
‘+’ symbol represents a fire point identified by its latitude-longitude coordinate pair.
This diagram shows the overall distribution of fire points in all WPAs at a low spatial
resolution. From this, we can see that it is impossible to tell where the fire hot spot
regions within Kenya’s WPAs are. This necessitates the density-based cluster analysis
that was performed in this study.

Figure 4.2: Scatterplot diagram of the MODIS fire points

50



4.2 DBSCAN Parameter Estimates from the Sorted

k-dist Graph

The sorted k -dist graph of the MODIS data set is shown in figure 4.3. The x-axis shows
the MODIS fire points running from 1 to 4,968. The y-axis shows the distance to the
4-th nearest neighbor for each fire point, in meters. The distances ascend from left to
right. In this graph, the estimated threshold point occurred at about fire point number
4,906 where the 4-th nearest neighbor distance was 13,564 m. The initial estimates of the
DBSCAN parameters from the sorted k -dist graph were: Eps = 13,564 m (13.564 km)
and MinPts = 5.

Figure 4.3: The sorted k -dist graph for k = 4

The plot shown in figure 4.3 was zoomed in four times (x4) and panned to the top-left
to produce figure 4.4 which shows the estimated threshold point of the k -dist graph. All
fire points with a higher k -dist value (right of the threshold point) in the graph were
considered to be noise, while all other points (left of the threshold point) were assigned
to a cluster. At this threshold point, 98.75% (4,906 / 4,968 fire points) of the data set
was assigned to clusters while 1.25% (62 / 4,968 fire points) was identified as noise.
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Figure 4.4: The threshold point for the sorted k -dist graph

4.3 Initial Clustering Result for the Estimated DB-

SCAN Parameters

The ELKI DBSCAN execution with the R*-Tree index structure had the lowest runtime
complexity. Its mean runtime on the MODIS active fire data set of 4,968 fire points was
3.0 seconds. The M-Tree had a mean runtime of 26.5 seconds while the KD-Tree’s was
28.3 seconds. Executing DBSCAN with no index structure achieved a mean runtime of
28.9 seconds. Table 4.2 summarizes these results.

Execution without an accelerating index structure was slower by a factor of 9.63 (28.9 / 3.0
seconds). These results clearly show that the R*-Tree index structure provides the best
performance when ELKI’s DBSCAN is executed with a geographical distance function.
When developing an application that visualizes such clustering results, it is possible
to perform a user-directed cluster analysis “on the fly” while retaining an acceptable
response time. This study performed the clustering “off-line” before the application was
developed because it was not known beforehand how long the clustering would take.
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Table 4.2: Performance comparison of ELKI index structures

Index Structure Run 1
(sec)

Run 2
(sec)

Run 3
(sec)

Mean Runtime
(sec)

R*-Tree 3.1 3.0 3.0 3.0

M-Tree 26.3 26.5 26.7 26.5

KD-Tree 28.4 28.3 28.2 28.3

No index structure 28.5 29.9 28.3 28.9

Figure 4.5 shows the scatterplot diagram of the fire hot spot clusters, produced by ELKI
for the initial DBSCAN parameters. The axes represent degrees of longitude (x-axis) and
latitude (y-axis). A total of 29 hot spot clusters were identified. In the diagram, the
noise points not assigned to any cluster are indicated by the blue ‘+’ symbols.

Figure 4.5: Scatterplot diagram for initial DBSCAN parameters
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The sorted k -dist graph heuristic proposed by Ester et al. (1996) and also used by Usman,
Sitanggang and Syaufina (2015) to estimate the DBSCAN parameters was not suitable
for the MODIS active fire data set used in this study. The value of Eps (13.564 km)
estimated from the sorted k -dist graph was too large since it clustered 98.75% of the data
set. Smaller, significant fire hot spot clusters merged resulting in larger, less significant
clusters that included a lot of noise. Most of these clusters covered entire WPAs which
rendered them ineffective in meeting the primary research objective of this study. This
was because the fire points occurring in remote WPAs with fewer than 4 (k) neighboring
fire points had very large 4-th nearest neighbor distances. The highest such distance was
387.47 km. Examples of such WPAs were Malka Mari NP (4 fire points), Sibiloi NP (1
fire point), South Island NP (1 fire point), Losai NR (1 fire point), and Laikipia NR (1
fire point). As a result, the sorted k -dist graph produced an unsuitable threshold point
of a relatively high k -distance value.

4.4 Results for Trial Run DBSCAN Parameters

Due to the exploratory nature of the data clustering task in this study, it was necessary
to experiment with different values of the DBSCAN parameters in order to find the
most suitable pair for the MODIS fire data set. The 25 pairs of parameter values for the
DBSCAN trial runs were selected to include a wide range of geographical scopes (0.8 km2

to 2.5 km2) and minimum number of fire points within these scopes (5 to 12).

The clustering result of each pair of DBSCAN parameter values used in the trial runs
was evaluated by examining its ELKI scatterplot diagram and the number of clusters
produced. Figures 4.6 to 4.9 show the scatterplot diagrams of the fire hot spot clusters
produced by ELKI for the various trial run DBSCAN parameters.

Table 4.3 shows the results for the trial runs. The parameters MinPts = 7 and Eps = 700 m
in trial run no. 8 of the table were selected as the most suitable for the MODIS fire data in
Kenya’s WPAs. The most suitable parameter values were selected based on their ability
to produce significant clusters in the presence of noise. In addition, the clusters were
small enough in size to be identified within Kenya’s WPAs.

The results of the trial runs showed that a MinPts value of 7 was large enough to yield
significant clusters in the presence of noise within the MODIS fire data set. The smaller
value of 5 produced many more clusters which included more noise points. The larger
values of 8, 10, and 12 produced fewer clusters because a larger part of the data set was
considered to be noise.

The Eps value of 700 m with an Eps-neighborhood value of 1.5 km2 provided a reasonable
geographical scope within which at least 7 fire points occurred, for the smallest possible
fire hot spot cluster. The smaller values of 500 m and 600 m yielded fewer clusters due
to the smaller geographical scopes (0.8 km2 and 1.1 km2 respectively) imposed on the
data set. On the other hand, the larger values of 800 m and 900 m yielded more clusters
which included more noise points due to the larger, more permissive geographical scopes
(2.0 km2 and 2.5 km2 respectively).
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Figure 4.6: Scatterplot diagrams for trial run parameter values

Figure 4.7: Scatterplot diagrams for trial run parameter values
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Figure 4.8: Scatterplot diagrams for trial run parameter values

Figure 4.9: Scatterplot diagrams for trial run parameter values
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Table 4.3: DBSCAN trial run results for different parameter values

Run No. MinPts Eps
(m)

Eps-neighborhood
(km2)

No. of Hot
Spot Clusters

Initial 5 13,564 578 29

1. 5 500 0.8 65

2. 5 600 1.1 91

3. 5 700 1.5 127

4. 5 800 2.0 139

5. 5 900 2.5 143

6. 7 500 0.8 15

7. 7 600 1.1 33

8. 7 700 1.5 43

9. 7 800 2.0 59

10. 7 900 2.5 74

11. 8 500 0.8 10

12. 8 600 1.1 15

13. 8 700 1.5 28

14. 8 800 2.0 39

15. 8 900 2.5 52

16. 10 500 0.8 8

17. 10 600 1.1 8

18. 10 700 1.5 13

19. 10 800 2.0 23

20. 10 900 2.5 30

21. 12 500 0.8 6

22. 12 600 1.1 4

23. 12 700 1.5 7

24. 12 800 2.0 10

25. 12 900 2.5 15
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4.5 Final Clustering Result for the Most Suitable

DBSCAN Parameters

Figure 4.10 shows the scatterplot diagram of the fire hot spot clusters produced by ELKI
for the final DBSCAN parameters that were selected as the most suitable for the MODIS
fire data in Kenya’s WPAs. The final parameters yielded 43 fire hot spot clusters. DB-
SCAN assigned 15.40% (765 / 4,968 fire points) of the data set to clusters while 84.60%
(4,203 / 4,968 fire points) was identified as noise. In the diagram, the noise points not
assigned to any cluster are indicated by the green ‘×’ symbols.

Figure 4.10: Scatterplot diagram for DBSCAN with MinPts = 7 and Eps = 700 m
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4.6 Frequency Distribution and Sizes of Identified

Fire Hot Spot Clusters

Table 4.4 shows the frequency distribution of the fire hot spot clusters identified in Kenya’s
WPAs. The hot spot clusters were identified in 14 WPAs (31%) out of the 45 WPAs which
had recorded fire activity. The results indicated that the four WPAs most vulnerable to
wildfires in Kenya were: Chyulu Hills NP, Dodori NR, Boni NR, and Ruma NP. All of
these WPAs had a high number of MODIS fire points occurring in them, in addition to
having several large fire hot spot clusters. Together, they accounted for 60.46% of the
fire hot spot clusters.

Table 4.4: Frequency distribution table of the fire hot spot clusters

No. WPA Name Absolute Frequency Relative Frequency

1. Chyulu Hills NP1 12 27.91%

2. Dodori NR2 6 13.95%

3. Boni NR 4 9.30%

4. Ruma NP 4 9.30%

5. Tsavo West NP 3 6.98%

6. Mount Kenya NP 3 6.98%

7. Aberdare NP 2 4.65%

8. Mount Elgon NP 2 4.65%

9. North Kitui NR 2 4.65%

10. South Turkana NR 2 4.65%

11. Tsavo East NP 1 2.33%

12. Mount Kenya NR 1 2.33%

13. Chepkitale NR 1 2.33%

14. Kiunga Marine NR 1 2.33%

Total 433 102.34%4

1 NP - National Park
2 NR - National Reserve
3 The actual total from the table is 44 but one hot spot cluster is shared between Mount Kenya NP and
Mount Kenya NR and should not be counted twice.

4 The Relative Frequency total is slightly higher than the expected 100% due to rounding errors intro-
duced by the SQL Server query used to compute the frequencies.
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Figure 4.11 shows the frequency distribution bar graph for the absolute frequencies pre-
sented in table 4.4.

Figure 4.11: Frequency distribution bar graph of fire hot spots clusters

Table 4.5 shows the number of fire points in each of the 43 fire hot spot clusters. The
average number of fire points per hot spot cluster was 18 (765 clustered fire points in 43
clusters). The identified hot spot clusters were large in size since the average number of
fire points per cluster was far higher than the minimum of 7 defined by the DBSCAN
MinPts parameter.

Table 4.5: Number of fire points in the fire hot spot clusters

No. Cluster ID WPA Name No. of Fire Points

1. 14 Boni NR 237

2. 26 Boni NR 38

3. 6 Chyulu Hills NP 38

4. 10 Dodori NR 37

5. 41 Chyulu Hills NP 31

6. 25 Boni NR 21

7. 13 Chyulu Hills NP 21

8. 24 Kiunga Marine NR 18
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No. Cluster ID WPA Name No. of Fire Points

9. 11 Dodori NR 15

10. 32 Chyulu Hills NP 14

11. 1 South Turkana NR 14

12. 5 Tsavo West NP 13

13. 7 Boni NR 13

14. 18 Mount Elgon NP 13

15. 38 Mount Kenya NP 11

16. 29 Ruma NP 11

17. 16 Chyulu Hills NP 11

18. 35 Tsavo West NP 11

19. 17 Chyulu Hills NP 10

20. 34 Chepkitale NR 10

21. 21 North Kitui NR 10

22. 22 Dodori NR 10

23. 19 Chyulu Hills NP 9

24. 4 Chyulu Hills NP 8

25. 28 Chyulu Hills NP 8

26. 0 Chyulu Hills NP 8

27. 15 Aberdare NP 8

28. 31 Dodori NR 8

29. 33 Dodori NR 8

30. 42 Dodori NR 8

31. 37 Mount Elgon NP 8

32. 20 Ruma NP 8

33. 39 Tsavo West NP 7

34. 12 South Turkana NR 7

35. 40 Tsavo East NP 7

36. 27 Mount Kenya NP 7
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No. Cluster ID WPA Name No. of Fire Points

37. 36 North Kitui NR 7

38. 30 Ruma NP 7

39. 9 Ruma NP 7

40. 2 Aberdare NP 7

41. 3 Chyulu Hills NP 7

42. 23 Chyulu Hills NP 7

43. 8 Mount Kenya NP & Mount Kenya NR 7

Total 765

The clustering results support prior KWS knowledge (Kamau, 2013; KWS, 2012d) that
Chyulu Hills NP is highly vulnerable to wildfires. The data indicated fire presence in
about 80% of the park. It also had the highest number of hot spot clusters (12), indicating
a high distribution density of fires.

The results also confirmed that KBDCA is highly prone to wildfires. The largest fire hot
spot cluster consisting of 237 fire points occurred in Boni NR. In total, KBDCA had 11
fire hot spot clusters, almost as high as the number in Chyulu Hills NP.

About 70% of Ruma NP had fire presence with a high distribution density of fire points.
4 fire hot spot clusters were identified in the park. The 166 fire points occuring in Ruma
NP resulted in an average of 1.38 fire points per km2. It was one of only two WPAs (the
other being Chepkitale NR) with an average of more than 1 fire point per km2.

The mountain ecosystems had a high number of fire points but with a relatively low
distribution density. Out of the 569 fire points occurring in Mt. Kenya NP and Mt.
Kenya NR, only 3 hot spot clusters were identified by DBSCAN. Most of the fire activity
occurred in Mt. Kenya NP and the Northern part of Mt. Kenya NR. Aberdare NP had
264 fire points with only 2 hot spot clusters identified in it.

In TCA, the results showed that Tsavo West NP had much higher fire activity than
Tsavo East NP, contrary to KWS knowledge. This may be because Tsavo East NP has
more sparse vegetation cover that provides less fuel for wildfires. Both parks had only
4 hot spot regions, indicating a low distribution density of fires. The single hot spot in
Tsavo East NP occurred on the banks of the Tiva river where there is acacia and palm
forest vegetation. The web application’s Google Maps interface clearly showed the exact
locations of the wildfires that originate along the Nairobi-Mombasa highway and railway
line in Tsavo West NP and Tsavo East NP. There were 26 such fire points occurring along
the stretch of highway between Mtito Andei and Maungu towns.
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4.7 Evaluation of the Web Application

The use of the Google Maps API in the web application developed in this study provided
a very interactive means of visualizing the MODIS fire points and hot spot clusters. In
particular, the use of a convex hull polygon with a high-contrast fill color and border
clearly delineated the extent of the fire hot spot regions. This visualization method has
also been used by the GeoClustering application (Wang, Wang & Liang, 2011). Google
Maps also provided satellite imagery as a background on which fire points and clusters
were overlaid. The vegetation context is helpful in enabling users to understand the
probable cause and/or impact of the wildfires.

The web application’s feature for viewing data for a specific WPA at a time was very
useful for users who were mostly interested in the fire activity within their WPA. This
usefulness was coupled with the ability to view the fire points and fire hot spots regions
at different spatial resolutions.

While the Google Maps API is rich and highly interactive, it does require considerable
network bandwidth to load the map tiles responsively. The web page load time for
the web application is therefore determined by the user’s Internet connection speed. It
also has the disadvantage of not being functional when a user is not connected to the
Internet. This may be an impediment for some of the KWS field stations where Internet
connectivity is poor.
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Chapter 5

Conclusion

5.1 Achievements

The primary research objective of this study was to identify the regions that are fire hot
spots in Kenya’s WPAs by performing a density-based cluster analysis on the MODIS
active fire data set, for a 12 year period covering the years 2003 to 2014. The secondary
research objective was to develop a web application that provides an interactive visualiza-
tion of the fire hot spots identified by the cluster analysis. Both of the research objectives
set out for this study were met satisfactorily.

The DBSCAN implementation in the ELKI software framework was effective in clustering
the MODIS active fire data set. The final DBSCAN parameters selected as being the most
suitable identified 43 fire hot spot regions within Kenya’s WPAs. These are the areas
that incur a high degree of biodiversity loss and wildlife habitat degradation resulting
from wildfire damage.

The findings of this study indicate that density-based cluster analysis is a suitable clus-
tering method for identifying hot spots in geospatial data sets. The cluster analysis per-
formed in this study was a stand-alone exploratory task whose goal was to explore and
reveal the hidden patterns in the MODIS active fire data set. The results strongly support
observations in the literature which state that density-based clustering is well-suited for
discovering clusters of arbitrary shape. This property in addition to DBSCAN’s built-in
notion of noise and the absence of the need to specify the number of clusters beforehand
worked favorably in this study.

The arbitrary shapes of the identified fire hot spot clusters and the large percentage of
low-density noise points detected in the MODIS fire data set indicate that density-based
cluster analysis was the most suitable clustering method for this study. A clustering
algorithm such as the widely used K -Means would not have been suitable for this study
since there was no appropriate heuristic available for determining the number of fire hot
spot clusters beforehand. In addition, it would have been limited to producing spherical
clusters.

This study also showed that the sorted k -dist graph heuristic used to estimate parameters
for the DBSCAN algorithm does not necessarily produce suitable parameter values. Its
performance is influenced by the characteristics of a data set. Due to the exploratory
nature of the clustering task, there was a need to run the DBSCAN algorithm with several
different sets of parameter values and evaluate the result of each run, to identify the pair
that yielded a suitable clustering result for a given data set.

The main weakness of the DBSCAN algorithm (which is addressed by OPTICS) is that
it performs poorly when there are large differences in local densities for different regions
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of the data space. This results from its use of one pair of global parameters over the
entire data set. The selection of the most suitable pair of DBSCAN parameter values
after experimenting with a large set of possibilities gave a meaningful clustering result
for this study despite this weakness of the algorithm.

The data analysis performed during the study revealed that there was a relatively high
level of fire activity in the WPAs between 2003 and 2014. However, 27% of the WPAs
were safe from wildfires since no fire activity was observed in them over the 12 years.
The data analysis also showed that the four most vulnerable WPAs to fire activity in
Kenya were: Chyulu Hills NP, Dodori NR, Boni NR, and Ruma NP. The main causes
of wildfires in these WPAs are the use of inappropriate honey gathering methods and
burning to improve the quality of pasture for grazing.

With regards to the web application development, the use of the Google Maps API
provided a rich and interactive means of visualizing the MODIS fire points and hot spot
clusters. The use of the web platform to disseminate the information on the spatial
distribution pattern of fire incidents in Kenya’s WPAs enabled wide access for KWS
WPA managers and research scientists.

5.2 Limitations

The MODIS active fire data set represents a rich repository from which information on
fire incidents can be extracted. However, high quality fire observations from both the
Terra and Aqua satellites are available from July 2002. Earlier time periods are not
represented. In addition, in some cases, the MODIS instrument has limitations on the
fire observations it can make. For instance, a fire detection may be missed due to cloud
cover or forest canopy. MODIS may also fail to detect very small fires below about 50 m2

under poor observing conditions since its spatial resolution is relatively low at 1 km2 per
pixel. Further, the accuracy of the fire point coordinates in the data set is impacted by
the MODIS spatial resolution and the precision of 3-decimal places.

Since the MODIS fire data set is captured by remote sensing satellites in Earth orbit, the
fire observations made by the MODIS instrument do not provide additional information
such as the cause of the detected fires. A user can therefore not tell which of the observed
fire points resulted from prescribed burning vis-a-vis wildfires in the WPAs. Such cases
would require a KWS WPA manager or research scientist to manually label the fire
activity based on its spatial and temporal context of occurrence.

A limitation faced in the use of the DBSCAN algorithm for this study pertains to the
absence of suitable external clustering validation measures. The MODIS active fire data
set was unlabeled since the fire hot spot regions in the WPAs were not known beforehand.
Most of the existing internal clustering validation measures such as the Davies-Bouldin
index are designed for centroid-based clustering algorithms.
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5.3 Recommendations

Research

Density-based cluster analysis should be given priority over other clustering methods for
data mining tasks involving the identification of hot spots in geospatial data sets. When
using the DBSCAN algorithm for a density-based clustering task, the use of the sorted k -
dist graph heuristic for estimating parameters should be accompanied by experimentation
with a wide range of parameters before deciding on the most suitable values.

Practice

The 43 identified fire hot spot regions indicate the areas within the WPAs where fire
monitoring efforts by KWS need to be focused during the fire season. Ground and aerial
patrols of these regions should be intensified in an effort to reduce future incidents of
wildfires. In addition, KWS WPA managers should highly consider the fire hot spot re-
gions when deciding on the locations for constructing new fire watchtowers and firebreaks
in the WPAs.

Chyulu Hills NP, Dodori NR, Boni NR, and Ruma NP should be given the highest
priority by KWS with regards to the allocation of fire management resources. Within
these WPAs, the use of inappropriate honey gathering methods and burning to improve
the quality of pasture for grazing should be monitored closely since they are the principal
causes of wildfires in the vulnerable WPAs. On the other hand, the 17 WPAs that did not
record any fire activity over the 12 years under study require minimal fire management
effort. These are: Amboseli NP, Arabuko Sokoke NP, Buffalo Springs NR, Central Island
NP, Kakamega NR, Kisite Marine NP, Lake Bogoria NR, Lake Simbi National Sanctuary
(NS), Malindi Marine NP, Maralal NS, Mombasa Marine NP, Mpunguti Marine NR,
Ndere Island NP, Rimoi NR, Samburu NR, Watamu Marine NP, and Watamu Marine
NR.

KWS research scientists need to conduct studies to determine the extent of biodiversity
loss and habitat degradation that has occurred in the ecological zones surrounding the
fire hot spot regions. The results of these studies will assist KWS WPA managers in
understanding the impact that wildfires have had on Kenya’s wildlife. They will also
serve to justify the need for increased fire management resources in the most affected
regions.

5.4 Future Work

The temporal aspect of the MODIS active fire data set was not considered in this study.
This work can be extended by analyzing the change of the spatial distribution of the hot
spot clusters over time. A year-by-year comparison of the hot spots would be beneficial
in providing a trend of the fire activity over time.
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For the web application, a number of useful but missing features were identified during
evaluation with the KWS GIS section. The need to incorporate the fire points occurring
outside the WPAs was considered to be useful since it would enable the user to compare
fire activity inside and outside a WPA. This is required when analyzing wildlife habitat
factors such as migration corridors or ranges of occurrence which extend outside the
WPAs.

The temporal context for the MODIS active fire data set is provided by the Acquisition
Date and Acquisition Time attribute fields. The provision of these fields for each fire
incident on the Google Maps interface would help a user place the incident in both time
and space for complete context. These fields would also make it possible to resolve the
cause of a particular fire in the event that a KWS WPA manager or research scientist
might recall a particular fire incident based on when it occurred.

An additional useful enhancement to the web application would be to provide an intuitive
interface through which the user can dynamically specify different parameter values for
the DBSCAN algorithm. Since the ELKI DBSCAN R*-Tree index structure provides a
low enough runtime complexity for the MODIS data set used in this study, the clustering
can be performed as a query while retaining an acceptable system response time.
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Appendix A

Code and Data File Listings

Listing A.1: firms2186714310171011 MCD14ML.csv

1 latitude,longitude,brightness,scan,track,acq_date,acq_time,satellite,

confidence,version,bright_t31,frp

2 5.716,35.218,328.5,1.1,1,2005-12-10, 0803,T,81,5.1,306.8,17.1

3 3.873,34.097,320.4,1.2,1.1,2005-12-10, 0804,T,49,5.1,304.3,13.1

4 3.719,34.115,319.7,1.2,1.1,2005-12-10, 0804,T,66,5.1,303.3,10.8

5 3.715,34.118,328.7,1.2,1.1,2005-12-10, 0804,T,82,5.1,305.5,24.4

...

Listing A.2: MCD14ML.txt

1 longitude latitude

2 35.218 5.716

3 34.097 3.873

4 34.115 3.719

5 34.118 3.715

...

Listing A.3: MCD14ML WPA.csv

1 longitude,latitude,WPA_NAME

2 38.365,-4.055,Tsavo West NP

3 38.377,-4.057,Tsavo West NP

4 38.376,-4.067,Tsavo West NP

5 38.388,-4.069,Tsavo West NP

...

Listing A.4: fdist.sql

1 /* create a temporary database

2 * and use it for the following SQL statements */

3 CREATE DATABASE mydb;

4 USE mydb;

5

6 /* create table to hold fire points */

7 CREATE TABLE `mydb`.`fire` (

8 `long` DOUBLE NOT NULL,

9 `lat` DOUBLE NOT NULL,

10 `wpa` VARCHAR(30) NOT NULL)

11 ENGINE = MyISAM;
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12

13 /* load the fire points from the input CSV file into the table */

14 LOAD DATA INFILE '/tmp/MCD14ML_WPA.csv'

15 INTO TABLE mydb.fire

16 COLUMNS TERMINATED BY ','

17 OPTIONALLY ENCLOSED BY ''

18 ESCAPED BY ''

19 LINES TERMINATED BY '\n'

20 IGNORE 1 LINES;

21

22 /* save total number of fire points (4,968) in variable `n'

23 * for use below in calculating the relative frequencies */

24 SELECT @n := COUNT(lat)

25 FROM mydb.fire;

26

27 /* write the number of fire points in each WPA in descending order

28 * into an output CSV file */

29 SELECT wpa, COUNT(*) AS absfreq,

30 CONCAT(ROUND(((COUNT(*) / @n) * 100), 2), '%') AS relfreq

31 FROM mydb.fire

32 GROUP BY wpa

33 ORDER BY absfreq DESC

34 INTO OUTFILE '/tmp/fdist.csv'

35 FIELDS TERMINATED BY ','

36 ENCLOSED BY ''

37 ESCAPED BY ''

38 LINES TERMINATED BY '\n';

39

40 /* delete the database and its contents */

41 DROP DATABASE mydb;

Listing A.5: fdist.csv

1 Tsavo West NP,693,13.95%

2 Chyulu Hills NP,581,11.69%

3 Boni NR,443,8.92%

4 Masai Mara NR,415,8.35%

5 Dodori NR,414,8.33%

...

Listing A.6: fdist.m

1 % create frequency distribution bar graph

2

3 % read data from CSV file into cell array x and column vector y
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4 [x, y] = textread('fdist.csv', '%s %d %*', 'delimiter', ',',

5 'whitespace', '');

6

7 % reverse both x and y to have higher values at top of bar graph

8 x = flip(x);

9 y = flip(y);

10

11 % plot horizontal bar graph

12 barh(y, 0.7, 'facecolor', 'black', 'edgecolor', 'black');

13 set(gca, 'yticklabel', x, 'ticklength', [0.007, 0.007], 'xgrid', 'on',

14 'xminortick', 'on', 'gridlinestyle', ':', 'fontsize', 8);

15

16 % fix the current y axis limits manually

17 axis([-Inf, Inf, 0, length(y)+1], 'manual');

18

19 % set axis labels and graph title

20 xlabel('No. of Fire Points', 'fontsize', 9);

21 ylabel('WPA', 'fontsize', 9);

22 title("Frequency Distribution of MODIS Fire Points in Kenya's WPAs",

23 'fontsize', 9);

24

25 % save the bar graph to a png file

26 print -dpng fdist.png

Listing A.7: scatterplot.m

1 % create scatterplot of preprocessed MODIS fire points

2 % renamed from scatter.m, which is the name of an Octave function file

3

4 % read data from CSV file into column vectors x and y

5 [x, y] = textread('MCD14ML_WPA.csv', '%f %f %*', 'delimiter', ',',

6 'headerlines', 1, 'whitespace', '');

7

8 % plot scatterplot

9 scatter(x, y, 5, 'black', '+');

10

11 % fix current y axis limits manually; make axes equal

12 axis([33, 43, -5, 5], 'manual', 'equal');

13

14 % set axis labels and graph title

15 xlabel('Longitude');

16 ylabel('Latitude');

17 title("Scatterplot Diagram of MODIS Fire Points in Kenya's WPAs");

18

19 % save graph to png file
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20 print -dpng scatterplot.png

Listing A.8: knn-distances.txt

1 111.28164593701999

2 156.8733266768559

3 156.8733266768559

4 156.87332667687468

5 156.87332667687468

...

4964 210464.43266414793

4965 383443.4757380694

4966 383948.18111164623

4967 384144.3296365825

4968 387472.3639902396

Listing A.9: noise.txt

1 # Cluster: Noise

2 # Cluster name: Noise

3 # Cluster noise flag: true

4 # Cluster size: 4203

5 ID=4968 41.164 -1.505 Boni NR

6 ID=4967 41.162 -1.516 Boni NR

7 ID=4966 35.702 1.734 South Turkana NR

8 ID=4965 35.735 1.831 South Turkana NR

9 ID=4964 41.488 -1.74 Kiunga Marine NR

...

4203 ID=5 38.386 -4.079 Tsavo West NP

4204 ID=4 38.388 -4.069 Tsavo West NP

4205 ID=3 38.376 -4.067 Tsavo West NP

4206 ID=2 38.377 -4.057 Tsavo West NP

4207 ID=1 38.365 -4.055 Tsavo West NP

Listing A.10: cluster 0.txt

1 # Cluster: Cluster 0

2 # Cluster name: Cluster

3 # Cluster noise flag: false

4 # Cluster size: 8

5 ID=2067 37.84 -2.568 Chyulu Hills NP

6 ID=3290 37.841 -2.568 Chyulu Hills NP

7 ID=3321 37.837 -2.566 Chyulu Hills NP

8 ID=2573 37.842 -2.572 Chyulu Hills NP
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9 ID=1076 37.835 -2.569 Chyulu Hills NP

10 ID=2048 37.835 -2.57 Chyulu Hills NP

11 ID=2581 37.841 -2.562 Chyulu Hills NP

12 ID=2124 37.834 -2.57 Chyulu Hills NP

Listing A.11: Query for the frequency distribution of fire hot spot clusters in the WPAs

1 SELECT

2 name AS wpa,

3 COUNT(DISTINCT clusterid) AS absfreq,

4 ROUND(

5 (

6 CAST(

7 COUNT(DISTINCT clusterid) AS FLOAT

8 ) / 43 * 100

9 ), 2

10 ) AS relfreq

11 FROM clu_wpa INNER JOIN clu_fire

12 ON clu_wpa.wpaid = clu_fire.wpaid

13 WHERE clusterid != 'Noise'

14 GROUP BY name

15 ORDER BY absfreq DESC

Listing A.12: Query for the number of fire points in each fire hot spot cluster

1 SELECT

2 DISTINCT clusterid,

3 name AS wpa,

4 COUNT(clusterid) AS size

5 FROM clu_wpa INNER JOIN clu_fire

6 ON clu_wpa.wpaid = clu_fire.wpaid

7 WHERE clusterid != 'Noise'

8 GROUP BY clusterid, name

9 ORDER BY size DESC

Listing A.13: Query for the average number of fire points per km2 in each WPA

1 SELECT

2 name AS wpa,

3 COUNT(clusterid) / size AS density

4 FROM clu_wpa INNER JOIN clu_fire

5 ON clu_wpa.wpaid = clu_fire.wpaid

6 GROUP BY name, size

7 ORDER BY density DESC
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Listing A.14: wpa.sql

1 USE [kwsids]

2 GO

3

4 SET ANSI_NULLS ON

5 GO

6

7 SET QUOTED_IDENTIFIER ON

8 GO

9

10 SET ANSI_PADDING ON

11 GO

12

13 CREATE TABLE [dbo].[clu_wpa] (

14 [wpaid] [tinyint] IDENTITY(1,1) NOT NULL,

15 [name] [varchar](30) NOT NULL,

16 [size] [decimal](9, 4) NOT NULL,

17 CONSTRAINT [PK_clu_wpa] PRIMARY KEY CLUSTERED ([wpaid] ASC)

18 WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

19 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,

20 ALLOW_PAGE_LOCKS = ON

21 ) ON [PRIMARY]

22 ) ON [PRIMARY]

23 GO

24

25 SET ANSI_PADDING OFF

26 GO

Listing A.15: fire.sql

1 USE [kwsids]

2 GO

3

4 SET ANSI_NULLS ON

5 GO

6

7 SET QUOTED_IDENTIFIER ON

8 GO

9

10 SET ANSI_PADDING ON

11 GO

12

13 CREATE TABLE [dbo].[clu_fire] (

14 [fireid] [smallint] IDENTITY(1,1) NOT NULL,
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15 [lat] [decimal](9, 4) NOT NULL,

16 [long] [decimal](9, 4) NOT NULL,

17 [wpaid] [tinyint] NOT NULL,

18 [clusterid] [varchar](10) NOT NULL,

19 CONSTRAINT [PK_clu_fire] PRIMARY KEY CLUSTERED ([fireid] ASC)

20 WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

21 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,

22 ALLOW_PAGE_LOCKS = ON

23 ) ON [PRIMARY]

24 ) ON [PRIMARY]

25 GO

26

27 SET ANSI_PADDING OFF

28 GO

29

30 /* foreign key defining relationship between wpa and fire tables */

31 ALTER TABLE [dbo].[clu_fire]

32 WITH CHECK

33 ADD CONSTRAINT [FK_clu_wpa_clu_fire]

34 FOREIGN KEY([wpaid])

35 REFERENCES [dbo].[clu_wpa] ([wpaid])

36 ON UPDATE CASCADE

37 GO

38

39 ALTER TABLE [dbo].[clu_fire]

40 CHECK CONSTRAINT [FK_clu_wpa_clu_fire]

41 GO

Listing A.16: fire.awk

1 # This program produces the data for the Fire table. The CSV output

2 # file has 4 columns for lat, long, wpa_name, and cluster_id.

3 {

4 if (FNR == 1)

5 cid = $NF;

6 else if (FNR > 4) {

7 printf("%s,%s,", $3, $2);

8 for (i = 4; i <= NF; i++) {

9 c = (i == 4) ? "" : " ";

10 printf("%s%s", c, $i);

11 }

12 printf(",%s", cid);

13 printf("\n");

14 }

15 }
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Listing A.17: wpa.awk

1 # This program further processes the data for the Fire table.

2

3 FILENAME == "wpa.csv" {

4 a[$1] = FNR

5 }

6

7 # replace wpa names with respective ids

8 FILENAME == "fire.csv" {

9 print $1, $2, a[$3], $4

10 }

Listing A.18: wpa.csv

1 Aberdare NP,765.7

2 Amboseli NP,392

3 Arabuko Sokoke NP,6

4 Arawale NR,533

5 Bisanadi NR,606

...

Listing A.19: fire.csv

1 -2.568,37.84,10,0

2 -2.568,37.841,10,0

3 -2.566,37.837,10,0

4 -2.572,37.842,10,0

5 -2.569,37.835,10,0

...
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